1 // output.cc -- manage the output file for gold
2 
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36 
37 #include "libiberty.h"
38 
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48 
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72 
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76 
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83 
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90 
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97 
98 #endif
99 
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104 
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109 
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113 
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118 
119 namespace gold
120 {
121 
122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly.  If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126 
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130   if (len <= 0)
131     return 0;
132 
133 #ifdef HAVE_POSIX_FALLOCATE
134   if (parameters->options().posix_fallocate())
135     {
136       int err = ::posix_fallocate(o, offset, len);
137       if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
138 	return err;
139     }
140 #endif // defined(HAVE_POSIX_FALLOCATE)
141 
142 #ifdef HAVE_FALLOCATE
143   {
144     int err = ::fallocate(o, 0, offset, len);
145     if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
146       return err;
147   }
148 #endif // defined(HAVE_FALLOCATE)
149 
150   if (::ftruncate(o, offset + len) < 0)
151     return errno;
152   return 0;
153 }
154 
155 // Output_data variables.
156 
157 bool Output_data::allocated_sizes_are_fixed;
158 
159 // Output_data methods.
160 
161 Output_data::~Output_data()
162 {
163 }
164 
165 // Return the default alignment for the target size.
166 
167 uint64_t
168 Output_data::default_alignment()
169 {
170   return Output_data::default_alignment_for_size(
171       parameters->target().get_size());
172 }
173 
174 // Return the default alignment for a size--32 or 64.
175 
176 uint64_t
177 Output_data::default_alignment_for_size(int size)
178 {
179   if (size == 32)
180     return 4;
181   else if (size == 64)
182     return 8;
183   else
184     gold_unreachable();
185 }
186 
187 // Output_section_header methods.  This currently assumes that the
188 // segment and section lists are complete at construction time.
189 
190 Output_section_headers::Output_section_headers(
191     const Layout* layout,
192     const Layout::Segment_list* segment_list,
193     const Layout::Section_list* section_list,
194     const Layout::Section_list* unattached_section_list,
195     const Stringpool* secnamepool,
196     const Output_section* shstrtab_section)
197   : layout_(layout),
198     segment_list_(segment_list),
199     section_list_(section_list),
200     unattached_section_list_(unattached_section_list),
201     secnamepool_(secnamepool),
202     shstrtab_section_(shstrtab_section)
203 {
204 }
205 
206 // Compute the current data size.
207 
208 off_t
209 Output_section_headers::do_size() const
210 {
211   // Count all the sections.  Start with 1 for the null section.
212   off_t count = 1;
213   if (!parameters->options().relocatable())
214     {
215       for (Layout::Segment_list::const_iterator p =
216 	     this->segment_list_->begin();
217 	   p != this->segment_list_->end();
218 	   ++p)
219 	if ((*p)->type() == elfcpp::PT_LOAD)
220 	  count += (*p)->output_section_count();
221     }
222   else
223     {
224       for (Layout::Section_list::const_iterator p =
225 	     this->section_list_->begin();
226 	   p != this->section_list_->end();
227 	   ++p)
228 	if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
229 	  ++count;
230     }
231   count += this->unattached_section_list_->size();
232 
233   const int size = parameters->target().get_size();
234   int shdr_size;
235   if (size == 32)
236     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
237   else if (size == 64)
238     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
239   else
240     gold_unreachable();
241 
242   return count * shdr_size;
243 }
244 
245 // Write out the section headers.
246 
247 void
248 Output_section_headers::do_write(Output_file* of)
249 {
250   switch (parameters->size_and_endianness())
251     {
252 #ifdef HAVE_TARGET_32_LITTLE
253     case Parameters::TARGET_32_LITTLE:
254       this->do_sized_write<32, false>(of);
255       break;
256 #endif
257 #ifdef HAVE_TARGET_32_BIG
258     case Parameters::TARGET_32_BIG:
259       this->do_sized_write<32, true>(of);
260       break;
261 #endif
262 #ifdef HAVE_TARGET_64_LITTLE
263     case Parameters::TARGET_64_LITTLE:
264       this->do_sized_write<64, false>(of);
265       break;
266 #endif
267 #ifdef HAVE_TARGET_64_BIG
268     case Parameters::TARGET_64_BIG:
269       this->do_sized_write<64, true>(of);
270       break;
271 #endif
272     default:
273       gold_unreachable();
274     }
275 }
276 
277 template<int size, bool big_endian>
278 void
279 Output_section_headers::do_sized_write(Output_file* of)
280 {
281   off_t all_shdrs_size = this->data_size();
282   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
283 
284   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
285   unsigned char* v = view;
286 
287   {
288     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
289     oshdr.put_sh_name(0);
290     oshdr.put_sh_type(elfcpp::SHT_NULL);
291     oshdr.put_sh_flags(0);
292     oshdr.put_sh_addr(0);
293     oshdr.put_sh_offset(0);
294 
295     size_t section_count = (this->data_size()
296 			    / elfcpp::Elf_sizes<size>::shdr_size);
297     if (section_count < elfcpp::SHN_LORESERVE)
298       oshdr.put_sh_size(0);
299     else
300       oshdr.put_sh_size(section_count);
301 
302     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
303     if (shstrndx < elfcpp::SHN_LORESERVE)
304       oshdr.put_sh_link(0);
305     else
306       oshdr.put_sh_link(shstrndx);
307 
308     size_t segment_count = this->segment_list_->size();
309     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
310 
311     oshdr.put_sh_addralign(0);
312     oshdr.put_sh_entsize(0);
313   }
314 
315   v += shdr_size;
316 
317   unsigned int shndx = 1;
318   if (!parameters->options().relocatable())
319     {
320       for (Layout::Segment_list::const_iterator p =
321 	     this->segment_list_->begin();
322 	   p != this->segment_list_->end();
323 	   ++p)
324 	v = (*p)->write_section_headers<size, big_endian>(this->layout_,
325 							  this->secnamepool_,
326 							  v,
327 							  &shndx);
328     }
329   else
330     {
331       for (Layout::Section_list::const_iterator p =
332 	     this->section_list_->begin();
333 	   p != this->section_list_->end();
334 	   ++p)
335 	{
336 	  // We do unallocated sections below, except that group
337 	  // sections have to come first.
338 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
339 	      && (*p)->type() != elfcpp::SHT_GROUP)
340 	    continue;
341 	  gold_assert(shndx == (*p)->out_shndx());
342 	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
343 	  (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
344 	  v += shdr_size;
345 	  ++shndx;
346 	}
347     }
348 
349   for (Layout::Section_list::const_iterator p =
350 	 this->unattached_section_list_->begin();
351        p != this->unattached_section_list_->end();
352        ++p)
353     {
354       // For a relocatable link, we did unallocated group sections
355       // above, since they have to come first.
356       if ((*p)->type() == elfcpp::SHT_GROUP
357 	  && parameters->options().relocatable())
358 	continue;
359       gold_assert(shndx == (*p)->out_shndx());
360       elfcpp::Shdr_write<size, big_endian> oshdr(v);
361       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
362       v += shdr_size;
363       ++shndx;
364     }
365 
366   of->write_output_view(this->offset(), all_shdrs_size, view);
367 }
368 
369 // Output_segment_header methods.
370 
371 Output_segment_headers::Output_segment_headers(
372     const Layout::Segment_list& segment_list)
373   : segment_list_(segment_list)
374 {
375   this->set_current_data_size_for_child(this->do_size());
376 }
377 
378 void
379 Output_segment_headers::do_write(Output_file* of)
380 {
381   switch (parameters->size_and_endianness())
382     {
383 #ifdef HAVE_TARGET_32_LITTLE
384     case Parameters::TARGET_32_LITTLE:
385       this->do_sized_write<32, false>(of);
386       break;
387 #endif
388 #ifdef HAVE_TARGET_32_BIG
389     case Parameters::TARGET_32_BIG:
390       this->do_sized_write<32, true>(of);
391       break;
392 #endif
393 #ifdef HAVE_TARGET_64_LITTLE
394     case Parameters::TARGET_64_LITTLE:
395       this->do_sized_write<64, false>(of);
396       break;
397 #endif
398 #ifdef HAVE_TARGET_64_BIG
399     case Parameters::TARGET_64_BIG:
400       this->do_sized_write<64, true>(of);
401       break;
402 #endif
403     default:
404       gold_unreachable();
405     }
406 }
407 
408 template<int size, bool big_endian>
409 void
410 Output_segment_headers::do_sized_write(Output_file* of)
411 {
412   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
413   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
414   gold_assert(all_phdrs_size == this->data_size());
415   unsigned char* view = of->get_output_view(this->offset(),
416 					    all_phdrs_size);
417   unsigned char* v = view;
418   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
419        p != this->segment_list_.end();
420        ++p)
421     {
422       elfcpp::Phdr_write<size, big_endian> ophdr(v);
423       (*p)->write_header(&ophdr);
424       v += phdr_size;
425     }
426 
427   gold_assert(v - view == all_phdrs_size);
428 
429   of->write_output_view(this->offset(), all_phdrs_size, view);
430 }
431 
432 off_t
433 Output_segment_headers::do_size() const
434 {
435   const int size = parameters->target().get_size();
436   int phdr_size;
437   if (size == 32)
438     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
439   else if (size == 64)
440     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
441   else
442     gold_unreachable();
443 
444   return this->segment_list_.size() * phdr_size;
445 }
446 
447 // Output_file_header methods.
448 
449 Output_file_header::Output_file_header(Target* target,
450 				       const Symbol_table* symtab,
451 				       const Output_segment_headers* osh)
452   : target_(target),
453     symtab_(symtab),
454     segment_header_(osh),
455     section_header_(NULL),
456     shstrtab_(NULL)
457 {
458   this->set_data_size(this->do_size());
459 }
460 
461 // Set the section table information for a file header.
462 
463 void
464 Output_file_header::set_section_info(const Output_section_headers* shdrs,
465 				     const Output_section* shstrtab)
466 {
467   this->section_header_ = shdrs;
468   this->shstrtab_ = shstrtab;
469 }
470 
471 // Write out the file header.
472 
473 void
474 Output_file_header::do_write(Output_file* of)
475 {
476   gold_assert(this->offset() == 0);
477 
478   switch (parameters->size_and_endianness())
479     {
480 #ifdef HAVE_TARGET_32_LITTLE
481     case Parameters::TARGET_32_LITTLE:
482       this->do_sized_write<32, false>(of);
483       break;
484 #endif
485 #ifdef HAVE_TARGET_32_BIG
486     case Parameters::TARGET_32_BIG:
487       this->do_sized_write<32, true>(of);
488       break;
489 #endif
490 #ifdef HAVE_TARGET_64_LITTLE
491     case Parameters::TARGET_64_LITTLE:
492       this->do_sized_write<64, false>(of);
493       break;
494 #endif
495 #ifdef HAVE_TARGET_64_BIG
496     case Parameters::TARGET_64_BIG:
497       this->do_sized_write<64, true>(of);
498       break;
499 #endif
500     default:
501       gold_unreachable();
502     }
503 }
504 
505 // Write out the file header with appropriate size and endianness.
506 
507 template<int size, bool big_endian>
508 void
509 Output_file_header::do_sized_write(Output_file* of)
510 {
511   gold_assert(this->offset() == 0);
512 
513   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
514   unsigned char* view = of->get_output_view(0, ehdr_size);
515   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
516 
517   unsigned char e_ident[elfcpp::EI_NIDENT];
518   memset(e_ident, 0, elfcpp::EI_NIDENT);
519   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
520   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
521   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
522   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
523   if (size == 32)
524     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
525   else if (size == 64)
526     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
527   else
528     gold_unreachable();
529   e_ident[elfcpp::EI_DATA] = (big_endian
530 			      ? elfcpp::ELFDATA2MSB
531 			      : elfcpp::ELFDATA2LSB);
532   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
533   oehdr.put_e_ident(e_ident);
534 
535   elfcpp::ET e_type;
536   if (parameters->options().relocatable())
537     e_type = elfcpp::ET_REL;
538   else if (parameters->options().output_is_position_independent())
539     e_type = elfcpp::ET_DYN;
540   else
541     e_type = elfcpp::ET_EXEC;
542   oehdr.put_e_type(e_type);
543 
544   oehdr.put_e_machine(this->target_->machine_code());
545   oehdr.put_e_version(elfcpp::EV_CURRENT);
546 
547   oehdr.put_e_entry(this->entry<size>());
548 
549   if (this->segment_header_ == NULL)
550     oehdr.put_e_phoff(0);
551   else
552     oehdr.put_e_phoff(this->segment_header_->offset());
553 
554   oehdr.put_e_shoff(this->section_header_->offset());
555   oehdr.put_e_flags(this->target_->processor_specific_flags());
556   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
557 
558   if (this->segment_header_ == NULL)
559     {
560       oehdr.put_e_phentsize(0);
561       oehdr.put_e_phnum(0);
562     }
563   else
564     {
565       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
566       size_t phnum = (this->segment_header_->data_size()
567 		      / elfcpp::Elf_sizes<size>::phdr_size);
568       if (phnum > elfcpp::PN_XNUM)
569 	phnum = elfcpp::PN_XNUM;
570       oehdr.put_e_phnum(phnum);
571     }
572 
573   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
574   size_t section_count = (this->section_header_->data_size()
575 			  / elfcpp::Elf_sizes<size>::shdr_size);
576 
577   if (section_count < elfcpp::SHN_LORESERVE)
578     oehdr.put_e_shnum(this->section_header_->data_size()
579 		      / elfcpp::Elf_sizes<size>::shdr_size);
580   else
581     oehdr.put_e_shnum(0);
582 
583   unsigned int shstrndx = this->shstrtab_->out_shndx();
584   if (shstrndx < elfcpp::SHN_LORESERVE)
585     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
586   else
587     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
588 
589   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
590   // the e_ident field.
591   this->target_->adjust_elf_header(view, ehdr_size);
592 
593   of->write_output_view(0, ehdr_size, view);
594 }
595 
596 // Return the value to use for the entry address.
597 
598 template<int size>
599 typename elfcpp::Elf_types<size>::Elf_Addr
600 Output_file_header::entry()
601 {
602   const bool should_issue_warning = (parameters->options().entry() != NULL
603 				     && !parameters->options().relocatable()
604 				     && !parameters->options().shared());
605   const char* entry = parameters->entry();
606   Symbol* sym = this->symtab_->lookup(entry);
607 
608   typename Sized_symbol<size>::Value_type v;
609   if (sym != NULL)
610     {
611       Sized_symbol<size>* ssym;
612       ssym = this->symtab_->get_sized_symbol<size>(sym);
613       if (!ssym->is_defined() && should_issue_warning)
614 	gold_warning("entry symbol '%s' exists but is not defined", entry);
615       v = ssym->value();
616     }
617   else
618     {
619       // We couldn't find the entry symbol.  See if we can parse it as
620       // a number.  This supports, e.g., -e 0x1000.
621       char* endptr;
622       v = strtoull(entry, &endptr, 0);
623       if (*endptr != '\0')
624 	{
625 	  if (should_issue_warning)
626 	    gold_warning("cannot find entry symbol '%s'", entry);
627 	  v = 0;
628 	}
629     }
630 
631   return v;
632 }
633 
634 // Compute the current data size.
635 
636 off_t
637 Output_file_header::do_size() const
638 {
639   const int size = parameters->target().get_size();
640   if (size == 32)
641     return elfcpp::Elf_sizes<32>::ehdr_size;
642   else if (size == 64)
643     return elfcpp::Elf_sizes<64>::ehdr_size;
644   else
645     gold_unreachable();
646 }
647 
648 // Output_data_const methods.
649 
650 void
651 Output_data_const::do_write(Output_file* of)
652 {
653   of->write(this->offset(), this->data_.data(), this->data_.size());
654 }
655 
656 // Output_data_const_buffer methods.
657 
658 void
659 Output_data_const_buffer::do_write(Output_file* of)
660 {
661   of->write(this->offset(), this->p_, this->data_size());
662 }
663 
664 // Output_section_data methods.
665 
666 // Record the output section, and set the entry size and such.
667 
668 void
669 Output_section_data::set_output_section(Output_section* os)
670 {
671   gold_assert(this->output_section_ == NULL);
672   this->output_section_ = os;
673   this->do_adjust_output_section(os);
674 }
675 
676 // Return the section index of the output section.
677 
678 unsigned int
679 Output_section_data::do_out_shndx() const
680 {
681   gold_assert(this->output_section_ != NULL);
682   return this->output_section_->out_shndx();
683 }
684 
685 // Set the alignment, which means we may need to update the alignment
686 // of the output section.
687 
688 void
689 Output_section_data::set_addralign(uint64_t addralign)
690 {
691   this->addralign_ = addralign;
692   if (this->output_section_ != NULL
693       && this->output_section_->addralign() < addralign)
694     this->output_section_->set_addralign(addralign);
695 }
696 
697 // Output_data_strtab methods.
698 
699 // Set the final data size.
700 
701 void
702 Output_data_strtab::set_final_data_size()
703 {
704   this->strtab_->set_string_offsets();
705   this->set_data_size(this->strtab_->get_strtab_size());
706 }
707 
708 // Write out a string table.
709 
710 void
711 Output_data_strtab::do_write(Output_file* of)
712 {
713   this->strtab_->write(of, this->offset());
714 }
715 
716 // Output_reloc methods.
717 
718 // A reloc against a global symbol.
719 
720 template<bool dynamic, int size, bool big_endian>
721 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
722     Symbol* gsym,
723     unsigned int type,
724     Output_data* od,
725     Address address,
726     bool is_relative,
727     bool is_symbolless,
728     bool use_plt_offset)
729   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
730     is_relative_(is_relative), is_symbolless_(is_symbolless),
731     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
732 {
733   // this->type_ is a bitfield; make sure TYPE fits.
734   gold_assert(this->type_ == type);
735   this->u1_.gsym = gsym;
736   this->u2_.od = od;
737   if (dynamic)
738     this->set_needs_dynsym_index();
739 }
740 
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743     Symbol* gsym,
744     unsigned int type,
745     Sized_relobj<size, big_endian>* relobj,
746     unsigned int shndx,
747     Address address,
748     bool is_relative,
749     bool is_symbolless,
750     bool use_plt_offset)
751   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
752     is_relative_(is_relative), is_symbolless_(is_symbolless),
753     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
754 {
755   gold_assert(shndx != INVALID_CODE);
756   // this->type_ is a bitfield; make sure TYPE fits.
757   gold_assert(this->type_ == type);
758   this->u1_.gsym = gsym;
759   this->u2_.relobj = relobj;
760   if (dynamic)
761     this->set_needs_dynsym_index();
762 }
763 
764 // A reloc against a local symbol.
765 
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768     Sized_relobj<size, big_endian>* relobj,
769     unsigned int local_sym_index,
770     unsigned int type,
771     Output_data* od,
772     Address address,
773     bool is_relative,
774     bool is_symbolless,
775     bool is_section_symbol,
776     bool use_plt_offset)
777   : address_(address), local_sym_index_(local_sym_index), type_(type),
778     is_relative_(is_relative), is_symbolless_(is_symbolless),
779     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
780     shndx_(INVALID_CODE)
781 {
782   gold_assert(local_sym_index != GSYM_CODE
783 	      && local_sym_index != INVALID_CODE);
784   // this->type_ is a bitfield; make sure TYPE fits.
785   gold_assert(this->type_ == type);
786   this->u1_.relobj = relobj;
787   this->u2_.od = od;
788   if (dynamic)
789     this->set_needs_dynsym_index();
790 }
791 
792 template<bool dynamic, int size, bool big_endian>
793 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
794     Sized_relobj<size, big_endian>* relobj,
795     unsigned int local_sym_index,
796     unsigned int type,
797     unsigned int shndx,
798     Address address,
799     bool is_relative,
800     bool is_symbolless,
801     bool is_section_symbol,
802     bool use_plt_offset)
803   : address_(address), local_sym_index_(local_sym_index), type_(type),
804     is_relative_(is_relative), is_symbolless_(is_symbolless),
805     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
806     shndx_(shndx)
807 {
808   gold_assert(local_sym_index != GSYM_CODE
809 	      && local_sym_index != INVALID_CODE);
810   gold_assert(shndx != INVALID_CODE);
811   // this->type_ is a bitfield; make sure TYPE fits.
812   gold_assert(this->type_ == type);
813   this->u1_.relobj = relobj;
814   this->u2_.relobj = relobj;
815   if (dynamic)
816     this->set_needs_dynsym_index();
817 }
818 
819 // A reloc against the STT_SECTION symbol of an output section.
820 
821 template<bool dynamic, int size, bool big_endian>
822 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
823     Output_section* os,
824     unsigned int type,
825     Output_data* od,
826     Address address,
827     bool is_relative)
828   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
829     is_relative_(is_relative), is_symbolless_(is_relative),
830     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
831 {
832   // this->type_ is a bitfield; make sure TYPE fits.
833   gold_assert(this->type_ == type);
834   this->u1_.os = os;
835   this->u2_.od = od;
836   if (dynamic)
837     this->set_needs_dynsym_index();
838   else
839     os->set_needs_symtab_index();
840 }
841 
842 template<bool dynamic, int size, bool big_endian>
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
844     Output_section* os,
845     unsigned int type,
846     Sized_relobj<size, big_endian>* relobj,
847     unsigned int shndx,
848     Address address,
849     bool is_relative)
850   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
851     is_relative_(is_relative), is_symbolless_(is_relative),
852     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
853 {
854   gold_assert(shndx != INVALID_CODE);
855   // this->type_ is a bitfield; make sure TYPE fits.
856   gold_assert(this->type_ == type);
857   this->u1_.os = os;
858   this->u2_.relobj = relobj;
859   if (dynamic)
860     this->set_needs_dynsym_index();
861   else
862     os->set_needs_symtab_index();
863 }
864 
865 // An absolute or relative relocation.
866 
867 template<bool dynamic, int size, bool big_endian>
868 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
869     unsigned int type,
870     Output_data* od,
871     Address address,
872     bool is_relative)
873   : address_(address), local_sym_index_(0), type_(type),
874     is_relative_(is_relative), is_symbolless_(false),
875     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
876 {
877   // this->type_ is a bitfield; make sure TYPE fits.
878   gold_assert(this->type_ == type);
879   this->u1_.relobj = NULL;
880   this->u2_.od = od;
881 }
882 
883 template<bool dynamic, int size, bool big_endian>
884 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
885     unsigned int type,
886     Sized_relobj<size, big_endian>* relobj,
887     unsigned int shndx,
888     Address address,
889     bool is_relative)
890   : address_(address), local_sym_index_(0), type_(type),
891     is_relative_(is_relative), is_symbolless_(false),
892     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
893 {
894   gold_assert(shndx != INVALID_CODE);
895   // this->type_ is a bitfield; make sure TYPE fits.
896   gold_assert(this->type_ == type);
897   this->u1_.relobj = NULL;
898   this->u2_.relobj = relobj;
899 }
900 
901 // A target specific relocation.
902 
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905     unsigned int type,
906     void* arg,
907     Output_data* od,
908     Address address)
909   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
910     is_relative_(false), is_symbolless_(false),
911     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
912 {
913   // this->type_ is a bitfield; make sure TYPE fits.
914   gold_assert(this->type_ == type);
915   this->u1_.arg = arg;
916   this->u2_.od = od;
917 }
918 
919 template<bool dynamic, int size, bool big_endian>
920 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
921     unsigned int type,
922     void* arg,
923     Sized_relobj<size, big_endian>* relobj,
924     unsigned int shndx,
925     Address address)
926   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
927     is_relative_(false), is_symbolless_(false),
928     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
929 {
930   gold_assert(shndx != INVALID_CODE);
931   // this->type_ is a bitfield; make sure TYPE fits.
932   gold_assert(this->type_ == type);
933   this->u1_.arg = arg;
934   this->u2_.relobj = relobj;
935 }
936 
937 // Record that we need a dynamic symbol index for this relocation.
938 
939 template<bool dynamic, int size, bool big_endian>
940 void
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 set_needs_dynsym_index()
943 {
944   if (this->is_symbolless_)
945     return;
946   switch (this->local_sym_index_)
947     {
948     case INVALID_CODE:
949       gold_unreachable();
950 
951     case GSYM_CODE:
952       this->u1_.gsym->set_needs_dynsym_entry();
953       break;
954 
955     case SECTION_CODE:
956       this->u1_.os->set_needs_dynsym_index();
957       break;
958 
959     case TARGET_CODE:
960       // The target must take care of this if necessary.
961       break;
962 
963     case 0:
964       break;
965 
966     default:
967       {
968 	const unsigned int lsi = this->local_sym_index_;
969 	Sized_relobj_file<size, big_endian>* relobj =
970 	    this->u1_.relobj->sized_relobj();
971 	gold_assert(relobj != NULL);
972 	if (!this->is_section_symbol_)
973 	  relobj->set_needs_output_dynsym_entry(lsi);
974 	else
975 	  relobj->output_section(lsi)->set_needs_dynsym_index();
976       }
977       break;
978     }
979 }
980 
981 // Get the symbol index of a relocation.
982 
983 template<bool dynamic, int size, bool big_endian>
984 unsigned int
985 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
986   const
987 {
988   unsigned int index;
989   if (this->is_symbolless_)
990     return 0;
991   switch (this->local_sym_index_)
992     {
993     case INVALID_CODE:
994       gold_unreachable();
995 
996     case GSYM_CODE:
997       if (this->u1_.gsym == NULL)
998 	index = 0;
999       else if (dynamic)
1000 	index = this->u1_.gsym->dynsym_index();
1001       else
1002 	index = this->u1_.gsym->symtab_index();
1003       break;
1004 
1005     case SECTION_CODE:
1006       if (dynamic)
1007 	index = this->u1_.os->dynsym_index();
1008       else
1009 	index = this->u1_.os->symtab_index();
1010       break;
1011 
1012     case TARGET_CODE:
1013       index = parameters->target().reloc_symbol_index(this->u1_.arg,
1014 						      this->type_);
1015       break;
1016 
1017     case 0:
1018       // Relocations without symbols use a symbol index of 0.
1019       index = 0;
1020       break;
1021 
1022     default:
1023       {
1024 	const unsigned int lsi = this->local_sym_index_;
1025 	Sized_relobj_file<size, big_endian>* relobj =
1026 	    this->u1_.relobj->sized_relobj();
1027 	gold_assert(relobj != NULL);
1028 	if (!this->is_section_symbol_)
1029 	  {
1030 	    if (dynamic)
1031 	      index = relobj->dynsym_index(lsi);
1032 	    else
1033 	      index = relobj->symtab_index(lsi);
1034 	  }
1035 	else
1036 	  {
1037 	    Output_section* os = relobj->output_section(lsi);
1038 	    gold_assert(os != NULL);
1039 	    if (dynamic)
1040 	      index = os->dynsym_index();
1041 	    else
1042 	      index = os->symtab_index();
1043 	  }
1044       }
1045       break;
1046     }
1047   gold_assert(index != -1U);
1048   return index;
1049 }
1050 
1051 // For a local section symbol, get the address of the offset ADDEND
1052 // within the input section.
1053 
1054 template<bool dynamic, int size, bool big_endian>
1055 typename elfcpp::Elf_types<size>::Elf_Addr
1056 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1057   local_section_offset(Addend addend) const
1058 {
1059   gold_assert(this->local_sym_index_ != GSYM_CODE
1060 	      && this->local_sym_index_ != SECTION_CODE
1061 	      && this->local_sym_index_ != TARGET_CODE
1062 	      && this->local_sym_index_ != INVALID_CODE
1063 	      && this->local_sym_index_ != 0
1064 	      && this->is_section_symbol_);
1065   const unsigned int lsi = this->local_sym_index_;
1066   Output_section* os = this->u1_.relobj->output_section(lsi);
1067   gold_assert(os != NULL);
1068   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1069   if (offset != invalid_address)
1070     return offset + addend;
1071   // This is a merge section.
1072   Sized_relobj_file<size, big_endian>* relobj =
1073       this->u1_.relobj->sized_relobj();
1074   gold_assert(relobj != NULL);
1075   offset = os->output_address(relobj, lsi, addend);
1076   gold_assert(offset != invalid_address);
1077   return offset;
1078 }
1079 
1080 // Get the output address of a relocation.
1081 
1082 template<bool dynamic, int size, bool big_endian>
1083 typename elfcpp::Elf_types<size>::Elf_Addr
1084 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1085 {
1086   Address address = this->address_;
1087   if (this->shndx_ != INVALID_CODE)
1088     {
1089       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1090       gold_assert(os != NULL);
1091       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1092       if (off != invalid_address)
1093 	address += os->address() + off;
1094       else
1095 	{
1096 	  Sized_relobj_file<size, big_endian>* relobj =
1097 	      this->u2_.relobj->sized_relobj();
1098 	  gold_assert(relobj != NULL);
1099 	  address = os->output_address(relobj, this->shndx_, address);
1100 	  gold_assert(address != invalid_address);
1101 	}
1102     }
1103   else if (this->u2_.od != NULL)
1104     address += this->u2_.od->address();
1105   return address;
1106 }
1107 
1108 // Write out the offset and info fields of a Rel or Rela relocation
1109 // entry.
1110 
1111 template<bool dynamic, int size, bool big_endian>
1112 template<typename Write_rel>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1115     Write_rel* wr) const
1116 {
1117   wr->put_r_offset(this->get_address());
1118   unsigned int sym_index = this->get_symbol_index();
1119   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1120 }
1121 
1122 // Write out a Rel relocation.
1123 
1124 template<bool dynamic, int size, bool big_endian>
1125 void
1126 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1127     unsigned char* pov) const
1128 {
1129   elfcpp::Rel_write<size, big_endian> orel(pov);
1130   this->write_rel(&orel);
1131 }
1132 
1133 // Get the value of the symbol referred to by a Rel relocation.
1134 
1135 template<bool dynamic, int size, bool big_endian>
1136 typename elfcpp::Elf_types<size>::Elf_Addr
1137 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1138     Addend addend) const
1139 {
1140   if (this->local_sym_index_ == GSYM_CODE)
1141     {
1142       const Sized_symbol<size>* sym;
1143       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1144       if (this->use_plt_offset_ && sym->has_plt_offset())
1145 	return parameters->target().plt_address_for_global(sym);
1146       else
1147 	return sym->value() + addend;
1148     }
1149   if (this->local_sym_index_ == SECTION_CODE)
1150     {
1151       gold_assert(!this->use_plt_offset_);
1152       return this->u1_.os->address() + addend;
1153     }
1154   gold_assert(this->local_sym_index_ != TARGET_CODE
1155 	      && this->local_sym_index_ != INVALID_CODE
1156 	      && this->local_sym_index_ != 0
1157 	      && !this->is_section_symbol_);
1158   const unsigned int lsi = this->local_sym_index_;
1159   Sized_relobj_file<size, big_endian>* relobj =
1160       this->u1_.relobj->sized_relobj();
1161   gold_assert(relobj != NULL);
1162   if (this->use_plt_offset_)
1163     return parameters->target().plt_address_for_local(relobj, lsi);
1164   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1165   return symval->value(relobj, addend);
1166 }
1167 
1168 // Reloc comparison.  This function sorts the dynamic relocs for the
1169 // benefit of the dynamic linker.  First we sort all relative relocs
1170 // to the front.  Among relative relocs, we sort by output address.
1171 // Among non-relative relocs, we sort by symbol index, then by output
1172 // address.
1173 
1174 template<bool dynamic, int size, bool big_endian>
1175 int
1176 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1177   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1178     const
1179 {
1180   if (this->is_relative_)
1181     {
1182       if (!r2.is_relative_)
1183 	return -1;
1184       // Otherwise sort by reloc address below.
1185     }
1186   else if (r2.is_relative_)
1187     return 1;
1188   else
1189     {
1190       unsigned int sym1 = this->get_symbol_index();
1191       unsigned int sym2 = r2.get_symbol_index();
1192       if (sym1 < sym2)
1193 	return -1;
1194       else if (sym1 > sym2)
1195 	return 1;
1196       // Otherwise sort by reloc address.
1197     }
1198 
1199   section_offset_type addr1 = this->get_address();
1200   section_offset_type addr2 = r2.get_address();
1201   if (addr1 < addr2)
1202     return -1;
1203   else if (addr1 > addr2)
1204     return 1;
1205 
1206   // Final tie breaker, in order to generate the same output on any
1207   // host: reloc type.
1208   unsigned int type1 = this->type_;
1209   unsigned int type2 = r2.type_;
1210   if (type1 < type2)
1211     return -1;
1212   else if (type1 > type2)
1213     return 1;
1214 
1215   // These relocs appear to be exactly the same.
1216   return 0;
1217 }
1218 
1219 // Write out a Rela relocation.
1220 
1221 template<bool dynamic, int size, bool big_endian>
1222 void
1223 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1224     unsigned char* pov) const
1225 {
1226   elfcpp::Rela_write<size, big_endian> orel(pov);
1227   this->rel_.write_rel(&orel);
1228   Addend addend = this->addend_;
1229   if (this->rel_.is_target_specific())
1230     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1231 					       this->rel_.type(), addend);
1232   else if (this->rel_.is_symbolless())
1233     addend = this->rel_.symbol_value(addend);
1234   else if (this->rel_.is_local_section_symbol())
1235     addend = this->rel_.local_section_offset(addend);
1236   orel.put_r_addend(addend);
1237 }
1238 
1239 // Output_data_reloc_base methods.
1240 
1241 // Adjust the output section.
1242 
1243 template<int sh_type, bool dynamic, int size, bool big_endian>
1244 void
1245 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1246     ::do_adjust_output_section(Output_section* os)
1247 {
1248   if (sh_type == elfcpp::SHT_REL)
1249     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1250   else if (sh_type == elfcpp::SHT_RELA)
1251     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1252   else
1253     gold_unreachable();
1254 
1255   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1256   // static link.  The backends will generate a dynamic reloc section
1257   // to hold this.  In that case we don't want to link to the dynsym
1258   // section, because there isn't one.
1259   if (!dynamic)
1260     os->set_should_link_to_symtab();
1261   else if (parameters->doing_static_link())
1262     ;
1263   else
1264     os->set_should_link_to_dynsym();
1265 }
1266 
1267 // Standard relocation writer, which just calls Output_reloc::write().
1268 
1269 template<int sh_type, bool dynamic, int size, bool big_endian>
1270 struct Output_reloc_writer
1271 {
1272   typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1273   typedef std::vector<Output_reloc_type> Relocs;
1274 
1275   static void
1276   write(typename Relocs::const_iterator p, unsigned char* pov)
1277   { p->write(pov); }
1278 };
1279 
1280 // Write out relocation data.
1281 
1282 template<int sh_type, bool dynamic, int size, bool big_endian>
1283 void
1284 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1285     Output_file* of)
1286 {
1287   typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1288   this->do_write_generic<Writer>(of);
1289 }
1290 
1291 // Class Output_relocatable_relocs.
1292 
1293 template<int sh_type, int size, bool big_endian>
1294 void
1295 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296 {
1297   this->set_data_size(this->rr_->output_reloc_count()
1298 		      * Reloc_types<sh_type, size, big_endian>::reloc_size);
1299 }
1300 
1301 // class Output_data_group.
1302 
1303 template<int size, bool big_endian>
1304 Output_data_group<size, big_endian>::Output_data_group(
1305     Sized_relobj_file<size, big_endian>* relobj,
1306     section_size_type entry_count,
1307     elfcpp::Elf_Word flags,
1308     std::vector<unsigned int>* input_shndxes)
1309   : Output_section_data(entry_count * 4, 4, false),
1310     relobj_(relobj),
1311     flags_(flags)
1312 {
1313   this->input_shndxes_.swap(*input_shndxes);
1314 }
1315 
1316 // Write out the section group, which means translating the section
1317 // indexes to apply to the output file.
1318 
1319 template<int size, bool big_endian>
1320 void
1321 Output_data_group<size, big_endian>::do_write(Output_file* of)
1322 {
1323   const off_t off = this->offset();
1324   const section_size_type oview_size =
1325     convert_to_section_size_type(this->data_size());
1326   unsigned char* const oview = of->get_output_view(off, oview_size);
1327 
1328   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1330   ++contents;
1331 
1332   for (std::vector<unsigned int>::const_iterator p =
1333 	 this->input_shndxes_.begin();
1334        p != this->input_shndxes_.end();
1335        ++p, ++contents)
1336     {
1337       Output_section* os = this->relobj_->output_section(*p);
1338 
1339       unsigned int output_shndx;
1340       if (os != NULL)
1341 	output_shndx = os->out_shndx();
1342       else
1343 	{
1344 	  this->relobj_->error(_("section group retained but "
1345 				 "group element discarded"));
1346 	  output_shndx = 0;
1347 	}
1348 
1349       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1350     }
1351 
1352   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353   gold_assert(wrote == oview_size);
1354 
1355   of->write_output_view(off, oview_size, oview);
1356 
1357   // We no longer need this information.
1358   this->input_shndxes_.clear();
1359 }
1360 
1361 // Output_data_got::Got_entry methods.
1362 
1363 // Write out the entry.
1364 
1365 template<int got_size, bool big_endian>
1366 void
1367 Output_data_got<got_size, big_endian>::Got_entry::write(
1368     unsigned int got_indx,
1369     unsigned char* pov) const
1370 {
1371   Valtype val = 0;
1372 
1373   switch (this->local_sym_index_)
1374     {
1375     case GSYM_CODE:
1376       {
1377 	// If the symbol is resolved locally, we need to write out the
1378 	// link-time value, which will be relocated dynamically by a
1379 	// RELATIVE relocation.
1380 	Symbol* gsym = this->u_.gsym;
1381 	if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1382 	  val = parameters->target().plt_address_for_global(gsym);
1383 	else
1384 	  {
1385 	    switch (parameters->size_and_endianness())
1386 	      {
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388 	      case Parameters::TARGET_32_LITTLE:
1389 	      case Parameters::TARGET_32_BIG:
1390 		{
1391 		  // This cast is ugly.  We don't want to put a
1392 		  // virtual method in Symbol, because we want Symbol
1393 		  // to be as small as possible.
1394 		  Sized_symbol<32>::Value_type v;
1395 		  v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396 		  val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1397 		}
1398 		break;
1399 #endif
1400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401 	      case Parameters::TARGET_64_LITTLE:
1402 	      case Parameters::TARGET_64_BIG:
1403 		{
1404 		  Sized_symbol<64>::Value_type v;
1405 		  v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406 		  val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1407 		}
1408 		break;
1409 #endif
1410 	      default:
1411 		gold_unreachable();
1412 	      }
1413 	    if (this->use_plt_or_tls_offset_
1414 		&& gsym->type() == elfcpp::STT_TLS)
1415 	      val += parameters->target().tls_offset_for_global(gsym,
1416 								got_indx);
1417 	  }
1418       }
1419       break;
1420 
1421     case CONSTANT_CODE:
1422       val = this->u_.constant;
1423       break;
1424 
1425     case RESERVED_CODE:
1426       // If we're doing an incremental update, don't touch this GOT entry.
1427       if (parameters->incremental_update())
1428 	return;
1429       val = this->u_.constant;
1430       break;
1431 
1432     default:
1433       {
1434 	const Relobj* object = this->u_.object;
1435 	const unsigned int lsi = this->local_sym_index_;
1436 	bool is_tls = object->local_is_tls(lsi);
1437 	if (this->use_plt_or_tls_offset_ && !is_tls)
1438 	  val = parameters->target().plt_address_for_local(object, lsi);
1439 	else
1440 	  {
1441 	    uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1442 	    val = convert_types<Valtype, uint64_t>(lval);
1443 	    if (this->use_plt_or_tls_offset_ && is_tls)
1444 	      val += parameters->target().tls_offset_for_local(object, lsi,
1445 							       got_indx);
1446 	  }
1447       }
1448       break;
1449     }
1450 
1451   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1452 }
1453 
1454 // Output_data_got methods.
1455 
1456 // Add an entry for a global symbol to the GOT.  This returns true if
1457 // this is a new GOT entry, false if the symbol already had a GOT
1458 // entry.
1459 
1460 template<int got_size, bool big_endian>
1461 bool
1462 Output_data_got<got_size, big_endian>::add_global(
1463     Symbol* gsym,
1464     unsigned int got_type)
1465 {
1466   if (gsym->has_got_offset(got_type))
1467     return false;
1468 
1469   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470   gsym->set_got_offset(got_type, got_offset);
1471   return true;
1472 }
1473 
1474 // Like add_global, but use the PLT offset.
1475 
1476 template<int got_size, bool big_endian>
1477 bool
1478 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479 						      unsigned int got_type)
1480 {
1481   if (gsym->has_got_offset(got_type))
1482     return false;
1483 
1484   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485   gsym->set_got_offset(got_type, got_offset);
1486   return true;
1487 }
1488 
1489 // Add an entry for a global symbol to the GOT, and add a dynamic
1490 // relocation of type R_TYPE for the GOT entry.
1491 
1492 template<int got_size, bool big_endian>
1493 void
1494 Output_data_got<got_size, big_endian>::add_global_with_rel(
1495     Symbol* gsym,
1496     unsigned int got_type,
1497     Output_data_reloc_generic* rel_dyn,
1498     unsigned int r_type)
1499 {
1500   if (gsym->has_got_offset(got_type))
1501     return;
1502 
1503   unsigned int got_offset = this->add_got_entry(Got_entry());
1504   gsym->set_got_offset(got_type, got_offset);
1505   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1506 }
1507 
1508 // Add a pair of entries for a global symbol to the GOT, and add
1509 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510 // If R_TYPE_2 == 0, add the second entry with no relocation.
1511 template<int got_size, bool big_endian>
1512 void
1513 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1514     Symbol* gsym,
1515     unsigned int got_type,
1516     Output_data_reloc_generic* rel_dyn,
1517     unsigned int r_type_1,
1518     unsigned int r_type_2)
1519 {
1520   if (gsym->has_got_offset(got_type))
1521     return;
1522 
1523   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1524   gsym->set_got_offset(got_type, got_offset);
1525   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1526 
1527   if (r_type_2 != 0)
1528     rel_dyn->add_global_generic(gsym, r_type_2, this,
1529 				got_offset + got_size / 8, 0);
1530 }
1531 
1532 // Add an entry for a local symbol to the GOT.  This returns true if
1533 // this is a new GOT entry, false if the symbol already has a GOT
1534 // entry.
1535 
1536 template<int got_size, bool big_endian>
1537 bool
1538 Output_data_got<got_size, big_endian>::add_local(
1539     Relobj* object,
1540     unsigned int symndx,
1541     unsigned int got_type)
1542 {
1543   if (object->local_has_got_offset(symndx, got_type))
1544     return false;
1545 
1546   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547 							  false));
1548   object->set_local_got_offset(symndx, got_type, got_offset);
1549   return true;
1550 }
1551 
1552 // Add an entry for a local symbol plus ADDEND to the GOT.  This returns
1553 // true if this is a new GOT entry, false if the symbol already has a GOT
1554 // entry.
1555 
1556 template<int got_size, bool big_endian>
1557 bool
1558 Output_data_got<got_size, big_endian>::add_local(
1559     Relobj* object,
1560     unsigned int symndx,
1561     unsigned int got_type,
1562     uint64_t addend)
1563 {
1564   if (object->local_has_got_offset(symndx, got_type, addend))
1565     return false;
1566 
1567   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1568 							  false, addend));
1569   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1570   return true;
1571 }
1572 
1573 // Like add_local, but use the PLT offset.
1574 
1575 template<int got_size, bool big_endian>
1576 bool
1577 Output_data_got<got_size, big_endian>::add_local_plt(
1578     Relobj* object,
1579     unsigned int symndx,
1580     unsigned int got_type)
1581 {
1582   if (object->local_has_got_offset(symndx, got_type))
1583     return false;
1584 
1585   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1586 							  true));
1587   object->set_local_got_offset(symndx, got_type, got_offset);
1588   return true;
1589 }
1590 
1591 // Add an entry for a local symbol to the GOT, and add a dynamic
1592 // relocation of type R_TYPE for the GOT entry.
1593 
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_with_rel(
1597     Relobj* object,
1598     unsigned int symndx,
1599     unsigned int got_type,
1600     Output_data_reloc_generic* rel_dyn,
1601     unsigned int r_type)
1602 {
1603   if (object->local_has_got_offset(symndx, got_type))
1604     return;
1605 
1606   unsigned int got_offset = this->add_got_entry(Got_entry());
1607   object->set_local_got_offset(symndx, got_type, got_offset);
1608   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1609 }
1610 
1611 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1612 // relocation of type R_TYPE for the GOT entry.
1613 
1614 template<int got_size, bool big_endian>
1615 void
1616 Output_data_got<got_size, big_endian>::add_local_with_rel(
1617     Relobj* object,
1618     unsigned int symndx,
1619     unsigned int got_type,
1620     Output_data_reloc_generic* rel_dyn,
1621     unsigned int r_type, uint64_t addend)
1622 {
1623   if (object->local_has_got_offset(symndx, got_type, addend))
1624     return;
1625 
1626   unsigned int got_offset = this->add_got_entry(Got_entry());
1627   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1628   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1629                              addend);
1630 }
1631 
1632 // Add a pair of entries for a local symbol to the GOT, and add
1633 // a dynamic relocation of type R_TYPE using the section symbol of
1634 // the output section to which input section SHNDX maps, on the first.
1635 // The first got entry will have a value of zero, the second the
1636 // value of the local symbol.
1637 template<int got_size, bool big_endian>
1638 void
1639 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1640     Relobj* object,
1641     unsigned int symndx,
1642     unsigned int shndx,
1643     unsigned int got_type,
1644     Output_data_reloc_generic* rel_dyn,
1645     unsigned int r_type)
1646 {
1647   if (object->local_has_got_offset(symndx, got_type))
1648     return;
1649 
1650   unsigned int got_offset =
1651       this->add_got_entry_pair(Got_entry(),
1652 			       Got_entry(object, symndx, false));
1653   object->set_local_got_offset(symndx, got_type, got_offset);
1654   Output_section* os = object->output_section(shndx);
1655   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1656 }
1657 
1658 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1659 // a dynamic relocation of type R_TYPE using the section symbol of
1660 // the output section to which input section SHNDX maps, on the first.
1661 // The first got entry will have a value of zero, the second the
1662 // value of the local symbol.
1663 template<int got_size, bool big_endian>
1664 void
1665 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1666     Relobj* object,
1667     unsigned int symndx,
1668     unsigned int shndx,
1669     unsigned int got_type,
1670     Output_data_reloc_generic* rel_dyn,
1671     unsigned int r_type, uint64_t addend)
1672 {
1673   if (object->local_has_got_offset(symndx, got_type, addend))
1674     return;
1675 
1676   unsigned int got_offset =
1677       this->add_got_entry_pair(Got_entry(),
1678 			       Got_entry(object, symndx, false, addend));
1679   object->set_local_got_offset(symndx, got_type, got_offset, addend);
1680   Output_section* os = object->output_section(shndx);
1681   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1682 }
1683 
1684 // Add a pair of entries for a local symbol to the GOT, and add
1685 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1686 // The first got entry will have a value of zero, the second the
1687 // value of the local symbol offset by Target::tls_offset_for_local.
1688 template<int got_size, bool big_endian>
1689 void
1690 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1691     Relobj* object,
1692     unsigned int symndx,
1693     unsigned int got_type,
1694     Output_data_reloc_generic* rel_dyn,
1695     unsigned int r_type)
1696 {
1697   if (object->local_has_got_offset(symndx, got_type))
1698     return;
1699 
1700   unsigned int got_offset
1701     = this->add_got_entry_pair(Got_entry(),
1702 			       Got_entry(object, symndx, true));
1703   object->set_local_got_offset(symndx, got_type, got_offset);
1704   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1705 }
1706 
1707 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1708 
1709 template<int got_size, bool big_endian>
1710 void
1711 Output_data_got<got_size, big_endian>::reserve_local(
1712     unsigned int i,
1713     Relobj* object,
1714     unsigned int sym_index,
1715     unsigned int got_type)
1716 {
1717   this->do_reserve_slot(i);
1718   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1719 }
1720 
1721 // Reserve a slot in the GOT for a global symbol.
1722 
1723 template<int got_size, bool big_endian>
1724 void
1725 Output_data_got<got_size, big_endian>::reserve_global(
1726     unsigned int i,
1727     Symbol* gsym,
1728     unsigned int got_type)
1729 {
1730   this->do_reserve_slot(i);
1731   gsym->set_got_offset(got_type, this->got_offset(i));
1732 }
1733 
1734 // Write out the GOT.
1735 
1736 template<int got_size, bool big_endian>
1737 void
1738 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1739 {
1740   const int add = got_size / 8;
1741 
1742   const off_t off = this->offset();
1743   const off_t oview_size = this->data_size();
1744   unsigned char* const oview = of->get_output_view(off, oview_size);
1745 
1746   unsigned char* pov = oview;
1747   for (unsigned int i = 0; i < this->entries_.size(); ++i)
1748     {
1749       this->entries_[i].write(i, pov);
1750       pov += add;
1751     }
1752 
1753   gold_assert(pov - oview == oview_size);
1754 
1755   of->write_output_view(off, oview_size, oview);
1756 
1757   // We no longer need the GOT entries.
1758   this->entries_.clear();
1759 }
1760 
1761 // Create a new GOT entry and return its offset.
1762 
1763 template<int got_size, bool big_endian>
1764 unsigned int
1765 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1766 {
1767   if (!this->is_data_size_valid())
1768     {
1769       this->entries_.push_back(got_entry);
1770       this->set_got_size();
1771       return this->last_got_offset();
1772     }
1773   else
1774     {
1775       // For an incremental update, find an available slot.
1776       off_t got_offset = this->free_list_.allocate(got_size / 8,
1777 						   got_size / 8, 0);
1778       if (got_offset == -1)
1779 	gold_fallback(_("out of patch space (GOT);"
1780 			" relink with --incremental-full"));
1781       unsigned int got_index = got_offset / (got_size / 8);
1782       gold_assert(got_index < this->entries_.size());
1783       this->entries_[got_index] = got_entry;
1784       return static_cast<unsigned int>(got_offset);
1785     }
1786 }
1787 
1788 // Create a pair of new GOT entries and return the offset of the first.
1789 
1790 template<int got_size, bool big_endian>
1791 unsigned int
1792 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1793     Got_entry got_entry_1,
1794     Got_entry got_entry_2)
1795 {
1796   if (!this->is_data_size_valid())
1797     {
1798       unsigned int got_offset;
1799       this->entries_.push_back(got_entry_1);
1800       got_offset = this->last_got_offset();
1801       this->entries_.push_back(got_entry_2);
1802       this->set_got_size();
1803       return got_offset;
1804     }
1805   else
1806     {
1807       // For an incremental update, find an available pair of slots.
1808       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1809 						   got_size / 8, 0);
1810       if (got_offset == -1)
1811 	gold_fallback(_("out of patch space (GOT);"
1812 			" relink with --incremental-full"));
1813       unsigned int got_index = got_offset / (got_size / 8);
1814       gold_assert(got_index < this->entries_.size());
1815       this->entries_[got_index] = got_entry_1;
1816       this->entries_[got_index + 1] = got_entry_2;
1817       return static_cast<unsigned int>(got_offset);
1818     }
1819 }
1820 
1821 // Replace GOT entry I with a new value.
1822 
1823 template<int got_size, bool big_endian>
1824 void
1825 Output_data_got<got_size, big_endian>::replace_got_entry(
1826     unsigned int i,
1827     Got_entry got_entry)
1828 {
1829   gold_assert(i < this->entries_.size());
1830   this->entries_[i] = got_entry;
1831 }
1832 
1833 // Output_data_dynamic::Dynamic_entry methods.
1834 
1835 // Write out the entry.
1836 
1837 template<int size, bool big_endian>
1838 void
1839 Output_data_dynamic::Dynamic_entry::write(
1840     unsigned char* pov,
1841     const Stringpool* pool) const
1842 {
1843   typename elfcpp::Elf_types<size>::Elf_WXword val;
1844   switch (this->offset_)
1845     {
1846     case DYNAMIC_NUMBER:
1847       val = this->u_.val;
1848       break;
1849 
1850     case DYNAMIC_SECTION_SIZE:
1851       val = this->u_.od->data_size();
1852       if (this->od2 != NULL)
1853 	val += this->od2->data_size();
1854       break;
1855 
1856     case DYNAMIC_SYMBOL:
1857       {
1858 	const Sized_symbol<size>* s =
1859 	  static_cast<const Sized_symbol<size>*>(this->u_.sym);
1860 	val = s->value();
1861       }
1862       break;
1863 
1864     case DYNAMIC_STRING:
1865       val = pool->get_offset(this->u_.str);
1866       break;
1867 
1868     case DYNAMIC_CUSTOM:
1869       val = parameters->target().dynamic_tag_custom_value(this->tag_);
1870       break;
1871 
1872     default:
1873       val = this->u_.od->address() + this->offset_;
1874       break;
1875     }
1876 
1877   elfcpp::Dyn_write<size, big_endian> dw(pov);
1878   dw.put_d_tag(this->tag_);
1879   dw.put_d_val(val);
1880 }
1881 
1882 // Output_data_dynamic methods.
1883 
1884 // Adjust the output section to set the entry size.
1885 
1886 void
1887 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1888 {
1889   if (parameters->target().get_size() == 32)
1890     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1891   else if (parameters->target().get_size() == 64)
1892     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1893   else
1894     gold_unreachable();
1895 }
1896 
1897 // Get a dynamic entry offset.
1898 
1899 unsigned int
1900 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1901 {
1902   int dyn_size;
1903 
1904   if (parameters->target().get_size() == 32)
1905     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1906   else if (parameters->target().get_size() == 64)
1907     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1908   else
1909     gold_unreachable();
1910 
1911   for (size_t i = 0; i < entries_.size(); ++i)
1912     if (entries_[i].tag() == tag)
1913       return i * dyn_size;
1914 
1915   return -1U;
1916 }
1917 
1918 // Set the final data size.
1919 
1920 void
1921 Output_data_dynamic::set_final_data_size()
1922 {
1923   // Add the terminating entry if it hasn't been added.
1924   // Because of relaxation, we can run this multiple times.
1925   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1926     {
1927       int extra = parameters->options().spare_dynamic_tags();
1928       for (int i = 0; i < extra; ++i)
1929 	this->add_constant(elfcpp::DT_NULL, 0);
1930       this->add_constant(elfcpp::DT_NULL, 0);
1931     }
1932 
1933   int dyn_size;
1934   if (parameters->target().get_size() == 32)
1935     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1936   else if (parameters->target().get_size() == 64)
1937     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1938   else
1939     gold_unreachable();
1940   this->set_data_size(this->entries_.size() * dyn_size);
1941 }
1942 
1943 // Write out the dynamic entries.
1944 
1945 void
1946 Output_data_dynamic::do_write(Output_file* of)
1947 {
1948   switch (parameters->size_and_endianness())
1949     {
1950 #ifdef HAVE_TARGET_32_LITTLE
1951     case Parameters::TARGET_32_LITTLE:
1952       this->sized_write<32, false>(of);
1953       break;
1954 #endif
1955 #ifdef HAVE_TARGET_32_BIG
1956     case Parameters::TARGET_32_BIG:
1957       this->sized_write<32, true>(of);
1958       break;
1959 #endif
1960 #ifdef HAVE_TARGET_64_LITTLE
1961     case Parameters::TARGET_64_LITTLE:
1962       this->sized_write<64, false>(of);
1963       break;
1964 #endif
1965 #ifdef HAVE_TARGET_64_BIG
1966     case Parameters::TARGET_64_BIG:
1967       this->sized_write<64, true>(of);
1968       break;
1969 #endif
1970     default:
1971       gold_unreachable();
1972     }
1973 }
1974 
1975 template<int size, bool big_endian>
1976 void
1977 Output_data_dynamic::sized_write(Output_file* of)
1978 {
1979   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1980 
1981   const off_t offset = this->offset();
1982   const off_t oview_size = this->data_size();
1983   unsigned char* const oview = of->get_output_view(offset, oview_size);
1984 
1985   unsigned char* pov = oview;
1986   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1987        p != this->entries_.end();
1988        ++p)
1989     {
1990       p->write<size, big_endian>(pov, this->pool_);
1991       pov += dyn_size;
1992     }
1993 
1994   gold_assert(pov - oview == oview_size);
1995 
1996   of->write_output_view(offset, oview_size, oview);
1997 
1998   // We no longer need the dynamic entries.
1999   this->entries_.clear();
2000 }
2001 
2002 // Class Output_symtab_xindex.
2003 
2004 void
2005 Output_symtab_xindex::do_write(Output_file* of)
2006 {
2007   const off_t offset = this->offset();
2008   const off_t oview_size = this->data_size();
2009   unsigned char* const oview = of->get_output_view(offset, oview_size);
2010 
2011   memset(oview, 0, oview_size);
2012 
2013   if (parameters->target().is_big_endian())
2014     this->endian_do_write<true>(oview);
2015   else
2016     this->endian_do_write<false>(oview);
2017 
2018   of->write_output_view(offset, oview_size, oview);
2019 
2020   // We no longer need the data.
2021   this->entries_.clear();
2022 }
2023 
2024 template<bool big_endian>
2025 void
2026 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2027 {
2028   for (Xindex_entries::const_iterator p = this->entries_.begin();
2029        p != this->entries_.end();
2030        ++p)
2031     {
2032       unsigned int symndx = p->first;
2033       gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2034       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2035     }
2036 }
2037 
2038 // Output_fill_debug_info methods.
2039 
2040 // Return the minimum size needed for a dummy compilation unit header.
2041 
2042 size_t
2043 Output_fill_debug_info::do_minimum_hole_size() const
2044 {
2045   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2046   // address_size.
2047   const size_t len = 4 + 2 + 4 + 1;
2048   // For type units, add type_signature, type_offset.
2049   if (this->is_debug_types_)
2050     return len + 8 + 4;
2051   return len;
2052 }
2053 
2054 // Write a dummy compilation unit header to fill a hole in the
2055 // .debug_info or .debug_types section.
2056 
2057 void
2058 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2059 {
2060   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2061 	     static_cast<long>(off), static_cast<long>(len));
2062 
2063   gold_assert(len >= this->do_minimum_hole_size());
2064 
2065   unsigned char* const oview = of->get_output_view(off, len);
2066   unsigned char* pov = oview;
2067 
2068   // Write header fields: unit_length, version, debug_abbrev_offset,
2069   // address_size.
2070   if (this->is_big_endian())
2071     {
2072       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2073       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2074       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2075     }
2076   else
2077     {
2078       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2079       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2080       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2081     }
2082   pov += 4 + 2 + 4;
2083   *pov++ = 4;
2084 
2085   // For type units, the additional header fields -- type_signature,
2086   // type_offset -- can be filled with zeroes.
2087 
2088   // Fill the remainder of the free space with zeroes.  The first
2089   // zero should tell the consumer there are no DIEs to read in this
2090   // compilation unit.
2091   if (pov < oview + len)
2092     memset(pov, 0, oview + len - pov);
2093 
2094   of->write_output_view(off, len, oview);
2095 }
2096 
2097 // Output_fill_debug_line methods.
2098 
2099 // Return the minimum size needed for a dummy line number program header.
2100 
2101 size_t
2102 Output_fill_debug_line::do_minimum_hole_size() const
2103 {
2104   // Line number program header fields: unit_length, version, header_length,
2105   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2106   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2107   const size_t len = 4 + 2 + 4 + this->header_length;
2108   return len;
2109 }
2110 
2111 // Write a dummy line number program header to fill a hole in the
2112 // .debug_line section.
2113 
2114 void
2115 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2116 {
2117   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2118 	     static_cast<long>(off), static_cast<long>(len));
2119 
2120   gold_assert(len >= this->do_minimum_hole_size());
2121 
2122   unsigned char* const oview = of->get_output_view(off, len);
2123   unsigned char* pov = oview;
2124 
2125   // Write header fields: unit_length, version, header_length,
2126   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2127   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2128   // We set the header_length field to cover the entire hole, so the
2129   // line number program is empty.
2130   if (this->is_big_endian())
2131     {
2132       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2133       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2134       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2135     }
2136   else
2137     {
2138       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2139       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2140       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2141     }
2142   pov += 4 + 2 + 4;
2143   *pov++ = 1;	// minimum_instruction_length
2144   *pov++ = 0;	// default_is_stmt
2145   *pov++ = 0;	// line_base
2146   *pov++ = 5;	// line_range
2147   *pov++ = 13;	// opcode_base
2148   *pov++ = 0;	// standard_opcode_lengths[1]
2149   *pov++ = 1;	// standard_opcode_lengths[2]
2150   *pov++ = 1;	// standard_opcode_lengths[3]
2151   *pov++ = 1;	// standard_opcode_lengths[4]
2152   *pov++ = 1;	// standard_opcode_lengths[5]
2153   *pov++ = 0;	// standard_opcode_lengths[6]
2154   *pov++ = 0;	// standard_opcode_lengths[7]
2155   *pov++ = 0;	// standard_opcode_lengths[8]
2156   *pov++ = 1;	// standard_opcode_lengths[9]
2157   *pov++ = 0;	// standard_opcode_lengths[10]
2158   *pov++ = 0;	// standard_opcode_lengths[11]
2159   *pov++ = 1;	// standard_opcode_lengths[12]
2160   *pov++ = 0;	// include_directories (empty)
2161   *pov++ = 0;	// filenames (empty)
2162 
2163   // Some consumers don't check the header_length field, and simply
2164   // start reading the line number program immediately following the
2165   // header.  For those consumers, we fill the remainder of the free
2166   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2167   // no-ops: the resulting line table program will not create any rows.
2168   if (pov < oview + len)
2169     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2170 
2171   of->write_output_view(off, len, oview);
2172 }
2173 
2174 // Output_section::Input_section methods.
2175 
2176 // Return the current data size.  For an input section we store the size here.
2177 // For an Output_section_data, we have to ask it for the size.
2178 
2179 off_t
2180 Output_section::Input_section::current_data_size() const
2181 {
2182   if (this->is_input_section())
2183     return this->u1_.data_size;
2184   else
2185     {
2186       this->u2_.posd->pre_finalize_data_size();
2187       return this->u2_.posd->current_data_size();
2188     }
2189 }
2190 
2191 // Return the data size.  For an input section we store the size here.
2192 // For an Output_section_data, we have to ask it for the size.
2193 
2194 off_t
2195 Output_section::Input_section::data_size() const
2196 {
2197   if (this->is_input_section())
2198     return this->u1_.data_size;
2199   else
2200     return this->u2_.posd->data_size();
2201 }
2202 
2203 // Return the object for an input section.
2204 
2205 Relobj*
2206 Output_section::Input_section::relobj() const
2207 {
2208   if (this->is_input_section())
2209     return this->u2_.object;
2210   else if (this->is_merge_section())
2211     {
2212       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2213       return this->u2_.pomb->first_relobj();
2214     }
2215   else if (this->is_relaxed_input_section())
2216     return this->u2_.poris->relobj();
2217   else
2218     gold_unreachable();
2219 }
2220 
2221 // Return the input section index for an input section.
2222 
2223 unsigned int
2224 Output_section::Input_section::shndx() const
2225 {
2226   if (this->is_input_section())
2227     return this->shndx_;
2228   else if (this->is_merge_section())
2229     {
2230       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2231       return this->u2_.pomb->first_shndx();
2232     }
2233   else if (this->is_relaxed_input_section())
2234     return this->u2_.poris->shndx();
2235   else
2236     gold_unreachable();
2237 }
2238 
2239 // Set the address and file offset.
2240 
2241 void
2242 Output_section::Input_section::set_address_and_file_offset(
2243     uint64_t address,
2244     off_t file_offset,
2245     off_t section_file_offset)
2246 {
2247   if (this->is_input_section())
2248     this->u2_.object->set_section_offset(this->shndx_,
2249 					 file_offset - section_file_offset);
2250   else
2251     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2252 }
2253 
2254 // Reset the address and file offset.
2255 
2256 void
2257 Output_section::Input_section::reset_address_and_file_offset()
2258 {
2259   if (!this->is_input_section())
2260     this->u2_.posd->reset_address_and_file_offset();
2261 }
2262 
2263 // Finalize the data size.
2264 
2265 void
2266 Output_section::Input_section::finalize_data_size()
2267 {
2268   if (!this->is_input_section())
2269     this->u2_.posd->finalize_data_size();
2270 }
2271 
2272 // Try to turn an input offset into an output offset.  We want to
2273 // return the output offset relative to the start of this
2274 // Input_section in the output section.
2275 
2276 inline bool
2277 Output_section::Input_section::output_offset(
2278     const Relobj* object,
2279     unsigned int shndx,
2280     section_offset_type offset,
2281     section_offset_type* poutput) const
2282 {
2283   if (!this->is_input_section())
2284     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2285   else
2286     {
2287       if (this->shndx_ != shndx || this->u2_.object != object)
2288 	return false;
2289       *poutput = offset;
2290       return true;
2291     }
2292 }
2293 
2294 // Write out the data.  We don't have to do anything for an input
2295 // section--they are handled via Object::relocate--but this is where
2296 // we write out the data for an Output_section_data.
2297 
2298 void
2299 Output_section::Input_section::write(Output_file* of)
2300 {
2301   if (!this->is_input_section())
2302     this->u2_.posd->write(of);
2303 }
2304 
2305 // Write the data to a buffer.  As for write(), we don't have to do
2306 // anything for an input section.
2307 
2308 void
2309 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2310 {
2311   if (!this->is_input_section())
2312     this->u2_.posd->write_to_buffer(buffer);
2313 }
2314 
2315 // Print to a map file.
2316 
2317 void
2318 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2319 {
2320   switch (this->shndx_)
2321     {
2322     case OUTPUT_SECTION_CODE:
2323     case MERGE_DATA_SECTION_CODE:
2324     case MERGE_STRING_SECTION_CODE:
2325       this->u2_.posd->print_to_mapfile(mapfile);
2326       break;
2327 
2328     case RELAXED_INPUT_SECTION_CODE:
2329       {
2330 	Output_relaxed_input_section* relaxed_section =
2331 	  this->relaxed_input_section();
2332 	mapfile->print_input_section(relaxed_section->relobj(),
2333 				     relaxed_section->shndx());
2334       }
2335       break;
2336     default:
2337       mapfile->print_input_section(this->u2_.object, this->shndx_);
2338       break;
2339     }
2340 }
2341 
2342 // Output_section methods.
2343 
2344 // Construct an Output_section.  NAME will point into a Stringpool.
2345 
2346 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2347 			       elfcpp::Elf_Xword flags)
2348   : name_(name),
2349     addralign_(0),
2350     entsize_(0),
2351     load_address_(0),
2352     link_section_(NULL),
2353     link_(0),
2354     info_section_(NULL),
2355     info_symndx_(NULL),
2356     info_(0),
2357     type_(type),
2358     flags_(flags),
2359     order_(ORDER_INVALID),
2360     out_shndx_(-1U),
2361     symtab_index_(0),
2362     dynsym_index_(0),
2363     input_sections_(),
2364     first_input_offset_(0),
2365     fills_(),
2366     postprocessing_buffer_(NULL),
2367     needs_symtab_index_(false),
2368     needs_dynsym_index_(false),
2369     should_link_to_symtab_(false),
2370     should_link_to_dynsym_(false),
2371     after_input_sections_(false),
2372     requires_postprocessing_(false),
2373     found_in_sections_clause_(false),
2374     has_load_address_(false),
2375     info_uses_section_index_(false),
2376     input_section_order_specified_(false),
2377     may_sort_attached_input_sections_(false),
2378     must_sort_attached_input_sections_(false),
2379     attached_input_sections_are_sorted_(false),
2380     is_relro_(false),
2381     is_small_section_(false),
2382     is_large_section_(false),
2383     generate_code_fills_at_write_(false),
2384     is_entsize_zero_(false),
2385     section_offsets_need_adjustment_(false),
2386     is_noload_(false),
2387     always_keeps_input_sections_(false),
2388     has_fixed_layout_(false),
2389     is_patch_space_allowed_(false),
2390     is_unique_segment_(false),
2391     tls_offset_(0),
2392     extra_segment_flags_(0),
2393     segment_alignment_(0),
2394     checkpoint_(NULL),
2395     lookup_maps_(new Output_section_lookup_maps),
2396     free_list_(),
2397     free_space_fill_(NULL),
2398     patch_space_(0),
2399     reloc_section_(NULL)
2400 {
2401   // An unallocated section has no address.  Forcing this means that
2402   // we don't need special treatment for symbols defined in debug
2403   // sections.
2404   if ((flags & elfcpp::SHF_ALLOC) == 0)
2405     this->set_address(0);
2406 }
2407 
2408 Output_section::~Output_section()
2409 {
2410   delete this->checkpoint_;
2411 }
2412 
2413 // Set the entry size.
2414 
2415 void
2416 Output_section::set_entsize(uint64_t v)
2417 {
2418   if (this->is_entsize_zero_)
2419     ;
2420   else if (this->entsize_ == 0)
2421     this->entsize_ = v;
2422   else if (this->entsize_ != v)
2423     {
2424       this->entsize_ = 0;
2425       this->is_entsize_zero_ = 1;
2426     }
2427 }
2428 
2429 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2430 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2431 // relocation section which applies to this section, or 0 if none, or
2432 // -1U if more than one.  Return the offset of the input section
2433 // within the output section.  Return -1 if the input section will
2434 // receive special handling.  In the normal case we don't always keep
2435 // track of input sections for an Output_section.  Instead, each
2436 // Object keeps track of the Output_section for each of its input
2437 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2438 // track of input sections here; this is used when SECTIONS appears in
2439 // a linker script.
2440 
2441 template<int size, bool big_endian>
2442 off_t
2443 Output_section::add_input_section(Layout* layout,
2444 				  Sized_relobj_file<size, big_endian>* object,
2445 				  unsigned int shndx,
2446 				  const char* secname,
2447 				  const elfcpp::Shdr<size, big_endian>& shdr,
2448 				  unsigned int reloc_shndx,
2449 				  bool have_sections_script)
2450 {
2451   section_size_type input_section_size = shdr.get_sh_size();
2452   section_size_type uncompressed_size;
2453   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2454   if (object->section_is_compressed(shndx, &uncompressed_size,
2455 				    &addralign))
2456     input_section_size = uncompressed_size;
2457 
2458   if ((addralign & (addralign - 1)) != 0)
2459     {
2460       object->error(_("invalid alignment %lu for section \"%s\""),
2461 		    static_cast<unsigned long>(addralign), secname);
2462       addralign = 1;
2463     }
2464 
2465   if (addralign > this->addralign_)
2466     this->addralign_ = addralign;
2467 
2468   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2469   uint64_t entsize = shdr.get_sh_entsize();
2470 
2471   // .debug_str is a mergeable string section, but is not always so
2472   // marked by compilers.  Mark manually here so we can optimize.
2473   if (strcmp(secname, ".debug_str") == 0)
2474     {
2475       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2476       entsize = 1;
2477     }
2478 
2479   this->update_flags_for_input_section(sh_flags);
2480   this->set_entsize(entsize);
2481 
2482   // If this is a SHF_MERGE section, we pass all the input sections to
2483   // a Output_data_merge.  We don't try to handle relocations for such
2484   // a section.  We don't try to handle empty merge sections--they
2485   // mess up the mappings, and are useless anyhow.
2486   // FIXME: Need to handle merge sections during incremental update.
2487   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2488       && reloc_shndx == 0
2489       && shdr.get_sh_size() > 0
2490       && !parameters->incremental())
2491     {
2492       // Keep information about merged input sections for rebuilding fast
2493       // lookup maps if we have sections-script or we do relaxation.
2494       bool keeps_input_sections = (this->always_keeps_input_sections_
2495 				   || have_sections_script
2496 				   || parameters->target().may_relax());
2497 
2498       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2499 					addralign, keeps_input_sections))
2500 	{
2501 	  // Tell the relocation routines that they need to call the
2502 	  // output_offset method to determine the final address.
2503 	  return -1;
2504 	}
2505     }
2506 
2507   off_t offset_in_section;
2508 
2509   if (this->has_fixed_layout())
2510     {
2511       // For incremental updates, find a chunk of unused space in the section.
2512       offset_in_section = this->free_list_.allocate(input_section_size,
2513 						    addralign, 0);
2514       if (offset_in_section == -1)
2515 	gold_fallback(_("out of patch space in section %s; "
2516 			"relink with --incremental-full"),
2517 		      this->name());
2518       return offset_in_section;
2519     }
2520 
2521   offset_in_section = this->current_data_size_for_child();
2522   off_t aligned_offset_in_section = align_address(offset_in_section,
2523 						  addralign);
2524   this->set_current_data_size_for_child(aligned_offset_in_section
2525 					+ input_section_size);
2526 
2527   // Determine if we want to delay code-fill generation until the output
2528   // section is written.  When the target is relaxing, we want to delay fill
2529   // generating to avoid adjusting them during relaxation.  Also, if we are
2530   // sorting input sections we must delay fill generation.
2531   if (!this->generate_code_fills_at_write_
2532       && !have_sections_script
2533       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2534       && parameters->target().has_code_fill()
2535       && (parameters->target().may_relax()
2536 	  || layout->is_section_ordering_specified()))
2537     {
2538       gold_assert(this->fills_.empty());
2539       this->generate_code_fills_at_write_ = true;
2540     }
2541 
2542   if (aligned_offset_in_section > offset_in_section
2543       && !this->generate_code_fills_at_write_
2544       && !have_sections_script
2545       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2546       && parameters->target().has_code_fill())
2547     {
2548       // We need to add some fill data.  Using fill_list_ when
2549       // possible is an optimization, since we will often have fill
2550       // sections without input sections.
2551       off_t fill_len = aligned_offset_in_section - offset_in_section;
2552       if (this->input_sections_.empty())
2553 	this->fills_.push_back(Fill(offset_in_section, fill_len));
2554       else
2555 	{
2556 	  std::string fill_data(parameters->target().code_fill(fill_len));
2557 	  Output_data_const* odc = new Output_data_const(fill_data, 1);
2558 	  this->input_sections_.push_back(Input_section(odc));
2559 	}
2560     }
2561 
2562   // We need to keep track of this section if we are already keeping
2563   // track of sections, or if we are relaxing.  Also, if this is a
2564   // section which requires sorting, or which may require sorting in
2565   // the future, we keep track of the sections.  If the
2566   // --section-ordering-file option is used to specify the order of
2567   // sections, we need to keep track of sections.
2568   if (this->always_keeps_input_sections_
2569       || have_sections_script
2570       || !this->input_sections_.empty()
2571       || this->may_sort_attached_input_sections()
2572       || this->must_sort_attached_input_sections()
2573       || parameters->options().user_set_Map()
2574       || parameters->target().may_relax()
2575       || layout->is_section_ordering_specified())
2576     {
2577       Input_section isecn(object, shndx, input_section_size, addralign);
2578       /* If section ordering is requested by specifying a ordering file,
2579 	 using --section-ordering-file, match the section name with
2580 	 a pattern.  */
2581       if (parameters->options().section_ordering_file())
2582 	{
2583 	  unsigned int section_order_index =
2584 	    layout->find_section_order_index(std::string(secname));
2585 	  if (section_order_index != 0)
2586 	    {
2587 	      isecn.set_section_order_index(section_order_index);
2588 	      this->set_input_section_order_specified();
2589 	    }
2590 	}
2591       this->input_sections_.push_back(isecn);
2592     }
2593 
2594   return aligned_offset_in_section;
2595 }
2596 
2597 // Add arbitrary data to an output section.
2598 
2599 void
2600 Output_section::add_output_section_data(Output_section_data* posd)
2601 {
2602   Input_section inp(posd);
2603   this->add_output_section_data(&inp);
2604 
2605   if (posd->is_data_size_valid())
2606     {
2607       off_t offset_in_section;
2608       if (this->has_fixed_layout())
2609 	{
2610 	  // For incremental updates, find a chunk of unused space.
2611 	  offset_in_section = this->free_list_.allocate(posd->data_size(),
2612 							posd->addralign(), 0);
2613 	  if (offset_in_section == -1)
2614 	    gold_fallback(_("out of patch space in section %s; "
2615 			    "relink with --incremental-full"),
2616 			  this->name());
2617 	  // Finalize the address and offset now.
2618 	  uint64_t addr = this->address();
2619 	  off_t offset = this->offset();
2620 	  posd->set_address_and_file_offset(addr + offset_in_section,
2621 					    offset + offset_in_section);
2622 	}
2623       else
2624 	{
2625 	  offset_in_section = this->current_data_size_for_child();
2626 	  off_t aligned_offset_in_section = align_address(offset_in_section,
2627 							  posd->addralign());
2628 	  this->set_current_data_size_for_child(aligned_offset_in_section
2629 						+ posd->data_size());
2630 	}
2631     }
2632   else if (this->has_fixed_layout())
2633     {
2634       // For incremental updates, arrange for the data to have a fixed layout.
2635       // This will mean that additions to the data must be allocated from
2636       // free space within the containing output section.
2637       uint64_t addr = this->address();
2638       posd->set_address(addr);
2639       posd->set_file_offset(0);
2640       // FIXME: This should eventually be unreachable.
2641       // gold_unreachable();
2642     }
2643 }
2644 
2645 // Add a relaxed input section.
2646 
2647 void
2648 Output_section::add_relaxed_input_section(Layout* layout,
2649 					  Output_relaxed_input_section* poris,
2650 					  const std::string& name)
2651 {
2652   Input_section inp(poris);
2653 
2654   // If the --section-ordering-file option is used to specify the order of
2655   // sections, we need to keep track of sections.
2656   if (layout->is_section_ordering_specified())
2657     {
2658       unsigned int section_order_index =
2659 	layout->find_section_order_index(name);
2660       if (section_order_index != 0)
2661 	{
2662 	  inp.set_section_order_index(section_order_index);
2663 	  this->set_input_section_order_specified();
2664 	}
2665     }
2666 
2667   this->add_output_section_data(&inp);
2668   if (this->lookup_maps_->is_valid())
2669     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2670 						  poris->shndx(), poris);
2671 
2672   // For a relaxed section, we use the current data size.  Linker scripts
2673   // get all the input sections, including relaxed one from an output
2674   // section and add them back to the same output section to compute the
2675   // output section size.  If we do not account for sizes of relaxed input
2676   // sections, an output section would be incorrectly sized.
2677   off_t offset_in_section = this->current_data_size_for_child();
2678   off_t aligned_offset_in_section = align_address(offset_in_section,
2679 						  poris->addralign());
2680   this->set_current_data_size_for_child(aligned_offset_in_section
2681 					+ poris->current_data_size());
2682 }
2683 
2684 // Add arbitrary data to an output section by Input_section.
2685 
2686 void
2687 Output_section::add_output_section_data(Input_section* inp)
2688 {
2689   if (this->input_sections_.empty())
2690     this->first_input_offset_ = this->current_data_size_for_child();
2691 
2692   this->input_sections_.push_back(*inp);
2693 
2694   uint64_t addralign = inp->addralign();
2695   if (addralign > this->addralign_)
2696     this->addralign_ = addralign;
2697 
2698   inp->set_output_section(this);
2699 }
2700 
2701 // Add a merge section to an output section.
2702 
2703 void
2704 Output_section::add_output_merge_section(Output_section_data* posd,
2705 					 bool is_string, uint64_t entsize)
2706 {
2707   Input_section inp(posd, is_string, entsize);
2708   this->add_output_section_data(&inp);
2709 }
2710 
2711 // Add an input section to a SHF_MERGE section.
2712 
2713 bool
2714 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2715 					uint64_t flags, uint64_t entsize,
2716 					uint64_t addralign,
2717 					bool keeps_input_sections)
2718 {
2719   // We cannot merge sections with entsize == 0.
2720   if (entsize == 0)
2721     return false;
2722 
2723   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2724 
2725   // We cannot restore merged input section states.
2726   gold_assert(this->checkpoint_ == NULL);
2727 
2728   // Look up merge sections by required properties.
2729   // Currently, we only invalidate the lookup maps in script processing
2730   // and relaxation.  We should not have done either when we reach here.
2731   // So we assume that the lookup maps are valid to simply code.
2732   gold_assert(this->lookup_maps_->is_valid());
2733   Merge_section_properties msp(is_string, entsize, addralign);
2734   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2735   bool is_new = false;
2736   if (pomb != NULL)
2737     {
2738       gold_assert(pomb->is_string() == is_string
2739 		  && pomb->entsize() == entsize
2740 		  && pomb->addralign() == addralign);
2741     }
2742   else
2743     {
2744       // Create a new Output_merge_data or Output_merge_string_data.
2745       if (!is_string)
2746 	pomb = new Output_merge_data(entsize, addralign);
2747       else
2748 	{
2749 	  switch (entsize)
2750 	    {
2751 	    case 1:
2752 	      pomb = new Output_merge_string<char>(addralign);
2753 	      break;
2754 	    case 2:
2755 	      pomb = new Output_merge_string<uint16_t>(addralign);
2756 	      break;
2757 	    case 4:
2758 	      pomb = new Output_merge_string<uint32_t>(addralign);
2759 	      break;
2760 	    default:
2761 	      return false;
2762 	    }
2763 	}
2764       // If we need to do script processing or relaxation, we need to keep
2765       // the original input sections to rebuild the fast lookup maps.
2766       if (keeps_input_sections)
2767 	pomb->set_keeps_input_sections();
2768       is_new = true;
2769     }
2770 
2771   if (pomb->add_input_section(object, shndx))
2772     {
2773       // Add new merge section to this output section and link merge
2774       // section properties to new merge section in map.
2775       if (is_new)
2776 	{
2777 	  this->add_output_merge_section(pomb, is_string, entsize);
2778 	  this->lookup_maps_->add_merge_section(msp, pomb);
2779 	}
2780 
2781       return true;
2782     }
2783   else
2784     {
2785       // If add_input_section failed, delete new merge section to avoid
2786       // exporting empty merge sections in Output_section::get_input_section.
2787       if (is_new)
2788 	delete pomb;
2789       return false;
2790     }
2791 }
2792 
2793 // Build a relaxation map to speed up relaxation of existing input sections.
2794 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2795 
2796 void
2797 Output_section::build_relaxation_map(
2798   const Input_section_list& input_sections,
2799   size_t limit,
2800   Relaxation_map* relaxation_map) const
2801 {
2802   for (size_t i = 0; i < limit; ++i)
2803     {
2804       const Input_section& is(input_sections[i]);
2805       if (is.is_input_section() || is.is_relaxed_input_section())
2806 	{
2807 	  Section_id sid(is.relobj(), is.shndx());
2808 	  (*relaxation_map)[sid] = i;
2809 	}
2810     }
2811 }
2812 
2813 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2814 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2815 // indices of INPUT_SECTIONS.
2816 
2817 void
2818 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2819   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2820   const Relaxation_map& map,
2821   Input_section_list* input_sections)
2822 {
2823   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2824     {
2825       Output_relaxed_input_section* poris = relaxed_sections[i];
2826       Section_id sid(poris->relobj(), poris->shndx());
2827       Relaxation_map::const_iterator p = map.find(sid);
2828       gold_assert(p != map.end());
2829       gold_assert((*input_sections)[p->second].is_input_section());
2830 
2831       // Remember section order index of original input section
2832       // if it is set.  Copy it to the relaxed input section.
2833       unsigned int soi =
2834 	(*input_sections)[p->second].section_order_index();
2835       (*input_sections)[p->second] = Input_section(poris);
2836       (*input_sections)[p->second].set_section_order_index(soi);
2837     }
2838 }
2839 
2840 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2841 // is a vector of pointers to Output_relaxed_input_section or its derived
2842 // classes.  The relaxed sections must correspond to existing input sections.
2843 
2844 void
2845 Output_section::convert_input_sections_to_relaxed_sections(
2846   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2847 {
2848   gold_assert(parameters->target().may_relax());
2849 
2850   // We want to make sure that restore_states does not undo the effect of
2851   // this.  If there is no checkpoint active, just search the current
2852   // input section list and replace the sections there.  If there is
2853   // a checkpoint, also replace the sections there.
2854 
2855   // By default, we look at the whole list.
2856   size_t limit = this->input_sections_.size();
2857 
2858   if (this->checkpoint_ != NULL)
2859     {
2860       // Replace input sections with relaxed input section in the saved
2861       // copy of the input section list.
2862       if (this->checkpoint_->input_sections_saved())
2863 	{
2864 	  Relaxation_map map;
2865 	  this->build_relaxation_map(
2866 		    *(this->checkpoint_->input_sections()),
2867 		    this->checkpoint_->input_sections()->size(),
2868 		    &map);
2869 	  this->convert_input_sections_in_list_to_relaxed_sections(
2870 		    relaxed_sections,
2871 		    map,
2872 		    this->checkpoint_->input_sections());
2873 	}
2874       else
2875 	{
2876 	  // We have not copied the input section list yet.  Instead, just
2877 	  // look at the portion that would be saved.
2878 	  limit = this->checkpoint_->input_sections_size();
2879 	}
2880     }
2881 
2882   // Convert input sections in input_section_list.
2883   Relaxation_map map;
2884   this->build_relaxation_map(this->input_sections_, limit, &map);
2885   this->convert_input_sections_in_list_to_relaxed_sections(
2886 	    relaxed_sections,
2887 	    map,
2888 	    &this->input_sections_);
2889 
2890   // Update fast look-up map.
2891   if (this->lookup_maps_->is_valid())
2892     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2893       {
2894 	Output_relaxed_input_section* poris = relaxed_sections[i];
2895 	this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2896 						      poris->shndx(), poris);
2897       }
2898 }
2899 
2900 // Update the output section flags based on input section flags.
2901 
2902 void
2903 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2904 {
2905   // If we created the section with SHF_ALLOC clear, we set the
2906   // address.  If we are now setting the SHF_ALLOC flag, we need to
2907   // undo that.
2908   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2909       && (flags & elfcpp::SHF_ALLOC) != 0)
2910     this->mark_address_invalid();
2911 
2912   this->flags_ |= (flags
2913 		   & (elfcpp::SHF_WRITE
2914 		      | elfcpp::SHF_ALLOC
2915 		      | elfcpp::SHF_EXECINSTR));
2916 
2917   if ((flags & elfcpp::SHF_MERGE) == 0)
2918     this->flags_ &=~ elfcpp::SHF_MERGE;
2919   else
2920     {
2921       if (this->current_data_size_for_child() == 0)
2922 	this->flags_ |= elfcpp::SHF_MERGE;
2923     }
2924 
2925   if ((flags & elfcpp::SHF_STRINGS) == 0)
2926     this->flags_ &=~ elfcpp::SHF_STRINGS;
2927   else
2928     {
2929       if (this->current_data_size_for_child() == 0)
2930 	this->flags_ |= elfcpp::SHF_STRINGS;
2931     }
2932 }
2933 
2934 // Find the merge section into which an input section with index SHNDX in
2935 // OBJECT has been added.  Return NULL if none found.
2936 
2937 const Output_section_data*
2938 Output_section::find_merge_section(const Relobj* object,
2939 				   unsigned int shndx) const
2940 {
2941   return object->find_merge_section(shndx);
2942 }
2943 
2944 // Build the lookup maps for relaxed sections.  This needs
2945 // to be declared as a const method so that it is callable with a const
2946 // Output_section pointer.  The method only updates states of the maps.
2947 
2948 void
2949 Output_section::build_lookup_maps() const
2950 {
2951   this->lookup_maps_->clear();
2952   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2953        p != this->input_sections_.end();
2954        ++p)
2955     {
2956       if (p->is_relaxed_input_section())
2957 	{
2958 	  Output_relaxed_input_section* poris = p->relaxed_input_section();
2959 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2960 							poris->shndx(), poris);
2961 	}
2962     }
2963 }
2964 
2965 // Find an relaxed input section corresponding to an input section
2966 // in OBJECT with index SHNDX.
2967 
2968 const Output_relaxed_input_section*
2969 Output_section::find_relaxed_input_section(const Relobj* object,
2970 					   unsigned int shndx) const
2971 {
2972   if (!this->lookup_maps_->is_valid())
2973     this->build_lookup_maps();
2974   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2975 }
2976 
2977 // Given an address OFFSET relative to the start of input section
2978 // SHNDX in OBJECT, return whether this address is being included in
2979 // the final link.  This should only be called if SHNDX in OBJECT has
2980 // a special mapping.
2981 
2982 bool
2983 Output_section::is_input_address_mapped(const Relobj* object,
2984 					unsigned int shndx,
2985 					off_t offset) const
2986 {
2987   // Look at the Output_section_data_maps first.
2988   const Output_section_data* posd = this->find_merge_section(object, shndx);
2989   if (posd == NULL)
2990     posd = this->find_relaxed_input_section(object, shndx);
2991 
2992   if (posd != NULL)
2993     {
2994       section_offset_type output_offset;
2995       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2996       // By default we assume that the address is mapped. See comment at the
2997       // end.
2998       if (!found)
2999         return true;
3000       return output_offset != -1;
3001     }
3002 
3003   // Fall back to the slow look-up.
3004   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3005        p != this->input_sections_.end();
3006        ++p)
3007     {
3008       section_offset_type output_offset;
3009       if (p->output_offset(object, shndx, offset, &output_offset))
3010 	return output_offset != -1;
3011     }
3012 
3013   // By default we assume that the address is mapped.  This should
3014   // only be called after we have passed all sections to Layout.  At
3015   // that point we should know what we are discarding.
3016   return true;
3017 }
3018 
3019 // Given an address OFFSET relative to the start of input section
3020 // SHNDX in object OBJECT, return the output offset relative to the
3021 // start of the input section in the output section.  This should only
3022 // be called if SHNDX in OBJECT has a special mapping.
3023 
3024 section_offset_type
3025 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3026 			      section_offset_type offset) const
3027 {
3028   // This can only be called meaningfully when we know the data size
3029   // of this.
3030   gold_assert(this->is_data_size_valid());
3031 
3032   // Look at the Output_section_data_maps first.
3033   const Output_section_data* posd = this->find_merge_section(object, shndx);
3034   if (posd == NULL)
3035     posd = this->find_relaxed_input_section(object, shndx);
3036   if (posd != NULL)
3037     {
3038       section_offset_type output_offset;
3039       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3040       gold_assert(found);
3041       return output_offset;
3042     }
3043 
3044   // Fall back to the slow look-up.
3045   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3046        p != this->input_sections_.end();
3047        ++p)
3048     {
3049       section_offset_type output_offset;
3050       if (p->output_offset(object, shndx, offset, &output_offset))
3051 	return output_offset;
3052     }
3053   gold_unreachable();
3054 }
3055 
3056 // Return the output virtual address of OFFSET relative to the start
3057 // of input section SHNDX in object OBJECT.
3058 
3059 uint64_t
3060 Output_section::output_address(const Relobj* object, unsigned int shndx,
3061 			       off_t offset) const
3062 {
3063   uint64_t addr = this->address() + this->first_input_offset_;
3064 
3065   // Look at the Output_section_data_maps first.
3066   const Output_section_data* posd = this->find_merge_section(object, shndx);
3067   if (posd == NULL)
3068     posd = this->find_relaxed_input_section(object, shndx);
3069   if (posd != NULL && posd->is_address_valid())
3070     {
3071       section_offset_type output_offset;
3072       bool found = posd->output_offset(object, shndx, offset, &output_offset);
3073       gold_assert(found);
3074       return posd->address() + output_offset;
3075     }
3076 
3077   // Fall back to the slow look-up.
3078   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3079        p != this->input_sections_.end();
3080        ++p)
3081     {
3082       addr = align_address(addr, p->addralign());
3083       section_offset_type output_offset;
3084       if (p->output_offset(object, shndx, offset, &output_offset))
3085 	{
3086 	  if (output_offset == -1)
3087 	    return -1ULL;
3088 	  return addr + output_offset;
3089 	}
3090       addr += p->data_size();
3091     }
3092 
3093   // If we get here, it means that we don't know the mapping for this
3094   // input section.  This might happen in principle if
3095   // add_input_section were called before add_output_section_data.
3096   // But it should never actually happen.
3097 
3098   gold_unreachable();
3099 }
3100 
3101 // Find the output address of the start of the merged section for
3102 // input section SHNDX in object OBJECT.
3103 
3104 bool
3105 Output_section::find_starting_output_address(const Relobj* object,
3106 					     unsigned int shndx,
3107 					     uint64_t* paddr) const
3108 {
3109   const Output_section_data* data = this->find_merge_section(object, shndx);
3110   if (data == NULL)
3111     return false;
3112 
3113   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3114   // Looking up the merge section map does not always work as we sometimes
3115   // find a merge section without its address set.
3116   uint64_t addr = this->address() + this->first_input_offset_;
3117   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3118        p != this->input_sections_.end();
3119        ++p)
3120     {
3121       addr = align_address(addr, p->addralign());
3122 
3123       // It would be nice if we could use the existing output_offset
3124       // method to get the output offset of input offset 0.
3125       // Unfortunately we don't know for sure that input offset 0 is
3126       // mapped at all.
3127       if (!p->is_input_section() && p->output_section_data() == data)
3128 	{
3129 	  *paddr = addr;
3130 	  return true;
3131 	}
3132 
3133       addr += p->data_size();
3134     }
3135 
3136   // We couldn't find a merge output section for this input section.
3137   return false;
3138 }
3139 
3140 // Update the data size of an Output_section.
3141 
3142 void
3143 Output_section::update_data_size()
3144 {
3145   if (this->input_sections_.empty())
3146       return;
3147 
3148   if (this->must_sort_attached_input_sections()
3149       || this->input_section_order_specified())
3150     this->sort_attached_input_sections();
3151 
3152   off_t off = this->first_input_offset_;
3153   for (Input_section_list::iterator p = this->input_sections_.begin();
3154        p != this->input_sections_.end();
3155        ++p)
3156     {
3157       off = align_address(off, p->addralign());
3158       off += p->current_data_size();
3159     }
3160 
3161   this->set_current_data_size_for_child(off);
3162 }
3163 
3164 // Set the data size of an Output_section.  This is where we handle
3165 // setting the addresses of any Output_section_data objects.
3166 
3167 void
3168 Output_section::set_final_data_size()
3169 {
3170   off_t data_size;
3171 
3172   if (this->input_sections_.empty())
3173     data_size = this->current_data_size_for_child();
3174   else
3175     {
3176       if (this->must_sort_attached_input_sections()
3177 	  || this->input_section_order_specified())
3178 	this->sort_attached_input_sections();
3179 
3180       uint64_t address = this->address();
3181       off_t startoff = this->offset();
3182       off_t off = this->first_input_offset_;
3183       for (Input_section_list::iterator p = this->input_sections_.begin();
3184 	   p != this->input_sections_.end();
3185 	   ++p)
3186 	{
3187 	  off = align_address(off, p->addralign());
3188 	  p->set_address_and_file_offset(address + off, startoff + off,
3189 					 startoff);
3190 	  off += p->data_size();
3191 	}
3192       data_size = off;
3193     }
3194 
3195   // For full incremental links, we want to allocate some patch space
3196   // in most sections for subsequent incremental updates.
3197   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3198     {
3199       double pct = parameters->options().incremental_patch();
3200       size_t extra = static_cast<size_t>(data_size * pct);
3201       if (this->free_space_fill_ != NULL
3202 	  && this->free_space_fill_->minimum_hole_size() > extra)
3203 	extra = this->free_space_fill_->minimum_hole_size();
3204       off_t new_size = align_address(data_size + extra, this->addralign());
3205       this->patch_space_ = new_size - data_size;
3206       gold_debug(DEBUG_INCREMENTAL,
3207 		 "set_final_data_size: %08lx + %08lx: section %s",
3208 		 static_cast<long>(data_size),
3209 		 static_cast<long>(this->patch_space_),
3210 		 this->name());
3211       data_size = new_size;
3212     }
3213 
3214   this->set_data_size(data_size);
3215 }
3216 
3217 // Reset the address and file offset.
3218 
3219 void
3220 Output_section::do_reset_address_and_file_offset()
3221 {
3222   // An unallocated section has no address.  Forcing this means that
3223   // we don't need special treatment for symbols defined in debug
3224   // sections.  We do the same in the constructor.  This does not
3225   // apply to NOLOAD sections though.
3226   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3227      this->set_address(0);
3228 
3229   for (Input_section_list::iterator p = this->input_sections_.begin();
3230        p != this->input_sections_.end();
3231        ++p)
3232     p->reset_address_and_file_offset();
3233 
3234   // Remove any patch space that was added in set_final_data_size.
3235   if (this->patch_space_ > 0)
3236     {
3237       this->set_current_data_size_for_child(this->current_data_size_for_child()
3238 					    - this->patch_space_);
3239       this->patch_space_ = 0;
3240     }
3241 }
3242 
3243 // Return true if address and file offset have the values after reset.
3244 
3245 bool
3246 Output_section::do_address_and_file_offset_have_reset_values() const
3247 {
3248   if (this->is_offset_valid())
3249     return false;
3250 
3251   // An unallocated section has address 0 after its construction or a reset.
3252   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3253     return this->is_address_valid() && this->address() == 0;
3254   else
3255     return !this->is_address_valid();
3256 }
3257 
3258 // Set the TLS offset.  Called only for SHT_TLS sections.
3259 
3260 void
3261 Output_section::do_set_tls_offset(uint64_t tls_base)
3262 {
3263   this->tls_offset_ = this->address() - tls_base;
3264 }
3265 
3266 // In a few cases we need to sort the input sections attached to an
3267 // output section.  This is used to implement the type of constructor
3268 // priority ordering implemented by the GNU linker, in which the
3269 // priority becomes part of the section name and the sections are
3270 // sorted by name.  We only do this for an output section if we see an
3271 // attached input section matching ".ctors.*", ".dtors.*",
3272 // ".init_array.*" or ".fini_array.*".
3273 
3274 class Output_section::Input_section_sort_entry
3275 {
3276  public:
3277   Input_section_sort_entry()
3278     : input_section_(), index_(-1U), section_name_()
3279   { }
3280 
3281   Input_section_sort_entry(const Input_section& input_section,
3282 			   unsigned int index,
3283 			   bool must_sort_attached_input_sections,
3284 			   const char* output_section_name)
3285     : input_section_(input_section), index_(index), section_name_()
3286   {
3287     if ((input_section.is_input_section()
3288 	 || input_section.is_relaxed_input_section())
3289 	&& must_sort_attached_input_sections)
3290       {
3291 	// This is only called single-threaded from Layout::finalize,
3292 	// so it is OK to lock.  Unfortunately we have no way to pass
3293 	// in a Task token.
3294 	const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3295 	Object* obj = (input_section.is_input_section()
3296 		       ? input_section.relobj()
3297 		       : input_section.relaxed_input_section()->relobj());
3298 	Task_lock_obj<Object> tl(dummy_task, obj);
3299 
3300 	// This is a slow operation, which should be cached in
3301 	// Layout::layout if this becomes a speed problem.
3302 	this->section_name_ = obj->section_name(input_section.shndx());
3303       }
3304     else if (input_section.is_output_section_data()
3305     	     && must_sort_attached_input_sections)
3306       {
3307 	// For linker-generated sections, use the output section name.
3308 	this->section_name_.assign(output_section_name);
3309       }
3310   }
3311 
3312   // Return the Input_section.
3313   const Input_section&
3314   input_section() const
3315   {
3316     gold_assert(this->index_ != -1U);
3317     return this->input_section_;
3318   }
3319 
3320   // The index of this entry in the original list.  This is used to
3321   // make the sort stable.
3322   unsigned int
3323   index() const
3324   {
3325     gold_assert(this->index_ != -1U);
3326     return this->index_;
3327   }
3328 
3329   // The section name.
3330   const std::string&
3331   section_name() const
3332   {
3333     return this->section_name_;
3334   }
3335 
3336   // Return true if the section name has a priority.  This is assumed
3337   // to be true if it has a dot after the initial dot.
3338   bool
3339   has_priority() const
3340   {
3341     return this->section_name_.find('.', 1) != std::string::npos;
3342   }
3343 
3344   // Return the priority.  Believe it or not, gcc encodes the priority
3345   // differently for .ctors/.dtors and .init_array/.fini_array
3346   // sections.
3347   unsigned int
3348   get_priority() const
3349   {
3350     bool is_ctors;
3351     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3352 	|| is_prefix_of(".dtors.", this->section_name_.c_str()))
3353       is_ctors = true;
3354     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3355 	     || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3356       is_ctors = false;
3357     else
3358       return 0;
3359     char* end;
3360     unsigned long prio = strtoul((this->section_name_.c_str()
3361 				  + (is_ctors ? 7 : 12)),
3362 				 &end, 10);
3363     if (*end != '\0')
3364       return 0;
3365     else if (is_ctors)
3366       return 65535 - prio;
3367     else
3368       return prio;
3369   }
3370 
3371   // Return true if this an input file whose base name matches
3372   // FILE_NAME.  The base name must have an extension of ".o", and
3373   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3374   // This is to match crtbegin.o as well as crtbeginS.o without
3375   // getting confused by other possibilities.  Overall matching the
3376   // file name this way is a dreadful hack, but the GNU linker does it
3377   // in order to better support gcc, and we need to be compatible.
3378   bool
3379   match_file_name(const char* file_name) const
3380   {
3381     if (this->input_section_.is_output_section_data())
3382       return false;
3383     return Layout::match_file_name(this->input_section_.relobj(), file_name);
3384   }
3385 
3386   // Returns 1 if THIS should appear before S in section order, -1 if S
3387   // appears before THIS and 0 if they are not comparable.
3388   int
3389   compare_section_ordering(const Input_section_sort_entry& s) const
3390   {
3391     unsigned int this_secn_index = this->input_section_.section_order_index();
3392     unsigned int s_secn_index = s.input_section().section_order_index();
3393     if (this_secn_index > 0 && s_secn_index > 0)
3394       {
3395 	if (this_secn_index < s_secn_index)
3396 	  return 1;
3397 	else if (this_secn_index > s_secn_index)
3398 	  return -1;
3399       }
3400     return 0;
3401   }
3402 
3403  private:
3404   // The Input_section we are sorting.
3405   Input_section input_section_;
3406   // The index of this Input_section in the original list.
3407   unsigned int index_;
3408   // The section name if there is one.
3409   std::string section_name_;
3410 };
3411 
3412 // Return true if S1 should come before S2 in the output section.
3413 
3414 bool
3415 Output_section::Input_section_sort_compare::operator()(
3416     const Output_section::Input_section_sort_entry& s1,
3417     const Output_section::Input_section_sort_entry& s2) const
3418 {
3419   // crtbegin.o must come first.
3420   bool s1_begin = s1.match_file_name("crtbegin");
3421   bool s2_begin = s2.match_file_name("crtbegin");
3422   if (s1_begin || s2_begin)
3423     {
3424       if (!s1_begin)
3425 	return false;
3426       if (!s2_begin)
3427 	return true;
3428       return s1.index() < s2.index();
3429     }
3430 
3431   // crtend.o must come last.
3432   bool s1_end = s1.match_file_name("crtend");
3433   bool s2_end = s2.match_file_name("crtend");
3434   if (s1_end || s2_end)
3435     {
3436       if (!s1_end)
3437 	return true;
3438       if (!s2_end)
3439 	return false;
3440       return s1.index() < s2.index();
3441     }
3442 
3443   // A section with a priority follows a section without a priority.
3444   bool s1_has_priority = s1.has_priority();
3445   bool s2_has_priority = s2.has_priority();
3446   if (s1_has_priority && !s2_has_priority)
3447     return false;
3448   if (!s1_has_priority && s2_has_priority)
3449     return true;
3450 
3451   // Check if a section order exists for these sections through a section
3452   // ordering file.  If sequence_num is 0, an order does not exist.
3453   int sequence_num = s1.compare_section_ordering(s2);
3454   if (sequence_num != 0)
3455     return sequence_num == 1;
3456 
3457   // Otherwise we sort by name.
3458   int compare = s1.section_name().compare(s2.section_name());
3459   if (compare != 0)
3460     return compare < 0;
3461 
3462   // Otherwise we keep the input order.
3463   return s1.index() < s2.index();
3464 }
3465 
3466 // Return true if S1 should come before S2 in an .init_array or .fini_array
3467 // output section.
3468 
3469 bool
3470 Output_section::Input_section_sort_init_fini_compare::operator()(
3471     const Output_section::Input_section_sort_entry& s1,
3472     const Output_section::Input_section_sort_entry& s2) const
3473 {
3474   // A section without a priority follows a section with a priority.
3475   // This is the reverse of .ctors and .dtors sections.
3476   bool s1_has_priority = s1.has_priority();
3477   bool s2_has_priority = s2.has_priority();
3478   if (s1_has_priority && !s2_has_priority)
3479     return true;
3480   if (!s1_has_priority && s2_has_priority)
3481     return false;
3482 
3483   // .ctors and .dtors sections without priority come after
3484   // .init_array and .fini_array sections without priority.
3485   if (!s1_has_priority
3486       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3487       && s1.section_name() != s2.section_name())
3488     return false;
3489   if (!s2_has_priority
3490       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3491       && s2.section_name() != s1.section_name())
3492     return true;
3493 
3494   // Sort by priority if we can.
3495   if (s1_has_priority)
3496     {
3497       unsigned int s1_prio = s1.get_priority();
3498       unsigned int s2_prio = s2.get_priority();
3499       if (s1_prio < s2_prio)
3500 	return true;
3501       else if (s1_prio > s2_prio)
3502 	return false;
3503     }
3504 
3505   // Check if a section order exists for these sections through a section
3506   // ordering file.  If sequence_num is 0, an order does not exist.
3507   int sequence_num = s1.compare_section_ordering(s2);
3508   if (sequence_num != 0)
3509     return sequence_num == 1;
3510 
3511   // Otherwise we sort by name.
3512   int compare = s1.section_name().compare(s2.section_name());
3513   if (compare != 0)
3514     return compare < 0;
3515 
3516   // Otherwise we keep the input order.
3517   return s1.index() < s2.index();
3518 }
3519 
3520 // Return true if S1 should come before S2.  Sections that do not match
3521 // any pattern in the section ordering file are placed ahead of the sections
3522 // that match some pattern.
3523 
3524 bool
3525 Output_section::Input_section_sort_section_order_index_compare::operator()(
3526     const Output_section::Input_section_sort_entry& s1,
3527     const Output_section::Input_section_sort_entry& s2) const
3528 {
3529   unsigned int s1_secn_index = s1.input_section().section_order_index();
3530   unsigned int s2_secn_index = s2.input_section().section_order_index();
3531 
3532   // Keep input order if section ordering cannot determine order.
3533   if (s1_secn_index == s2_secn_index)
3534     return s1.index() < s2.index();
3535 
3536   return s1_secn_index < s2_secn_index;
3537 }
3538 
3539 // Return true if S1 should come before S2.  This is the sort comparison
3540 // function for .text to sort sections with prefixes
3541 // .text.{unlikely,exit,startup,hot} before other sections.
3542 
3543 bool
3544 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3545   ::operator()(
3546     const Output_section::Input_section_sort_entry& s1,
3547     const Output_section::Input_section_sort_entry& s2) const
3548 {
3549   // Some input section names have special ordering requirements.
3550   const char *s1_section_name = s1.section_name().c_str();
3551   const char *s2_section_name = s2.section_name().c_str();
3552   int o1 = Layout::special_ordering_of_input_section(s1_section_name);
3553   int o2 = Layout::special_ordering_of_input_section(s2_section_name);
3554   if (o1 != o2)
3555     {
3556       if (o1 < 0)
3557 	return false;
3558       else if (o2 < 0)
3559 	return true;
3560       else
3561 	return o1 < o2;
3562     }
3563   else if (is_prefix_of(".text.sorted", s1_section_name))
3564     return strcmp(s1_section_name, s2_section_name) <= 0;
3565 
3566   // Keep input order otherwise.
3567   return s1.index() < s2.index();
3568 }
3569 
3570 // Return true if S1 should come before S2.  This is the sort comparison
3571 // function for sections to sort them by name.
3572 
3573 bool
3574 Output_section::Input_section_sort_section_name_compare
3575   ::operator()(
3576     const Output_section::Input_section_sort_entry& s1,
3577     const Output_section::Input_section_sort_entry& s2) const
3578 {
3579   // We sort by name.
3580   int compare = s1.section_name().compare(s2.section_name());
3581   if (compare != 0)
3582     return compare < 0;
3583 
3584   // Keep input order otherwise.
3585   return s1.index() < s2.index();
3586 }
3587 
3588 // This updates the section order index of input sections according to the
3589 // the order specified in the mapping from Section id to order index.
3590 
3591 void
3592 Output_section::update_section_layout(
3593   const Section_layout_order* order_map)
3594 {
3595   for (Input_section_list::iterator p = this->input_sections_.begin();
3596        p != this->input_sections_.end();
3597        ++p)
3598     {
3599       if (p->is_input_section()
3600 	  || p->is_relaxed_input_section())
3601 	{
3602 	  Relobj* obj = (p->is_input_section()
3603 			 ? p->relobj()
3604 			 : p->relaxed_input_section()->relobj());
3605 	  unsigned int shndx = p->shndx();
3606 	  Section_layout_order::const_iterator it
3607 	    = order_map->find(Section_id(obj, shndx));
3608 	  if (it == order_map->end())
3609 	    continue;
3610 	  unsigned int section_order_index = it->second;
3611 	  if (section_order_index != 0)
3612 	    {
3613 	      p->set_section_order_index(section_order_index);
3614 	      this->set_input_section_order_specified();
3615 	    }
3616 	}
3617     }
3618 }
3619 
3620 // Sort the input sections attached to an output section.
3621 
3622 void
3623 Output_section::sort_attached_input_sections()
3624 {
3625   if (this->attached_input_sections_are_sorted_)
3626     return;
3627 
3628   if (this->checkpoint_ != NULL
3629       && !this->checkpoint_->input_sections_saved())
3630     this->checkpoint_->save_input_sections();
3631 
3632   // The only thing we know about an input section is the object and
3633   // the section index.  We need the section name.  Recomputing this
3634   // is slow but this is an unusual case.  If this becomes a speed
3635   // problem we can cache the names as required in Layout::layout.
3636 
3637   // We start by building a larger vector holding a copy of each
3638   // Input_section, plus its current index in the list and its name.
3639   std::vector<Input_section_sort_entry> sort_list;
3640 
3641   unsigned int i = 0;
3642   for (Input_section_list::iterator p = this->input_sections_.begin();
3643        p != this->input_sections_.end();
3644        ++p, ++i)
3645       sort_list.push_back(Input_section_sort_entry(*p, i,
3646 			    this->must_sort_attached_input_sections(),
3647 			    this->name()));
3648 
3649   // Sort the input sections.
3650   if (this->must_sort_attached_input_sections())
3651     {
3652       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3653 	  || this->type() == elfcpp::SHT_INIT_ARRAY
3654 	  || this->type() == elfcpp::SHT_FINI_ARRAY)
3655 	std::sort(sort_list.begin(), sort_list.end(),
3656 		  Input_section_sort_init_fini_compare());
3657       else if (strcmp(parameters->options().sort_section(), "name") == 0)
3658 	std::sort(sort_list.begin(), sort_list.end(),
3659 		  Input_section_sort_section_name_compare());
3660       else if (strcmp(this->name(), ".text") == 0)
3661 	std::sort(sort_list.begin(), sort_list.end(),
3662 		  Input_section_sort_section_prefix_special_ordering_compare());
3663       else
3664 	std::sort(sort_list.begin(), sort_list.end(),
3665 		  Input_section_sort_compare());
3666     }
3667   else
3668     {
3669       gold_assert(this->input_section_order_specified());
3670       std::sort(sort_list.begin(), sort_list.end(),
3671 		Input_section_sort_section_order_index_compare());
3672     }
3673 
3674   // Copy the sorted input sections back to our list.
3675   this->input_sections_.clear();
3676   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3677        p != sort_list.end();
3678        ++p)
3679     this->input_sections_.push_back(p->input_section());
3680   sort_list.clear();
3681 
3682   // Remember that we sorted the input sections, since we might get
3683   // called again.
3684   this->attached_input_sections_are_sorted_ = true;
3685 }
3686 
3687 // Write the section header to *OSHDR.
3688 
3689 template<int size, bool big_endian>
3690 void
3691 Output_section::write_header(const Layout* layout,
3692 			     const Stringpool* secnamepool,
3693 			     elfcpp::Shdr_write<size, big_endian>* oshdr) const
3694 {
3695   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3696   oshdr->put_sh_type(this->type_);
3697 
3698   elfcpp::Elf_Xword flags = this->flags_;
3699   if (this->info_section_ != NULL && this->info_uses_section_index_)
3700     flags |= elfcpp::SHF_INFO_LINK;
3701   oshdr->put_sh_flags(flags);
3702 
3703   oshdr->put_sh_addr(this->address());
3704   oshdr->put_sh_offset(this->offset());
3705   oshdr->put_sh_size(this->data_size());
3706   if (this->link_section_ != NULL)
3707     oshdr->put_sh_link(this->link_section_->out_shndx());
3708   else if (this->should_link_to_symtab_)
3709     oshdr->put_sh_link(layout->symtab_section_shndx());
3710   else if (this->should_link_to_dynsym_)
3711     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3712   else
3713     oshdr->put_sh_link(this->link_);
3714 
3715   elfcpp::Elf_Word info;
3716   if (this->info_section_ != NULL)
3717     {
3718       if (this->info_uses_section_index_)
3719 	info = this->info_section_->out_shndx();
3720       else
3721 	info = this->info_section_->symtab_index();
3722     }
3723   else if (this->info_symndx_ != NULL)
3724     info = this->info_symndx_->symtab_index();
3725   else
3726     info = this->info_;
3727   oshdr->put_sh_info(info);
3728 
3729   oshdr->put_sh_addralign(this->addralign_);
3730   oshdr->put_sh_entsize(this->entsize_);
3731 }
3732 
3733 // Write out the data.  For input sections the data is written out by
3734 // Object::relocate, but we have to handle Output_section_data objects
3735 // here.
3736 
3737 void
3738 Output_section::do_write(Output_file* of)
3739 {
3740   gold_assert(!this->requires_postprocessing());
3741 
3742   // If the target performs relaxation, we delay filler generation until now.
3743   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3744 
3745   off_t output_section_file_offset = this->offset();
3746   for (Fill_list::iterator p = this->fills_.begin();
3747        p != this->fills_.end();
3748        ++p)
3749     {
3750       std::string fill_data(parameters->target().code_fill(p->length()));
3751       of->write(output_section_file_offset + p->section_offset(),
3752 		fill_data.data(), fill_data.size());
3753     }
3754 
3755   off_t off = this->offset() + this->first_input_offset_;
3756   for (Input_section_list::iterator p = this->input_sections_.begin();
3757        p != this->input_sections_.end();
3758        ++p)
3759     {
3760       off_t aligned_off = align_address(off, p->addralign());
3761       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3762 	{
3763 	  size_t fill_len = aligned_off - off;
3764 	  std::string fill_data(parameters->target().code_fill(fill_len));
3765 	  of->write(off, fill_data.data(), fill_data.size());
3766 	}
3767 
3768       p->write(of);
3769       off = aligned_off + p->data_size();
3770     }
3771 
3772   // For incremental links, fill in unused chunks in debug sections
3773   // with dummy compilation unit headers.
3774   if (this->free_space_fill_ != NULL)
3775     {
3776       for (Free_list::Const_iterator p = this->free_list_.begin();
3777 	   p != this->free_list_.end();
3778 	   ++p)
3779 	{
3780 	  off_t off = p->start_;
3781 	  size_t len = p->end_ - off;
3782 	  this->free_space_fill_->write(of, this->offset() + off, len);
3783 	}
3784       if (this->patch_space_ > 0)
3785 	{
3786 	  off_t off = this->current_data_size_for_child() - this->patch_space_;
3787 	  this->free_space_fill_->write(of, this->offset() + off,
3788 					this->patch_space_);
3789 	}
3790     }
3791 }
3792 
3793 // If a section requires postprocessing, create the buffer to use.
3794 
3795 void
3796 Output_section::create_postprocessing_buffer()
3797 {
3798   gold_assert(this->requires_postprocessing());
3799 
3800   if (this->postprocessing_buffer_ != NULL)
3801     return;
3802 
3803   if (!this->input_sections_.empty())
3804     {
3805       off_t off = this->first_input_offset_;
3806       for (Input_section_list::iterator p = this->input_sections_.begin();
3807 	   p != this->input_sections_.end();
3808 	   ++p)
3809 	{
3810 	  off = align_address(off, p->addralign());
3811 	  p->finalize_data_size();
3812 	  off += p->data_size();
3813 	}
3814       this->set_current_data_size_for_child(off);
3815     }
3816 
3817   off_t buffer_size = this->current_data_size_for_child();
3818   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3819 }
3820 
3821 // Write all the data of an Output_section into the postprocessing
3822 // buffer.  This is used for sections which require postprocessing,
3823 // such as compression.  Input sections are handled by
3824 // Object::Relocate.
3825 
3826 void
3827 Output_section::write_to_postprocessing_buffer()
3828 {
3829   gold_assert(this->requires_postprocessing());
3830 
3831   // If the target performs relaxation, we delay filler generation until now.
3832   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3833 
3834   unsigned char* buffer = this->postprocessing_buffer();
3835   for (Fill_list::iterator p = this->fills_.begin();
3836        p != this->fills_.end();
3837        ++p)
3838     {
3839       std::string fill_data(parameters->target().code_fill(p->length()));
3840       memcpy(buffer + p->section_offset(), fill_data.data(),
3841 	     fill_data.size());
3842     }
3843 
3844   off_t off = this->first_input_offset_;
3845   for (Input_section_list::iterator p = this->input_sections_.begin();
3846        p != this->input_sections_.end();
3847        ++p)
3848     {
3849       off_t aligned_off = align_address(off, p->addralign());
3850       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3851 	{
3852 	  size_t fill_len = aligned_off - off;
3853 	  std::string fill_data(parameters->target().code_fill(fill_len));
3854 	  memcpy(buffer + off, fill_data.data(), fill_data.size());
3855 	}
3856 
3857       p->write_to_buffer(buffer + aligned_off);
3858       off = aligned_off + p->data_size();
3859     }
3860 }
3861 
3862 // Get the input sections for linker script processing.  We leave
3863 // behind the Output_section_data entries.  Note that this may be
3864 // slightly incorrect for merge sections.  We will leave them behind,
3865 // but it is possible that the script says that they should follow
3866 // some other input sections, as in:
3867 //    .rodata { *(.rodata) *(.rodata.cst*) }
3868 // For that matter, we don't handle this correctly:
3869 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3870 // With luck this will never matter.
3871 
3872 uint64_t
3873 Output_section::get_input_sections(
3874     uint64_t address,
3875     const std::string& fill,
3876     std::list<Input_section>* input_sections)
3877 {
3878   if (this->checkpoint_ != NULL
3879       && !this->checkpoint_->input_sections_saved())
3880     this->checkpoint_->save_input_sections();
3881 
3882   // Invalidate fast look-up maps.
3883   this->lookup_maps_->invalidate();
3884 
3885   uint64_t orig_address = address;
3886 
3887   address = align_address(address, this->addralign());
3888 
3889   Input_section_list remaining;
3890   for (Input_section_list::iterator p = this->input_sections_.begin();
3891        p != this->input_sections_.end();
3892        ++p)
3893     {
3894       if (p->is_input_section()
3895 	  || p->is_relaxed_input_section()
3896 	  || p->is_merge_section())
3897 	input_sections->push_back(*p);
3898       else
3899 	{
3900 	  uint64_t aligned_address = align_address(address, p->addralign());
3901 	  if (aligned_address != address && !fill.empty())
3902 	    {
3903 	      section_size_type length =
3904 		convert_to_section_size_type(aligned_address - address);
3905 	      std::string this_fill;
3906 	      this_fill.reserve(length);
3907 	      while (this_fill.length() + fill.length() <= length)
3908 		this_fill += fill;
3909 	      if (this_fill.length() < length)
3910 		this_fill.append(fill, 0, length - this_fill.length());
3911 
3912 	      Output_section_data* posd = new Output_data_const(this_fill, 0);
3913 	      remaining.push_back(Input_section(posd));
3914 	    }
3915 	  address = aligned_address;
3916 
3917 	  remaining.push_back(*p);
3918 
3919 	  p->finalize_data_size();
3920 	  address += p->data_size();
3921 	}
3922     }
3923 
3924   this->input_sections_.swap(remaining);
3925   this->first_input_offset_ = 0;
3926 
3927   uint64_t data_size = address - orig_address;
3928   this->set_current_data_size_for_child(data_size);
3929   return data_size;
3930 }
3931 
3932 // Add a script input section.  SIS is an Output_section::Input_section,
3933 // which can be either a plain input section or a special input section like
3934 // a relaxed input section.  For a special input section, its size must be
3935 // finalized.
3936 
3937 void
3938 Output_section::add_script_input_section(const Input_section& sis)
3939 {
3940   uint64_t data_size = sis.data_size();
3941   uint64_t addralign = sis.addralign();
3942   if (addralign > this->addralign_)
3943     this->addralign_ = addralign;
3944 
3945   off_t offset_in_section = this->current_data_size_for_child();
3946   off_t aligned_offset_in_section = align_address(offset_in_section,
3947 						  addralign);
3948 
3949   this->set_current_data_size_for_child(aligned_offset_in_section
3950 					+ data_size);
3951 
3952   this->input_sections_.push_back(sis);
3953 
3954   // Update fast lookup maps if necessary.
3955   if (this->lookup_maps_->is_valid())
3956     {
3957       if (sis.is_relaxed_input_section())
3958 	{
3959 	  Output_relaxed_input_section* poris = sis.relaxed_input_section();
3960 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3961 							poris->shndx(), poris);
3962 	}
3963     }
3964 }
3965 
3966 // Save states for relaxation.
3967 
3968 void
3969 Output_section::save_states()
3970 {
3971   gold_assert(this->checkpoint_ == NULL);
3972   Checkpoint_output_section* checkpoint =
3973     new Checkpoint_output_section(this->addralign_, this->flags_,
3974 				  this->input_sections_,
3975 				  this->first_input_offset_,
3976 				  this->attached_input_sections_are_sorted_);
3977   this->checkpoint_ = checkpoint;
3978   gold_assert(this->fills_.empty());
3979 }
3980 
3981 void
3982 Output_section::discard_states()
3983 {
3984   gold_assert(this->checkpoint_ != NULL);
3985   delete this->checkpoint_;
3986   this->checkpoint_ = NULL;
3987   gold_assert(this->fills_.empty());
3988 
3989   // Simply invalidate the fast lookup maps since we do not keep
3990   // track of them.
3991   this->lookup_maps_->invalidate();
3992 }
3993 
3994 void
3995 Output_section::restore_states()
3996 {
3997   gold_assert(this->checkpoint_ != NULL);
3998   Checkpoint_output_section* checkpoint = this->checkpoint_;
3999 
4000   this->addralign_ = checkpoint->addralign();
4001   this->flags_ = checkpoint->flags();
4002   this->first_input_offset_ = checkpoint->first_input_offset();
4003 
4004   if (!checkpoint->input_sections_saved())
4005     {
4006       // If we have not copied the input sections, just resize it.
4007       size_t old_size = checkpoint->input_sections_size();
4008       gold_assert(this->input_sections_.size() >= old_size);
4009       this->input_sections_.resize(old_size);
4010     }
4011   else
4012     {
4013       // We need to copy the whole list.  This is not efficient for
4014       // extremely large output with hundreads of thousands of input
4015       // objects.  We may need to re-think how we should pass sections
4016       // to scripts.
4017       this->input_sections_ = *checkpoint->input_sections();
4018     }
4019 
4020   this->attached_input_sections_are_sorted_ =
4021     checkpoint->attached_input_sections_are_sorted();
4022 
4023   // Simply invalidate the fast lookup maps since we do not keep
4024   // track of them.
4025   this->lookup_maps_->invalidate();
4026 }
4027 
4028 // Update the section offsets of input sections in this.  This is required if
4029 // relaxation causes some input sections to change sizes.
4030 
4031 void
4032 Output_section::adjust_section_offsets()
4033 {
4034   if (!this->section_offsets_need_adjustment_)
4035     return;
4036 
4037   off_t off = 0;
4038   for (Input_section_list::iterator p = this->input_sections_.begin();
4039        p != this->input_sections_.end();
4040        ++p)
4041     {
4042       off = align_address(off, p->addralign());
4043       if (p->is_input_section())
4044 	p->relobj()->set_section_offset(p->shndx(), off);
4045       off += p->data_size();
4046     }
4047 
4048   this->section_offsets_need_adjustment_ = false;
4049 }
4050 
4051 // Print to the map file.
4052 
4053 void
4054 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4055 {
4056   mapfile->print_output_section(this);
4057 
4058   for (Input_section_list::const_iterator p = this->input_sections_.begin();
4059        p != this->input_sections_.end();
4060        ++p)
4061     p->print_to_mapfile(mapfile);
4062 }
4063 
4064 // Print stats for merge sections to stderr.
4065 
4066 void
4067 Output_section::print_merge_stats()
4068 {
4069   Input_section_list::iterator p;
4070   for (p = this->input_sections_.begin();
4071        p != this->input_sections_.end();
4072        ++p)
4073     p->print_merge_stats(this->name_);
4074 }
4075 
4076 // Set a fixed layout for the section.  Used for incremental update links.
4077 
4078 void
4079 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4080 				 off_t sh_size, uint64_t sh_addralign)
4081 {
4082   this->addralign_ = sh_addralign;
4083   this->set_current_data_size(sh_size);
4084   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4085     this->set_address(sh_addr);
4086   this->set_file_offset(sh_offset);
4087   this->finalize_data_size();
4088   this->free_list_.init(sh_size, false);
4089   this->has_fixed_layout_ = true;
4090 }
4091 
4092 // Reserve space within the fixed layout for the section.  Used for
4093 // incremental update links.
4094 
4095 void
4096 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4097 {
4098   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4099 }
4100 
4101 // Allocate space from the free list for the section.  Used for
4102 // incremental update links.
4103 
4104 off_t
4105 Output_section::allocate(off_t len, uint64_t addralign)
4106 {
4107   return this->free_list_.allocate(len, addralign, 0);
4108 }
4109 
4110 // Output segment methods.
4111 
4112 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4113   : vaddr_(0),
4114     paddr_(0),
4115     memsz_(0),
4116     max_align_(0),
4117     min_p_align_(0),
4118     offset_(0),
4119     filesz_(0),
4120     type_(type),
4121     flags_(flags),
4122     is_max_align_known_(false),
4123     are_addresses_set_(false),
4124     is_large_data_segment_(false),
4125     is_unique_segment_(false)
4126 {
4127   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4128   // the flags.
4129   if (type == elfcpp::PT_TLS)
4130     this->flags_ = elfcpp::PF_R;
4131 }
4132 
4133 // Add an Output_section to a PT_LOAD Output_segment.
4134 
4135 void
4136 Output_segment::add_output_section_to_load(Layout* layout,
4137 					   Output_section* os,
4138 					   elfcpp::Elf_Word seg_flags)
4139 {
4140   gold_assert(this->type() == elfcpp::PT_LOAD);
4141   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4142   gold_assert(!this->is_max_align_known_);
4143   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4144 
4145   this->update_flags_for_output_section(seg_flags);
4146 
4147   // We don't want to change the ordering if we have a linker script
4148   // with a SECTIONS clause.
4149   Output_section_order order = os->order();
4150   if (layout->script_options()->saw_sections_clause())
4151     order = static_cast<Output_section_order>(0);
4152   else
4153     gold_assert(order != ORDER_INVALID);
4154 
4155   this->output_lists_[order].push_back(os);
4156 }
4157 
4158 // Add an Output_section to a non-PT_LOAD Output_segment.
4159 
4160 void
4161 Output_segment::add_output_section_to_nonload(Output_section* os,
4162 					      elfcpp::Elf_Word seg_flags)
4163 {
4164   gold_assert(this->type() != elfcpp::PT_LOAD);
4165   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4166   gold_assert(!this->is_max_align_known_);
4167 
4168   this->update_flags_for_output_section(seg_flags);
4169 
4170   this->output_lists_[0].push_back(os);
4171 }
4172 
4173 // Remove an Output_section from this segment.  It is an error if it
4174 // is not present.
4175 
4176 void
4177 Output_segment::remove_output_section(Output_section* os)
4178 {
4179   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4180     {
4181       Output_data_list* pdl = &this->output_lists_[i];
4182       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4183 	{
4184 	  if (*p == os)
4185 	    {
4186 	      pdl->erase(p);
4187 	      return;
4188 	    }
4189 	}
4190     }
4191   gold_unreachable();
4192 }
4193 
4194 // Add an Output_data (which need not be an Output_section) to the
4195 // start of a segment.
4196 
4197 void
4198 Output_segment::add_initial_output_data(Output_data* od)
4199 {
4200   gold_assert(!this->is_max_align_known_);
4201   Output_data_list::iterator p = this->output_lists_[0].begin();
4202   this->output_lists_[0].insert(p, od);
4203 }
4204 
4205 // Return true if this segment has any sections which hold actual
4206 // data, rather than being a BSS section.
4207 
4208 bool
4209 Output_segment::has_any_data_sections() const
4210 {
4211   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4212     {
4213       const Output_data_list* pdl = &this->output_lists_[i];
4214       for (Output_data_list::const_iterator p = pdl->begin();
4215 	   p != pdl->end();
4216 	   ++p)
4217 	{
4218 	  if (!(*p)->is_section())
4219 	    return true;
4220 	  if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4221 	    return true;
4222 	}
4223     }
4224   return false;
4225 }
4226 
4227 // Return whether the first data section (not counting TLS sections)
4228 // is a relro section.
4229 
4230 bool
4231 Output_segment::is_first_section_relro() const
4232 {
4233   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4234     {
4235       if (i == static_cast<int>(ORDER_TLS_BSS))
4236 	continue;
4237       const Output_data_list* pdl = &this->output_lists_[i];
4238       if (!pdl->empty())
4239 	{
4240 	  Output_data* p = pdl->front();
4241 	  return p->is_section() && p->output_section()->is_relro();
4242 	}
4243     }
4244   return false;
4245 }
4246 
4247 // Return the maximum alignment of the Output_data in Output_segment.
4248 
4249 uint64_t
4250 Output_segment::maximum_alignment()
4251 {
4252   if (!this->is_max_align_known_)
4253     {
4254       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4255 	{
4256 	  const Output_data_list* pdl = &this->output_lists_[i];
4257 	  uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4258 	  if (addralign > this->max_align_)
4259 	    this->max_align_ = addralign;
4260 	}
4261       this->is_max_align_known_ = true;
4262     }
4263 
4264   return this->max_align_;
4265 }
4266 
4267 // Return the maximum alignment of a list of Output_data.
4268 
4269 uint64_t
4270 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4271 {
4272   uint64_t ret = 0;
4273   for (Output_data_list::const_iterator p = pdl->begin();
4274        p != pdl->end();
4275        ++p)
4276     {
4277       uint64_t addralign = (*p)->addralign();
4278       if (addralign > ret)
4279 	ret = addralign;
4280     }
4281   return ret;
4282 }
4283 
4284 // Return whether this segment has any dynamic relocs.
4285 
4286 bool
4287 Output_segment::has_dynamic_reloc() const
4288 {
4289   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4290     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4291       return true;
4292   return false;
4293 }
4294 
4295 // Return whether this Output_data_list has any dynamic relocs.
4296 
4297 bool
4298 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4299 {
4300   for (Output_data_list::const_iterator p = pdl->begin();
4301        p != pdl->end();
4302        ++p)
4303     if ((*p)->has_dynamic_reloc())
4304       return true;
4305   return false;
4306 }
4307 
4308 // Set the section addresses for an Output_segment.  If RESET is true,
4309 // reset the addresses first.  ADDR is the address and *POFF is the
4310 // file offset.  Set the section indexes starting with *PSHNDX.
4311 // INCREASE_RELRO is the size of the portion of the first non-relro
4312 // section that should be included in the PT_GNU_RELRO segment.
4313 // If this segment has relro sections, and has been aligned for
4314 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4315 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4316 // and *PSHNDX.
4317 
4318 uint64_t
4319 Output_segment::set_section_addresses(const Target* target,
4320 				      Layout* layout, bool reset,
4321 				      uint64_t addr,
4322 				      unsigned int* increase_relro,
4323 				      bool* has_relro,
4324 				      off_t* poff,
4325 				      unsigned int* pshndx)
4326 {
4327   gold_assert(this->type_ == elfcpp::PT_LOAD);
4328 
4329   uint64_t last_relro_pad = 0;
4330   off_t orig_off = *poff;
4331 
4332   bool in_tls = false;
4333 
4334   // If we have relro sections, we need to pad forward now so that the
4335   // relro sections plus INCREASE_RELRO end on an abi page boundary.
4336   if (parameters->options().relro()
4337       && this->is_first_section_relro()
4338       && (!this->are_addresses_set_ || reset))
4339     {
4340       uint64_t relro_size = 0;
4341       off_t off = *poff;
4342       uint64_t max_align = 0;
4343       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4344 	{
4345 	  Output_data_list* pdl = &this->output_lists_[i];
4346 	  Output_data_list::iterator p;
4347 	  for (p = pdl->begin(); p != pdl->end(); ++p)
4348 	    {
4349 	      if (!(*p)->is_section())
4350 		break;
4351 	      uint64_t align = (*p)->addralign();
4352 	      if (align > max_align)
4353 		max_align = align;
4354 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4355 		in_tls = true;
4356 	      else if (in_tls)
4357 		{
4358 		  // Align the first non-TLS section to the alignment
4359 		  // of the TLS segment.
4360 		  align = max_align;
4361 		  in_tls = false;
4362 		}
4363 	      // Ignore the size of the .tbss section.
4364 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4365 		  && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4366 		continue;
4367 	      relro_size = align_address(relro_size, align);
4368 	      if ((*p)->is_address_valid())
4369 		relro_size += (*p)->data_size();
4370 	      else
4371 		{
4372 		  // FIXME: This could be faster.
4373 		  (*p)->set_address_and_file_offset(relro_size,
4374 						    relro_size);
4375 		  relro_size += (*p)->data_size();
4376 		  (*p)->reset_address_and_file_offset();
4377 		}
4378 	    }
4379 	  if (p != pdl->end())
4380 	    break;
4381 	}
4382       relro_size += *increase_relro;
4383       // Pad the total relro size to a multiple of the maximum
4384       // section alignment seen.
4385       uint64_t aligned_size = align_address(relro_size, max_align);
4386       // Note the amount of padding added after the last relro section.
4387       last_relro_pad = aligned_size - relro_size;
4388       *has_relro = true;
4389 
4390       uint64_t page_align = parameters->target().abi_pagesize();
4391 
4392       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4393       uint64_t desired_align = page_align - (aligned_size % page_align);
4394       if (desired_align < off % page_align)
4395 	off += page_align;
4396       off += desired_align - off % page_align;
4397       addr += off - orig_off;
4398       orig_off = off;
4399       *poff = off;
4400     }
4401 
4402   if (!reset && this->are_addresses_set_)
4403     {
4404       gold_assert(this->paddr_ == addr);
4405       addr = this->vaddr_;
4406     }
4407   else
4408     {
4409       this->vaddr_ = addr;
4410       this->paddr_ = addr;
4411       this->are_addresses_set_ = true;
4412     }
4413 
4414   in_tls = false;
4415 
4416   this->offset_ = orig_off;
4417 
4418   off_t off = 0;
4419   off_t foff = *poff;
4420   uint64_t ret = 0;
4421   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4422     {
4423       if (i == static_cast<int>(ORDER_RELRO_LAST))
4424 	{
4425 	  *poff += last_relro_pad;
4426 	  foff += last_relro_pad;
4427 	  addr += last_relro_pad;
4428 	  if (this->output_lists_[i].empty())
4429 	    {
4430 	      // If there is nothing in the ORDER_RELRO_LAST list,
4431 	      // the padding will occur at the end of the relro
4432 	      // segment, and we need to add it to *INCREASE_RELRO.
4433 	      *increase_relro += last_relro_pad;
4434 	    }
4435 	}
4436       addr = this->set_section_list_addresses(layout, reset,
4437 					      &this->output_lists_[i],
4438 					      addr, poff, &foff, pshndx,
4439 					      &in_tls);
4440 
4441       // FOFF tracks the last offset used for the file image,
4442       // and *POFF tracks the last offset used for the memory image.
4443       // When not using a linker script, bss sections should all
4444       // be processed in the ORDER_SMALL_BSS and later buckets.
4445       gold_assert(*poff == foff
4446 		  || i == static_cast<int>(ORDER_TLS_BSS)
4447 		  || i >= static_cast<int>(ORDER_SMALL_BSS)
4448 		  || layout->script_options()->saw_sections_clause());
4449 
4450       this->filesz_ = foff - orig_off;
4451       off = foff;
4452 
4453       ret = addr;
4454     }
4455 
4456   // If the last section was a TLS section, align upward to the
4457   // alignment of the TLS segment, so that the overall size of the TLS
4458   // segment is aligned.
4459   if (in_tls)
4460     {
4461       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4462       *poff = align_address(*poff, segment_align);
4463     }
4464 
4465   this->memsz_ = *poff - orig_off;
4466 
4467   // Ignore the file offset adjustments made by the BSS Output_data
4468   // objects.
4469   *poff = off;
4470 
4471   // If code segments must contain only code, and this code segment is
4472   // page-aligned in the file, then fill it out to a whole page with
4473   // code fill (the tail of the segment will not be within any section).
4474   // Thus the entire code segment can be mapped from the file as whole
4475   // pages and that mapping will contain only valid instructions.
4476   if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4477     {
4478       uint64_t abi_pagesize = target->abi_pagesize();
4479       if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4480 	{
4481 	  size_t fill_size = abi_pagesize - (off % abi_pagesize);
4482 
4483 	  std::string fill_data;
4484 	  if (target->has_code_fill())
4485 	    fill_data = target->code_fill(fill_size);
4486 	  else
4487 	    fill_data.resize(fill_size); // Zero fill.
4488 
4489 	  Output_data_const* fill = new Output_data_const(fill_data, 0);
4490 	  fill->set_address(this->vaddr_ + this->memsz_);
4491 	  fill->set_file_offset(off);
4492 	  layout->add_relax_output(fill);
4493 
4494 	  off += fill_size;
4495 	  gold_assert(off % abi_pagesize == 0);
4496 	  ret += fill_size;
4497 	  gold_assert(ret % abi_pagesize == 0);
4498 
4499 	  gold_assert((uint64_t) this->filesz_ == this->memsz_);
4500 	  this->memsz_ = this->filesz_ += fill_size;
4501 
4502 	  *poff = off;
4503 	}
4504     }
4505 
4506   return ret;
4507 }
4508 
4509 // Set the addresses and file offsets in a list of Output_data
4510 // structures.
4511 
4512 uint64_t
4513 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4514 					   Output_data_list* pdl,
4515 					   uint64_t addr, off_t* poff,
4516 					   off_t* pfoff,
4517 					   unsigned int* pshndx,
4518 					   bool* in_tls)
4519 {
4520   off_t startoff = *poff;
4521   // For incremental updates, we may allocate non-fixed sections from
4522   // free space in the file.  This keeps track of the high-water mark.
4523   off_t maxoff = startoff;
4524 
4525   off_t off = startoff;
4526   off_t foff = *pfoff;
4527   for (Output_data_list::iterator p = pdl->begin();
4528        p != pdl->end();
4529        ++p)
4530     {
4531       bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
4532       bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);
4533 
4534       if (reset)
4535 	(*p)->reset_address_and_file_offset();
4536 
4537       // When doing an incremental update or when using a linker script,
4538       // the section will most likely already have an address.
4539       if (!(*p)->is_address_valid())
4540 	{
4541 	  uint64_t align = (*p)->addralign();
4542 
4543 	  if (is_tls)
4544 	    {
4545 	      // Give the first TLS section the alignment of the
4546 	      // entire TLS segment.  Otherwise the TLS segment as a
4547 	      // whole may be misaligned.
4548 	      if (!*in_tls)
4549 		{
4550 		  Output_segment* tls_segment = layout->tls_segment();
4551 		  gold_assert(tls_segment != NULL);
4552 		  uint64_t segment_align = tls_segment->maximum_alignment();
4553 		  gold_assert(segment_align >= align);
4554 		  align = segment_align;
4555 
4556 		  *in_tls = true;
4557 		}
4558 	    }
4559 	  else
4560 	    {
4561 	      // If this is the first section after the TLS segment,
4562 	      // align it to at least the alignment of the TLS
4563 	      // segment, so that the size of the overall TLS segment
4564 	      // is aligned.
4565 	      if (*in_tls)
4566 		{
4567 		  uint64_t segment_align =
4568 		      layout->tls_segment()->maximum_alignment();
4569 		  if (segment_align > align)
4570 		    align = segment_align;
4571 
4572 		  *in_tls = false;
4573 		}
4574 	    }
4575 
4576 	  if (!parameters->incremental_update())
4577 	    {
4578 	      gold_assert(off == foff || is_bss);
4579 	      off = align_address(off, align);
4580 	      if (is_tls || !is_bss)
4581 		foff = off;
4582 	      (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4583 	    }
4584 	  else
4585 	    {
4586 	      // Incremental update: allocate file space from free list.
4587 	      (*p)->pre_finalize_data_size();
4588 	      off_t current_size = (*p)->current_data_size();
4589 	      off = layout->allocate(current_size, align, startoff);
4590 	      foff = off;
4591 	      if (off == -1)
4592 		{
4593 		  gold_assert((*p)->output_section() != NULL);
4594 		  gold_fallback(_("out of patch space for section %s; "
4595 				  "relink with --incremental-full"),
4596 				(*p)->output_section()->name());
4597 		}
4598 	      (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4599 	      if ((*p)->data_size() > current_size)
4600 		{
4601 		  gold_assert((*p)->output_section() != NULL);
4602 		  gold_fallback(_("%s: section changed size; "
4603 				  "relink with --incremental-full"),
4604 				(*p)->output_section()->name());
4605 		}
4606 	    }
4607 	}
4608       else if (parameters->incremental_update())
4609 	{
4610 	  // For incremental updates, use the fixed offset for the
4611 	  // high-water mark computation.
4612 	  off = (*p)->offset();
4613 	  foff = off;
4614 	}
4615       else
4616 	{
4617 	  // The script may have inserted a skip forward, but it
4618 	  // better not have moved backward.
4619 	  if ((*p)->address() >= addr + (off - startoff))
4620 	    {
4621 	      if (!is_bss && off > foff)
4622 	        gold_warning(_("script places BSS section in the middle "
4623 			       "of a LOAD segment; space will be allocated "
4624 			       "in the file"));
4625 	      off += (*p)->address() - (addr + (off - startoff));
4626 	      if (is_tls || !is_bss)
4627 		foff = off;
4628 	    }
4629 	  else
4630 	    {
4631 	      if (!layout->script_options()->saw_sections_clause())
4632 		gold_unreachable();
4633 	      else
4634 		{
4635 		  Output_section* os = (*p)->output_section();
4636 
4637 		  // Cast to unsigned long long to avoid format warnings.
4638 		  unsigned long long previous_dot =
4639 		    static_cast<unsigned long long>(addr + (off - startoff));
4640 		  unsigned long long dot =
4641 		    static_cast<unsigned long long>((*p)->address());
4642 
4643 		  if (os == NULL)
4644 		    gold_error(_("dot moves backward in linker script "
4645 				 "from 0x%llx to 0x%llx"), previous_dot, dot);
4646 		  else
4647 		    gold_error(_("address of section '%s' moves backward "
4648 				 "from 0x%llx to 0x%llx"),
4649 			       os->name(), previous_dot, dot);
4650 		}
4651 	    }
4652 	  (*p)->set_file_offset(foff);
4653 	  (*p)->finalize_data_size();
4654 	}
4655 
4656       if (parameters->incremental_update())
4657 	gold_debug(DEBUG_INCREMENTAL,
4658 		   "set_section_list_addresses: %08lx %08lx %s",
4659 		   static_cast<long>(off),
4660 		   static_cast<long>((*p)->data_size()),
4661 		   ((*p)->output_section() != NULL
4662 		    ? (*p)->output_section()->name() : "(special)"));
4663 
4664       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4665       // section.  Such a section does not affect the size of a
4666       // PT_LOAD segment.
4667       if (!is_tls || !is_bss)
4668 	off += (*p)->data_size();
4669 
4670       // We don't allocate space in the file for SHT_NOBITS sections,
4671       // unless a script has force-placed one in the middle of a segment.
4672       if (!is_bss)
4673 	foff = off;
4674 
4675       if (off > maxoff)
4676 	maxoff = off;
4677 
4678       if ((*p)->is_section())
4679 	{
4680 	  (*p)->set_out_shndx(*pshndx);
4681 	  ++*pshndx;
4682 	}
4683     }
4684 
4685   *poff = maxoff;
4686   *pfoff = foff;
4687   return addr + (maxoff - startoff);
4688 }
4689 
4690 // For a non-PT_LOAD segment, set the offset from the sections, if
4691 // any.  Add INCREASE to the file size and the memory size.
4692 
4693 void
4694 Output_segment::set_offset(unsigned int increase)
4695 {
4696   gold_assert(this->type_ != elfcpp::PT_LOAD);
4697 
4698   gold_assert(!this->are_addresses_set_);
4699 
4700   // A non-load section only uses output_lists_[0].
4701 
4702   Output_data_list* pdl = &this->output_lists_[0];
4703 
4704   if (pdl->empty())
4705     {
4706       gold_assert(increase == 0);
4707       this->vaddr_ = 0;
4708       this->paddr_ = 0;
4709       this->are_addresses_set_ = true;
4710       this->memsz_ = 0;
4711       this->min_p_align_ = 0;
4712       this->offset_ = 0;
4713       this->filesz_ = 0;
4714       return;
4715     }
4716 
4717   // Find the first and last section by address.
4718   const Output_data* first = NULL;
4719   const Output_data* last_data = NULL;
4720   const Output_data* last_bss = NULL;
4721   for (Output_data_list::const_iterator p = pdl->begin();
4722        p != pdl->end();
4723        ++p)
4724     {
4725       if (first == NULL
4726 	  || (*p)->address() < first->address()
4727 	  || ((*p)->address() == first->address()
4728 	      && (*p)->data_size() < first->data_size()))
4729 	first = *p;
4730       const Output_data** plast;
4731       if ((*p)->is_section()
4732 	  && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4733 	plast = &last_bss;
4734       else
4735 	plast = &last_data;
4736       if (*plast == NULL
4737 	  || (*p)->address() > (*plast)->address()
4738 	  || ((*p)->address() == (*plast)->address()
4739 	      && (*p)->data_size() > (*plast)->data_size()))
4740 	*plast = *p;
4741     }
4742 
4743   this->vaddr_ = first->address();
4744   this->paddr_ = (first->has_load_address()
4745 		  ? first->load_address()
4746 		  : this->vaddr_);
4747   this->are_addresses_set_ = true;
4748   this->offset_ = first->offset();
4749 
4750   if (last_data == NULL)
4751     this->filesz_ = 0;
4752   else
4753     this->filesz_ = (last_data->address()
4754 		     + last_data->data_size()
4755 		     - this->vaddr_);
4756 
4757   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4758   this->memsz_ = (last->address()
4759 		  + last->data_size()
4760 		  - this->vaddr_);
4761 
4762   this->filesz_ += increase;
4763   this->memsz_ += increase;
4764 
4765   // If this is a RELRO segment, verify that the segment ends at a
4766   // page boundary.
4767   if (this->type_ == elfcpp::PT_GNU_RELRO)
4768     {
4769       uint64_t page_align = parameters->target().abi_pagesize();
4770       uint64_t segment_end = this->vaddr_ + this->memsz_;
4771       if (parameters->incremental_update())
4772 	{
4773 	  // The INCREASE_RELRO calculation is bypassed for an incremental
4774 	  // update, so we need to adjust the segment size manually here.
4775 	  segment_end = align_address(segment_end, page_align);
4776 	  this->memsz_ = segment_end - this->vaddr_;
4777 	}
4778       else
4779 	gold_assert(segment_end == align_address(segment_end, page_align));
4780     }
4781 
4782   // If this is a TLS segment, align the memory size.  The code in
4783   // set_section_list ensures that the section after the TLS segment
4784   // is aligned to give us room.
4785   if (this->type_ == elfcpp::PT_TLS)
4786     {
4787       uint64_t segment_align = this->maximum_alignment();
4788       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4789       this->memsz_ = align_address(this->memsz_, segment_align);
4790     }
4791 }
4792 
4793 // Set the TLS offsets of the sections in the PT_TLS segment.
4794 
4795 void
4796 Output_segment::set_tls_offsets()
4797 {
4798   gold_assert(this->type_ == elfcpp::PT_TLS);
4799 
4800   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4801        p != this->output_lists_[0].end();
4802        ++p)
4803     (*p)->set_tls_offset(this->vaddr_);
4804 }
4805 
4806 // Return the first section.
4807 
4808 Output_section*
4809 Output_segment::first_section() const
4810 {
4811   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4812     {
4813       const Output_data_list* pdl = &this->output_lists_[i];
4814       for (Output_data_list::const_iterator p = pdl->begin();
4815 	   p != pdl->end();
4816 	   ++p)
4817 	{
4818 	  if ((*p)->is_section())
4819 	    return (*p)->output_section();
4820 	}
4821     }
4822   return NULL;
4823 }
4824 
4825 // Return the number of Output_sections in an Output_segment.
4826 
4827 unsigned int
4828 Output_segment::output_section_count() const
4829 {
4830   unsigned int ret = 0;
4831   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4832     ret += this->output_section_count_list(&this->output_lists_[i]);
4833   return ret;
4834 }
4835 
4836 // Return the number of Output_sections in an Output_data_list.
4837 
4838 unsigned int
4839 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4840 {
4841   unsigned int count = 0;
4842   for (Output_data_list::const_iterator p = pdl->begin();
4843        p != pdl->end();
4844        ++p)
4845     {
4846       if ((*p)->is_section())
4847 	++count;
4848     }
4849   return count;
4850 }
4851 
4852 // Return the section attached to the list segment with the lowest
4853 // load address.  This is used when handling a PHDRS clause in a
4854 // linker script.
4855 
4856 Output_section*
4857 Output_segment::section_with_lowest_load_address() const
4858 {
4859   Output_section* found = NULL;
4860   uint64_t found_lma = 0;
4861   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4862     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4863 				      &found_lma);
4864   return found;
4865 }
4866 
4867 // Look through a list for a section with a lower load address.
4868 
4869 void
4870 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4871 					    Output_section** found,
4872 					    uint64_t* found_lma) const
4873 {
4874   for (Output_data_list::const_iterator p = pdl->begin();
4875        p != pdl->end();
4876        ++p)
4877     {
4878       if (!(*p)->is_section())
4879 	continue;
4880       Output_section* os = static_cast<Output_section*>(*p);
4881       uint64_t lma = (os->has_load_address()
4882 		      ? os->load_address()
4883 		      : os->address());
4884       if (*found == NULL || lma < *found_lma)
4885 	{
4886 	  *found = os;
4887 	  *found_lma = lma;
4888 	}
4889     }
4890 }
4891 
4892 // Write the segment data into *OPHDR.
4893 
4894 template<int size, bool big_endian>
4895 void
4896 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4897 {
4898   ophdr->put_p_type(this->type_);
4899   ophdr->put_p_offset(this->offset_);
4900   ophdr->put_p_vaddr(this->vaddr_);
4901   ophdr->put_p_paddr(this->paddr_);
4902   ophdr->put_p_filesz(this->filesz_);
4903   ophdr->put_p_memsz(this->memsz_);
4904   ophdr->put_p_flags(this->flags_);
4905   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4906 }
4907 
4908 // Write the section headers into V.
4909 
4910 template<int size, bool big_endian>
4911 unsigned char*
4912 Output_segment::write_section_headers(const Layout* layout,
4913 				      const Stringpool* secnamepool,
4914 				      unsigned char* v,
4915 				      unsigned int* pshndx) const
4916 {
4917   // Every section that is attached to a segment must be attached to a
4918   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4919   // segments.
4920   if (this->type_ != elfcpp::PT_LOAD)
4921     return v;
4922 
4923   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4924     {
4925       const Output_data_list* pdl = &this->output_lists_[i];
4926       v = this->write_section_headers_list<size, big_endian>(layout,
4927 							     secnamepool,
4928 							     pdl,
4929 							     v, pshndx);
4930     }
4931 
4932   return v;
4933 }
4934 
4935 template<int size, bool big_endian>
4936 unsigned char*
4937 Output_segment::write_section_headers_list(const Layout* layout,
4938 					   const Stringpool* secnamepool,
4939 					   const Output_data_list* pdl,
4940 					   unsigned char* v,
4941 					   unsigned int* pshndx) const
4942 {
4943   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4944   for (Output_data_list::const_iterator p = pdl->begin();
4945        p != pdl->end();
4946        ++p)
4947     {
4948       if ((*p)->is_section())
4949 	{
4950 	  const Output_section* ps = static_cast<const Output_section*>(*p);
4951 	  gold_assert(*pshndx == ps->out_shndx());
4952 	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
4953 	  ps->write_header(layout, secnamepool, &oshdr);
4954 	  v += shdr_size;
4955 	  ++*pshndx;
4956 	}
4957     }
4958   return v;
4959 }
4960 
4961 // Print the output sections to the map file.
4962 
4963 void
4964 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4965 {
4966   if (this->type() != elfcpp::PT_LOAD)
4967     return;
4968   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4969     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4970 }
4971 
4972 // Print an output section list to the map file.
4973 
4974 void
4975 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4976 					      const Output_data_list* pdl) const
4977 {
4978   for (Output_data_list::const_iterator p = pdl->begin();
4979        p != pdl->end();
4980        ++p)
4981     (*p)->print_to_mapfile(mapfile);
4982 }
4983 
4984 // Output_file methods.
4985 
4986 Output_file::Output_file(const char* name)
4987   : name_(name),
4988     o_(-1),
4989     file_size_(0),
4990     base_(NULL),
4991     map_is_anonymous_(false),
4992     map_is_allocated_(false),
4993     is_temporary_(false)
4994 {
4995 }
4996 
4997 // Try to open an existing file.  Returns false if the file doesn't
4998 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4999 // NULL, open that file as the base for incremental linking, and
5000 // copy its contents to the new output file.  This routine can
5001 // be called for incremental updates, in which case WRITABLE should
5002 // be true, or by the incremental-dump utility, in which case
5003 // WRITABLE should be false.
5004 
5005 bool
5006 Output_file::open_base_file(const char* base_name, bool writable)
5007 {
5008   // The name "-" means "stdout".
5009   if (strcmp(this->name_, "-") == 0)
5010     return false;
5011 
5012   bool use_base_file = base_name != NULL;
5013   if (!use_base_file)
5014     base_name = this->name_;
5015   else if (strcmp(base_name, this->name_) == 0)
5016     gold_fatal(_("%s: incremental base and output file name are the same"),
5017 	       base_name);
5018 
5019   // Don't bother opening files with a size of zero.
5020   struct stat s;
5021   if (::stat(base_name, &s) != 0)
5022     {
5023       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
5024       return false;
5025     }
5026   if (s.st_size == 0)
5027     {
5028       gold_info(_("%s: incremental base file is empty"), base_name);
5029       return false;
5030     }
5031 
5032   // If we're using a base file, we want to open it read-only.
5033   if (use_base_file)
5034     writable = false;
5035 
5036   int oflags = writable ? O_RDWR : O_RDONLY;
5037   int o = open_descriptor(-1, base_name, oflags, 0);
5038   if (o < 0)
5039     {
5040       gold_info(_("%s: open: %s"), base_name, strerror(errno));
5041       return false;
5042     }
5043 
5044   // If the base file and the output file are different, open a
5045   // new output file and read the contents from the base file into
5046   // the newly-mapped region.
5047   if (use_base_file)
5048     {
5049       this->open(s.st_size);
5050       ssize_t bytes_to_read = s.st_size;
5051       unsigned char* p = this->base_;
5052       while (bytes_to_read > 0)
5053 	{
5054 	  ssize_t len = ::read(o, p, bytes_to_read);
5055 	  if (len < 0)
5056 	    {
5057 	      gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5058 	      return false;
5059 	    }
5060 	  if (len == 0)
5061 	    {
5062 	      gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5063 			base_name,
5064 			static_cast<long long>(s.st_size - bytes_to_read),
5065 			static_cast<long long>(s.st_size));
5066 	      return false;
5067 	    }
5068 	  p += len;
5069 	  bytes_to_read -= len;
5070 	}
5071       ::close(o);
5072       return true;
5073     }
5074 
5075   this->o_ = o;
5076   this->file_size_ = s.st_size;
5077 
5078   if (!this->map_no_anonymous(writable))
5079     {
5080       release_descriptor(o, true);
5081       this->o_ = -1;
5082       this->file_size_ = 0;
5083       return false;
5084     }
5085 
5086   return true;
5087 }
5088 
5089 // Open the output file.
5090 
5091 void
5092 Output_file::open(off_t file_size)
5093 {
5094   this->file_size_ = file_size;
5095 
5096   // Unlink the file first; otherwise the open() may fail if the file
5097   // is busy (e.g. it's an executable that's currently being executed).
5098   //
5099   // However, the linker may be part of a system where a zero-length
5100   // file is created for it to write to, with tight permissions (gcc
5101   // 2.95 did something like this).  Unlinking the file would work
5102   // around those permission controls, so we only unlink if the file
5103   // has a non-zero size.  We also unlink only regular files to avoid
5104   // trouble with directories/etc.
5105   //
5106   // If we fail, continue; this command is merely a best-effort attempt
5107   // to improve the odds for open().
5108 
5109   // We let the name "-" mean "stdout"
5110   if (!this->is_temporary_)
5111     {
5112       if (strcmp(this->name_, "-") == 0)
5113 	this->o_ = STDOUT_FILENO;
5114       else
5115 	{
5116 	  struct stat s;
5117 	  if (::stat(this->name_, &s) == 0
5118 	      && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5119 	    {
5120 	      if (s.st_size != 0)
5121 		::unlink(this->name_);
5122 	      else if (!parameters->options().relocatable())
5123 		{
5124 		  // If we don't unlink the existing file, add execute
5125 		  // permission where read permissions already exist
5126 		  // and where the umask permits.
5127 		  int mask = ::umask(0);
5128 		  ::umask(mask);
5129 		  s.st_mode |= (s.st_mode & 0444) >> 2;
5130 		  ::chmod(this->name_, s.st_mode & ~mask);
5131 		}
5132 	    }
5133 
5134 	  int mode = parameters->options().relocatable() ? 0666 : 0777;
5135 	  int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5136 				  mode);
5137 	  if (o < 0)
5138 	    gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5139 	  this->o_ = o;
5140 	}
5141     }
5142 
5143   this->map();
5144 }
5145 
5146 // Resize the output file.
5147 
5148 void
5149 Output_file::resize(off_t file_size)
5150 {
5151   // If the mmap is mapping an anonymous memory buffer, this is easy:
5152   // just mremap to the new size.  If it's mapping to a file, we want
5153   // to unmap to flush to the file, then remap after growing the file.
5154   if (this->map_is_anonymous_)
5155     {
5156       void* base;
5157       if (!this->map_is_allocated_)
5158 	{
5159 	  base = ::mremap(this->base_, this->file_size_, file_size,
5160 			  MREMAP_MAYMOVE);
5161 	  if (base == MAP_FAILED)
5162 	    gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5163 	}
5164       else
5165 	{
5166 	  base = realloc(this->base_, file_size);
5167 	  if (base == NULL)
5168 	    gold_nomem();
5169 	  if (file_size > this->file_size_)
5170 	    memset(static_cast<char*>(base) + this->file_size_, 0,
5171 		   file_size - this->file_size_);
5172 	}
5173       this->base_ = static_cast<unsigned char*>(base);
5174       this->file_size_ = file_size;
5175     }
5176   else
5177     {
5178       this->unmap();
5179       this->file_size_ = file_size;
5180       if (!this->map_no_anonymous(true))
5181 	gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5182     }
5183 }
5184 
5185 // Map an anonymous block of memory which will later be written to the
5186 // file.  Return whether the map succeeded.
5187 
5188 bool
5189 Output_file::map_anonymous()
5190 {
5191   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5192 		      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5193   if (base == MAP_FAILED)
5194     {
5195       base = malloc(this->file_size_);
5196       if (base == NULL)
5197 	return false;
5198       memset(base, 0, this->file_size_);
5199       this->map_is_allocated_ = true;
5200     }
5201   this->base_ = static_cast<unsigned char*>(base);
5202   this->map_is_anonymous_ = true;
5203   return true;
5204 }
5205 
5206 // Map the file into memory.  Return whether the mapping succeeded.
5207 // If WRITABLE is true, map with write access.
5208 
5209 bool
5210 Output_file::map_no_anonymous(bool writable)
5211 {
5212   const int o = this->o_;
5213 
5214   // If the output file is not a regular file, don't try to mmap it;
5215   // instead, we'll mmap a block of memory (an anonymous buffer), and
5216   // then later write the buffer to the file.
5217   void* base;
5218   struct stat statbuf;
5219   if (o == STDOUT_FILENO || o == STDERR_FILENO
5220       || ::fstat(o, &statbuf) != 0
5221       || !S_ISREG(statbuf.st_mode)
5222       || this->is_temporary_)
5223     return false;
5224 
5225   // Ensure that we have disk space available for the file.  If we
5226   // don't do this, it is possible that we will call munmap, close,
5227   // and exit with dirty buffers still in the cache with no assigned
5228   // disk blocks.  If the disk is out of space at that point, the
5229   // output file will wind up incomplete, but we will have already
5230   // exited.  The alternative to fallocate would be to use fdatasync,
5231   // but that would be a more significant performance hit.
5232   if (writable)
5233     {
5234       int err = gold_fallocate(o, 0, this->file_size_);
5235       if (err != 0)
5236        gold_fatal(_("%s: %s"), this->name_, strerror(err));
5237     }
5238 
5239   // Map the file into memory.
5240   int prot = PROT_READ;
5241   if (writable)
5242     prot |= PROT_WRITE;
5243   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5244 
5245   // The mmap call might fail because of file system issues: the file
5246   // system might not support mmap at all, or it might not support
5247   // mmap with PROT_WRITE.
5248   if (base == MAP_FAILED)
5249     return false;
5250 
5251   this->map_is_anonymous_ = false;
5252   this->base_ = static_cast<unsigned char*>(base);
5253   return true;
5254 }
5255 
5256 // Map the file into memory.
5257 
5258 void
5259 Output_file::map()
5260 {
5261   if (parameters->options().mmap_output_file()
5262       && this->map_no_anonymous(true))
5263     return;
5264 
5265   // The mmap call might fail because of file system issues: the file
5266   // system might not support mmap at all, or it might not support
5267   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5268   // see in all cases, so if the mmap fails for any reason and we
5269   // don't care about file contents, try for an anonymous map.
5270   if (this->map_anonymous())
5271     return;
5272 
5273   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5274 	     this->name_, static_cast<unsigned long>(this->file_size_),
5275 	     strerror(errno));
5276 }
5277 
5278 // Unmap the file from memory.
5279 
5280 void
5281 Output_file::unmap()
5282 {
5283   if (this->map_is_anonymous_)
5284     {
5285       // We've already written out the data, so there is no reason to
5286       // waste time unmapping or freeing the memory.
5287     }
5288   else
5289     {
5290       if (::munmap(this->base_, this->file_size_) < 0)
5291 	gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5292     }
5293   this->base_ = NULL;
5294 }
5295 
5296 // Close the output file.
5297 
5298 void
5299 Output_file::close()
5300 {
5301   // If the map isn't file-backed, we need to write it now.
5302   if (this->map_is_anonymous_ && !this->is_temporary_)
5303     {
5304       size_t bytes_to_write = this->file_size_;
5305       size_t offset = 0;
5306       while (bytes_to_write > 0)
5307 	{
5308 	  ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5309 					  bytes_to_write);
5310 	  if (bytes_written == 0)
5311 	    gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5312 	  else if (bytes_written < 0)
5313 	    gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5314 	  else
5315 	    {
5316 	      bytes_to_write -= bytes_written;
5317 	      offset += bytes_written;
5318 	    }
5319 	}
5320     }
5321   this->unmap();
5322 
5323   // We don't close stdout or stderr
5324   if (this->o_ != STDOUT_FILENO
5325       && this->o_ != STDERR_FILENO
5326       && !this->is_temporary_)
5327     if (::close(this->o_) < 0)
5328       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5329   this->o_ = -1;
5330 }
5331 
5332 // Instantiate the templates we need.  We could use the configure
5333 // script to restrict this to only the ones for implemented targets.
5334 
5335 #ifdef HAVE_TARGET_32_LITTLE
5336 template
5337 off_t
5338 Output_section::add_input_section<32, false>(
5339     Layout* layout,
5340     Sized_relobj_file<32, false>* object,
5341     unsigned int shndx,
5342     const char* secname,
5343     const elfcpp::Shdr<32, false>& shdr,
5344     unsigned int reloc_shndx,
5345     bool have_sections_script);
5346 #endif
5347 
5348 #ifdef HAVE_TARGET_32_BIG
5349 template
5350 off_t
5351 Output_section::add_input_section<32, true>(
5352     Layout* layout,
5353     Sized_relobj_file<32, true>* object,
5354     unsigned int shndx,
5355     const char* secname,
5356     const elfcpp::Shdr<32, true>& shdr,
5357     unsigned int reloc_shndx,
5358     bool have_sections_script);
5359 #endif
5360 
5361 #ifdef HAVE_TARGET_64_LITTLE
5362 template
5363 off_t
5364 Output_section::add_input_section<64, false>(
5365     Layout* layout,
5366     Sized_relobj_file<64, false>* object,
5367     unsigned int shndx,
5368     const char* secname,
5369     const elfcpp::Shdr<64, false>& shdr,
5370     unsigned int reloc_shndx,
5371     bool have_sections_script);
5372 #endif
5373 
5374 #ifdef HAVE_TARGET_64_BIG
5375 template
5376 off_t
5377 Output_section::add_input_section<64, true>(
5378     Layout* layout,
5379     Sized_relobj_file<64, true>* object,
5380     unsigned int shndx,
5381     const char* secname,
5382     const elfcpp::Shdr<64, true>& shdr,
5383     unsigned int reloc_shndx,
5384     bool have_sections_script);
5385 #endif
5386 
5387 #ifdef HAVE_TARGET_32_LITTLE
5388 template
5389 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5390 #endif
5391 
5392 #ifdef HAVE_TARGET_32_BIG
5393 template
5394 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5395 #endif
5396 
5397 #ifdef HAVE_TARGET_64_LITTLE
5398 template
5399 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5400 #endif
5401 
5402 #ifdef HAVE_TARGET_64_BIG
5403 template
5404 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5405 #endif
5406 
5407 #ifdef HAVE_TARGET_32_LITTLE
5408 template
5409 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5410 #endif
5411 
5412 #ifdef HAVE_TARGET_32_BIG
5413 template
5414 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5415 #endif
5416 
5417 #ifdef HAVE_TARGET_64_LITTLE
5418 template
5419 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5420 #endif
5421 
5422 #ifdef HAVE_TARGET_64_BIG
5423 template
5424 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5425 #endif
5426 
5427 #ifdef HAVE_TARGET_32_LITTLE
5428 template
5429 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5430 #endif
5431 
5432 #ifdef HAVE_TARGET_32_BIG
5433 template
5434 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5435 #endif
5436 
5437 #ifdef HAVE_TARGET_64_LITTLE
5438 template
5439 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5440 #endif
5441 
5442 #ifdef HAVE_TARGET_64_BIG
5443 template
5444 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5445 #endif
5446 
5447 #ifdef HAVE_TARGET_32_LITTLE
5448 template
5449 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5450 #endif
5451 
5452 #ifdef HAVE_TARGET_32_BIG
5453 template
5454 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5455 #endif
5456 
5457 #ifdef HAVE_TARGET_64_LITTLE
5458 template
5459 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5460 #endif
5461 
5462 #ifdef HAVE_TARGET_64_BIG
5463 template
5464 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5465 #endif
5466 
5467 #ifdef HAVE_TARGET_32_LITTLE
5468 template
5469 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5470 #endif
5471 
5472 #ifdef HAVE_TARGET_32_BIG
5473 template
5474 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5475 #endif
5476 
5477 #ifdef HAVE_TARGET_64_LITTLE
5478 template
5479 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5480 #endif
5481 
5482 #ifdef HAVE_TARGET_64_BIG
5483 template
5484 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5485 #endif
5486 
5487 #ifdef HAVE_TARGET_32_LITTLE
5488 template
5489 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5490 #endif
5491 
5492 #ifdef HAVE_TARGET_32_BIG
5493 template
5494 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5495 #endif
5496 
5497 #ifdef HAVE_TARGET_64_LITTLE
5498 template
5499 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5500 #endif
5501 
5502 #ifdef HAVE_TARGET_64_BIG
5503 template
5504 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5505 #endif
5506 
5507 #ifdef HAVE_TARGET_32_LITTLE
5508 template
5509 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5510 #endif
5511 
5512 #ifdef HAVE_TARGET_32_BIG
5513 template
5514 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5515 #endif
5516 
5517 #ifdef HAVE_TARGET_64_LITTLE
5518 template
5519 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5520 #endif
5521 
5522 #ifdef HAVE_TARGET_64_BIG
5523 template
5524 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5525 #endif
5526 
5527 #ifdef HAVE_TARGET_32_LITTLE
5528 template
5529 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5530 #endif
5531 
5532 #ifdef HAVE_TARGET_32_BIG
5533 template
5534 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5535 #endif
5536 
5537 #ifdef HAVE_TARGET_64_LITTLE
5538 template
5539 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5540 #endif
5541 
5542 #ifdef HAVE_TARGET_64_BIG
5543 template
5544 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5545 #endif
5546 
5547 #ifdef HAVE_TARGET_32_LITTLE
5548 template
5549 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5550 #endif
5551 
5552 #ifdef HAVE_TARGET_32_BIG
5553 template
5554 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5555 #endif
5556 
5557 #ifdef HAVE_TARGET_64_LITTLE
5558 template
5559 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5560 #endif
5561 
5562 #ifdef HAVE_TARGET_64_BIG
5563 template
5564 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5565 #endif
5566 
5567 #ifdef HAVE_TARGET_32_LITTLE
5568 template
5569 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5570 #endif
5571 
5572 #ifdef HAVE_TARGET_32_BIG
5573 template
5574 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5575 #endif
5576 
5577 #ifdef HAVE_TARGET_64_LITTLE
5578 template
5579 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5580 #endif
5581 
5582 #ifdef HAVE_TARGET_64_BIG
5583 template
5584 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5585 #endif
5586 
5587 #ifdef HAVE_TARGET_32_LITTLE
5588 template
5589 class Output_data_group<32, false>;
5590 #endif
5591 
5592 #ifdef HAVE_TARGET_32_BIG
5593 template
5594 class Output_data_group<32, true>;
5595 #endif
5596 
5597 #ifdef HAVE_TARGET_64_LITTLE
5598 template
5599 class Output_data_group<64, false>;
5600 #endif
5601 
5602 #ifdef HAVE_TARGET_64_BIG
5603 template
5604 class Output_data_group<64, true>;
5605 #endif
5606 
5607 template
5608 class Output_data_got<32, false>;
5609 
5610 template
5611 class Output_data_got<32, true>;
5612 
5613 template
5614 class Output_data_got<64, false>;
5615 
5616 template
5617 class Output_data_got<64, true>;
5618 
5619 } // End namespace gold.
5620