xref: /dragonfly/contrib/gcc-4.7/gcc/bt-load.c (revision 335b9e93)
1 /* Perform branch target register load optimizations.
2    Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "fibheap.h"
29 #include "output.h"
30 #include "target.h"
31 #include "expr.h"
32 #include "flags.h"
33 #include "insn-attr.h"
34 #include "function.h"
35 #include "except.h"
36 #include "tm_p.h"
37 #include "diagnostic-core.h"
38 #include "tree-pass.h"
39 #include "recog.h"
40 #include "df.h"
41 
42 /* Target register optimizations - these are performed after reload.  */
43 
44 typedef struct btr_def_group_s
45 {
46   struct btr_def_group_s *next;
47   rtx src;
48   struct btr_def_s *members;
49 } *btr_def_group;
50 
51 typedef struct btr_user_s
52 {
53   struct btr_user_s *next;
54   basic_block bb;
55   int luid;
56   rtx insn;
57   /* If INSN has a single use of a single branch register, then
58      USE points to it within INSN.  If there is more than
59      one branch register use, or the use is in some way ambiguous,
60      then USE is NULL.  */
61   rtx use;
62   int n_reaching_defs;
63   int first_reaching_def;
64   char other_use_this_block;
65 } *btr_user;
66 
67 /* btr_def structs appear on three lists:
68      1. A list of all btr_def structures (head is
69 	ALL_BTR_DEFS, linked by the NEXT field).
70      2. A list of branch reg definitions per basic block (head is
71 	BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
72      3. A list of all branch reg definitions belonging to the same
73 	group (head is in a BTR_DEF_GROUP struct, linked by
74 	NEXT_THIS_GROUP field).  */
75 
76 typedef struct btr_def_s
77 {
78   struct btr_def_s *next_this_bb;
79   struct btr_def_s *next_this_group;
80   basic_block bb;
81   int luid;
82   rtx insn;
83   int btr;
84   int cost;
85   /* For a branch register setting insn that has a constant
86      source (i.e. a label), group links together all the
87      insns with the same source.  For other branch register
88      setting insns, group is NULL.  */
89   btr_def_group group;
90   btr_user uses;
91   /* If this def has a reaching use which is not a simple use
92      in a branch instruction, then has_ambiguous_use will be true,
93      and we will not attempt to migrate this definition.  */
94   char has_ambiguous_use;
95   /* live_range is an approximation to the true live range for this
96      def/use web, because it records the set of blocks that contain
97      the live range.  There could be other live ranges for the same
98      branch register in that set of blocks, either in the block
99      containing the def (before the def), or in a block containing
100      a use (after the use).  If there are such other live ranges, then
101      other_btr_uses_before_def or other_btr_uses_after_use must be set true
102      as appropriate.  */
103   char other_btr_uses_before_def;
104   char other_btr_uses_after_use;
105   /* We set own_end when we have moved a definition into a dominator.
106      Thus, when a later combination removes this definition again, we know
107      to clear out trs_live_at_end again.  */
108   char own_end;
109   bitmap live_range;
110 } *btr_def;
111 
112 static int issue_rate;
113 
114 static int basic_block_freq (const_basic_block);
115 static int insn_sets_btr_p (const_rtx, int, int *);
116 static rtx *find_btr_use (rtx);
117 static int btr_referenced_p (rtx, rtx *);
118 static int find_btr_reference (rtx *, void *);
119 static void find_btr_def_group (btr_def_group *, btr_def);
120 static btr_def add_btr_def (fibheap_t, basic_block, int, rtx,
121 			    unsigned int, int, btr_def_group *);
122 static btr_user new_btr_user (basic_block, int, rtx);
123 static void dump_hard_reg_set (HARD_REG_SET);
124 static void dump_btrs_live (int);
125 static void note_other_use_this_block (unsigned int, btr_user);
126 static void compute_defs_uses_and_gen (fibheap_t, btr_def *,btr_user *,
127 				       sbitmap *, sbitmap *, HARD_REG_SET *);
128 static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
129 static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
130 static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
131 static void build_btr_def_use_webs (fibheap_t);
132 static int block_at_edge_of_live_range_p (int, btr_def);
133 static void clear_btr_from_live_range (btr_def def);
134 static void add_btr_to_live_range (btr_def, int);
135 static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
136 				basic_block, int);
137 static int choose_btr (HARD_REG_SET);
138 static void combine_btr_defs (btr_def, HARD_REG_SET *);
139 static void btr_def_live_range (btr_def, HARD_REG_SET *);
140 static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
141 static int migrate_btr_def (btr_def, int);
142 static void migrate_btr_defs (enum reg_class, int);
143 static int can_move_up (const_basic_block, const_rtx, int);
144 static void note_btr_set (rtx, const_rtx, void *);
145 
146 /* The following code performs code motion of target load instructions
147    (instructions that set branch target registers), to move them
148    forward away from the branch instructions and out of loops (or,
149    more generally, from a more frequently executed place to a less
150    frequently executed place).
151    Moving target load instructions further in front of the branch
152    instruction that uses the target register value means that the hardware
153    has a better chance of preloading the instructions at the branch
154    target by the time the branch is reached.  This avoids bubbles
155    when a taken branch needs to flush out the pipeline.
156    Moving target load instructions out of loops means they are executed
157    less frequently.  */
158 
159 /* An obstack to hold the def-use web data structures built up for
160    migrating branch target load instructions.  */
161 static struct obstack migrate_btrl_obstack;
162 
163 /* Array indexed by basic block number, giving the set of registers
164    live in that block.  */
165 static HARD_REG_SET *btrs_live;
166 
167 /* Array indexed by basic block number, giving the set of registers live at
168   the end of that block, including any uses by a final jump insn, if any.  */
169 static HARD_REG_SET *btrs_live_at_end;
170 
171 /* Set of all target registers that we are willing to allocate.  */
172 static HARD_REG_SET all_btrs;
173 
174 /* Provide lower and upper bounds for target register numbers, so that
175    we don't need to search through all the hard registers all the time.  */
176 static int first_btr, last_btr;
177 
178 
179 
180 /* Return an estimate of the frequency of execution of block bb.  */
181 static int
182 basic_block_freq (const_basic_block bb)
183 {
184   return bb->frequency;
185 }
186 
187 static rtx *btr_reference_found;
188 
189 /* A subroutine of btr_referenced_p, called through for_each_rtx.
190    PREG is a pointer to an rtx that is to be excluded from the
191    traversal.  If we find a reference to a target register anywhere
192    else, return 1, and put a pointer to it into btr_reference_found.  */
193 static int
194 find_btr_reference (rtx *px, void *preg)
195 {
196   rtx x;
197 
198   if (px == preg)
199     return -1;
200   x = *px;
201   if (!REG_P (x))
202     return 0;
203   if (overlaps_hard_reg_set_p (all_btrs, GET_MODE (x), REGNO (x)))
204     {
205       btr_reference_found = px;
206       return 1;
207     }
208   return -1;
209 }
210 
211 /* Return nonzero if X references (sets or reads) any branch target register.
212    If EXCLUDEP is set, disregard any references within the rtx pointed to
213    by it.  If returning nonzero, also set btr_reference_found as above.  */
214 static int
215 btr_referenced_p (rtx x, rtx *excludep)
216 {
217   return for_each_rtx (&x, find_btr_reference, excludep);
218 }
219 
220 /* Return true if insn is an instruction that sets a target register.
221    if CHECK_CONST is true, only return true if the source is constant.
222    If such a set is found and REGNO is nonzero, assign the register number
223    of the destination register to *REGNO.  */
224 static int
225 insn_sets_btr_p (const_rtx insn, int check_const, int *regno)
226 {
227   rtx set;
228 
229   if (NONJUMP_INSN_P (insn)
230       && (set = single_set (insn)))
231     {
232       rtx dest = SET_DEST (set);
233       rtx src = SET_SRC (set);
234 
235       if (GET_CODE (dest) == SUBREG)
236 	dest = XEXP (dest, 0);
237 
238       if (REG_P (dest)
239 	  && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
240 	{
241 	  gcc_assert (!btr_referenced_p (src, NULL));
242 
243 	  if (!check_const || CONSTANT_P (src))
244 	    {
245 	      if (regno)
246 		*regno = REGNO (dest);
247 	      return 1;
248 	    }
249 	}
250     }
251   return 0;
252 }
253 
254 /* Find and return a use of a target register within an instruction INSN.  */
255 static rtx *
256 find_btr_use (rtx insn)
257 {
258   return btr_referenced_p (insn, NULL) ? btr_reference_found : NULL;
259 }
260 
261 /* Find the group that the target register definition DEF belongs
262    to in the list starting with *ALL_BTR_DEF_GROUPS.  If no such
263    group exists, create one.  Add def to the group.  */
264 static void
265 find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
266 {
267   if (insn_sets_btr_p (def->insn, 1, NULL))
268     {
269       btr_def_group this_group;
270       rtx def_src = SET_SRC (single_set (def->insn));
271 
272       /* ?? This linear search is an efficiency concern, particularly
273 	 as the search will almost always fail to find a match.  */
274       for (this_group = *all_btr_def_groups;
275 	   this_group != NULL;
276 	   this_group = this_group->next)
277 	if (rtx_equal_p (def_src, this_group->src))
278 	  break;
279 
280       if (!this_group)
281 	{
282 	  this_group = XOBNEW (&migrate_btrl_obstack, struct btr_def_group_s);
283 	  this_group->src = def_src;
284 	  this_group->members = NULL;
285 	  this_group->next = *all_btr_def_groups;
286 	  *all_btr_def_groups = this_group;
287 	}
288       def->group = this_group;
289       def->next_this_group = this_group->members;
290       this_group->members = def;
291     }
292   else
293     def->group = NULL;
294 }
295 
296 /* Create a new target register definition structure, for a definition in
297    block BB, instruction INSN, and insert it into ALL_BTR_DEFS.  Return
298    the new definition.  */
299 static btr_def
300 add_btr_def (fibheap_t all_btr_defs, basic_block bb, int insn_luid, rtx insn,
301 	     unsigned int dest_reg, int other_btr_uses_before_def,
302 	     btr_def_group *all_btr_def_groups)
303 {
304   btr_def this_def = XOBNEW (&migrate_btrl_obstack, struct btr_def_s);
305   this_def->bb = bb;
306   this_def->luid = insn_luid;
307   this_def->insn = insn;
308   this_def->btr = dest_reg;
309   this_def->cost = basic_block_freq (bb);
310   this_def->has_ambiguous_use = 0;
311   this_def->other_btr_uses_before_def = other_btr_uses_before_def;
312   this_def->other_btr_uses_after_use = 0;
313   this_def->next_this_bb = NULL;
314   this_def->next_this_group = NULL;
315   this_def->uses = NULL;
316   this_def->live_range = NULL;
317   find_btr_def_group (all_btr_def_groups, this_def);
318 
319   fibheap_insert (all_btr_defs, -this_def->cost, this_def);
320 
321   if (dump_file)
322     fprintf (dump_file,
323       "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
324 	     dest_reg, bb->index, INSN_UID (insn),
325 	     (this_def->group ? "" : ":not const"), this_def->cost);
326 
327   return this_def;
328 }
329 
330 /* Create a new target register user structure, for a use in block BB,
331    instruction INSN.  Return the new user.  */
332 static btr_user
333 new_btr_user (basic_block bb, int insn_luid, rtx insn)
334 {
335   /* This instruction reads target registers.  We need
336      to decide whether we can replace all target register
337      uses easily.
338    */
339   rtx *usep = find_btr_use (PATTERN (insn));
340   rtx use;
341   btr_user user = NULL;
342 
343   if (usep)
344     {
345       int unambiguous_single_use;
346 
347       /* We want to ensure that USE is the only use of a target
348 	 register in INSN, so that we know that to rewrite INSN to use
349 	 a different target register, all we have to do is replace USE.  */
350       unambiguous_single_use = !btr_referenced_p (PATTERN (insn), usep);
351       if (!unambiguous_single_use)
352 	usep = NULL;
353     }
354   use = usep ? *usep : NULL_RTX;
355   user = XOBNEW (&migrate_btrl_obstack, struct btr_user_s);
356   user->bb = bb;
357   user->luid = insn_luid;
358   user->insn = insn;
359   user->use = use;
360   user->other_use_this_block = 0;
361   user->next = NULL;
362   user->n_reaching_defs = 0;
363   user->first_reaching_def = -1;
364 
365   if (dump_file)
366     {
367       fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
368 	       bb->index, INSN_UID (insn));
369 
370       if (user->use)
371 	fprintf (dump_file, ": unambiguous use of reg %d\n",
372 		 REGNO (user->use));
373     }
374 
375   return user;
376 }
377 
378 /* Write the contents of S to the dump file.  */
379 static void
380 dump_hard_reg_set (HARD_REG_SET s)
381 {
382   int reg;
383   for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
384     if (TEST_HARD_REG_BIT (s, reg))
385       fprintf (dump_file, " %d", reg);
386 }
387 
388 /* Write the set of target regs live in block BB to the dump file.  */
389 static void
390 dump_btrs_live (int bb)
391 {
392   fprintf (dump_file, "BB%d live:", bb);
393   dump_hard_reg_set (btrs_live[bb]);
394   fprintf (dump_file, "\n");
395 }
396 
397 /* REGNO is the number of a branch target register that is being used or
398    set.  USERS_THIS_BB is a list of preceding branch target register users;
399    If any of them use the same register, set their other_use_this_block
400    flag.  */
401 static void
402 note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
403 {
404   btr_user user;
405 
406   for (user = users_this_bb; user != NULL; user = user->next)
407     if (user->use && REGNO (user->use) == regno)
408       user->other_use_this_block = 1;
409 }
410 
411 typedef struct {
412   btr_user users_this_bb;
413   HARD_REG_SET btrs_written_in_block;
414   HARD_REG_SET btrs_live_in_block;
415   sbitmap bb_gen;
416   sbitmap *btr_defset;
417 } defs_uses_info;
418 
419 /* Called via note_stores or directly to register stores into /
420    clobbers of a branch target register DEST that are not recognized as
421    straightforward definitions.  DATA points to information about the
422    current basic block that needs updating.  */
423 static void
424 note_btr_set (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data)
425 {
426   defs_uses_info *info = (defs_uses_info *) data;
427   int regno, end_regno;
428 
429   if (!REG_P (dest))
430     return;
431   regno = REGNO (dest);
432   end_regno = END_HARD_REGNO (dest);
433   for (; regno < end_regno; regno++)
434     if (TEST_HARD_REG_BIT (all_btrs, regno))
435       {
436 	note_other_use_this_block (regno, info->users_this_bb);
437 	SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
438 	SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
439 	sbitmap_difference (info->bb_gen, info->bb_gen,
440 			    info->btr_defset[regno - first_btr]);
441       }
442 }
443 
444 static void
445 compute_defs_uses_and_gen (fibheap_t all_btr_defs, btr_def *def_array,
446 			   btr_user *use_array, sbitmap *btr_defset,
447 			   sbitmap *bb_gen, HARD_REG_SET *btrs_written)
448 {
449   /* Scan the code building up the set of all defs and all uses.
450      For each target register, build the set of defs of that register.
451      For each block, calculate the set of target registers
452      written in that block.
453      Also calculate the set of btrs ever live in that block.
454   */
455   int i;
456   int insn_luid = 0;
457   btr_def_group all_btr_def_groups = NULL;
458   defs_uses_info info;
459 
460   sbitmap_vector_zero (bb_gen, last_basic_block);
461   for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
462     {
463       basic_block bb = BASIC_BLOCK (i);
464       int reg;
465       btr_def defs_this_bb = NULL;
466       rtx insn;
467       rtx last;
468       int can_throw = 0;
469 
470       info.users_this_bb = NULL;
471       info.bb_gen = bb_gen[i];
472       info.btr_defset = btr_defset;
473 
474       CLEAR_HARD_REG_SET (info.btrs_live_in_block);
475       CLEAR_HARD_REG_SET (info.btrs_written_in_block);
476       for (reg = first_btr; reg <= last_btr; reg++)
477 	if (TEST_HARD_REG_BIT (all_btrs, reg)
478 	    && REGNO_REG_SET_P (df_get_live_in (bb), reg))
479 	  SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
480 
481       for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
482 	   insn != last;
483 	   insn = NEXT_INSN (insn), insn_luid++)
484 	{
485 	  if (INSN_P (insn))
486 	    {
487 	      int regno;
488 	      int insn_uid = INSN_UID (insn);
489 
490 	      if (insn_sets_btr_p (insn, 0, &regno))
491 		{
492 		  btr_def def = add_btr_def (
493 		      all_btr_defs, bb, insn_luid, insn, regno,
494 		      TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
495 		      &all_btr_def_groups);
496 
497 		  def_array[insn_uid] = def;
498 		  SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
499 		  SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
500 		  sbitmap_difference (bb_gen[i], bb_gen[i],
501 				      btr_defset[regno - first_btr]);
502 		  SET_BIT (bb_gen[i], insn_uid);
503 		  def->next_this_bb = defs_this_bb;
504 		  defs_this_bb = def;
505 		  SET_BIT (btr_defset[regno - first_btr], insn_uid);
506 		  note_other_use_this_block (regno, info.users_this_bb);
507 		}
508 	      /* Check for the blockage emitted by expand_nl_goto_receiver.  */
509 	      else if (cfun->has_nonlocal_label
510 		       && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE)
511 		{
512 		  btr_user user;
513 
514 		  /* Do the equivalent of calling note_other_use_this_block
515 		     for every target register.  */
516 		  for (user = info.users_this_bb; user != NULL;
517 		       user = user->next)
518 		    if (user->use)
519 		      user->other_use_this_block = 1;
520 		  IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
521 		  IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
522 		  sbitmap_zero (info.bb_gen);
523 		}
524 	      else
525 		{
526 		  if (btr_referenced_p (PATTERN (insn), NULL))
527 		    {
528 		      btr_user user = new_btr_user (bb, insn_luid, insn);
529 
530 		      use_array[insn_uid] = user;
531 		      if (user->use)
532 			SET_HARD_REG_BIT (info.btrs_live_in_block,
533 					  REGNO (user->use));
534 		      else
535 			{
536 			  int reg;
537 			  for (reg = first_btr; reg <= last_btr; reg++)
538 			    if (TEST_HARD_REG_BIT (all_btrs, reg)
539 				&& refers_to_regno_p (reg, reg + 1, user->insn,
540 						      NULL))
541 			      {
542 				note_other_use_this_block (reg,
543 							   info.users_this_bb);
544 				SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
545 			      }
546 			  note_stores (PATTERN (insn), note_btr_set, &info);
547 			}
548 		      user->next = info.users_this_bb;
549 		      info.users_this_bb = user;
550 		    }
551 		  if (CALL_P (insn))
552 		    {
553 		      HARD_REG_SET *clobbered = &call_used_reg_set;
554 		      HARD_REG_SET call_saved;
555 		      rtx pat = PATTERN (insn);
556 		      int i;
557 
558 		      /* Check for sibcall.  */
559 		      if (GET_CODE (pat) == PARALLEL)
560 			for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
561 			  if (ANY_RETURN_P (XVECEXP (pat, 0, i)))
562 			    {
563 			      COMPL_HARD_REG_SET (call_saved,
564 						  call_used_reg_set);
565 			      clobbered = &call_saved;
566 			    }
567 
568 		      for (regno = first_btr; regno <= last_btr; regno++)
569 			if (TEST_HARD_REG_BIT (*clobbered, regno))
570 			  note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
571 		    }
572 		}
573 	    }
574 	}
575 
576       COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
577       COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
578 
579       REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], df_get_live_out (bb));
580       /* If this block ends in a jump insn, add any uses or even clobbers
581 	 of branch target registers that it might have.  */
582       for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
583 	insn = PREV_INSN (insn);
584       /* ??? for the fall-through edge, it would make sense to insert the
585 	 btr set on the edge, but that would require to split the block
586 	 early on so that we can distinguish between dominance from the fall
587 	 through edge - which can use the call-clobbered registers - from
588 	 dominance by the throw edge.  */
589       if (can_throw_internal (insn))
590 	{
591 	  HARD_REG_SET tmp;
592 
593 	  COPY_HARD_REG_SET (tmp, call_used_reg_set);
594 	  AND_HARD_REG_SET (tmp, all_btrs);
595 	  IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
596 	  can_throw = 1;
597 	}
598       if (can_throw || JUMP_P (insn))
599 	{
600 	  int regno;
601 
602 	  for (regno = first_btr; regno <= last_btr; regno++)
603 	    if (refers_to_regno_p (regno, regno+1, insn, NULL))
604 	      SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
605 	}
606 
607       if (dump_file)
608 	dump_btrs_live(i);
609     }
610 }
611 
612 static void
613 compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
614 	      HARD_REG_SET *btrs_written)
615 {
616   int i;
617   int regno;
618 
619   /* For each basic block, form the set BB_KILL - the set
620      of definitions that the block kills.  */
621   sbitmap_vector_zero (bb_kill, last_basic_block);
622   for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
623     {
624       for (regno = first_btr; regno <= last_btr; regno++)
625 	if (TEST_HARD_REG_BIT (all_btrs, regno)
626 	    && TEST_HARD_REG_BIT (btrs_written[i], regno))
627 	  sbitmap_a_or_b (bb_kill[i], bb_kill[i],
628 			  btr_defset[regno - first_btr]);
629     }
630 }
631 
632 static void
633 compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
634 {
635   /* Perform iterative dataflow:
636       Initially, for all blocks, BB_OUT = BB_GEN.
637       For each block,
638 	BB_IN  = union over predecessors of BB_OUT(pred)
639 	BB_OUT = (BB_IN - BB_KILL) + BB_GEN
640      Iterate until the bb_out sets stop growing.  */
641   int i;
642   int changed;
643   sbitmap bb_in = sbitmap_alloc (max_uid);
644 
645   for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
646     sbitmap_copy (bb_out[i], bb_gen[i]);
647 
648   changed = 1;
649   while (changed)
650     {
651       changed = 0;
652       for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
653 	{
654 	  sbitmap_union_of_preds (bb_in, bb_out, i);
655 	  changed |= sbitmap_union_of_diff_cg (bb_out[i], bb_gen[i],
656 					       bb_in, bb_kill[i]);
657 	}
658     }
659   sbitmap_free (bb_in);
660 }
661 
662 static void
663 link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
664 	       sbitmap *btr_defset, int max_uid)
665 {
666   int i;
667   sbitmap reaching_defs = sbitmap_alloc (max_uid);
668 
669   /* Link uses to the uses lists of all of their reaching defs.
670      Count up the number of reaching defs of each use.  */
671   for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
672     {
673       basic_block bb = BASIC_BLOCK (i);
674       rtx insn;
675       rtx last;
676 
677       sbitmap_union_of_preds (reaching_defs, bb_out, i);
678       for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
679 	   insn != last;
680 	   insn = NEXT_INSN (insn))
681 	{
682 	  if (INSN_P (insn))
683 	    {
684 	      int insn_uid = INSN_UID (insn);
685 
686 	      btr_def def   = def_array[insn_uid];
687 	      btr_user user = use_array[insn_uid];
688 	      if (def != NULL)
689 		{
690 		  /* Remove all reaching defs of regno except
691 		     for this one.  */
692 		  sbitmap_difference (reaching_defs, reaching_defs,
693 				      btr_defset[def->btr - first_btr]);
694 		  SET_BIT(reaching_defs, insn_uid);
695 		}
696 
697 	      if (user != NULL)
698 		{
699 		  /* Find all the reaching defs for this use.  */
700 		  sbitmap reaching_defs_of_reg = sbitmap_alloc(max_uid);
701 		  unsigned int uid = 0;
702 		  sbitmap_iterator sbi;
703 
704 		  if (user->use)
705 		    sbitmap_a_and_b (
706 		      reaching_defs_of_reg,
707 		      reaching_defs,
708 		      btr_defset[REGNO (user->use) - first_btr]);
709 		  else
710 		    {
711 		      int reg;
712 
713 		      sbitmap_zero (reaching_defs_of_reg);
714 		      for (reg = first_btr; reg <= last_btr; reg++)
715 			if (TEST_HARD_REG_BIT (all_btrs, reg)
716 			    && refers_to_regno_p (reg, reg + 1, user->insn,
717 						  NULL))
718 			  sbitmap_a_or_b_and_c (reaching_defs_of_reg,
719 			    reaching_defs_of_reg,
720 			    reaching_defs,
721 			    btr_defset[reg - first_btr]);
722 		    }
723 		  EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg, 0, uid, sbi)
724 		    {
725 		      btr_def def = def_array[uid];
726 
727 		      /* We now know that def reaches user.  */
728 
729 		      if (dump_file)
730 			fprintf (dump_file,
731 			  "Def in insn %d reaches use in insn %d\n",
732 			  uid, insn_uid);
733 
734 		      user->n_reaching_defs++;
735 		      if (!user->use)
736 			def->has_ambiguous_use = 1;
737 		      if (user->first_reaching_def != -1)
738 			{ /* There is more than one reaching def.  This is
739 			     a rare case, so just give up on this def/use
740 			     web when it occurs.  */
741 			  def->has_ambiguous_use = 1;
742 			  def_array[user->first_reaching_def]
743 			    ->has_ambiguous_use = 1;
744 			  if (dump_file)
745 			    fprintf (dump_file,
746 				     "(use %d has multiple reaching defs)\n",
747 				     insn_uid);
748 			}
749 		      else
750 			user->first_reaching_def = uid;
751 		      if (user->other_use_this_block)
752 			def->other_btr_uses_after_use = 1;
753 		      user->next = def->uses;
754 		      def->uses = user;
755 		    }
756 		  sbitmap_free (reaching_defs_of_reg);
757 		}
758 
759 	      if (CALL_P (insn))
760 		{
761 		  int regno;
762 
763 		  for (regno = first_btr; regno <= last_btr; regno++)
764 		    if (TEST_HARD_REG_BIT (all_btrs, regno)
765 			&& TEST_HARD_REG_BIT (call_used_reg_set, regno))
766 		      sbitmap_difference (reaching_defs, reaching_defs,
767 					  btr_defset[regno - first_btr]);
768 		}
769 	    }
770 	}
771     }
772   sbitmap_free (reaching_defs);
773 }
774 
775 static void
776 build_btr_def_use_webs (fibheap_t all_btr_defs)
777 {
778   const int max_uid = get_max_uid ();
779   btr_def  *def_array   = XCNEWVEC (btr_def, max_uid);
780   btr_user *use_array   = XCNEWVEC (btr_user, max_uid);
781   sbitmap *btr_defset   = sbitmap_vector_alloc (
782 			   (last_btr - first_btr) + 1, max_uid);
783   sbitmap *bb_gen      = sbitmap_vector_alloc (last_basic_block, max_uid);
784   HARD_REG_SET *btrs_written = XCNEWVEC (HARD_REG_SET, last_basic_block);
785   sbitmap *bb_kill;
786   sbitmap *bb_out;
787 
788   sbitmap_vector_zero (btr_defset, (last_btr - first_btr) + 1);
789 
790   compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
791 			     bb_gen, btrs_written);
792 
793   bb_kill = sbitmap_vector_alloc (last_basic_block, max_uid);
794   compute_kill (bb_kill, btr_defset, btrs_written);
795   free (btrs_written);
796 
797   bb_out = sbitmap_vector_alloc (last_basic_block, max_uid);
798   compute_out (bb_out, bb_gen, bb_kill, max_uid);
799 
800   sbitmap_vector_free (bb_gen);
801   sbitmap_vector_free (bb_kill);
802 
803   link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
804 
805   sbitmap_vector_free (bb_out);
806   sbitmap_vector_free (btr_defset);
807   free (use_array);
808   free (def_array);
809 }
810 
811 /* Return true if basic block BB contains the start or end of the
812    live range of the definition DEF, AND there are other live
813    ranges of the same target register that include BB.  */
814 static int
815 block_at_edge_of_live_range_p (int bb, btr_def def)
816 {
817   if (def->other_btr_uses_before_def && BASIC_BLOCK (bb) == def->bb)
818     return 1;
819   else if (def->other_btr_uses_after_use)
820     {
821       btr_user user;
822       for (user = def->uses; user != NULL; user = user->next)
823 	if (BASIC_BLOCK (bb) == user->bb)
824 	  return 1;
825     }
826   return 0;
827 }
828 
829 /* We are removing the def/use web DEF.  The target register
830    used in this web is therefore no longer live in the live range
831    of this web, so remove it from the live set of all basic blocks
832    in the live range of the web.
833    Blocks at the boundary of the live range may contain other live
834    ranges for the same target register, so we have to be careful
835    to remove the target register from the live set of these blocks
836    only if they do not contain other live ranges for the same register.  */
837 static void
838 clear_btr_from_live_range (btr_def def)
839 {
840   unsigned bb;
841   bitmap_iterator bi;
842 
843   EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
844     {
845       if ((!def->other_btr_uses_before_def
846 	   && !def->other_btr_uses_after_use)
847 	  || !block_at_edge_of_live_range_p (bb, def))
848 	{
849 	  CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
850 	  CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
851 	  if (dump_file)
852 	    dump_btrs_live (bb);
853 	}
854     }
855  if (def->own_end)
856    CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
857 }
858 
859 
860 /* We are adding the def/use web DEF.  Add the target register used
861    in this web to the live set of all of the basic blocks that contain
862    the live range of the web.
863    If OWN_END is set, also show that the register is live from our
864    definitions at the end of the basic block where it is defined.  */
865 static void
866 add_btr_to_live_range (btr_def def, int own_end)
867 {
868   unsigned bb;
869   bitmap_iterator bi;
870 
871   EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
872     {
873       SET_HARD_REG_BIT (btrs_live[bb], def->btr);
874       SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
875       if (dump_file)
876 	dump_btrs_live (bb);
877     }
878   if (own_end)
879     {
880       SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
881       def->own_end = 1;
882     }
883 }
884 
885 /* Update a live range to contain the basic block NEW_BLOCK, and all
886    blocks on paths between the existing live range and NEW_BLOCK.
887    HEAD is a block contained in the existing live range that dominates
888    all other blocks in the existing live range.
889    Also add to the set BTRS_LIVE_IN_RANGE all target registers that
890    are live in the blocks that we add to the live range.
891    If FULL_RANGE is set, include the full live range of NEW_BB;
892    otherwise, if NEW_BB dominates HEAD_BB, only add registers that
893    are life at the end of NEW_BB for NEW_BB itself.
894    It is a precondition that either NEW_BLOCK dominates HEAD,or
895    HEAD dom NEW_BLOCK.  This is used to speed up the
896    implementation of this function.  */
897 static void
898 augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
899 		    basic_block head_bb, basic_block new_bb, int full_range)
900 {
901   basic_block *worklist, *tos;
902 
903   tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
904 
905   if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
906     {
907       if (new_bb == head_bb)
908 	{
909 	  if (full_range)
910 	    IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
911 	  free (tos);
912 	  return;
913 	}
914       *tos++ = new_bb;
915     }
916   else
917     {
918       edge e;
919       edge_iterator ei;
920       int new_block = new_bb->index;
921 
922       gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
923 
924       IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
925       bitmap_set_bit (live_range, new_block);
926       /* A previous btr migration could have caused a register to be
927 	live just at the end of new_block which we need in full, so
928 	use trs_live_at_end even if full_range is set.  */
929       IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
930       if (full_range)
931 	IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
932       if (dump_file)
933 	{
934 	  fprintf (dump_file,
935 		   "Adding end of block %d and rest of %d to live range\n",
936 		   new_block, head_bb->index);
937 	  fprintf (dump_file,"Now live btrs are ");
938 	  dump_hard_reg_set (*btrs_live_in_range);
939 	  fprintf (dump_file, "\n");
940 	}
941       FOR_EACH_EDGE (e, ei, head_bb->preds)
942 	*tos++ = e->src;
943     }
944 
945   while (tos != worklist)
946     {
947       basic_block bb = *--tos;
948       if (!bitmap_bit_p (live_range, bb->index))
949 	{
950 	  edge e;
951 	  edge_iterator ei;
952 
953 	  bitmap_set_bit (live_range, bb->index);
954 	  IOR_HARD_REG_SET (*btrs_live_in_range,
955 	    btrs_live[bb->index]);
956 	  /* A previous btr migration could have caused a register to be
957 	     live just at the end of a block which we need in full.  */
958 	  IOR_HARD_REG_SET (*btrs_live_in_range,
959 	    btrs_live_at_end[bb->index]);
960 	  if (dump_file)
961 	    {
962 	      fprintf (dump_file,
963 		"Adding block %d to live range\n", bb->index);
964 	      fprintf (dump_file,"Now live btrs are ");
965 	      dump_hard_reg_set (*btrs_live_in_range);
966 	      fprintf (dump_file, "\n");
967 	    }
968 
969 	  FOR_EACH_EDGE (e, ei, bb->preds)
970 	    {
971 	      basic_block pred = e->src;
972 	      if (!bitmap_bit_p (live_range, pred->index))
973 		*tos++ = pred;
974 	    }
975 	}
976     }
977 
978   free (worklist);
979 }
980 
981 /*  Return the most desirable target register that is not in
982     the set USED_BTRS.  */
983 static int
984 choose_btr (HARD_REG_SET used_btrs)
985 {
986   int i;
987 
988   if (!hard_reg_set_subset_p (all_btrs, used_btrs))
989     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
990       {
991 #ifdef REG_ALLOC_ORDER
992 	int regno = reg_alloc_order[i];
993 #else
994 	int regno = i;
995 #endif
996 	if (TEST_HARD_REG_BIT (all_btrs, regno)
997 	    && !TEST_HARD_REG_BIT (used_btrs, regno))
998 	  return regno;
999       }
1000   return -1;
1001 }
1002 
1003 /* Calculate the set of basic blocks that contain the live range of
1004    the def/use web DEF.
1005    Also calculate the set of target registers that are live at time
1006    in this live range, but ignore the live range represented by DEF
1007    when calculating this set.  */
1008 static void
1009 btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
1010 {
1011   if (!def->live_range)
1012     {
1013       btr_user user;
1014 
1015       def->live_range = BITMAP_ALLOC (NULL);
1016 
1017       bitmap_set_bit (def->live_range, def->bb->index);
1018       COPY_HARD_REG_SET (*btrs_live_in_range,
1019 			 (flag_btr_bb_exclusive
1020 			  ? btrs_live : btrs_live_at_end)[def->bb->index]);
1021 
1022       for (user = def->uses; user != NULL; user = user->next)
1023 	augment_live_range (def->live_range, btrs_live_in_range,
1024 			    def->bb, user->bb,
1025 			    (flag_btr_bb_exclusive
1026 			     || user->insn != BB_END (def->bb)
1027 			     || !JUMP_P (user->insn)));
1028     }
1029   else
1030     {
1031       /* def->live_range is accurate, but we need to recompute
1032 	 the set of target registers live over it, because migration
1033 	 of other PT instructions may have affected it.
1034       */
1035       unsigned bb;
1036       unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1037       bitmap_iterator bi;
1038 
1039       CLEAR_HARD_REG_SET (*btrs_live_in_range);
1040       EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1041 	{
1042 	  IOR_HARD_REG_SET (*btrs_live_in_range,
1043 			    (def_bb == bb
1044 			     ? btrs_live_at_end : btrs_live) [bb]);
1045 	}
1046     }
1047   if (!def->other_btr_uses_before_def &&
1048       !def->other_btr_uses_after_use)
1049     CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1050 }
1051 
1052 /* Merge into the def/use web DEF any other def/use webs in the same
1053    group that are dominated by DEF, provided that there is a target
1054    register available to allocate to the merged web.  */
1055 static void
1056 combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
1057 {
1058   btr_def other_def;
1059 
1060   for (other_def = def->group->members;
1061        other_def != NULL;
1062        other_def = other_def->next_this_group)
1063     {
1064       if (other_def != def
1065 	  && other_def->uses != NULL
1066 	  && ! other_def->has_ambiguous_use
1067 	  && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1068 	{
1069 	  /* def->bb dominates the other def, so def and other_def could
1070 	     be combined.  */
1071 	  /* Merge their live ranges, and get the set of
1072 	     target registers live over the merged range.  */
1073 	  int btr;
1074 	  HARD_REG_SET combined_btrs_live;
1075 	  bitmap combined_live_range = BITMAP_ALLOC (NULL);
1076 	  btr_user user;
1077 
1078 	  if (other_def->live_range == NULL)
1079 	    {
1080 	      HARD_REG_SET dummy_btrs_live_in_range;
1081 	      btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1082 	    }
1083 	  COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1084 	  bitmap_copy (combined_live_range, def->live_range);
1085 
1086 	  for (user = other_def->uses; user != NULL; user = user->next)
1087 	    augment_live_range (combined_live_range, &combined_btrs_live,
1088 				def->bb, user->bb,
1089 				(flag_btr_bb_exclusive
1090 				 || user->insn != BB_END (def->bb)
1091 				 || !JUMP_P (user->insn)));
1092 
1093 	  btr = choose_btr (combined_btrs_live);
1094 	  if (btr != -1)
1095 	    {
1096 	      /* We can combine them.  */
1097 	      if (dump_file)
1098 		fprintf (dump_file,
1099 			 "Combining def in insn %d with def in insn %d\n",
1100 			 INSN_UID (other_def->insn), INSN_UID (def->insn));
1101 
1102 	      def->btr = btr;
1103 	      user = other_def->uses;
1104 	      while (user != NULL)
1105 		{
1106 		  btr_user next = user->next;
1107 
1108 		  user->next = def->uses;
1109 		  def->uses = user;
1110 		  user = next;
1111 		}
1112 	      /* Combining def/use webs can make target registers live
1113 		 after uses where they previously were not.  This means
1114 		 some REG_DEAD notes may no longer be correct.  We could
1115 		 be more precise about this if we looked at the combined
1116 		 live range, but here I just delete any REG_DEAD notes
1117 		 in case they are no longer correct.  */
1118 	      for (user = def->uses; user != NULL; user = user->next)
1119 		remove_note (user->insn,
1120 			     find_regno_note (user->insn, REG_DEAD,
1121 					      REGNO (user->use)));
1122 	      clear_btr_from_live_range (other_def);
1123 	      other_def->uses = NULL;
1124 	      bitmap_copy (def->live_range, combined_live_range);
1125 	      if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1126 		def->other_btr_uses_after_use = 1;
1127 	      COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1128 
1129 	      /* Delete the old target register initialization.  */
1130 	      delete_insn (other_def->insn);
1131 
1132 	    }
1133 	  BITMAP_FREE (combined_live_range);
1134 	}
1135     }
1136 }
1137 
1138 /* Move the definition DEF from its current position to basic
1139    block NEW_DEF_BB, and modify it to use branch target register BTR.
1140    Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1141    Update all reaching uses of DEF in the RTL to use BTR.
1142    If this new position means that other defs in the
1143    same group can be combined with DEF then combine them.  */
1144 static void
1145 move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
1146 	     HARD_REG_SET *btrs_live_in_range)
1147 {
1148   /* We can move the instruction.
1149      Set a target register in block NEW_DEF_BB to the value
1150      needed for this target register definition.
1151      Replace all uses of the old target register definition by
1152      uses of the new definition.  Delete the old definition.  */
1153   basic_block b = new_def_bb;
1154   rtx insp = BB_HEAD (b);
1155   rtx old_insn = def->insn;
1156   rtx src;
1157   rtx btr_rtx;
1158   rtx new_insn;
1159   enum machine_mode btr_mode;
1160   btr_user user;
1161   rtx set;
1162 
1163   if (dump_file)
1164     fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1165 	    new_def_bb->index, btr);
1166 
1167   clear_btr_from_live_range (def);
1168   def->btr = btr;
1169   def->bb = new_def_bb;
1170   def->luid = 0;
1171   def->cost = basic_block_freq (new_def_bb);
1172   bitmap_copy (def->live_range, live_range);
1173   combine_btr_defs (def, btrs_live_in_range);
1174   btr = def->btr;
1175   def->other_btr_uses_before_def
1176     = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1177   add_btr_to_live_range (def, 1);
1178   if (LABEL_P (insp))
1179     insp = NEXT_INSN (insp);
1180   /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now.  Some
1181      optimizations can result in insp being both first and last insn of
1182      its basic block.  */
1183   /* ?? some assertions to check that insp is sensible? */
1184 
1185   if (def->other_btr_uses_before_def)
1186     {
1187       insp = BB_END (b);
1188       for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1189 	gcc_assert (insp != BB_HEAD (b));
1190 
1191       if (JUMP_P (insp) || can_throw_internal (insp))
1192 	insp = PREV_INSN (insp);
1193     }
1194 
1195   set = single_set (old_insn);
1196   src = SET_SRC (set);
1197   btr_mode = GET_MODE (SET_DEST (set));
1198   btr_rtx = gen_rtx_REG (btr_mode, btr);
1199 
1200   new_insn = gen_move_insn (btr_rtx, src);
1201 
1202   /* Insert target register initialization at head of basic block.  */
1203   def->insn = emit_insn_after (new_insn, insp);
1204 
1205   df_set_regs_ever_live (btr, true);
1206 
1207   if (dump_file)
1208     fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1209 	     INSN_UID (def->insn), INSN_UID (insp));
1210 
1211   /* Delete the old target register initialization.  */
1212   delete_insn (old_insn);
1213 
1214   /* Replace each use of the old target register by a use of the new target
1215      register.  */
1216   for (user = def->uses; user != NULL; user = user->next)
1217     {
1218       /* Some extra work here to ensure consistent modes, because
1219 	 it seems that a target register REG rtx can be given a different
1220 	 mode depending on the context (surely that should not be
1221 	 the case?).  */
1222       rtx replacement_rtx;
1223       if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1224 	  || GET_MODE (user->use) == VOIDmode)
1225 	replacement_rtx = btr_rtx;
1226       else
1227 	replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1228       validate_replace_rtx (user->use, replacement_rtx, user->insn);
1229       user->use = replacement_rtx;
1230     }
1231 }
1232 
1233 /* We anticipate intra-block scheduling to be done.  See if INSN could move
1234    up within BB by N_INSNS.  */
1235 static int
1236 can_move_up (const_basic_block bb, const_rtx insn, int n_insns)
1237 {
1238   while (insn != BB_HEAD (bb) && n_insns > 0)
1239     {
1240       insn = PREV_INSN (insn);
1241       /* ??? What if we have an anti-dependency that actually prevents the
1242 	 scheduler from doing the move?  We'd like to re-allocate the register,
1243 	 but not necessarily put the load into another basic block.  */
1244       if (INSN_P (insn))
1245 	n_insns--;
1246     }
1247   return n_insns <= 0;
1248 }
1249 
1250 /* Attempt to migrate the target register definition DEF to an
1251    earlier point in the flowgraph.
1252 
1253    It is a precondition of this function that DEF is migratable:
1254    i.e. it has a constant source, and all uses are unambiguous.
1255 
1256    Only migrations that reduce the cost of DEF will be made.
1257    MIN_COST is the lower bound on the cost of the DEF after migration.
1258    If we migrate DEF so that its cost falls below MIN_COST,
1259    then we do not attempt to migrate further.  The idea is that
1260    we migrate definitions in a priority order based on their cost,
1261    when the cost of this definition falls below MIN_COST, then
1262    there is another definition with cost == MIN_COST which now
1263    has a higher priority than this definition.
1264 
1265    Return nonzero if there may be benefit from attempting to
1266    migrate this DEF further (i.e. we have reduced the cost below
1267    MIN_COST, but we may be able to reduce it further).
1268    Return zero if no further migration is possible.  */
1269 static int
1270 migrate_btr_def (btr_def def, int min_cost)
1271 {
1272   bitmap live_range;
1273   HARD_REG_SET btrs_live_in_range;
1274   int btr_used_near_def = 0;
1275   int def_basic_block_freq;
1276   basic_block attempt;
1277   int give_up = 0;
1278   int def_moved = 0;
1279   btr_user user;
1280   int def_latency;
1281 
1282   if (dump_file)
1283     fprintf (dump_file,
1284 	     "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1285 	     INSN_UID (def->insn), def->cost, min_cost);
1286 
1287   if (!def->group || def->has_ambiguous_use)
1288     /* These defs are not migratable.  */
1289     {
1290       if (dump_file)
1291 	fprintf (dump_file, "it's not migratable\n");
1292       return 0;
1293     }
1294 
1295   if (!def->uses)
1296     /* We have combined this def with another in the same group, so
1297        no need to consider it further.
1298     */
1299     {
1300       if (dump_file)
1301 	fprintf (dump_file, "it's already combined with another pt\n");
1302       return 0;
1303     }
1304 
1305   btr_def_live_range (def, &btrs_live_in_range);
1306   live_range = BITMAP_ALLOC (NULL);
1307   bitmap_copy (live_range, def->live_range);
1308 
1309 #ifdef INSN_SCHEDULING
1310   def_latency = insn_default_latency (def->insn) * issue_rate;
1311 #else
1312   def_latency = issue_rate;
1313 #endif
1314 
1315   for (user = def->uses; user != NULL; user = user->next)
1316     {
1317       if (user->bb == def->bb
1318 	  && user->luid > def->luid
1319 	  && (def->luid + def_latency) > user->luid
1320 	  && ! can_move_up (def->bb, def->insn,
1321 			    (def->luid + def_latency) - user->luid))
1322 	{
1323 	  btr_used_near_def = 1;
1324 	  break;
1325 	}
1326     }
1327 
1328   def_basic_block_freq = basic_block_freq (def->bb);
1329 
1330   for (attempt = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1331        !give_up && attempt && attempt != ENTRY_BLOCK_PTR && def->cost >= min_cost;
1332        attempt = get_immediate_dominator (CDI_DOMINATORS, attempt))
1333     {
1334       /* Try to move the instruction that sets the target register into
1335 	 basic block ATTEMPT.  */
1336       int try_freq = basic_block_freq (attempt);
1337       edge_iterator ei;
1338       edge e;
1339 
1340       /* If ATTEMPT has abnormal edges, skip it.  */
1341       FOR_EACH_EDGE (e, ei, attempt->succs)
1342 	if (e->flags & EDGE_COMPLEX)
1343 	  break;
1344       if (e)
1345 	continue;
1346 
1347       if (dump_file)
1348 	fprintf (dump_file, "trying block %d ...", attempt->index);
1349 
1350       if (try_freq < def_basic_block_freq
1351 	  || (try_freq == def_basic_block_freq && btr_used_near_def))
1352 	{
1353 	  int btr;
1354 	  augment_live_range (live_range, &btrs_live_in_range, def->bb, attempt,
1355 			      flag_btr_bb_exclusive);
1356 	  if (dump_file)
1357 	    {
1358 	      fprintf (dump_file, "Now btrs live in range are: ");
1359 	      dump_hard_reg_set (btrs_live_in_range);
1360 	      fprintf (dump_file, "\n");
1361 	    }
1362 	  btr = choose_btr (btrs_live_in_range);
1363 	  if (btr != -1)
1364 	    {
1365 	      move_btr_def (attempt, btr, def, live_range, &btrs_live_in_range);
1366 	      bitmap_copy(live_range, def->live_range);
1367 	      btr_used_near_def = 0;
1368 	      def_moved = 1;
1369 	      def_basic_block_freq = basic_block_freq (def->bb);
1370 	    }
1371 	  else
1372 	    {
1373 	      /* There are no free target registers available to move
1374 		 this far forward, so give up */
1375 	      give_up = 1;
1376 	      if (dump_file)
1377 		fprintf (dump_file,
1378 			 "giving up because there are no free target registers\n");
1379 	    }
1380 
1381 	}
1382     }
1383   if (!def_moved)
1384     {
1385       give_up = 1;
1386       if (dump_file)
1387 	fprintf (dump_file, "failed to move\n");
1388     }
1389   BITMAP_FREE (live_range);
1390   return !give_up;
1391 }
1392 
1393 /* Attempt to move instructions that set target registers earlier
1394    in the flowgraph, away from their corresponding uses.  */
1395 static void
1396 migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1397 {
1398   fibheap_t all_btr_defs = fibheap_new ();
1399   int reg;
1400 
1401   gcc_obstack_init (&migrate_btrl_obstack);
1402   if (dump_file)
1403     {
1404       int i;
1405 
1406       for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
1407 	{
1408 	  basic_block bb = BASIC_BLOCK (i);
1409 	  fprintf(dump_file,
1410 	    "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC
1411 	    " loop-depth = %d idom = %d\n",
1412 	    i, (HOST_WIDEST_INT) bb->count, bb->loop_depth,
1413 	    get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1414 	}
1415     }
1416 
1417   CLEAR_HARD_REG_SET (all_btrs);
1418   for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1419     if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1420 	&& (allow_callee_save || call_used_regs[reg]
1421 	    || df_regs_ever_live_p (reg)))
1422       {
1423 	SET_HARD_REG_BIT (all_btrs, reg);
1424 	last_btr = reg;
1425 	if (first_btr < 0)
1426 	  first_btr = reg;
1427       }
1428 
1429   btrs_live = XCNEWVEC (HARD_REG_SET, last_basic_block);
1430   btrs_live_at_end = XCNEWVEC (HARD_REG_SET, last_basic_block);
1431 
1432   build_btr_def_use_webs (all_btr_defs);
1433 
1434   while (!fibheap_empty (all_btr_defs))
1435     {
1436       btr_def def = (btr_def) fibheap_extract_min (all_btr_defs);
1437       int min_cost = -fibheap_min_key (all_btr_defs);
1438       if (migrate_btr_def (def, min_cost))
1439 	{
1440 	  fibheap_insert (all_btr_defs, -def->cost, (void *) def);
1441 	  if (dump_file)
1442 	    {
1443 	      fprintf (dump_file,
1444 		"Putting insn %d back on queue with priority %d\n",
1445 		INSN_UID (def->insn), def->cost);
1446 	    }
1447 	}
1448       else
1449 	BITMAP_FREE (def->live_range);
1450     }
1451 
1452   free (btrs_live);
1453   free (btrs_live_at_end);
1454   obstack_free (&migrate_btrl_obstack, NULL);
1455   fibheap_delete (all_btr_defs);
1456 }
1457 
1458 static void
1459 branch_target_load_optimize (bool after_prologue_epilogue_gen)
1460 {
1461   enum reg_class klass
1462     = (enum reg_class) targetm.branch_target_register_class ();
1463   if (klass != NO_REGS)
1464     {
1465       /* Initialize issue_rate.  */
1466       if (targetm.sched.issue_rate)
1467 	issue_rate = targetm.sched.issue_rate ();
1468       else
1469 	issue_rate = 1;
1470 
1471       if (!after_prologue_epilogue_gen)
1472 	{
1473 	  /* Build the CFG for migrate_btr_defs.  */
1474 #if 1
1475 	  /* This may or may not be needed, depending on where we
1476 	     run this phase.  */
1477 	  cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1478 #endif
1479 	}
1480       df_analyze ();
1481 
1482 
1483       /* Dominator info is also needed for migrate_btr_def.  */
1484       calculate_dominance_info (CDI_DOMINATORS);
1485       migrate_btr_defs (klass,
1486 		       (targetm.branch_target_register_callee_saved
1487 			(after_prologue_epilogue_gen)));
1488 
1489       free_dominance_info (CDI_DOMINATORS);
1490     }
1491 }
1492 
1493 static bool
1494 gate_handle_branch_target_load_optimize1 (void)
1495 {
1496   return flag_branch_target_load_optimize;
1497 }
1498 
1499 
1500 static unsigned int
1501 rest_of_handle_branch_target_load_optimize1 (void)
1502 {
1503   branch_target_load_optimize (epilogue_completed);
1504   return 0;
1505 }
1506 
1507 struct rtl_opt_pass pass_branch_target_load_optimize1 =
1508 {
1509  {
1510   RTL_PASS,
1511   "btl1",                               /* name */
1512   gate_handle_branch_target_load_optimize1,      /* gate */
1513   rest_of_handle_branch_target_load_optimize1,   /* execute */
1514   NULL,                                 /* sub */
1515   NULL,                                 /* next */
1516   0,                                    /* static_pass_number */
1517   TV_NONE,	                        /* tv_id */
1518   0,                                    /* properties_required */
1519   0,                                    /* properties_provided */
1520   0,                                    /* properties_destroyed */
1521   0,                                    /* todo_flags_start */
1522   TODO_verify_rtl_sharing |
1523   TODO_ggc_collect,                     /* todo_flags_finish */
1524  }
1525 };
1526 
1527 static bool
1528 gate_handle_branch_target_load_optimize2 (void)
1529 {
1530   return (optimize > 0 && flag_branch_target_load_optimize2);
1531 }
1532 
1533 
1534 static unsigned int
1535 rest_of_handle_branch_target_load_optimize2 (void)
1536 {
1537   static int warned = 0;
1538 
1539   /* Leave this a warning for now so that it is possible to experiment
1540      with running this pass twice.  In 3.6, we should either make this
1541      an error, or use separate dump files.  */
1542   if (flag_branch_target_load_optimize
1543       && flag_branch_target_load_optimize2
1544       && !warned)
1545     {
1546       warning (0, "branch target register load optimization is not intended "
1547 		  "to be run twice");
1548 
1549       warned = 1;
1550     }
1551 
1552   branch_target_load_optimize (epilogue_completed);
1553   return 0;
1554 }
1555 
1556 struct rtl_opt_pass pass_branch_target_load_optimize2 =
1557 {
1558  {
1559   RTL_PASS,
1560   "btl2",                               /* name */
1561   gate_handle_branch_target_load_optimize2,      /* gate */
1562   rest_of_handle_branch_target_load_optimize2,   /* execute */
1563   NULL,                                 /* sub */
1564   NULL,                                 /* next */
1565   0,                                    /* static_pass_number */
1566   TV_NONE,				/* tv_id */
1567   0,                                    /* properties_required */
1568   0,                                    /* properties_provided */
1569   0,                                    /* properties_destroyed */
1570   0,                                    /* todo_flags_start */
1571   TODO_ggc_collect,                     /* todo_flags_finish */
1572  }
1573 };
1574