1 // target.h -- target support for gold   -*- C++ -*-
2 
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 // The abstract class Target is the interface for target specific
24 // support.  It defines abstract methods which each target must
25 // implement.  Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27 
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing.  So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32 
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35 
36 #include "elfcpp.h"
37 #include "options.h"
38 #include "parameters.h"
39 #include "stringpool.h"
40 #include "debug.h"
41 
42 namespace gold
43 {
44 
45 class Object;
46 class Relobj;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51 class Relocatable_relocs;
52 template<int size, bool big_endian>
53 struct Relocate_info;
54 class Reloc_symbol_changes;
55 class Symbol;
56 template<int size>
57 class Sized_symbol;
58 class Symbol_table;
59 class Output_data;
60 class Output_data_got_base;
61 class Output_section;
62 class Input_objects;
63 class Task;
64 struct Symbol_location;
65 class Versions;
66 
67 // The abstract class for target specific handling.
68 
69 class Target
70 {
71  public:
72   virtual ~Target()
73   { }
74 
75   // Return the bit size that this target implements.  This should
76   // return 32 or 64.
77   int
78   get_size() const
79   { return this->pti_->size; }
80 
81   // Return whether this target is big-endian.
82   bool
83   is_big_endian() const
84   { return this->pti_->is_big_endian; }
85 
86   // Machine code to store in e_machine field of ELF header.
87   elfcpp::EM
88   machine_code() const
89   { return this->pti_->machine_code; }
90 
91   // Processor specific flags to store in e_flags field of ELF header.
92   elfcpp::Elf_Word
93   processor_specific_flags() const
94   { return this->processor_specific_flags_; }
95 
96   // Whether processor specific flags are set at least once.
97   bool
98   are_processor_specific_flags_set() const
99   { return this->are_processor_specific_flags_set_; }
100 
101   // Whether this target has a specific make_symbol function.
102   bool
103   has_make_symbol() const
104   { return this->pti_->has_make_symbol; }
105 
106   // Whether this target has a specific resolve function.
107   bool
108   has_resolve() const
109   { return this->pti_->has_resolve; }
110 
111   // Whether this target has a specific code fill function.
112   bool
113   has_code_fill() const
114   { return this->pti_->has_code_fill; }
115 
116   // Return the default name of the dynamic linker.
117   const char*
118   dynamic_linker() const
119   { return this->pti_->dynamic_linker; }
120 
121   // Return the default address to use for the text segment.
122   // If a -z max-page-size argument has set the ABI page size
123   // to a value larger than the default starting address,
124   // bump the starting address up to the page size, to avoid
125   // misaligning the text segment in the file.
126   uint64_t
127   default_text_segment_address() const
128   {
129     uint64_t addr = this->pti_->default_text_segment_address;
130     uint64_t pagesize = this->abi_pagesize();
131     if (addr < pagesize)
132       addr = pagesize;
133     return addr;
134   }
135 
136   // Return the ABI specified page size.
137   uint64_t
138   abi_pagesize() const
139   {
140     if (parameters->options().max_page_size() > 0)
141       return parameters->options().max_page_size();
142     else
143       return this->pti_->abi_pagesize;
144   }
145 
146   // Return the common page size used on actual systems.
147   uint64_t
148   common_pagesize() const
149   {
150     if (parameters->options().common_page_size() > 0)
151       return std::min(parameters->options().common_page_size(),
152 		      this->abi_pagesize());
153     else
154       return std::min(this->pti_->common_pagesize,
155 		      this->abi_pagesize());
156   }
157 
158   // Return whether PF_X segments must contain nothing but the contents of
159   // SHF_EXECINSTR sections (no non-executable data, no headers).
160   bool
161   isolate_execinstr() const
162   { return this->pti_->isolate_execinstr; }
163 
164   uint64_t
165   rosegment_gap() const
166   { return this->pti_->rosegment_gap; }
167 
168   // If we see some object files with .note.GNU-stack sections, and
169   // some objects files without them, this returns whether we should
170   // consider the object files without them to imply that the stack
171   // should be executable.
172   bool
173   is_default_stack_executable() const
174   { return this->pti_->is_default_stack_executable; }
175 
176   // Return a character which may appear as a prefix for a wrap
177   // symbol.  If this character appears, we strip it when checking for
178   // wrapping and add it back when forming the final symbol name.
179   // This should be '\0' if not special prefix is required, which is
180   // the normal case.
181   char
182   wrap_char() const
183   { return this->pti_->wrap_char; }
184 
185   // Return the special section index which indicates a small common
186   // symbol.  This will return SHN_UNDEF if there are no small common
187   // symbols.
188   elfcpp::Elf_Half
189   small_common_shndx() const
190   { return this->pti_->small_common_shndx; }
191 
192   // Return values to add to the section flags for the section holding
193   // small common symbols.
194   elfcpp::Elf_Xword
195   small_common_section_flags() const
196   {
197     gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
198     return this->pti_->small_common_section_flags;
199   }
200 
201   // Return the special section index which indicates a large common
202   // symbol.  This will return SHN_UNDEF if there are no large common
203   // symbols.
204   elfcpp::Elf_Half
205   large_common_shndx() const
206   { return this->pti_->large_common_shndx; }
207 
208   // Return values to add to the section flags for the section holding
209   // large common symbols.
210   elfcpp::Elf_Xword
211   large_common_section_flags() const
212   {
213     gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
214     return this->pti_->large_common_section_flags;
215   }
216 
217   // This hook is called when an output section is created.
218   void
219   new_output_section(Output_section* os) const
220   { this->do_new_output_section(os); }
221 
222   // This is called to tell the target to complete any sections it is
223   // handling.  After this all sections must have their final size.
224   void
225   finalize_sections(Layout* layout, const Input_objects* input_objects,
226 		    Symbol_table* symtab)
227   { return this->do_finalize_sections(layout, input_objects, symtab); }
228 
229   // Return the value to use for a global symbol which needs a special
230   // value in the dynamic symbol table.  This will only be called if
231   // the backend first calls symbol->set_needs_dynsym_value().
232   uint64_t
233   dynsym_value(const Symbol* sym) const
234   { return this->do_dynsym_value(sym); }
235 
236   // Return a string to use to fill out a code section.  This is
237   // basically one or more NOPS which must fill out the specified
238   // length in bytes.
239   std::string
240   code_fill(section_size_type length) const
241   { return this->do_code_fill(length); }
242 
243   // Return whether SYM is known to be defined by the ABI.  This is
244   // used to avoid inappropriate warnings about undefined symbols.
245   bool
246   is_defined_by_abi(const Symbol* sym) const
247   { return this->do_is_defined_by_abi(sym); }
248 
249   // Adjust the output file header before it is written out.  VIEW
250   // points to the header in external form.  LEN is the length.
251   void
252   adjust_elf_header(unsigned char* view, int len)
253   { return this->do_adjust_elf_header(view, len); }
254 
255   // Return address and size to plug into eh_frame FDEs associated with a PLT.
256   void
257   plt_fde_location(const Output_data* plt, unsigned char* oview,
258 		   uint64_t* address, off_t* len) const
259   { return this->do_plt_fde_location(plt, oview, address, len); }
260 
261   // Return whether NAME is a local label name.  This is used to implement the
262   // --discard-locals options.
263   bool
264   is_local_label_name(const char* name) const
265   { return this->do_is_local_label_name(name); }
266 
267   // Get the symbol index to use for a target specific reloc.
268   unsigned int
269   reloc_symbol_index(void* arg, unsigned int type) const
270   { return this->do_reloc_symbol_index(arg, type); }
271 
272   // Get the addend to use for a target specific reloc.
273   uint64_t
274   reloc_addend(void* arg, unsigned int type, uint64_t addend) const
275   { return this->do_reloc_addend(arg, type, addend); }
276 
277   // Return the PLT address to use for a global symbol.
278   uint64_t
279   plt_address_for_global(const Symbol* sym) const
280   { return this->do_plt_address_for_global(sym); }
281 
282   // Return the PLT address to use for a local symbol.
283   uint64_t
284   plt_address_for_local(const Relobj* object, unsigned int symndx) const
285   { return this->do_plt_address_for_local(object, symndx); }
286 
287   // Return the offset to use for the GOT_INDX'th got entry which is
288   // for a local tls symbol specified by OBJECT, SYMNDX.
289   int64_t
290   tls_offset_for_local(const Relobj* object,
291 		       unsigned int symndx,
292 		       unsigned int got_indx) const
293   { return do_tls_offset_for_local(object, symndx, got_indx); }
294 
295   // Return the offset to use for the GOT_INDX'th got entry which is
296   // for global tls symbol GSYM.
297   int64_t
298   tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const
299   { return do_tls_offset_for_global(gsym, got_indx); }
300 
301   // For targets that use function descriptors, if LOC is the location
302   // of a function, modify it to point at the function entry location.
303   void
304   function_location(Symbol_location* loc) const
305   { return do_function_location(loc); }
306 
307   // Return whether this target can use relocation types to determine
308   // if a function's address is taken.
309   bool
310   can_check_for_function_pointers() const
311   { return this->do_can_check_for_function_pointers(); }
312 
313   // Return whether a relocation to a merged section can be processed
314   // to retrieve the contents.
315   bool
316   can_icf_inline_merge_sections () const
317   { return this->pti_->can_icf_inline_merge_sections; }
318 
319   // Whether a section called SECTION_NAME may have function pointers to
320   // sections not eligible for safe ICF folding.
321   virtual bool
322   section_may_have_icf_unsafe_pointers(const char* section_name) const
323   { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
324 
325   // Return the base to use for the PC value in an FDE when it is
326   // encoded using DW_EH_PE_datarel.  This does not appear to be
327   // documented anywhere, but it is target specific.  Any use of
328   // DW_EH_PE_datarel in gcc requires defining a special macro
329   // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
330   uint64_t
331   ehframe_datarel_base() const
332   { return this->do_ehframe_datarel_base(); }
333 
334   // Return true if a reference to SYM from a reloc at *PRELOC
335   // means that the current function may call an object compiled
336   // without -fsplit-stack.  SYM is known to be defined in an object
337   // compiled without -fsplit-stack.
338   bool
339   is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
340 		       const unsigned char* view,
341 		       section_size_type view_size) const
342   { return this->do_is_call_to_non_split(sym, preloc, view, view_size); }
343 
344   // A function starts at OFFSET in section SHNDX in OBJECT.  That
345   // function was compiled with -fsplit-stack, but it refers to a
346   // function which was compiled without -fsplit-stack.  VIEW is a
347   // modifiable view of the section; VIEW_SIZE is the size of the
348   // view.  The target has to adjust the function so that it allocates
349   // enough stack.
350   void
351   calls_non_split(Relobj* object, unsigned int shndx,
352 		  section_offset_type fnoffset, section_size_type fnsize,
353 		  const unsigned char* prelocs, size_t reloc_count,
354 		  unsigned char* view, section_size_type view_size,
355 		  std::string* from, std::string* to) const
356   {
357     this->do_calls_non_split(object, shndx, fnoffset, fnsize,
358 			     prelocs, reloc_count, view, view_size,
359 			     from, to);
360   }
361 
362   // Make an ELF object.
363   template<int size, bool big_endian>
364   Object*
365   make_elf_object(const std::string& name, Input_file* input_file,
366 		  off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
367   { return this->do_make_elf_object(name, input_file, offset, ehdr); }
368 
369   // Make an output section.
370   Output_section*
371   make_output_section(const char* name, elfcpp::Elf_Word type,
372 		      elfcpp::Elf_Xword flags)
373   { return this->do_make_output_section(name, type, flags); }
374 
375   // Return true if target wants to perform relaxation.
376   bool
377   may_relax() const
378   {
379     // Run the dummy relaxation pass twice if relaxation debugging is enabled.
380     if (is_debugging_enabled(DEBUG_RELAXATION))
381       return true;
382 
383      return this->do_may_relax();
384   }
385 
386   // Perform a relaxation pass.  Return true if layout may be changed.
387   bool
388   relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
389 	Layout* layout, const Task* task)
390   {
391     // Run the dummy relaxation pass twice if relaxation debugging is enabled.
392     if (is_debugging_enabled(DEBUG_RELAXATION))
393       return pass < 2;
394 
395     return this->do_relax(pass, input_objects, symtab, layout, task);
396   }
397 
398   // Return the target-specific name of attributes section.  This is
399   // NULL if a target does not use attributes section or if it uses
400   // the default section name ".gnu.attributes".
401   const char*
402   attributes_section() const
403   { return this->pti_->attributes_section; }
404 
405   // Return the vendor name of vendor attributes.
406   const char*
407   attributes_vendor() const
408   { return this->pti_->attributes_vendor; }
409 
410   // Whether a section called NAME is an attribute section.
411   bool
412   is_attributes_section(const char* name) const
413   {
414     return ((this->pti_->attributes_section != NULL
415 	     && strcmp(name, this->pti_->attributes_section) == 0)
416 	    || strcmp(name, ".gnu.attributes") == 0);
417   }
418 
419   // Return a bit mask of argument types for attribute with TAG.
420   int
421   attribute_arg_type(int tag) const
422   { return this->do_attribute_arg_type(tag); }
423 
424   // Return the attribute tag of the position NUM in the list of fixed
425   // attributes.  Normally there is no reordering and
426   // attributes_order(NUM) == NUM.
427   int
428   attributes_order(int num) const
429   { return this->do_attributes_order(num); }
430 
431   // When a target is selected as the default target, we call this method,
432   // which may be used for expensive, target-specific initialization.
433   void
434   select_as_default_target()
435   { this->do_select_as_default_target(); }
436 
437   // Return the value to store in the EI_OSABI field in the ELF
438   // header.
439   elfcpp::ELFOSABI
440   osabi() const
441   { return this->osabi_; }
442 
443   // Set the value to store in the EI_OSABI field in the ELF header.
444   void
445   set_osabi(elfcpp::ELFOSABI osabi)
446   { this->osabi_ = osabi; }
447 
448   // Define target-specific standard symbols.
449   void
450   define_standard_symbols(Symbol_table* symtab, Layout* layout)
451   { this->do_define_standard_symbols(symtab, layout); }
452 
453   // Return the output section name to use given an input section
454   // name, or NULL if no target specific name mapping is required.
455   // Set *PLEN to the length of the name if returning non-NULL.
456   const char*
457   output_section_name(const Relobj* relobj,
458 		      const char* name,
459 		      size_t* plen) const
460   { return this->do_output_section_name(relobj, name, plen); }
461 
462   // Add any special sections for this symbol to the gc work list.
463   void
464   gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const
465   { this->do_gc_mark_symbol(symtab, sym); }
466 
467   // Return the name of the entry point symbol.
468   const char*
469   entry_symbol_name() const
470   { return this->pti_->entry_symbol_name; }
471 
472   // Return the size in bits of SHT_HASH entry.
473   int
474   hash_entry_size() const
475   { return this->pti_->hash_entry_size; }
476 
477   // Return the section type to use for unwind sections.
478   unsigned int
479   unwind_section_type() const
480   { return this->pti_->unwind_section_type; }
481 
482   // Whether the target has a custom set_dynsym_indexes method.
483   bool
484   has_custom_set_dynsym_indexes() const
485   { return this->do_has_custom_set_dynsym_indexes(); }
486 
487   // Custom set_dynsym_indexes method for a target.
488   unsigned int
489   set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
490                      std::vector<Symbol*>* syms, Stringpool* dynpool,
491                      Versions* versions, Symbol_table* symtab) const
492   {
493     return this->do_set_dynsym_indexes(dyn_symbols, index, syms, dynpool,
494                                        versions, symtab);
495   }
496 
497   // Get the custom dynamic tag value.
498   unsigned int
499   dynamic_tag_custom_value(elfcpp::DT tag) const
500   { return this->do_dynamic_tag_custom_value(tag); }
501 
502   // Adjust the value written to the dynamic symbol table.
503   void
504   adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
505   { this->do_adjust_dyn_symbol(sym, view); }
506 
507   // Return whether to include the section in the link.
508   bool
509   should_include_section(elfcpp::Elf_Word sh_type) const
510   { return this->do_should_include_section(sh_type); }
511 
512   // Finalize the target-specific properties in the .note.gnu.property section.
513   void
514   finalize_gnu_properties(Layout* layout) const
515   { this->do_finalize_gnu_properties(layout); }
516 
517  protected:
518   // This struct holds the constant information for a child class.  We
519   // use a struct to avoid the overhead of virtual function calls for
520   // simple information.
521   struct Target_info
522   {
523     // Address size (32 or 64).
524     int size;
525     // Whether the target is big endian.
526     bool is_big_endian;
527     // The code to store in the e_machine field of the ELF header.
528     elfcpp::EM machine_code;
529     // Whether this target has a specific make_symbol function.
530     bool has_make_symbol;
531     // Whether this target has a specific resolve function.
532     bool has_resolve;
533     // Whether this target has a specific code fill function.
534     bool has_code_fill;
535     // Whether an object file with no .note.GNU-stack sections implies
536     // that the stack should be executable.
537     bool is_default_stack_executable;
538     // Whether a relocation to a merged section can be processed to
539     // retrieve the contents.
540     bool can_icf_inline_merge_sections;
541     // Prefix character to strip when checking for wrapping.
542     char wrap_char;
543     // The default dynamic linker name.
544     const char* dynamic_linker;
545     // The default text segment address.
546     uint64_t default_text_segment_address;
547     // The ABI specified page size.
548     uint64_t abi_pagesize;
549     // The common page size used by actual implementations.
550     uint64_t common_pagesize;
551     // Whether PF_X segments must contain nothing but the contents of
552     // SHF_EXECINSTR sections (no non-executable data, no headers).
553     bool isolate_execinstr;
554     // If nonzero, distance from the text segment to the read-only segment.
555     uint64_t rosegment_gap;
556     // The special section index for small common symbols; SHN_UNDEF
557     // if none.
558     elfcpp::Elf_Half small_common_shndx;
559     // The special section index for large common symbols; SHN_UNDEF
560     // if none.
561     elfcpp::Elf_Half large_common_shndx;
562     // Section flags for small common section.
563     elfcpp::Elf_Xword small_common_section_flags;
564     // Section flags for large common section.
565     elfcpp::Elf_Xword large_common_section_flags;
566     // Name of attributes section if it is not ".gnu.attributes".
567     const char* attributes_section;
568     // Vendor name of vendor attributes.
569     const char* attributes_vendor;
570     // Name of the main entry point to the program.
571     const char* entry_symbol_name;
572     // Size (in bits) of SHT_HASH entry. Always equal to 32, except for
573     // 64-bit S/390.
574     const int hash_entry_size;
575     // Processor-specific section type for ".eh_frame" (unwind) sections.
576     // SHT_PROGBITS if there is no special section type.
577     const unsigned int unwind_section_type;
578   };
579 
580   Target(const Target_info* pti)
581     : pti_(pti), processor_specific_flags_(0),
582       are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
583   { }
584 
585   // Virtual function which may be implemented by the child class.
586   virtual void
587   do_new_output_section(Output_section*) const
588   { }
589 
590   // Virtual function which may be implemented by the child class.
591   virtual void
592   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
593   { }
594 
595   // Virtual function which may be implemented by the child class.
596   virtual uint64_t
597   do_dynsym_value(const Symbol*) const
598   { gold_unreachable(); }
599 
600   // Virtual function which must be implemented by the child class if
601   // needed.
602   virtual std::string
603   do_code_fill(section_size_type) const
604   { gold_unreachable(); }
605 
606   // Virtual function which may be implemented by the child class.
607   virtual bool
608   do_is_defined_by_abi(const Symbol*) const
609   { return false; }
610 
611   // Adjust the output file header before it is written out.  VIEW
612   // points to the header in external form.  LEN is the length, and
613   // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
614   // By default, we set the EI_OSABI field if requested (in
615   // Sized_target).
616   virtual void
617   do_adjust_elf_header(unsigned char*, int) = 0;
618 
619   // Return address and size to plug into eh_frame FDEs associated with a PLT.
620   virtual void
621   do_plt_fde_location(const Output_data* plt, unsigned char* oview,
622 		      uint64_t* address, off_t* len) const;
623 
624   // Virtual function which may be overridden by the child class.
625   virtual bool
626   do_is_local_label_name(const char*) const;
627 
628   // Virtual function that must be overridden by a target which uses
629   // target specific relocations.
630   virtual unsigned int
631   do_reloc_symbol_index(void*, unsigned int) const
632   { gold_unreachable(); }
633 
634   // Virtual function that must be overridden by a target which uses
635   // target specific relocations.
636   virtual uint64_t
637   do_reloc_addend(void*, unsigned int, uint64_t) const
638   { gold_unreachable(); }
639 
640   // Virtual functions that must be overridden by a target that uses
641   // STT_GNU_IFUNC symbols.
642   virtual uint64_t
643   do_plt_address_for_global(const Symbol*) const
644   { gold_unreachable(); }
645 
646   virtual uint64_t
647   do_plt_address_for_local(const Relobj*, unsigned int) const
648   { gold_unreachable(); }
649 
650   virtual int64_t
651   do_tls_offset_for_local(const Relobj*, unsigned int, unsigned int) const
652   { gold_unreachable(); }
653 
654   virtual int64_t
655   do_tls_offset_for_global(Symbol*, unsigned int) const
656   { gold_unreachable(); }
657 
658   virtual void
659   do_function_location(Symbol_location*) const = 0;
660 
661   // Virtual function which may be overriden by the child class.
662   virtual bool
663   do_can_check_for_function_pointers() const
664   { return false; }
665 
666   // Virtual function which may be overridden by the child class.  We
667   // recognize some default sections for which we don't care whether
668   // they have function pointers.
669   virtual bool
670   do_section_may_have_icf_unsafe_pointers(const char* section_name) const
671   {
672     // We recognize sections for normal vtables, construction vtables and
673     // EH frames.
674     return (!is_prefix_of(".rodata._ZTV", section_name)
675 	    && !is_prefix_of(".data.rel.ro._ZTV", section_name)
676 	    && !is_prefix_of(".rodata._ZTC", section_name)
677 	    && !is_prefix_of(".data.rel.ro._ZTC", section_name)
678 	    && !is_prefix_of(".eh_frame", section_name));
679   }
680 
681   virtual uint64_t
682   do_ehframe_datarel_base() const
683   { gold_unreachable(); }
684 
685   // Virtual function which may be overridden by the child class.  The
686   // default implementation is that any function not defined by the
687   // ABI is a call to a non-split function.
688   virtual bool
689   do_is_call_to_non_split(const Symbol* sym, const unsigned char*,
690 			  const unsigned char*, section_size_type) const;
691 
692   // Virtual function which may be overridden by the child class.
693   virtual void
694   do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
695 		     section_size_type, const unsigned char*, size_t,
696 		     unsigned char*, section_size_type,
697 		     std::string*, std::string*) const;
698 
699   // make_elf_object hooks.  There are four versions of these for
700   // different address sizes and endianness.
701 
702   // Set processor specific flags.
703   void
704   set_processor_specific_flags(elfcpp::Elf_Word flags)
705   {
706     this->processor_specific_flags_ = flags;
707     this->are_processor_specific_flags_set_ = true;
708   }
709 
710 #ifdef HAVE_TARGET_32_LITTLE
711   // Virtual functions which may be overridden by the child class.
712   virtual Object*
713   do_make_elf_object(const std::string&, Input_file*, off_t,
714 		     const elfcpp::Ehdr<32, false>&);
715 #endif
716 
717 #ifdef HAVE_TARGET_32_BIG
718   // Virtual functions which may be overridden by the child class.
719   virtual Object*
720   do_make_elf_object(const std::string&, Input_file*, off_t,
721 		     const elfcpp::Ehdr<32, true>&);
722 #endif
723 
724 #ifdef HAVE_TARGET_64_LITTLE
725   // Virtual functions which may be overridden by the child class.
726   virtual Object*
727   do_make_elf_object(const std::string&, Input_file*, off_t,
728 		     const elfcpp::Ehdr<64, false>& ehdr);
729 #endif
730 
731 #ifdef HAVE_TARGET_64_BIG
732   // Virtual functions which may be overridden by the child class.
733   virtual Object*
734   do_make_elf_object(const std::string& name, Input_file* input_file,
735 		     off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
736 #endif
737 
738   // Virtual functions which may be overridden by the child class.
739   virtual Output_section*
740   do_make_output_section(const char* name, elfcpp::Elf_Word type,
741 			 elfcpp::Elf_Xword flags);
742 
743   // Virtual function which may be overridden by the child class.
744   virtual bool
745   do_may_relax() const
746   { return parameters->options().relax(); }
747 
748   // Virtual function which may be overridden by the child class.
749   virtual bool
750   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
751   { return false; }
752 
753   // A function for targets to call.  Return whether BYTES/LEN matches
754   // VIEW/VIEW_SIZE at OFFSET.
755   bool
756   match_view(const unsigned char* view, section_size_type view_size,
757 	     section_offset_type offset, const char* bytes, size_t len) const;
758 
759   // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
760   // for LEN bytes.
761   void
762   set_view_to_nop(unsigned char* view, section_size_type view_size,
763 		  section_offset_type offset, size_t len) const;
764 
765   // This must be overridden by the child class if it has target-specific
766   // attributes subsection in the attribute section.
767   virtual int
768   do_attribute_arg_type(int) const
769   { gold_unreachable(); }
770 
771   // This may be overridden by the child class.
772   virtual int
773   do_attributes_order(int num) const
774   { return num; }
775 
776   // This may be overridden by the child class.
777   virtual void
778   do_select_as_default_target()
779   { }
780 
781   // This may be overridden by the child class.
782   virtual void
783   do_define_standard_symbols(Symbol_table*, Layout*)
784   { }
785 
786   // This may be overridden by the child class.
787   virtual const char*
788   do_output_section_name(const Relobj*, const char*, size_t*) const
789   { return NULL; }
790 
791   // This may be overridden by the child class.
792   virtual void
793   do_gc_mark_symbol(Symbol_table*, Symbol*) const
794   { }
795 
796   // This may be overridden by the child class.
797   virtual bool
798   do_has_custom_set_dynsym_indexes() const
799   { return false; }
800 
801   // This may be overridden by the child class.
802   virtual unsigned int
803   do_set_dynsym_indexes(std::vector<Symbol*>*, unsigned int,
804                         std::vector<Symbol*>*, Stringpool*, Versions*,
805                         Symbol_table*) const
806   { gold_unreachable(); }
807 
808   // This may be overridden by the child class.
809   virtual unsigned int
810   do_dynamic_tag_custom_value(elfcpp::DT) const
811   { gold_unreachable(); }
812 
813   // This may be overridden by the child class.
814   virtual void
815   do_adjust_dyn_symbol(const Symbol*, unsigned char*) const
816   { }
817 
818   // This may be overridden by the child class.
819   virtual bool
820   do_should_include_section(elfcpp::Elf_Word) const
821   { return true; }
822 
823   // Finalize the target-specific properties in the .note.gnu.property section.
824   virtual void
825   do_finalize_gnu_properties(Layout*) const
826   { }
827 
828  private:
829   // The implementations of the four do_make_elf_object virtual functions are
830   // almost identical except for their sizes and endianness.  We use a template.
831   // for their implementations.
832   template<int size, bool big_endian>
833   inline Object*
834   do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
835 				    const elfcpp::Ehdr<size, big_endian>&);
836 
837   Target(const Target&);
838   Target& operator=(const Target&);
839 
840   // The target information.
841   const Target_info* pti_;
842   // Processor-specific flags.
843   elfcpp::Elf_Word processor_specific_flags_;
844   // Whether the processor-specific flags are set at least once.
845   bool are_processor_specific_flags_set_;
846   // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
847   // the ELF header.  This is handled at this level because it is
848   // OS-specific rather than processor-specific.
849   elfcpp::ELFOSABI osabi_;
850 };
851 
852 // The abstract class for a specific size and endianness of target.
853 // Each actual target implementation class should derive from an
854 // instantiation of Sized_target.
855 
856 template<int size, bool big_endian>
857 class Sized_target : public Target
858 {
859  public:
860   // Make a new symbol table entry for the target.  This should be
861   // overridden by a target which needs additional information in the
862   // symbol table.  This will only be called if has_make_symbol()
863   // returns true.
864   virtual Sized_symbol<size>*
865   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
866   { gold_unreachable(); }
867 
868   // Resolve a symbol for the target.  This should be overridden by a
869   // target which needs to take special action.  TO is the
870   // pre-existing symbol.  SYM is the new symbol, seen in OBJECT.
871   // VERSION is the version of SYM.  This will only be called if
872   // has_resolve() returns true.
873   virtual bool
874   resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
875 	  const char*)
876   { gold_unreachable(); }
877 
878   // Process the relocs for a section, and record information of the
879   // mapping from source to destination sections. This mapping is later
880   // used to determine unreferenced garbage sections. This procedure is
881   // only called during garbage collection.
882   virtual void
883   gc_process_relocs(Symbol_table* symtab,
884 		    Layout* layout,
885 		    Sized_relobj_file<size, big_endian>* object,
886 		    unsigned int data_shndx,
887 		    unsigned int sh_type,
888 		    const unsigned char* prelocs,
889 		    size_t reloc_count,
890 		    Output_section* output_section,
891 		    bool needs_special_offset_handling,
892 		    size_t local_symbol_count,
893 		    const unsigned char* plocal_symbols) = 0;
894 
895   // Scan the relocs for a section, and record any information
896   // required for the symbol.  SYMTAB is the symbol table.  OBJECT is
897   // the object in which the section appears.  DATA_SHNDX is the
898   // section index that these relocs apply to.  SH_TYPE is the type of
899   // the relocation section, SHT_REL or SHT_RELA.  PRELOCS points to
900   // the relocation data.  RELOC_COUNT is the number of relocs.
901   // LOCAL_SYMBOL_COUNT is the number of local symbols.
902   // OUTPUT_SECTION is the output section.
903   // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
904   // sections are not mapped as usual.  PLOCAL_SYMBOLS points to the
905   // local symbol data from OBJECT.  GLOBAL_SYMBOLS is the array of
906   // pointers to the global symbol table from OBJECT.
907   virtual void
908   scan_relocs(Symbol_table* symtab,
909 	      Layout* layout,
910 	      Sized_relobj_file<size, big_endian>* object,
911 	      unsigned int data_shndx,
912 	      unsigned int sh_type,
913 	      const unsigned char* prelocs,
914 	      size_t reloc_count,
915 	      Output_section* output_section,
916 	      bool needs_special_offset_handling,
917 	      size_t local_symbol_count,
918 	      const unsigned char* plocal_symbols) = 0;
919 
920   // Relocate section data.  SH_TYPE is the type of the relocation
921   // section, SHT_REL or SHT_RELA.  PRELOCS points to the relocation
922   // information.  RELOC_COUNT is the number of relocs.
923   // OUTPUT_SECTION is the output section.
924   // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
925   // to correspond to the output section.  VIEW is a view into the
926   // output file holding the section contents, VIEW_ADDRESS is the
927   // virtual address of the view, and VIEW_SIZE is the size of the
928   // view.  If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
929   // parameters refer to the complete output section data, not just
930   // the input section data.
931   virtual void
932   relocate_section(const Relocate_info<size, big_endian>*,
933 		   unsigned int sh_type,
934 		   const unsigned char* prelocs,
935 		   size_t reloc_count,
936 		   Output_section* output_section,
937 		   bool needs_special_offset_handling,
938 		   unsigned char* view,
939 		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
940 		   section_size_type view_size,
941 		   const Reloc_symbol_changes*) = 0;
942 
943   // Scan the relocs during a relocatable link.  The parameters are
944   // like scan_relocs, with an additional Relocatable_relocs
945   // parameter, used to record the disposition of the relocs.
946   virtual void
947   scan_relocatable_relocs(Symbol_table* symtab,
948 			  Layout* layout,
949 			  Sized_relobj_file<size, big_endian>* object,
950 			  unsigned int data_shndx,
951 			  unsigned int sh_type,
952 			  const unsigned char* prelocs,
953 			  size_t reloc_count,
954 			  Output_section* output_section,
955 			  bool needs_special_offset_handling,
956 			  size_t local_symbol_count,
957 			  const unsigned char* plocal_symbols,
958 			  Relocatable_relocs*) = 0;
959 
960   // Scan the relocs for --emit-relocs.  The parameters are
961   // like scan_relocatable_relocs.
962   virtual void
963   emit_relocs_scan(Symbol_table* symtab,
964 		   Layout* layout,
965 		   Sized_relobj_file<size, big_endian>* object,
966 		   unsigned int data_shndx,
967 		   unsigned int sh_type,
968 		   const unsigned char* prelocs,
969 		   size_t reloc_count,
970 		   Output_section* output_section,
971 		   bool needs_special_offset_handling,
972 		   size_t local_symbol_count,
973 		   const unsigned char* plocal_syms,
974 		   Relocatable_relocs* rr) = 0;
975 
976   // Emit relocations for a section during a relocatable link, and for
977   // --emit-relocs.  The parameters are like relocate_section, with
978   // additional parameters for the view of the output reloc section.
979   virtual void
980   relocate_relocs(const Relocate_info<size, big_endian>*,
981 		  unsigned int sh_type,
982 		  const unsigned char* prelocs,
983 		  size_t reloc_count,
984 		  Output_section* output_section,
985 		  typename elfcpp::Elf_types<size>::Elf_Off
986                     offset_in_output_section,
987 		  unsigned char* view,
988 		  typename elfcpp::Elf_types<size>::Elf_Addr view_address,
989 		  section_size_type view_size,
990 		  unsigned char* reloc_view,
991 		  section_size_type reloc_view_size) = 0;
992 
993   // Perform target-specific processing in a relocatable link.  This is
994   // only used if we use the relocation strategy RELOC_SPECIAL.
995   // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
996   // section type. PRELOC_IN points to the original relocation.  RELNUM is
997   // the index number of the relocation in the relocation section.
998   // OUTPUT_SECTION is the output section to which the relocation is applied.
999   // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
1000   // within the output section.  VIEW points to the output view of the
1001   // output section.  VIEW_ADDRESS is output address of the view.  VIEW_SIZE
1002   // is the size of the output view and PRELOC_OUT points to the new
1003   // relocation in the output object.
1004   //
1005   // A target only needs to override this if the generic code in
1006   // target-reloc.h cannot handle some relocation types.
1007 
1008   virtual void
1009   relocate_special_relocatable(const Relocate_info<size, big_endian>*
1010 				/*relinfo */,
1011 			       unsigned int /* sh_type */,
1012 			       const unsigned char* /* preloc_in */,
1013 			       size_t /* relnum */,
1014 			       Output_section* /* output_section */,
1015 			       typename elfcpp::Elf_types<size>::Elf_Off
1016                                  /* offset_in_output_section */,
1017 			       unsigned char* /* view */,
1018 			       typename elfcpp::Elf_types<size>::Elf_Addr
1019 				 /* view_address */,
1020 			       section_size_type /* view_size */,
1021 			       unsigned char* /* preloc_out*/)
1022   { gold_unreachable(); }
1023 
1024   // Return the number of entries in the GOT.  This is only used for
1025   // laying out the incremental link info sections.  A target needs
1026   // to implement this to support incremental linking.
1027 
1028   virtual unsigned int
1029   got_entry_count() const
1030   { gold_unreachable(); }
1031 
1032   // Return the number of entries in the PLT.  This is only used for
1033   // laying out the incremental link info sections.  A target needs
1034   // to implement this to support incremental linking.
1035 
1036   virtual unsigned int
1037   plt_entry_count() const
1038   { gold_unreachable(); }
1039 
1040   // Return the offset of the first non-reserved PLT entry.  This is
1041   // only used for laying out the incremental link info sections.
1042   // A target needs to implement this to support incremental linking.
1043 
1044   virtual unsigned int
1045   first_plt_entry_offset() const
1046   { gold_unreachable(); }
1047 
1048   // Return the size of each PLT entry.  This is only used for
1049   // laying out the incremental link info sections.  A target needs
1050   // to implement this to support incremental linking.
1051 
1052   virtual unsigned int
1053   plt_entry_size() const
1054   { gold_unreachable(); }
1055 
1056   // Return the size of each GOT entry.  This is only used for
1057   // laying out the incremental link info sections.  A target needs
1058   // to implement this if its GOT size is different.
1059 
1060   virtual unsigned int
1061   got_entry_size() const
1062   { return size / 8; }
1063 
1064   // Create the GOT and PLT sections for an incremental update.
1065   // A target needs to implement this to support incremental linking.
1066 
1067   virtual Output_data_got_base*
1068   init_got_plt_for_update(Symbol_table*,
1069 			  Layout*,
1070 			  unsigned int /* got_count */,
1071 			  unsigned int /* plt_count */)
1072   { gold_unreachable(); }
1073 
1074   // Reserve a GOT entry for a local symbol, and regenerate any
1075   // necessary dynamic relocations.
1076   virtual void
1077   reserve_local_got_entry(unsigned int /* got_index */,
1078 			  Sized_relobj<size, big_endian>* /* obj */,
1079 			  unsigned int /* r_sym */,
1080 			  unsigned int /* got_type */)
1081   { gold_unreachable(); }
1082 
1083   // Reserve a GOT entry for a global symbol, and regenerate any
1084   // necessary dynamic relocations.
1085   virtual void
1086   reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
1087 			   unsigned int /* got_type */)
1088   { gold_unreachable(); }
1089 
1090   // Register an existing PLT entry for a global symbol.
1091   // A target needs to implement this to support incremental linking.
1092 
1093   virtual void
1094   register_global_plt_entry(Symbol_table*, Layout*,
1095 			    unsigned int /* plt_index */,
1096 			    Symbol*)
1097   { gold_unreachable(); }
1098 
1099   // Force a COPY relocation for a given symbol.
1100   // A target needs to implement this to support incremental linking.
1101 
1102   virtual void
1103   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
1104   { gold_unreachable(); }
1105 
1106   // Apply an incremental relocation.
1107 
1108   virtual void
1109   apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
1110 		   typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
1111 		   unsigned int /* r_type */,
1112 		   typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
1113 		   const Symbol* /* gsym */,
1114 		   unsigned char* /* view */,
1115 		   typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
1116 		   section_size_type /* view_size */)
1117   { gold_unreachable(); }
1118 
1119   // Handle target specific gc actions when adding a gc reference from
1120   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
1121   // and DST_OFF.
1122   void
1123   gc_add_reference(Symbol_table* symtab,
1124 		   Relobj* src_obj,
1125 		   unsigned int src_shndx,
1126 		   Relobj* dst_obj,
1127 		   unsigned int dst_shndx,
1128 		   typename elfcpp::Elf_types<size>::Elf_Addr dst_off) const
1129   {
1130     this->do_gc_add_reference(symtab, src_obj, src_shndx,
1131 			      dst_obj, dst_shndx, dst_off);
1132   }
1133 
1134   // Return the r_sym field from a relocation.
1135   // Most targets can use the default version of this routine,
1136   // but some targets have a non-standard r_info field, and will
1137   // need to provide a target-specific version.
1138   virtual unsigned int
1139   get_r_sym(const unsigned char* preloc) const
1140   {
1141     // Since REL and RELA relocs share the same structure through
1142     // the r_info field, we can just use REL here.
1143     elfcpp::Rel<size, big_endian> rel(preloc);
1144     return elfcpp::elf_r_sym<size>(rel.get_r_info());
1145   }
1146 
1147   // Record a target-specific program property in the .note.gnu.property
1148   // section.
1149   virtual void
1150   record_gnu_property(unsigned int, unsigned int, size_t,
1151 		      const unsigned char*, const Object*)
1152   { }
1153 
1154   // Merge the target-specific program properties from the current object.
1155   virtual void
1156   merge_gnu_properties(const Object*)
1157   { }
1158 
1159  protected:
1160   Sized_target(const Target::Target_info* pti)
1161     : Target(pti)
1162   {
1163     gold_assert(pti->size == size);
1164     gold_assert(pti->is_big_endian ? big_endian : !big_endian);
1165   }
1166 
1167   // Set the EI_OSABI field if requested.
1168   virtual void
1169   do_adjust_elf_header(unsigned char*, int);
1170 
1171   // Handle target specific gc actions when adding a gc reference.
1172   virtual void
1173   do_gc_add_reference(Symbol_table*, Relobj*, unsigned int,
1174 		      Relobj*, unsigned int,
1175 		      typename elfcpp::Elf_types<size>::Elf_Addr) const
1176   { }
1177 
1178   virtual void
1179   do_function_location(Symbol_location*) const
1180   { }
1181 };
1182 
1183 } // End namespace gold.
1184 
1185 #endif // !defined(GOLD_TARGET_H)
1186