xref: /dragonfly/contrib/cryptsetup/luks/pbkdf.c (revision 6f5ec8b5)
1 /* Implementation of Password-Based Cryptography as per PKCS#5
2  * Copyright (C) 2002,2003 Simon Josefsson
3  * Copyright (C) 2004 Free Software Foundation
4  *
5  * LUKS code
6  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
7  * Copyright (C) 2009 Red Hat, Inc. All rights reserved.
8  *
9  * This file is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * This file is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this file; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 
25 #include <netinet/in.h>
26 #include <errno.h>
27 #include <signal.h>
28 #include <sys/time.h>
29 #include <string.h>
30 #include <strings.h>
31 #include <stdlib.h>
32 #include <openssl/evp.h>
33 #include <openssl/hmac.h>
34 
35 static volatile uint64_t __PBKDF2_global_j = 0;
36 static volatile uint64_t __PBKDF2_performance = 0;
37 
38 /*
39  * 5.2 PBKDF2
40  *
41  *  PBKDF2 applies a pseudorandom function (see Appendix B.1 for an
42  *  example) to derive keys. The length of the derived key is essentially
43  *  unbounded. (However, the maximum effective search space for the
44  *  derived key may be limited by the structure of the underlying
45  *  pseudorandom function. See Appendix B.1 for further discussion.)
46  *  PBKDF2 is recommended for new applications.
47  *
48  *  PBKDF2 (P, S, c, dkLen)
49  *
50  *  Options:        PRF        underlying pseudorandom function (hLen
51  *                             denotes the length in octets of the
52  *                             pseudorandom function output)
53  *
54  *  Input:          P          password, an octet string (ASCII or UTF-8)
55  *                  S          salt, an octet string
56  *                  c          iteration count, a positive integer
57  *                  dkLen      intended length in octets of the derived
58  *                             key, a positive integer, at most
59  *                             (2^32 - 1) * hLen
60  *
61  *  Output:         DK         derived key, a dkLen-octet string
62  */
63 
64 #define MAX_PRF_BLOCK_LEN 80
65 
pkcs5_pbkdf2(const char * hash,const char * P,size_t Plen,const char * S,size_t Slen,unsigned int c,unsigned int dkLen,char * DK,int perfcheck)66 static int pkcs5_pbkdf2(const char *hash,
67 			const char *P, size_t Plen,
68 			const char *S, size_t Slen,
69 			unsigned int c, unsigned int dkLen,
70 			char *DK, int perfcheck)
71 {
72 	char U[MAX_PRF_BLOCK_LEN];
73 	char T[MAX_PRF_BLOCK_LEN];
74 	const EVP_MD *PRF;
75 	HMAC_CTX *ctx;
76 	int i, k, rc = -EINVAL;
77 	unsigned int u, hLen, l, r;
78 	unsigned char *p;
79 	size_t tmplen = Slen + 4;
80 	char *tmp;
81 
82 	tmp = alloca(tmplen);
83 	if (tmp == NULL)
84 		return -ENOMEM;
85 
86 	OpenSSL_add_all_digests();
87 	PRF = EVP_get_digestbyname(hash);
88 	if (PRF == NULL) {
89 		printf("pkcs5_pbkdf2: invalid hash %s\n", hash);
90 		return -EINVAL;
91 	}
92 
93 	hLen = EVP_MD_size(PRF);
94 	if (hLen == 0 || hLen > MAX_PRF_BLOCK_LEN)
95 		return -EINVAL;
96 
97 	if (c == 0)
98 		return -EINVAL;
99 
100 	if (dkLen == 0)
101 		return -EINVAL;
102 
103 	/*
104 	 *
105 	 *  Steps:
106 	 *
107 	 *     1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and
108 	 *        stop.
109 	 */
110 
111 	if (dkLen > 4294967295U)
112 		return -EINVAL;
113 
114 	/*
115 	 *     2. Let l be the number of hLen-octet blocks in the derived key,
116 	 *        rounding up, and let r be the number of octets in the last
117 	 *        block:
118 	 *
119 	 *                  l = CEIL (dkLen / hLen) ,
120 	 *                  r = dkLen - (l - 1) * hLen .
121 	 *
122 	 *        Here, CEIL (x) is the "ceiling" function, i.e. the smallest
123 	 *        integer greater than, or equal to, x.
124 	 */
125 
126 	l = dkLen / hLen;
127 	if (dkLen % hLen)
128 		l++;
129 	r = dkLen - (l - 1) * hLen;
130 
131 	/*
132 	 *     3. For each block of the derived key apply the function F defined
133 	 *        below to the password P, the salt S, the iteration count c, and
134 	 *        the block index to compute the block:
135 	 *
136 	 *                  T_1 = F (P, S, c, 1) ,
137 	 *                  T_2 = F (P, S, c, 2) ,
138 	 *                  ...
139 	 *                  T_l = F (P, S, c, l) ,
140 	 *
141 	 *        where the function F is defined as the exclusive-or sum of the
142 	 *        first c iterates of the underlying pseudorandom function PRF
143 	 *        applied to the password P and the concatenation of the salt S
144 	 *        and the block index i:
145 	 *
146 	 *                  F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c
147 	 *
148 	 *        where
149 	 *
150 	 *                  U_1 = PRF (P, S || INT (i)) ,
151 	 *                  U_2 = PRF (P, U_1) ,
152 	 *                  ...
153 	 *                  U_c = PRF (P, U_{c-1}) .
154 	 *
155 	 *        Here, INT (i) is a four-octet encoding of the integer i, most
156 	 *        significant octet first.
157 	 *
158 	 *     4. Concatenate the blocks and extract the first dkLen octets to
159 	 *        produce a derived key DK:
160 	 *
161 	 *                  DK = T_1 || T_2 ||  ...  || T_l<0..r-1>
162 	 *
163 	 *     5. Output the derived key DK.
164 	 *
165 	 *  Note. The construction of the function F follows a "belt-and-
166 	 *  suspenders" approach. The iterates U_i are computed recursively to
167 	 *  remove a degree of parallelism from an opponent; they are exclusive-
168 	 *  ored together to reduce concerns about the recursion degenerating
169 	 *  into a small set of values.
170 	 *
171 	 */
172 	ctx = HMAC_CTX_new();
173 	for (i = 1; (uint) i <= l; i++) {
174 		memset(T, 0, hLen);
175 
176 		for (u = 1; u <= c ; u++) {
177 			if (u == 1) {
178 				memcpy(tmp, S, Slen);
179 				tmp[Slen + 0] = (i & 0xff000000) >> 24;
180 				tmp[Slen + 1] = (i & 0x00ff0000) >> 16;
181 				tmp[Slen + 2] = (i & 0x0000ff00) >> 8;
182 				tmp[Slen + 3] = (i & 0x000000ff) >> 0;
183 				HMAC_Init_ex(ctx, P, Plen, PRF, NULL);
184 				HMAC_Update(ctx, tmp, tmplen);
185 				HMAC_Final(ctx, U, NULL);
186 			} else {
187 				HMAC(PRF, P, Plen, U, hLen, U, NULL);
188 			}
189 
190 			for (k = 0; (uint) k < hLen; k++)
191 				T[k] ^= U[k];
192 
193 			if (perfcheck && __PBKDF2_performance) {
194 				rc = 0;
195 				goto out;
196 			}
197 
198 			if (perfcheck)
199 				__PBKDF2_global_j++;
200 		}
201 
202 		memcpy(DK + (i - 1) * hLen, T, (uint) i == l ? r : hLen);
203 	}
204 	rc = 0;
205 out:
206 	HMAC_CTX_free(ctx);
207 	return rc;
208 }
209 
PBKDF2_HMAC(const char * hash,const char * password,size_t passwordLen,const char * salt,size_t saltLen,unsigned int iterations,char * dKey,size_t dKeyLen)210 int PBKDF2_HMAC(const char *hash,
211 		const char *password, size_t passwordLen,
212 		const char *salt, size_t saltLen, unsigned int iterations,
213 		char *dKey, size_t dKeyLen)
214 {
215 	return pkcs5_pbkdf2(hash, password, passwordLen, salt, saltLen,
216 			    iterations, (unsigned int)dKeyLen, dKey, 0);
217 }
218 
PBKDF2_HMAC_ready(const char * hash)219 int PBKDF2_HMAC_ready(const char *hash)
220 {
221 	const EVP_MD *md;
222 
223 	OpenSSL_add_all_digests();
224 	md = EVP_get_digestbyname(hash);
225 	if (md == NULL)
226 		return -EINVAL;
227 
228 	/* Used hash must have at least 160 bits */
229 	if (EVP_MD_size(md) < 20)
230 		return -EINVAL;
231 
232 	return 1;
233 }
234 
sigvtalarm(int foo)235 static void sigvtalarm(int foo)
236 {
237 	__PBKDF2_performance = __PBKDF2_global_j;
238 }
239 
240 /* This code benchmarks PBKDF2 and returns iterations/second using wth specified hash */
PBKDF2_performance_check(const char * hash,uint64_t * iter)241 int PBKDF2_performance_check(const char *hash, uint64_t *iter)
242 {
243 	int r;
244 	char buf;
245 	struct itimerval it;
246 
247 	if (__PBKDF2_global_j) {
248 		printf("foo1\n");
249 		return -EBUSY;
250 	}
251 
252 	if (!PBKDF2_HMAC_ready(hash)) {
253 		printf("foo2\n");
254 		return -EINVAL;
255 	}
256 
257 	signal(SIGVTALRM,sigvtalarm);
258 	it.it_interval.tv_usec = 0;
259 	it.it_interval.tv_sec = 0;
260 	it.it_value.tv_usec = 0;
261 	it.it_value.tv_sec =  1;
262 	if (setitimer (ITIMER_VIRTUAL, &it, NULL) < 0) {
263 		printf("foo3\n");
264 		return -EINVAL;
265 	}
266 
267 	r = pkcs5_pbkdf2(hash, "foo", 3, "bar", 3, ~(0U), 1, &buf, 1);
268 	*iter = __PBKDF2_performance;
269 	__PBKDF2_global_j = 0;
270 	__PBKDF2_performance = 0;
271 	return r;
272 }
273