1 // gdb-index.cc -- generate .gdb_index section for fast debug lookup
2 
3 // Copyright (C) 2012-2020 Free Software Foundation, Inc.
4 // Written by Cary Coutant <ccoutant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include "gdb-index.h"
26 #include "dwarf_reader.h"
27 #include "dwarf.h"
28 #include "object.h"
29 #include "output.h"
30 #include "demangle.h"
31 
32 namespace gold
33 {
34 
35 const int gdb_index_version = 7;
36 
37 // Sizes of various records in the .gdb_index section.
38 const int gdb_index_offset_size = 4;
39 const int gdb_index_hdr_size = 6 * gdb_index_offset_size;
40 const int gdb_index_cu_size = 16;
41 const int gdb_index_tu_size = 24;
42 const int gdb_index_addr_size = 16 + gdb_index_offset_size;
43 const int gdb_index_sym_size = 2 * gdb_index_offset_size;
44 
45 // This class manages the hashed symbol table for the .gdb_index section.
46 // It is essentially equivalent to the hashtab implementation in libiberty,
47 // but is copied into gdb sources and here for compatibility because its
48 // data structure is exposed on disk.
49 
50 template <typename T>
51 class Gdb_hashtab
52 {
53  public:
54   Gdb_hashtab()
55     : size_(0), capacity_(0), hashtab_(NULL)
56   { }
57 
58   ~Gdb_hashtab()
59   {
60     for (size_t i = 0; i < this->capacity_; ++i)
61       if (this->hashtab_[i] != NULL)
62 	delete this->hashtab_[i];
63     delete[] this->hashtab_;
64   }
65 
66   // Add a symbol.
67   T*
68   add(T* symbol)
69   {
70     // Resize the hash table if necessary.
71     if (4 * this->size_ / 3 >= this->capacity_)
72       this->expand();
73 
74     T** slot = this->find_slot(symbol);
75     if (*slot == NULL)
76       {
77 	++this->size_;
78 	*slot = symbol;
79       }
80 
81     return *slot;
82   }
83 
84   // Return the current size.
85   size_t
86   size() const
87   { return this->size_; }
88 
89   // Return the current capacity.
90   size_t
91   capacity() const
92   { return this->capacity_; }
93 
94   // Return the contents of slot N.
95   T*
96   operator[](size_t n)
97   { return this->hashtab_[n]; }
98 
99  private:
100   // Find a symbol in the hash table, or return an empty slot if
101   // the symbol is not in the table.
102   T**
103   find_slot(T* symbol)
104   {
105     unsigned int index = symbol->hash() & (this->capacity_ - 1);
106     unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1;
107 
108     for (;;)
109       {
110 	if (this->hashtab_[index] == NULL
111 	    || this->hashtab_[index]->equal(symbol))
112 	  return &this->hashtab_[index];
113 	index = (index + step) & (this->capacity_ - 1);
114       }
115   }
116 
117   // Expand the hash table.
118   void
119   expand()
120   {
121     if (this->capacity_ == 0)
122       {
123 	// Allocate the hash table for the first time.
124 	this->capacity_ = Gdb_hashtab::initial_size;
125 	this->hashtab_ = new T*[this->capacity_];
126 	memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
127       }
128     else
129       {
130 	// Expand and rehash.
131 	unsigned int old_cap = this->capacity_;
132 	T** old_hashtab = this->hashtab_;
133 	this->capacity_ *= 2;
134 	this->hashtab_ = new T*[this->capacity_];
135 	memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
136 	for (size_t i = 0; i < old_cap; ++i)
137 	  {
138 	    if (old_hashtab[i] != NULL)
139 	      {
140 		T** slot = this->find_slot(old_hashtab[i]);
141 		*slot = old_hashtab[i];
142 	      }
143 	  }
144 	delete[] old_hashtab;
145       }
146   }
147 
148   // Initial size of the hash table; must be a power of 2.
149   static const int initial_size = 1024;
150   size_t size_;
151   size_t capacity_;
152   T** hashtab_;
153 };
154 
155 // The hash function for strings in the mapped index.  This is copied
156 // directly from gdb/dwarf2read.c.
157 
158 static unsigned int
159 mapped_index_string_hash(const unsigned char* str)
160 {
161   unsigned int r = 0;
162   unsigned char c;
163 
164   while ((c = *str++) != 0)
165     {
166       if (gdb_index_version >= 5)
167 	c = tolower (c);
168       r = r * 67 + c - 113;
169     }
170 
171   return r;
172 }
173 
174 // A specialization of Dwarf_info_reader, for building the .gdb_index.
175 
176 class Gdb_index_info_reader : public Dwarf_info_reader
177 {
178  public:
179   Gdb_index_info_reader(bool is_type_unit,
180 			Relobj* object,
181 			const unsigned char* symbols,
182 			off_t symbols_size,
183 			unsigned int shndx,
184 			unsigned int reloc_shndx,
185 			unsigned int reloc_type,
186 			Gdb_index* gdb_index)
187     : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
188 			reloc_shndx, reloc_type),
189       gdb_index_(gdb_index), cu_index_(0), cu_language_(0)
190   { }
191 
192   ~Gdb_index_info_reader()
193   { this->clear_declarations(); }
194 
195   // Print usage statistics.
196   static void
197   print_stats();
198 
199  protected:
200   // Visit a compilation unit.
201   virtual void
202   visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
203 
204   // Visit a type unit.
205   virtual void
206   visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset,
207 		  uint64_t signature, Dwarf_die*);
208 
209  private:
210   // A map for recording DIEs we've seen that may be referred to be
211   // later DIEs (via DW_AT_specification or DW_AT_abstract_origin).
212   // The map is indexed by a DIE offset within the compile unit.
213   // PARENT_OFFSET_ is the offset of the DIE that represents the
214   // outer context, and NAME_ is a pointer to a component of the
215   // fully-qualified name.
216   // Normally, the names we point to are in a string table, so we don't
217   // have to manage them, but when we have a fully-qualified name
218   // computed, we put it in the table, and set PARENT_OFFSET_ to -1
219   // indicate a string that we are managing.
220   struct Declaration_pair
221   {
222     Declaration_pair(off_t parent_offset, const char* name)
223       : parent_offset_(parent_offset), name_(name)
224     { }
225 
226     off_t parent_offset_;
227     const char* name_;
228   };
229   typedef Unordered_map<off_t, Declaration_pair> Declaration_map;
230 
231   // Visit a top-level DIE.
232   void
233   visit_top_die(Dwarf_die* die);
234 
235   // Visit the children of a DIE.
236   void
237   visit_children(Dwarf_die* die, Dwarf_die* context);
238 
239   // Visit a DIE.
240   void
241   visit_die(Dwarf_die* die, Dwarf_die* context);
242 
243   // Visit the children of a DIE.
244   void
245   visit_children_for_decls(Dwarf_die* die);
246 
247   // Visit a DIE.
248   void
249   visit_die_for_decls(Dwarf_die* die, Dwarf_die* context);
250 
251   // Guess a fully-qualified name for a class type, based on member function
252   // linkage names.
253   std::string
254   guess_full_class_name(Dwarf_die* die);
255 
256   // Add a declaration DIE to the table of declarations.
257   void
258   add_declaration(Dwarf_die* die, Dwarf_die* context);
259 
260   // Add a declaration whose fully-qualified name is already known.
261   void
262   add_declaration_with_full_name(Dwarf_die* die, const char* full_name);
263 
264   // Return the context for a DIE whose parent is at DIE_OFFSET.
265   std::string
266   get_context(off_t die_offset);
267 
268   // Construct a fully-qualified name for DIE.
269   std::string
270   get_qualified_name(Dwarf_die* die, Dwarf_die* context);
271 
272   // Record the address ranges for a compilation unit.
273   void
274   record_cu_ranges(Dwarf_die* die);
275 
276   // Wrapper for read_pubtable.
277   bool
278   read_pubnames_and_pubtypes(Dwarf_die* die);
279 
280   // Read the .debug_pubnames and .debug_pubtypes tables.
281   bool
282   read_pubtable(Dwarf_pubnames_table* table, off_t offset);
283 
284   // Clear the declarations map.
285   void
286   clear_declarations();
287 
288   // The Gdb_index section.
289   Gdb_index* gdb_index_;
290   // The current CU index (negative for a TU).
291   int cu_index_;
292   // The language of the current CU or TU.
293   unsigned int cu_language_;
294   // Map from DIE offset to (parent offset, name) pair,
295   // for DW_AT_specification.
296   Declaration_map declarations_;
297 
298   // Statistics.
299   // Total number of DWARF compilation units processed.
300   static unsigned int dwarf_cu_count;
301   // Number of DWARF compilation units with pubnames/pubtypes.
302   static unsigned int dwarf_cu_nopubnames_count;
303   // Total number of DWARF type units processed.
304   static unsigned int dwarf_tu_count;
305   // Number of DWARF type units with pubnames/pubtypes.
306   static unsigned int dwarf_tu_nopubnames_count;
307 };
308 
309 // Total number of DWARF compilation units processed.
310 unsigned int Gdb_index_info_reader::dwarf_cu_count = 0;
311 // Number of DWARF compilation units without pubnames/pubtypes.
312 unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0;
313 // Total number of DWARF type units processed.
314 unsigned int Gdb_index_info_reader::dwarf_tu_count = 0;
315 // Number of DWARF type units without pubnames/pubtypes.
316 unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0;
317 
318 // Process a compilation unit and parse its child DIE.
319 
320 void
321 Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length,
322 					      Dwarf_die* root_die)
323 {
324   ++Gdb_index_info_reader::dwarf_cu_count;
325   this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length);
326   this->visit_top_die(root_die);
327 }
328 
329 // Process a type unit and parse its child DIE.
330 
331 void
332 Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t,
333 				       off_t type_offset, uint64_t signature,
334 				       Dwarf_die* root_die)
335 {
336   ++Gdb_index_info_reader::dwarf_tu_count;
337   // Use a negative index to flag this as a TU instead of a CU.
338   this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset,
339 							 signature);
340   this->visit_top_die(root_die);
341 }
342 
343 // Process a top-level DIE.
344 // For compile_unit DIEs, record the address ranges.  For all
345 // interesting tags, add qualified names to the symbol table
346 // and process interesting children.  We may need to process
347 // certain children just for saving declarations that might be
348 // referenced by later DIEs with a DW_AT_specification attribute.
349 
350 void
351 Gdb_index_info_reader::visit_top_die(Dwarf_die* die)
352 {
353   this->clear_declarations();
354 
355   switch (die->tag())
356     {
357       case elfcpp::DW_TAG_compile_unit:
358       case elfcpp::DW_TAG_type_unit:
359 	this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language);
360 	if (die->tag() == elfcpp::DW_TAG_compile_unit)
361 	  this->record_cu_ranges(die);
362 	// If there is a pubnames and/or pubtypes section for this
363 	// compilation unit, use those; otherwise, parse the DWARF
364 	// info to extract the names.
365 	if (!this->read_pubnames_and_pubtypes(die))
366 	  {
367 	    // Check for languages that require specialized knowledge to
368 	    // construct fully-qualified names, that we don't yet support.
369 	    if (this->cu_language_ == elfcpp::DW_LANG_Ada83
370 		|| this->cu_language_ == elfcpp::DW_LANG_Fortran77
371 		|| this->cu_language_ == elfcpp::DW_LANG_Fortran90
372 		|| this->cu_language_ == elfcpp::DW_LANG_Java
373 		|| this->cu_language_ == elfcpp::DW_LANG_Ada95
374 		|| this->cu_language_ == elfcpp::DW_LANG_Fortran95
375 		|| this->cu_language_ == elfcpp::DW_LANG_Fortran03
376 		|| this->cu_language_ == elfcpp::DW_LANG_Fortran08)
377 	      {
378 		gold_warning(_("%s: --gdb-index currently supports "
379 			       "only C and C++ languages"),
380 			     this->object()->name().c_str());
381 		return;
382 	      }
383 	    if (die->tag() == elfcpp::DW_TAG_compile_unit)
384 	      ++Gdb_index_info_reader::dwarf_cu_nopubnames_count;
385 	    else
386 	      ++Gdb_index_info_reader::dwarf_tu_nopubnames_count;
387 	    this->visit_children(die, NULL);
388 	  }
389 	break;
390       default:
391 	// The top level DIE should be one of the above.
392 	gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit "
393 		       "or DW_TAG_type_unit"),
394 		     this->object()->name().c_str());
395 	return;
396     }
397 }
398 
399 // Visit the children of PARENT, looking for symbols to add to the index.
400 // CONTEXT points to the DIE to use for constructing the qualified name --
401 // NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT.
402 
403 void
404 Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context)
405 {
406   off_t next_offset = 0;
407   for (off_t die_offset = parent->child_offset();
408        die_offset != 0;
409        die_offset = next_offset)
410     {
411       Dwarf_die die(this, die_offset, parent);
412       if (die.tag() == 0)
413 	break;
414       this->visit_die(&die, context);
415       next_offset = die.sibling_offset();
416     }
417 }
418 
419 // Visit a child DIE, looking for symbols to add to the index.
420 // CONTEXT is the parent DIE, used for constructing the qualified name;
421 // it is NULL if the parent DIE is the top-level DIE.
422 
423 void
424 Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context)
425 {
426   switch (die->tag())
427     {
428       case elfcpp::DW_TAG_subprogram:
429       case elfcpp::DW_TAG_constant:
430       case elfcpp::DW_TAG_variable:
431       case elfcpp::DW_TAG_enumerator:
432       case elfcpp::DW_TAG_base_type:
433 	if (die->is_declaration())
434 	  this->add_declaration(die, context);
435 	else
436 	  {
437 	    // If the DIE is not a declaration, add it to the index.
438 	    std::string full_name = this->get_qualified_name(die, context);
439 	    if (!full_name.empty())
440 	      this->gdb_index_->add_symbol(this->cu_index_,
441                                            full_name.c_str(), 0);
442 	  }
443 	break;
444       case elfcpp::DW_TAG_typedef:
445       case elfcpp::DW_TAG_union_type:
446       case elfcpp::DW_TAG_class_type:
447       case elfcpp::DW_TAG_interface_type:
448       case elfcpp::DW_TAG_structure_type:
449       case elfcpp::DW_TAG_enumeration_type:
450       case elfcpp::DW_TAG_subrange_type:
451       case elfcpp::DW_TAG_namespace:
452 	{
453 	  std::string full_name;
454 
455 	  // For classes at the top level, we need to look for a
456 	  // member function with a linkage name in order to get
457 	  // the properly-canonicalized name.
458 	  if (context == NULL
459 	      && (die->tag() == elfcpp::DW_TAG_class_type
460 		  || die->tag() == elfcpp::DW_TAG_structure_type
461 		  || die->tag() == elfcpp::DW_TAG_union_type))
462 	    full_name.assign(this->guess_full_class_name(die));
463 
464 	  // Because we will visit the children, we need to add this DIE
465 	  // to the declarations table.
466 	  if (full_name.empty())
467 	    this->add_declaration(die, context);
468 	  else
469 	    this->add_declaration_with_full_name(die, full_name.c_str());
470 
471 	  // If the DIE is not a declaration, add it to the index.
472 	  // Gdb stores a namespace in the index even when it is
473 	  // a declaration.
474 	  if (die->tag() == elfcpp::DW_TAG_namespace
475 	      || !die->is_declaration())
476 	    {
477 	      if (full_name.empty())
478 		full_name = this->get_qualified_name(die, context);
479 	      if (!full_name.empty())
480 		this->gdb_index_->add_symbol(this->cu_index_,
481 					     full_name.c_str(), 0);
482 	    }
483 
484 	  // We're interested in the children only for namespaces and
485 	  // enumeration types.  For enumeration types, we do not include
486 	  // the enumeration tag as part of the full name.  For other tags,
487 	  // visit the children only to collect declarations.
488 	  if (die->tag() == elfcpp::DW_TAG_namespace
489 	      || die->tag() == elfcpp::DW_TAG_enumeration_type)
490 	    this->visit_children(die, die);
491 	  else
492 	    this->visit_children_for_decls(die);
493 	}
494 	break;
495       default:
496 	break;
497     }
498 }
499 
500 // Visit the children of PARENT, looking only for declarations that
501 // may be referenced by later specification DIEs.
502 
503 void
504 Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent)
505 {
506   off_t next_offset = 0;
507   for (off_t die_offset = parent->child_offset();
508        die_offset != 0;
509        die_offset = next_offset)
510     {
511       Dwarf_die die(this, die_offset, parent);
512       if (die.tag() == 0)
513 	break;
514       this->visit_die_for_decls(&die, parent);
515       next_offset = die.sibling_offset();
516     }
517 }
518 
519 // Visit a child DIE, looking only for declarations that
520 // may be referenced by later specification DIEs.
521 
522 void
523 Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context)
524 {
525   switch (die->tag())
526     {
527       case elfcpp::DW_TAG_subprogram:
528       case elfcpp::DW_TAG_constant:
529       case elfcpp::DW_TAG_variable:
530       case elfcpp::DW_TAG_enumerator:
531       case elfcpp::DW_TAG_base_type:
532 	{
533 	  if (die->is_declaration())
534 	    this->add_declaration(die, context);
535 	}
536 	break;
537       case elfcpp::DW_TAG_typedef:
538       case elfcpp::DW_TAG_union_type:
539       case elfcpp::DW_TAG_class_type:
540       case elfcpp::DW_TAG_interface_type:
541       case elfcpp::DW_TAG_structure_type:
542       case elfcpp::DW_TAG_enumeration_type:
543       case elfcpp::DW_TAG_subrange_type:
544       case elfcpp::DW_TAG_namespace:
545 	{
546 	  if (die->is_declaration())
547 	    this->add_declaration(die, context);
548 	  this->visit_children_for_decls(die);
549 	}
550 	break;
551       default:
552 	break;
553     }
554 }
555 
556 // Extract the class name from the linkage name of a member function.
557 // This code is adapted from ../gdb/cp-support.c.
558 
559 #define d_left(dc) (dc)->u.s_binary.left
560 #define d_right(dc) (dc)->u.s_binary.right
561 
562 static char*
563 class_name_from_linkage_name(const char* linkage_name)
564 {
565   void* storage;
566   struct demangle_component* tree =
567       cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage);
568   if (tree == NULL)
569     return NULL;
570 
571   int done = 0;
572 
573   // First strip off any qualifiers, if we have a function or
574   // method.
575   while (!done)
576     switch (tree->type)
577       {
578 	case DEMANGLE_COMPONENT_CONST:
579 	case DEMANGLE_COMPONENT_RESTRICT:
580 	case DEMANGLE_COMPONENT_VOLATILE:
581 	case DEMANGLE_COMPONENT_CONST_THIS:
582 	case DEMANGLE_COMPONENT_RESTRICT_THIS:
583 	case DEMANGLE_COMPONENT_VOLATILE_THIS:
584 	case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL:
585 	  tree = d_left(tree);
586 	  break;
587 	default:
588 	  done = 1;
589 	  break;
590       }
591 
592   // If what we have now is a function, discard the argument list.
593   if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME)
594     tree = d_left(tree);
595 
596   // If what we have now is a template, strip off the template
597   // arguments.  The left subtree may be a qualified name.
598   if (tree->type == DEMANGLE_COMPONENT_TEMPLATE)
599     tree = d_left(tree);
600 
601   // What we have now should be a name, possibly qualified.
602   // Additional qualifiers could live in the left subtree or the right
603   // subtree.  Find the last piece.
604   done = 0;
605   struct demangle_component* prev_comp = NULL;
606   struct demangle_component* cur_comp = tree;
607   while (!done)
608     switch (cur_comp->type)
609       {
610 	case DEMANGLE_COMPONENT_QUAL_NAME:
611 	case DEMANGLE_COMPONENT_LOCAL_NAME:
612 	  prev_comp = cur_comp;
613 	  cur_comp = d_right(cur_comp);
614 	  break;
615 	case DEMANGLE_COMPONENT_TEMPLATE:
616 	case DEMANGLE_COMPONENT_NAME:
617 	case DEMANGLE_COMPONENT_CTOR:
618 	case DEMANGLE_COMPONENT_DTOR:
619 	case DEMANGLE_COMPONENT_OPERATOR:
620 	case DEMANGLE_COMPONENT_EXTENDED_OPERATOR:
621 	  done = 1;
622 	  break;
623 	default:
624 	  done = 1;
625 	  cur_comp = NULL;
626 	  break;
627       }
628 
629   char* ret = NULL;
630   if (cur_comp != NULL && prev_comp != NULL)
631     {
632       // We want to discard the rightmost child of PREV_COMP.
633       *prev_comp = *d_left(prev_comp);
634       size_t allocated_size;
635       ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size);
636     }
637 
638   free(storage);
639   return ret;
640 }
641 
642 // Guess a fully-qualified name for a class type, based on member function
643 // linkage names.  This is needed for class/struct/union types at the
644 // top level, because GCC does not always properly embed them within
645 // the namespace.  As in gdb, we look for a member function with a linkage
646 // name and extract the qualified name from the demangled name.
647 
648 std::string
649 Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die)
650 {
651   std::string full_name;
652   off_t next_offset = 0;
653 
654   // This routine scans ahead in the DIE structure, possibly advancing
655   // the relocation tracker beyond the current DIE.  We need to checkpoint
656   // the tracker and reset it when we're done.
657   uint64_t checkpoint = this->get_reloc_checkpoint();
658 
659   for (off_t child_offset = die->child_offset();
660        child_offset != 0;
661        child_offset = next_offset)
662     {
663       Dwarf_die child(this, child_offset, die);
664       if (child.tag() == 0)
665 	break;
666       if (child.tag() == elfcpp::DW_TAG_subprogram)
667         {
668           const char* linkage_name = child.linkage_name();
669 	  if (linkage_name != NULL)
670 	    {
671 	      char* guess = class_name_from_linkage_name(linkage_name);
672 	      if (guess != NULL)
673 	        {
674 		  full_name.assign(guess);
675 		  free(guess);
676 		  break;
677 	        }
678 	    }
679         }
680       next_offset = child.sibling_offset();
681     }
682 
683   this->reset_relocs(checkpoint);
684   return full_name;
685 }
686 
687 // Add a declaration DIE to the table of declarations.
688 
689 void
690 Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context)
691 {
692   const char* name = die->name();
693 
694   off_t parent_offset = context != NULL ? context->offset() : 0;
695 
696   // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
697   // attribute, use the parent and name from the earlier declaration.
698   off_t spec = die->specification();
699   if (spec == 0)
700     spec = die->abstract_origin();
701   if (spec > 0)
702     {
703       Declaration_map::iterator it = this->declarations_.find(spec);
704       if (it != this->declarations_.end())
705         {
706 	  parent_offset = it->second.parent_offset_;
707 	  name = it->second.name_;
708         }
709     }
710 
711   if (name == NULL)
712     {
713       if (die->tag() == elfcpp::DW_TAG_namespace)
714         name = "(anonymous namespace)";
715       else if (die->tag() == elfcpp::DW_TAG_union_type)
716         name = "(anonymous union)";
717       else
718         name = "(unknown)";
719     }
720 
721   Declaration_pair decl(parent_offset, name);
722   this->declarations_.insert(std::make_pair(die->offset(), decl));
723 }
724 
725 // Add a declaration whose fully-qualified name is already known.
726 // In the case where we had to get the canonical name by demangling
727 // a linkage name, this ensures we use that name instead of the one
728 // provided in DW_AT_name.
729 
730 void
731 Gdb_index_info_reader::add_declaration_with_full_name(
732     Dwarf_die* die,
733     const char* full_name)
734 {
735   // We need to copy the name.
736   int len = strlen(full_name);
737   char* copy = new char[len + 1];
738   memcpy(copy, full_name, len + 1);
739 
740   // Flag that we now manage the memory this points to.
741   Declaration_pair decl(-1, copy);
742   this->declarations_.insert(std::make_pair(die->offset(), decl));
743 }
744 
745 // Return the context for a DIE whose parent is at DIE_OFFSET.
746 
747 std::string
748 Gdb_index_info_reader::get_context(off_t die_offset)
749 {
750   std::string context;
751   Declaration_map::iterator it = this->declarations_.find(die_offset);
752   if (it != this->declarations_.end())
753     {
754       off_t parent_offset = it->second.parent_offset_;
755       if (parent_offset > 0)
756 	{
757 	  context = get_context(parent_offset);
758 	  context.append("::");
759 	}
760       if (it->second.name_ != NULL)
761         context.append(it->second.name_);
762     }
763   return context;
764 }
765 
766 // Construct the fully-qualified name for DIE.
767 
768 std::string
769 Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context)
770 {
771   std::string full_name;
772   const char* name = die->name();
773 
774   off_t parent_offset = context != NULL ? context->offset() : 0;
775 
776   // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
777   // attribute, use the parent and name from the earlier declaration.
778   off_t spec = die->specification();
779   if (spec == 0)
780     spec = die->abstract_origin();
781   if (spec > 0)
782     {
783       Declaration_map::iterator it = this->declarations_.find(spec);
784       if (it != this->declarations_.end())
785         {
786 	  parent_offset = it->second.parent_offset_;
787 	  name = it->second.name_;
788         }
789     }
790 
791   if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace)
792     name = "(anonymous namespace)";
793   else if (name == NULL)
794     return full_name;
795 
796   // If this is an enumerator constant, skip the immediate parent,
797   // which is the enumeration tag.
798   if (die->tag() == elfcpp::DW_TAG_enumerator)
799     {
800       Declaration_map::iterator it = this->declarations_.find(parent_offset);
801       if (it != this->declarations_.end())
802 	parent_offset = it->second.parent_offset_;
803     }
804 
805   if (parent_offset > 0)
806     {
807       full_name.assign(this->get_context(parent_offset));
808       full_name.append("::");
809     }
810   full_name.append(name);
811 
812   return full_name;
813 }
814 
815 // Record the address ranges for a compilation unit.
816 
817 void
818 Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die)
819 {
820   unsigned int shndx;
821   unsigned int shndx2;
822 
823   off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx);
824   if (ranges_offset != -1)
825     {
826       Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset);
827       if (ranges != NULL)
828 	this->gdb_index_->add_address_range_list(this->object(),
829 						 this->cu_index_, ranges);
830       return;
831     }
832 
833   off_t low_pc = die->address_attribute(elfcpp::DW_AT_low_pc, &shndx);
834   off_t high_pc = die->address_attribute(elfcpp::DW_AT_high_pc, &shndx2);
835   if (high_pc == -1)
836     {
837       high_pc = die->uint_attribute(elfcpp::DW_AT_high_pc);
838       high_pc += low_pc;
839       shndx2 = shndx;
840     }
841   if ((low_pc != 0 || high_pc != 0) && low_pc != -1)
842     {
843       if (shndx != shndx2)
844         {
845 	  gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc "
846 			 "are in different sections"),
847 		       this->object()->name().c_str());
848 	  return;
849 	}
850       if (shndx == 0 || this->object()->is_section_included(shndx))
851         {
852 	  Dwarf_range_list* ranges = new Dwarf_range_list();
853 	  ranges->add(shndx, low_pc, high_pc);
854 	  this->gdb_index_->add_address_range_list(this->object(),
855 						   this->cu_index_, ranges);
856         }
857     }
858 }
859 
860 // Read table and add the relevant names to the index.  Returns true
861 // if any names were added.
862 
863 bool
864 Gdb_index_info_reader::read_pubtable(Dwarf_pubnames_table* table, off_t offset)
865 {
866   // If we couldn't read the section when building the cu_pubname_map,
867   // then we won't find any pubnames now.
868   if (table == NULL)
869     return false;
870 
871   if (!table->read_header(offset))
872     return false;
873   while (true)
874     {
875       uint8_t flag_byte;
876       const char* name = table->next_name(&flag_byte);
877       if (name == NULL)
878         break;
879 
880       this->gdb_index_->add_symbol(this->cu_index_, name, flag_byte);
881     }
882   return true;
883 }
884 
885 // Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU.
886 // Returns TRUE if either a pubnames or pubtypes section was found.
887 
888 bool
889 Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die)
890 {
891   // If this is a skeleton debug-type die (generated via
892   // -gsplit-dwarf), then the associated pubnames should have been
893   // read along with the corresponding CU.  In any case, there isn't
894   // enough info inside to build a gdb index entry.
895   if (die->tag() == elfcpp::DW_TAG_type_unit
896       && die->string_attribute(elfcpp::DW_AT_GNU_dwo_name))
897     return true;
898 
899   // We use stmt_list_off as a unique identifier for the
900   // compilation unit and its associated type units.
901   unsigned int shndx;
902   off_t stmt_list_off = die->ref_attribute (elfcpp::DW_AT_stmt_list,
903                                             &shndx);
904   // Look for the attr as either a flag or a ref.
905   off_t offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames, &shndx);
906 
907   // Newer versions of GCC generate CUs, but not TUs, with
908   // DW_AT_FORM_flag_present.
909   unsigned int flag = die->uint_attribute(elfcpp::DW_AT_GNU_pubnames);
910   if (offset == -1 && flag == 0)
911     {
912       // Didn't find the attribute.
913       if (die->tag() == elfcpp::DW_TAG_type_unit)
914         {
915           // If die is a TU, then it might correspond to a CU which we
916           // have read. If it does, then no need to read the pubnames.
917           // If it doesn't, then the caller will have to parse the
918           // dies manually to find the names.
919           return this->gdb_index_->pubnames_read(this->object(),
920                                                  stmt_list_off);
921         }
922       else
923         {
924           // No attribute on the CU means that no pubnames were read.
925           return false;
926         }
927     }
928 
929   // We found the attribute, so we can check if the corresponding
930   // pubnames have been read.
931   if (this->gdb_index_->pubnames_read(this->object(), stmt_list_off))
932     return true;
933 
934   this->gdb_index_->set_pubnames_read(this->object(), stmt_list_off);
935 
936   // We have an attribute, and the pubnames haven't been read, so read
937   // them.
938   bool names = false;
939   // In some of the cases, we could rely on the previous value of
940   // offset here, but sorting out which cases complicates the logic
941   // enough that it isn't worth it. So just look up the offset again.
942   offset = this->gdb_index_->find_pubname_offset(this->cu_offset());
943   names = this->read_pubtable(this->gdb_index_->pubnames_table(), offset);
944 
945   bool types = false;
946   offset = this->gdb_index_->find_pubtype_offset(this->cu_offset());
947   types = this->read_pubtable(this->gdb_index_->pubtypes_table(), offset);
948   return names || types;
949 }
950 
951 // Clear the declarations map.
952 void
953 Gdb_index_info_reader::clear_declarations()
954 {
955   // Free strings in memory we manage.
956   for (Declaration_map::iterator it = this->declarations_.begin();
957        it != this->declarations_.end();
958        ++it)
959     {
960       if (it->second.parent_offset_ == -1)
961 	delete[] it->second.name_;
962     }
963 
964   this->declarations_.clear();
965 }
966 
967 // Print usage statistics.
968 void
969 Gdb_index_info_reader::print_stats()
970 {
971   fprintf(stderr, _("%s: DWARF CUs: %u\n"),
972           program_name, Gdb_index_info_reader::dwarf_cu_count);
973   fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"),
974           program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count);
975   fprintf(stderr, _("%s: DWARF TUs: %u\n"),
976           program_name, Gdb_index_info_reader::dwarf_tu_count);
977   fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"),
978           program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count);
979 }
980 
981 // Class Gdb_index.
982 
983 // Construct the .gdb_index section.
984 
985 Gdb_index::Gdb_index(Output_section* gdb_index_section)
986   : Output_section_data(4),
987     pubnames_table_(NULL),
988     pubtypes_table_(NULL),
989     gdb_index_section_(gdb_index_section),
990     comp_units_(),
991     type_units_(),
992     ranges_(),
993     cu_vector_list_(),
994     cu_vector_offsets_(NULL),
995     stringpool_(),
996     tu_offset_(0),
997     addr_offset_(0),
998     symtab_offset_(0),
999     cu_pool_offset_(0),
1000     stringpool_offset_(0),
1001     pubnames_object_(NULL),
1002     stmt_list_offset_(-1)
1003 {
1004   this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>();
1005 }
1006 
1007 Gdb_index::~Gdb_index()
1008 {
1009   // Free the memory used by the symbol table.
1010   delete this->gdb_symtab_;
1011   // Free the memory used by the CU vectors.
1012   for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1013     delete this->cu_vector_list_[i];
1014 }
1015 
1016 
1017 // Scan the pubnames and pubtypes sections and build a map of the
1018 // various cus and tus they refer to, so we can process the entries
1019 // when we encounter the die for that cu or tu.
1020 // Return the just-read table so it can be cached.
1021 
1022 Dwarf_pubnames_table*
1023 Gdb_index::map_pubtable_to_dies(unsigned int attr,
1024                                 Gdb_index_info_reader* dwinfo,
1025                                 Relobj* object,
1026                                 const unsigned char* symbols,
1027                                 off_t symbols_size)
1028 {
1029   uint64_t section_offset = 0;
1030   Dwarf_pubnames_table* table;
1031   Pubname_offset_map* map;
1032 
1033   if (attr == elfcpp::DW_AT_GNU_pubnames)
1034     {
1035       table = new Dwarf_pubnames_table(dwinfo, false);
1036       map = &this->cu_pubname_map_;
1037     }
1038   else
1039     {
1040       table = new Dwarf_pubnames_table(dwinfo, true);
1041       map = &this->cu_pubtype_map_;
1042     }
1043 
1044   map->clear();
1045   if (!table->read_section(object, symbols, symbols_size))
1046     return NULL;
1047 
1048   while (table->read_header(section_offset))
1049     {
1050       map->insert(std::make_pair(table->cu_offset(), section_offset));
1051       section_offset += table->subsection_size();
1052     }
1053 
1054   return table;
1055 }
1056 
1057 // Wrapper for map_pubtable_to_dies
1058 
1059 void
1060 Gdb_index::map_pubnames_and_types_to_dies(Gdb_index_info_reader* dwinfo,
1061                                           Relobj* object,
1062                                           const unsigned char* symbols,
1063                                           off_t symbols_size)
1064 {
1065   // This is a new object, so reset the relevant variables.
1066   this->pubnames_object_ = object;
1067   this->stmt_list_offset_ = -1;
1068 
1069   delete this->pubnames_table_;
1070   this->pubnames_table_
1071       = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubnames, dwinfo,
1072                                    object, symbols, symbols_size);
1073   delete this->pubtypes_table_;
1074   this->pubtypes_table_
1075       = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubtypes, dwinfo,
1076                                    object, symbols, symbols_size);
1077 }
1078 
1079 // Given a cu_offset, find the associated section of the pubnames
1080 // table.
1081 
1082 off_t
1083 Gdb_index::find_pubname_offset(off_t cu_offset)
1084 {
1085   Pubname_offset_map::iterator it = this->cu_pubname_map_.find(cu_offset);
1086   if (it != this->cu_pubname_map_.end())
1087     return it->second;
1088   return -1;
1089 }
1090 
1091 // Given a cu_offset, find the associated section of the pubnames
1092 // table.
1093 
1094 off_t
1095 Gdb_index::find_pubtype_offset(off_t cu_offset)
1096 {
1097   Pubname_offset_map::iterator it = this->cu_pubtype_map_.find(cu_offset);
1098   if (it != this->cu_pubtype_map_.end())
1099     return it->second;
1100   return -1;
1101 }
1102 
1103 // Scan a .debug_info or .debug_types input section.
1104 
1105 void
1106 Gdb_index::scan_debug_info(bool is_type_unit,
1107 			   Relobj* object,
1108 			   const unsigned char* symbols,
1109 			   off_t symbols_size,
1110 			   unsigned int shndx,
1111 			   unsigned int reloc_shndx,
1112 			   unsigned int reloc_type)
1113 {
1114   Gdb_index_info_reader dwinfo(is_type_unit, object,
1115 			       symbols, symbols_size,
1116 			       shndx, reloc_shndx,
1117 			       reloc_type, this);
1118   if (object != this->pubnames_object_)
1119     map_pubnames_and_types_to_dies(&dwinfo, object, symbols, symbols_size);
1120   dwinfo.parse();
1121 }
1122 
1123 // Add a symbol.
1124 
1125 void
1126 Gdb_index::add_symbol(int cu_index, const char* sym_name, uint8_t flags)
1127 {
1128   unsigned int hash = mapped_index_string_hash(
1129       reinterpret_cast<const unsigned char*>(sym_name));
1130   Gdb_symbol* sym = new Gdb_symbol();
1131   this->stringpool_.add(sym_name, true, &sym->name_key);
1132   sym->hashval = hash;
1133   sym->cu_vector_index = 0;
1134 
1135   Gdb_symbol* found = this->gdb_symtab_->add(sym);
1136   if (found == sym)
1137     {
1138       // New symbol -- allocate a new CU index vector.
1139       found->cu_vector_index = this->cu_vector_list_.size();
1140       this->cu_vector_list_.push_back(new Cu_vector());
1141     }
1142   else
1143     {
1144       // Found an existing symbol -- append to the existing
1145       // CU index vector.
1146       delete sym;
1147     }
1148 
1149   // Add the CU index to the vector list for this symbol,
1150   // if it's not already on the list.  We only need to
1151   // check the last added entry.
1152   Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index];
1153   if (cu_vec->size() == 0
1154       || cu_vec->back().first != cu_index
1155       || cu_vec->back().second != flags)
1156     cu_vec->push_back(std::make_pair(cu_index, flags));
1157 }
1158 
1159 // Return TRUE if we have already processed the pubnames associated
1160 // with the statement list at the given OFFSET.
1161 
1162 bool
1163 Gdb_index::pubnames_read(const Relobj* object, off_t offset)
1164 {
1165   bool ret = (this->pubnames_object_ == object
1166 	      && this->stmt_list_offset_ == offset);
1167   return ret;
1168 }
1169 
1170 // Record that we have processed the pubnames associated with the
1171 // statement list for OBJECT at the given OFFSET.
1172 
1173 void
1174 Gdb_index::set_pubnames_read(const Relobj* object, off_t offset)
1175 {
1176   this->pubnames_object_ = object;
1177   this->stmt_list_offset_ = offset;
1178 }
1179 
1180 // Set the size of the .gdb_index section.
1181 
1182 void
1183 Gdb_index::set_final_data_size()
1184 {
1185   // Finalize the string pool.
1186   this->stringpool_.set_string_offsets();
1187 
1188   // Compute the total size of the CU vectors.
1189   // For each CU vector, include one entry for the count at the
1190   // beginning of the vector.
1191   unsigned int cu_vector_count = this->cu_vector_list_.size();
1192   unsigned int cu_vector_size = 0;
1193   this->cu_vector_offsets_ = new off_t[cu_vector_count];
1194   for (unsigned int i = 0; i < cu_vector_count; ++i)
1195     {
1196       Cu_vector* cu_vec = this->cu_vector_list_[i];
1197       cu_vector_offsets_[i] = cu_vector_size;
1198       cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1);
1199     }
1200 
1201   // Assign relative offsets to each portion of the index,
1202   // and find the total size of the section.
1203   section_size_type data_size = gdb_index_hdr_size;
1204   data_size += this->comp_units_.size() * gdb_index_cu_size;
1205   this->tu_offset_ = data_size;
1206   data_size += this->type_units_.size() * gdb_index_tu_size;
1207   this->addr_offset_ = data_size;
1208   for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1209     data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size;
1210   this->symtab_offset_ = data_size;
1211   data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size;
1212   this->cu_pool_offset_ = data_size;
1213   data_size += cu_vector_size;
1214   this->stringpool_offset_ = data_size;
1215   data_size += this->stringpool_.get_strtab_size();
1216 
1217   this->set_data_size(data_size);
1218 }
1219 
1220 // Write the data to the file.
1221 
1222 void
1223 Gdb_index::do_write(Output_file* of)
1224 {
1225   const off_t off = this->offset();
1226   const off_t oview_size = this->data_size();
1227   unsigned char* const oview = of->get_output_view(off, oview_size);
1228   unsigned char* pov = oview;
1229 
1230   // Write the file header.
1231   // (1) Version number.
1232   elfcpp::Swap<32, false>::writeval(pov, gdb_index_version);
1233   pov += 4;
1234   // (2) Offset of the CU list.
1235   elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size);
1236   pov += 4;
1237   // (3) Offset of the types CU list.
1238   elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_);
1239   pov += 4;
1240   // (4) Offset of the address area.
1241   elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_);
1242   pov += 4;
1243   // (5) Offset of the symbol table.
1244   elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_);
1245   pov += 4;
1246   // (6) Offset of the constant pool.
1247   elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_);
1248   pov += 4;
1249 
1250   gold_assert(pov - oview == gdb_index_hdr_size);
1251 
1252   // Write the CU list.
1253   unsigned int comp_units_count = this->comp_units_.size();
1254   for (unsigned int i = 0; i < comp_units_count; ++i)
1255     {
1256       const Comp_unit& cu = this->comp_units_[i];
1257       elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset);
1258       elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length);
1259       pov += 16;
1260     }
1261 
1262   gold_assert(pov - oview == this->tu_offset_);
1263 
1264   // Write the types CU list.
1265   for (unsigned int i = 0; i < this->type_units_.size(); ++i)
1266     {
1267       const Type_unit& tu = this->type_units_[i];
1268       elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset);
1269       elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset);
1270       elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature);
1271       pov += 24;
1272     }
1273 
1274   gold_assert(pov - oview == this->addr_offset_);
1275 
1276   // Write the address area.
1277   for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1278     {
1279       int cu_index = this->ranges_[i].cu_index;
1280       // Translate negative indexes, which refer to a TU, to a
1281       // logical index into a concatenated CU/TU list.
1282       if (cu_index < 0)
1283         cu_index = comp_units_count + (-1 - cu_index);
1284       Relobj* object = this->ranges_[i].object;
1285       const Dwarf_range_list& ranges = *this->ranges_[i].ranges;
1286       for (unsigned int j = 0; j < ranges.size(); ++j)
1287         {
1288 	  const Dwarf_range_list::Range& range = ranges[j];
1289 	  uint64_t base = 0;
1290 	  if (range.shndx > 0)
1291 	    {
1292 	      const Output_section* os = object->output_section(range.shndx);
1293 	      base = (os->address()
1294 		      + object->output_section_offset(range.shndx));
1295 	    }
1296 	  elfcpp::Swap_aligned32<64, false>::writeval(pov, base + range.start);
1297 	  elfcpp::Swap_aligned32<64, false>::writeval(pov + 8,
1298 						      base + range.end);
1299 	  elfcpp::Swap<32, false>::writeval(pov + 16, cu_index);
1300 	  pov += 20;
1301 	}
1302     }
1303 
1304   gold_assert(pov - oview == this->symtab_offset_);
1305 
1306   // Write the symbol table.
1307   for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i)
1308     {
1309       const Gdb_symbol* sym = (*this->gdb_symtab_)[i];
1310       section_offset_type name_offset = 0;
1311       unsigned int cu_vector_offset = 0;
1312       if (sym != NULL)
1313 	{
1314 	  name_offset = (this->stringpool_.get_offset_from_key(sym->name_key)
1315 			 + this->stringpool_offset_ - this->cu_pool_offset_);
1316 	  cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index];
1317 	}
1318       elfcpp::Swap<32, false>::writeval(pov, name_offset);
1319       elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset);
1320       pov += 8;
1321     }
1322 
1323   gold_assert(pov - oview == this->cu_pool_offset_);
1324 
1325   // Write the CU vectors into the constant pool.
1326   for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1327     {
1328       Cu_vector* cu_vec = this->cu_vector_list_[i];
1329       elfcpp::Swap<32, false>::writeval(pov, cu_vec->size());
1330       pov += 4;
1331       for (unsigned int j = 0; j < cu_vec->size(); ++j)
1332 	{
1333 	  int cu_index = (*cu_vec)[j].first;
1334           uint8_t flags = (*cu_vec)[j].second;
1335 	  if (cu_index < 0)
1336 	    cu_index = comp_units_count + (-1 - cu_index);
1337           cu_index |= flags << 24;
1338 	  elfcpp::Swap<32, false>::writeval(pov, cu_index);
1339 	  pov += 4;
1340 	}
1341     }
1342 
1343   gold_assert(pov - oview == this->stringpool_offset_);
1344 
1345   // Write the strings into the constant pool.
1346   this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_);
1347 
1348   of->write_output_view(off, oview_size, oview);
1349 }
1350 
1351 // Print usage statistics.
1352 void
1353 Gdb_index::print_stats()
1354 {
1355   if (parameters->options().gdb_index())
1356     Gdb_index_info_reader::print_stats();
1357 }
1358 
1359 } // End namespace gold.
1360