xref: /dragonfly/contrib/gcc-4.7/gcc/alias.c (revision 31524921)
1 /* Alias analysis for GNU C
2    Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3    2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4    Contributed by John Carr (jfc@mit.edu).
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "diagnostic-core.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "tree-pass.h"
46 #include "df.h"
47 #include "tree-ssa-alias.h"
48 #include "pointer-set.h"
49 #include "tree-flow.h"
50 
51 /* The aliasing API provided here solves related but different problems:
52 
53    Say there exists (in c)
54 
55    struct X {
56      struct Y y1;
57      struct Z z2;
58    } x1, *px1,  *px2;
59 
60    struct Y y2, *py;
61    struct Z z2, *pz;
62 
63 
64    py = &px1.y1;
65    px2 = &x1;
66 
67    Consider the four questions:
68 
69    Can a store to x1 interfere with px2->y1?
70    Can a store to x1 interfere with px2->z2?
71    (*px2).z2
72    Can a store to x1 change the value pointed to by with py?
73    Can a store to x1 change the value pointed to by with pz?
74 
75    The answer to these questions can be yes, yes, yes, and maybe.
76 
77    The first two questions can be answered with a simple examination
78    of the type system.  If structure X contains a field of type Y then
79    a store thru a pointer to an X can overwrite any field that is
80    contained (recursively) in an X (unless we know that px1 != px2).
81 
82    The last two of the questions can be solved in the same way as the
83    first two questions but this is too conservative.  The observation
84    is that in some cases analysis we can know if which (if any) fields
85    are addressed and if those addresses are used in bad ways.  This
86    analysis may be language specific.  In C, arbitrary operations may
87    be applied to pointers.  However, there is some indication that
88    this may be too conservative for some C++ types.
89 
90    The pass ipa-type-escape does this analysis for the types whose
91    instances do not escape across the compilation boundary.
92 
93    Historically in GCC, these two problems were combined and a single
94    data structure was used to represent the solution to these
95    problems.  We now have two similar but different data structures,
96    The data structure to solve the last two question is similar to the
97    first, but does not contain have the fields in it whose address are
98    never taken.  For types that do escape the compilation unit, the
99    data structures will have identical information.
100 */
101 
102 /* The alias sets assigned to MEMs assist the back-end in determining
103    which MEMs can alias which other MEMs.  In general, two MEMs in
104    different alias sets cannot alias each other, with one important
105    exception.  Consider something like:
106 
107      struct S { int i; double d; };
108 
109    a store to an `S' can alias something of either type `int' or type
110    `double'.  (However, a store to an `int' cannot alias a `double'
111    and vice versa.)  We indicate this via a tree structure that looks
112    like:
113 	   struct S
114 	    /   \
115 	   /     \
116 	 |/_     _\|
117 	 int    double
118 
119    (The arrows are directed and point downwards.)
120     In this situation we say the alias set for `struct S' is the
121    `superset' and that those for `int' and `double' are `subsets'.
122 
123    To see whether two alias sets can point to the same memory, we must
124    see if either alias set is a subset of the other. We need not trace
125    past immediate descendants, however, since we propagate all
126    grandchildren up one level.
127 
128    Alias set zero is implicitly a superset of all other alias sets.
129    However, this is no actual entry for alias set zero.  It is an
130    error to attempt to explicitly construct a subset of zero.  */
131 
132 struct GTY(()) alias_set_entry_d {
133   /* The alias set number, as stored in MEM_ALIAS_SET.  */
134   alias_set_type alias_set;
135 
136   /* Nonzero if would have a child of zero: this effectively makes this
137      alias set the same as alias set zero.  */
138   int has_zero_child;
139 
140   /* The children of the alias set.  These are not just the immediate
141      children, but, in fact, all descendants.  So, if we have:
142 
143        struct T { struct S s; float f; }
144 
145      continuing our example above, the children here will be all of
146      `int', `double', `float', and `struct S'.  */
147   splay_tree GTY((param1_is (int), param2_is (int))) children;
148 };
149 typedef struct alias_set_entry_d *alias_set_entry;
150 
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 			     enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static int aliases_everything_p (const_rtx);
161 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
162 static tree decl_for_component_ref (tree);
163 static int write_dependence_p (const_rtx, const_rtx, int);
164 
165 static void memory_modified_1 (rtx, const_rtx, void *);
166 
167 /* Set up all info needed to perform alias analysis on memory references.  */
168 
169 /* Returns the size in bytes of the mode of X.  */
170 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
171 
172 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
173    different alias sets.  We ignore alias sets in functions making use
174    of variable arguments because the va_arg macros on some systems are
175    not legal ANSI C.  */
176 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2)			\
177   mems_in_disjoint_alias_sets_p (MEM1, MEM2)
178 
179 /* Cap the number of passes we make over the insns propagating alias
180    information through set chains.   10 is a completely arbitrary choice.  */
181 #define MAX_ALIAS_LOOP_PASSES 10
182 
183 /* reg_base_value[N] gives an address to which register N is related.
184    If all sets after the first add or subtract to the current value
185    or otherwise modify it so it does not point to a different top level
186    object, reg_base_value[N] is equal to the address part of the source
187    of the first set.
188 
189    A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
190    expressions represent certain special values: function arguments and
191    the stack, frame, and argument pointers.
192 
193    The contents of an ADDRESS is not normally used, the mode of the
194    ADDRESS determines whether the ADDRESS is a function argument or some
195    other special value.  Pointer equality, not rtx_equal_p, determines whether
196    two ADDRESS expressions refer to the same base address.
197 
198    The only use of the contents of an ADDRESS is for determining if the
199    current function performs nonlocal memory memory references for the
200    purposes of marking the function as a constant function.  */
201 
202 static GTY(()) VEC(rtx,gc) *reg_base_value;
203 static rtx *new_reg_base_value;
204 
205 /* We preserve the copy of old array around to avoid amount of garbage
206    produced.  About 8% of garbage produced were attributed to this
207    array.  */
208 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
209 
210 #define static_reg_base_value \
211   (this_target_rtl->x_static_reg_base_value)
212 
213 #define REG_BASE_VALUE(X)				\
214   (REGNO (X) < VEC_length (rtx, reg_base_value)		\
215    ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
216 
217 /* Vector indexed by N giving the initial (unchanging) value known for
218    pseudo-register N.  This array is initialized in init_alias_analysis,
219    and does not change until end_alias_analysis is called.  */
220 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
221 
222 /* Indicates number of valid entries in reg_known_value.  */
223 static GTY(()) unsigned int reg_known_value_size;
224 
225 /* Vector recording for each reg_known_value whether it is due to a
226    REG_EQUIV note.  Future passes (viz., reload) may replace the
227    pseudo with the equivalent expression and so we account for the
228    dependences that would be introduced if that happens.
229 
230    The REG_EQUIV notes created in assign_parms may mention the arg
231    pointer, and there are explicit insns in the RTL that modify the
232    arg pointer.  Thus we must ensure that such insns don't get
233    scheduled across each other because that would invalidate the
234    REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
235    wrong, but solving the problem in the scheduler will likely give
236    better code, so we do it here.  */
237 static bool *reg_known_equiv_p;
238 
239 /* True when scanning insns from the start of the rtl to the
240    NOTE_INSN_FUNCTION_BEG note.  */
241 static bool copying_arguments;
242 
243 DEF_VEC_P(alias_set_entry);
244 DEF_VEC_ALLOC_P(alias_set_entry,gc);
245 
246 /* The splay-tree used to store the various alias set entries.  */
247 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
248 
249 /* Build a decomposed reference object for querying the alias-oracle
250    from the MEM rtx and store it in *REF.
251    Returns false if MEM is not suitable for the alias-oracle.  */
252 
253 static bool
254 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
255 {
256   tree expr = MEM_EXPR (mem);
257   tree base;
258 
259   if (!expr)
260     return false;
261 
262   ao_ref_init (ref, expr);
263 
264   /* Get the base of the reference and see if we have to reject or
265      adjust it.  */
266   base = ao_ref_base (ref);
267   if (base == NULL_TREE)
268     return false;
269 
270   /* The tree oracle doesn't like to have these.  */
271   if (TREE_CODE (base) == FUNCTION_DECL
272       || TREE_CODE (base) == LABEL_DECL)
273     return false;
274 
275   /* If this is a pointer dereference of a non-SSA_NAME punt.
276      ???  We could replace it with a pointer to anything.  */
277   if ((INDIRECT_REF_P (base)
278        || TREE_CODE (base) == MEM_REF)
279       && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
280     return false;
281   if (TREE_CODE (base) == TARGET_MEM_REF
282       && TMR_BASE (base)
283       && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
284     return false;
285 
286   /* If this is a reference based on a partitioned decl replace the
287      base with an INDIRECT_REF of the pointer representative we
288      created during stack slot partitioning.  */
289   if (TREE_CODE (base) == VAR_DECL
290       && ! TREE_STATIC (base)
291       && cfun->gimple_df->decls_to_pointers != NULL)
292     {
293       void *namep;
294       namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
295       if (namep)
296 	ref->base = build_simple_mem_ref (*(tree *)namep);
297     }
298   else if (TREE_CODE (base) == TARGET_MEM_REF
299 	   && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
300 	   && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
301 	   && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
302 	   && cfun->gimple_df->decls_to_pointers != NULL)
303     {
304       void *namep;
305       namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
306 				    TREE_OPERAND (TMR_BASE (base), 0));
307       if (namep)
308 	ref->base = build_simple_mem_ref (*(tree *)namep);
309     }
310 
311   ref->ref_alias_set = MEM_ALIAS_SET (mem);
312 
313   /* If MEM_OFFSET or MEM_SIZE are unknown we have to punt.
314      Keep points-to related information though.  */
315   if (!MEM_OFFSET_KNOWN_P (mem)
316       || !MEM_SIZE_KNOWN_P (mem))
317     {
318       ref->ref = NULL_TREE;
319       ref->offset = 0;
320       ref->size = -1;
321       ref->max_size = -1;
322       return true;
323     }
324 
325   /* If the base decl is a parameter we can have negative MEM_OFFSET in
326      case of promoted subregs on bigendian targets.  Trust the MEM_EXPR
327      here.  */
328   if (MEM_OFFSET (mem) < 0
329       && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
330     return true;
331 
332   ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
333   ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
334 
335   /* The MEM may extend into adjacent fields, so adjust max_size if
336      necessary.  */
337   if (ref->max_size != -1
338       && ref->size > ref->max_size)
339     ref->max_size = ref->size;
340 
341   /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
342      the MEM_EXPR punt.  This happens for STRICT_ALIGNMENT targets a lot.  */
343   if (MEM_EXPR (mem) != get_spill_slot_decl (false)
344       && (ref->offset < 0
345 	  || (DECL_P (ref->base)
346 	      && (!host_integerp (DECL_SIZE (ref->base), 1)
347 		  || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
348 		      < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
349     return false;
350 
351   return true;
352 }
353 
354 /* Query the alias-oracle on whether the two memory rtx X and MEM may
355    alias.  If TBAA_P is set also apply TBAA.  Returns true if the
356    two rtxen may alias, false otherwise.  */
357 
358 static bool
359 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
360 {
361   ao_ref ref1, ref2;
362 
363   if (!ao_ref_from_mem (&ref1, x)
364       || !ao_ref_from_mem (&ref2, mem))
365     return true;
366 
367   return refs_may_alias_p_1 (&ref1, &ref2,
368 			     tbaa_p
369 			     && MEM_ALIAS_SET (x) != 0
370 			     && MEM_ALIAS_SET (mem) != 0);
371 }
372 
373 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
374    such an entry, or NULL otherwise.  */
375 
376 static inline alias_set_entry
377 get_alias_set_entry (alias_set_type alias_set)
378 {
379   return VEC_index (alias_set_entry, alias_sets, alias_set);
380 }
381 
382 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
383    the two MEMs cannot alias each other.  */
384 
385 static inline int
386 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
387 {
388 /* Perform a basic sanity check.  Namely, that there are no alias sets
389    if we're not using strict aliasing.  This helps to catch bugs
390    whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
391    where a MEM is allocated in some way other than by the use of
392    gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared.  If we begin to
393    use alias sets to indicate that spilled registers cannot alias each
394    other, we might need to remove this check.  */
395   gcc_assert (flag_strict_aliasing
396 	      || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
397 
398   return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
399 }
400 
401 /* Insert the NODE into the splay tree given by DATA.  Used by
402    record_alias_subset via splay_tree_foreach.  */
403 
404 static int
405 insert_subset_children (splay_tree_node node, void *data)
406 {
407   splay_tree_insert ((splay_tree) data, node->key, node->value);
408 
409   return 0;
410 }
411 
412 /* Return true if the first alias set is a subset of the second.  */
413 
414 bool
415 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
416 {
417   alias_set_entry ase;
418 
419   /* Everything is a subset of the "aliases everything" set.  */
420   if (set2 == 0)
421     return true;
422 
423   /* Otherwise, check if set1 is a subset of set2.  */
424   ase = get_alias_set_entry (set2);
425   if (ase != 0
426       && (ase->has_zero_child
427 	  || splay_tree_lookup (ase->children,
428 			        (splay_tree_key) set1)))
429     return true;
430   return false;
431 }
432 
433 /* Return 1 if the two specified alias sets may conflict.  */
434 
435 int
436 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
437 {
438   alias_set_entry ase;
439 
440   /* The easy case.  */
441   if (alias_sets_must_conflict_p (set1, set2))
442     return 1;
443 
444   /* See if the first alias set is a subset of the second.  */
445   ase = get_alias_set_entry (set1);
446   if (ase != 0
447       && (ase->has_zero_child
448 	  || splay_tree_lookup (ase->children,
449 				(splay_tree_key) set2)))
450     return 1;
451 
452   /* Now do the same, but with the alias sets reversed.  */
453   ase = get_alias_set_entry (set2);
454   if (ase != 0
455       && (ase->has_zero_child
456 	  || splay_tree_lookup (ase->children,
457 				(splay_tree_key) set1)))
458     return 1;
459 
460   /* The two alias sets are distinct and neither one is the
461      child of the other.  Therefore, they cannot conflict.  */
462   return 0;
463 }
464 
465 /* Return 1 if the two specified alias sets will always conflict.  */
466 
467 int
468 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
469 {
470   if (set1 == 0 || set2 == 0 || set1 == set2)
471     return 1;
472 
473   return 0;
474 }
475 
476 /* Return 1 if any MEM object of type T1 will always conflict (using the
477    dependency routines in this file) with any MEM object of type T2.
478    This is used when allocating temporary storage.  If T1 and/or T2 are
479    NULL_TREE, it means we know nothing about the storage.  */
480 
481 int
482 objects_must_conflict_p (tree t1, tree t2)
483 {
484   alias_set_type set1, set2;
485 
486   /* If neither has a type specified, we don't know if they'll conflict
487      because we may be using them to store objects of various types, for
488      example the argument and local variables areas of inlined functions.  */
489   if (t1 == 0 && t2 == 0)
490     return 0;
491 
492   /* If they are the same type, they must conflict.  */
493   if (t1 == t2
494       /* Likewise if both are volatile.  */
495       || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
496     return 1;
497 
498   set1 = t1 ? get_alias_set (t1) : 0;
499   set2 = t2 ? get_alias_set (t2) : 0;
500 
501   /* We can't use alias_sets_conflict_p because we must make sure
502      that every subtype of t1 will conflict with every subtype of
503      t2 for which a pair of subobjects of these respective subtypes
504      overlaps on the stack.  */
505   return alias_sets_must_conflict_p (set1, set2);
506 }
507 
508 /* Return true if all nested component references handled by
509    get_inner_reference in T are such that we should use the alias set
510    provided by the object at the heart of T.
511 
512    This is true for non-addressable components (which don't have their
513    own alias set), as well as components of objects in alias set zero.
514    This later point is a special case wherein we wish to override the
515    alias set used by the component, but we don't have per-FIELD_DECL
516    assignable alias sets.  */
517 
518 bool
519 component_uses_parent_alias_set (const_tree t)
520 {
521   while (1)
522     {
523       /* If we're at the end, it vacuously uses its own alias set.  */
524       if (!handled_component_p (t))
525 	return false;
526 
527       switch (TREE_CODE (t))
528 	{
529 	case COMPONENT_REF:
530 	  if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
531 	    return true;
532 	  break;
533 
534 	case ARRAY_REF:
535 	case ARRAY_RANGE_REF:
536 	  if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
537 	    return true;
538 	  break;
539 
540 	case REALPART_EXPR:
541 	case IMAGPART_EXPR:
542 	  break;
543 
544 	default:
545 	  /* Bitfields and casts are never addressable.  */
546 	  return true;
547 	}
548 
549       t = TREE_OPERAND (t, 0);
550       if (get_alias_set (TREE_TYPE (t)) == 0)
551 	return true;
552     }
553 }
554 
555 /* Return the alias set for the memory pointed to by T, which may be
556    either a type or an expression.  Return -1 if there is nothing
557    special about dereferencing T.  */
558 
559 static alias_set_type
560 get_deref_alias_set_1 (tree t)
561 {
562   /* If we're not doing any alias analysis, just assume everything
563      aliases everything else.  */
564   if (!flag_strict_aliasing)
565     return 0;
566 
567   /* All we care about is the type.  */
568   if (! TYPE_P (t))
569     t = TREE_TYPE (t);
570 
571   /* If we have an INDIRECT_REF via a void pointer, we don't
572      know anything about what that might alias.  Likewise if the
573      pointer is marked that way.  */
574   if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
575       || TYPE_REF_CAN_ALIAS_ALL (t))
576     return 0;
577 
578   return -1;
579 }
580 
581 /* Return the alias set for the memory pointed to by T, which may be
582    either a type or an expression.  */
583 
584 alias_set_type
585 get_deref_alias_set (tree t)
586 {
587   alias_set_type set = get_deref_alias_set_1 (t);
588 
589   /* Fall back to the alias-set of the pointed-to type.  */
590   if (set == -1)
591     {
592       if (! TYPE_P (t))
593 	t = TREE_TYPE (t);
594       set = get_alias_set (TREE_TYPE (t));
595     }
596 
597   return set;
598 }
599 
600 /* Return the alias set for T, which may be either a type or an
601    expression.  Call language-specific routine for help, if needed.  */
602 
603 alias_set_type
604 get_alias_set (tree t)
605 {
606   alias_set_type set;
607 
608   /* If we're not doing any alias analysis, just assume everything
609      aliases everything else.  Also return 0 if this or its type is
610      an error.  */
611   if (! flag_strict_aliasing || t == error_mark_node
612       || (! TYPE_P (t)
613 	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
614     return 0;
615 
616   /* We can be passed either an expression or a type.  This and the
617      language-specific routine may make mutually-recursive calls to each other
618      to figure out what to do.  At each juncture, we see if this is a tree
619      that the language may need to handle specially.  First handle things that
620      aren't types.  */
621   if (! TYPE_P (t))
622     {
623       tree inner;
624 
625       /* Give the language a chance to do something with this tree
626 	 before we look at it.  */
627       STRIP_NOPS (t);
628       set = lang_hooks.get_alias_set (t);
629       if (set != -1)
630 	return set;
631 
632       /* Get the base object of the reference.  */
633       inner = t;
634       while (handled_component_p (inner))
635 	{
636 	  /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
637 	     the type of any component references that wrap it to
638 	     determine the alias-set.  */
639 	  if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
640 	    t = TREE_OPERAND (inner, 0);
641 	  inner = TREE_OPERAND (inner, 0);
642 	}
643 
644       /* Handle pointer dereferences here, they can override the
645 	 alias-set.  */
646       if (INDIRECT_REF_P (inner))
647 	{
648 	  set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
649 	  if (set != -1)
650 	    return set;
651 	}
652       else if (TREE_CODE (inner) == TARGET_MEM_REF)
653 	return get_deref_alias_set (TMR_OFFSET (inner));
654       else if (TREE_CODE (inner) == MEM_REF)
655 	{
656 	  set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
657 	  if (set != -1)
658 	    return set;
659 	}
660 
661       /* If the innermost reference is a MEM_REF that has a
662 	 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
663 	 using the memory access type for determining the alias-set.  */
664      if (TREE_CODE (inner) == MEM_REF
665 	 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
666 	    != TYPE_MAIN_VARIANT
667 	       (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
668        return get_deref_alias_set (TREE_OPERAND (inner, 1));
669 
670       /* Otherwise, pick up the outermost object that we could have a pointer
671 	 to, processing conversions as above.  */
672       while (component_uses_parent_alias_set (t))
673 	{
674 	  t = TREE_OPERAND (t, 0);
675 	  STRIP_NOPS (t);
676 	}
677 
678       /* If we've already determined the alias set for a decl, just return
679 	 it.  This is necessary for C++ anonymous unions, whose component
680 	 variables don't look like union members (boo!).  */
681       if (TREE_CODE (t) == VAR_DECL
682 	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
683 	return MEM_ALIAS_SET (DECL_RTL (t));
684 
685       /* Now all we care about is the type.  */
686       t = TREE_TYPE (t);
687     }
688 
689   /* Variant qualifiers don't affect the alias set, so get the main
690      variant.  */
691   t = TYPE_MAIN_VARIANT (t);
692 
693   /* Always use the canonical type as well.  If this is a type that
694      requires structural comparisons to identify compatible types
695      use alias set zero.  */
696   if (TYPE_STRUCTURAL_EQUALITY_P (t))
697     {
698       /* Allow the language to specify another alias set for this
699 	 type.  */
700       set = lang_hooks.get_alias_set (t);
701       if (set != -1)
702 	return set;
703       return 0;
704     }
705 
706   t = TYPE_CANONICAL (t);
707 
708   /* The canonical type should not require structural equality checks.  */
709   gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
710 
711   /* If this is a type with a known alias set, return it.  */
712   if (TYPE_ALIAS_SET_KNOWN_P (t))
713     return TYPE_ALIAS_SET (t);
714 
715   /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
716   if (!COMPLETE_TYPE_P (t))
717     {
718       /* For arrays with unknown size the conservative answer is the
719 	 alias set of the element type.  */
720       if (TREE_CODE (t) == ARRAY_TYPE)
721 	return get_alias_set (TREE_TYPE (t));
722 
723       /* But return zero as a conservative answer for incomplete types.  */
724       return 0;
725     }
726 
727   /* See if the language has special handling for this type.  */
728   set = lang_hooks.get_alias_set (t);
729   if (set != -1)
730     return set;
731 
732   /* There are no objects of FUNCTION_TYPE, so there's no point in
733      using up an alias set for them.  (There are, of course, pointers
734      and references to functions, but that's different.)  */
735   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
736     set = 0;
737 
738   /* Unless the language specifies otherwise, let vector types alias
739      their components.  This avoids some nasty type punning issues in
740      normal usage.  And indeed lets vectors be treated more like an
741      array slice.  */
742   else if (TREE_CODE (t) == VECTOR_TYPE)
743     set = get_alias_set (TREE_TYPE (t));
744 
745   /* Unless the language specifies otherwise, treat array types the
746      same as their components.  This avoids the asymmetry we get
747      through recording the components.  Consider accessing a
748      character(kind=1) through a reference to a character(kind=1)[1:1].
749      Or consider if we want to assign integer(kind=4)[0:D.1387] and
750      integer(kind=4)[4] the same alias set or not.
751      Just be pragmatic here and make sure the array and its element
752      type get the same alias set assigned.  */
753   else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
754     set = get_alias_set (TREE_TYPE (t));
755 
756   /* From the former common C and C++ langhook implementation:
757 
758      Unfortunately, there is no canonical form of a pointer type.
759      In particular, if we have `typedef int I', then `int *', and
760      `I *' are different types.  So, we have to pick a canonical
761      representative.  We do this below.
762 
763      Technically, this approach is actually more conservative that
764      it needs to be.  In particular, `const int *' and `int *'
765      should be in different alias sets, according to the C and C++
766      standard, since their types are not the same, and so,
767      technically, an `int **' and `const int **' cannot point at
768      the same thing.
769 
770      But, the standard is wrong.  In particular, this code is
771      legal C++:
772 
773      int *ip;
774      int **ipp = &ip;
775      const int* const* cipp = ipp;
776      And, it doesn't make sense for that to be legal unless you
777      can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
778      the pointed-to types.  This issue has been reported to the
779      C++ committee.
780 
781      In addition to the above canonicalization issue, with LTO
782      we should also canonicalize `T (*)[]' to `T *' avoiding
783      alias issues with pointer-to element types and pointer-to
784      array types.
785 
786      Likewise we need to deal with the situation of incomplete
787      pointed-to types and make `*(struct X **)&a' and
788      `*(struct X {} **)&a' alias.  Otherwise we will have to
789      guarantee that all pointer-to incomplete type variants
790      will be replaced by pointer-to complete type variants if
791      they are available.
792 
793      With LTO the convenient situation of using `void *' to
794      access and store any pointer type will also become
795      more apparent (and `void *' is just another pointer-to
796      incomplete type).  Assigning alias-set zero to `void *'
797      and all pointer-to incomplete types is a not appealing
798      solution.  Assigning an effective alias-set zero only
799      affecting pointers might be - by recording proper subset
800      relationships of all pointer alias-sets.
801 
802      Pointer-to function types are another grey area which
803      needs caution.  Globbing them all into one alias-set
804      or the above effective zero set would work.
805 
806      For now just assign the same alias-set to all pointers.
807      That's simple and avoids all the above problems.  */
808   else if (POINTER_TYPE_P (t)
809 	   && t != ptr_type_node)
810     set = get_alias_set (ptr_type_node);
811 
812   /* Otherwise make a new alias set for this type.  */
813   else
814     {
815       /* Each canonical type gets its own alias set, so canonical types
816 	 shouldn't form a tree.  It doesn't really matter for types
817 	 we handle specially above, so only check it where it possibly
818 	 would result in a bogus alias set.  */
819       gcc_checking_assert (TYPE_CANONICAL (t) == t);
820 
821       set = new_alias_set ();
822     }
823 
824   TYPE_ALIAS_SET (t) = set;
825 
826   /* If this is an aggregate type or a complex type, we must record any
827      component aliasing information.  */
828   if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
829     record_component_aliases (t);
830 
831   return set;
832 }
833 
834 /* Return a brand-new alias set.  */
835 
836 alias_set_type
837 new_alias_set (void)
838 {
839   if (flag_strict_aliasing)
840     {
841       if (alias_sets == 0)
842 	VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
843       VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
844       return VEC_length (alias_set_entry, alias_sets) - 1;
845     }
846   else
847     return 0;
848 }
849 
850 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
851    not everything that aliases SUPERSET also aliases SUBSET.  For example,
852    in C, a store to an `int' can alias a load of a structure containing an
853    `int', and vice versa.  But it can't alias a load of a 'double' member
854    of the same structure.  Here, the structure would be the SUPERSET and
855    `int' the SUBSET.  This relationship is also described in the comment at
856    the beginning of this file.
857 
858    This function should be called only once per SUPERSET/SUBSET pair.
859 
860    It is illegal for SUPERSET to be zero; everything is implicitly a
861    subset of alias set zero.  */
862 
863 void
864 record_alias_subset (alias_set_type superset, alias_set_type subset)
865 {
866   alias_set_entry superset_entry;
867   alias_set_entry subset_entry;
868 
869   /* It is possible in complex type situations for both sets to be the same,
870      in which case we can ignore this operation.  */
871   if (superset == subset)
872     return;
873 
874   gcc_assert (superset);
875 
876   superset_entry = get_alias_set_entry (superset);
877   if (superset_entry == 0)
878     {
879       /* Create an entry for the SUPERSET, so that we have a place to
880 	 attach the SUBSET.  */
881       superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
882       superset_entry->alias_set = superset;
883       superset_entry->children
884 	= splay_tree_new_ggc (splay_tree_compare_ints,
885 			      ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
886 			      ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
887       superset_entry->has_zero_child = 0;
888       VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
889     }
890 
891   if (subset == 0)
892     superset_entry->has_zero_child = 1;
893   else
894     {
895       subset_entry = get_alias_set_entry (subset);
896       /* If there is an entry for the subset, enter all of its children
897 	 (if they are not already present) as children of the SUPERSET.  */
898       if (subset_entry)
899 	{
900 	  if (subset_entry->has_zero_child)
901 	    superset_entry->has_zero_child = 1;
902 
903 	  splay_tree_foreach (subset_entry->children, insert_subset_children,
904 			      superset_entry->children);
905 	}
906 
907       /* Enter the SUBSET itself as a child of the SUPERSET.  */
908       splay_tree_insert (superset_entry->children,
909 			 (splay_tree_key) subset, 0);
910     }
911 }
912 
913 /* Record that component types of TYPE, if any, are part of that type for
914    aliasing purposes.  For record types, we only record component types
915    for fields that are not marked non-addressable.  For array types, we
916    only record the component type if it is not marked non-aliased.  */
917 
918 void
919 record_component_aliases (tree type)
920 {
921   alias_set_type superset = get_alias_set (type);
922   tree field;
923 
924   if (superset == 0)
925     return;
926 
927   switch (TREE_CODE (type))
928     {
929     case RECORD_TYPE:
930     case UNION_TYPE:
931     case QUAL_UNION_TYPE:
932       /* Recursively record aliases for the base classes, if there are any.  */
933       if (TYPE_BINFO (type))
934 	{
935 	  int i;
936 	  tree binfo, base_binfo;
937 
938 	  for (binfo = TYPE_BINFO (type), i = 0;
939 	       BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
940 	    record_alias_subset (superset,
941 				 get_alias_set (BINFO_TYPE (base_binfo)));
942 	}
943       for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
944 	if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
945 	  record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
946       break;
947 
948     case COMPLEX_TYPE:
949       record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
950       break;
951 
952     /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
953        element type.  */
954 
955     default:
956       break;
957     }
958 }
959 
960 /* Allocate an alias set for use in storing and reading from the varargs
961    spill area.  */
962 
963 static GTY(()) alias_set_type varargs_set = -1;
964 
965 alias_set_type
966 get_varargs_alias_set (void)
967 {
968 #if 1
969   /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
970      varargs alias set to an INDIRECT_REF (FIXME!), so we can't
971      consistently use the varargs alias set for loads from the varargs
972      area.  So don't use it anywhere.  */
973   return 0;
974 #else
975   if (varargs_set == -1)
976     varargs_set = new_alias_set ();
977 
978   return varargs_set;
979 #endif
980 }
981 
982 /* Likewise, but used for the fixed portions of the frame, e.g., register
983    save areas.  */
984 
985 static GTY(()) alias_set_type frame_set = -1;
986 
987 alias_set_type
988 get_frame_alias_set (void)
989 {
990   if (frame_set == -1)
991     frame_set = new_alias_set ();
992 
993   return frame_set;
994 }
995 
996 /* Inside SRC, the source of a SET, find a base address.  */
997 
998 static rtx
999 find_base_value (rtx src)
1000 {
1001   unsigned int regno;
1002 
1003 #if defined (FIND_BASE_TERM)
1004   /* Try machine-dependent ways to find the base term.  */
1005   src = FIND_BASE_TERM (src);
1006 #endif
1007 
1008   switch (GET_CODE (src))
1009     {
1010     case SYMBOL_REF:
1011     case LABEL_REF:
1012       return src;
1013 
1014     case REG:
1015       regno = REGNO (src);
1016       /* At the start of a function, argument registers have known base
1017 	 values which may be lost later.  Returning an ADDRESS
1018 	 expression here allows optimization based on argument values
1019 	 even when the argument registers are used for other purposes.  */
1020       if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1021 	return new_reg_base_value[regno];
1022 
1023       /* If a pseudo has a known base value, return it.  Do not do this
1024 	 for non-fixed hard regs since it can result in a circular
1025 	 dependency chain for registers which have values at function entry.
1026 
1027 	 The test above is not sufficient because the scheduler may move
1028 	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
1029       if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1030 	  && regno < VEC_length (rtx, reg_base_value))
1031 	{
1032 	  /* If we're inside init_alias_analysis, use new_reg_base_value
1033 	     to reduce the number of relaxation iterations.  */
1034 	  if (new_reg_base_value && new_reg_base_value[regno]
1035 	      && DF_REG_DEF_COUNT (regno) == 1)
1036 	    return new_reg_base_value[regno];
1037 
1038 	  if (VEC_index (rtx, reg_base_value, regno))
1039 	    return VEC_index (rtx, reg_base_value, regno);
1040 	}
1041 
1042       return 0;
1043 
1044     case MEM:
1045       /* Check for an argument passed in memory.  Only record in the
1046 	 copying-arguments block; it is too hard to track changes
1047 	 otherwise.  */
1048       if (copying_arguments
1049 	  && (XEXP (src, 0) == arg_pointer_rtx
1050 	      || (GET_CODE (XEXP (src, 0)) == PLUS
1051 		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1052 	return gen_rtx_ADDRESS (VOIDmode, src);
1053       return 0;
1054 
1055     case CONST:
1056       src = XEXP (src, 0);
1057       if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1058 	break;
1059 
1060       /* ... fall through ...  */
1061 
1062     case PLUS:
1063     case MINUS:
1064       {
1065 	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1066 
1067 	/* If either operand is a REG that is a known pointer, then it
1068 	   is the base.  */
1069 	if (REG_P (src_0) && REG_POINTER (src_0))
1070 	  return find_base_value (src_0);
1071 	if (REG_P (src_1) && REG_POINTER (src_1))
1072 	  return find_base_value (src_1);
1073 
1074 	/* If either operand is a REG, then see if we already have
1075 	   a known value for it.  */
1076 	if (REG_P (src_0))
1077 	  {
1078 	    temp = find_base_value (src_0);
1079 	    if (temp != 0)
1080 	      src_0 = temp;
1081 	  }
1082 
1083 	if (REG_P (src_1))
1084 	  {
1085 	    temp = find_base_value (src_1);
1086 	    if (temp!= 0)
1087 	      src_1 = temp;
1088 	  }
1089 
1090 	/* If either base is named object or a special address
1091 	   (like an argument or stack reference), then use it for the
1092 	   base term.  */
1093 	if (src_0 != 0
1094 	    && (GET_CODE (src_0) == SYMBOL_REF
1095 		|| GET_CODE (src_0) == LABEL_REF
1096 		|| (GET_CODE (src_0) == ADDRESS
1097 		    && GET_MODE (src_0) != VOIDmode)))
1098 	  return src_0;
1099 
1100 	if (src_1 != 0
1101 	    && (GET_CODE (src_1) == SYMBOL_REF
1102 		|| GET_CODE (src_1) == LABEL_REF
1103 		|| (GET_CODE (src_1) == ADDRESS
1104 		    && GET_MODE (src_1) != VOIDmode)))
1105 	  return src_1;
1106 
1107 	/* Guess which operand is the base address:
1108 	   If either operand is a symbol, then it is the base.  If
1109 	   either operand is a CONST_INT, then the other is the base.  */
1110 	if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1111 	  return find_base_value (src_0);
1112 	else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1113 	  return find_base_value (src_1);
1114 
1115 	return 0;
1116       }
1117 
1118     case LO_SUM:
1119       /* The standard form is (lo_sum reg sym) so look only at the
1120 	 second operand.  */
1121       return find_base_value (XEXP (src, 1));
1122 
1123     case AND:
1124       /* If the second operand is constant set the base
1125 	 address to the first operand.  */
1126       if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1127 	return find_base_value (XEXP (src, 0));
1128       return 0;
1129 
1130     case TRUNCATE:
1131       /* As we do not know which address space the pointer is refering to, we can
1132 	 handle this only if the target does not support different pointer or
1133 	 address modes depending on the address space.  */
1134       if (!target_default_pointer_address_modes_p ())
1135 	break;
1136       if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1137 	break;
1138       /* Fall through.  */
1139     case HIGH:
1140     case PRE_INC:
1141     case PRE_DEC:
1142     case POST_INC:
1143     case POST_DEC:
1144     case PRE_MODIFY:
1145     case POST_MODIFY:
1146       return find_base_value (XEXP (src, 0));
1147 
1148     case ZERO_EXTEND:
1149     case SIGN_EXTEND:	/* used for NT/Alpha pointers */
1150       /* As we do not know which address space the pointer is refering to, we can
1151 	 handle this only if the target does not support different pointer or
1152 	 address modes depending on the address space.  */
1153       if (!target_default_pointer_address_modes_p ())
1154 	break;
1155 
1156       {
1157 	rtx temp = find_base_value (XEXP (src, 0));
1158 
1159 	if (temp != 0 && CONSTANT_P (temp))
1160 	  temp = convert_memory_address (Pmode, temp);
1161 
1162 	return temp;
1163       }
1164 
1165     default:
1166       break;
1167     }
1168 
1169   return 0;
1170 }
1171 
1172 /* Called from init_alias_analysis indirectly through note_stores.  */
1173 
1174 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1175    register N has been set in this function.  */
1176 static char *reg_seen;
1177 
1178 /* Addresses which are known not to alias anything else are identified
1179    by a unique integer.  */
1180 static int unique_id;
1181 
1182 static void
1183 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1184 {
1185   unsigned regno;
1186   rtx src;
1187   int n;
1188 
1189   if (!REG_P (dest))
1190     return;
1191 
1192   regno = REGNO (dest);
1193 
1194   gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
1195 
1196   /* If this spans multiple hard registers, then we must indicate that every
1197      register has an unusable value.  */
1198   if (regno < FIRST_PSEUDO_REGISTER)
1199     n = hard_regno_nregs[regno][GET_MODE (dest)];
1200   else
1201     n = 1;
1202   if (n != 1)
1203     {
1204       while (--n >= 0)
1205 	{
1206 	  reg_seen[regno + n] = 1;
1207 	  new_reg_base_value[regno + n] = 0;
1208 	}
1209       return;
1210     }
1211 
1212   if (set)
1213     {
1214       /* A CLOBBER wipes out any old value but does not prevent a previously
1215 	 unset register from acquiring a base address (i.e. reg_seen is not
1216 	 set).  */
1217       if (GET_CODE (set) == CLOBBER)
1218 	{
1219 	  new_reg_base_value[regno] = 0;
1220 	  return;
1221 	}
1222       src = SET_SRC (set);
1223     }
1224   else
1225     {
1226       if (reg_seen[regno])
1227 	{
1228 	  new_reg_base_value[regno] = 0;
1229 	  return;
1230 	}
1231       reg_seen[regno] = 1;
1232       new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1233 						   GEN_INT (unique_id++));
1234       return;
1235     }
1236 
1237   /* If this is not the first set of REGNO, see whether the new value
1238      is related to the old one.  There are two cases of interest:
1239 
1240 	(1) The register might be assigned an entirely new value
1241 	    that has the same base term as the original set.
1242 
1243 	(2) The set might be a simple self-modification that
1244 	    cannot change REGNO's base value.
1245 
1246      If neither case holds, reject the original base value as invalid.
1247      Note that the following situation is not detected:
1248 
1249 	 extern int x, y;  int *p = &x; p += (&y-&x);
1250 
1251      ANSI C does not allow computing the difference of addresses
1252      of distinct top level objects.  */
1253   if (new_reg_base_value[regno] != 0
1254       && find_base_value (src) != new_reg_base_value[regno])
1255     switch (GET_CODE (src))
1256       {
1257       case LO_SUM:
1258       case MINUS:
1259 	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1260 	  new_reg_base_value[regno] = 0;
1261 	break;
1262       case PLUS:
1263 	/* If the value we add in the PLUS is also a valid base value,
1264 	   this might be the actual base value, and the original value
1265 	   an index.  */
1266 	{
1267 	  rtx other = NULL_RTX;
1268 
1269 	  if (XEXP (src, 0) == dest)
1270 	    other = XEXP (src, 1);
1271 	  else if (XEXP (src, 1) == dest)
1272 	    other = XEXP (src, 0);
1273 
1274 	  if (! other || find_base_value (other))
1275 	    new_reg_base_value[regno] = 0;
1276 	  break;
1277 	}
1278       case AND:
1279 	if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1280 	  new_reg_base_value[regno] = 0;
1281 	break;
1282       default:
1283 	new_reg_base_value[regno] = 0;
1284 	break;
1285       }
1286   /* If this is the first set of a register, record the value.  */
1287   else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1288 	   && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1289     new_reg_base_value[regno] = find_base_value (src);
1290 
1291   reg_seen[regno] = 1;
1292 }
1293 
1294 /* Return REG_BASE_VALUE for REGNO.  Selective scheduler uses this to avoid
1295    using hard registers with non-null REG_BASE_VALUE for renaming.  */
1296 rtx
1297 get_reg_base_value (unsigned int regno)
1298 {
1299   return VEC_index (rtx, reg_base_value, regno);
1300 }
1301 
1302 /* If a value is known for REGNO, return it.  */
1303 
1304 rtx
1305 get_reg_known_value (unsigned int regno)
1306 {
1307   if (regno >= FIRST_PSEUDO_REGISTER)
1308     {
1309       regno -= FIRST_PSEUDO_REGISTER;
1310       if (regno < reg_known_value_size)
1311 	return reg_known_value[regno];
1312     }
1313   return NULL;
1314 }
1315 
1316 /* Set it.  */
1317 
1318 static void
1319 set_reg_known_value (unsigned int regno, rtx val)
1320 {
1321   if (regno >= FIRST_PSEUDO_REGISTER)
1322     {
1323       regno -= FIRST_PSEUDO_REGISTER;
1324       if (regno < reg_known_value_size)
1325 	reg_known_value[regno] = val;
1326     }
1327 }
1328 
1329 /* Similarly for reg_known_equiv_p.  */
1330 
1331 bool
1332 get_reg_known_equiv_p (unsigned int regno)
1333 {
1334   if (regno >= FIRST_PSEUDO_REGISTER)
1335     {
1336       regno -= FIRST_PSEUDO_REGISTER;
1337       if (regno < reg_known_value_size)
1338 	return reg_known_equiv_p[regno];
1339     }
1340   return false;
1341 }
1342 
1343 static void
1344 set_reg_known_equiv_p (unsigned int regno, bool val)
1345 {
1346   if (regno >= FIRST_PSEUDO_REGISTER)
1347     {
1348       regno -= FIRST_PSEUDO_REGISTER;
1349       if (regno < reg_known_value_size)
1350 	reg_known_equiv_p[regno] = val;
1351     }
1352 }
1353 
1354 
1355 /* Returns a canonical version of X, from the point of view alias
1356    analysis.  (For example, if X is a MEM whose address is a register,
1357    and the register has a known value (say a SYMBOL_REF), then a MEM
1358    whose address is the SYMBOL_REF is returned.)  */
1359 
1360 rtx
1361 canon_rtx (rtx x)
1362 {
1363   /* Recursively look for equivalences.  */
1364   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1365     {
1366       rtx t = get_reg_known_value (REGNO (x));
1367       if (t == x)
1368 	return x;
1369       if (t)
1370 	return canon_rtx (t);
1371     }
1372 
1373   if (GET_CODE (x) == PLUS)
1374     {
1375       rtx x0 = canon_rtx (XEXP (x, 0));
1376       rtx x1 = canon_rtx (XEXP (x, 1));
1377 
1378       if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1379 	{
1380 	  if (CONST_INT_P (x0))
1381 	    return plus_constant (x1, INTVAL (x0));
1382 	  else if (CONST_INT_P (x1))
1383 	    return plus_constant (x0, INTVAL (x1));
1384 	  return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1385 	}
1386     }
1387 
1388   /* This gives us much better alias analysis when called from
1389      the loop optimizer.   Note we want to leave the original
1390      MEM alone, but need to return the canonicalized MEM with
1391      all the flags with their original values.  */
1392   else if (MEM_P (x))
1393     x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1394 
1395   return x;
1396 }
1397 
1398 /* Return 1 if X and Y are identical-looking rtx's.
1399    Expect that X and Y has been already canonicalized.
1400 
1401    We use the data in reg_known_value above to see if two registers with
1402    different numbers are, in fact, equivalent.  */
1403 
1404 static int
1405 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1406 {
1407   int i;
1408   int j;
1409   enum rtx_code code;
1410   const char *fmt;
1411 
1412   if (x == 0 && y == 0)
1413     return 1;
1414   if (x == 0 || y == 0)
1415     return 0;
1416 
1417   if (x == y)
1418     return 1;
1419 
1420   code = GET_CODE (x);
1421   /* Rtx's of different codes cannot be equal.  */
1422   if (code != GET_CODE (y))
1423     return 0;
1424 
1425   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1426      (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1427 
1428   if (GET_MODE (x) != GET_MODE (y))
1429     return 0;
1430 
1431   /* Some RTL can be compared without a recursive examination.  */
1432   switch (code)
1433     {
1434     case REG:
1435       return REGNO (x) == REGNO (y);
1436 
1437     case LABEL_REF:
1438       return XEXP (x, 0) == XEXP (y, 0);
1439 
1440     case SYMBOL_REF:
1441       return XSTR (x, 0) == XSTR (y, 0);
1442 
1443     case VALUE:
1444     case CONST_INT:
1445     case CONST_DOUBLE:
1446     case CONST_FIXED:
1447       /* There's no need to compare the contents of CONST_DOUBLEs or
1448 	 CONST_INTs because pointer equality is a good enough
1449 	 comparison for these nodes.  */
1450       return 0;
1451 
1452     default:
1453       break;
1454     }
1455 
1456   /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
1457   if (code == PLUS)
1458     return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1459 	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1460 	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1461 		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1462   /* For commutative operations, the RTX match if the operand match in any
1463      order.  Also handle the simple binary and unary cases without a loop.  */
1464   if (COMMUTATIVE_P (x))
1465     {
1466       rtx xop0 = canon_rtx (XEXP (x, 0));
1467       rtx yop0 = canon_rtx (XEXP (y, 0));
1468       rtx yop1 = canon_rtx (XEXP (y, 1));
1469 
1470       return ((rtx_equal_for_memref_p (xop0, yop0)
1471 	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1472 	      || (rtx_equal_for_memref_p (xop0, yop1)
1473 		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1474     }
1475   else if (NON_COMMUTATIVE_P (x))
1476     {
1477       return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1478 				      canon_rtx (XEXP (y, 0)))
1479 	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1480 					 canon_rtx (XEXP (y, 1))));
1481     }
1482   else if (UNARY_P (x))
1483     return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1484 				   canon_rtx (XEXP (y, 0)));
1485 
1486   /* Compare the elements.  If any pair of corresponding elements
1487      fail to match, return 0 for the whole things.
1488 
1489      Limit cases to types which actually appear in addresses.  */
1490 
1491   fmt = GET_RTX_FORMAT (code);
1492   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1493     {
1494       switch (fmt[i])
1495 	{
1496 	case 'i':
1497 	  if (XINT (x, i) != XINT (y, i))
1498 	    return 0;
1499 	  break;
1500 
1501 	case 'E':
1502 	  /* Two vectors must have the same length.  */
1503 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1504 	    return 0;
1505 
1506 	  /* And the corresponding elements must match.  */
1507 	  for (j = 0; j < XVECLEN (x, i); j++)
1508 	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1509 					canon_rtx (XVECEXP (y, i, j))) == 0)
1510 	      return 0;
1511 	  break;
1512 
1513 	case 'e':
1514 	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1515 				      canon_rtx (XEXP (y, i))) == 0)
1516 	    return 0;
1517 	  break;
1518 
1519 	  /* This can happen for asm operands.  */
1520 	case 's':
1521 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1522 	    return 0;
1523 	  break;
1524 
1525 	/* This can happen for an asm which clobbers memory.  */
1526 	case '0':
1527 	  break;
1528 
1529 	  /* It is believed that rtx's at this level will never
1530 	     contain anything but integers and other rtx's,
1531 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1532 	default:
1533 	  gcc_unreachable ();
1534 	}
1535     }
1536   return 1;
1537 }
1538 
1539 rtx
1540 find_base_term (rtx x)
1541 {
1542   cselib_val *val;
1543   struct elt_loc_list *l, *f;
1544   rtx ret;
1545 
1546 #if defined (FIND_BASE_TERM)
1547   /* Try machine-dependent ways to find the base term.  */
1548   x = FIND_BASE_TERM (x);
1549 #endif
1550 
1551   switch (GET_CODE (x))
1552     {
1553     case REG:
1554       return REG_BASE_VALUE (x);
1555 
1556     case TRUNCATE:
1557       /* As we do not know which address space the pointer is refering to, we can
1558 	 handle this only if the target does not support different pointer or
1559 	 address modes depending on the address space.  */
1560       if (!target_default_pointer_address_modes_p ())
1561 	return 0;
1562       if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1563 	return 0;
1564       /* Fall through.  */
1565     case HIGH:
1566     case PRE_INC:
1567     case PRE_DEC:
1568     case POST_INC:
1569     case POST_DEC:
1570     case PRE_MODIFY:
1571     case POST_MODIFY:
1572       return find_base_term (XEXP (x, 0));
1573 
1574     case ZERO_EXTEND:
1575     case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
1576       /* As we do not know which address space the pointer is refering to, we can
1577 	 handle this only if the target does not support different pointer or
1578 	 address modes depending on the address space.  */
1579       if (!target_default_pointer_address_modes_p ())
1580 	return 0;
1581 
1582       {
1583 	rtx temp = find_base_term (XEXP (x, 0));
1584 
1585 	if (temp != 0 && CONSTANT_P (temp))
1586 	  temp = convert_memory_address (Pmode, temp);
1587 
1588 	return temp;
1589       }
1590 
1591     case VALUE:
1592       val = CSELIB_VAL_PTR (x);
1593       ret = NULL_RTX;
1594 
1595       if (!val)
1596 	return ret;
1597 
1598       f = val->locs;
1599       /* Temporarily reset val->locs to avoid infinite recursion.  */
1600       val->locs = NULL;
1601 
1602       for (l = f; l; l = l->next)
1603 	if (GET_CODE (l->loc) == VALUE
1604 	    && CSELIB_VAL_PTR (l->loc)->locs
1605 	    && !CSELIB_VAL_PTR (l->loc)->locs->next
1606 	    && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1607 	  continue;
1608 	else if ((ret = find_base_term (l->loc)) != 0)
1609 	  break;
1610 
1611       val->locs = f;
1612       return ret;
1613 
1614     case LO_SUM:
1615       /* The standard form is (lo_sum reg sym) so look only at the
1616          second operand.  */
1617       return find_base_term (XEXP (x, 1));
1618 
1619     case CONST:
1620       x = XEXP (x, 0);
1621       if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1622 	return 0;
1623       /* Fall through.  */
1624     case PLUS:
1625     case MINUS:
1626       {
1627 	rtx tmp1 = XEXP (x, 0);
1628 	rtx tmp2 = XEXP (x, 1);
1629 
1630 	/* This is a little bit tricky since we have to determine which of
1631 	   the two operands represents the real base address.  Otherwise this
1632 	   routine may return the index register instead of the base register.
1633 
1634 	   That may cause us to believe no aliasing was possible, when in
1635 	   fact aliasing is possible.
1636 
1637 	   We use a few simple tests to guess the base register.  Additional
1638 	   tests can certainly be added.  For example, if one of the operands
1639 	   is a shift or multiply, then it must be the index register and the
1640 	   other operand is the base register.  */
1641 
1642 	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1643 	  return find_base_term (tmp2);
1644 
1645 	/* If either operand is known to be a pointer, then use it
1646 	   to determine the base term.  */
1647 	if (REG_P (tmp1) && REG_POINTER (tmp1))
1648 	  {
1649 	    rtx base = find_base_term (tmp1);
1650 	    if (base)
1651 	      return base;
1652 	  }
1653 
1654 	if (REG_P (tmp2) && REG_POINTER (tmp2))
1655 	  {
1656 	    rtx base = find_base_term (tmp2);
1657 	    if (base)
1658 	      return base;
1659 	  }
1660 
1661 	/* Neither operand was known to be a pointer.  Go ahead and find the
1662 	   base term for both operands.  */
1663 	tmp1 = find_base_term (tmp1);
1664 	tmp2 = find_base_term (tmp2);
1665 
1666 	/* If either base term is named object or a special address
1667 	   (like an argument or stack reference), then use it for the
1668 	   base term.  */
1669 	if (tmp1 != 0
1670 	    && (GET_CODE (tmp1) == SYMBOL_REF
1671 		|| GET_CODE (tmp1) == LABEL_REF
1672 		|| (GET_CODE (tmp1) == ADDRESS
1673 		    && GET_MODE (tmp1) != VOIDmode)))
1674 	  return tmp1;
1675 
1676 	if (tmp2 != 0
1677 	    && (GET_CODE (tmp2) == SYMBOL_REF
1678 		|| GET_CODE (tmp2) == LABEL_REF
1679 		|| (GET_CODE (tmp2) == ADDRESS
1680 		    && GET_MODE (tmp2) != VOIDmode)))
1681 	  return tmp2;
1682 
1683 	/* We could not determine which of the two operands was the
1684 	   base register and which was the index.  So we can determine
1685 	   nothing from the base alias check.  */
1686 	return 0;
1687       }
1688 
1689     case AND:
1690       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1691 	return find_base_term (XEXP (x, 0));
1692       return 0;
1693 
1694     case SYMBOL_REF:
1695     case LABEL_REF:
1696       return x;
1697 
1698     default:
1699       return 0;
1700     }
1701 }
1702 
1703 /* Return 0 if the addresses X and Y are known to point to different
1704    objects, 1 if they might be pointers to the same object.  */
1705 
1706 static int
1707 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1708 		  enum machine_mode y_mode)
1709 {
1710   rtx x_base = find_base_term (x);
1711   rtx y_base = find_base_term (y);
1712 
1713   /* If the address itself has no known base see if a known equivalent
1714      value has one.  If either address still has no known base, nothing
1715      is known about aliasing.  */
1716   if (x_base == 0)
1717     {
1718       rtx x_c;
1719 
1720       if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1721 	return 1;
1722 
1723       x_base = find_base_term (x_c);
1724       if (x_base == 0)
1725 	return 1;
1726     }
1727 
1728   if (y_base == 0)
1729     {
1730       rtx y_c;
1731       if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1732 	return 1;
1733 
1734       y_base = find_base_term (y_c);
1735       if (y_base == 0)
1736 	return 1;
1737     }
1738 
1739   /* If the base addresses are equal nothing is known about aliasing.  */
1740   if (rtx_equal_p (x_base, y_base))
1741     return 1;
1742 
1743   /* The base addresses are different expressions.  If they are not accessed
1744      via AND, there is no conflict.  We can bring knowledge of object
1745      alignment into play here.  For example, on alpha, "char a, b;" can
1746      alias one another, though "char a; long b;" cannot.  AND addesses may
1747      implicitly alias surrounding objects; i.e. unaligned access in DImode
1748      via AND address can alias all surrounding object types except those
1749      with aligment 8 or higher.  */
1750   if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1751     return 1;
1752   if (GET_CODE (x) == AND
1753       && (!CONST_INT_P (XEXP (x, 1))
1754 	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1755     return 1;
1756   if (GET_CODE (y) == AND
1757       && (!CONST_INT_P (XEXP (y, 1))
1758 	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1759     return 1;
1760 
1761   /* Differing symbols not accessed via AND never alias.  */
1762   if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1763     return 0;
1764 
1765   /* If one address is a stack reference there can be no alias:
1766      stack references using different base registers do not alias,
1767      a stack reference can not alias a parameter, and a stack reference
1768      can not alias a global.  */
1769   if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1770       || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1771     return 0;
1772 
1773   return 1;
1774 }
1775 
1776 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1777    whose UID is greater than the int uid that D points to.  */
1778 
1779 static int
1780 refs_newer_value_cb (rtx *x, void *d)
1781 {
1782   if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1783     return 1;
1784 
1785   return 0;
1786 }
1787 
1788 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1789    that of V.  */
1790 
1791 static bool
1792 refs_newer_value_p (rtx expr, rtx v)
1793 {
1794   int minuid = CSELIB_VAL_PTR (v)->uid;
1795 
1796   return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1797 }
1798 
1799 /* Convert the address X into something we can use.  This is done by returning
1800    it unchanged unless it is a value; in the latter case we call cselib to get
1801    a more useful rtx.  */
1802 
1803 rtx
1804 get_addr (rtx x)
1805 {
1806   cselib_val *v;
1807   struct elt_loc_list *l;
1808 
1809   if (GET_CODE (x) != VALUE)
1810     return x;
1811   v = CSELIB_VAL_PTR (x);
1812   if (v)
1813     {
1814       bool have_equivs = cselib_have_permanent_equivalences ();
1815       if (have_equivs)
1816 	v = canonical_cselib_val (v);
1817       for (l = v->locs; l; l = l->next)
1818 	if (CONSTANT_P (l->loc))
1819 	  return l->loc;
1820       for (l = v->locs; l; l = l->next)
1821 	if (!REG_P (l->loc) && !MEM_P (l->loc)
1822 	    /* Avoid infinite recursion when potentially dealing with
1823 	       var-tracking artificial equivalences, by skipping the
1824 	       equivalences themselves, and not choosing expressions
1825 	       that refer to newer VALUEs.  */
1826 	    && (!have_equivs
1827 		|| (GET_CODE (l->loc) != VALUE
1828 		    && !refs_newer_value_p (l->loc, x))))
1829 	  return l->loc;
1830       if (have_equivs)
1831 	{
1832 	  for (l = v->locs; l; l = l->next)
1833 	    if (REG_P (l->loc)
1834 		|| (GET_CODE (l->loc) != VALUE
1835 		    && !refs_newer_value_p (l->loc, x)))
1836 	      return l->loc;
1837 	  /* Return the canonical value.  */
1838 	  return v->val_rtx;
1839 	}
1840       if (v->locs)
1841 	return v->locs->loc;
1842     }
1843   return x;
1844 }
1845 
1846 /*  Return the address of the (N_REFS + 1)th memory reference to ADDR
1847     where SIZE is the size in bytes of the memory reference.  If ADDR
1848     is not modified by the memory reference then ADDR is returned.  */
1849 
1850 static rtx
1851 addr_side_effect_eval (rtx addr, int size, int n_refs)
1852 {
1853   int offset = 0;
1854 
1855   switch (GET_CODE (addr))
1856     {
1857     case PRE_INC:
1858       offset = (n_refs + 1) * size;
1859       break;
1860     case PRE_DEC:
1861       offset = -(n_refs + 1) * size;
1862       break;
1863     case POST_INC:
1864       offset = n_refs * size;
1865       break;
1866     case POST_DEC:
1867       offset = -n_refs * size;
1868       break;
1869 
1870     default:
1871       return addr;
1872     }
1873 
1874   if (offset)
1875     addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1876 			 GEN_INT (offset));
1877   else
1878     addr = XEXP (addr, 0);
1879   addr = canon_rtx (addr);
1880 
1881   return addr;
1882 }
1883 
1884 /* Return one if X and Y (memory addresses) reference the
1885    same location in memory or if the references overlap.
1886    Return zero if they do not overlap, else return
1887    minus one in which case they still might reference the same location.
1888 
1889    C is an offset accumulator.  When
1890    C is nonzero, we are testing aliases between X and Y + C.
1891    XSIZE is the size in bytes of the X reference,
1892    similarly YSIZE is the size in bytes for Y.
1893    Expect that canon_rtx has been already called for X and Y.
1894 
1895    If XSIZE or YSIZE is zero, we do not know the amount of memory being
1896    referenced (the reference was BLKmode), so make the most pessimistic
1897    assumptions.
1898 
1899    If XSIZE or YSIZE is negative, we may access memory outside the object
1900    being referenced as a side effect.  This can happen when using AND to
1901    align memory references, as is done on the Alpha.
1902 
1903    Nice to notice that varying addresses cannot conflict with fp if no
1904    local variables had their addresses taken, but that's too hard now.
1905 
1906    ???  Contrary to the tree alias oracle this does not return
1907    one for X + non-constant and Y + non-constant when X and Y are equal.
1908    If that is fixed the TBAA hack for union type-punning can be removed.  */
1909 
1910 static int
1911 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1912 {
1913   if (GET_CODE (x) == VALUE)
1914     {
1915       if (REG_P (y))
1916 	{
1917 	  struct elt_loc_list *l = NULL;
1918 	  if (CSELIB_VAL_PTR (x))
1919 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
1920 		 l; l = l->next)
1921 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1922 		break;
1923 	  if (l)
1924 	    x = y;
1925 	  else
1926 	    x = get_addr (x);
1927 	}
1928       /* Don't call get_addr if y is the same VALUE.  */
1929       else if (x != y)
1930 	x = get_addr (x);
1931     }
1932   if (GET_CODE (y) == VALUE)
1933     {
1934       if (REG_P (x))
1935 	{
1936 	  struct elt_loc_list *l = NULL;
1937 	  if (CSELIB_VAL_PTR (y))
1938 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
1939 		 l; l = l->next)
1940 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1941 		break;
1942 	  if (l)
1943 	    y = x;
1944 	  else
1945 	    y = get_addr (y);
1946 	}
1947       /* Don't call get_addr if x is the same VALUE.  */
1948       else if (y != x)
1949 	y = get_addr (y);
1950     }
1951   if (GET_CODE (x) == HIGH)
1952     x = XEXP (x, 0);
1953   else if (GET_CODE (x) == LO_SUM)
1954     x = XEXP (x, 1);
1955   else
1956     x = addr_side_effect_eval (x, xsize, 0);
1957   if (GET_CODE (y) == HIGH)
1958     y = XEXP (y, 0);
1959   else if (GET_CODE (y) == LO_SUM)
1960     y = XEXP (y, 1);
1961   else
1962     y = addr_side_effect_eval (y, ysize, 0);
1963 
1964   if (rtx_equal_for_memref_p (x, y))
1965     {
1966       if (xsize <= 0 || ysize <= 0)
1967 	return 1;
1968       if (c >= 0 && xsize > c)
1969 	return 1;
1970       if (c < 0 && ysize+c > 0)
1971 	return 1;
1972       return 0;
1973     }
1974 
1975   /* This code used to check for conflicts involving stack references and
1976      globals but the base address alias code now handles these cases.  */
1977 
1978   if (GET_CODE (x) == PLUS)
1979     {
1980       /* The fact that X is canonicalized means that this
1981 	 PLUS rtx is canonicalized.  */
1982       rtx x0 = XEXP (x, 0);
1983       rtx x1 = XEXP (x, 1);
1984 
1985       if (GET_CODE (y) == PLUS)
1986 	{
1987 	  /* The fact that Y is canonicalized means that this
1988 	     PLUS rtx is canonicalized.  */
1989 	  rtx y0 = XEXP (y, 0);
1990 	  rtx y1 = XEXP (y, 1);
1991 
1992 	  if (rtx_equal_for_memref_p (x1, y1))
1993 	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1994 	  if (rtx_equal_for_memref_p (x0, y0))
1995 	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1996 	  if (CONST_INT_P (x1))
1997 	    {
1998 	      if (CONST_INT_P (y1))
1999 		return memrefs_conflict_p (xsize, x0, ysize, y0,
2000 					   c - INTVAL (x1) + INTVAL (y1));
2001 	      else
2002 		return memrefs_conflict_p (xsize, x0, ysize, y,
2003 					   c - INTVAL (x1));
2004 	    }
2005 	  else if (CONST_INT_P (y1))
2006 	    return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2007 
2008 	  return -1;
2009 	}
2010       else if (CONST_INT_P (x1))
2011 	return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2012     }
2013   else if (GET_CODE (y) == PLUS)
2014     {
2015       /* The fact that Y is canonicalized means that this
2016 	 PLUS rtx is canonicalized.  */
2017       rtx y0 = XEXP (y, 0);
2018       rtx y1 = XEXP (y, 1);
2019 
2020       if (CONST_INT_P (y1))
2021 	return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2022       else
2023 	return -1;
2024     }
2025 
2026   if (GET_CODE (x) == GET_CODE (y))
2027     switch (GET_CODE (x))
2028       {
2029       case MULT:
2030 	{
2031 	  /* Handle cases where we expect the second operands to be the
2032 	     same, and check only whether the first operand would conflict
2033 	     or not.  */
2034 	  rtx x0, y0;
2035 	  rtx x1 = canon_rtx (XEXP (x, 1));
2036 	  rtx y1 = canon_rtx (XEXP (y, 1));
2037 	  if (! rtx_equal_for_memref_p (x1, y1))
2038 	    return -1;
2039 	  x0 = canon_rtx (XEXP (x, 0));
2040 	  y0 = canon_rtx (XEXP (y, 0));
2041 	  if (rtx_equal_for_memref_p (x0, y0))
2042 	    return (xsize == 0 || ysize == 0
2043 		    || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2044 
2045 	  /* Can't properly adjust our sizes.  */
2046 	  if (!CONST_INT_P (x1))
2047 	    return -1;
2048 	  xsize /= INTVAL (x1);
2049 	  ysize /= INTVAL (x1);
2050 	  c /= INTVAL (x1);
2051 	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2052 	}
2053 
2054       default:
2055 	break;
2056       }
2057 
2058   /* Treat an access through an AND (e.g. a subword access on an Alpha)
2059      as an access with indeterminate size.  Assume that references
2060      besides AND are aligned, so if the size of the other reference is
2061      at least as large as the alignment, assume no other overlap.  */
2062   if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2063     {
2064       if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
2065 	xsize = -1;
2066       return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
2067     }
2068   if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2069     {
2070       /* ??? If we are indexing far enough into the array/structure, we
2071 	 may yet be able to determine that we can not overlap.  But we
2072 	 also need to that we are far enough from the end not to overlap
2073 	 a following reference, so we do nothing with that for now.  */
2074       if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
2075 	ysize = -1;
2076       return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
2077     }
2078 
2079   if (CONSTANT_P (x))
2080     {
2081       if (CONST_INT_P (x) && CONST_INT_P (y))
2082 	{
2083 	  c += (INTVAL (y) - INTVAL (x));
2084 	  return (xsize <= 0 || ysize <= 0
2085 		  || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2086 	}
2087 
2088       if (GET_CODE (x) == CONST)
2089 	{
2090 	  if (GET_CODE (y) == CONST)
2091 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2092 				       ysize, canon_rtx (XEXP (y, 0)), c);
2093 	  else
2094 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2095 				       ysize, y, c);
2096 	}
2097       if (GET_CODE (y) == CONST)
2098 	return memrefs_conflict_p (xsize, x, ysize,
2099 				   canon_rtx (XEXP (y, 0)), c);
2100 
2101       if (CONSTANT_P (y))
2102 	return (xsize <= 0 || ysize <= 0
2103 		|| (rtx_equal_for_memref_p (x, y)
2104 		    && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2105 
2106       return -1;
2107     }
2108 
2109   return -1;
2110 }
2111 
2112 /* Functions to compute memory dependencies.
2113 
2114    Since we process the insns in execution order, we can build tables
2115    to keep track of what registers are fixed (and not aliased), what registers
2116    are varying in known ways, and what registers are varying in unknown
2117    ways.
2118 
2119    If both memory references are volatile, then there must always be a
2120    dependence between the two references, since their order can not be
2121    changed.  A volatile and non-volatile reference can be interchanged
2122    though.
2123 
2124    We also must allow AND addresses, because they may generate accesses
2125    outside the object being referenced.  This is used to generate aligned
2126    addresses from unaligned addresses, for instance, the alpha
2127    storeqi_unaligned pattern.  */
2128 
2129 /* Read dependence: X is read after read in MEM takes place.  There can
2130    only be a dependence here if both reads are volatile, or if either is
2131    an explicit barrier.  */
2132 
2133 int
2134 read_dependence (const_rtx mem, const_rtx x)
2135 {
2136   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2137     return true;
2138   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2139       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2140     return true;
2141   return false;
2142 }
2143 
2144 /* Returns nonzero if something about the mode or address format MEM1
2145    indicates that it might well alias *anything*.  */
2146 
2147 static int
2148 aliases_everything_p (const_rtx mem)
2149 {
2150   if (GET_CODE (XEXP (mem, 0)) == AND)
2151     /* If the address is an AND, it's very hard to know at what it is
2152        actually pointing.  */
2153     return 1;
2154 
2155   return 0;
2156 }
2157 
2158 /* Return true if we can determine that the fields referenced cannot
2159    overlap for any pair of objects.  */
2160 
2161 static bool
2162 nonoverlapping_component_refs_p (const_tree x, const_tree y)
2163 {
2164   const_tree fieldx, fieldy, typex, typey, orig_y;
2165 
2166   if (!flag_strict_aliasing)
2167     return false;
2168 
2169   do
2170     {
2171       /* The comparison has to be done at a common type, since we don't
2172 	 know how the inheritance hierarchy works.  */
2173       orig_y = y;
2174       do
2175 	{
2176 	  fieldx = TREE_OPERAND (x, 1);
2177 	  typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2178 
2179 	  y = orig_y;
2180 	  do
2181 	    {
2182 	      fieldy = TREE_OPERAND (y, 1);
2183 	      typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2184 
2185 	      if (typex == typey)
2186 		goto found;
2187 
2188 	      y = TREE_OPERAND (y, 0);
2189 	    }
2190 	  while (y && TREE_CODE (y) == COMPONENT_REF);
2191 
2192 	  x = TREE_OPERAND (x, 0);
2193 	}
2194       while (x && TREE_CODE (x) == COMPONENT_REF);
2195       /* Never found a common type.  */
2196       return false;
2197 
2198     found:
2199       /* If we're left with accessing different fields of a structure,
2200 	 then no overlap.  */
2201       if (TREE_CODE (typex) == RECORD_TYPE
2202 	  && fieldx != fieldy)
2203 	return true;
2204 
2205       /* The comparison on the current field failed.  If we're accessing
2206 	 a very nested structure, look at the next outer level.  */
2207       x = TREE_OPERAND (x, 0);
2208       y = TREE_OPERAND (y, 0);
2209     }
2210   while (x && y
2211 	 && TREE_CODE (x) == COMPONENT_REF
2212 	 && TREE_CODE (y) == COMPONENT_REF);
2213 
2214   return false;
2215 }
2216 
2217 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
2218 
2219 static tree
2220 decl_for_component_ref (tree x)
2221 {
2222   do
2223     {
2224       x = TREE_OPERAND (x, 0);
2225     }
2226   while (x && TREE_CODE (x) == COMPONENT_REF);
2227 
2228   return x && DECL_P (x) ? x : NULL_TREE;
2229 }
2230 
2231 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2232    for the offset of the field reference.  *KNOWN_P says whether the
2233    offset is known.  */
2234 
2235 static void
2236 adjust_offset_for_component_ref (tree x, bool *known_p,
2237 				 HOST_WIDE_INT *offset)
2238 {
2239   if (!*known_p)
2240     return;
2241   do
2242     {
2243       tree xoffset = component_ref_field_offset (x);
2244       tree field = TREE_OPERAND (x, 1);
2245 
2246       if (! host_integerp (xoffset, 1))
2247 	{
2248 	  *known_p = false;
2249 	  return;
2250 	}
2251       *offset += (tree_low_cst (xoffset, 1)
2252 		  + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2253 		     / BITS_PER_UNIT));
2254 
2255       x = TREE_OPERAND (x, 0);
2256     }
2257   while (x && TREE_CODE (x) == COMPONENT_REF);
2258 }
2259 
2260 /* Return nonzero if we can determine the exprs corresponding to memrefs
2261    X and Y and they do not overlap.
2262    If LOOP_VARIANT is set, skip offset-based disambiguation */
2263 
2264 int
2265 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2266 {
2267   tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2268   rtx rtlx, rtly;
2269   rtx basex, basey;
2270   bool moffsetx_known_p, moffsety_known_p;
2271   HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2272   HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2273 
2274   /* Unless both have exprs, we can't tell anything.  */
2275   if (exprx == 0 || expry == 0)
2276     return 0;
2277 
2278   /* For spill-slot accesses make sure we have valid offsets.  */
2279   if ((exprx == get_spill_slot_decl (false)
2280        && ! MEM_OFFSET_KNOWN_P (x))
2281       || (expry == get_spill_slot_decl (false)
2282 	  && ! MEM_OFFSET_KNOWN_P (y)))
2283     return 0;
2284 
2285   /* If both are field references, we may be able to determine something.  */
2286   if (TREE_CODE (exprx) == COMPONENT_REF
2287       && TREE_CODE (expry) == COMPONENT_REF
2288       && nonoverlapping_component_refs_p (exprx, expry))
2289     return 1;
2290 
2291 
2292   /* If the field reference test failed, look at the DECLs involved.  */
2293   moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2294   if (moffsetx_known_p)
2295     moffsetx = MEM_OFFSET (x);
2296   if (TREE_CODE (exprx) == COMPONENT_REF)
2297     {
2298       tree t = decl_for_component_ref (exprx);
2299       if (! t)
2300 	return 0;
2301       adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2302       exprx = t;
2303     }
2304 
2305   moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2306   if (moffsety_known_p)
2307     moffsety = MEM_OFFSET (y);
2308   if (TREE_CODE (expry) == COMPONENT_REF)
2309     {
2310       tree t = decl_for_component_ref (expry);
2311       if (! t)
2312 	return 0;
2313       adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2314       expry = t;
2315     }
2316 
2317   if (! DECL_P (exprx) || ! DECL_P (expry))
2318     return 0;
2319 
2320   /* With invalid code we can end up storing into the constant pool.
2321      Bail out to avoid ICEing when creating RTL for this.
2322      See gfortran.dg/lto/20091028-2_0.f90.  */
2323   if (TREE_CODE (exprx) == CONST_DECL
2324       || TREE_CODE (expry) == CONST_DECL)
2325     return 1;
2326 
2327   rtlx = DECL_RTL (exprx);
2328   rtly = DECL_RTL (expry);
2329 
2330   /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2331      can't overlap unless they are the same because we never reuse that part
2332      of the stack frame used for locals for spilled pseudos.  */
2333   if ((!MEM_P (rtlx) || !MEM_P (rtly))
2334       && ! rtx_equal_p (rtlx, rtly))
2335     return 1;
2336 
2337   /* If we have MEMs refering to different address spaces (which can
2338      potentially overlap), we cannot easily tell from the addresses
2339      whether the references overlap.  */
2340   if (MEM_P (rtlx) && MEM_P (rtly)
2341       && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2342     return 0;
2343 
2344   /* Get the base and offsets of both decls.  If either is a register, we
2345      know both are and are the same, so use that as the base.  The only
2346      we can avoid overlap is if we can deduce that they are nonoverlapping
2347      pieces of that decl, which is very rare.  */
2348   basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2349   if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2350     offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2351 
2352   basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2353   if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2354     offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2355 
2356   /* If the bases are different, we know they do not overlap if both
2357      are constants or if one is a constant and the other a pointer into the
2358      stack frame.  Otherwise a different base means we can't tell if they
2359      overlap or not.  */
2360   if (! rtx_equal_p (basex, basey))
2361     return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2362 	    || (CONSTANT_P (basex) && REG_P (basey)
2363 		&& REGNO_PTR_FRAME_P (REGNO (basey)))
2364 	    || (CONSTANT_P (basey) && REG_P (basex)
2365 		&& REGNO_PTR_FRAME_P (REGNO (basex))));
2366 
2367   /* Offset based disambiguation not appropriate for loop invariant */
2368   if (loop_invariant)
2369     return 0;
2370 
2371   sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2372 	   : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2373 	   : -1);
2374   sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2375 	   : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2376 	   : -1);
2377 
2378   /* If we have an offset for either memref, it can update the values computed
2379      above.  */
2380   if (moffsetx_known_p)
2381     offsetx += moffsetx, sizex -= moffsetx;
2382   if (moffsety_known_p)
2383     offsety += moffsety, sizey -= moffsety;
2384 
2385   /* If a memref has both a size and an offset, we can use the smaller size.
2386      We can't do this if the offset isn't known because we must view this
2387      memref as being anywhere inside the DECL's MEM.  */
2388   if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2389     sizex = MEM_SIZE (x);
2390   if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2391     sizey = MEM_SIZE (y);
2392 
2393   /* Put the values of the memref with the lower offset in X's values.  */
2394   if (offsetx > offsety)
2395     {
2396       tem = offsetx, offsetx = offsety, offsety = tem;
2397       tem = sizex, sizex = sizey, sizey = tem;
2398     }
2399 
2400   /* If we don't know the size of the lower-offset value, we can't tell
2401      if they conflict.  Otherwise, we do the test.  */
2402   return sizex >= 0 && offsety >= offsetx + sizex;
2403 }
2404 
2405 /* Helper for true_dependence and canon_true_dependence.
2406    Checks for true dependence: X is read after store in MEM takes place.
2407 
2408    If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2409    NULL_RTX, and the canonical addresses of MEM and X are both computed
2410    here.  If MEM_CANONICALIZED, then MEM must be already canonicalized.
2411 
2412    If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2413 
2414    Returns 1 if there is a true dependence, 0 otherwise.  */
2415 
2416 static int
2417 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2418 		   const_rtx x, rtx x_addr, bool mem_canonicalized)
2419 {
2420   rtx base;
2421   int ret;
2422 
2423   gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2424 		       : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2425 
2426   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2427     return 1;
2428 
2429   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2430      This is used in epilogue deallocation functions, and in cselib.  */
2431   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2432     return 1;
2433   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2434     return 1;
2435   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2436       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2437     return 1;
2438 
2439   /* Read-only memory is by definition never modified, and therefore can't
2440      conflict with anything.  We don't expect to find read-only set on MEM,
2441      but stupid user tricks can produce them, so don't die.  */
2442   if (MEM_READONLY_P (x))
2443     return 0;
2444 
2445   /* If we have MEMs refering to different address spaces (which can
2446      potentially overlap), we cannot easily tell from the addresses
2447      whether the references overlap.  */
2448   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2449     return 1;
2450 
2451   if (! mem_addr)
2452     {
2453       mem_addr = XEXP (mem, 0);
2454       if (mem_mode == VOIDmode)
2455 	mem_mode = GET_MODE (mem);
2456     }
2457 
2458   if (! x_addr)
2459     {
2460       x_addr = XEXP (x, 0);
2461       if (!((GET_CODE (x_addr) == VALUE
2462 	     && GET_CODE (mem_addr) != VALUE
2463 	     && reg_mentioned_p (x_addr, mem_addr))
2464 	    || (GET_CODE (x_addr) != VALUE
2465 		&& GET_CODE (mem_addr) == VALUE
2466 		&& reg_mentioned_p (mem_addr, x_addr))))
2467 	{
2468 	  x_addr = get_addr (x_addr);
2469 	  if (! mem_canonicalized)
2470 	    mem_addr = get_addr (mem_addr);
2471 	}
2472     }
2473 
2474   base = find_base_term (x_addr);
2475   if (base && (GET_CODE (base) == LABEL_REF
2476 	       || (GET_CODE (base) == SYMBOL_REF
2477 		   && CONSTANT_POOL_ADDRESS_P (base))))
2478     return 0;
2479 
2480   if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2481     return 0;
2482 
2483   x_addr = canon_rtx (x_addr);
2484   if (!mem_canonicalized)
2485     mem_addr = canon_rtx (mem_addr);
2486 
2487   if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2488 				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2489     return ret;
2490 
2491   if (DIFFERENT_ALIAS_SETS_P (x, mem))
2492     return 0;
2493 
2494   if (nonoverlapping_memrefs_p (mem, x, false))
2495     return 0;
2496 
2497   if (aliases_everything_p (x))
2498     return 1;
2499 
2500   /* We cannot use aliases_everything_p to test MEM, since we must look
2501      at MEM_ADDR, rather than XEXP (mem, 0).  */
2502   if (GET_CODE (mem_addr) == AND)
2503     return 1;
2504 
2505   /* ??? In true_dependence we also allow BLKmode to alias anything.  Why
2506      don't we do this in anti_dependence and output_dependence?  */
2507   if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2508     return 1;
2509 
2510   return rtx_refs_may_alias_p (x, mem, true);
2511 }
2512 
2513 /* True dependence: X is read after store in MEM takes place.  */
2514 
2515 int
2516 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2517 {
2518   return true_dependence_1 (mem, mem_mode, NULL_RTX,
2519 			    x, NULL_RTX, /*mem_canonicalized=*/false);
2520 }
2521 
2522 /* Canonical true dependence: X is read after store in MEM takes place.
2523    Variant of true_dependence which assumes MEM has already been
2524    canonicalized (hence we no longer do that here).
2525    The mem_addr argument has been added, since true_dependence_1 computed
2526    this value prior to canonicalizing.  */
2527 
2528 int
2529 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2530 		       const_rtx x, rtx x_addr)
2531 {
2532   return true_dependence_1 (mem, mem_mode, mem_addr,
2533 			    x, x_addr, /*mem_canonicalized=*/true);
2534 }
2535 
2536 /* Returns nonzero if a write to X might alias a previous read from
2537    (or, if WRITEP is nonzero, a write to) MEM.  */
2538 
2539 static int
2540 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2541 {
2542   rtx x_addr, mem_addr;
2543   rtx base;
2544   int ret;
2545 
2546   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2547     return 1;
2548 
2549   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2550      This is used in epilogue deallocation functions.  */
2551   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2552     return 1;
2553   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2554     return 1;
2555   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2556       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2557     return 1;
2558 
2559   /* A read from read-only memory can't conflict with read-write memory.  */
2560   if (!writep && MEM_READONLY_P (mem))
2561     return 0;
2562 
2563   /* If we have MEMs refering to different address spaces (which can
2564      potentially overlap), we cannot easily tell from the addresses
2565      whether the references overlap.  */
2566   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2567     return 1;
2568 
2569   x_addr = XEXP (x, 0);
2570   mem_addr = XEXP (mem, 0);
2571   if (!((GET_CODE (x_addr) == VALUE
2572 	 && GET_CODE (mem_addr) != VALUE
2573 	 && reg_mentioned_p (x_addr, mem_addr))
2574 	|| (GET_CODE (x_addr) != VALUE
2575 	    && GET_CODE (mem_addr) == VALUE
2576 	    && reg_mentioned_p (mem_addr, x_addr))))
2577     {
2578       x_addr = get_addr (x_addr);
2579       mem_addr = get_addr (mem_addr);
2580     }
2581 
2582   if (! writep)
2583     {
2584       base = find_base_term (mem_addr);
2585       if (base && (GET_CODE (base) == LABEL_REF
2586 		   || (GET_CODE (base) == SYMBOL_REF
2587 		       && CONSTANT_POOL_ADDRESS_P (base))))
2588 	return 0;
2589     }
2590 
2591   if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2592 			  GET_MODE (mem)))
2593     return 0;
2594 
2595   x_addr = canon_rtx (x_addr);
2596   mem_addr = canon_rtx (mem_addr);
2597 
2598   if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2599 				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2600     return ret;
2601 
2602   if (nonoverlapping_memrefs_p (x, mem, false))
2603     return 0;
2604 
2605   return rtx_refs_may_alias_p (x, mem, false);
2606 }
2607 
2608 /* Anti dependence: X is written after read in MEM takes place.  */
2609 
2610 int
2611 anti_dependence (const_rtx mem, const_rtx x)
2612 {
2613   return write_dependence_p (mem, x, /*writep=*/0);
2614 }
2615 
2616 /* Output dependence: X is written after store in MEM takes place.  */
2617 
2618 int
2619 output_dependence (const_rtx mem, const_rtx x)
2620 {
2621   return write_dependence_p (mem, x, /*writep=*/1);
2622 }
2623 
2624 
2625 
2626 /* Check whether X may be aliased with MEM.  Don't do offset-based
2627   memory disambiguation & TBAA.  */
2628 int
2629 may_alias_p (const_rtx mem, const_rtx x)
2630 {
2631   rtx x_addr, mem_addr;
2632 
2633   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2634     return 1;
2635 
2636   /* ??? In true_dependence we also allow BLKmode to alias anything. */
2637   if (GET_MODE (mem) == BLKmode || GET_MODE (x) == BLKmode)
2638     return 1;
2639 
2640   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2641       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2642     return 1;
2643 
2644   /* Read-only memory is by definition never modified, and therefore can't
2645      conflict with anything.  We don't expect to find read-only set on MEM,
2646      but stupid user tricks can produce them, so don't die.  */
2647   if (MEM_READONLY_P (x))
2648     return 0;
2649 
2650   /* If we have MEMs refering to different address spaces (which can
2651      potentially overlap), we cannot easily tell from the addresses
2652      whether the references overlap.  */
2653   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2654     return 1;
2655 
2656   x_addr = XEXP (x, 0);
2657   mem_addr = XEXP (mem, 0);
2658   if (!((GET_CODE (x_addr) == VALUE
2659 	 && GET_CODE (mem_addr) != VALUE
2660 	 && reg_mentioned_p (x_addr, mem_addr))
2661 	|| (GET_CODE (x_addr) != VALUE
2662 	    && GET_CODE (mem_addr) == VALUE
2663 	    && reg_mentioned_p (mem_addr, x_addr))))
2664     {
2665       x_addr = get_addr (x_addr);
2666       mem_addr = get_addr (mem_addr);
2667     }
2668 
2669   if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2670     return 0;
2671 
2672   x_addr = canon_rtx (x_addr);
2673   mem_addr = canon_rtx (mem_addr);
2674 
2675   if (nonoverlapping_memrefs_p (mem, x, true))
2676     return 0;
2677 
2678   if (aliases_everything_p (x))
2679     return 1;
2680 
2681   /* We cannot use aliases_everything_p to test MEM, since we must look
2682      at MEM_ADDR, rather than XEXP (mem, 0).  */
2683   if (GET_CODE (mem_addr) == AND)
2684     return 1;
2685 
2686   /* TBAA not valid for loop_invarint */
2687   return rtx_refs_may_alias_p (x, mem, false);
2688 }
2689 
2690 void
2691 init_alias_target (void)
2692 {
2693   int i;
2694 
2695   memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2696 
2697   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2698     /* Check whether this register can hold an incoming pointer
2699        argument.  FUNCTION_ARG_REGNO_P tests outgoing register
2700        numbers, so translate if necessary due to register windows.  */
2701     if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2702 	&& HARD_REGNO_MODE_OK (i, Pmode))
2703       static_reg_base_value[i]
2704 	= gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2705 
2706   static_reg_base_value[STACK_POINTER_REGNUM]
2707     = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2708   static_reg_base_value[ARG_POINTER_REGNUM]
2709     = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2710   static_reg_base_value[FRAME_POINTER_REGNUM]
2711     = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2712 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2713   static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2714     = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2715 #endif
2716 }
2717 
2718 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2719    to be memory reference.  */
2720 static bool memory_modified;
2721 static void
2722 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2723 {
2724   if (MEM_P (x))
2725     {
2726       if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2727 	memory_modified = true;
2728     }
2729 }
2730 
2731 
2732 /* Return true when INSN possibly modify memory contents of MEM
2733    (i.e. address can be modified).  */
2734 bool
2735 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2736 {
2737   if (!INSN_P (insn))
2738     return false;
2739   memory_modified = false;
2740   note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2741   return memory_modified;
2742 }
2743 
2744 /* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
2745    array.  */
2746 
2747 void
2748 init_alias_analysis (void)
2749 {
2750   unsigned int maxreg = max_reg_num ();
2751   int changed, pass;
2752   int i;
2753   unsigned int ui;
2754   rtx insn;
2755 
2756   timevar_push (TV_ALIAS_ANALYSIS);
2757 
2758   reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2759   reg_known_value = ggc_alloc_cleared_vec_rtx (reg_known_value_size);
2760   reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2761 
2762   /* If we have memory allocated from the previous run, use it.  */
2763   if (old_reg_base_value)
2764     reg_base_value = old_reg_base_value;
2765 
2766   if (reg_base_value)
2767     VEC_truncate (rtx, reg_base_value, 0);
2768 
2769   VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2770 
2771   new_reg_base_value = XNEWVEC (rtx, maxreg);
2772   reg_seen = XNEWVEC (char, maxreg);
2773 
2774   /* The basic idea is that each pass through this loop will use the
2775      "constant" information from the previous pass to propagate alias
2776      information through another level of assignments.
2777 
2778      This could get expensive if the assignment chains are long.  Maybe
2779      we should throttle the number of iterations, possibly based on
2780      the optimization level or flag_expensive_optimizations.
2781 
2782      We could propagate more information in the first pass by making use
2783      of DF_REG_DEF_COUNT to determine immediately that the alias information
2784      for a pseudo is "constant".
2785 
2786      A program with an uninitialized variable can cause an infinite loop
2787      here.  Instead of doing a full dataflow analysis to detect such problems
2788      we just cap the number of iterations for the loop.
2789 
2790      The state of the arrays for the set chain in question does not matter
2791      since the program has undefined behavior.  */
2792 
2793   pass = 0;
2794   do
2795     {
2796       /* Assume nothing will change this iteration of the loop.  */
2797       changed = 0;
2798 
2799       /* We want to assign the same IDs each iteration of this loop, so
2800 	 start counting from zero each iteration of the loop.  */
2801       unique_id = 0;
2802 
2803       /* We're at the start of the function each iteration through the
2804 	 loop, so we're copying arguments.  */
2805       copying_arguments = true;
2806 
2807       /* Wipe the potential alias information clean for this pass.  */
2808       memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2809 
2810       /* Wipe the reg_seen array clean.  */
2811       memset (reg_seen, 0, maxreg);
2812 
2813       /* Initialize the alias information for this pass.  */
2814       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2815 	if (static_reg_base_value[i])
2816 	  {
2817 	    new_reg_base_value[i] = static_reg_base_value[i];
2818 	    reg_seen[i] = 1;
2819 	  }
2820 
2821       /* Walk the insns adding values to the new_reg_base_value array.  */
2822       for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2823 	{
2824 	  if (INSN_P (insn))
2825 	    {
2826 	      rtx note, set;
2827 
2828 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2829 	      /* The prologue/epilogue insns are not threaded onto the
2830 		 insn chain until after reload has completed.  Thus,
2831 		 there is no sense wasting time checking if INSN is in
2832 		 the prologue/epilogue until after reload has completed.  */
2833 	      if (reload_completed
2834 		  && prologue_epilogue_contains (insn))
2835 		continue;
2836 #endif
2837 
2838 	      /* If this insn has a noalias note, process it,  Otherwise,
2839 		 scan for sets.  A simple set will have no side effects
2840 		 which could change the base value of any other register.  */
2841 
2842 	      if (GET_CODE (PATTERN (insn)) == SET
2843 		  && REG_NOTES (insn) != 0
2844 		  && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2845 		record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2846 	      else
2847 		note_stores (PATTERN (insn), record_set, NULL);
2848 
2849 	      set = single_set (insn);
2850 
2851 	      if (set != 0
2852 		  && REG_P (SET_DEST (set))
2853 		  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2854 		{
2855 		  unsigned int regno = REGNO (SET_DEST (set));
2856 		  rtx src = SET_SRC (set);
2857 		  rtx t;
2858 
2859 		  note = find_reg_equal_equiv_note (insn);
2860 		  if (note && REG_NOTE_KIND (note) == REG_EQUAL
2861 		      && DF_REG_DEF_COUNT (regno) != 1)
2862 		    note = NULL_RTX;
2863 
2864 		  if (note != NULL_RTX
2865 		      && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2866 		      && ! rtx_varies_p (XEXP (note, 0), 1)
2867 		      && ! reg_overlap_mentioned_p (SET_DEST (set),
2868 						    XEXP (note, 0)))
2869 		    {
2870 		      set_reg_known_value (regno, XEXP (note, 0));
2871 		      set_reg_known_equiv_p (regno,
2872 			REG_NOTE_KIND (note) == REG_EQUIV);
2873 		    }
2874 		  else if (DF_REG_DEF_COUNT (regno) == 1
2875 			   && GET_CODE (src) == PLUS
2876 			   && REG_P (XEXP (src, 0))
2877 			   && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2878 			   && CONST_INT_P (XEXP (src, 1)))
2879 		    {
2880 		      t = plus_constant (t, INTVAL (XEXP (src, 1)));
2881 		      set_reg_known_value (regno, t);
2882 		      set_reg_known_equiv_p (regno, 0);
2883 		    }
2884 		  else if (DF_REG_DEF_COUNT (regno) == 1
2885 			   && ! rtx_varies_p (src, 1))
2886 		    {
2887 		      set_reg_known_value (regno, src);
2888 		      set_reg_known_equiv_p (regno, 0);
2889 		    }
2890 		}
2891 	    }
2892 	  else if (NOTE_P (insn)
2893 		   && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2894 	    copying_arguments = false;
2895 	}
2896 
2897       /* Now propagate values from new_reg_base_value to reg_base_value.  */
2898       gcc_assert (maxreg == (unsigned int) max_reg_num ());
2899 
2900       for (ui = 0; ui < maxreg; ui++)
2901 	{
2902 	  if (new_reg_base_value[ui]
2903 	      && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2904 	      && ! rtx_equal_p (new_reg_base_value[ui],
2905 				VEC_index (rtx, reg_base_value, ui)))
2906 	    {
2907 	      VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2908 	      changed = 1;
2909 	    }
2910 	}
2911     }
2912   while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2913 
2914   /* Fill in the remaining entries.  */
2915   for (i = 0; i < (int)reg_known_value_size; i++)
2916     if (reg_known_value[i] == 0)
2917       reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2918 
2919   /* Clean up.  */
2920   free (new_reg_base_value);
2921   new_reg_base_value = 0;
2922   free (reg_seen);
2923   reg_seen = 0;
2924   timevar_pop (TV_ALIAS_ANALYSIS);
2925 }
2926 
2927 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2928    Special API for var-tracking pass purposes.  */
2929 
2930 void
2931 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2932 {
2933   VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
2934 }
2935 
2936 void
2937 end_alias_analysis (void)
2938 {
2939   old_reg_base_value = reg_base_value;
2940   ggc_free (reg_known_value);
2941   reg_known_value = 0;
2942   reg_known_value_size = 0;
2943   free (reg_known_equiv_p);
2944   reg_known_equiv_p = 0;
2945 }
2946 
2947 #include "gt-alias.h"
2948