xref: /dragonfly/contrib/cvs-1.12/lib/md5.c (revision 3851e4b8)
1 /* md5.c - Functions to compute MD5 message digest of files or memory blocks
2    according to the definition of MD5 in RFC 1321 from April 1992.
3    Copyright (C) 1995, 1996, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4    NOTE: The canonical source of this file is maintained with the GNU C
5    Library.  Bugs can be reported to bug-glibc@prep.ai.mit.edu.
6 
7    This program is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by the
9    Free Software Foundation; either version 2, or (at your option) any
10    later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software Foundation,
19    Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
20 
21 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.  */
22 
23 #ifdef HAVE_CONFIG_H
24 # include <config.h>
25 #endif
26 
27 #include "md5.h"
28 
29 #include <stddef.h>
30 #include <string.h>
31 
32 #if USE_UNLOCKED_IO
33 # include "unlocked-io.h"
34 #endif
35 
36 #ifdef _LIBC
37 # include <endian.h>
38 # if __BYTE_ORDER == __BIG_ENDIAN
39 #  define WORDS_BIGENDIAN 1
40 # endif
41 /* We need to keep the namespace clean so define the MD5 function
42    protected using leading __ .  */
43 # define md5_init_ctx __md5_init_ctx
44 # define md5_process_block __md5_process_block
45 # define md5_process_bytes __md5_process_bytes
46 # define md5_finish_ctx __md5_finish_ctx
47 # define md5_read_ctx __md5_read_ctx
48 # define md5_stream __md5_stream
49 # define md5_buffer __md5_buffer
50 #endif
51 
52 #ifdef WORDS_BIGENDIAN
53 # define SWAP(n)							\
54     (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
55 #else
56 # define SWAP(n) (n)
57 #endif
58 
59 #define BLOCKSIZE 4096
60 #if BLOCKSIZE % 64 != 0
61 # error "invalid BLOCKSIZE"
62 #endif
63 
64 /* This array contains the bytes used to pad the buffer to the next
65    64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
66 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
67 
68 
69 /* Initialize structure containing state of computation.
70    (RFC 1321, 3.3: Step 3)  */
71 void
72 md5_init_ctx (struct md5_ctx *ctx)
73 {
74   ctx->A = 0x67452301;
75   ctx->B = 0xefcdab89;
76   ctx->C = 0x98badcfe;
77   ctx->D = 0x10325476;
78 
79   ctx->total[0] = ctx->total[1] = 0;
80   ctx->buflen = 0;
81 }
82 
83 /* Put result from CTX in first 16 bytes following RESBUF.  The result
84    must be in little endian byte order.
85 
86    IMPORTANT: On some systems it is required that RESBUF is correctly
87    aligned for a 32 bits value.  */
88 void *
89 md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
90 {
91   ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
92   ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
93   ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
94   ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
95 
96   return resbuf;
97 }
98 
99 /* Process the remaining bytes in the internal buffer and the usual
100    prolog according to the standard and write the result to RESBUF.
101 
102    IMPORTANT: On some systems it is required that RESBUF is correctly
103    aligned for a 32 bits value.  */
104 void *
105 md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
106 {
107   /* Take yet unprocessed bytes into account.  */
108   md5_uint32 bytes = ctx->buflen;
109   size_t pad;
110 
111   /* Now count remaining bytes.  */
112   ctx->total[0] += bytes;
113   if (ctx->total[0] < bytes)
114     ++ctx->total[1];
115 
116   pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
117   memcpy (&ctx->buffer[bytes], fillbuf, pad);
118 
119   /* Put the 64-bit file length in *bits* at the end of the buffer.  */
120   *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
121   *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
122 							(ctx->total[0] >> 29));
123 
124   /* Process last bytes.  */
125   md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
126 
127   return md5_read_ctx (ctx, resbuf);
128 }
129 
130 /* Compute MD5 message digest for bytes read from STREAM.  The
131    resulting message digest number will be written into the 16 bytes
132    beginning at RESBLOCK.  */
133 int
134 md5_stream (FILE *stream, void *resblock)
135 {
136   struct md5_ctx ctx;
137   char buffer[BLOCKSIZE + 72];
138   size_t sum;
139 
140   /* Initialize the computation context.  */
141   md5_init_ctx (&ctx);
142 
143   /* Iterate over full file contents.  */
144   while (1)
145     {
146       /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
147 	 computation function processes the whole buffer so that with the
148 	 next round of the loop another block can be read.  */
149       size_t n;
150       sum = 0;
151 
152       /* Read block.  Take care for partial reads.  */
153       while (1)
154 	{
155 	  n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
156 
157 	  sum += n;
158 
159 	  if (sum == BLOCKSIZE)
160 	    break;
161 
162 	  if (n == 0)
163 	    {
164 	      /* Check for the error flag IFF N == 0, so that we don't
165 		 exit the loop after a partial read due to e.g., EAGAIN
166 		 or EWOULDBLOCK.  */
167 	      if (ferror (stream))
168 		return 1;
169 	      goto process_partial_block;
170 	    }
171 
172 	  /* We've read at least one byte, so ignore errors.  But always
173 	     check for EOF, since feof may be true even though N > 0.
174 	     Otherwise, we could end up calling fread after EOF.  */
175 	  if (feof (stream))
176 	    goto process_partial_block;
177 	}
178 
179       /* Process buffer with BLOCKSIZE bytes.  Note that
180 			BLOCKSIZE % 64 == 0
181        */
182       md5_process_block (buffer, BLOCKSIZE, &ctx);
183     }
184 
185  process_partial_block:;
186 
187   /* Process any remaining bytes.  */
188   if (sum > 0)
189     md5_process_bytes (buffer, sum, &ctx);
190 
191   /* Construct result in desired memory.  */
192   md5_finish_ctx (&ctx, resblock);
193   return 0;
194 }
195 
196 /* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
197    result is always in little endian byte order, so that a byte-wise
198    output yields to the wanted ASCII representation of the message
199    digest.  */
200 void *
201 md5_buffer (const char *buffer, size_t len, void *resblock)
202 {
203   struct md5_ctx ctx;
204 
205   /* Initialize the computation context.  */
206   md5_init_ctx (&ctx);
207 
208   /* Process whole buffer but last len % 64 bytes.  */
209   md5_process_bytes (buffer, len, &ctx);
210 
211   /* Put result in desired memory area.  */
212   return md5_finish_ctx (&ctx, resblock);
213 }
214 
215 
216 void
217 md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
218 {
219   /* When we already have some bits in our internal buffer concatenate
220      both inputs first.  */
221   if (ctx->buflen != 0)
222     {
223       size_t left_over = ctx->buflen;
224       size_t add = 128 - left_over > len ? len : 128 - left_over;
225 
226       memcpy (&ctx->buffer[left_over], buffer, add);
227       ctx->buflen += add;
228 
229       if (ctx->buflen > 64)
230 	{
231 	  md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
232 
233 	  ctx->buflen &= 63;
234 	  /* The regions in the following copy operation cannot overlap.  */
235 	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
236 		  ctx->buflen);
237 	}
238 
239       buffer = (const char *) buffer + add;
240       len -= add;
241     }
242 
243   /* Process available complete blocks.  */
244   if (len >= 64)
245     {
246 #if !_STRING_ARCH_unaligned
247 # define alignof(type) offsetof (struct { char c; type x; }, x)
248 # define UNALIGNED_P(p) (((size_t) p) % alignof (md5_uint32) != 0)
249       if (UNALIGNED_P (buffer))
250 	while (len > 64)
251 	  {
252 	    md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
253 	    buffer = (const char *) buffer + 64;
254 	    len -= 64;
255 	  }
256       else
257 #endif
258 	{
259 	  md5_process_block (buffer, len & ~63, ctx);
260 	  buffer = (const char *) buffer + (len & ~63);
261 	  len &= 63;
262 	}
263     }
264 
265   /* Move remaining bytes in internal buffer.  */
266   if (len > 0)
267     {
268       size_t left_over = ctx->buflen;
269 
270       memcpy (&ctx->buffer[left_over], buffer, len);
271       left_over += len;
272       if (left_over >= 64)
273 	{
274 	  md5_process_block (ctx->buffer, 64, ctx);
275 	  left_over -= 64;
276 	  memcpy (ctx->buffer, &ctx->buffer[64], left_over);
277 	}
278       ctx->buflen = left_over;
279     }
280 }
281 
282 
283 /* These are the four functions used in the four steps of the MD5 algorithm
284    and defined in the RFC 1321.  The first function is a little bit optimized
285    (as found in Colin Plumbs public domain implementation).  */
286 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
287 #define FF(b, c, d) (d ^ (b & (c ^ d)))
288 #define FG(b, c, d) FF (d, b, c)
289 #define FH(b, c, d) (b ^ c ^ d)
290 #define FI(b, c, d) (c ^ (b | ~d))
291 
292 /* Process LEN bytes of BUFFER, accumulating context into CTX.
293    It is assumed that LEN % 64 == 0.  */
294 
295 void
296 md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
297 {
298   md5_uint32 correct_words[16];
299   const md5_uint32 *words = buffer;
300   size_t nwords = len / sizeof (md5_uint32);
301   const md5_uint32 *endp = words + nwords;
302   md5_uint32 A = ctx->A;
303   md5_uint32 B = ctx->B;
304   md5_uint32 C = ctx->C;
305   md5_uint32 D = ctx->D;
306 
307   /* First increment the byte count.  RFC 1321 specifies the possible
308      length of the file up to 2^64 bits.  Here we only compute the
309      number of bytes.  Do a double word increment.  */
310   ctx->total[0] += len;
311   if (ctx->total[0] < len)
312     ++ctx->total[1];
313 
314   /* Process all bytes in the buffer with 64 bytes in each round of
315      the loop.  */
316   while (words < endp)
317     {
318       md5_uint32 *cwp = correct_words;
319       md5_uint32 A_save = A;
320       md5_uint32 B_save = B;
321       md5_uint32 C_save = C;
322       md5_uint32 D_save = D;
323 
324       /* First round: using the given function, the context and a constant
325 	 the next context is computed.  Because the algorithms processing
326 	 unit is a 32-bit word and it is determined to work on words in
327 	 little endian byte order we perhaps have to change the byte order
328 	 before the computation.  To reduce the work for the next steps
329 	 we store the swapped words in the array CORRECT_WORDS.  */
330 
331 #define OP(a, b, c, d, s, T)						\
332       do								\
333         {								\
334 	  a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T;		\
335 	  ++words;							\
336 	  CYCLIC (a, s);						\
337 	  a += b;							\
338         }								\
339       while (0)
340 
341       /* It is unfortunate that C does not provide an operator for
342 	 cyclic rotation.  Hope the C compiler is smart enough.  */
343 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
344 
345       /* Before we start, one word to the strange constants.
346 	 They are defined in RFC 1321 as
347 
348 	 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
349 
350 	 Here is an equivalent invocation using Perl:
351 
352 	 perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
353        */
354 
355       /* Round 1.  */
356       OP (A, B, C, D,  7, 0xd76aa478);
357       OP (D, A, B, C, 12, 0xe8c7b756);
358       OP (C, D, A, B, 17, 0x242070db);
359       OP (B, C, D, A, 22, 0xc1bdceee);
360       OP (A, B, C, D,  7, 0xf57c0faf);
361       OP (D, A, B, C, 12, 0x4787c62a);
362       OP (C, D, A, B, 17, 0xa8304613);
363       OP (B, C, D, A, 22, 0xfd469501);
364       OP (A, B, C, D,  7, 0x698098d8);
365       OP (D, A, B, C, 12, 0x8b44f7af);
366       OP (C, D, A, B, 17, 0xffff5bb1);
367       OP (B, C, D, A, 22, 0x895cd7be);
368       OP (A, B, C, D,  7, 0x6b901122);
369       OP (D, A, B, C, 12, 0xfd987193);
370       OP (C, D, A, B, 17, 0xa679438e);
371       OP (B, C, D, A, 22, 0x49b40821);
372 
373       /* For the second to fourth round we have the possibly swapped words
374 	 in CORRECT_WORDS.  Redefine the macro to take an additional first
375 	 argument specifying the function to use.  */
376 #undef OP
377 #define OP(f, a, b, c, d, k, s, T)					\
378       do								\
379 	{								\
380 	  a += f (b, c, d) + correct_words[k] + T;			\
381 	  CYCLIC (a, s);						\
382 	  a += b;							\
383 	}								\
384       while (0)
385 
386       /* Round 2.  */
387       OP (FG, A, B, C, D,  1,  5, 0xf61e2562);
388       OP (FG, D, A, B, C,  6,  9, 0xc040b340);
389       OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
390       OP (FG, B, C, D, A,  0, 20, 0xe9b6c7aa);
391       OP (FG, A, B, C, D,  5,  5, 0xd62f105d);
392       OP (FG, D, A, B, C, 10,  9, 0x02441453);
393       OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
394       OP (FG, B, C, D, A,  4, 20, 0xe7d3fbc8);
395       OP (FG, A, B, C, D,  9,  5, 0x21e1cde6);
396       OP (FG, D, A, B, C, 14,  9, 0xc33707d6);
397       OP (FG, C, D, A, B,  3, 14, 0xf4d50d87);
398       OP (FG, B, C, D, A,  8, 20, 0x455a14ed);
399       OP (FG, A, B, C, D, 13,  5, 0xa9e3e905);
400       OP (FG, D, A, B, C,  2,  9, 0xfcefa3f8);
401       OP (FG, C, D, A, B,  7, 14, 0x676f02d9);
402       OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
403 
404       /* Round 3.  */
405       OP (FH, A, B, C, D,  5,  4, 0xfffa3942);
406       OP (FH, D, A, B, C,  8, 11, 0x8771f681);
407       OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
408       OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
409       OP (FH, A, B, C, D,  1,  4, 0xa4beea44);
410       OP (FH, D, A, B, C,  4, 11, 0x4bdecfa9);
411       OP (FH, C, D, A, B,  7, 16, 0xf6bb4b60);
412       OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
413       OP (FH, A, B, C, D, 13,  4, 0x289b7ec6);
414       OP (FH, D, A, B, C,  0, 11, 0xeaa127fa);
415       OP (FH, C, D, A, B,  3, 16, 0xd4ef3085);
416       OP (FH, B, C, D, A,  6, 23, 0x04881d05);
417       OP (FH, A, B, C, D,  9,  4, 0xd9d4d039);
418       OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
419       OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
420       OP (FH, B, C, D, A,  2, 23, 0xc4ac5665);
421 
422       /* Round 4.  */
423       OP (FI, A, B, C, D,  0,  6, 0xf4292244);
424       OP (FI, D, A, B, C,  7, 10, 0x432aff97);
425       OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
426       OP (FI, B, C, D, A,  5, 21, 0xfc93a039);
427       OP (FI, A, B, C, D, 12,  6, 0x655b59c3);
428       OP (FI, D, A, B, C,  3, 10, 0x8f0ccc92);
429       OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
430       OP (FI, B, C, D, A,  1, 21, 0x85845dd1);
431       OP (FI, A, B, C, D,  8,  6, 0x6fa87e4f);
432       OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
433       OP (FI, C, D, A, B,  6, 15, 0xa3014314);
434       OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
435       OP (FI, A, B, C, D,  4,  6, 0xf7537e82);
436       OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
437       OP (FI, C, D, A, B,  2, 15, 0x2ad7d2bb);
438       OP (FI, B, C, D, A,  9, 21, 0xeb86d391);
439 
440       /* Add the starting values of the context.  */
441       A += A_save;
442       B += B_save;
443       C += C_save;
444       D += D_save;
445     }
446 
447   /* Put checksum in context given as argument.  */
448   ctx->A = A;
449   ctx->B = B;
450   ctx->C = C;
451   ctx->D = D;
452 }
453