xref: /dragonfly/contrib/gcc-4.7/gcc/combine.c (revision a4da4a90)
1 /* Optimize by combining instructions for GNU compiler.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4    2011, 2012 Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23    Portable Optimizer, but redone to work on our list-structured
24    representation for RTL instead of their string representation.
25 
26    The LOG_LINKS of each insn identify the most recent assignment
27    to each REG used in the insn.  It is a list of previous insns,
28    each of which contains a SET for a REG that is used in this insn
29    and not used or set in between.  LOG_LINKs never cross basic blocks.
30    They were set up by the preceding pass (lifetime analysis).
31 
32    We try to combine each pair of insns joined by a logical link.
33    We also try to combine triples of insns A, B and C when
34    C has a link back to B and B has a link back to A.
35 
36    LOG_LINKS does not have links for use of the CC0.  They don't
37    need to, because the insn that sets the CC0 is always immediately
38    before the insn that tests it.  So we always regard a branch
39    insn as having a logical link to the preceding insn.  The same is true
40    for an insn explicitly using CC0.
41 
42    We check (with use_crosses_set_p) to avoid combining in such a way
43    as to move a computation to a place where its value would be different.
44 
45    Combination is done by mathematically substituting the previous
46    insn(s) values for the regs they set into the expressions in
47    the later insns that refer to these regs.  If the result is a valid insn
48    for our target machine, according to the machine description,
49    we install it, delete the earlier insns, and update the data flow
50    information (LOG_LINKS and REG_NOTES) for what we did.
51 
52    There are a few exceptions where the dataflow information isn't
53    completely updated (however this is only a local issue since it is
54    regenerated before the next pass that uses it):
55 
56    - reg_live_length is not updated
57    - reg_n_refs is not adjusted in the rare case when a register is
58      no longer required in a computation
59    - there are extremely rare cases (see distribute_notes) when a
60      REG_DEAD note is lost
61    - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62      removed because there is no way to know which register it was
63      linking
64 
65    To simplify substitution, we combine only when the earlier insn(s)
66    consist of only a single assignment.  To simplify updating afterward,
67    we never combine when a subroutine call appears in the middle.
68 
69    Since we do not represent assignments to CC0 explicitly except when that
70    is all an insn does, there is no LOG_LINKS entry in an insn that uses
71    the condition code for the insn that set the condition code.
72    Fortunately, these two insns must be consecutive.
73    Therefore, every JUMP_INSN is taken to have an implicit logical link
74    to the preceding insn.  This is not quite right, since non-jumps can
75    also use the condition code; but in practice such insns would not
76    combine anyway.  */
77 
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file.  */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
107 #include "obstack.h"
108 
109 /* Number of attempts to combine instructions in this function.  */
110 
111 static int combine_attempts;
112 
113 /* Number of attempts that got as far as substitution in this function.  */
114 
115 static int combine_merges;
116 
117 /* Number of instructions combined with added SETs in this function.  */
118 
119 static int combine_extras;
120 
121 /* Number of instructions combined in this function.  */
122 
123 static int combine_successes;
124 
125 /* Totals over entire compilation.  */
126 
127 static int total_attempts, total_merges, total_extras, total_successes;
128 
129 /* combine_instructions may try to replace the right hand side of the
130    second instruction with the value of an associated REG_EQUAL note
131    before throwing it at try_combine.  That is problematic when there
132    is a REG_DEAD note for a register used in the old right hand side
133    and can cause distribute_notes to do wrong things.  This is the
134    second instruction if it has been so modified, null otherwise.  */
135 
136 static rtx i2mod;
137 
138 /* When I2MOD is nonnull, this is a copy of the old right hand side.  */
139 
140 static rtx i2mod_old_rhs;
141 
142 /* When I2MOD is nonnull, this is a copy of the new right hand side.  */
143 
144 static rtx i2mod_new_rhs;
145 
146 typedef struct reg_stat_struct {
147   /* Record last point of death of (hard or pseudo) register n.  */
148   rtx				last_death;
149 
150   /* Record last point of modification of (hard or pseudo) register n.  */
151   rtx				last_set;
152 
153   /* The next group of fields allows the recording of the last value assigned
154      to (hard or pseudo) register n.  We use this information to see if an
155      operation being processed is redundant given a prior operation performed
156      on the register.  For example, an `and' with a constant is redundant if
157      all the zero bits are already known to be turned off.
158 
159      We use an approach similar to that used by cse, but change it in the
160      following ways:
161 
162      (1) We do not want to reinitialize at each label.
163      (2) It is useful, but not critical, to know the actual value assigned
164 	 to a register.  Often just its form is helpful.
165 
166      Therefore, we maintain the following fields:
167 
168      last_set_value		the last value assigned
169      last_set_label		records the value of label_tick when the
170 				register was assigned
171      last_set_table_tick	records the value of label_tick when a
172 				value using the register is assigned
173      last_set_invalid		set to nonzero when it is not valid
174 				to use the value of this register in some
175 				register's value
176 
177      To understand the usage of these tables, it is important to understand
178      the distinction between the value in last_set_value being valid and
179      the register being validly contained in some other expression in the
180      table.
181 
182      (The next two parameters are out of date).
183 
184      reg_stat[i].last_set_value is valid if it is nonzero, and either
185      reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 
187      Register I may validly appear in any expression returned for the value
188      of another register if reg_n_sets[i] is 1.  It may also appear in the
189      value for register J if reg_stat[j].last_set_invalid is zero, or
190      reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 
192      If an expression is found in the table containing a register which may
193      not validly appear in an expression, the register is replaced by
194      something that won't match, (clobber (const_int 0)).  */
195 
196   /* Record last value assigned to (hard or pseudo) register n.  */
197 
198   rtx				last_set_value;
199 
200   /* Record the value of label_tick when an expression involving register n
201      is placed in last_set_value.  */
202 
203   int				last_set_table_tick;
204 
205   /* Record the value of label_tick when the value for register n is placed in
206      last_set_value.  */
207 
208   int				last_set_label;
209 
210   /* These fields are maintained in parallel with last_set_value and are
211      used to store the mode in which the register was last set, the bits
212      that were known to be zero when it was last set, and the number of
213      sign bits copies it was known to have when it was last set.  */
214 
215   unsigned HOST_WIDE_INT	last_set_nonzero_bits;
216   char				last_set_sign_bit_copies;
217   ENUM_BITFIELD(machine_mode)	last_set_mode : 8;
218 
219   /* Set nonzero if references to register n in expressions should not be
220      used.  last_set_invalid is set nonzero when this register is being
221      assigned to and last_set_table_tick == label_tick.  */
222 
223   char				last_set_invalid;
224 
225   /* Some registers that are set more than once and used in more than one
226      basic block are nevertheless always set in similar ways.  For example,
227      a QImode register may be loaded from memory in two places on a machine
228      where byte loads zero extend.
229 
230      We record in the following fields if a register has some leading bits
231      that are always equal to the sign bit, and what we know about the
232      nonzero bits of a register, specifically which bits are known to be
233      zero.
234 
235      If an entry is zero, it means that we don't know anything special.  */
236 
237   unsigned char			sign_bit_copies;
238 
239   unsigned HOST_WIDE_INT	nonzero_bits;
240 
241   /* Record the value of the label_tick when the last truncation
242      happened.  The field truncated_to_mode is only valid if
243      truncation_label == label_tick.  */
244 
245   int				truncation_label;
246 
247   /* Record the last truncation seen for this register.  If truncation
248      is not a nop to this mode we might be able to save an explicit
249      truncation if we know that value already contains a truncated
250      value.  */
251 
252   ENUM_BITFIELD(machine_mode)	truncated_to_mode : 8;
253 } reg_stat_type;
254 
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257 
258 static VEC(reg_stat_type,heap) *reg_stat;
259 
260 /* Record the luid of the last insn that invalidated memory
261    (anything that writes memory, and subroutine calls, but not pushes).  */
262 
263 static int mem_last_set;
264 
265 /* Record the luid of the last CALL_INSN
266    so we can tell whether a potential combination crosses any calls.  */
267 
268 static int last_call_luid;
269 
270 /* When `subst' is called, this is the insn that is being modified
271    (by combining in a previous insn).  The PATTERN of this insn
272    is still the old pattern partially modified and it should not be
273    looked at, but this may be used to examine the successors of the insn
274    to judge whether a simplification is valid.  */
275 
276 static rtx subst_insn;
277 
278 /* This is the lowest LUID that `subst' is currently dealing with.
279    get_last_value will not return a value if the register was set at or
280    after this LUID.  If not for this mechanism, we could get confused if
281    I2 or I1 in try_combine were an insn that used the old value of a register
282    to obtain a new value.  In that case, we might erroneously get the
283    new value of the register when we wanted the old one.  */
284 
285 static int subst_low_luid;
286 
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288    must consider all these registers to be always live.  */
289 
290 static HARD_REG_SET newpat_used_regs;
291 
292 /* This is an insn to which a LOG_LINKS entry has been added.  If this
293    insn is the earlier than I2 or I3, combine should rescan starting at
294    that location.  */
295 
296 static rtx added_links_insn;
297 
298 /* Basic block in which we are performing combines.  */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301 
302 
303 /* Length of the currently allocated uid_insn_cost array.  */
304 
305 static int max_uid_known;
306 
307 /* The following array records the insn_rtx_cost for every insn
308    in the instruction stream.  */
309 
310 static int *uid_insn_cost;
311 
312 /* The following array records the LOG_LINKS for every insn in the
313    instruction stream as struct insn_link pointers.  */
314 
315 struct insn_link {
316   rtx insn;
317   struct insn_link *next;
318 };
319 
320 static struct insn_link **uid_log_links;
321 
322 #define INSN_COST(INSN)		(uid_insn_cost[INSN_UID (INSN)])
323 #define LOG_LINKS(INSN)		(uid_log_links[INSN_UID (INSN)])
324 
325 #define FOR_EACH_LOG_LINK(L, INSN)				\
326   for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
327 
328 /* Links for LOG_LINKS are allocated from this obstack.  */
329 
330 static struct obstack insn_link_obstack;
331 
332 /* Allocate a link.  */
333 
334 static inline struct insn_link *
335 alloc_insn_link (rtx insn, struct insn_link *next)
336 {
337   struct insn_link *l
338     = (struct insn_link *) obstack_alloc (&insn_link_obstack,
339 					  sizeof (struct insn_link));
340   l->insn = insn;
341   l->next = next;
342   return l;
343 }
344 
345 /* Incremented for each basic block.  */
346 
347 static int label_tick;
348 
349 /* Reset to label_tick for each extended basic block in scanning order.  */
350 
351 static int label_tick_ebb_start;
352 
353 /* Mode used to compute significance in reg_stat[].nonzero_bits.  It is the
354    largest integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
355 
356 static enum machine_mode nonzero_bits_mode;
357 
358 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
359    be safely used.  It is zero while computing them and after combine has
360    completed.  This former test prevents propagating values based on
361    previously set values, which can be incorrect if a variable is modified
362    in a loop.  */
363 
364 static int nonzero_sign_valid;
365 
366 
367 /* Record one modification to rtl structure
368    to be undone by storing old_contents into *where.  */
369 
370 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
371 
372 struct undo
373 {
374   struct undo *next;
375   enum undo_kind kind;
376   union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
377   union { rtx *r; int *i; struct insn_link **l; } where;
378 };
379 
380 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
381    num_undo says how many are currently recorded.
382 
383    other_insn is nonzero if we have modified some other insn in the process
384    of working on subst_insn.  It must be verified too.  */
385 
386 struct undobuf
387 {
388   struct undo *undos;
389   struct undo *frees;
390   rtx other_insn;
391 };
392 
393 static struct undobuf undobuf;
394 
395 /* Number of times the pseudo being substituted for
396    was found and replaced.  */
397 
398 static int n_occurrences;
399 
400 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
401 					 enum machine_mode,
402 					 unsigned HOST_WIDE_INT,
403 					 unsigned HOST_WIDE_INT *);
404 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
405 						enum machine_mode,
406 						unsigned int, unsigned int *);
407 static void do_SUBST (rtx *, rtx);
408 static void do_SUBST_INT (int *, int);
409 static void init_reg_last (void);
410 static void setup_incoming_promotions (rtx);
411 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
412 static int cant_combine_insn_p (rtx);
413 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
414 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
415 static int contains_muldiv (rtx);
416 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
417 static void undo_all (void);
418 static void undo_commit (void);
419 static rtx *find_split_point (rtx *, rtx, bool);
420 static rtx subst (rtx, rtx, rtx, int, int, int);
421 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
422 static rtx simplify_if_then_else (rtx);
423 static rtx simplify_set (rtx);
424 static rtx simplify_logical (rtx);
425 static rtx expand_compound_operation (rtx);
426 static const_rtx expand_field_assignment (const_rtx);
427 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
428 			    rtx, unsigned HOST_WIDE_INT, int, int, int);
429 static rtx extract_left_shift (rtx, int);
430 static rtx make_compound_operation (rtx, enum rtx_code);
431 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
432 			      unsigned HOST_WIDE_INT *);
433 static rtx canon_reg_for_combine (rtx, rtx);
434 static rtx force_to_mode (rtx, enum machine_mode,
435 			  unsigned HOST_WIDE_INT, int);
436 static rtx if_then_else_cond (rtx, rtx *, rtx *);
437 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
438 static int rtx_equal_for_field_assignment_p (rtx, rtx);
439 static rtx make_field_assignment (rtx);
440 static rtx apply_distributive_law (rtx);
441 static rtx distribute_and_simplify_rtx (rtx, int);
442 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
443 				     unsigned HOST_WIDE_INT);
444 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
445 				   unsigned HOST_WIDE_INT);
446 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
447 			    HOST_WIDE_INT, enum machine_mode, int *);
448 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
449 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
450 				 int);
451 static int recog_for_combine (rtx *, rtx, rtx *);
452 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
453 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
454 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
455 static void update_table_tick (rtx);
456 static void record_value_for_reg (rtx, rtx, rtx);
457 static void check_promoted_subreg (rtx, rtx);
458 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
459 static void record_dead_and_set_regs (rtx);
460 static int get_last_value_validate (rtx *, rtx, int, int);
461 static rtx get_last_value (const_rtx);
462 static int use_crosses_set_p (const_rtx, int);
463 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
464 static int reg_dead_at_p (rtx, rtx);
465 static void move_deaths (rtx, rtx, int, rtx, rtx *);
466 static int reg_bitfield_target_p (rtx, rtx);
467 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
468 static void distribute_links (struct insn_link *);
469 static void mark_used_regs_combine (rtx);
470 static void record_promoted_value (rtx, rtx);
471 static int unmentioned_reg_p_1 (rtx *, void *);
472 static bool unmentioned_reg_p (rtx, rtx);
473 static int record_truncated_value (rtx *, void *);
474 static void record_truncated_values (rtx *, void *);
475 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
476 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
477 
478 
479 /* It is not safe to use ordinary gen_lowpart in combine.
480    See comments in gen_lowpart_for_combine.  */
481 #undef RTL_HOOKS_GEN_LOWPART
482 #define RTL_HOOKS_GEN_LOWPART              gen_lowpart_for_combine
483 
484 /* Our implementation of gen_lowpart never emits a new pseudo.  */
485 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
486 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT      gen_lowpart_for_combine
487 
488 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
489 #define RTL_HOOKS_REG_NONZERO_REG_BITS     reg_nonzero_bits_for_combine
490 
491 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
492 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES  reg_num_sign_bit_copies_for_combine
493 
494 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
495 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE    reg_truncated_to_mode
496 
497 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
498 
499 
500 /* Try to split PATTERN found in INSN.  This returns NULL_RTX if
501    PATTERN can not be split.  Otherwise, it returns an insn sequence.
502    This is a wrapper around split_insns which ensures that the
503    reg_stat vector is made larger if the splitter creates a new
504    register.  */
505 
506 static rtx
507 combine_split_insns (rtx pattern, rtx insn)
508 {
509   rtx ret;
510   unsigned int nregs;
511 
512   ret = split_insns (pattern, insn);
513   nregs = max_reg_num ();
514   if (nregs > VEC_length (reg_stat_type, reg_stat))
515     VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
516   return ret;
517 }
518 
519 /* This is used by find_single_use to locate an rtx in LOC that
520    contains exactly one use of DEST, which is typically either a REG
521    or CC0.  It returns a pointer to the innermost rtx expression
522    containing DEST.  Appearances of DEST that are being used to
523    totally replace it are not counted.  */
524 
525 static rtx *
526 find_single_use_1 (rtx dest, rtx *loc)
527 {
528   rtx x = *loc;
529   enum rtx_code code = GET_CODE (x);
530   rtx *result = NULL;
531   rtx *this_result;
532   int i;
533   const char *fmt;
534 
535   switch (code)
536     {
537     case CONST_INT:
538     case CONST:
539     case LABEL_REF:
540     case SYMBOL_REF:
541     case CONST_DOUBLE:
542     case CONST_VECTOR:
543     case CLOBBER:
544       return 0;
545 
546     case SET:
547       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
548 	 of a REG that occupies all of the REG, the insn uses DEST if
549 	 it is mentioned in the destination or the source.  Otherwise, we
550 	 need just check the source.  */
551       if (GET_CODE (SET_DEST (x)) != CC0
552 	  && GET_CODE (SET_DEST (x)) != PC
553 	  && !REG_P (SET_DEST (x))
554 	  && ! (GET_CODE (SET_DEST (x)) == SUBREG
555 		&& REG_P (SUBREG_REG (SET_DEST (x)))
556 		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
557 		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
558 		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
559 			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
560 	break;
561 
562       return find_single_use_1 (dest, &SET_SRC (x));
563 
564     case MEM:
565     case SUBREG:
566       return find_single_use_1 (dest, &XEXP (x, 0));
567 
568     default:
569       break;
570     }
571 
572   /* If it wasn't one of the common cases above, check each expression and
573      vector of this code.  Look for a unique usage of DEST.  */
574 
575   fmt = GET_RTX_FORMAT (code);
576   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
577     {
578       if (fmt[i] == 'e')
579 	{
580 	  if (dest == XEXP (x, i)
581 	      || (REG_P (dest) && REG_P (XEXP (x, i))
582 		  && REGNO (dest) == REGNO (XEXP (x, i))))
583 	    this_result = loc;
584 	  else
585 	    this_result = find_single_use_1 (dest, &XEXP (x, i));
586 
587 	  if (result == NULL)
588 	    result = this_result;
589 	  else if (this_result)
590 	    /* Duplicate usage.  */
591 	    return NULL;
592 	}
593       else if (fmt[i] == 'E')
594 	{
595 	  int j;
596 
597 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
598 	    {
599 	      if (XVECEXP (x, i, j) == dest
600 		  || (REG_P (dest)
601 		      && REG_P (XVECEXP (x, i, j))
602 		      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
603 		this_result = loc;
604 	      else
605 		this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
606 
607 	      if (result == NULL)
608 		result = this_result;
609 	      else if (this_result)
610 		return NULL;
611 	    }
612 	}
613     }
614 
615   return result;
616 }
617 
618 
619 /* See if DEST, produced in INSN, is used only a single time in the
620    sequel.  If so, return a pointer to the innermost rtx expression in which
621    it is used.
622 
623    If PLOC is nonzero, *PLOC is set to the insn containing the single use.
624 
625    If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
626    care about REG_DEAD notes or LOG_LINKS.
627 
628    Otherwise, we find the single use by finding an insn that has a
629    LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
630    only referenced once in that insn, we know that it must be the first
631    and last insn referencing DEST.  */
632 
633 static rtx *
634 find_single_use (rtx dest, rtx insn, rtx *ploc)
635 {
636   basic_block bb;
637   rtx next;
638   rtx *result;
639   struct insn_link *link;
640 
641 #ifdef HAVE_cc0
642   if (dest == cc0_rtx)
643     {
644       next = NEXT_INSN (insn);
645       if (next == 0
646 	  || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
647 	return 0;
648 
649       result = find_single_use_1 (dest, &PATTERN (next));
650       if (result && ploc)
651 	*ploc = next;
652       return result;
653     }
654 #endif
655 
656   if (!REG_P (dest))
657     return 0;
658 
659   bb = BLOCK_FOR_INSN (insn);
660   for (next = NEXT_INSN (insn);
661        next && BLOCK_FOR_INSN (next) == bb;
662        next = NEXT_INSN (next))
663     if (INSN_P (next) && dead_or_set_p (next, dest))
664       {
665 	FOR_EACH_LOG_LINK (link, next)
666 	  if (link->insn == insn)
667 	    break;
668 
669 	if (link)
670 	  {
671 	    result = find_single_use_1 (dest, &PATTERN (next));
672 	    if (ploc)
673 	      *ploc = next;
674 	    return result;
675 	  }
676       }
677 
678   return 0;
679 }
680 
681 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
682    insn.  The substitution can be undone by undo_all.  If INTO is already
683    set to NEWVAL, do not record this change.  Because computing NEWVAL might
684    also call SUBST, we have to compute it before we put anything into
685    the undo table.  */
686 
687 static void
688 do_SUBST (rtx *into, rtx newval)
689 {
690   struct undo *buf;
691   rtx oldval = *into;
692 
693   if (oldval == newval)
694     return;
695 
696   /* We'd like to catch as many invalid transformations here as
697      possible.  Unfortunately, there are way too many mode changes
698      that are perfectly valid, so we'd waste too much effort for
699      little gain doing the checks here.  Focus on catching invalid
700      transformations involving integer constants.  */
701   if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
702       && CONST_INT_P (newval))
703     {
704       /* Sanity check that we're replacing oldval with a CONST_INT
705 	 that is a valid sign-extension for the original mode.  */
706       gcc_assert (INTVAL (newval)
707 		  == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
708 
709       /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
710 	 CONST_INT is not valid, because after the replacement, the
711 	 original mode would be gone.  Unfortunately, we can't tell
712 	 when do_SUBST is called to replace the operand thereof, so we
713 	 perform this test on oldval instead, checking whether an
714 	 invalid replacement took place before we got here.  */
715       gcc_assert (!(GET_CODE (oldval) == SUBREG
716 		    && CONST_INT_P (SUBREG_REG (oldval))));
717       gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
718 		    && CONST_INT_P (XEXP (oldval, 0))));
719     }
720 
721   if (undobuf.frees)
722     buf = undobuf.frees, undobuf.frees = buf->next;
723   else
724     buf = XNEW (struct undo);
725 
726   buf->kind = UNDO_RTX;
727   buf->where.r = into;
728   buf->old_contents.r = oldval;
729   *into = newval;
730 
731   buf->next = undobuf.undos, undobuf.undos = buf;
732 }
733 
734 #define SUBST(INTO, NEWVAL)	do_SUBST(&(INTO), (NEWVAL))
735 
736 /* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
737    for the value of a HOST_WIDE_INT value (including CONST_INT) is
738    not safe.  */
739 
740 static void
741 do_SUBST_INT (int *into, int newval)
742 {
743   struct undo *buf;
744   int oldval = *into;
745 
746   if (oldval == newval)
747     return;
748 
749   if (undobuf.frees)
750     buf = undobuf.frees, undobuf.frees = buf->next;
751   else
752     buf = XNEW (struct undo);
753 
754   buf->kind = UNDO_INT;
755   buf->where.i = into;
756   buf->old_contents.i = oldval;
757   *into = newval;
758 
759   buf->next = undobuf.undos, undobuf.undos = buf;
760 }
761 
762 #define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT(&(INTO), (NEWVAL))
763 
764 /* Similar to SUBST, but just substitute the mode.  This is used when
765    changing the mode of a pseudo-register, so that any other
766    references to the entry in the regno_reg_rtx array will change as
767    well.  */
768 
769 static void
770 do_SUBST_MODE (rtx *into, enum machine_mode newval)
771 {
772   struct undo *buf;
773   enum machine_mode oldval = GET_MODE (*into);
774 
775   if (oldval == newval)
776     return;
777 
778   if (undobuf.frees)
779     buf = undobuf.frees, undobuf.frees = buf->next;
780   else
781     buf = XNEW (struct undo);
782 
783   buf->kind = UNDO_MODE;
784   buf->where.r = into;
785   buf->old_contents.m = oldval;
786   adjust_reg_mode (*into, newval);
787 
788   buf->next = undobuf.undos, undobuf.undos = buf;
789 }
790 
791 #define SUBST_MODE(INTO, NEWVAL)  do_SUBST_MODE(&(INTO), (NEWVAL))
792 
793 #ifndef HAVE_cc0
794 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression.  */
795 
796 static void
797 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
798 {
799   struct undo *buf;
800   struct insn_link * oldval = *into;
801 
802   if (oldval == newval)
803     return;
804 
805   if (undobuf.frees)
806     buf = undobuf.frees, undobuf.frees = buf->next;
807   else
808     buf = XNEW (struct undo);
809 
810   buf->kind = UNDO_LINKS;
811   buf->where.l = into;
812   buf->old_contents.l = oldval;
813   *into = newval;
814 
815   buf->next = undobuf.undos, undobuf.undos = buf;
816 }
817 
818 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
819 #endif
820 
821 /* Subroutine of try_combine.  Determine whether the replacement patterns
822    NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
823    than the original sequence I0, I1, I2, I3 and undobuf.other_insn.  Note
824    that I0, I1 and/or NEWI2PAT may be NULL_RTX.  Similarly, NEWOTHERPAT and
825    undobuf.other_insn may also both be NULL_RTX.  Return false if the cost
826    of all the instructions can be estimated and the replacements are more
827    expensive than the original sequence.  */
828 
829 static bool
830 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
831 		       rtx newi2pat, rtx newotherpat)
832 {
833   int i0_cost, i1_cost, i2_cost, i3_cost;
834   int new_i2_cost, new_i3_cost;
835   int old_cost, new_cost;
836 
837   /* Lookup the original insn_rtx_costs.  */
838   i2_cost = INSN_COST (i2);
839   i3_cost = INSN_COST (i3);
840 
841   if (i1)
842     {
843       i1_cost = INSN_COST (i1);
844       if (i0)
845 	{
846 	  i0_cost = INSN_COST (i0);
847 	  old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
848 		      ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
849 	}
850       else
851 	{
852 	  old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
853 		      ? i1_cost + i2_cost + i3_cost : 0);
854 	  i0_cost = 0;
855 	}
856     }
857   else
858     {
859       old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
860       i1_cost = i0_cost = 0;
861     }
862 
863   /* Calculate the replacement insn_rtx_costs.  */
864   new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
865   if (newi2pat)
866     {
867       new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
868       new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
869 		 ? new_i2_cost + new_i3_cost : 0;
870     }
871   else
872     {
873       new_cost = new_i3_cost;
874       new_i2_cost = 0;
875     }
876 
877   if (undobuf.other_insn)
878     {
879       int old_other_cost, new_other_cost;
880 
881       old_other_cost = INSN_COST (undobuf.other_insn);
882       new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
883       if (old_other_cost > 0 && new_other_cost > 0)
884 	{
885 	  old_cost += old_other_cost;
886 	  new_cost += new_other_cost;
887 	}
888       else
889 	old_cost = 0;
890     }
891 
892   /* Disallow this combination if both new_cost and old_cost are greater than
893      zero, and new_cost is greater than old cost.  */
894   if (old_cost > 0 && new_cost > old_cost)
895     {
896       if (dump_file)
897 	{
898 	  if (i0)
899 	    {
900 	      fprintf (dump_file,
901 		       "rejecting combination of insns %d, %d, %d and %d\n",
902 		       INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
903 		       INSN_UID (i3));
904 	      fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
905 		       i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
906 	    }
907 	  else if (i1)
908 	    {
909 	      fprintf (dump_file,
910 		       "rejecting combination of insns %d, %d and %d\n",
911 		       INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
912 	      fprintf (dump_file, "original costs %d + %d + %d = %d\n",
913 		       i1_cost, i2_cost, i3_cost, old_cost);
914 	    }
915 	  else
916 	    {
917 	      fprintf (dump_file,
918 		       "rejecting combination of insns %d and %d\n",
919 		       INSN_UID (i2), INSN_UID (i3));
920 	      fprintf (dump_file, "original costs %d + %d = %d\n",
921 		       i2_cost, i3_cost, old_cost);
922 	    }
923 
924 	  if (newi2pat)
925 	    {
926 	      fprintf (dump_file, "replacement costs %d + %d = %d\n",
927 		       new_i2_cost, new_i3_cost, new_cost);
928 	    }
929 	  else
930 	    fprintf (dump_file, "replacement cost %d\n", new_cost);
931 	}
932 
933       return false;
934     }
935 
936   /* Update the uid_insn_cost array with the replacement costs.  */
937   INSN_COST (i2) = new_i2_cost;
938   INSN_COST (i3) = new_i3_cost;
939   if (i1)
940     {
941       INSN_COST (i1) = 0;
942       if (i0)
943 	INSN_COST (i0) = 0;
944     }
945 
946   return true;
947 }
948 
949 
950 /* Delete any insns that copy a register to itself.  */
951 
952 static void
953 delete_noop_moves (void)
954 {
955   rtx insn, next;
956   basic_block bb;
957 
958   FOR_EACH_BB (bb)
959     {
960       for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
961 	{
962 	  next = NEXT_INSN (insn);
963 	  if (INSN_P (insn) && noop_move_p (insn))
964 	    {
965 	      if (dump_file)
966 		fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
967 
968 	      delete_insn_and_edges (insn);
969 	    }
970 	}
971     }
972 }
973 
974 
975 /* Fill in log links field for all insns.  */
976 
977 static void
978 create_log_links (void)
979 {
980   basic_block bb;
981   rtx *next_use, insn;
982   df_ref *def_vec, *use_vec;
983 
984   next_use = XCNEWVEC (rtx, max_reg_num ());
985 
986   /* Pass through each block from the end, recording the uses of each
987      register and establishing log links when def is encountered.
988      Note that we do not clear next_use array in order to save time,
989      so we have to test whether the use is in the same basic block as def.
990 
991      There are a few cases below when we do not consider the definition or
992      usage -- these are taken from original flow.c did. Don't ask me why it is
993      done this way; I don't know and if it works, I don't want to know.  */
994 
995   FOR_EACH_BB (bb)
996     {
997       FOR_BB_INSNS_REVERSE (bb, insn)
998         {
999           if (!NONDEBUG_INSN_P (insn))
1000             continue;
1001 
1002 	  /* Log links are created only once.  */
1003 	  gcc_assert (!LOG_LINKS (insn));
1004 
1005           for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1006             {
1007 	      df_ref def = *def_vec;
1008               int regno = DF_REF_REGNO (def);
1009               rtx use_insn;
1010 
1011               if (!next_use[regno])
1012                 continue;
1013 
1014               /* Do not consider if it is pre/post modification in MEM.  */
1015               if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1016                 continue;
1017 
1018               /* Do not make the log link for frame pointer.  */
1019               if ((regno == FRAME_POINTER_REGNUM
1020                    && (! reload_completed || frame_pointer_needed))
1021 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1022                   || (regno == HARD_FRAME_POINTER_REGNUM
1023                       && (! reload_completed || frame_pointer_needed))
1024 #endif
1025 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026                   || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1027 #endif
1028                   )
1029                 continue;
1030 
1031               use_insn = next_use[regno];
1032               if (BLOCK_FOR_INSN (use_insn) == bb)
1033                 {
1034                   /* flow.c claimed:
1035 
1036                      We don't build a LOG_LINK for hard registers contained
1037                      in ASM_OPERANDs.  If these registers get replaced,
1038                      we might wind up changing the semantics of the insn,
1039                      even if reload can make what appear to be valid
1040                      assignments later.  */
1041                   if (regno >= FIRST_PSEUDO_REGISTER
1042                       || asm_noperands (PATTERN (use_insn)) < 0)
1043 		    {
1044 		      /* Don't add duplicate links between instructions.  */
1045 		      struct insn_link *links;
1046 		      FOR_EACH_LOG_LINK (links, use_insn)
1047 		        if (insn == links->insn)
1048 			  break;
1049 
1050 		      if (!links)
1051 			LOG_LINKS (use_insn)
1052 			  = alloc_insn_link (insn, LOG_LINKS (use_insn));
1053 		    }
1054                 }
1055               next_use[regno] = NULL_RTX;
1056             }
1057 
1058           for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1059             {
1060 	      df_ref use = *use_vec;
1061 	      int regno = DF_REF_REGNO (use);
1062 
1063               /* Do not consider the usage of the stack pointer
1064 		 by function call.  */
1065               if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1066                 continue;
1067 
1068               next_use[regno] = insn;
1069             }
1070         }
1071     }
1072 
1073   free (next_use);
1074 }
1075 
1076 /* Walk the LOG_LINKS of insn B to see if we find a reference to A.  Return
1077    true if we found a LOG_LINK that proves that A feeds B.  This only works
1078    if there are no instructions between A and B which could have a link
1079    depending on A, since in that case we would not record a link for B.
1080    We also check the implicit dependency created by a cc0 setter/user
1081    pair.  */
1082 
1083 static bool
1084 insn_a_feeds_b (rtx a, rtx b)
1085 {
1086   struct insn_link *links;
1087   FOR_EACH_LOG_LINK (links, b)
1088     if (links->insn == a)
1089       return true;
1090 #ifdef HAVE_cc0
1091   if (sets_cc0_p (a))
1092     return true;
1093 #endif
1094   return false;
1095 }
1096 
1097 /* Main entry point for combiner.  F is the first insn of the function.
1098    NREGS is the first unused pseudo-reg number.
1099 
1100    Return nonzero if the combiner has turned an indirect jump
1101    instruction into a direct jump.  */
1102 static int
1103 combine_instructions (rtx f, unsigned int nregs)
1104 {
1105   rtx insn, next;
1106 #ifdef HAVE_cc0
1107   rtx prev;
1108 #endif
1109   struct insn_link *links, *nextlinks;
1110   rtx first;
1111   basic_block last_bb;
1112 
1113   int new_direct_jump_p = 0;
1114 
1115   for (first = f; first && !INSN_P (first); )
1116     first = NEXT_INSN (first);
1117   if (!first)
1118     return 0;
1119 
1120   combine_attempts = 0;
1121   combine_merges = 0;
1122   combine_extras = 0;
1123   combine_successes = 0;
1124 
1125   rtl_hooks = combine_rtl_hooks;
1126 
1127   VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1128 
1129   init_recog_no_volatile ();
1130 
1131   /* Allocate array for insn info.  */
1132   max_uid_known = get_max_uid ();
1133   uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1134   uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1135   gcc_obstack_init (&insn_link_obstack);
1136 
1137   nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1138 
1139   /* Don't use reg_stat[].nonzero_bits when computing it.  This can cause
1140      problems when, for example, we have j <<= 1 in a loop.  */
1141 
1142   nonzero_sign_valid = 0;
1143   label_tick = label_tick_ebb_start = 1;
1144 
1145   /* Scan all SETs and see if we can deduce anything about what
1146      bits are known to be zero for some registers and how many copies
1147      of the sign bit are known to exist for those registers.
1148 
1149      Also set any known values so that we can use it while searching
1150      for what bits are known to be set.  */
1151 
1152   setup_incoming_promotions (first);
1153   /* Allow the entry block and the first block to fall into the same EBB.
1154      Conceptually the incoming promotions are assigned to the entry block.  */
1155   last_bb = ENTRY_BLOCK_PTR;
1156 
1157   create_log_links ();
1158   FOR_EACH_BB (this_basic_block)
1159     {
1160       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1161       last_call_luid = 0;
1162       mem_last_set = -1;
1163 
1164       label_tick++;
1165       if (!single_pred_p (this_basic_block)
1166 	  || single_pred (this_basic_block) != last_bb)
1167 	label_tick_ebb_start = label_tick;
1168       last_bb = this_basic_block;
1169 
1170       FOR_BB_INSNS (this_basic_block, insn)
1171         if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1172 	  {
1173 #ifdef AUTO_INC_DEC
1174             rtx links;
1175 #endif
1176 
1177             subst_low_luid = DF_INSN_LUID (insn);
1178             subst_insn = insn;
1179 
1180 	    note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1181 		         insn);
1182 	    record_dead_and_set_regs (insn);
1183 
1184 #ifdef AUTO_INC_DEC
1185 	    for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1186 	      if (REG_NOTE_KIND (links) == REG_INC)
1187 	        set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1188 						  insn);
1189 #endif
1190 
1191 	    /* Record the current insn_rtx_cost of this instruction.  */
1192 	    if (NONJUMP_INSN_P (insn))
1193 	      INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1194 	      					optimize_this_for_speed_p);
1195 	    if (dump_file)
1196 	      fprintf(dump_file, "insn_cost %d: %d\n",
1197 		    INSN_UID (insn), INSN_COST (insn));
1198 	  }
1199     }
1200 
1201   nonzero_sign_valid = 1;
1202 
1203   /* Now scan all the insns in forward order.  */
1204   label_tick = label_tick_ebb_start = 1;
1205   init_reg_last ();
1206   setup_incoming_promotions (first);
1207   last_bb = ENTRY_BLOCK_PTR;
1208 
1209   FOR_EACH_BB (this_basic_block)
1210     {
1211       rtx last_combined_insn = NULL_RTX;
1212       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1213       last_call_luid = 0;
1214       mem_last_set = -1;
1215 
1216       label_tick++;
1217       if (!single_pred_p (this_basic_block)
1218 	  || single_pred (this_basic_block) != last_bb)
1219 	label_tick_ebb_start = label_tick;
1220       last_bb = this_basic_block;
1221 
1222       rtl_profile_for_bb (this_basic_block);
1223       for (insn = BB_HEAD (this_basic_block);
1224 	   insn != NEXT_INSN (BB_END (this_basic_block));
1225 	   insn = next ? next : NEXT_INSN (insn))
1226 	{
1227 	  next = 0;
1228 	  if (NONDEBUG_INSN_P (insn))
1229 	    {
1230 	      while (last_combined_insn
1231 		     && INSN_DELETED_P (last_combined_insn))
1232 		last_combined_insn = PREV_INSN (last_combined_insn);
1233 	      if (last_combined_insn == NULL_RTX
1234 		  || BARRIER_P (last_combined_insn)
1235 		  || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1236 		  || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1237 		last_combined_insn = insn;
1238 
1239 	      /* See if we know about function return values before this
1240 		 insn based upon SUBREG flags.  */
1241 	      check_promoted_subreg (insn, PATTERN (insn));
1242 
1243 	      /* See if we can find hardregs and subreg of pseudos in
1244 		 narrower modes.  This could help turning TRUNCATEs
1245 		 into SUBREGs.  */
1246 	      note_uses (&PATTERN (insn), record_truncated_values, NULL);
1247 
1248 	      /* Try this insn with each insn it links back to.  */
1249 
1250 	      FOR_EACH_LOG_LINK (links, insn)
1251 		if ((next = try_combine (insn, links->insn, NULL_RTX,
1252 					 NULL_RTX, &new_direct_jump_p,
1253 					 last_combined_insn)) != 0)
1254 		  goto retry;
1255 
1256 	      /* Try each sequence of three linked insns ending with this one.  */
1257 
1258 	      FOR_EACH_LOG_LINK (links, insn)
1259 		{
1260 		  rtx link = links->insn;
1261 
1262 		  /* If the linked insn has been replaced by a note, then there
1263 		     is no point in pursuing this chain any further.  */
1264 		  if (NOTE_P (link))
1265 		    continue;
1266 
1267 		  FOR_EACH_LOG_LINK (nextlinks, link)
1268 		    if ((next = try_combine (insn, link, nextlinks->insn,
1269 					     NULL_RTX, &new_direct_jump_p,
1270 					     last_combined_insn)) != 0)
1271 		      goto retry;
1272 		}
1273 
1274 #ifdef HAVE_cc0
1275 	      /* Try to combine a jump insn that uses CC0
1276 		 with a preceding insn that sets CC0, and maybe with its
1277 		 logical predecessor as well.
1278 		 This is how we make decrement-and-branch insns.
1279 		 We need this special code because data flow connections
1280 		 via CC0 do not get entered in LOG_LINKS.  */
1281 
1282 	      if (JUMP_P (insn)
1283 		  && (prev = prev_nonnote_insn (insn)) != 0
1284 		  && NONJUMP_INSN_P (prev)
1285 		  && sets_cc0_p (PATTERN (prev)))
1286 		{
1287 		  if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1288 					   &new_direct_jump_p,
1289 					   last_combined_insn)) != 0)
1290 		    goto retry;
1291 
1292 		  FOR_EACH_LOG_LINK (nextlinks, prev)
1293 		    if ((next = try_combine (insn, prev, nextlinks->insn,
1294 					     NULL_RTX, &new_direct_jump_p,
1295 					     last_combined_insn)) != 0)
1296 		      goto retry;
1297 		}
1298 
1299 	      /* Do the same for an insn that explicitly references CC0.  */
1300 	      if (NONJUMP_INSN_P (insn)
1301 		  && (prev = prev_nonnote_insn (insn)) != 0
1302 		  && NONJUMP_INSN_P (prev)
1303 		  && sets_cc0_p (PATTERN (prev))
1304 		  && GET_CODE (PATTERN (insn)) == SET
1305 		  && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1306 		{
1307 		  if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1308 					   &new_direct_jump_p,
1309 					   last_combined_insn)) != 0)
1310 		    goto retry;
1311 
1312 		  FOR_EACH_LOG_LINK (nextlinks, prev)
1313 		    if ((next = try_combine (insn, prev, nextlinks->insn,
1314 					     NULL_RTX, &new_direct_jump_p,
1315 					     last_combined_insn)) != 0)
1316 		      goto retry;
1317 		}
1318 
1319 	      /* Finally, see if any of the insns that this insn links to
1320 		 explicitly references CC0.  If so, try this insn, that insn,
1321 		 and its predecessor if it sets CC0.  */
1322 	      FOR_EACH_LOG_LINK (links, insn)
1323 		if (NONJUMP_INSN_P (links->insn)
1324 		    && GET_CODE (PATTERN (links->insn)) == SET
1325 		    && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1326 		    && (prev = prev_nonnote_insn (links->insn)) != 0
1327 		    && NONJUMP_INSN_P (prev)
1328 		    && sets_cc0_p (PATTERN (prev))
1329 		    && (next = try_combine (insn, links->insn,
1330 					    prev, NULL_RTX, &new_direct_jump_p,
1331 					    last_combined_insn)) != 0)
1332 		  goto retry;
1333 #endif
1334 
1335 	      /* Try combining an insn with two different insns whose results it
1336 		 uses.  */
1337 	      FOR_EACH_LOG_LINK (links, insn)
1338 		for (nextlinks = links->next; nextlinks;
1339 		     nextlinks = nextlinks->next)
1340 		  if ((next = try_combine (insn, links->insn,
1341 					   nextlinks->insn, NULL_RTX,
1342 					   &new_direct_jump_p,
1343 					   last_combined_insn)) != 0)
1344 		    goto retry;
1345 
1346 	      /* Try four-instruction combinations.  */
1347 	      FOR_EACH_LOG_LINK (links, insn)
1348 		{
1349 		  struct insn_link *next1;
1350 		  rtx link = links->insn;
1351 
1352 		  /* If the linked insn has been replaced by a note, then there
1353 		     is no point in pursuing this chain any further.  */
1354 		  if (NOTE_P (link))
1355 		    continue;
1356 
1357 		  FOR_EACH_LOG_LINK (next1, link)
1358 		    {
1359 		      rtx link1 = next1->insn;
1360 		      if (NOTE_P (link1))
1361 			continue;
1362 		      /* I0 -> I1 -> I2 -> I3.  */
1363 		      FOR_EACH_LOG_LINK (nextlinks, link1)
1364 			if ((next = try_combine (insn, link, link1,
1365 						 nextlinks->insn,
1366 						 &new_direct_jump_p,
1367 						 last_combined_insn)) != 0)
1368 			  goto retry;
1369 		      /* I0, I1 -> I2, I2 -> I3.  */
1370 		      for (nextlinks = next1->next; nextlinks;
1371 			   nextlinks = nextlinks->next)
1372 			if ((next = try_combine (insn, link, link1,
1373 						 nextlinks->insn,
1374 						 &new_direct_jump_p,
1375 						 last_combined_insn)) != 0)
1376 			  goto retry;
1377 		    }
1378 
1379 		  for (next1 = links->next; next1; next1 = next1->next)
1380 		    {
1381 		      rtx link1 = next1->insn;
1382 		      if (NOTE_P (link1))
1383 			continue;
1384 		      /* I0 -> I2; I1, I2 -> I3.  */
1385 		      FOR_EACH_LOG_LINK (nextlinks, link)
1386 			if ((next = try_combine (insn, link, link1,
1387 						 nextlinks->insn,
1388 						 &new_direct_jump_p,
1389 						 last_combined_insn)) != 0)
1390 			  goto retry;
1391 		      /* I0 -> I1; I1, I2 -> I3.  */
1392 		      FOR_EACH_LOG_LINK (nextlinks, link1)
1393 			if ((next = try_combine (insn, link, link1,
1394 						 nextlinks->insn,
1395 						 &new_direct_jump_p,
1396 						 last_combined_insn)) != 0)
1397 			  goto retry;
1398 		    }
1399 		}
1400 
1401 	      /* Try this insn with each REG_EQUAL note it links back to.  */
1402 	      FOR_EACH_LOG_LINK (links, insn)
1403 		{
1404 		  rtx set, note;
1405 		  rtx temp = links->insn;
1406 		  if ((set = single_set (temp)) != 0
1407 		      && (note = find_reg_equal_equiv_note (temp)) != 0
1408 		      && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1409 		      /* Avoid using a register that may already been marked
1410 			 dead by an earlier instruction.  */
1411 		      && ! unmentioned_reg_p (note, SET_SRC (set))
1412 		      && (GET_MODE (note) == VOIDmode
1413 			  ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1414 			  : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1415 		    {
1416 		      /* Temporarily replace the set's source with the
1417 			 contents of the REG_EQUAL note.  The insn will
1418 			 be deleted or recognized by try_combine.  */
1419 		      rtx orig = SET_SRC (set);
1420 		      SET_SRC (set) = note;
1421 		      i2mod = temp;
1422 		      i2mod_old_rhs = copy_rtx (orig);
1423 		      i2mod_new_rhs = copy_rtx (note);
1424 		      next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1425 					  &new_direct_jump_p,
1426 					  last_combined_insn);
1427 		      i2mod = NULL_RTX;
1428 		      if (next)
1429 			goto retry;
1430 		      SET_SRC (set) = orig;
1431 		    }
1432 		}
1433 
1434 	      if (!NOTE_P (insn))
1435 		record_dead_and_set_regs (insn);
1436 
1437 	    retry:
1438 	      ;
1439 	    }
1440 	}
1441     }
1442 
1443   default_rtl_profile ();
1444   clear_bb_flags ();
1445   new_direct_jump_p |= purge_all_dead_edges ();
1446   delete_noop_moves ();
1447 
1448   /* Clean up.  */
1449   obstack_free (&insn_link_obstack, NULL);
1450   free (uid_log_links);
1451   free (uid_insn_cost);
1452   VEC_free (reg_stat_type, heap, reg_stat);
1453 
1454   {
1455     struct undo *undo, *next;
1456     for (undo = undobuf.frees; undo; undo = next)
1457       {
1458 	next = undo->next;
1459 	free (undo);
1460       }
1461     undobuf.frees = 0;
1462   }
1463 
1464   total_attempts += combine_attempts;
1465   total_merges += combine_merges;
1466   total_extras += combine_extras;
1467   total_successes += combine_successes;
1468 
1469   nonzero_sign_valid = 0;
1470   rtl_hooks = general_rtl_hooks;
1471 
1472   /* Make recognizer allow volatile MEMs again.  */
1473   init_recog ();
1474 
1475   return new_direct_jump_p;
1476 }
1477 
1478 /* Wipe the last_xxx fields of reg_stat in preparation for another pass.  */
1479 
1480 static void
1481 init_reg_last (void)
1482 {
1483   unsigned int i;
1484   reg_stat_type *p;
1485 
1486   FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1487     memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1488 }
1489 
1490 /* Set up any promoted values for incoming argument registers.  */
1491 
1492 static void
1493 setup_incoming_promotions (rtx first)
1494 {
1495   tree arg;
1496   bool strictly_local = false;
1497 
1498   for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1499        arg = DECL_CHAIN (arg))
1500     {
1501       rtx x, reg = DECL_INCOMING_RTL (arg);
1502       int uns1, uns3;
1503       enum machine_mode mode1, mode2, mode3, mode4;
1504 
1505       /* Only continue if the incoming argument is in a register.  */
1506       if (!REG_P (reg))
1507 	continue;
1508 
1509       /* Determine, if possible, whether all call sites of the current
1510          function lie within the current compilation unit.  (This does
1511 	 take into account the exporting of a function via taking its
1512 	 address, and so forth.)  */
1513       strictly_local = cgraph_local_info (current_function_decl)->local;
1514 
1515       /* The mode and signedness of the argument before any promotions happen
1516          (equal to the mode of the pseudo holding it at that stage).  */
1517       mode1 = TYPE_MODE (TREE_TYPE (arg));
1518       uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1519 
1520       /* The mode and signedness of the argument after any source language and
1521          TARGET_PROMOTE_PROTOTYPES-driven promotions.  */
1522       mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1523       uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1524 
1525       /* The mode and signedness of the argument as it is actually passed,
1526          after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions.  */
1527       mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1528 				     TREE_TYPE (cfun->decl), 0);
1529 
1530       /* The mode of the register in which the argument is being passed.  */
1531       mode4 = GET_MODE (reg);
1532 
1533       /* Eliminate sign extensions in the callee when:
1534 	 (a) A mode promotion has occurred;  */
1535       if (mode1 == mode3)
1536 	continue;
1537       /* (b) The mode of the register is the same as the mode of
1538 	     the argument as it is passed; */
1539       if (mode3 != mode4)
1540 	continue;
1541       /* (c) There's no language level extension;  */
1542       if (mode1 == mode2)
1543 	;
1544       /* (c.1) All callers are from the current compilation unit.  If that's
1545 	 the case we don't have to rely on an ABI, we only have to know
1546 	 what we're generating right now, and we know that we will do the
1547 	 mode1 to mode2 promotion with the given sign.  */
1548       else if (!strictly_local)
1549 	continue;
1550       /* (c.2) The combination of the two promotions is useful.  This is
1551 	 true when the signs match, or if the first promotion is unsigned.
1552 	 In the later case, (sign_extend (zero_extend x)) is the same as
1553 	 (zero_extend (zero_extend x)), so make sure to force UNS3 true.  */
1554       else if (uns1)
1555 	uns3 = true;
1556       else if (uns3)
1557 	continue;
1558 
1559       /* Record that the value was promoted from mode1 to mode3,
1560 	 so that any sign extension at the head of the current
1561 	 function may be eliminated.  */
1562       x = gen_rtx_CLOBBER (mode1, const0_rtx);
1563       x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1564       record_value_for_reg (reg, first, x);
1565     }
1566 }
1567 
1568 /* Called via note_stores.  If X is a pseudo that is narrower than
1569    HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1570 
1571    If we are setting only a portion of X and we can't figure out what
1572    portion, assume all bits will be used since we don't know what will
1573    be happening.
1574 
1575    Similarly, set how many bits of X are known to be copies of the sign bit
1576    at all locations in the function.  This is the smallest number implied
1577    by any set of X.  */
1578 
1579 static void
1580 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1581 {
1582   rtx insn = (rtx) data;
1583   unsigned int num;
1584 
1585   if (REG_P (x)
1586       && REGNO (x) >= FIRST_PSEUDO_REGISTER
1587       /* If this register is undefined at the start of the file, we can't
1588 	 say what its contents were.  */
1589       && ! REGNO_REG_SET_P
1590            (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1591       && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1592     {
1593       reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1594 
1595       if (set == 0 || GET_CODE (set) == CLOBBER)
1596 	{
1597 	  rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1598 	  rsp->sign_bit_copies = 1;
1599 	  return;
1600 	}
1601 
1602       /* If this register is being initialized using itself, and the
1603 	 register is uninitialized in this basic block, and there are
1604 	 no LOG_LINKS which set the register, then part of the
1605 	 register is uninitialized.  In that case we can't assume
1606 	 anything about the number of nonzero bits.
1607 
1608 	 ??? We could do better if we checked this in
1609 	 reg_{nonzero_bits,num_sign_bit_copies}_for_combine.  Then we
1610 	 could avoid making assumptions about the insn which initially
1611 	 sets the register, while still using the information in other
1612 	 insns.  We would have to be careful to check every insn
1613 	 involved in the combination.  */
1614 
1615       if (insn
1616 	  && reg_referenced_p (x, PATTERN (insn))
1617 	  && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1618 			       REGNO (x)))
1619 	{
1620 	  struct insn_link *link;
1621 
1622 	  FOR_EACH_LOG_LINK (link, insn)
1623 	    if (dead_or_set_p (link->insn, x))
1624 	      break;
1625 	  if (!link)
1626 	    {
1627 	      rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1628 	      rsp->sign_bit_copies = 1;
1629 	      return;
1630 	    }
1631 	}
1632 
1633       /* If this is a complex assignment, see if we can convert it into a
1634 	 simple assignment.  */
1635       set = expand_field_assignment (set);
1636 
1637       /* If this is a simple assignment, or we have a paradoxical SUBREG,
1638 	 set what we know about X.  */
1639 
1640       if (SET_DEST (set) == x
1641 	  || (paradoxical_subreg_p (SET_DEST (set))
1642 	      && SUBREG_REG (SET_DEST (set)) == x))
1643 	{
1644 	  rtx src = SET_SRC (set);
1645 
1646 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1647 	  /* If X is narrower than a word and SRC is a non-negative
1648 	     constant that would appear negative in the mode of X,
1649 	     sign-extend it for use in reg_stat[].nonzero_bits because some
1650 	     machines (maybe most) will actually do the sign-extension
1651 	     and this is the conservative approach.
1652 
1653 	     ??? For 2.5, try to tighten up the MD files in this regard
1654 	     instead of this kludge.  */
1655 
1656 	  if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1657 	      && CONST_INT_P (src)
1658 	      && INTVAL (src) > 0
1659 	      && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1660 	    src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1661 #endif
1662 
1663 	  /* Don't call nonzero_bits if it cannot change anything.  */
1664 	  if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1665 	    rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1666 	  num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1667 	  if (rsp->sign_bit_copies == 0
1668 	      || rsp->sign_bit_copies > num)
1669 	    rsp->sign_bit_copies = num;
1670 	}
1671       else
1672 	{
1673 	  rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1674 	  rsp->sign_bit_copies = 1;
1675 	}
1676     }
1677 }
1678 
1679 /* See if INSN can be combined into I3.  PRED, PRED2, SUCC and SUCC2 are
1680    optionally insns that were previously combined into I3 or that will be
1681    combined into the merger of INSN and I3.  The order is PRED, PRED2,
1682    INSN, SUCC, SUCC2, I3.
1683 
1684    Return 0 if the combination is not allowed for any reason.
1685 
1686    If the combination is allowed, *PDEST will be set to the single
1687    destination of INSN and *PSRC to the single source, and this function
1688    will return 1.  */
1689 
1690 static int
1691 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1692 	       rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1693 	       rtx *pdest, rtx *psrc)
1694 {
1695   int i;
1696   const_rtx set = 0;
1697   rtx src, dest;
1698   rtx p;
1699 #ifdef AUTO_INC_DEC
1700   rtx link;
1701 #endif
1702   bool all_adjacent = true;
1703   int (*is_volatile_p) (const_rtx);
1704 
1705   if (succ)
1706     {
1707       if (succ2)
1708 	{
1709 	  if (next_active_insn (succ2) != i3)
1710 	    all_adjacent = false;
1711 	  if (next_active_insn (succ) != succ2)
1712 	    all_adjacent = false;
1713 	}
1714       else if (next_active_insn (succ) != i3)
1715 	all_adjacent = false;
1716       if (next_active_insn (insn) != succ)
1717 	all_adjacent = false;
1718     }
1719   else if (next_active_insn (insn) != i3)
1720     all_adjacent = false;
1721 
1722   /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1723      or a PARALLEL consisting of such a SET and CLOBBERs.
1724 
1725      If INSN has CLOBBER parallel parts, ignore them for our processing.
1726      By definition, these happen during the execution of the insn.  When it
1727      is merged with another insn, all bets are off.  If they are, in fact,
1728      needed and aren't also supplied in I3, they may be added by
1729      recog_for_combine.  Otherwise, it won't match.
1730 
1731      We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1732      note.
1733 
1734      Get the source and destination of INSN.  If more than one, can't
1735      combine.  */
1736 
1737   if (GET_CODE (PATTERN (insn)) == SET)
1738     set = PATTERN (insn);
1739   else if (GET_CODE (PATTERN (insn)) == PARALLEL
1740 	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1741     {
1742       for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1743 	{
1744 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
1745 
1746 	  switch (GET_CODE (elt))
1747 	    {
1748 	    /* This is important to combine floating point insns
1749 	       for the SH4 port.  */
1750 	    case USE:
1751 	      /* Combining an isolated USE doesn't make sense.
1752 		 We depend here on combinable_i3pat to reject them.  */
1753 	      /* The code below this loop only verifies that the inputs of
1754 		 the SET in INSN do not change.  We call reg_set_between_p
1755 		 to verify that the REG in the USE does not change between
1756 		 I3 and INSN.
1757 		 If the USE in INSN was for a pseudo register, the matching
1758 		 insn pattern will likely match any register; combining this
1759 		 with any other USE would only be safe if we knew that the
1760 		 used registers have identical values, or if there was
1761 		 something to tell them apart, e.g. different modes.  For
1762 		 now, we forgo such complicated tests and simply disallow
1763 		 combining of USES of pseudo registers with any other USE.  */
1764 	      if (REG_P (XEXP (elt, 0))
1765 		  && GET_CODE (PATTERN (i3)) == PARALLEL)
1766 		{
1767 		  rtx i3pat = PATTERN (i3);
1768 		  int i = XVECLEN (i3pat, 0) - 1;
1769 		  unsigned int regno = REGNO (XEXP (elt, 0));
1770 
1771 		  do
1772 		    {
1773 		      rtx i3elt = XVECEXP (i3pat, 0, i);
1774 
1775 		      if (GET_CODE (i3elt) == USE
1776 			  && REG_P (XEXP (i3elt, 0))
1777 			  && (REGNO (XEXP (i3elt, 0)) == regno
1778 			      ? reg_set_between_p (XEXP (elt, 0),
1779 						   PREV_INSN (insn), i3)
1780 			      : regno >= FIRST_PSEUDO_REGISTER))
1781 			return 0;
1782 		    }
1783 		  while (--i >= 0);
1784 		}
1785 	      break;
1786 
1787 	      /* We can ignore CLOBBERs.  */
1788 	    case CLOBBER:
1789 	      break;
1790 
1791 	    case SET:
1792 	      /* Ignore SETs whose result isn't used but not those that
1793 		 have side-effects.  */
1794 	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1795 		  && insn_nothrow_p (insn)
1796 		  && !side_effects_p (elt))
1797 		break;
1798 
1799 	      /* If we have already found a SET, this is a second one and
1800 		 so we cannot combine with this insn.  */
1801 	      if (set)
1802 		return 0;
1803 
1804 	      set = elt;
1805 	      break;
1806 
1807 	    default:
1808 	      /* Anything else means we can't combine.  */
1809 	      return 0;
1810 	    }
1811 	}
1812 
1813       if (set == 0
1814 	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1815 	     so don't do anything with it.  */
1816 	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1817 	return 0;
1818     }
1819   else
1820     return 0;
1821 
1822   if (set == 0)
1823     return 0;
1824 
1825   /* The simplification in expand_field_assignment may call back to
1826      get_last_value, so set safe guard here.  */
1827   subst_low_luid = DF_INSN_LUID (insn);
1828 
1829   set = expand_field_assignment (set);
1830   src = SET_SRC (set), dest = SET_DEST (set);
1831 
1832   /* Don't eliminate a store in the stack pointer.  */
1833   if (dest == stack_pointer_rtx
1834       /* Don't combine with an insn that sets a register to itself if it has
1835 	 a REG_EQUAL note.  This may be part of a LIBCALL sequence.  */
1836       || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1837       /* Can't merge an ASM_OPERANDS.  */
1838       || GET_CODE (src) == ASM_OPERANDS
1839       /* Can't merge a function call.  */
1840       || GET_CODE (src) == CALL
1841       /* Don't eliminate a function call argument.  */
1842       || (CALL_P (i3)
1843 	  && (find_reg_fusage (i3, USE, dest)
1844 	      || (REG_P (dest)
1845 		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1846 		  && global_regs[REGNO (dest)])))
1847       /* Don't substitute into an incremented register.  */
1848       || FIND_REG_INC_NOTE (i3, dest)
1849       || (succ && FIND_REG_INC_NOTE (succ, dest))
1850       || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1851       /* Don't substitute into a non-local goto, this confuses CFG.  */
1852       || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1853       /* Make sure that DEST is not used after SUCC but before I3.  */
1854       || (!all_adjacent
1855 	  && ((succ2
1856 	       && (reg_used_between_p (dest, succ2, i3)
1857 		   || reg_used_between_p (dest, succ, succ2)))
1858 	      || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1859       /* Make sure that the value that is to be substituted for the register
1860 	 does not use any registers whose values alter in between.  However,
1861 	 If the insns are adjacent, a use can't cross a set even though we
1862 	 think it might (this can happen for a sequence of insns each setting
1863 	 the same destination; last_set of that register might point to
1864 	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
1865 	 equivalent to the memory so the substitution is valid even if there
1866 	 are intervening stores.  Also, don't move a volatile asm or
1867 	 UNSPEC_VOLATILE across any other insns.  */
1868       || (! all_adjacent
1869 	  && (((!MEM_P (src)
1870 		|| ! find_reg_note (insn, REG_EQUIV, src))
1871 	       && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1872 	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1873 	      || GET_CODE (src) == UNSPEC_VOLATILE))
1874       /* Don't combine across a CALL_INSN, because that would possibly
1875 	 change whether the life span of some REGs crosses calls or not,
1876 	 and it is a pain to update that information.
1877 	 Exception: if source is a constant, moving it later can't hurt.
1878 	 Accept that as a special case.  */
1879       || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1880     return 0;
1881 
1882   /* DEST must either be a REG or CC0.  */
1883   if (REG_P (dest))
1884     {
1885       /* If register alignment is being enforced for multi-word items in all
1886 	 cases except for parameters, it is possible to have a register copy
1887 	 insn referencing a hard register that is not allowed to contain the
1888 	 mode being copied and which would not be valid as an operand of most
1889 	 insns.  Eliminate this problem by not combining with such an insn.
1890 
1891 	 Also, on some machines we don't want to extend the life of a hard
1892 	 register.  */
1893 
1894       if (REG_P (src)
1895 	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1896 	       && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1897 	      /* Don't extend the life of a hard register unless it is
1898 		 user variable (if we have few registers) or it can't
1899 		 fit into the desired register (meaning something special
1900 		 is going on).
1901 		 Also avoid substituting a return register into I3, because
1902 		 reload can't handle a conflict with constraints of other
1903 		 inputs.  */
1904 	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
1905 		  && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1906 	return 0;
1907     }
1908   else if (GET_CODE (dest) != CC0)
1909     return 0;
1910 
1911 
1912   if (GET_CODE (PATTERN (i3)) == PARALLEL)
1913     for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1914       if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1915 	{
1916 	  /* Don't substitute for a register intended as a clobberable
1917 	     operand.  */
1918 	  rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1919 	  if (rtx_equal_p (reg, dest))
1920 	    return 0;
1921 
1922 	  /* If the clobber represents an earlyclobber operand, we must not
1923 	     substitute an expression containing the clobbered register.
1924 	     As we do not analyze the constraint strings here, we have to
1925 	     make the conservative assumption.  However, if the register is
1926 	     a fixed hard reg, the clobber cannot represent any operand;
1927 	     we leave it up to the machine description to either accept or
1928 	     reject use-and-clobber patterns.  */
1929 	  if (!REG_P (reg)
1930 	      || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1931 	      || !fixed_regs[REGNO (reg)])
1932 	    if (reg_overlap_mentioned_p (reg, src))
1933 	      return 0;
1934 	}
1935 
1936   /* If INSN contains anything volatile, or is an `asm' (whether volatile
1937      or not), reject, unless nothing volatile comes between it and I3 */
1938 
1939   if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1940     {
1941       /* Make sure neither succ nor succ2 contains a volatile reference.  */
1942       if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1943 	return 0;
1944       if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1945 	return 0;
1946       /* We'll check insns between INSN and I3 below.  */
1947     }
1948 
1949   /* If INSN is an asm, and DEST is a hard register, reject, since it has
1950      to be an explicit register variable, and was chosen for a reason.  */
1951 
1952   if (GET_CODE (src) == ASM_OPERANDS
1953       && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1954     return 0;
1955 
1956   /* If INSN contains volatile references (specifically volatile MEMs),
1957      we cannot combine across any other volatile references.
1958      Even if INSN doesn't contain volatile references, any intervening
1959      volatile insn might affect machine state.  */
1960 
1961   is_volatile_p = volatile_refs_p (PATTERN (insn))
1962     ? volatile_refs_p
1963     : volatile_insn_p;
1964 
1965   for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1966     if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1967       return 0;
1968 
1969   /* If INSN contains an autoincrement or autodecrement, make sure that
1970      register is not used between there and I3, and not already used in
1971      I3 either.  Neither must it be used in PRED or SUCC, if they exist.
1972      Also insist that I3 not be a jump; if it were one
1973      and the incremented register were spilled, we would lose.  */
1974 
1975 #ifdef AUTO_INC_DEC
1976   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1977     if (REG_NOTE_KIND (link) == REG_INC
1978 	&& (JUMP_P (i3)
1979 	    || reg_used_between_p (XEXP (link, 0), insn, i3)
1980 	    || (pred != NULL_RTX
1981 		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1982 	    || (pred2 != NULL_RTX
1983 		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1984 	    || (succ != NULL_RTX
1985 		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1986 	    || (succ2 != NULL_RTX
1987 		&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1988 	    || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1989       return 0;
1990 #endif
1991 
1992 #ifdef HAVE_cc0
1993   /* Don't combine an insn that follows a CC0-setting insn.
1994      An insn that uses CC0 must not be separated from the one that sets it.
1995      We do, however, allow I2 to follow a CC0-setting insn if that insn
1996      is passed as I1; in that case it will be deleted also.
1997      We also allow combining in this case if all the insns are adjacent
1998      because that would leave the two CC0 insns adjacent as well.
1999      It would be more logical to test whether CC0 occurs inside I1 or I2,
2000      but that would be much slower, and this ought to be equivalent.  */
2001 
2002   p = prev_nonnote_insn (insn);
2003   if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2004       && ! all_adjacent)
2005     return 0;
2006 #endif
2007 
2008   /* If we get here, we have passed all the tests and the combination is
2009      to be allowed.  */
2010 
2011   *pdest = dest;
2012   *psrc = src;
2013 
2014   return 1;
2015 }
2016 
2017 /* LOC is the location within I3 that contains its pattern or the component
2018    of a PARALLEL of the pattern.  We validate that it is valid for combining.
2019 
2020    One problem is if I3 modifies its output, as opposed to replacing it
2021    entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2022    doing so would produce an insn that is not equivalent to the original insns.
2023 
2024    Consider:
2025 
2026 	 (set (reg:DI 101) (reg:DI 100))
2027 	 (set (subreg:SI (reg:DI 101) 0) <foo>)
2028 
2029    This is NOT equivalent to:
2030 
2031 	 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2032 		    (set (reg:DI 101) (reg:DI 100))])
2033 
2034    Not only does this modify 100 (in which case it might still be valid
2035    if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2036 
2037    We can also run into a problem if I2 sets a register that I1
2038    uses and I1 gets directly substituted into I3 (not via I2).  In that
2039    case, we would be getting the wrong value of I2DEST into I3, so we
2040    must reject the combination.  This case occurs when I2 and I1 both
2041    feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2042    If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2043    of a SET must prevent combination from occurring.  The same situation
2044    can occur for I0, in which case I0_NOT_IN_SRC is set.
2045 
2046    Before doing the above check, we first try to expand a field assignment
2047    into a set of logical operations.
2048 
2049    If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2050    we place a register that is both set and used within I3.  If more than one
2051    such register is detected, we fail.
2052 
2053    Return 1 if the combination is valid, zero otherwise.  */
2054 
2055 static int
2056 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2057 		  int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2058 {
2059   rtx x = *loc;
2060 
2061   if (GET_CODE (x) == SET)
2062     {
2063       rtx set = x ;
2064       rtx dest = SET_DEST (set);
2065       rtx src = SET_SRC (set);
2066       rtx inner_dest = dest;
2067       rtx subdest;
2068 
2069       while (GET_CODE (inner_dest) == STRICT_LOW_PART
2070 	     || GET_CODE (inner_dest) == SUBREG
2071 	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
2072 	inner_dest = XEXP (inner_dest, 0);
2073 
2074       /* Check for the case where I3 modifies its output, as discussed
2075 	 above.  We don't want to prevent pseudos from being combined
2076 	 into the address of a MEM, so only prevent the combination if
2077 	 i1 or i2 set the same MEM.  */
2078       if ((inner_dest != dest &&
2079 	   (!MEM_P (inner_dest)
2080 	    || rtx_equal_p (i2dest, inner_dest)
2081 	    || (i1dest && rtx_equal_p (i1dest, inner_dest))
2082 	    || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2083 	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
2084 	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2085 	       || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2086 
2087 	  /* This is the same test done in can_combine_p except we can't test
2088 	     all_adjacent; we don't have to, since this instruction will stay
2089 	     in place, thus we are not considering increasing the lifetime of
2090 	     INNER_DEST.
2091 
2092 	     Also, if this insn sets a function argument, combining it with
2093 	     something that might need a spill could clobber a previous
2094 	     function argument; the all_adjacent test in can_combine_p also
2095 	     checks this; here, we do a more specific test for this case.  */
2096 
2097 	  || (REG_P (inner_dest)
2098 	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2099 	      && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2100 					GET_MODE (inner_dest))))
2101 	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2102 	  || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2103 	return 0;
2104 
2105       /* If DEST is used in I3, it is being killed in this insn, so
2106 	 record that for later.  We have to consider paradoxical
2107 	 subregs here, since they kill the whole register, but we
2108 	 ignore partial subregs, STRICT_LOW_PART, etc.
2109 	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2110 	 STACK_POINTER_REGNUM, since these are always considered to be
2111 	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
2112       subdest = dest;
2113       if (GET_CODE (subdest) == SUBREG
2114 	  && (GET_MODE_SIZE (GET_MODE (subdest))
2115 	      >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2116 	subdest = SUBREG_REG (subdest);
2117       if (pi3dest_killed
2118 	  && REG_P (subdest)
2119 	  && reg_referenced_p (subdest, PATTERN (i3))
2120 	  && REGNO (subdest) != FRAME_POINTER_REGNUM
2121 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2122 	  && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2123 #endif
2124 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2125 	  && (REGNO (subdest) != ARG_POINTER_REGNUM
2126 	      || ! fixed_regs [REGNO (subdest)])
2127 #endif
2128 	  && REGNO (subdest) != STACK_POINTER_REGNUM)
2129 	{
2130 	  if (*pi3dest_killed)
2131 	    return 0;
2132 
2133 	  *pi3dest_killed = subdest;
2134 	}
2135     }
2136 
2137   else if (GET_CODE (x) == PARALLEL)
2138     {
2139       int i;
2140 
2141       for (i = 0; i < XVECLEN (x, 0); i++)
2142 	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2143 				i1_not_in_src, i0_not_in_src, pi3dest_killed))
2144 	  return 0;
2145     }
2146 
2147   return 1;
2148 }
2149 
2150 /* Return 1 if X is an arithmetic expression that contains a multiplication
2151    and division.  We don't count multiplications by powers of two here.  */
2152 
2153 static int
2154 contains_muldiv (rtx x)
2155 {
2156   switch (GET_CODE (x))
2157     {
2158     case MOD:  case DIV:  case UMOD:  case UDIV:
2159       return 1;
2160 
2161     case MULT:
2162       return ! (CONST_INT_P (XEXP (x, 1))
2163 		&& exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2164     default:
2165       if (BINARY_P (x))
2166 	return contains_muldiv (XEXP (x, 0))
2167 	    || contains_muldiv (XEXP (x, 1));
2168 
2169       if (UNARY_P (x))
2170 	return contains_muldiv (XEXP (x, 0));
2171 
2172       return 0;
2173     }
2174 }
2175 
2176 /* Determine whether INSN can be used in a combination.  Return nonzero if
2177    not.  This is used in try_combine to detect early some cases where we
2178    can't perform combinations.  */
2179 
2180 static int
2181 cant_combine_insn_p (rtx insn)
2182 {
2183   rtx set;
2184   rtx src, dest;
2185 
2186   /* If this isn't really an insn, we can't do anything.
2187      This can occur when flow deletes an insn that it has merged into an
2188      auto-increment address.  */
2189   if (! INSN_P (insn))
2190     return 1;
2191 
2192   /* Never combine loads and stores involving hard regs that are likely
2193      to be spilled.  The register allocator can usually handle such
2194      reg-reg moves by tying.  If we allow the combiner to make
2195      substitutions of likely-spilled regs, reload might die.
2196      As an exception, we allow combinations involving fixed regs; these are
2197      not available to the register allocator so there's no risk involved.  */
2198 
2199   set = single_set (insn);
2200   if (! set)
2201     return 0;
2202   src = SET_SRC (set);
2203   dest = SET_DEST (set);
2204   if (GET_CODE (src) == SUBREG)
2205     src = SUBREG_REG (src);
2206   if (GET_CODE (dest) == SUBREG)
2207     dest = SUBREG_REG (dest);
2208   if (REG_P (src) && REG_P (dest)
2209       && ((HARD_REGISTER_P (src)
2210 	   && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2211 	   && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2212 	  || (HARD_REGISTER_P (dest)
2213 	      && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2214 	      && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2215     return 1;
2216 
2217   return 0;
2218 }
2219 
2220 struct likely_spilled_retval_info
2221 {
2222   unsigned regno, nregs;
2223   unsigned mask;
2224 };
2225 
2226 /* Called via note_stores by likely_spilled_retval_p.  Remove from info->mask
2227    hard registers that are known to be written to / clobbered in full.  */
2228 static void
2229 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2230 {
2231   struct likely_spilled_retval_info *const info =
2232     (struct likely_spilled_retval_info *) data;
2233   unsigned regno, nregs;
2234   unsigned new_mask;
2235 
2236   if (!REG_P (XEXP (set, 0)))
2237     return;
2238   regno = REGNO (x);
2239   if (regno >= info->regno + info->nregs)
2240     return;
2241   nregs = hard_regno_nregs[regno][GET_MODE (x)];
2242   if (regno + nregs <= info->regno)
2243     return;
2244   new_mask = (2U << (nregs - 1)) - 1;
2245   if (regno < info->regno)
2246     new_mask >>= info->regno - regno;
2247   else
2248     new_mask <<= regno - info->regno;
2249   info->mask &= ~new_mask;
2250 }
2251 
2252 /* Return nonzero iff part of the return value is live during INSN, and
2253    it is likely spilled.  This can happen when more than one insn is needed
2254    to copy the return value, e.g. when we consider to combine into the
2255    second copy insn for a complex value.  */
2256 
2257 static int
2258 likely_spilled_retval_p (rtx insn)
2259 {
2260   rtx use = BB_END (this_basic_block);
2261   rtx reg, p;
2262   unsigned regno, nregs;
2263   /* We assume here that no machine mode needs more than
2264      32 hard registers when the value overlaps with a register
2265      for which TARGET_FUNCTION_VALUE_REGNO_P is true.  */
2266   unsigned mask;
2267   struct likely_spilled_retval_info info;
2268 
2269   if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2270     return 0;
2271   reg = XEXP (PATTERN (use), 0);
2272   if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2273     return 0;
2274   regno = REGNO (reg);
2275   nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2276   if (nregs == 1)
2277     return 0;
2278   mask = (2U << (nregs - 1)) - 1;
2279 
2280   /* Disregard parts of the return value that are set later.  */
2281   info.regno = regno;
2282   info.nregs = nregs;
2283   info.mask = mask;
2284   for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2285     if (INSN_P (p))
2286       note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2287   mask = info.mask;
2288 
2289   /* Check if any of the (probably) live return value registers is
2290      likely spilled.  */
2291   nregs --;
2292   do
2293     {
2294       if ((mask & 1 << nregs)
2295 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2296 	return 1;
2297     } while (nregs--);
2298   return 0;
2299 }
2300 
2301 /* Adjust INSN after we made a change to its destination.
2302 
2303    Changing the destination can invalidate notes that say something about
2304    the results of the insn and a LOG_LINK pointing to the insn.  */
2305 
2306 static void
2307 adjust_for_new_dest (rtx insn)
2308 {
2309   /* For notes, be conservative and simply remove them.  */
2310   remove_reg_equal_equiv_notes (insn);
2311 
2312   /* The new insn will have a destination that was previously the destination
2313      of an insn just above it.  Call distribute_links to make a LOG_LINK from
2314      the next use of that destination.  */
2315   distribute_links (alloc_insn_link (insn, NULL));
2316 
2317   df_insn_rescan (insn);
2318 }
2319 
2320 /* Return TRUE if combine can reuse reg X in mode MODE.
2321    ADDED_SETS is nonzero if the original set is still required.  */
2322 static bool
2323 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2324 {
2325   unsigned int regno;
2326 
2327   if (!REG_P(x))
2328     return false;
2329 
2330   regno = REGNO (x);
2331   /* Allow hard registers if the new mode is legal, and occupies no more
2332      registers than the old mode.  */
2333   if (regno < FIRST_PSEUDO_REGISTER)
2334     return (HARD_REGNO_MODE_OK (regno, mode)
2335 	    && (hard_regno_nregs[regno][GET_MODE (x)]
2336 		>= hard_regno_nregs[regno][mode]));
2337 
2338   /* Or a pseudo that is only used once.  */
2339   return (REG_N_SETS (regno) == 1 && !added_sets
2340 	  && !REG_USERVAR_P (x));
2341 }
2342 
2343 
2344 /* Check whether X, the destination of a set, refers to part of
2345    the register specified by REG.  */
2346 
2347 static bool
2348 reg_subword_p (rtx x, rtx reg)
2349 {
2350   /* Check that reg is an integer mode register.  */
2351   if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2352     return false;
2353 
2354   if (GET_CODE (x) == STRICT_LOW_PART
2355       || GET_CODE (x) == ZERO_EXTRACT)
2356     x = XEXP (x, 0);
2357 
2358   return GET_CODE (x) == SUBREG
2359 	 && SUBREG_REG (x) == reg
2360 	 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2361 }
2362 
2363 #ifdef AUTO_INC_DEC
2364 /* Replace auto-increment addressing modes with explicit operations to access
2365    the same addresses without modifying the corresponding registers.  */
2366 
2367 static rtx
2368 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2369 {
2370   rtx x = src;
2371   const RTX_CODE code = GET_CODE (x);
2372   int i;
2373   const char *fmt;
2374 
2375   switch (code)
2376     {
2377     case REG:
2378     case CONST_INT:
2379     case CONST_DOUBLE:
2380     case CONST_FIXED:
2381     case CONST_VECTOR:
2382     case SYMBOL_REF:
2383     case CODE_LABEL:
2384     case PC:
2385     case CC0:
2386     case SCRATCH:
2387       /* SCRATCH must be shared because they represent distinct values.  */
2388       return x;
2389     case CLOBBER:
2390       if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2391 	return x;
2392       break;
2393 
2394     case CONST:
2395       if (shared_const_p (x))
2396 	return x;
2397       break;
2398 
2399     case MEM:
2400       mem_mode = GET_MODE (x);
2401       break;
2402 
2403     case PRE_INC:
2404     case PRE_DEC:
2405       gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2406       return gen_rtx_PLUS (GET_MODE (x),
2407 			   cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2408 			   GEN_INT (code == PRE_INC
2409 				    ? GET_MODE_SIZE (mem_mode)
2410 				    : -GET_MODE_SIZE (mem_mode)));
2411 
2412     case POST_INC:
2413     case POST_DEC:
2414     case PRE_MODIFY:
2415     case POST_MODIFY:
2416       return cleanup_auto_inc_dec (code == PRE_MODIFY
2417 				   ? XEXP (x, 1) : XEXP (x, 0),
2418 				   mem_mode);
2419 
2420     default:
2421       break;
2422     }
2423 
2424   /* Copy the various flags, fields, and other information.  We assume
2425      that all fields need copying, and then clear the fields that should
2426      not be copied.  That is the sensible default behavior, and forces
2427      us to explicitly document why we are *not* copying a flag.  */
2428   x = shallow_copy_rtx (x);
2429 
2430   /* We do not copy the USED flag, which is used as a mark bit during
2431      walks over the RTL.  */
2432   RTX_FLAG (x, used) = 0;
2433 
2434   /* We do not copy FRAME_RELATED for INSNs.  */
2435   if (INSN_P (x))
2436     RTX_FLAG (x, frame_related) = 0;
2437 
2438   fmt = GET_RTX_FORMAT (code);
2439   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2440     if (fmt[i] == 'e')
2441       XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2442     else if (fmt[i] == 'E' || fmt[i] == 'V')
2443       {
2444 	int j;
2445 	XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2446 	for (j = 0; j < XVECLEN (x, i); j++)
2447 	  XVECEXP (x, i, j)
2448 	    = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2449       }
2450 
2451   return x;
2452 }
2453 #endif
2454 
2455 /* Auxiliary data structure for propagate_for_debug_stmt.  */
2456 
2457 struct rtx_subst_pair
2458 {
2459   rtx to;
2460   bool adjusted;
2461 };
2462 
2463 /* DATA points to an rtx_subst_pair.  Return the value that should be
2464    substituted.  */
2465 
2466 static rtx
2467 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2468 {
2469   struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2470 
2471   if (!rtx_equal_p (from, old_rtx))
2472     return NULL_RTX;
2473   if (!pair->adjusted)
2474     {
2475       pair->adjusted = true;
2476 #ifdef AUTO_INC_DEC
2477       pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2478 #else
2479       pair->to = copy_rtx (pair->to);
2480 #endif
2481       pair->to = make_compound_operation (pair->to, SET);
2482       return pair->to;
2483     }
2484   return copy_rtx (pair->to);
2485 }
2486 
2487 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2488    and LAST, not including INSN, but including LAST.  Also stop at the end
2489    of THIS_BASIC_BLOCK.  */
2490 
2491 static void
2492 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2493 {
2494   rtx next, loc, end = NEXT_INSN (BB_END (this_basic_block));
2495 
2496   struct rtx_subst_pair p;
2497   p.to = src;
2498   p.adjusted = false;
2499 
2500   next = NEXT_INSN (insn);
2501   last = NEXT_INSN (last);
2502   while (next != last && next != end)
2503     {
2504       insn = next;
2505       next = NEXT_INSN (insn);
2506       if (DEBUG_INSN_P (insn))
2507 	{
2508 	  loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2509 					 dest, propagate_for_debug_subst, &p);
2510 	  if (loc == INSN_VAR_LOCATION_LOC (insn))
2511 	    continue;
2512 	  INSN_VAR_LOCATION_LOC (insn) = loc;
2513 	  df_insn_rescan (insn);
2514 	}
2515     }
2516 }
2517 
2518 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2519    Note that the INSN should be deleted *after* removing dead edges, so
2520    that the kept edge is the fallthrough edge for a (set (pc) (pc))
2521    but not for a (set (pc) (label_ref FOO)).  */
2522 
2523 static void
2524 update_cfg_for_uncondjump (rtx insn)
2525 {
2526   basic_block bb = BLOCK_FOR_INSN (insn);
2527   gcc_assert (BB_END (bb) == insn);
2528 
2529   purge_dead_edges (bb);
2530 
2531   delete_insn (insn);
2532   if (EDGE_COUNT (bb->succs) == 1)
2533     {
2534       rtx insn;
2535 
2536       single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2537 
2538       /* Remove barriers from the footer if there are any.  */
2539       for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
2540 	if (BARRIER_P (insn))
2541 	  {
2542 	    if (PREV_INSN (insn))
2543 	      NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2544 	    else
2545 	      bb->il.rtl->footer = NEXT_INSN (insn);
2546 	    if (NEXT_INSN (insn))
2547 	      PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2548 	  }
2549 	else if (LABEL_P (insn))
2550 	  break;
2551     }
2552 }
2553 
2554 /* Try to combine the insns I0, I1 and I2 into I3.
2555    Here I0, I1 and I2 appear earlier than I3.
2556    I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2557    I3.
2558 
2559    If we are combining more than two insns and the resulting insn is not
2560    recognized, try splitting it into two insns.  If that happens, I2 and I3
2561    are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2562    Otherwise, I0, I1 and I2 are pseudo-deleted.
2563 
2564    Return 0 if the combination does not work.  Then nothing is changed.
2565    If we did the combination, return the insn at which combine should
2566    resume scanning.
2567 
2568    Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2569    new direct jump instruction.
2570 
2571    LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2572    been I3 passed to an earlier try_combine within the same basic
2573    block.  */
2574 
2575 static rtx
2576 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2577 	     rtx last_combined_insn)
2578 {
2579   /* New patterns for I3 and I2, respectively.  */
2580   rtx newpat, newi2pat = 0;
2581   rtvec newpat_vec_with_clobbers = 0;
2582   int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2583   /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2584      dead.  */
2585   int added_sets_0, added_sets_1, added_sets_2;
2586   /* Total number of SETs to put into I3.  */
2587   int total_sets;
2588   /* Nonzero if I2's or I1's body now appears in I3.  */
2589   int i2_is_used = 0, i1_is_used = 0;
2590   /* INSN_CODEs for new I3, new I2, and user of condition code.  */
2591   int insn_code_number, i2_code_number = 0, other_code_number = 0;
2592   /* Contains I3 if the destination of I3 is used in its source, which means
2593      that the old life of I3 is being killed.  If that usage is placed into
2594      I2 and not in I3, a REG_DEAD note must be made.  */
2595   rtx i3dest_killed = 0;
2596   /* SET_DEST and SET_SRC of I2, I1 and I0.  */
2597   rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2598   /* Copy of SET_SRC of I1 and I0, if needed.  */
2599   rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2600   /* Set if I2DEST was reused as a scratch register.  */
2601   bool i2scratch = false;
2602   /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases.  */
2603   rtx i0pat = 0, i1pat = 0, i2pat = 0;
2604   /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
2605   int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2606   int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2607   int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2608   int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2609   /* Notes that must be added to REG_NOTES in I3 and I2.  */
2610   rtx new_i3_notes, new_i2_notes;
2611   /* Notes that we substituted I3 into I2 instead of the normal case.  */
2612   int i3_subst_into_i2 = 0;
2613   /* Notes that I1, I2 or I3 is a MULT operation.  */
2614   int have_mult = 0;
2615   int swap_i2i3 = 0;
2616   int changed_i3_dest = 0;
2617 
2618   int maxreg;
2619   rtx temp;
2620   struct insn_link *link;
2621   rtx other_pat = 0;
2622   rtx new_other_notes;
2623   int i;
2624 
2625   /* Only try four-insn combinations when there's high likelihood of
2626      success.  Look for simple insns, such as loads of constants or
2627      binary operations involving a constant.  */
2628   if (i0)
2629     {
2630       int i;
2631       int ngood = 0;
2632       int nshift = 0;
2633 
2634       if (!flag_expensive_optimizations)
2635 	return 0;
2636 
2637       for (i = 0; i < 4; i++)
2638 	{
2639 	  rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2640 	  rtx set = single_set (insn);
2641 	  rtx src;
2642 	  if (!set)
2643 	    continue;
2644 	  src = SET_SRC (set);
2645 	  if (CONSTANT_P (src))
2646 	    {
2647 	      ngood += 2;
2648 	      break;
2649 	    }
2650 	  else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2651 	    ngood++;
2652 	  else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2653 		   || GET_CODE (src) == LSHIFTRT)
2654 	    nshift++;
2655 	}
2656       if (ngood < 2 && nshift < 2)
2657 	return 0;
2658     }
2659 
2660   /* Exit early if one of the insns involved can't be used for
2661      combinations.  */
2662   if (cant_combine_insn_p (i3)
2663       || cant_combine_insn_p (i2)
2664       || (i1 && cant_combine_insn_p (i1))
2665       || (i0 && cant_combine_insn_p (i0))
2666       || likely_spilled_retval_p (i3))
2667     return 0;
2668 
2669   combine_attempts++;
2670   undobuf.other_insn = 0;
2671 
2672   /* Reset the hard register usage information.  */
2673   CLEAR_HARD_REG_SET (newpat_used_regs);
2674 
2675   if (dump_file && (dump_flags & TDF_DETAILS))
2676     {
2677       if (i0)
2678 	fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2679 		 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2680       else if (i1)
2681 	fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2682 		 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2683       else
2684 	fprintf (dump_file, "\nTrying %d -> %d:\n",
2685 		 INSN_UID (i2), INSN_UID (i3));
2686     }
2687 
2688   /* If multiple insns feed into one of I2 or I3, they can be in any
2689      order.  To simplify the code below, reorder them in sequence.  */
2690   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2691     temp = i2, i2 = i0, i0 = temp;
2692   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2693     temp = i1, i1 = i0, i0 = temp;
2694   if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2695     temp = i1, i1 = i2, i2 = temp;
2696 
2697   added_links_insn = 0;
2698 
2699   /* First check for one important special case that the code below will
2700      not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
2701      and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
2702      we may be able to replace that destination with the destination of I3.
2703      This occurs in the common code where we compute both a quotient and
2704      remainder into a structure, in which case we want to do the computation
2705      directly into the structure to avoid register-register copies.
2706 
2707      Note that this case handles both multiple sets in I2 and also cases
2708      where I2 has a number of CLOBBERs inside the PARALLEL.
2709 
2710      We make very conservative checks below and only try to handle the
2711      most common cases of this.  For example, we only handle the case
2712      where I2 and I3 are adjacent to avoid making difficult register
2713      usage tests.  */
2714 
2715   if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2716       && REG_P (SET_SRC (PATTERN (i3)))
2717       && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2718       && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2719       && GET_CODE (PATTERN (i2)) == PARALLEL
2720       && ! side_effects_p (SET_DEST (PATTERN (i3)))
2721       /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2722 	 below would need to check what is inside (and reg_overlap_mentioned_p
2723 	 doesn't support those codes anyway).  Don't allow those destinations;
2724 	 the resulting insn isn't likely to be recognized anyway.  */
2725       && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2726       && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2727       && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2728 				    SET_DEST (PATTERN (i3)))
2729       && next_active_insn (i2) == i3)
2730     {
2731       rtx p2 = PATTERN (i2);
2732 
2733       /* Make sure that the destination of I3,
2734 	 which we are going to substitute into one output of I2,
2735 	 is not used within another output of I2.  We must avoid making this:
2736 	 (parallel [(set (mem (reg 69)) ...)
2737 		    (set (reg 69) ...)])
2738 	 which is not well-defined as to order of actions.
2739 	 (Besides, reload can't handle output reloads for this.)
2740 
2741 	 The problem can also happen if the dest of I3 is a memory ref,
2742 	 if another dest in I2 is an indirect memory ref.  */
2743       for (i = 0; i < XVECLEN (p2, 0); i++)
2744 	if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2745 	     || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2746 	    && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2747 					SET_DEST (XVECEXP (p2, 0, i))))
2748 	  break;
2749 
2750       if (i == XVECLEN (p2, 0))
2751 	for (i = 0; i < XVECLEN (p2, 0); i++)
2752 	  if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2753 	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2754 	    {
2755 	      combine_merges++;
2756 
2757 	      subst_insn = i3;
2758 	      subst_low_luid = DF_INSN_LUID (i2);
2759 
2760 	      added_sets_2 = added_sets_1 = added_sets_0 = 0;
2761 	      i2src = SET_SRC (XVECEXP (p2, 0, i));
2762 	      i2dest = SET_DEST (XVECEXP (p2, 0, i));
2763 	      i2dest_killed = dead_or_set_p (i2, i2dest);
2764 
2765 	      /* Replace the dest in I2 with our dest and make the resulting
2766 		 insn the new pattern for I3.  Then skip to where we validate
2767 		 the pattern.  Everything was set up above.  */
2768 	      SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2769 	      newpat = p2;
2770 	      i3_subst_into_i2 = 1;
2771 	      goto validate_replacement;
2772 	    }
2773     }
2774 
2775   /* If I2 is setting a pseudo to a constant and I3 is setting some
2776      sub-part of it to another constant, merge them by making a new
2777      constant.  */
2778   if (i1 == 0
2779       && (temp = single_set (i2)) != 0
2780       && (CONST_INT_P (SET_SRC (temp))
2781 	  || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2782       && GET_CODE (PATTERN (i3)) == SET
2783       && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2784 	  || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2785       && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2786     {
2787       rtx dest = SET_DEST (PATTERN (i3));
2788       int offset = -1;
2789       int width = 0;
2790 
2791       if (GET_CODE (dest) == ZERO_EXTRACT)
2792 	{
2793 	  if (CONST_INT_P (XEXP (dest, 1))
2794 	      && CONST_INT_P (XEXP (dest, 2)))
2795 	    {
2796 	      width = INTVAL (XEXP (dest, 1));
2797 	      offset = INTVAL (XEXP (dest, 2));
2798 	      dest = XEXP (dest, 0);
2799 	      if (BITS_BIG_ENDIAN)
2800 		offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2801 	    }
2802 	}
2803       else
2804 	{
2805 	  if (GET_CODE (dest) == STRICT_LOW_PART)
2806 	    dest = XEXP (dest, 0);
2807 	  width = GET_MODE_PRECISION (GET_MODE (dest));
2808 	  offset = 0;
2809 	}
2810 
2811       if (offset >= 0)
2812 	{
2813 	  /* If this is the low part, we're done.  */
2814 	  if (subreg_lowpart_p (dest))
2815 	    ;
2816 	  /* Handle the case where inner is twice the size of outer.  */
2817 	  else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2818 		   == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2819 	    offset += GET_MODE_PRECISION (GET_MODE (dest));
2820 	  /* Otherwise give up for now.  */
2821 	  else
2822 	    offset = -1;
2823 	}
2824 
2825       if (offset >= 0
2826 	  && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2827 	      <= HOST_BITS_PER_DOUBLE_INT))
2828 	{
2829 	  double_int m, o, i;
2830 	  rtx inner = SET_SRC (PATTERN (i3));
2831 	  rtx outer = SET_SRC (temp);
2832 
2833 	  o = rtx_to_double_int (outer);
2834 	  i = rtx_to_double_int (inner);
2835 
2836 	  m = double_int_mask (width);
2837 	  i = double_int_and (i, m);
2838 	  m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2839 	  i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2840 	  o = double_int_ior (double_int_and_not (o, m), i);
2841 
2842 	  combine_merges++;
2843 	  subst_insn = i3;
2844 	  subst_low_luid = DF_INSN_LUID (i2);
2845 	  added_sets_2 = added_sets_1 = added_sets_0 = 0;
2846 	  i2dest = SET_DEST (temp);
2847 	  i2dest_killed = dead_or_set_p (i2, i2dest);
2848 
2849 	  /* Replace the source in I2 with the new constant and make the
2850 	     resulting insn the new pattern for I3.  Then skip to where we
2851 	     validate the pattern.  Everything was set up above.  */
2852 	  SUBST (SET_SRC (temp),
2853 		 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2854 
2855 	  newpat = PATTERN (i2);
2856 
2857           /* The dest of I3 has been replaced with the dest of I2.  */
2858           changed_i3_dest = 1;
2859 	  goto validate_replacement;
2860 	}
2861     }
2862 
2863 #ifndef HAVE_cc0
2864   /* If we have no I1 and I2 looks like:
2865 	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2866 		   (set Y OP)])
2867      make up a dummy I1 that is
2868 	(set Y OP)
2869      and change I2 to be
2870 	(set (reg:CC X) (compare:CC Y (const_int 0)))
2871 
2872      (We can ignore any trailing CLOBBERs.)
2873 
2874      This undoes a previous combination and allows us to match a branch-and-
2875      decrement insn.  */
2876 
2877   if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2878       && XVECLEN (PATTERN (i2), 0) >= 2
2879       && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2880       && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2881 	  == MODE_CC)
2882       && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2883       && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2884       && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2885       && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2886       && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2887 		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2888     {
2889       for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2890 	if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2891 	  break;
2892 
2893       if (i == 1)
2894 	{
2895 	  /* We make I1 with the same INSN_UID as I2.  This gives it
2896 	     the same DF_INSN_LUID for value tracking.  Our fake I1 will
2897 	     never appear in the insn stream so giving it the same INSN_UID
2898 	     as I2 will not cause a problem.  */
2899 
2900 	  i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2901 			     BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2902 			     INSN_LOCATOR (i2), -1, NULL_RTX);
2903 
2904 	  SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2905 	  SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2906 		 SET_DEST (PATTERN (i1)));
2907 	  SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2908 	}
2909     }
2910 #endif
2911 
2912   /* Verify that I2 and I1 are valid for combining.  */
2913   if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2914       || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2915 				 &i1dest, &i1src))
2916       || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2917 				 &i0dest, &i0src)))
2918     {
2919       undo_all ();
2920       return 0;
2921     }
2922 
2923   /* Record whether I2DEST is used in I2SRC and similarly for the other
2924      cases.  Knowing this will help in register status updating below.  */
2925   i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2926   i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2927   i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2928   i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2929   i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2930   i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2931   i2dest_killed = dead_or_set_p (i2, i2dest);
2932   i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2933   i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2934 
2935   /* For the earlier insns, determine which of the subsequent ones they
2936      feed.  */
2937   i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2938   i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2939   i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2940 			  : (!reg_overlap_mentioned_p (i1dest, i0dest)
2941 			     && reg_overlap_mentioned_p (i0dest, i2src))));
2942 
2943   /* Ensure that I3's pattern can be the destination of combines.  */
2944   if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2945 			  i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2946 			  i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2947 				 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2948 			  &i3dest_killed))
2949     {
2950       undo_all ();
2951       return 0;
2952     }
2953 
2954   /* See if any of the insns is a MULT operation.  Unless one is, we will
2955      reject a combination that is, since it must be slower.  Be conservative
2956      here.  */
2957   if (GET_CODE (i2src) == MULT
2958       || (i1 != 0 && GET_CODE (i1src) == MULT)
2959       || (i0 != 0 && GET_CODE (i0src) == MULT)
2960       || (GET_CODE (PATTERN (i3)) == SET
2961 	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2962     have_mult = 1;
2963 
2964   /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2965      We used to do this EXCEPT in one case: I3 has a post-inc in an
2966      output operand.  However, that exception can give rise to insns like
2967 	mov r3,(r3)+
2968      which is a famous insn on the PDP-11 where the value of r3 used as the
2969      source was model-dependent.  Avoid this sort of thing.  */
2970 
2971 #if 0
2972   if (!(GET_CODE (PATTERN (i3)) == SET
2973 	&& REG_P (SET_SRC (PATTERN (i3)))
2974 	&& MEM_P (SET_DEST (PATTERN (i3)))
2975 	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2976 	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2977     /* It's not the exception.  */
2978 #endif
2979 #ifdef AUTO_INC_DEC
2980     {
2981       rtx link;
2982       for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2983 	if (REG_NOTE_KIND (link) == REG_INC
2984 	    && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2985 		|| (i1 != 0
2986 		    && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2987 	  {
2988 	    undo_all ();
2989 	    return 0;
2990 	  }
2991     }
2992 #endif
2993 
2994   /* See if the SETs in I1 or I2 need to be kept around in the merged
2995      instruction: whenever the value set there is still needed past I3.
2996      For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2997 
2998      For the SET in I1, we have two cases:  If I1 and I2 independently
2999      feed into I3, the set in I1 needs to be kept around if I1DEST dies
3000      or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
3001      in I1 needs to be kept around unless I1DEST dies or is set in either
3002      I2 or I3.  The same consideration applies to I0.  */
3003 
3004   added_sets_2 = !dead_or_set_p (i3, i2dest);
3005 
3006   if (i1)
3007     added_sets_1 = !(dead_or_set_p (i3, i1dest)
3008 		     || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3009   else
3010     added_sets_1 = 0;
3011 
3012   if (i0)
3013     added_sets_0 =  !(dead_or_set_p (i3, i0dest)
3014 		      || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3015 		      || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
3016   else
3017     added_sets_0 = 0;
3018 
3019   /* We are about to copy insns for the case where they need to be kept
3020      around.  Check that they can be copied in the merged instruction.  */
3021 
3022   if (targetm.cannot_copy_insn_p
3023       && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3024 	  || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3025 	  || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3026     {
3027       undo_all ();
3028       return 0;
3029     }
3030 
3031   /* If the set in I2 needs to be kept around, we must make a copy of
3032      PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3033      PATTERN (I2), we are only substituting for the original I1DEST, not into
3034      an already-substituted copy.  This also prevents making self-referential
3035      rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3036      I2DEST.  */
3037 
3038   if (added_sets_2)
3039     {
3040       if (GET_CODE (PATTERN (i2)) == PARALLEL)
3041 	i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3042       else
3043 	i2pat = copy_rtx (PATTERN (i2));
3044     }
3045 
3046   if (added_sets_1)
3047     {
3048       if (GET_CODE (PATTERN (i1)) == PARALLEL)
3049 	i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3050       else
3051 	i1pat = copy_rtx (PATTERN (i1));
3052     }
3053 
3054   if (added_sets_0)
3055     {
3056       if (GET_CODE (PATTERN (i0)) == PARALLEL)
3057 	i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3058       else
3059 	i0pat = copy_rtx (PATTERN (i0));
3060     }
3061 
3062   combine_merges++;
3063 
3064   /* Substitute in the latest insn for the regs set by the earlier ones.  */
3065 
3066   maxreg = max_reg_num ();
3067 
3068   subst_insn = i3;
3069 
3070 #ifndef HAVE_cc0
3071   /* Many machines that don't use CC0 have insns that can both perform an
3072      arithmetic operation and set the condition code.  These operations will
3073      be represented as a PARALLEL with the first element of the vector
3074      being a COMPARE of an arithmetic operation with the constant zero.
3075      The second element of the vector will set some pseudo to the result
3076      of the same arithmetic operation.  If we simplify the COMPARE, we won't
3077      match such a pattern and so will generate an extra insn.   Here we test
3078      for this case, where both the comparison and the operation result are
3079      needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3080      I2SRC.  Later we will make the PARALLEL that contains I2.  */
3081 
3082   if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3083       && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3084       && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3085       && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3086     {
3087       rtx newpat_dest;
3088       rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
3089       rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3090       enum machine_mode compare_mode, orig_compare_mode;
3091       enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3092 
3093       newpat = PATTERN (i3);
3094       newpat_dest = SET_DEST (newpat);
3095       compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3096 
3097       if (undobuf.other_insn == 0
3098 	  && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3099 					    &cc_use_insn)))
3100 	{
3101 	  compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3102 	  compare_code = simplify_compare_const (compare_code,
3103 						 op0, &op1);
3104 #ifdef CANONICALIZE_COMPARISON
3105 	  CANONICALIZE_COMPARISON (compare_code, op0, op1);
3106 #endif
3107 	}
3108 
3109       /* Do the rest only if op1 is const0_rtx, which may be the
3110 	 result of simplification.  */
3111       if (op1 == const0_rtx)
3112 	{
3113 	  /* If a single use of the CC is found, prepare to modify it
3114 	     when SELECT_CC_MODE returns a new CC-class mode, or when
3115 	     the above simplify_compare_const() returned a new comparison
3116 	     operator.  undobuf.other_insn is assigned the CC use insn
3117 	     when modifying it.  */
3118 	  if (cc_use_loc)
3119 	    {
3120 #ifdef SELECT_CC_MODE
3121 	      enum machine_mode new_mode
3122 		= SELECT_CC_MODE (compare_code, op0, op1);
3123 	      if (new_mode != orig_compare_mode
3124 		  && can_change_dest_mode (SET_DEST (newpat),
3125 					   added_sets_2, new_mode))
3126 		{
3127 		  unsigned int regno = REGNO (newpat_dest);
3128 		  compare_mode = new_mode;
3129 		  if (regno < FIRST_PSEUDO_REGISTER)
3130 		    newpat_dest = gen_rtx_REG (compare_mode, regno);
3131 		  else
3132 		    {
3133 		      SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3134 		      newpat_dest = regno_reg_rtx[regno];
3135 		    }
3136 		}
3137 #endif
3138 	      /* Cases for modifying the CC-using comparison.  */
3139 	      if (compare_code != orig_compare_code
3140 		  /* ??? Do we need to verify the zero rtx?  */
3141 		  && XEXP (*cc_use_loc, 1) == const0_rtx)
3142 		{
3143 		  /* Replace cc_use_loc with entire new RTX.  */
3144 		  SUBST (*cc_use_loc,
3145 			 gen_rtx_fmt_ee (compare_code, compare_mode,
3146 					 newpat_dest, const0_rtx));
3147 		  undobuf.other_insn = cc_use_insn;
3148 		}
3149 	      else if (compare_mode != orig_compare_mode)
3150 		{
3151 		  /* Just replace the CC reg with a new mode.  */
3152 		  SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3153 		  undobuf.other_insn = cc_use_insn;
3154 		}
3155 	    }
3156 
3157 	  /* Now we modify the current newpat:
3158 	     First, SET_DEST(newpat) is updated if the CC mode has been
3159 	     altered. For targets without SELECT_CC_MODE, this should be
3160 	     optimized away.  */
3161 	  if (compare_mode != orig_compare_mode)
3162 	    SUBST (SET_DEST (newpat), newpat_dest);
3163 	  /* This is always done to propagate i2src into newpat.  */
3164 	  SUBST (SET_SRC (newpat),
3165 		 gen_rtx_COMPARE (compare_mode, op0, op1));
3166 	  /* Create new version of i2pat if needed; the below PARALLEL
3167 	     creation needs this to work correctly.  */
3168 	  if (! rtx_equal_p (i2src, op0))
3169 	    i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3170 	  i2_is_used = 1;
3171 	}
3172     }
3173 #endif
3174 
3175   if (i2_is_used == 0)
3176     {
3177       /* It is possible that the source of I2 or I1 may be performing
3178 	 an unneeded operation, such as a ZERO_EXTEND of something
3179 	 that is known to have the high part zero.  Handle that case
3180 	 by letting subst look at the inner insns.
3181 
3182 	 Another way to do this would be to have a function that tries
3183 	 to simplify a single insn instead of merging two or more
3184 	 insns.  We don't do this because of the potential of infinite
3185 	 loops and because of the potential extra memory required.
3186 	 However, doing it the way we are is a bit of a kludge and
3187 	 doesn't catch all cases.
3188 
3189 	 But only do this if -fexpensive-optimizations since it slows
3190 	 things down and doesn't usually win.
3191 
3192 	 This is not done in the COMPARE case above because the
3193 	 unmodified I2PAT is used in the PARALLEL and so a pattern
3194 	 with a modified I2SRC would not match.  */
3195 
3196       if (flag_expensive_optimizations)
3197 	{
3198 	  /* Pass pc_rtx so no substitutions are done, just
3199 	     simplifications.  */
3200 	  if (i1)
3201 	    {
3202 	      subst_low_luid = DF_INSN_LUID (i1);
3203 	      i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3204 	    }
3205 
3206 	  subst_low_luid = DF_INSN_LUID (i2);
3207 	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3208 	}
3209 
3210       n_occurrences = 0;		/* `subst' counts here */
3211       subst_low_luid = DF_INSN_LUID (i2);
3212 
3213       /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3214 	 copy of I2SRC each time we substitute it, in order to avoid creating
3215 	 self-referential RTL when we will be substituting I1SRC for I1DEST
3216 	 later.  Likewise if I0 feeds into I2, either directly or indirectly
3217 	 through I1, and I0DEST is in I0SRC.  */
3218       newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3219 		      (i1_feeds_i2_n && i1dest_in_i1src)
3220 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3221 			  && i0dest_in_i0src));
3222       substed_i2 = 1;
3223 
3224       /* Record whether I2's body now appears within I3's body.  */
3225       i2_is_used = n_occurrences;
3226     }
3227 
3228   /* If we already got a failure, don't try to do more.  Otherwise, try to
3229      substitute I1 if we have it.  */
3230 
3231   if (i1 && GET_CODE (newpat) != CLOBBER)
3232     {
3233       /* Check that an autoincrement side-effect on I1 has not been lost.
3234 	 This happens if I1DEST is mentioned in I2 and dies there, and
3235 	 has disappeared from the new pattern.  */
3236       if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3237 	   && i1_feeds_i2_n
3238 	   && dead_or_set_p (i2, i1dest)
3239 	   && !reg_overlap_mentioned_p (i1dest, newpat))
3240 	   /* Before we can do this substitution, we must redo the test done
3241 	      above (see detailed comments there) that ensures I1DEST isn't
3242 	      mentioned in any SETs in NEWPAT that are field assignments.  */
3243 	  || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3244 				0, 0, 0))
3245 	{
3246 	  undo_all ();
3247 	  return 0;
3248 	}
3249 
3250       n_occurrences = 0;
3251       subst_low_luid = DF_INSN_LUID (i1);
3252 
3253       /* If the following substitution will modify I1SRC, make a copy of it
3254 	 for the case where it is substituted for I1DEST in I2PAT later.  */
3255       if (added_sets_2 && i1_feeds_i2_n)
3256 	i1src_copy = copy_rtx (i1src);
3257 
3258       /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3259 	 copy of I1SRC each time we substitute it, in order to avoid creating
3260 	 self-referential RTL when we will be substituting I0SRC for I0DEST
3261 	 later.  */
3262       newpat = subst (newpat, i1dest, i1src, 0, 0,
3263 		      i0_feeds_i1_n && i0dest_in_i0src);
3264       substed_i1 = 1;
3265 
3266       /* Record whether I1's body now appears within I3's body.  */
3267       i1_is_used = n_occurrences;
3268     }
3269 
3270   /* Likewise for I0 if we have it.  */
3271 
3272   if (i0 && GET_CODE (newpat) != CLOBBER)
3273     {
3274       if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3275 	   && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3276 	       || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3277 	   && !reg_overlap_mentioned_p (i0dest, newpat))
3278 	  || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3279 				0, 0, 0))
3280 	{
3281 	  undo_all ();
3282 	  return 0;
3283 	}
3284 
3285       /* If the following substitution will modify I0SRC, make a copy of it
3286 	 for the case where it is substituted for I0DEST in I1PAT later.  */
3287       if (added_sets_1 && i0_feeds_i1_n)
3288 	i0src_copy = copy_rtx (i0src);
3289       /* And a copy for I0DEST in I2PAT substitution.  */
3290       if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3291 			   || (i0_feeds_i2_n)))
3292 	i0src_copy2 = copy_rtx (i0src);
3293 
3294       n_occurrences = 0;
3295       subst_low_luid = DF_INSN_LUID (i0);
3296       newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3297       substed_i0 = 1;
3298     }
3299 
3300   /* Fail if an autoincrement side-effect has been duplicated.  Be careful
3301      to count all the ways that I2SRC and I1SRC can be used.  */
3302   if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3303        && i2_is_used + added_sets_2 > 1)
3304       || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3305 	  && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3306 	      > 1))
3307       || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3308 	  && (n_occurrences + added_sets_0
3309 	      + (added_sets_1 && i0_feeds_i1_n)
3310 	      + (added_sets_2 && i0_feeds_i2_n)
3311 	      > 1))
3312       /* Fail if we tried to make a new register.  */
3313       || max_reg_num () != maxreg
3314       /* Fail if we couldn't do something and have a CLOBBER.  */
3315       || GET_CODE (newpat) == CLOBBER
3316       /* Fail if this new pattern is a MULT and we didn't have one before
3317 	 at the outer level.  */
3318       || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3319 	  && ! have_mult))
3320     {
3321       undo_all ();
3322       return 0;
3323     }
3324 
3325   /* If the actions of the earlier insns must be kept
3326      in addition to substituting them into the latest one,
3327      we must make a new PARALLEL for the latest insn
3328      to hold additional the SETs.  */
3329 
3330   if (added_sets_0 || added_sets_1 || added_sets_2)
3331     {
3332       int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3333       combine_extras++;
3334 
3335       if (GET_CODE (newpat) == PARALLEL)
3336 	{
3337 	  rtvec old = XVEC (newpat, 0);
3338 	  total_sets = XVECLEN (newpat, 0) + extra_sets;
3339 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3340 	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3341 		  sizeof (old->elem[0]) * old->num_elem);
3342 	}
3343       else
3344 	{
3345 	  rtx old = newpat;
3346 	  total_sets = 1 + extra_sets;
3347 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3348 	  XVECEXP (newpat, 0, 0) = old;
3349 	}
3350 
3351       if (added_sets_0)
3352 	XVECEXP (newpat, 0, --total_sets) = i0pat;
3353 
3354       if (added_sets_1)
3355 	{
3356 	  rtx t = i1pat;
3357 	  if (i0_feeds_i1_n)
3358 	    t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3359 
3360 	  XVECEXP (newpat, 0, --total_sets) = t;
3361 	}
3362       if (added_sets_2)
3363 	{
3364 	  rtx t = i2pat;
3365 	  if (i1_feeds_i2_n)
3366 	    t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3367 		       i0_feeds_i1_n && i0dest_in_i0src);
3368 	  if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3369 	    t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3370 
3371 	  XVECEXP (newpat, 0, --total_sets) = t;
3372 	}
3373     }
3374 
3375  validate_replacement:
3376 
3377   /* Note which hard regs this insn has as inputs.  */
3378   mark_used_regs_combine (newpat);
3379 
3380   /* If recog_for_combine fails, it strips existing clobbers.  If we'll
3381      consider splitting this pattern, we might need these clobbers.  */
3382   if (i1 && GET_CODE (newpat) == PARALLEL
3383       && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3384     {
3385       int len = XVECLEN (newpat, 0);
3386 
3387       newpat_vec_with_clobbers = rtvec_alloc (len);
3388       for (i = 0; i < len; i++)
3389 	RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3390     }
3391 
3392   /* Is the result of combination a valid instruction?  */
3393   insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3394 
3395   /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3396      the second SET's destination is a register that is unused and isn't
3397      marked as an instruction that might trap in an EH region.  In that case,
3398      we just need the first SET.   This can occur when simplifying a divmod
3399      insn.  We *must* test for this case here because the code below that
3400      splits two independent SETs doesn't handle this case correctly when it
3401      updates the register status.
3402 
3403      It's pointless doing this if we originally had two sets, one from
3404      i3, and one from i2.  Combining then splitting the parallel results
3405      in the original i2 again plus an invalid insn (which we delete).
3406      The net effect is only to move instructions around, which makes
3407      debug info less accurate.
3408 
3409      Also check the case where the first SET's destination is unused.
3410      That would not cause incorrect code, but does cause an unneeded
3411      insn to remain.  */
3412 
3413   if (insn_code_number < 0
3414       && !(added_sets_2 && i1 == 0)
3415       && GET_CODE (newpat) == PARALLEL
3416       && XVECLEN (newpat, 0) == 2
3417       && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3418       && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3419       && asm_noperands (newpat) < 0)
3420     {
3421       rtx set0 = XVECEXP (newpat, 0, 0);
3422       rtx set1 = XVECEXP (newpat, 0, 1);
3423 
3424       if (((REG_P (SET_DEST (set1))
3425 	    && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3426 	   || (GET_CODE (SET_DEST (set1)) == SUBREG
3427 	       && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3428 	  && insn_nothrow_p (i3)
3429 	  && !side_effects_p (SET_SRC (set1)))
3430 	{
3431 	  newpat = set0;
3432 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3433 	}
3434 
3435       else if (((REG_P (SET_DEST (set0))
3436 		 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3437 		|| (GET_CODE (SET_DEST (set0)) == SUBREG
3438 		    && find_reg_note (i3, REG_UNUSED,
3439 				      SUBREG_REG (SET_DEST (set0)))))
3440 	       && insn_nothrow_p (i3)
3441 	       && !side_effects_p (SET_SRC (set0)))
3442 	{
3443 	  newpat = set1;
3444 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3445 
3446 	  if (insn_code_number >= 0)
3447 	    changed_i3_dest = 1;
3448 	}
3449     }
3450 
3451   /* If we were combining three insns and the result is a simple SET
3452      with no ASM_OPERANDS that wasn't recognized, try to split it into two
3453      insns.  There are two ways to do this.  It can be split using a
3454      machine-specific method (like when you have an addition of a large
3455      constant) or by combine in the function find_split_point.  */
3456 
3457   if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3458       && asm_noperands (newpat) < 0)
3459     {
3460       rtx parallel, m_split, *split;
3461 
3462       /* See if the MD file can split NEWPAT.  If it can't, see if letting it
3463 	 use I2DEST as a scratch register will help.  In the latter case,
3464 	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
3465 
3466       m_split = combine_split_insns (newpat, i3);
3467 
3468       /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3469 	 inputs of NEWPAT.  */
3470 
3471       /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3472 	 possible to try that as a scratch reg.  This would require adding
3473 	 more code to make it work though.  */
3474 
3475       if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3476 	{
3477 	  enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3478 
3479 	  /* First try to split using the original register as a
3480 	     scratch register.  */
3481 	  parallel = gen_rtx_PARALLEL (VOIDmode,
3482 				       gen_rtvec (2, newpat,
3483 						  gen_rtx_CLOBBER (VOIDmode,
3484 								   i2dest)));
3485 	  m_split = combine_split_insns (parallel, i3);
3486 
3487 	  /* If that didn't work, try changing the mode of I2DEST if
3488 	     we can.  */
3489 	  if (m_split == 0
3490 	      && new_mode != GET_MODE (i2dest)
3491 	      && new_mode != VOIDmode
3492 	      && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3493 	    {
3494 	      enum machine_mode old_mode = GET_MODE (i2dest);
3495 	      rtx ni2dest;
3496 
3497 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3498 		ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3499 	      else
3500 		{
3501 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3502 		  ni2dest = regno_reg_rtx[REGNO (i2dest)];
3503 		}
3504 
3505 	      parallel = (gen_rtx_PARALLEL
3506 			  (VOIDmode,
3507 			   gen_rtvec (2, newpat,
3508 				      gen_rtx_CLOBBER (VOIDmode,
3509 						       ni2dest))));
3510 	      m_split = combine_split_insns (parallel, i3);
3511 
3512 	      if (m_split == 0
3513 		  && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3514 		{
3515 		  struct undo *buf;
3516 
3517 		  adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3518 		  buf = undobuf.undos;
3519 		  undobuf.undos = buf->next;
3520 		  buf->next = undobuf.frees;
3521 		  undobuf.frees = buf;
3522 		}
3523 	    }
3524 
3525 	  i2scratch = m_split != 0;
3526 	}
3527 
3528       /* If recog_for_combine has discarded clobbers, try to use them
3529 	 again for the split.  */
3530       if (m_split == 0 && newpat_vec_with_clobbers)
3531 	{
3532 	  parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3533 	  m_split = combine_split_insns (parallel, i3);
3534 	}
3535 
3536       if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3537 	{
3538 	  m_split = PATTERN (m_split);
3539 	  insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3540 	  if (insn_code_number >= 0)
3541 	    newpat = m_split;
3542 	}
3543       else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3544 	       && (next_nonnote_nondebug_insn (i2) == i3
3545 		   || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3546 	{
3547 	  rtx i2set, i3set;
3548 	  rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3549 	  newi2pat = PATTERN (m_split);
3550 
3551 	  i3set = single_set (NEXT_INSN (m_split));
3552 	  i2set = single_set (m_split);
3553 
3554 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3555 
3556 	  /* If I2 or I3 has multiple SETs, we won't know how to track
3557 	     register status, so don't use these insns.  If I2's destination
3558 	     is used between I2 and I3, we also can't use these insns.  */
3559 
3560 	  if (i2_code_number >= 0 && i2set && i3set
3561 	      && (next_nonnote_nondebug_insn (i2) == i3
3562 		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3563 	    insn_code_number = recog_for_combine (&newi3pat, i3,
3564 						  &new_i3_notes);
3565 	  if (insn_code_number >= 0)
3566 	    newpat = newi3pat;
3567 
3568 	  /* It is possible that both insns now set the destination of I3.
3569 	     If so, we must show an extra use of it.  */
3570 
3571 	  if (insn_code_number >= 0)
3572 	    {
3573 	      rtx new_i3_dest = SET_DEST (i3set);
3574 	      rtx new_i2_dest = SET_DEST (i2set);
3575 
3576 	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3577 		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3578 		     || GET_CODE (new_i3_dest) == SUBREG)
3579 		new_i3_dest = XEXP (new_i3_dest, 0);
3580 
3581 	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3582 		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3583 		     || GET_CODE (new_i2_dest) == SUBREG)
3584 		new_i2_dest = XEXP (new_i2_dest, 0);
3585 
3586 	      if (REG_P (new_i3_dest)
3587 		  && REG_P (new_i2_dest)
3588 		  && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3589 		INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3590 	    }
3591 	}
3592 
3593       /* If we can split it and use I2DEST, go ahead and see if that
3594 	 helps things be recognized.  Verify that none of the registers
3595 	 are set between I2 and I3.  */
3596       if (insn_code_number < 0
3597           && (split = find_split_point (&newpat, i3, false)) != 0
3598 #ifdef HAVE_cc0
3599 	  && REG_P (i2dest)
3600 #endif
3601 	  /* We need I2DEST in the proper mode.  If it is a hard register
3602 	     or the only use of a pseudo, we can change its mode.
3603 	     Make sure we don't change a hard register to have a mode that
3604 	     isn't valid for it, or change the number of registers.  */
3605 	  && (GET_MODE (*split) == GET_MODE (i2dest)
3606 	      || GET_MODE (*split) == VOIDmode
3607 	      || can_change_dest_mode (i2dest, added_sets_2,
3608 				       GET_MODE (*split)))
3609 	  && (next_nonnote_nondebug_insn (i2) == i3
3610 	      || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3611 	  /* We can't overwrite I2DEST if its value is still used by
3612 	     NEWPAT.  */
3613 	  && ! reg_referenced_p (i2dest, newpat))
3614 	{
3615 	  rtx newdest = i2dest;
3616 	  enum rtx_code split_code = GET_CODE (*split);
3617 	  enum machine_mode split_mode = GET_MODE (*split);
3618 	  bool subst_done = false;
3619 	  newi2pat = NULL_RTX;
3620 
3621 	  i2scratch = true;
3622 
3623 	  /* *SPLIT may be part of I2SRC, so make sure we have the
3624 	     original expression around for later debug processing.
3625 	     We should not need I2SRC any more in other cases.  */
3626 	  if (MAY_HAVE_DEBUG_INSNS)
3627 	    i2src = copy_rtx (i2src);
3628 	  else
3629 	    i2src = NULL;
3630 
3631 	  /* Get NEWDEST as a register in the proper mode.  We have already
3632 	     validated that we can do this.  */
3633 	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3634 	    {
3635 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3636 		newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3637 	      else
3638 		{
3639 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3640 		  newdest = regno_reg_rtx[REGNO (i2dest)];
3641 		}
3642 	    }
3643 
3644 	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3645 	     an ASHIFT.  This can occur if it was inside a PLUS and hence
3646 	     appeared to be a memory address.  This is a kludge.  */
3647 	  if (split_code == MULT
3648 	      && CONST_INT_P (XEXP (*split, 1))
3649 	      && INTVAL (XEXP (*split, 1)) > 0
3650 	      && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3651 	    {
3652 	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
3653 					     XEXP (*split, 0), GEN_INT (i)));
3654 	      /* Update split_code because we may not have a multiply
3655 		 anymore.  */
3656 	      split_code = GET_CODE (*split);
3657 	    }
3658 
3659 #ifdef INSN_SCHEDULING
3660 	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3661 	     be written as a ZERO_EXTEND.  */
3662 	  if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3663 	    {
3664 #ifdef LOAD_EXTEND_OP
3665 	      /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3666 		 what it really is.  */
3667 	      if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3668 		  == SIGN_EXTEND)
3669 		SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3670 						    SUBREG_REG (*split)));
3671 	      else
3672 #endif
3673 		SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3674 						    SUBREG_REG (*split)));
3675 	    }
3676 #endif
3677 
3678 	  /* Attempt to split binary operators using arithmetic identities.  */
3679 	  if (BINARY_P (SET_SRC (newpat))
3680 	      && split_mode == GET_MODE (SET_SRC (newpat))
3681 	      && ! side_effects_p (SET_SRC (newpat)))
3682 	    {
3683 	      rtx setsrc = SET_SRC (newpat);
3684 	      enum machine_mode mode = GET_MODE (setsrc);
3685 	      enum rtx_code code = GET_CODE (setsrc);
3686 	      rtx src_op0 = XEXP (setsrc, 0);
3687 	      rtx src_op1 = XEXP (setsrc, 1);
3688 
3689 	      /* Split "X = Y op Y" as "Z = Y; X = Z op Z".  */
3690 	      if (rtx_equal_p (src_op0, src_op1))
3691 		{
3692 		  newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3693 		  SUBST (XEXP (setsrc, 0), newdest);
3694 		  SUBST (XEXP (setsrc, 1), newdest);
3695 		  subst_done = true;
3696 		}
3697 	      /* Split "((P op Q) op R) op S" where op is PLUS or MULT.  */
3698 	      else if ((code == PLUS || code == MULT)
3699 		       && GET_CODE (src_op0) == code
3700 		       && GET_CODE (XEXP (src_op0, 0)) == code
3701 		       && (INTEGRAL_MODE_P (mode)
3702 			   || (FLOAT_MODE_P (mode)
3703 			       && flag_unsafe_math_optimizations)))
3704 		{
3705 		  rtx p = XEXP (XEXP (src_op0, 0), 0);
3706 		  rtx q = XEXP (XEXP (src_op0, 0), 1);
3707 		  rtx r = XEXP (src_op0, 1);
3708 		  rtx s = src_op1;
3709 
3710 		  /* Split both "((X op Y) op X) op Y" and
3711 		     "((X op Y) op Y) op X" as "T op T" where T is
3712 		     "X op Y".  */
3713 		  if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3714 		       || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3715 		    {
3716 		      newi2pat = gen_rtx_SET (VOIDmode, newdest,
3717 					      XEXP (src_op0, 0));
3718 		      SUBST (XEXP (setsrc, 0), newdest);
3719 		      SUBST (XEXP (setsrc, 1), newdest);
3720 		      subst_done = true;
3721 		    }
3722 		  /* Split "((X op X) op Y) op Y)" as "T op T" where
3723 		     T is "X op Y".  */
3724 		  else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3725 		    {
3726 		      rtx tmp = simplify_gen_binary (code, mode, p, r);
3727 		      newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3728 		      SUBST (XEXP (setsrc, 0), newdest);
3729 		      SUBST (XEXP (setsrc, 1), newdest);
3730 		      subst_done = true;
3731 		    }
3732 		}
3733 	    }
3734 
3735 	  if (!subst_done)
3736 	    {
3737 	      newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3738 	      SUBST (*split, newdest);
3739 	    }
3740 
3741 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3742 
3743 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3744 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3745 	  if (GET_CODE (newi2pat) == PARALLEL)
3746 	    for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3747 	      if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3748 		{
3749 		  rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3750 		  if (reg_overlap_mentioned_p (reg, newpat))
3751 		    {
3752 		      undo_all ();
3753 		      return 0;
3754 		    }
3755 		}
3756 
3757 	  /* If the split point was a MULT and we didn't have one before,
3758 	     don't use one now.  */
3759 	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3760 	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3761 	}
3762     }
3763 
3764   /* Check for a case where we loaded from memory in a narrow mode and
3765      then sign extended it, but we need both registers.  In that case,
3766      we have a PARALLEL with both loads from the same memory location.
3767      We can split this into a load from memory followed by a register-register
3768      copy.  This saves at least one insn, more if register allocation can
3769      eliminate the copy.
3770 
3771      We cannot do this if the destination of the first assignment is a
3772      condition code register or cc0.  We eliminate this case by making sure
3773      the SET_DEST and SET_SRC have the same mode.
3774 
3775      We cannot do this if the destination of the second assignment is
3776      a register that we have already assumed is zero-extended.  Similarly
3777      for a SUBREG of such a register.  */
3778 
3779   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3780 	   && GET_CODE (newpat) == PARALLEL
3781 	   && XVECLEN (newpat, 0) == 2
3782 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3783 	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3784 	   && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3785 	       == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3786 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3787 	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3788 			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3789 	   && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3790 				   DF_INSN_LUID (i2))
3791 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3792 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3793 	   && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3794 		 (REG_P (temp)
3795 		  && VEC_index (reg_stat_type, reg_stat,
3796 				REGNO (temp))->nonzero_bits != 0
3797 		  && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3798 		  && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3799 		  && (VEC_index (reg_stat_type, reg_stat,
3800 				 REGNO (temp))->nonzero_bits
3801 		      != GET_MODE_MASK (word_mode))))
3802 	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3803 		 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3804 		     (REG_P (temp)
3805 		      && VEC_index (reg_stat_type, reg_stat,
3806 				    REGNO (temp))->nonzero_bits != 0
3807 		      && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3808 		      && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3809 		      && (VEC_index (reg_stat_type, reg_stat,
3810 				     REGNO (temp))->nonzero_bits
3811 			  != GET_MODE_MASK (word_mode)))))
3812 	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3813 					 SET_SRC (XVECEXP (newpat, 0, 1)))
3814 	   && ! find_reg_note (i3, REG_UNUSED,
3815 			       SET_DEST (XVECEXP (newpat, 0, 0))))
3816     {
3817       rtx ni2dest;
3818 
3819       newi2pat = XVECEXP (newpat, 0, 0);
3820       ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3821       newpat = XVECEXP (newpat, 0, 1);
3822       SUBST (SET_SRC (newpat),
3823 	     gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3824       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3825 
3826       if (i2_code_number >= 0)
3827 	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3828 
3829       if (insn_code_number >= 0)
3830 	swap_i2i3 = 1;
3831     }
3832 
3833   /* Similarly, check for a case where we have a PARALLEL of two independent
3834      SETs but we started with three insns.  In this case, we can do the sets
3835      as two separate insns.  This case occurs when some SET allows two
3836      other insns to combine, but the destination of that SET is still live.  */
3837 
3838   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3839 	   && GET_CODE (newpat) == PARALLEL
3840 	   && XVECLEN (newpat, 0) == 2
3841 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3842 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3843 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3844 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3845 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3846 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3847 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3848 				  XVECEXP (newpat, 0, 0))
3849 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3850 				  XVECEXP (newpat, 0, 1))
3851 	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3852 		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3853     {
3854       /* Normally, it doesn't matter which of the two is done first,
3855 	 but the one that references cc0 can't be the second, and
3856 	 one which uses any regs/memory set in between i2 and i3 can't
3857 	 be first.  */
3858       if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3859 			      DF_INSN_LUID (i2))
3860 #ifdef HAVE_cc0
3861 	  && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3862 #endif
3863 	 )
3864 	{
3865 	  newi2pat = XVECEXP (newpat, 0, 1);
3866 	  newpat = XVECEXP (newpat, 0, 0);
3867 	}
3868       else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3869 				   DF_INSN_LUID (i2))
3870 #ifdef HAVE_cc0
3871 	       && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3872 #endif
3873 	      )
3874 	{
3875 	  newi2pat = XVECEXP (newpat, 0, 0);
3876 	  newpat = XVECEXP (newpat, 0, 1);
3877 	}
3878       else
3879 	{
3880 	  undo_all ();
3881 	  return 0;
3882 	}
3883 
3884       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3885 
3886       if (i2_code_number >= 0)
3887 	{
3888 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3889 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3890 	  if (GET_CODE (newi2pat) == PARALLEL)
3891 	    {
3892 	      for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3893 		if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3894 		  {
3895 		    rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3896 		    if (reg_overlap_mentioned_p (reg, newpat))
3897 		      {
3898 			undo_all ();
3899 			return 0;
3900 		      }
3901 		  }
3902 	    }
3903 
3904 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3905 	}
3906     }
3907 
3908   /* If it still isn't recognized, fail and change things back the way they
3909      were.  */
3910   if ((insn_code_number < 0
3911        /* Is the result a reasonable ASM_OPERANDS?  */
3912        && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3913     {
3914       undo_all ();
3915       return 0;
3916     }
3917 
3918   /* If we had to change another insn, make sure it is valid also.  */
3919   if (undobuf.other_insn)
3920     {
3921       CLEAR_HARD_REG_SET (newpat_used_regs);
3922 
3923       other_pat = PATTERN (undobuf.other_insn);
3924       other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3925 					     &new_other_notes);
3926 
3927       if (other_code_number < 0 && ! check_asm_operands (other_pat))
3928 	{
3929 	  undo_all ();
3930 	  return 0;
3931 	}
3932     }
3933 
3934 #ifdef HAVE_cc0
3935   /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3936      they are adjacent to each other or not.  */
3937   {
3938     rtx p = prev_nonnote_insn (i3);
3939     if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3940 	&& sets_cc0_p (newi2pat))
3941       {
3942 	undo_all ();
3943 	return 0;
3944       }
3945   }
3946 #endif
3947 
3948   /* Only allow this combination if insn_rtx_costs reports that the
3949      replacement instructions are cheaper than the originals.  */
3950   if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3951     {
3952       undo_all ();
3953       return 0;
3954     }
3955 
3956   if (MAY_HAVE_DEBUG_INSNS)
3957     {
3958       struct undo *undo;
3959 
3960       for (undo = undobuf.undos; undo; undo = undo->next)
3961 	if (undo->kind == UNDO_MODE)
3962 	  {
3963 	    rtx reg = *undo->where.r;
3964 	    enum machine_mode new_mode = GET_MODE (reg);
3965 	    enum machine_mode old_mode = undo->old_contents.m;
3966 
3967 	    /* Temporarily revert mode back.  */
3968 	    adjust_reg_mode (reg, old_mode);
3969 
3970 	    if (reg == i2dest && i2scratch)
3971 	      {
3972 		/* If we used i2dest as a scratch register with a
3973 		   different mode, substitute it for the original
3974 		   i2src while its original mode is temporarily
3975 		   restored, and then clear i2scratch so that we don't
3976 		   do it again later.  */
3977 		propagate_for_debug (i2, last_combined_insn, reg, i2src);
3978 		i2scratch = false;
3979 		/* Put back the new mode.  */
3980 		adjust_reg_mode (reg, new_mode);
3981 	      }
3982 	    else
3983 	      {
3984 		rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3985 		rtx first, last;
3986 
3987 		if (reg == i2dest)
3988 		  {
3989 		    first = i2;
3990 		    last = last_combined_insn;
3991 		  }
3992 		else
3993 		  {
3994 		    first = i3;
3995 		    last = undobuf.other_insn;
3996 		    gcc_assert (last);
3997 		    if (DF_INSN_LUID (last)
3998 			< DF_INSN_LUID (last_combined_insn))
3999 		      last = last_combined_insn;
4000 		  }
4001 
4002 		/* We're dealing with a reg that changed mode but not
4003 		   meaning, so we want to turn it into a subreg for
4004 		   the new mode.  However, because of REG sharing and
4005 		   because its mode had already changed, we have to do
4006 		   it in two steps.  First, replace any debug uses of
4007 		   reg, with its original mode temporarily restored,
4008 		   with this copy we have created; then, replace the
4009 		   copy with the SUBREG of the original shared reg,
4010 		   once again changed to the new mode.  */
4011 		propagate_for_debug (first, last, reg, tempreg);
4012 		adjust_reg_mode (reg, new_mode);
4013 		propagate_for_debug (first, last, tempreg,
4014 				     lowpart_subreg (old_mode, reg, new_mode));
4015 	      }
4016 	  }
4017     }
4018 
4019   /* If we will be able to accept this, we have made a
4020      change to the destination of I3.  This requires us to
4021      do a few adjustments.  */
4022 
4023   if (changed_i3_dest)
4024     {
4025       PATTERN (i3) = newpat;
4026       adjust_for_new_dest (i3);
4027     }
4028 
4029   /* We now know that we can do this combination.  Merge the insns and
4030      update the status of registers and LOG_LINKS.  */
4031 
4032   if (undobuf.other_insn)
4033     {
4034       rtx note, next;
4035 
4036       PATTERN (undobuf.other_insn) = other_pat;
4037 
4038       /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
4039 	 are still valid.  Then add any non-duplicate notes added by
4040 	 recog_for_combine.  */
4041       for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4042 	{
4043 	  next = XEXP (note, 1);
4044 
4045 	  if (REG_NOTE_KIND (note) == REG_UNUSED
4046 	      && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
4047 	    remove_note (undobuf.other_insn, note);
4048 	}
4049 
4050       distribute_notes (new_other_notes, undobuf.other_insn,
4051 			undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
4052 			NULL_RTX);
4053     }
4054 
4055   if (swap_i2i3)
4056     {
4057       rtx insn;
4058       struct insn_link *link;
4059       rtx ni2dest;
4060 
4061       /* I3 now uses what used to be its destination and which is now
4062 	 I2's destination.  This requires us to do a few adjustments.  */
4063       PATTERN (i3) = newpat;
4064       adjust_for_new_dest (i3);
4065 
4066       /* We need a LOG_LINK from I3 to I2.  But we used to have one,
4067 	 so we still will.
4068 
4069 	 However, some later insn might be using I2's dest and have
4070 	 a LOG_LINK pointing at I3.  We must remove this link.
4071 	 The simplest way to remove the link is to point it at I1,
4072 	 which we know will be a NOTE.  */
4073 
4074       /* newi2pat is usually a SET here; however, recog_for_combine might
4075 	 have added some clobbers.  */
4076       if (GET_CODE (newi2pat) == PARALLEL)
4077 	ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4078       else
4079 	ni2dest = SET_DEST (newi2pat);
4080 
4081       for (insn = NEXT_INSN (i3);
4082 	   insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4083 		    || insn != BB_HEAD (this_basic_block->next_bb));
4084 	   insn = NEXT_INSN (insn))
4085 	{
4086 	  if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4087 	    {
4088 	      FOR_EACH_LOG_LINK (link, insn)
4089 		if (link->insn == i3)
4090 		  link->insn = i1;
4091 
4092 	      break;
4093 	    }
4094 	}
4095     }
4096 
4097   {
4098     rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4099     struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4100     rtx midnotes = 0;
4101     int from_luid;
4102     /* Compute which registers we expect to eliminate.  newi2pat may be setting
4103        either i3dest or i2dest, so we must check it.  Also, i1dest may be the
4104        same as i3dest, in which case newi2pat may be setting i1dest.  */
4105     rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4106 		   || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4107 		   || !i2dest_killed
4108 		   ? 0 : i2dest);
4109     rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4110 		   || (newi2pat && reg_set_p (i1dest, newi2pat))
4111 		   || !i1dest_killed
4112 		   ? 0 : i1dest);
4113     rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
4114 		   || (newi2pat && reg_set_p (i0dest, newi2pat))
4115 		   || !i0dest_killed
4116 		   ? 0 : i0dest);
4117 
4118     /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4119        clear them.  */
4120     i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4121     i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4122     if (i1)
4123       i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4124     if (i0)
4125       i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4126 
4127     /* Ensure that we do not have something that should not be shared but
4128        occurs multiple times in the new insns.  Check this by first
4129        resetting all the `used' flags and then copying anything is shared.  */
4130 
4131     reset_used_flags (i3notes);
4132     reset_used_flags (i2notes);
4133     reset_used_flags (i1notes);
4134     reset_used_flags (i0notes);
4135     reset_used_flags (newpat);
4136     reset_used_flags (newi2pat);
4137     if (undobuf.other_insn)
4138       reset_used_flags (PATTERN (undobuf.other_insn));
4139 
4140     i3notes = copy_rtx_if_shared (i3notes);
4141     i2notes = copy_rtx_if_shared (i2notes);
4142     i1notes = copy_rtx_if_shared (i1notes);
4143     i0notes = copy_rtx_if_shared (i0notes);
4144     newpat = copy_rtx_if_shared (newpat);
4145     newi2pat = copy_rtx_if_shared (newi2pat);
4146     if (undobuf.other_insn)
4147       reset_used_flags (PATTERN (undobuf.other_insn));
4148 
4149     INSN_CODE (i3) = insn_code_number;
4150     PATTERN (i3) = newpat;
4151 
4152     if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4153       {
4154 	rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4155 
4156 	reset_used_flags (call_usage);
4157 	call_usage = copy_rtx (call_usage);
4158 
4159 	if (substed_i2)
4160 	  {
4161 	    /* I2SRC must still be meaningful at this point.  Some splitting
4162 	       operations can invalidate I2SRC, but those operations do not
4163 	       apply to calls.  */
4164 	    gcc_assert (i2src);
4165 	    replace_rtx (call_usage, i2dest, i2src);
4166 	  }
4167 
4168 	if (substed_i1)
4169 	  replace_rtx (call_usage, i1dest, i1src);
4170 	if (substed_i0)
4171 	  replace_rtx (call_usage, i0dest, i0src);
4172 
4173 	CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4174       }
4175 
4176     if (undobuf.other_insn)
4177       INSN_CODE (undobuf.other_insn) = other_code_number;
4178 
4179     /* We had one special case above where I2 had more than one set and
4180        we replaced a destination of one of those sets with the destination
4181        of I3.  In that case, we have to update LOG_LINKS of insns later
4182        in this basic block.  Note that this (expensive) case is rare.
4183 
4184        Also, in this case, we must pretend that all REG_NOTEs for I2
4185        actually came from I3, so that REG_UNUSED notes from I2 will be
4186        properly handled.  */
4187 
4188     if (i3_subst_into_i2)
4189       {
4190 	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4191 	  if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4192 	       || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4193 	      && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4194 	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4195 	      && ! find_reg_note (i2, REG_UNUSED,
4196 				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4197 	    for (temp = NEXT_INSN (i2);
4198 		 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4199 			  || BB_HEAD (this_basic_block) != temp);
4200 		 temp = NEXT_INSN (temp))
4201 	      if (temp != i3 && INSN_P (temp))
4202 		FOR_EACH_LOG_LINK (link, temp)
4203 		  if (link->insn == i2)
4204 		    link->insn = i3;
4205 
4206 	if (i3notes)
4207 	  {
4208 	    rtx link = i3notes;
4209 	    while (XEXP (link, 1))
4210 	      link = XEXP (link, 1);
4211 	    XEXP (link, 1) = i2notes;
4212 	  }
4213 	else
4214 	  i3notes = i2notes;
4215 	i2notes = 0;
4216       }
4217 
4218     LOG_LINKS (i3) = NULL;
4219     REG_NOTES (i3) = 0;
4220     LOG_LINKS (i2) = NULL;
4221     REG_NOTES (i2) = 0;
4222 
4223     if (newi2pat)
4224       {
4225 	if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4226 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4227 	INSN_CODE (i2) = i2_code_number;
4228 	PATTERN (i2) = newi2pat;
4229       }
4230     else
4231       {
4232 	if (MAY_HAVE_DEBUG_INSNS && i2src)
4233 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4234 	SET_INSN_DELETED (i2);
4235       }
4236 
4237     if (i1)
4238       {
4239 	LOG_LINKS (i1) = NULL;
4240 	REG_NOTES (i1) = 0;
4241 	if (MAY_HAVE_DEBUG_INSNS)
4242 	  propagate_for_debug (i1, last_combined_insn, i1dest, i1src);
4243 	SET_INSN_DELETED (i1);
4244       }
4245 
4246     if (i0)
4247       {
4248 	LOG_LINKS (i0) = NULL;
4249 	REG_NOTES (i0) = 0;
4250 	if (MAY_HAVE_DEBUG_INSNS)
4251 	  propagate_for_debug (i0, last_combined_insn, i0dest, i0src);
4252 	SET_INSN_DELETED (i0);
4253       }
4254 
4255     /* Get death notes for everything that is now used in either I3 or
4256        I2 and used to die in a previous insn.  If we built two new
4257        patterns, move from I1 to I2 then I2 to I3 so that we get the
4258        proper movement on registers that I2 modifies.  */
4259 
4260     if (i0)
4261       from_luid = DF_INSN_LUID (i0);
4262     else if (i1)
4263       from_luid = DF_INSN_LUID (i1);
4264     else
4265       from_luid = DF_INSN_LUID (i2);
4266     if (newi2pat)
4267       move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4268     move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4269 
4270     /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
4271     if (i3notes)
4272       distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4273 			elim_i2, elim_i1, elim_i0);
4274     if (i2notes)
4275       distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4276 			elim_i2, elim_i1, elim_i0);
4277     if (i1notes)
4278       distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4279 			elim_i2, elim_i1, elim_i0);
4280     if (i0notes)
4281       distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4282 			elim_i2, elim_i1, elim_i0);
4283     if (midnotes)
4284       distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4285 			elim_i2, elim_i1, elim_i0);
4286 
4287     /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
4288        know these are REG_UNUSED and want them to go to the desired insn,
4289        so we always pass it as i3.  */
4290 
4291     if (newi2pat && new_i2_notes)
4292       distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4293 			NULL_RTX);
4294 
4295     if (new_i3_notes)
4296       distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4297 			NULL_RTX);
4298 
4299     /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
4300        put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
4301        I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
4302        in that case, it might delete I2.  Similarly for I2 and I1.
4303        Show an additional death due to the REG_DEAD note we make here.  If
4304        we discard it in distribute_notes, we will decrement it again.  */
4305 
4306     if (i3dest_killed)
4307       {
4308 	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4309 	  distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4310 					    NULL_RTX),
4311 			    NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4312 	else
4313 	  distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4314 					    NULL_RTX),
4315 			    NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4316 			    elim_i2, elim_i1, elim_i0);
4317       }
4318 
4319     if (i2dest_in_i2src)
4320       {
4321 	rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4322 	if (newi2pat && reg_set_p (i2dest, newi2pat))
4323 	  distribute_notes (new_note,  NULL_RTX, i2, NULL_RTX, NULL_RTX,
4324 			    NULL_RTX, NULL_RTX);
4325 	else
4326 	  distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4327 			    NULL_RTX, NULL_RTX, NULL_RTX);
4328       }
4329 
4330     if (i1dest_in_i1src)
4331       {
4332 	rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4333 	if (newi2pat && reg_set_p (i1dest, newi2pat))
4334 	  distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4335 			    NULL_RTX, NULL_RTX);
4336 	else
4337 	  distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4338 			    NULL_RTX, NULL_RTX, NULL_RTX);
4339       }
4340 
4341     if (i0dest_in_i0src)
4342       {
4343 	rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4344 	if (newi2pat && reg_set_p (i0dest, newi2pat))
4345 	  distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4346 			    NULL_RTX, NULL_RTX);
4347 	else
4348 	  distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4349 			    NULL_RTX, NULL_RTX, NULL_RTX);
4350       }
4351 
4352     distribute_links (i3links);
4353     distribute_links (i2links);
4354     distribute_links (i1links);
4355     distribute_links (i0links);
4356 
4357     if (REG_P (i2dest))
4358       {
4359 	struct insn_link *link;
4360 	rtx i2_insn = 0, i2_val = 0, set;
4361 
4362 	/* The insn that used to set this register doesn't exist, and
4363 	   this life of the register may not exist either.  See if one of
4364 	   I3's links points to an insn that sets I2DEST.  If it does,
4365 	   that is now the last known value for I2DEST. If we don't update
4366 	   this and I2 set the register to a value that depended on its old
4367 	   contents, we will get confused.  If this insn is used, thing
4368 	   will be set correctly in combine_instructions.  */
4369 	FOR_EACH_LOG_LINK (link, i3)
4370 	  if ((set = single_set (link->insn)) != 0
4371 	      && rtx_equal_p (i2dest, SET_DEST (set)))
4372 	    i2_insn = link->insn, i2_val = SET_SRC (set);
4373 
4374 	record_value_for_reg (i2dest, i2_insn, i2_val);
4375 
4376 	/* If the reg formerly set in I2 died only once and that was in I3,
4377 	   zero its use count so it won't make `reload' do any work.  */
4378 	if (! added_sets_2
4379 	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4380 	    && ! i2dest_in_i2src)
4381 	  INC_REG_N_SETS (REGNO (i2dest), -1);
4382       }
4383 
4384     if (i1 && REG_P (i1dest))
4385       {
4386 	struct insn_link *link;
4387 	rtx i1_insn = 0, i1_val = 0, set;
4388 
4389 	FOR_EACH_LOG_LINK (link, i3)
4390 	  if ((set = single_set (link->insn)) != 0
4391 	      && rtx_equal_p (i1dest, SET_DEST (set)))
4392 	    i1_insn = link->insn, i1_val = SET_SRC (set);
4393 
4394 	record_value_for_reg (i1dest, i1_insn, i1_val);
4395 
4396 	if (! added_sets_1 && ! i1dest_in_i1src)
4397 	  INC_REG_N_SETS (REGNO (i1dest), -1);
4398       }
4399 
4400     if (i0 && REG_P (i0dest))
4401       {
4402 	struct insn_link *link;
4403 	rtx i0_insn = 0, i0_val = 0, set;
4404 
4405 	FOR_EACH_LOG_LINK (link, i3)
4406 	  if ((set = single_set (link->insn)) != 0
4407 	      && rtx_equal_p (i0dest, SET_DEST (set)))
4408 	    i0_insn = link->insn, i0_val = SET_SRC (set);
4409 
4410 	record_value_for_reg (i0dest, i0_insn, i0_val);
4411 
4412 	if (! added_sets_0 && ! i0dest_in_i0src)
4413 	  INC_REG_N_SETS (REGNO (i0dest), -1);
4414       }
4415 
4416     /* Update reg_stat[].nonzero_bits et al for any changes that may have
4417        been made to this insn.  The order of
4418        set_nonzero_bits_and_sign_copies() is important.  Because newi2pat
4419        can affect nonzero_bits of newpat */
4420     if (newi2pat)
4421       note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4422     note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4423   }
4424 
4425   if (undobuf.other_insn != NULL_RTX)
4426     {
4427       if (dump_file)
4428 	{
4429 	  fprintf (dump_file, "modifying other_insn ");
4430 	  dump_insn_slim (dump_file, undobuf.other_insn);
4431 	}
4432       df_insn_rescan (undobuf.other_insn);
4433     }
4434 
4435   if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4436     {
4437       if (dump_file)
4438 	{
4439 	  fprintf (dump_file, "modifying insn i1 ");
4440 	  dump_insn_slim (dump_file, i0);
4441 	}
4442       df_insn_rescan (i0);
4443     }
4444 
4445   if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4446     {
4447       if (dump_file)
4448 	{
4449 	  fprintf (dump_file, "modifying insn i1 ");
4450 	  dump_insn_slim (dump_file, i1);
4451 	}
4452       df_insn_rescan (i1);
4453     }
4454 
4455   if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4456     {
4457       if (dump_file)
4458 	{
4459 	  fprintf (dump_file, "modifying insn i2 ");
4460 	  dump_insn_slim (dump_file, i2);
4461 	}
4462       df_insn_rescan (i2);
4463     }
4464 
4465   if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4466     {
4467       if (dump_file)
4468 	{
4469 	  fprintf (dump_file, "modifying insn i3 ");
4470 	  dump_insn_slim (dump_file, i3);
4471 	}
4472       df_insn_rescan (i3);
4473     }
4474 
4475   /* Set new_direct_jump_p if a new return or simple jump instruction
4476      has been created.  Adjust the CFG accordingly.  */
4477 
4478   if (returnjump_p (i3) || any_uncondjump_p (i3))
4479     {
4480       *new_direct_jump_p = 1;
4481       mark_jump_label (PATTERN (i3), i3, 0);
4482       update_cfg_for_uncondjump (i3);
4483     }
4484 
4485   if (undobuf.other_insn != NULL_RTX
4486       && (returnjump_p (undobuf.other_insn)
4487 	  || any_uncondjump_p (undobuf.other_insn)))
4488     {
4489       *new_direct_jump_p = 1;
4490       update_cfg_for_uncondjump (undobuf.other_insn);
4491     }
4492 
4493   /* A noop might also need cleaning up of CFG, if it comes from the
4494      simplification of a jump.  */
4495   if (JUMP_P (i3)
4496       && GET_CODE (newpat) == SET
4497       && SET_SRC (newpat) == pc_rtx
4498       && SET_DEST (newpat) == pc_rtx)
4499     {
4500       *new_direct_jump_p = 1;
4501       update_cfg_for_uncondjump (i3);
4502     }
4503 
4504   if (undobuf.other_insn != NULL_RTX
4505       && JUMP_P (undobuf.other_insn)
4506       && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4507       && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4508       && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4509     {
4510       *new_direct_jump_p = 1;
4511       update_cfg_for_uncondjump (undobuf.other_insn);
4512     }
4513 
4514   combine_successes++;
4515   undo_commit ();
4516 
4517   if (added_links_insn
4518       && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4519       && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4520     return added_links_insn;
4521   else
4522     return newi2pat ? i2 : i3;
4523 }
4524 
4525 /* Undo all the modifications recorded in undobuf.  */
4526 
4527 static void
4528 undo_all (void)
4529 {
4530   struct undo *undo, *next;
4531 
4532   for (undo = undobuf.undos; undo; undo = next)
4533     {
4534       next = undo->next;
4535       switch (undo->kind)
4536 	{
4537 	case UNDO_RTX:
4538 	  *undo->where.r = undo->old_contents.r;
4539 	  break;
4540 	case UNDO_INT:
4541 	  *undo->where.i = undo->old_contents.i;
4542 	  break;
4543 	case UNDO_MODE:
4544 	  adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4545 	  break;
4546 	case UNDO_LINKS:
4547 	  *undo->where.l = undo->old_contents.l;
4548 	  break;
4549 	default:
4550 	  gcc_unreachable ();
4551 	}
4552 
4553       undo->next = undobuf.frees;
4554       undobuf.frees = undo;
4555     }
4556 
4557   undobuf.undos = 0;
4558 }
4559 
4560 /* We've committed to accepting the changes we made.  Move all
4561    of the undos to the free list.  */
4562 
4563 static void
4564 undo_commit (void)
4565 {
4566   struct undo *undo, *next;
4567 
4568   for (undo = undobuf.undos; undo; undo = next)
4569     {
4570       next = undo->next;
4571       undo->next = undobuf.frees;
4572       undobuf.frees = undo;
4573     }
4574   undobuf.undos = 0;
4575 }
4576 
4577 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4578    where we have an arithmetic expression and return that point.  LOC will
4579    be inside INSN.
4580 
4581    try_combine will call this function to see if an insn can be split into
4582    two insns.  */
4583 
4584 static rtx *
4585 find_split_point (rtx *loc, rtx insn, bool set_src)
4586 {
4587   rtx x = *loc;
4588   enum rtx_code code = GET_CODE (x);
4589   rtx *split;
4590   unsigned HOST_WIDE_INT len = 0;
4591   HOST_WIDE_INT pos = 0;
4592   int unsignedp = 0;
4593   rtx inner = NULL_RTX;
4594 
4595   /* First special-case some codes.  */
4596   switch (code)
4597     {
4598     case SUBREG:
4599 #ifdef INSN_SCHEDULING
4600       /* If we are making a paradoxical SUBREG invalid, it becomes a split
4601 	 point.  */
4602       if (MEM_P (SUBREG_REG (x)))
4603 	return loc;
4604 #endif
4605       return find_split_point (&SUBREG_REG (x), insn, false);
4606 
4607     case MEM:
4608 #ifdef HAVE_lo_sum
4609       /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4610 	 using LO_SUM and HIGH.  */
4611       if (GET_CODE (XEXP (x, 0)) == CONST
4612 	  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4613 	{
4614 	  enum machine_mode address_mode
4615 	    = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4616 
4617 	  SUBST (XEXP (x, 0),
4618 		 gen_rtx_LO_SUM (address_mode,
4619 				 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4620 				 XEXP (x, 0)));
4621 	  return &XEXP (XEXP (x, 0), 0);
4622 	}
4623 #endif
4624 
4625       /* If we have a PLUS whose second operand is a constant and the
4626 	 address is not valid, perhaps will can split it up using
4627 	 the machine-specific way to split large constants.  We use
4628 	 the first pseudo-reg (one of the virtual regs) as a placeholder;
4629 	 it will not remain in the result.  */
4630       if (GET_CODE (XEXP (x, 0)) == PLUS
4631 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4632 	  && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4633 					    MEM_ADDR_SPACE (x)))
4634 	{
4635 	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4636 	  rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4637 						      XEXP (x, 0)),
4638 					 subst_insn);
4639 
4640 	  /* This should have produced two insns, each of which sets our
4641 	     placeholder.  If the source of the second is a valid address,
4642 	     we can make put both sources together and make a split point
4643 	     in the middle.  */
4644 
4645 	  if (seq
4646 	      && NEXT_INSN (seq) != NULL_RTX
4647 	      && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4648 	      && NONJUMP_INSN_P (seq)
4649 	      && GET_CODE (PATTERN (seq)) == SET
4650 	      && SET_DEST (PATTERN (seq)) == reg
4651 	      && ! reg_mentioned_p (reg,
4652 				    SET_SRC (PATTERN (seq)))
4653 	      && NONJUMP_INSN_P (NEXT_INSN (seq))
4654 	      && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4655 	      && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4656 	      && memory_address_addr_space_p
4657 		   (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4658 		    MEM_ADDR_SPACE (x)))
4659 	    {
4660 	      rtx src1 = SET_SRC (PATTERN (seq));
4661 	      rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4662 
4663 	      /* Replace the placeholder in SRC2 with SRC1.  If we can
4664 		 find where in SRC2 it was placed, that can become our
4665 		 split point and we can replace this address with SRC2.
4666 		 Just try two obvious places.  */
4667 
4668 	      src2 = replace_rtx (src2, reg, src1);
4669 	      split = 0;
4670 	      if (XEXP (src2, 0) == src1)
4671 		split = &XEXP (src2, 0);
4672 	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4673 		       && XEXP (XEXP (src2, 0), 0) == src1)
4674 		split = &XEXP (XEXP (src2, 0), 0);
4675 
4676 	      if (split)
4677 		{
4678 		  SUBST (XEXP (x, 0), src2);
4679 		  return split;
4680 		}
4681 	    }
4682 
4683 	  /* If that didn't work, perhaps the first operand is complex and
4684 	     needs to be computed separately, so make a split point there.
4685 	     This will occur on machines that just support REG + CONST
4686 	     and have a constant moved through some previous computation.  */
4687 
4688 	  else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4689 		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4690 			 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4691 	    return &XEXP (XEXP (x, 0), 0);
4692 	}
4693 
4694       /* If we have a PLUS whose first operand is complex, try computing it
4695          separately by making a split there.  */
4696       if (GET_CODE (XEXP (x, 0)) == PLUS
4697           && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4698 					    MEM_ADDR_SPACE (x))
4699           && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4700           && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4701                 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4702         return &XEXP (XEXP (x, 0), 0);
4703       break;
4704 
4705     case SET:
4706 #ifdef HAVE_cc0
4707       /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4708 	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4709 	 we need to put the operand into a register.  So split at that
4710 	 point.  */
4711 
4712       if (SET_DEST (x) == cc0_rtx
4713 	  && GET_CODE (SET_SRC (x)) != COMPARE
4714 	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4715 	  && !OBJECT_P (SET_SRC (x))
4716 	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
4717 		&& OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4718 	return &SET_SRC (x);
4719 #endif
4720 
4721       /* See if we can split SET_SRC as it stands.  */
4722       split = find_split_point (&SET_SRC (x), insn, true);
4723       if (split && split != &SET_SRC (x))
4724 	return split;
4725 
4726       /* See if we can split SET_DEST as it stands.  */
4727       split = find_split_point (&SET_DEST (x), insn, false);
4728       if (split && split != &SET_DEST (x))
4729 	return split;
4730 
4731       /* See if this is a bitfield assignment with everything constant.  If
4732 	 so, this is an IOR of an AND, so split it into that.  */
4733       if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4734 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4735 	  && CONST_INT_P (XEXP (SET_DEST (x), 1))
4736 	  && CONST_INT_P (XEXP (SET_DEST (x), 2))
4737 	  && CONST_INT_P (SET_SRC (x))
4738 	  && ((INTVAL (XEXP (SET_DEST (x), 1))
4739 	       + INTVAL (XEXP (SET_DEST (x), 2)))
4740 	      <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4741 	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4742 	{
4743 	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4744 	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4745 	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4746 	  rtx dest = XEXP (SET_DEST (x), 0);
4747 	  enum machine_mode mode = GET_MODE (dest);
4748 	  unsigned HOST_WIDE_INT mask
4749 	    = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4750 	  rtx or_mask;
4751 
4752 	  if (BITS_BIG_ENDIAN)
4753 	    pos = GET_MODE_PRECISION (mode) - len - pos;
4754 
4755 	  or_mask = gen_int_mode (src << pos, mode);
4756 	  if (src == mask)
4757 	    SUBST (SET_SRC (x),
4758 		   simplify_gen_binary (IOR, mode, dest, or_mask));
4759 	  else
4760 	    {
4761 	      rtx negmask = gen_int_mode (~(mask << pos), mode);
4762 	      SUBST (SET_SRC (x),
4763 		     simplify_gen_binary (IOR, mode,
4764 					  simplify_gen_binary (AND, mode,
4765 							       dest, negmask),
4766 					  or_mask));
4767 	    }
4768 
4769 	  SUBST (SET_DEST (x), dest);
4770 
4771 	  split = find_split_point (&SET_SRC (x), insn, true);
4772 	  if (split && split != &SET_SRC (x))
4773 	    return split;
4774 	}
4775 
4776       /* Otherwise, see if this is an operation that we can split into two.
4777 	 If so, try to split that.  */
4778       code = GET_CODE (SET_SRC (x));
4779 
4780       switch (code)
4781 	{
4782 	case AND:
4783 	  /* If we are AND'ing with a large constant that is only a single
4784 	     bit and the result is only being used in a context where we
4785 	     need to know if it is zero or nonzero, replace it with a bit
4786 	     extraction.  This will avoid the large constant, which might
4787 	     have taken more than one insn to make.  If the constant were
4788 	     not a valid argument to the AND but took only one insn to make,
4789 	     this is no worse, but if it took more than one insn, it will
4790 	     be better.  */
4791 
4792 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4793 	      && REG_P (XEXP (SET_SRC (x), 0))
4794 	      && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4795 	      && REG_P (SET_DEST (x))
4796 	      && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4797 	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4798 	      && XEXP (*split, 0) == SET_DEST (x)
4799 	      && XEXP (*split, 1) == const0_rtx)
4800 	    {
4801 	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4802 						XEXP (SET_SRC (x), 0),
4803 						pos, NULL_RTX, 1, 1, 0, 0);
4804 	      if (extraction != 0)
4805 		{
4806 		  SUBST (SET_SRC (x), extraction);
4807 		  return find_split_point (loc, insn, false);
4808 		}
4809 	    }
4810 	  break;
4811 
4812 	case NE:
4813 	  /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4814 	     is known to be on, this can be converted into a NEG of a shift.  */
4815 	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4816 	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4817 	      && 1 <= (pos = exact_log2
4818 		       (nonzero_bits (XEXP (SET_SRC (x), 0),
4819 				      GET_MODE (XEXP (SET_SRC (x), 0))))))
4820 	    {
4821 	      enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4822 
4823 	      SUBST (SET_SRC (x),
4824 		     gen_rtx_NEG (mode,
4825 				  gen_rtx_LSHIFTRT (mode,
4826 						    XEXP (SET_SRC (x), 0),
4827 						    GEN_INT (pos))));
4828 
4829 	      split = find_split_point (&SET_SRC (x), insn, true);
4830 	      if (split && split != &SET_SRC (x))
4831 		return split;
4832 	    }
4833 	  break;
4834 
4835 	case SIGN_EXTEND:
4836 	  inner = XEXP (SET_SRC (x), 0);
4837 
4838 	  /* We can't optimize if either mode is a partial integer
4839 	     mode as we don't know how many bits are significant
4840 	     in those modes.  */
4841 	  if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4842 	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4843 	    break;
4844 
4845 	  pos = 0;
4846 	  len = GET_MODE_PRECISION (GET_MODE (inner));
4847 	  unsignedp = 0;
4848 	  break;
4849 
4850 	case SIGN_EXTRACT:
4851 	case ZERO_EXTRACT:
4852 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4853 	      && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4854 	    {
4855 	      inner = XEXP (SET_SRC (x), 0);
4856 	      len = INTVAL (XEXP (SET_SRC (x), 1));
4857 	      pos = INTVAL (XEXP (SET_SRC (x), 2));
4858 
4859 	      if (BITS_BIG_ENDIAN)
4860 		pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4861 	      unsignedp = (code == ZERO_EXTRACT);
4862 	    }
4863 	  break;
4864 
4865 	default:
4866 	  break;
4867 	}
4868 
4869       if (len && pos >= 0
4870 	  && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4871 	{
4872 	  enum machine_mode mode = GET_MODE (SET_SRC (x));
4873 
4874 	  /* For unsigned, we have a choice of a shift followed by an
4875 	     AND or two shifts.  Use two shifts for field sizes where the
4876 	     constant might be too large.  We assume here that we can
4877 	     always at least get 8-bit constants in an AND insn, which is
4878 	     true for every current RISC.  */
4879 
4880 	  if (unsignedp && len <= 8)
4881 	    {
4882 	      SUBST (SET_SRC (x),
4883 		     gen_rtx_AND (mode,
4884 				  gen_rtx_LSHIFTRT
4885 				  (mode, gen_lowpart (mode, inner),
4886 				   GEN_INT (pos)),
4887 				  GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4888 					   - 1)));
4889 
4890 	      split = find_split_point (&SET_SRC (x), insn, true);
4891 	      if (split && split != &SET_SRC (x))
4892 		return split;
4893 	    }
4894 	  else
4895 	    {
4896 	      SUBST (SET_SRC (x),
4897 		     gen_rtx_fmt_ee
4898 		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4899 		      gen_rtx_ASHIFT (mode,
4900 				      gen_lowpart (mode, inner),
4901 				      GEN_INT (GET_MODE_PRECISION (mode)
4902 					       - len - pos)),
4903 		      GEN_INT (GET_MODE_PRECISION (mode) - len)));
4904 
4905 	      split = find_split_point (&SET_SRC (x), insn, true);
4906 	      if (split && split != &SET_SRC (x))
4907 		return split;
4908 	    }
4909 	}
4910 
4911       /* See if this is a simple operation with a constant as the second
4912 	 operand.  It might be that this constant is out of range and hence
4913 	 could be used as a split point.  */
4914       if (BINARY_P (SET_SRC (x))
4915 	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
4916 	  && (OBJECT_P (XEXP (SET_SRC (x), 0))
4917 	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4918 		  && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4919 	return &XEXP (SET_SRC (x), 1);
4920 
4921       /* Finally, see if this is a simple operation with its first operand
4922 	 not in a register.  The operation might require this operand in a
4923 	 register, so return it as a split point.  We can always do this
4924 	 because if the first operand were another operation, we would have
4925 	 already found it as a split point.  */
4926       if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4927 	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4928 	return &XEXP (SET_SRC (x), 0);
4929 
4930       return 0;
4931 
4932     case AND:
4933     case IOR:
4934       /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4935 	 it is better to write this as (not (ior A B)) so we can split it.
4936 	 Similarly for IOR.  */
4937       if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4938 	{
4939 	  SUBST (*loc,
4940 		 gen_rtx_NOT (GET_MODE (x),
4941 			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4942 					      GET_MODE (x),
4943 					      XEXP (XEXP (x, 0), 0),
4944 					      XEXP (XEXP (x, 1), 0))));
4945 	  return find_split_point (loc, insn, set_src);
4946 	}
4947 
4948       /* Many RISC machines have a large set of logical insns.  If the
4949 	 second operand is a NOT, put it first so we will try to split the
4950 	 other operand first.  */
4951       if (GET_CODE (XEXP (x, 1)) == NOT)
4952 	{
4953 	  rtx tem = XEXP (x, 0);
4954 	  SUBST (XEXP (x, 0), XEXP (x, 1));
4955 	  SUBST (XEXP (x, 1), tem);
4956 	}
4957       break;
4958 
4959     case PLUS:
4960     case MINUS:
4961       /* Canonicalization can produce (minus A (mult B C)), where C is a
4962 	 constant.  It may be better to try splitting (plus (mult B -C) A)
4963 	 instead if this isn't a multiply by a power of two.  */
4964       if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4965 	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4966 	  && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4967 	{
4968 	  enum machine_mode mode = GET_MODE (x);
4969 	  unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4970 	  HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4971 	  SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4972 							 XEXP (XEXP (x, 1), 0),
4973 							 GEN_INT (other_int)),
4974 				     XEXP (x, 0)));
4975 	  return find_split_point (loc, insn, set_src);
4976 	}
4977 
4978       /* Split at a multiply-accumulate instruction.  However if this is
4979          the SET_SRC, we likely do not have such an instruction and it's
4980          worthless to try this split.  */
4981       if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4982         return loc;
4983 
4984     default:
4985       break;
4986     }
4987 
4988   /* Otherwise, select our actions depending on our rtx class.  */
4989   switch (GET_RTX_CLASS (code))
4990     {
4991     case RTX_BITFIELD_OPS:		/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
4992     case RTX_TERNARY:
4993       split = find_split_point (&XEXP (x, 2), insn, false);
4994       if (split)
4995 	return split;
4996       /* ... fall through ...  */
4997     case RTX_BIN_ARITH:
4998     case RTX_COMM_ARITH:
4999     case RTX_COMPARE:
5000     case RTX_COMM_COMPARE:
5001       split = find_split_point (&XEXP (x, 1), insn, false);
5002       if (split)
5003 	return split;
5004       /* ... fall through ...  */
5005     case RTX_UNARY:
5006       /* Some machines have (and (shift ...) ...) insns.  If X is not
5007 	 an AND, but XEXP (X, 0) is, use it as our split point.  */
5008       if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5009 	return &XEXP (x, 0);
5010 
5011       split = find_split_point (&XEXP (x, 0), insn, false);
5012       if (split)
5013 	return split;
5014       return loc;
5015 
5016     default:
5017       /* Otherwise, we don't have a split point.  */
5018       return 0;
5019     }
5020 }
5021 
5022 /* Throughout X, replace FROM with TO, and return the result.
5023    The result is TO if X is FROM;
5024    otherwise the result is X, but its contents may have been modified.
5025    If they were modified, a record was made in undobuf so that
5026    undo_all will (among other things) return X to its original state.
5027 
5028    If the number of changes necessary is too much to record to undo,
5029    the excess changes are not made, so the result is invalid.
5030    The changes already made can still be undone.
5031    undobuf.num_undo is incremented for such changes, so by testing that
5032    the caller can tell whether the result is valid.
5033 
5034    `n_occurrences' is incremented each time FROM is replaced.
5035 
5036    IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5037 
5038    IN_COND is nonzero if we are at the top level of a condition.
5039 
5040    UNIQUE_COPY is nonzero if each substitution must be unique.  We do this
5041    by copying if `n_occurrences' is nonzero.  */
5042 
5043 static rtx
5044 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5045 {
5046   enum rtx_code code = GET_CODE (x);
5047   enum machine_mode op0_mode = VOIDmode;
5048   const char *fmt;
5049   int len, i;
5050   rtx new_rtx;
5051 
5052 /* Two expressions are equal if they are identical copies of a shared
5053    RTX or if they are both registers with the same register number
5054    and mode.  */
5055 
5056 #define COMBINE_RTX_EQUAL_P(X,Y)			\
5057   ((X) == (Y)						\
5058    || (REG_P (X) && REG_P (Y)	\
5059        && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5060 
5061   if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5062     {
5063       n_occurrences++;
5064       return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5065     }
5066 
5067   /* If X and FROM are the same register but different modes, they
5068      will not have been seen as equal above.  However, the log links code
5069      will make a LOG_LINKS entry for that case.  If we do nothing, we
5070      will try to rerecognize our original insn and, when it succeeds,
5071      we will delete the feeding insn, which is incorrect.
5072 
5073      So force this insn not to match in this (rare) case.  */
5074   if (! in_dest && code == REG && REG_P (from)
5075       && reg_overlap_mentioned_p (x, from))
5076     return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5077 
5078   /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5079      of which may contain things that can be combined.  */
5080   if (code != MEM && code != LO_SUM && OBJECT_P (x))
5081     return x;
5082 
5083   /* It is possible to have a subexpression appear twice in the insn.
5084      Suppose that FROM is a register that appears within TO.
5085      Then, after that subexpression has been scanned once by `subst',
5086      the second time it is scanned, TO may be found.  If we were
5087      to scan TO here, we would find FROM within it and create a
5088      self-referent rtl structure which is completely wrong.  */
5089   if (COMBINE_RTX_EQUAL_P (x, to))
5090     return to;
5091 
5092   /* Parallel asm_operands need special attention because all of the
5093      inputs are shared across the arms.  Furthermore, unsharing the
5094      rtl results in recognition failures.  Failure to handle this case
5095      specially can result in circular rtl.
5096 
5097      Solve this by doing a normal pass across the first entry of the
5098      parallel, and only processing the SET_DESTs of the subsequent
5099      entries.  Ug.  */
5100 
5101   if (code == PARALLEL
5102       && GET_CODE (XVECEXP (x, 0, 0)) == SET
5103       && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5104     {
5105       new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5106 
5107       /* If this substitution failed, this whole thing fails.  */
5108       if (GET_CODE (new_rtx) == CLOBBER
5109 	  && XEXP (new_rtx, 0) == const0_rtx)
5110 	return new_rtx;
5111 
5112       SUBST (XVECEXP (x, 0, 0), new_rtx);
5113 
5114       for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5115 	{
5116 	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
5117 
5118 	  if (!REG_P (dest)
5119 	      && GET_CODE (dest) != CC0
5120 	      && GET_CODE (dest) != PC)
5121 	    {
5122 	      new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5123 
5124 	      /* If this substitution failed, this whole thing fails.  */
5125 	      if (GET_CODE (new_rtx) == CLOBBER
5126 		  && XEXP (new_rtx, 0) == const0_rtx)
5127 		return new_rtx;
5128 
5129 	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5130 	    }
5131 	}
5132     }
5133   else
5134     {
5135       len = GET_RTX_LENGTH (code);
5136       fmt = GET_RTX_FORMAT (code);
5137 
5138       /* We don't need to process a SET_DEST that is a register, CC0,
5139 	 or PC, so set up to skip this common case.  All other cases
5140 	 where we want to suppress replacing something inside a
5141 	 SET_SRC are handled via the IN_DEST operand.  */
5142       if (code == SET
5143 	  && (REG_P (SET_DEST (x))
5144 	      || GET_CODE (SET_DEST (x)) == CC0
5145 	      || GET_CODE (SET_DEST (x)) == PC))
5146 	fmt = "ie";
5147 
5148       /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5149 	 constant.  */
5150       if (fmt[0] == 'e')
5151 	op0_mode = GET_MODE (XEXP (x, 0));
5152 
5153       for (i = 0; i < len; i++)
5154 	{
5155 	  if (fmt[i] == 'E')
5156 	    {
5157 	      int j;
5158 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5159 		{
5160 		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5161 		    {
5162 		      new_rtx = (unique_copy && n_occurrences
5163 			     ? copy_rtx (to) : to);
5164 		      n_occurrences++;
5165 		    }
5166 		  else
5167 		    {
5168 		      new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5169 				       unique_copy);
5170 
5171 		      /* If this substitution failed, this whole thing
5172 			 fails.  */
5173 		      if (GET_CODE (new_rtx) == CLOBBER
5174 			  && XEXP (new_rtx, 0) == const0_rtx)
5175 			return new_rtx;
5176 		    }
5177 
5178 		  SUBST (XVECEXP (x, i, j), new_rtx);
5179 		}
5180 	    }
5181 	  else if (fmt[i] == 'e')
5182 	    {
5183 	      /* If this is a register being set, ignore it.  */
5184 	      new_rtx = XEXP (x, i);
5185 	      if (in_dest
5186 		  && i == 0
5187 		  && (((code == SUBREG || code == ZERO_EXTRACT)
5188 		       && REG_P (new_rtx))
5189 		      || code == STRICT_LOW_PART))
5190 		;
5191 
5192 	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5193 		{
5194 		  /* In general, don't install a subreg involving two
5195 		     modes not tieable.  It can worsen register
5196 		     allocation, and can even make invalid reload
5197 		     insns, since the reg inside may need to be copied
5198 		     from in the outside mode, and that may be invalid
5199 		     if it is an fp reg copied in integer mode.
5200 
5201 		     We allow two exceptions to this: It is valid if
5202 		     it is inside another SUBREG and the mode of that
5203 		     SUBREG and the mode of the inside of TO is
5204 		     tieable and it is valid if X is a SET that copies
5205 		     FROM to CC0.  */
5206 
5207 		  if (GET_CODE (to) == SUBREG
5208 		      && ! MODES_TIEABLE_P (GET_MODE (to),
5209 					    GET_MODE (SUBREG_REG (to)))
5210 		      && ! (code == SUBREG
5211 			    && MODES_TIEABLE_P (GET_MODE (x),
5212 						GET_MODE (SUBREG_REG (to))))
5213 #ifdef HAVE_cc0
5214 		      && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5215 #endif
5216 		      )
5217 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5218 
5219 #ifdef CANNOT_CHANGE_MODE_CLASS
5220 		  if (code == SUBREG
5221 		      && REG_P (to)
5222 		      && REGNO (to) < FIRST_PSEUDO_REGISTER
5223 		      && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5224 						   GET_MODE (to),
5225 						   GET_MODE (x)))
5226 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5227 #endif
5228 
5229 		  new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5230 		  n_occurrences++;
5231 		}
5232 	      else
5233 		/* If we are in a SET_DEST, suppress most cases unless we
5234 		   have gone inside a MEM, in which case we want to
5235 		   simplify the address.  We assume here that things that
5236 		   are actually part of the destination have their inner
5237 		   parts in the first expression.  This is true for SUBREG,
5238 		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5239 		   things aside from REG and MEM that should appear in a
5240 		   SET_DEST.  */
5241 		new_rtx = subst (XEXP (x, i), from, to,
5242 			     (((in_dest
5243 				&& (code == SUBREG || code == STRICT_LOW_PART
5244 				    || code == ZERO_EXTRACT))
5245 			       || code == SET)
5246 			      && i == 0),
5247 				 code == IF_THEN_ELSE && i == 0,
5248 				 unique_copy);
5249 
5250 	      /* If we found that we will have to reject this combination,
5251 		 indicate that by returning the CLOBBER ourselves, rather than
5252 		 an expression containing it.  This will speed things up as
5253 		 well as prevent accidents where two CLOBBERs are considered
5254 		 to be equal, thus producing an incorrect simplification.  */
5255 
5256 	      if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5257 		return new_rtx;
5258 
5259 	      if (GET_CODE (x) == SUBREG
5260 		  && (CONST_INT_P (new_rtx)
5261 		      || GET_CODE (new_rtx) == CONST_DOUBLE))
5262 		{
5263 		  enum machine_mode mode = GET_MODE (x);
5264 
5265 		  x = simplify_subreg (GET_MODE (x), new_rtx,
5266 				       GET_MODE (SUBREG_REG (x)),
5267 				       SUBREG_BYTE (x));
5268 		  if (! x)
5269 		    x = gen_rtx_CLOBBER (mode, const0_rtx);
5270 		}
5271 	      else if (CONST_INT_P (new_rtx)
5272 		       && GET_CODE (x) == ZERO_EXTEND)
5273 		{
5274 		  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5275 						new_rtx, GET_MODE (XEXP (x, 0)));
5276 		  gcc_assert (x);
5277 		}
5278 	      else
5279 		SUBST (XEXP (x, i), new_rtx);
5280 	    }
5281 	}
5282     }
5283 
5284   /* Check if we are loading something from the constant pool via float
5285      extension; in this case we would undo compress_float_constant
5286      optimization and degenerate constant load to an immediate value.  */
5287   if (GET_CODE (x) == FLOAT_EXTEND
5288       && MEM_P (XEXP (x, 0))
5289       && MEM_READONLY_P (XEXP (x, 0)))
5290     {
5291       rtx tmp = avoid_constant_pool_reference (x);
5292       if (x != tmp)
5293         return x;
5294     }
5295 
5296   /* Try to simplify X.  If the simplification changed the code, it is likely
5297      that further simplification will help, so loop, but limit the number
5298      of repetitions that will be performed.  */
5299 
5300   for (i = 0; i < 4; i++)
5301     {
5302       /* If X is sufficiently simple, don't bother trying to do anything
5303 	 with it.  */
5304       if (code != CONST_INT && code != REG && code != CLOBBER)
5305 	x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5306 
5307       if (GET_CODE (x) == code)
5308 	break;
5309 
5310       code = GET_CODE (x);
5311 
5312       /* We no longer know the original mode of operand 0 since we
5313 	 have changed the form of X)  */
5314       op0_mode = VOIDmode;
5315     }
5316 
5317   return x;
5318 }
5319 
5320 /* Simplify X, a piece of RTL.  We just operate on the expression at the
5321    outer level; call `subst' to simplify recursively.  Return the new
5322    expression.
5323 
5324    OP0_MODE is the original mode of XEXP (x, 0).  IN_DEST is nonzero
5325    if we are inside a SET_DEST.  IN_COND is nonzero if we are at the top level
5326    of a condition.  */
5327 
5328 static rtx
5329 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5330 		      int in_cond)
5331 {
5332   enum rtx_code code = GET_CODE (x);
5333   enum machine_mode mode = GET_MODE (x);
5334   rtx temp;
5335   int i;
5336 
5337   /* If this is a commutative operation, put a constant last and a complex
5338      expression first.  We don't need to do this for comparisons here.  */
5339   if (COMMUTATIVE_ARITH_P (x)
5340       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5341     {
5342       temp = XEXP (x, 0);
5343       SUBST (XEXP (x, 0), XEXP (x, 1));
5344       SUBST (XEXP (x, 1), temp);
5345     }
5346 
5347   /* If this is a simple operation applied to an IF_THEN_ELSE, try
5348      applying it to the arms of the IF_THEN_ELSE.  This often simplifies
5349      things.  Check for cases where both arms are testing the same
5350      condition.
5351 
5352      Don't do anything if all operands are very simple.  */
5353 
5354   if ((BINARY_P (x)
5355        && ((!OBJECT_P (XEXP (x, 0))
5356 	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5357 		  && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5358 	   || (!OBJECT_P (XEXP (x, 1))
5359 	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5360 		     && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5361       || (UNARY_P (x)
5362 	  && (!OBJECT_P (XEXP (x, 0))
5363 	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5364 		     && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5365     {
5366       rtx cond, true_rtx, false_rtx;
5367 
5368       cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5369       if (cond != 0
5370 	  /* If everything is a comparison, what we have is highly unlikely
5371 	     to be simpler, so don't use it.  */
5372 	  && ! (COMPARISON_P (x)
5373 		&& (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5374 	{
5375 	  rtx cop1 = const0_rtx;
5376 	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5377 
5378 	  if (cond_code == NE && COMPARISON_P (cond))
5379 	    return x;
5380 
5381 	  /* Simplify the alternative arms; this may collapse the true and
5382 	     false arms to store-flag values.  Be careful to use copy_rtx
5383 	     here since true_rtx or false_rtx might share RTL with x as a
5384 	     result of the if_then_else_cond call above.  */
5385 	  true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5386 	  false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5387 
5388 	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
5389 	     is unlikely to be simpler.  */
5390 	  if (general_operand (true_rtx, VOIDmode)
5391 	      && general_operand (false_rtx, VOIDmode))
5392 	    {
5393 	      enum rtx_code reversed;
5394 
5395 	      /* Restarting if we generate a store-flag expression will cause
5396 		 us to loop.  Just drop through in this case.  */
5397 
5398 	      /* If the result values are STORE_FLAG_VALUE and zero, we can
5399 		 just make the comparison operation.  */
5400 	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5401 		x = simplify_gen_relational (cond_code, mode, VOIDmode,
5402 					     cond, cop1);
5403 	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5404 		       && ((reversed = reversed_comparison_code_parts
5405 					(cond_code, cond, cop1, NULL))
5406 			   != UNKNOWN))
5407 		x = simplify_gen_relational (reversed, mode, VOIDmode,
5408 					     cond, cop1);
5409 
5410 	      /* Likewise, we can make the negate of a comparison operation
5411 		 if the result values are - STORE_FLAG_VALUE and zero.  */
5412 	      else if (CONST_INT_P (true_rtx)
5413 		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5414 		       && false_rtx == const0_rtx)
5415 		x = simplify_gen_unary (NEG, mode,
5416 					simplify_gen_relational (cond_code,
5417 								 mode, VOIDmode,
5418 								 cond, cop1),
5419 					mode);
5420 	      else if (CONST_INT_P (false_rtx)
5421 		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5422 		       && true_rtx == const0_rtx
5423 		       && ((reversed = reversed_comparison_code_parts
5424 					(cond_code, cond, cop1, NULL))
5425 			   != UNKNOWN))
5426 		x = simplify_gen_unary (NEG, mode,
5427 					simplify_gen_relational (reversed,
5428 								 mode, VOIDmode,
5429 								 cond, cop1),
5430 					mode);
5431 	      else
5432 		return gen_rtx_IF_THEN_ELSE (mode,
5433 					     simplify_gen_relational (cond_code,
5434 								      mode,
5435 								      VOIDmode,
5436 								      cond,
5437 								      cop1),
5438 					     true_rtx, false_rtx);
5439 
5440 	      code = GET_CODE (x);
5441 	      op0_mode = VOIDmode;
5442 	    }
5443 	}
5444     }
5445 
5446   /* Try to fold this expression in case we have constants that weren't
5447      present before.  */
5448   temp = 0;
5449   switch (GET_RTX_CLASS (code))
5450     {
5451     case RTX_UNARY:
5452       if (op0_mode == VOIDmode)
5453 	op0_mode = GET_MODE (XEXP (x, 0));
5454       temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5455       break;
5456     case RTX_COMPARE:
5457     case RTX_COMM_COMPARE:
5458       {
5459 	enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5460 	if (cmp_mode == VOIDmode)
5461 	  {
5462 	    cmp_mode = GET_MODE (XEXP (x, 1));
5463 	    if (cmp_mode == VOIDmode)
5464 	      cmp_mode = op0_mode;
5465 	  }
5466 	temp = simplify_relational_operation (code, mode, cmp_mode,
5467 					      XEXP (x, 0), XEXP (x, 1));
5468       }
5469       break;
5470     case RTX_COMM_ARITH:
5471     case RTX_BIN_ARITH:
5472       temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5473       break;
5474     case RTX_BITFIELD_OPS:
5475     case RTX_TERNARY:
5476       temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5477 					 XEXP (x, 1), XEXP (x, 2));
5478       break;
5479     default:
5480       break;
5481     }
5482 
5483   if (temp)
5484     {
5485       x = temp;
5486       code = GET_CODE (temp);
5487       op0_mode = VOIDmode;
5488       mode = GET_MODE (temp);
5489     }
5490 
5491   /* First see if we can apply the inverse distributive law.  */
5492   if (code == PLUS || code == MINUS
5493       || code == AND || code == IOR || code == XOR)
5494     {
5495       x = apply_distributive_law (x);
5496       code = GET_CODE (x);
5497       op0_mode = VOIDmode;
5498     }
5499 
5500   /* If CODE is an associative operation not otherwise handled, see if we
5501      can associate some operands.  This can win if they are constants or
5502      if they are logically related (i.e. (a & b) & a).  */
5503   if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5504        || code == AND || code == IOR || code == XOR
5505        || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5506       && ((INTEGRAL_MODE_P (mode) && code != DIV)
5507 	  || (flag_associative_math && FLOAT_MODE_P (mode))))
5508     {
5509       if (GET_CODE (XEXP (x, 0)) == code)
5510 	{
5511 	  rtx other = XEXP (XEXP (x, 0), 0);
5512 	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5513 	  rtx inner_op1 = XEXP (x, 1);
5514 	  rtx inner;
5515 
5516 	  /* Make sure we pass the constant operand if any as the second
5517 	     one if this is a commutative operation.  */
5518 	  if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5519 	    {
5520 	      rtx tem = inner_op0;
5521 	      inner_op0 = inner_op1;
5522 	      inner_op1 = tem;
5523 	    }
5524 	  inner = simplify_binary_operation (code == MINUS ? PLUS
5525 					     : code == DIV ? MULT
5526 					     : code,
5527 					     mode, inner_op0, inner_op1);
5528 
5529 	  /* For commutative operations, try the other pair if that one
5530 	     didn't simplify.  */
5531 	  if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5532 	    {
5533 	      other = XEXP (XEXP (x, 0), 1);
5534 	      inner = simplify_binary_operation (code, mode,
5535 						 XEXP (XEXP (x, 0), 0),
5536 						 XEXP (x, 1));
5537 	    }
5538 
5539 	  if (inner)
5540 	    return simplify_gen_binary (code, mode, other, inner);
5541 	}
5542     }
5543 
5544   /* A little bit of algebraic simplification here.  */
5545   switch (code)
5546     {
5547     case MEM:
5548       /* Ensure that our address has any ASHIFTs converted to MULT in case
5549 	 address-recognizing predicates are called later.  */
5550       temp = make_compound_operation (XEXP (x, 0), MEM);
5551       SUBST (XEXP (x, 0), temp);
5552       break;
5553 
5554     case SUBREG:
5555       if (op0_mode == VOIDmode)
5556 	op0_mode = GET_MODE (SUBREG_REG (x));
5557 
5558       /* See if this can be moved to simplify_subreg.  */
5559       if (CONSTANT_P (SUBREG_REG (x))
5560 	  && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5561 	     /* Don't call gen_lowpart if the inner mode
5562 		is VOIDmode and we cannot simplify it, as SUBREG without
5563 		inner mode is invalid.  */
5564 	  && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5565 	      || gen_lowpart_common (mode, SUBREG_REG (x))))
5566 	return gen_lowpart (mode, SUBREG_REG (x));
5567 
5568       if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5569 	break;
5570       {
5571 	rtx temp;
5572 	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5573 				SUBREG_BYTE (x));
5574 	if (temp)
5575 	  return temp;
5576       }
5577 
5578       /* Don't change the mode of the MEM if that would change the meaning
5579 	 of the address.  */
5580       if (MEM_P (SUBREG_REG (x))
5581 	  && (MEM_VOLATILE_P (SUBREG_REG (x))
5582 	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5583 	return gen_rtx_CLOBBER (mode, const0_rtx);
5584 
5585       /* Note that we cannot do any narrowing for non-constants since
5586 	 we might have been counting on using the fact that some bits were
5587 	 zero.  We now do this in the SET.  */
5588 
5589       break;
5590 
5591     case NEG:
5592       temp = expand_compound_operation (XEXP (x, 0));
5593 
5594       /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5595 	 replaced by (lshiftrt X C).  This will convert
5596 	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
5597 
5598       if (GET_CODE (temp) == ASHIFTRT
5599 	  && CONST_INT_P (XEXP (temp, 1))
5600 	  && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5601 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5602 				     INTVAL (XEXP (temp, 1)));
5603 
5604       /* If X has only a single bit that might be nonzero, say, bit I, convert
5605 	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5606 	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
5607 	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
5608 	 or a SUBREG of one since we'd be making the expression more
5609 	 complex if it was just a register.  */
5610 
5611       if (!REG_P (temp)
5612 	  && ! (GET_CODE (temp) == SUBREG
5613 		&& REG_P (SUBREG_REG (temp)))
5614 	  && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5615 	{
5616 	  rtx temp1 = simplify_shift_const
5617 	    (NULL_RTX, ASHIFTRT, mode,
5618 	     simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5619 				   GET_MODE_PRECISION (mode) - 1 - i),
5620 	     GET_MODE_PRECISION (mode) - 1 - i);
5621 
5622 	  /* If all we did was surround TEMP with the two shifts, we
5623 	     haven't improved anything, so don't use it.  Otherwise,
5624 	     we are better off with TEMP1.  */
5625 	  if (GET_CODE (temp1) != ASHIFTRT
5626 	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5627 	      || XEXP (XEXP (temp1, 0), 0) != temp)
5628 	    return temp1;
5629 	}
5630       break;
5631 
5632     case TRUNCATE:
5633       /* We can't handle truncation to a partial integer mode here
5634 	 because we don't know the real bitsize of the partial
5635 	 integer mode.  */
5636       if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5637 	break;
5638 
5639       if (HWI_COMPUTABLE_MODE_P (mode))
5640 	SUBST (XEXP (x, 0),
5641 	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5642 			      GET_MODE_MASK (mode), 0));
5643 
5644       /* We can truncate a constant value and return it.  */
5645       if (CONST_INT_P (XEXP (x, 0)))
5646 	return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5647 
5648       /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5649 	 whose value is a comparison can be replaced with a subreg if
5650 	 STORE_FLAG_VALUE permits.  */
5651       if (HWI_COMPUTABLE_MODE_P (mode)
5652 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5653 	  && (temp = get_last_value (XEXP (x, 0)))
5654 	  && COMPARISON_P (temp))
5655 	return gen_lowpart (mode, XEXP (x, 0));
5656       break;
5657 
5658     case CONST:
5659       /* (const (const X)) can become (const X).  Do it this way rather than
5660 	 returning the inner CONST since CONST can be shared with a
5661 	 REG_EQUAL note.  */
5662       if (GET_CODE (XEXP (x, 0)) == CONST)
5663 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5664       break;
5665 
5666 #ifdef HAVE_lo_sum
5667     case LO_SUM:
5668       /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
5669 	 can add in an offset.  find_split_point will split this address up
5670 	 again if it doesn't match.  */
5671       if (GET_CODE (XEXP (x, 0)) == HIGH
5672 	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5673 	return XEXP (x, 1);
5674       break;
5675 #endif
5676 
5677     case PLUS:
5678       /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5679 	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5680 	 bit-field and can be replaced by either a sign_extend or a
5681 	 sign_extract.  The `and' may be a zero_extend and the two
5682 	 <c>, -<c> constants may be reversed.  */
5683       if (GET_CODE (XEXP (x, 0)) == XOR
5684 	  && CONST_INT_P (XEXP (x, 1))
5685 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5686 	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5687 	  && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5688 	      || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5689 	  && HWI_COMPUTABLE_MODE_P (mode)
5690 	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5691 	       && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5692 	       && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5693 		   == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5694 	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5695 		  && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5696 		      == (unsigned int) i + 1))))
5697 	return simplify_shift_const
5698 	  (NULL_RTX, ASHIFTRT, mode,
5699 	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
5700 				 XEXP (XEXP (XEXP (x, 0), 0), 0),
5701 				 GET_MODE_PRECISION (mode) - (i + 1)),
5702 	   GET_MODE_PRECISION (mode) - (i + 1));
5703 
5704       /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5705 	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5706 	 the bitsize of the mode - 1.  This allows simplification of
5707 	 "a = (b & 8) == 0;"  */
5708       if (XEXP (x, 1) == constm1_rtx
5709 	  && !REG_P (XEXP (x, 0))
5710 	  && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5711 		&& REG_P (SUBREG_REG (XEXP (x, 0))))
5712 	  && nonzero_bits (XEXP (x, 0), mode) == 1)
5713 	return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5714 	   simplify_shift_const (NULL_RTX, ASHIFT, mode,
5715 				 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5716 				 GET_MODE_PRECISION (mode) - 1),
5717 	   GET_MODE_PRECISION (mode) - 1);
5718 
5719       /* If we are adding two things that have no bits in common, convert
5720 	 the addition into an IOR.  This will often be further simplified,
5721 	 for example in cases like ((a & 1) + (a & 2)), which can
5722 	 become a & 3.  */
5723 
5724       if (HWI_COMPUTABLE_MODE_P (mode)
5725 	  && (nonzero_bits (XEXP (x, 0), mode)
5726 	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
5727 	{
5728 	  /* Try to simplify the expression further.  */
5729 	  rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5730 	  temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5731 
5732 	  /* If we could, great.  If not, do not go ahead with the IOR
5733 	     replacement, since PLUS appears in many special purpose
5734 	     address arithmetic instructions.  */
5735 	  if (GET_CODE (temp) != CLOBBER
5736 	      && (GET_CODE (temp) != IOR
5737 		  || ((XEXP (temp, 0) != XEXP (x, 0)
5738 		       || XEXP (temp, 1) != XEXP (x, 1))
5739 		      && (XEXP (temp, 0) != XEXP (x, 1)
5740 			  || XEXP (temp, 1) != XEXP (x, 0)))))
5741 	    return temp;
5742 	}
5743       break;
5744 
5745     case MINUS:
5746       /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5747 	 (and <foo> (const_int pow2-1))  */
5748       if (GET_CODE (XEXP (x, 1)) == AND
5749 	  && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5750 	  && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5751 	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5752 	return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5753 				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5754       break;
5755 
5756     case MULT:
5757       /* If we have (mult (plus A B) C), apply the distributive law and then
5758 	 the inverse distributive law to see if things simplify.  This
5759 	 occurs mostly in addresses, often when unrolling loops.  */
5760 
5761       if (GET_CODE (XEXP (x, 0)) == PLUS)
5762 	{
5763 	  rtx result = distribute_and_simplify_rtx (x, 0);
5764 	  if (result)
5765 	    return result;
5766 	}
5767 
5768       /* Try simplify a*(b/c) as (a*b)/c.  */
5769       if (FLOAT_MODE_P (mode) && flag_associative_math
5770 	  && GET_CODE (XEXP (x, 0)) == DIV)
5771 	{
5772 	  rtx tem = simplify_binary_operation (MULT, mode,
5773 					       XEXP (XEXP (x, 0), 0),
5774 					       XEXP (x, 1));
5775 	  if (tem)
5776 	    return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5777 	}
5778       break;
5779 
5780     case UDIV:
5781       /* If this is a divide by a power of two, treat it as a shift if
5782 	 its first operand is a shift.  */
5783       if (CONST_INT_P (XEXP (x, 1))
5784 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5785 	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
5786 	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5787 	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5788 	      || GET_CODE (XEXP (x, 0)) == ROTATE
5789 	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
5790 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5791       break;
5792 
5793     case EQ:  case NE:
5794     case GT:  case GTU:  case GE:  case GEU:
5795     case LT:  case LTU:  case LE:  case LEU:
5796     case UNEQ:  case LTGT:
5797     case UNGT:  case UNGE:
5798     case UNLT:  case UNLE:
5799     case UNORDERED: case ORDERED:
5800       /* If the first operand is a condition code, we can't do anything
5801 	 with it.  */
5802       if (GET_CODE (XEXP (x, 0)) == COMPARE
5803 	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5804 	      && ! CC0_P (XEXP (x, 0))))
5805 	{
5806 	  rtx op0 = XEXP (x, 0);
5807 	  rtx op1 = XEXP (x, 1);
5808 	  enum rtx_code new_code;
5809 
5810 	  if (GET_CODE (op0) == COMPARE)
5811 	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5812 
5813 	  /* Simplify our comparison, if possible.  */
5814 	  new_code = simplify_comparison (code, &op0, &op1);
5815 
5816 	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5817 	     if only the low-order bit is possibly nonzero in X (such as when
5818 	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
5819 	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
5820 	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
5821 	     (plus X 1).
5822 
5823 	     Remove any ZERO_EXTRACT we made when thinking this was a
5824 	     comparison.  It may now be simpler to use, e.g., an AND.  If a
5825 	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
5826 	     the call to make_compound_operation in the SET case.
5827 
5828 	     Don't apply these optimizations if the caller would
5829 	     prefer a comparison rather than a value.
5830 	     E.g., for the condition in an IF_THEN_ELSE most targets need
5831 	     an explicit comparison.  */
5832 
5833 	  if (in_cond)
5834 	    ;
5835 
5836 	  else if (STORE_FLAG_VALUE == 1
5837 	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5838 	      && op1 == const0_rtx
5839 	      && mode == GET_MODE (op0)
5840 	      && nonzero_bits (op0, mode) == 1)
5841 	    return gen_lowpart (mode,
5842 				expand_compound_operation (op0));
5843 
5844 	  else if (STORE_FLAG_VALUE == 1
5845 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5846 		   && op1 == const0_rtx
5847 		   && mode == GET_MODE (op0)
5848 		   && (num_sign_bit_copies (op0, mode)
5849 		       == GET_MODE_PRECISION (mode)))
5850 	    {
5851 	      op0 = expand_compound_operation (op0);
5852 	      return simplify_gen_unary (NEG, mode,
5853 					 gen_lowpart (mode, op0),
5854 					 mode);
5855 	    }
5856 
5857 	  else if (STORE_FLAG_VALUE == 1
5858 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5859 		   && op1 == const0_rtx
5860 		   && mode == GET_MODE (op0)
5861 		   && nonzero_bits (op0, mode) == 1)
5862 	    {
5863 	      op0 = expand_compound_operation (op0);
5864 	      return simplify_gen_binary (XOR, mode,
5865 					  gen_lowpart (mode, op0),
5866 					  const1_rtx);
5867 	    }
5868 
5869 	  else if (STORE_FLAG_VALUE == 1
5870 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5871 		   && op1 == const0_rtx
5872 		   && mode == GET_MODE (op0)
5873 		   && (num_sign_bit_copies (op0, mode)
5874 		       == GET_MODE_PRECISION (mode)))
5875 	    {
5876 	      op0 = expand_compound_operation (op0);
5877 	      return plus_constant (gen_lowpart (mode, op0), 1);
5878 	    }
5879 
5880 	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
5881 	     those above.  */
5882 	  if (in_cond)
5883 	    ;
5884 
5885 	  else if (STORE_FLAG_VALUE == -1
5886 	      && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5887 	      && op1 == const0_rtx
5888 	      && (num_sign_bit_copies (op0, mode)
5889 		  == GET_MODE_PRECISION (mode)))
5890 	    return gen_lowpart (mode,
5891 				expand_compound_operation (op0));
5892 
5893 	  else if (STORE_FLAG_VALUE == -1
5894 		   && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5895 		   && op1 == const0_rtx
5896 		   && mode == GET_MODE (op0)
5897 		   && nonzero_bits (op0, mode) == 1)
5898 	    {
5899 	      op0 = expand_compound_operation (op0);
5900 	      return simplify_gen_unary (NEG, mode,
5901 					 gen_lowpart (mode, op0),
5902 					 mode);
5903 	    }
5904 
5905 	  else if (STORE_FLAG_VALUE == -1
5906 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5907 		   && op1 == const0_rtx
5908 		   && mode == GET_MODE (op0)
5909 		   && (num_sign_bit_copies (op0, mode)
5910 		       == GET_MODE_PRECISION (mode)))
5911 	    {
5912 	      op0 = expand_compound_operation (op0);
5913 	      return simplify_gen_unary (NOT, mode,
5914 					 gen_lowpart (mode, op0),
5915 					 mode);
5916 	    }
5917 
5918 	  /* If X is 0/1, (eq X 0) is X-1.  */
5919 	  else if (STORE_FLAG_VALUE == -1
5920 		   && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5921 		   && op1 == const0_rtx
5922 		   && mode == GET_MODE (op0)
5923 		   && nonzero_bits (op0, mode) == 1)
5924 	    {
5925 	      op0 = expand_compound_operation (op0);
5926 	      return plus_constant (gen_lowpart (mode, op0), -1);
5927 	    }
5928 
5929 	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5930 	     one bit that might be nonzero, we can convert (ne x 0) to
5931 	     (ashift x c) where C puts the bit in the sign bit.  Remove any
5932 	     AND with STORE_FLAG_VALUE when we are done, since we are only
5933 	     going to test the sign bit.  */
5934 	  if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5935 	      && HWI_COMPUTABLE_MODE_P (mode)
5936 	      && val_signbit_p (mode, STORE_FLAG_VALUE)
5937 	      && op1 == const0_rtx
5938 	      && mode == GET_MODE (op0)
5939 	      && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5940 	    {
5941 	      x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5942 					expand_compound_operation (op0),
5943 					GET_MODE_PRECISION (mode) - 1 - i);
5944 	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5945 		return XEXP (x, 0);
5946 	      else
5947 		return x;
5948 	    }
5949 
5950 	  /* If the code changed, return a whole new comparison.  */
5951 	  if (new_code != code)
5952 	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5953 
5954 	  /* Otherwise, keep this operation, but maybe change its operands.
5955 	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
5956 	  SUBST (XEXP (x, 0), op0);
5957 	  SUBST (XEXP (x, 1), op1);
5958 	}
5959       break;
5960 
5961     case IF_THEN_ELSE:
5962       return simplify_if_then_else (x);
5963 
5964     case ZERO_EXTRACT:
5965     case SIGN_EXTRACT:
5966     case ZERO_EXTEND:
5967     case SIGN_EXTEND:
5968       /* If we are processing SET_DEST, we are done.  */
5969       if (in_dest)
5970 	return x;
5971 
5972       return expand_compound_operation (x);
5973 
5974     case SET:
5975       return simplify_set (x);
5976 
5977     case AND:
5978     case IOR:
5979       return simplify_logical (x);
5980 
5981     case ASHIFT:
5982     case LSHIFTRT:
5983     case ASHIFTRT:
5984     case ROTATE:
5985     case ROTATERT:
5986       /* If this is a shift by a constant amount, simplify it.  */
5987       if (CONST_INT_P (XEXP (x, 1)))
5988 	return simplify_shift_const (x, code, mode, XEXP (x, 0),
5989 				     INTVAL (XEXP (x, 1)));
5990 
5991       else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5992 	SUBST (XEXP (x, 1),
5993 	       force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5994 			      ((unsigned HOST_WIDE_INT) 1
5995 			       << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5996 			      - 1,
5997 			      0));
5998       break;
5999 
6000     default:
6001       break;
6002     }
6003 
6004   return x;
6005 }
6006 
6007 /* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
6008 
6009 static rtx
6010 simplify_if_then_else (rtx x)
6011 {
6012   enum machine_mode mode = GET_MODE (x);
6013   rtx cond = XEXP (x, 0);
6014   rtx true_rtx = XEXP (x, 1);
6015   rtx false_rtx = XEXP (x, 2);
6016   enum rtx_code true_code = GET_CODE (cond);
6017   int comparison_p = COMPARISON_P (cond);
6018   rtx temp;
6019   int i;
6020   enum rtx_code false_code;
6021   rtx reversed;
6022 
6023   /* Simplify storing of the truth value.  */
6024   if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6025     return simplify_gen_relational (true_code, mode, VOIDmode,
6026 				    XEXP (cond, 0), XEXP (cond, 1));
6027 
6028   /* Also when the truth value has to be reversed.  */
6029   if (comparison_p
6030       && true_rtx == const0_rtx && false_rtx == const_true_rtx
6031       && (reversed = reversed_comparison (cond, mode)))
6032     return reversed;
6033 
6034   /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6035      in it is being compared against certain values.  Get the true and false
6036      comparisons and see if that says anything about the value of each arm.  */
6037 
6038   if (comparison_p
6039       && ((false_code = reversed_comparison_code (cond, NULL))
6040 	  != UNKNOWN)
6041       && REG_P (XEXP (cond, 0)))
6042     {
6043       HOST_WIDE_INT nzb;
6044       rtx from = XEXP (cond, 0);
6045       rtx true_val = XEXP (cond, 1);
6046       rtx false_val = true_val;
6047       int swapped = 0;
6048 
6049       /* If FALSE_CODE is EQ, swap the codes and arms.  */
6050 
6051       if (false_code == EQ)
6052 	{
6053 	  swapped = 1, true_code = EQ, false_code = NE;
6054 	  temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6055 	}
6056 
6057       /* If we are comparing against zero and the expression being tested has
6058 	 only a single bit that might be nonzero, that is its value when it is
6059 	 not equal to zero.  Similarly if it is known to be -1 or 0.  */
6060 
6061       if (true_code == EQ && true_val == const0_rtx
6062 	  && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6063 	{
6064 	  false_code = EQ;
6065 	  false_val = gen_int_mode (nzb, GET_MODE (from));
6066 	}
6067       else if (true_code == EQ && true_val == const0_rtx
6068 	       && (num_sign_bit_copies (from, GET_MODE (from))
6069 		   == GET_MODE_PRECISION (GET_MODE (from))))
6070 	{
6071 	  false_code = EQ;
6072 	  false_val = constm1_rtx;
6073 	}
6074 
6075       /* Now simplify an arm if we know the value of the register in the
6076 	 branch and it is used in the arm.  Be careful due to the potential
6077 	 of locally-shared RTL.  */
6078 
6079       if (reg_mentioned_p (from, true_rtx))
6080 	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6081 				      from, true_val),
6082 			  pc_rtx, pc_rtx, 0, 0, 0);
6083       if (reg_mentioned_p (from, false_rtx))
6084 	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6085 				   from, false_val),
6086 			   pc_rtx, pc_rtx, 0, 0, 0);
6087 
6088       SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6089       SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6090 
6091       true_rtx = XEXP (x, 1);
6092       false_rtx = XEXP (x, 2);
6093       true_code = GET_CODE (cond);
6094     }
6095 
6096   /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6097      reversed, do so to avoid needing two sets of patterns for
6098      subtract-and-branch insns.  Similarly if we have a constant in the true
6099      arm, the false arm is the same as the first operand of the comparison, or
6100      the false arm is more complicated than the true arm.  */
6101 
6102   if (comparison_p
6103       && reversed_comparison_code (cond, NULL) != UNKNOWN
6104       && (true_rtx == pc_rtx
6105 	  || (CONSTANT_P (true_rtx)
6106 	      && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6107 	  || true_rtx == const0_rtx
6108 	  || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6109 	  || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6110 	      && !OBJECT_P (false_rtx))
6111 	  || reg_mentioned_p (true_rtx, false_rtx)
6112 	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6113     {
6114       true_code = reversed_comparison_code (cond, NULL);
6115       SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6116       SUBST (XEXP (x, 1), false_rtx);
6117       SUBST (XEXP (x, 2), true_rtx);
6118 
6119       temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6120       cond = XEXP (x, 0);
6121 
6122       /* It is possible that the conditional has been simplified out.  */
6123       true_code = GET_CODE (cond);
6124       comparison_p = COMPARISON_P (cond);
6125     }
6126 
6127   /* If the two arms are identical, we don't need the comparison.  */
6128 
6129   if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6130     return true_rtx;
6131 
6132   /* Convert a == b ? b : a to "a".  */
6133   if (true_code == EQ && ! side_effects_p (cond)
6134       && !HONOR_NANS (mode)
6135       && rtx_equal_p (XEXP (cond, 0), false_rtx)
6136       && rtx_equal_p (XEXP (cond, 1), true_rtx))
6137     return false_rtx;
6138   else if (true_code == NE && ! side_effects_p (cond)
6139 	   && !HONOR_NANS (mode)
6140 	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
6141 	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
6142     return true_rtx;
6143 
6144   /* Look for cases where we have (abs x) or (neg (abs X)).  */
6145 
6146   if (GET_MODE_CLASS (mode) == MODE_INT
6147       && comparison_p
6148       && XEXP (cond, 1) == const0_rtx
6149       && GET_CODE (false_rtx) == NEG
6150       && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6151       && rtx_equal_p (true_rtx, XEXP (cond, 0))
6152       && ! side_effects_p (true_rtx))
6153     switch (true_code)
6154       {
6155       case GT:
6156       case GE:
6157 	return simplify_gen_unary (ABS, mode, true_rtx, mode);
6158       case LT:
6159       case LE:
6160 	return
6161 	  simplify_gen_unary (NEG, mode,
6162 			      simplify_gen_unary (ABS, mode, true_rtx, mode),
6163 			      mode);
6164       default:
6165 	break;
6166       }
6167 
6168   /* Look for MIN or MAX.  */
6169 
6170   if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6171       && comparison_p
6172       && rtx_equal_p (XEXP (cond, 0), true_rtx)
6173       && rtx_equal_p (XEXP (cond, 1), false_rtx)
6174       && ! side_effects_p (cond))
6175     switch (true_code)
6176       {
6177       case GE:
6178       case GT:
6179 	return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6180       case LE:
6181       case LT:
6182 	return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6183       case GEU:
6184       case GTU:
6185 	return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6186       case LEU:
6187       case LTU:
6188 	return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6189       default:
6190 	break;
6191       }
6192 
6193   /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6194      second operand is zero, this can be done as (OP Z (mult COND C2)) where
6195      C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6196      SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6197      We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6198      neither 1 or -1, but it isn't worth checking for.  */
6199 
6200   if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6201       && comparison_p
6202       && GET_MODE_CLASS (mode) == MODE_INT
6203       && ! side_effects_p (x))
6204     {
6205       rtx t = make_compound_operation (true_rtx, SET);
6206       rtx f = make_compound_operation (false_rtx, SET);
6207       rtx cond_op0 = XEXP (cond, 0);
6208       rtx cond_op1 = XEXP (cond, 1);
6209       enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6210       enum machine_mode m = mode;
6211       rtx z = 0, c1 = NULL_RTX;
6212 
6213       if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6214 	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6215 	   || GET_CODE (t) == ASHIFT
6216 	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6217 	  && rtx_equal_p (XEXP (t, 0), f))
6218 	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6219 
6220       /* If an identity-zero op is commutative, check whether there
6221 	 would be a match if we swapped the operands.  */
6222       else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6223 		|| GET_CODE (t) == XOR)
6224 	       && rtx_equal_p (XEXP (t, 1), f))
6225 	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6226       else if (GET_CODE (t) == SIGN_EXTEND
6227 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6228 		   || GET_CODE (XEXP (t, 0)) == MINUS
6229 		   || GET_CODE (XEXP (t, 0)) == IOR
6230 		   || GET_CODE (XEXP (t, 0)) == XOR
6231 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6232 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6233 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6234 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6235 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6236 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6237 	       && (num_sign_bit_copies (f, GET_MODE (f))
6238 		   > (unsigned int)
6239 		     (GET_MODE_PRECISION (mode)
6240 		      - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6241 	{
6242 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6243 	  extend_op = SIGN_EXTEND;
6244 	  m = GET_MODE (XEXP (t, 0));
6245 	}
6246       else if (GET_CODE (t) == SIGN_EXTEND
6247 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6248 		   || GET_CODE (XEXP (t, 0)) == IOR
6249 		   || GET_CODE (XEXP (t, 0)) == XOR)
6250 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6251 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6252 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6253 	       && (num_sign_bit_copies (f, GET_MODE (f))
6254 		   > (unsigned int)
6255 		     (GET_MODE_PRECISION (mode)
6256 		      - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6257 	{
6258 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6259 	  extend_op = SIGN_EXTEND;
6260 	  m = GET_MODE (XEXP (t, 0));
6261 	}
6262       else if (GET_CODE (t) == ZERO_EXTEND
6263 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6264 		   || GET_CODE (XEXP (t, 0)) == MINUS
6265 		   || GET_CODE (XEXP (t, 0)) == IOR
6266 		   || GET_CODE (XEXP (t, 0)) == XOR
6267 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6268 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6269 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6270 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6271 	       && HWI_COMPUTABLE_MODE_P (mode)
6272 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6273 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6274 	       && ((nonzero_bits (f, GET_MODE (f))
6275 		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6276 		   == 0))
6277 	{
6278 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6279 	  extend_op = ZERO_EXTEND;
6280 	  m = GET_MODE (XEXP (t, 0));
6281 	}
6282       else if (GET_CODE (t) == ZERO_EXTEND
6283 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6284 		   || GET_CODE (XEXP (t, 0)) == IOR
6285 		   || GET_CODE (XEXP (t, 0)) == XOR)
6286 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6287 	       && HWI_COMPUTABLE_MODE_P (mode)
6288 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6289 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6290 	       && ((nonzero_bits (f, GET_MODE (f))
6291 		    & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6292 		   == 0))
6293 	{
6294 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6295 	  extend_op = ZERO_EXTEND;
6296 	  m = GET_MODE (XEXP (t, 0));
6297 	}
6298 
6299       if (z)
6300 	{
6301 	  temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6302 						 cond_op0, cond_op1),
6303 			pc_rtx, pc_rtx, 0, 0, 0);
6304 	  temp = simplify_gen_binary (MULT, m, temp,
6305 				      simplify_gen_binary (MULT, m, c1,
6306 							   const_true_rtx));
6307 	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6308 	  temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6309 
6310 	  if (extend_op != UNKNOWN)
6311 	    temp = simplify_gen_unary (extend_op, mode, temp, m);
6312 
6313 	  return temp;
6314 	}
6315     }
6316 
6317   /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6318      1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6319      negation of a single bit, we can convert this operation to a shift.  We
6320      can actually do this more generally, but it doesn't seem worth it.  */
6321 
6322   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6323       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6324       && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6325 	   && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6326 	  || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6327 	       == GET_MODE_PRECISION (mode))
6328 	      && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6329     return
6330       simplify_shift_const (NULL_RTX, ASHIFT, mode,
6331 			    gen_lowpart (mode, XEXP (cond, 0)), i);
6332 
6333   /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8.  */
6334   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6335       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6336       && GET_MODE (XEXP (cond, 0)) == mode
6337       && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6338 	  == nonzero_bits (XEXP (cond, 0), mode)
6339       && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6340     return XEXP (cond, 0);
6341 
6342   return x;
6343 }
6344 
6345 /* Simplify X, a SET expression.  Return the new expression.  */
6346 
6347 static rtx
6348 simplify_set (rtx x)
6349 {
6350   rtx src = SET_SRC (x);
6351   rtx dest = SET_DEST (x);
6352   enum machine_mode mode
6353     = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6354   rtx other_insn;
6355   rtx *cc_use;
6356 
6357   /* (set (pc) (return)) gets written as (return).  */
6358   if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6359     return src;
6360 
6361   /* Now that we know for sure which bits of SRC we are using, see if we can
6362      simplify the expression for the object knowing that we only need the
6363      low-order bits.  */
6364 
6365   if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6366     {
6367       src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6368       SUBST (SET_SRC (x), src);
6369     }
6370 
6371   /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6372      the comparison result and try to simplify it unless we already have used
6373      undobuf.other_insn.  */
6374   if ((GET_MODE_CLASS (mode) == MODE_CC
6375        || GET_CODE (src) == COMPARE
6376        || CC0_P (dest))
6377       && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6378       && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6379       && COMPARISON_P (*cc_use)
6380       && rtx_equal_p (XEXP (*cc_use, 0), dest))
6381     {
6382       enum rtx_code old_code = GET_CODE (*cc_use);
6383       enum rtx_code new_code;
6384       rtx op0, op1, tmp;
6385       int other_changed = 0;
6386       rtx inner_compare = NULL_RTX;
6387       enum machine_mode compare_mode = GET_MODE (dest);
6388 
6389       if (GET_CODE (src) == COMPARE)
6390 	{
6391 	  op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6392 	  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6393 	    {
6394 	      inner_compare = op0;
6395 	      op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6396 	    }
6397 	}
6398       else
6399 	op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6400 
6401       tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6402 					   op0, op1);
6403       if (!tmp)
6404 	new_code = old_code;
6405       else if (!CONSTANT_P (tmp))
6406 	{
6407 	  new_code = GET_CODE (tmp);
6408 	  op0 = XEXP (tmp, 0);
6409 	  op1 = XEXP (tmp, 1);
6410 	}
6411       else
6412 	{
6413 	  rtx pat = PATTERN (other_insn);
6414 	  undobuf.other_insn = other_insn;
6415 	  SUBST (*cc_use, tmp);
6416 
6417 	  /* Attempt to simplify CC user.  */
6418 	  if (GET_CODE (pat) == SET)
6419 	    {
6420 	      rtx new_rtx = simplify_rtx (SET_SRC (pat));
6421 	      if (new_rtx != NULL_RTX)
6422 		SUBST (SET_SRC (pat), new_rtx);
6423 	    }
6424 
6425 	  /* Convert X into a no-op move.  */
6426 	  SUBST (SET_DEST (x), pc_rtx);
6427 	  SUBST (SET_SRC (x), pc_rtx);
6428 	  return x;
6429 	}
6430 
6431       /* Simplify our comparison, if possible.  */
6432       new_code = simplify_comparison (new_code, &op0, &op1);
6433 
6434 #ifdef SELECT_CC_MODE
6435       /* If this machine has CC modes other than CCmode, check to see if we
6436 	 need to use a different CC mode here.  */
6437       if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6438 	compare_mode = GET_MODE (op0);
6439       else if (inner_compare
6440 	       && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6441 	       && new_code == old_code
6442 	       && op0 == XEXP (inner_compare, 0)
6443 	       && op1 == XEXP (inner_compare, 1))
6444 	compare_mode = GET_MODE (inner_compare);
6445       else
6446 	compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6447 
6448 #ifndef HAVE_cc0
6449       /* If the mode changed, we have to change SET_DEST, the mode in the
6450 	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
6451 	 a hard register, just build new versions with the proper mode.  If it
6452 	 is a pseudo, we lose unless it is only time we set the pseudo, in
6453 	 which case we can safely change its mode.  */
6454       if (compare_mode != GET_MODE (dest))
6455 	{
6456 	  if (can_change_dest_mode (dest, 0, compare_mode))
6457 	    {
6458 	      unsigned int regno = REGNO (dest);
6459 	      rtx new_dest;
6460 
6461 	      if (regno < FIRST_PSEUDO_REGISTER)
6462 		new_dest = gen_rtx_REG (compare_mode, regno);
6463 	      else
6464 		{
6465 		  SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6466 		  new_dest = regno_reg_rtx[regno];
6467 		}
6468 
6469 	      SUBST (SET_DEST (x), new_dest);
6470 	      SUBST (XEXP (*cc_use, 0), new_dest);
6471 	      other_changed = 1;
6472 
6473 	      dest = new_dest;
6474 	    }
6475 	}
6476 #endif  /* cc0 */
6477 #endif  /* SELECT_CC_MODE */
6478 
6479       /* If the code changed, we have to build a new comparison in
6480 	 undobuf.other_insn.  */
6481       if (new_code != old_code)
6482 	{
6483 	  int other_changed_previously = other_changed;
6484 	  unsigned HOST_WIDE_INT mask;
6485 	  rtx old_cc_use = *cc_use;
6486 
6487 	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6488 					  dest, const0_rtx));
6489 	  other_changed = 1;
6490 
6491 	  /* If the only change we made was to change an EQ into an NE or
6492 	     vice versa, OP0 has only one bit that might be nonzero, and OP1
6493 	     is zero, check if changing the user of the condition code will
6494 	     produce a valid insn.  If it won't, we can keep the original code
6495 	     in that insn by surrounding our operation with an XOR.  */
6496 
6497 	  if (((old_code == NE && new_code == EQ)
6498 	       || (old_code == EQ && new_code == NE))
6499 	      && ! other_changed_previously && op1 == const0_rtx
6500 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6501 	      && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6502 	    {
6503 	      rtx pat = PATTERN (other_insn), note = 0;
6504 
6505 	      if ((recog_for_combine (&pat, other_insn, &note) < 0
6506 		   && ! check_asm_operands (pat)))
6507 		{
6508 		  *cc_use = old_cc_use;
6509 		  other_changed = 0;
6510 
6511 		  op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6512 					     op0, GEN_INT (mask));
6513 		}
6514 	    }
6515 	}
6516 
6517       if (other_changed)
6518 	undobuf.other_insn = other_insn;
6519 
6520       /* Otherwise, if we didn't previously have a COMPARE in the
6521 	 correct mode, we need one.  */
6522       if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6523 	{
6524 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6525 	  src = SET_SRC (x);
6526 	}
6527       else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6528 	{
6529 	  SUBST (SET_SRC (x), op0);
6530 	  src = SET_SRC (x);
6531 	}
6532       /* Otherwise, update the COMPARE if needed.  */
6533       else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6534 	{
6535 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6536 	  src = SET_SRC (x);
6537 	}
6538     }
6539   else
6540     {
6541       /* Get SET_SRC in a form where we have placed back any
6542 	 compound expressions.  Then do the checks below.  */
6543       src = make_compound_operation (src, SET);
6544       SUBST (SET_SRC (x), src);
6545     }
6546 
6547   /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6548      and X being a REG or (subreg (reg)), we may be able to convert this to
6549      (set (subreg:m2 x) (op)).
6550 
6551      We can always do this if M1 is narrower than M2 because that means that
6552      we only care about the low bits of the result.
6553 
6554      However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6555      perform a narrower operation than requested since the high-order bits will
6556      be undefined.  On machine where it is defined, this transformation is safe
6557      as long as M1 and M2 have the same number of words.  */
6558 
6559   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6560       && !OBJECT_P (SUBREG_REG (src))
6561       && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6562 	   / UNITS_PER_WORD)
6563 	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6564 	       + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6565 #ifndef WORD_REGISTER_OPERATIONS
6566       && (GET_MODE_SIZE (GET_MODE (src))
6567 	< GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6568 #endif
6569 #ifdef CANNOT_CHANGE_MODE_CLASS
6570       && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6571 	    && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6572 					 GET_MODE (SUBREG_REG (src)),
6573 					 GET_MODE (src)))
6574 #endif
6575       && (REG_P (dest)
6576 	  || (GET_CODE (dest) == SUBREG
6577 	      && REG_P (SUBREG_REG (dest)))))
6578     {
6579       SUBST (SET_DEST (x),
6580 	     gen_lowpart (GET_MODE (SUBREG_REG (src)),
6581 				      dest));
6582       SUBST (SET_SRC (x), SUBREG_REG (src));
6583 
6584       src = SET_SRC (x), dest = SET_DEST (x);
6585     }
6586 
6587 #ifdef HAVE_cc0
6588   /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6589      in SRC.  */
6590   if (dest == cc0_rtx
6591       && GET_CODE (src) == SUBREG
6592       && subreg_lowpart_p (src)
6593       && (GET_MODE_PRECISION (GET_MODE (src))
6594 	  < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6595     {
6596       rtx inner = SUBREG_REG (src);
6597       enum machine_mode inner_mode = GET_MODE (inner);
6598 
6599       /* Here we make sure that we don't have a sign bit on.  */
6600       if (val_signbit_known_clear_p (GET_MODE (src),
6601 				     nonzero_bits (inner, inner_mode)))
6602 	{
6603 	  SUBST (SET_SRC (x), inner);
6604 	  src = SET_SRC (x);
6605 	}
6606     }
6607 #endif
6608 
6609 #ifdef LOAD_EXTEND_OP
6610   /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6611      would require a paradoxical subreg.  Replace the subreg with a
6612      zero_extend to avoid the reload that would otherwise be required.  */
6613 
6614   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6615       && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6616       && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6617       && SUBREG_BYTE (src) == 0
6618       && paradoxical_subreg_p (src)
6619       && MEM_P (SUBREG_REG (src)))
6620     {
6621       SUBST (SET_SRC (x),
6622 	     gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6623 			    GET_MODE (src), SUBREG_REG (src)));
6624 
6625       src = SET_SRC (x);
6626     }
6627 #endif
6628 
6629   /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6630      are comparing an item known to be 0 or -1 against 0, use a logical
6631      operation instead. Check for one of the arms being an IOR of the other
6632      arm with some value.  We compute three terms to be IOR'ed together.  In
6633      practice, at most two will be nonzero.  Then we do the IOR's.  */
6634 
6635   if (GET_CODE (dest) != PC
6636       && GET_CODE (src) == IF_THEN_ELSE
6637       && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6638       && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6639       && XEXP (XEXP (src, 0), 1) == const0_rtx
6640       && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6641 #ifdef HAVE_conditional_move
6642       && ! can_conditionally_move_p (GET_MODE (src))
6643 #endif
6644       && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6645 			       GET_MODE (XEXP (XEXP (src, 0), 0)))
6646 	  == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6647       && ! side_effects_p (src))
6648     {
6649       rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6650 		      ? XEXP (src, 1) : XEXP (src, 2));
6651       rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6652 		   ? XEXP (src, 2) : XEXP (src, 1));
6653       rtx term1 = const0_rtx, term2, term3;
6654 
6655       if (GET_CODE (true_rtx) == IOR
6656 	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6657 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6658       else if (GET_CODE (true_rtx) == IOR
6659 	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6660 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6661       else if (GET_CODE (false_rtx) == IOR
6662 	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6663 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6664       else if (GET_CODE (false_rtx) == IOR
6665 	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6666 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6667 
6668       term2 = simplify_gen_binary (AND, GET_MODE (src),
6669 				   XEXP (XEXP (src, 0), 0), true_rtx);
6670       term3 = simplify_gen_binary (AND, GET_MODE (src),
6671 				   simplify_gen_unary (NOT, GET_MODE (src),
6672 						       XEXP (XEXP (src, 0), 0),
6673 						       GET_MODE (src)),
6674 				   false_rtx);
6675 
6676       SUBST (SET_SRC (x),
6677 	     simplify_gen_binary (IOR, GET_MODE (src),
6678 				  simplify_gen_binary (IOR, GET_MODE (src),
6679 						       term1, term2),
6680 				  term3));
6681 
6682       src = SET_SRC (x);
6683     }
6684 
6685   /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6686      whole thing fail.  */
6687   if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6688     return src;
6689   else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6690     return dest;
6691   else
6692     /* Convert this into a field assignment operation, if possible.  */
6693     return make_field_assignment (x);
6694 }
6695 
6696 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6697    result.  */
6698 
6699 static rtx
6700 simplify_logical (rtx x)
6701 {
6702   enum machine_mode mode = GET_MODE (x);
6703   rtx op0 = XEXP (x, 0);
6704   rtx op1 = XEXP (x, 1);
6705 
6706   switch (GET_CODE (x))
6707     {
6708     case AND:
6709       /* We can call simplify_and_const_int only if we don't lose
6710 	 any (sign) bits when converting INTVAL (op1) to
6711 	 "unsigned HOST_WIDE_INT".  */
6712       if (CONST_INT_P (op1)
6713 	  && (HWI_COMPUTABLE_MODE_P (mode)
6714 	      || INTVAL (op1) > 0))
6715 	{
6716 	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6717 	  if (GET_CODE (x) != AND)
6718 	    return x;
6719 
6720 	  op0 = XEXP (x, 0);
6721 	  op1 = XEXP (x, 1);
6722 	}
6723 
6724       /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6725 	 apply the distributive law and then the inverse distributive
6726 	 law to see if things simplify.  */
6727       if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6728 	{
6729 	  rtx result = distribute_and_simplify_rtx (x, 0);
6730 	  if (result)
6731 	    return result;
6732 	}
6733       if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6734 	{
6735 	  rtx result = distribute_and_simplify_rtx (x, 1);
6736 	  if (result)
6737 	    return result;
6738 	}
6739       break;
6740 
6741     case IOR:
6742       /* If we have (ior (and A B) C), apply the distributive law and then
6743 	 the inverse distributive law to see if things simplify.  */
6744 
6745       if (GET_CODE (op0) == AND)
6746 	{
6747 	  rtx result = distribute_and_simplify_rtx (x, 0);
6748 	  if (result)
6749 	    return result;
6750 	}
6751 
6752       if (GET_CODE (op1) == AND)
6753 	{
6754 	  rtx result = distribute_and_simplify_rtx (x, 1);
6755 	  if (result)
6756 	    return result;
6757 	}
6758       break;
6759 
6760     default:
6761       gcc_unreachable ();
6762     }
6763 
6764   return x;
6765 }
6766 
6767 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6768    operations" because they can be replaced with two more basic operations.
6769    ZERO_EXTEND is also considered "compound" because it can be replaced with
6770    an AND operation, which is simpler, though only one operation.
6771 
6772    The function expand_compound_operation is called with an rtx expression
6773    and will convert it to the appropriate shifts and AND operations,
6774    simplifying at each stage.
6775 
6776    The function make_compound_operation is called to convert an expression
6777    consisting of shifts and ANDs into the equivalent compound expression.
6778    It is the inverse of this function, loosely speaking.  */
6779 
6780 static rtx
6781 expand_compound_operation (rtx x)
6782 {
6783   unsigned HOST_WIDE_INT pos = 0, len;
6784   int unsignedp = 0;
6785   unsigned int modewidth;
6786   rtx tem;
6787 
6788   switch (GET_CODE (x))
6789     {
6790     case ZERO_EXTEND:
6791       unsignedp = 1;
6792     case SIGN_EXTEND:
6793       /* We can't necessarily use a const_int for a multiword mode;
6794 	 it depends on implicitly extending the value.
6795 	 Since we don't know the right way to extend it,
6796 	 we can't tell whether the implicit way is right.
6797 
6798 	 Even for a mode that is no wider than a const_int,
6799 	 we can't win, because we need to sign extend one of its bits through
6800 	 the rest of it, and we don't know which bit.  */
6801       if (CONST_INT_P (XEXP (x, 0)))
6802 	return x;
6803 
6804       /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6805 	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
6806 	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6807 	 reloaded. If not for that, MEM's would very rarely be safe.
6808 
6809 	 Reject MODEs bigger than a word, because we might not be able
6810 	 to reference a two-register group starting with an arbitrary register
6811 	 (and currently gen_lowpart might crash for a SUBREG).  */
6812 
6813       if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6814 	return x;
6815 
6816       /* Reject MODEs that aren't scalar integers because turning vector
6817 	 or complex modes into shifts causes problems.  */
6818 
6819       if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6820 	return x;
6821 
6822       len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6823       /* If the inner object has VOIDmode (the only way this can happen
6824 	 is if it is an ASM_OPERANDS), we can't do anything since we don't
6825 	 know how much masking to do.  */
6826       if (len == 0)
6827 	return x;
6828 
6829       break;
6830 
6831     case ZERO_EXTRACT:
6832       unsignedp = 1;
6833 
6834       /* ... fall through ...  */
6835 
6836     case SIGN_EXTRACT:
6837       /* If the operand is a CLOBBER, just return it.  */
6838       if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6839 	return XEXP (x, 0);
6840 
6841       if (!CONST_INT_P (XEXP (x, 1))
6842 	  || !CONST_INT_P (XEXP (x, 2))
6843 	  || GET_MODE (XEXP (x, 0)) == VOIDmode)
6844 	return x;
6845 
6846       /* Reject MODEs that aren't scalar integers because turning vector
6847 	 or complex modes into shifts causes problems.  */
6848 
6849       if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6850 	return x;
6851 
6852       len = INTVAL (XEXP (x, 1));
6853       pos = INTVAL (XEXP (x, 2));
6854 
6855       /* This should stay within the object being extracted, fail otherwise.  */
6856       if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6857 	return x;
6858 
6859       if (BITS_BIG_ENDIAN)
6860 	pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6861 
6862       break;
6863 
6864     default:
6865       return x;
6866     }
6867   /* Convert sign extension to zero extension, if we know that the high
6868      bit is not set, as this is easier to optimize.  It will be converted
6869      back to cheaper alternative in make_extraction.  */
6870   if (GET_CODE (x) == SIGN_EXTEND
6871       && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6872 	  && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6873 		& ~(((unsigned HOST_WIDE_INT)
6874 		      GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6875 		     >> 1))
6876 	       == 0)))
6877     {
6878       rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6879       rtx temp2 = expand_compound_operation (temp);
6880 
6881       /* Make sure this is a profitable operation.  */
6882       if (set_src_cost (x, optimize_this_for_speed_p)
6883           > set_src_cost (temp2, optimize_this_for_speed_p))
6884        return temp2;
6885       else if (set_src_cost (x, optimize_this_for_speed_p)
6886                > set_src_cost (temp, optimize_this_for_speed_p))
6887        return temp;
6888       else
6889        return x;
6890     }
6891 
6892   /* We can optimize some special cases of ZERO_EXTEND.  */
6893   if (GET_CODE (x) == ZERO_EXTEND)
6894     {
6895       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6896 	 know that the last value didn't have any inappropriate bits
6897 	 set.  */
6898       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6899 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6900 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6901 	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6902 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6903 	return XEXP (XEXP (x, 0), 0);
6904 
6905       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
6906       if (GET_CODE (XEXP (x, 0)) == SUBREG
6907 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6908 	  && subreg_lowpart_p (XEXP (x, 0))
6909 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6910 	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6911 	      & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6912 	return SUBREG_REG (XEXP (x, 0));
6913 
6914       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6915 	 is a comparison and STORE_FLAG_VALUE permits.  This is like
6916 	 the first case, but it works even when GET_MODE (x) is larger
6917 	 than HOST_WIDE_INT.  */
6918       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6919 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6920 	  && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6921 	  && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6922 	      <= HOST_BITS_PER_WIDE_INT)
6923 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6924 	return XEXP (XEXP (x, 0), 0);
6925 
6926       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
6927       if (GET_CODE (XEXP (x, 0)) == SUBREG
6928 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6929 	  && subreg_lowpart_p (XEXP (x, 0))
6930 	  && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6931 	  && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6932 	      <= HOST_BITS_PER_WIDE_INT)
6933 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6934 	return SUBREG_REG (XEXP (x, 0));
6935 
6936     }
6937 
6938   /* If we reach here, we want to return a pair of shifts.  The inner
6939      shift is a left shift of BITSIZE - POS - LEN bits.  The outer
6940      shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
6941      logical depending on the value of UNSIGNEDP.
6942 
6943      If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6944      converted into an AND of a shift.
6945 
6946      We must check for the case where the left shift would have a negative
6947      count.  This can happen in a case like (x >> 31) & 255 on machines
6948      that can't shift by a constant.  On those machines, we would first
6949      combine the shift with the AND to produce a variable-position
6950      extraction.  Then the constant of 31 would be substituted in
6951      to produce such a position.  */
6952 
6953   modewidth = GET_MODE_PRECISION (GET_MODE (x));
6954   if (modewidth >= pos + len)
6955     {
6956       enum machine_mode mode = GET_MODE (x);
6957       tem = gen_lowpart (mode, XEXP (x, 0));
6958       if (!tem || GET_CODE (tem) == CLOBBER)
6959 	return x;
6960       tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6961 				  tem, modewidth - pos - len);
6962       tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6963 				  mode, tem, modewidth - len);
6964     }
6965   else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6966     tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6967 				  simplify_shift_const (NULL_RTX, LSHIFTRT,
6968 							GET_MODE (x),
6969 							XEXP (x, 0), pos),
6970 				  ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6971   else
6972     /* Any other cases we can't handle.  */
6973     return x;
6974 
6975   /* If we couldn't do this for some reason, return the original
6976      expression.  */
6977   if (GET_CODE (tem) == CLOBBER)
6978     return x;
6979 
6980   return tem;
6981 }
6982 
6983 /* X is a SET which contains an assignment of one object into
6984    a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6985    or certain SUBREGS). If possible, convert it into a series of
6986    logical operations.
6987 
6988    We half-heartedly support variable positions, but do not at all
6989    support variable lengths.  */
6990 
6991 static const_rtx
6992 expand_field_assignment (const_rtx x)
6993 {
6994   rtx inner;
6995   rtx pos;			/* Always counts from low bit.  */
6996   int len;
6997   rtx mask, cleared, masked;
6998   enum machine_mode compute_mode;
6999 
7000   /* Loop until we find something we can't simplify.  */
7001   while (1)
7002     {
7003       if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7004 	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7005 	{
7006 	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7007 	  len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7008 	  pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7009 	}
7010       else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7011 	       && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7012 	{
7013 	  inner = XEXP (SET_DEST (x), 0);
7014 	  len = INTVAL (XEXP (SET_DEST (x), 1));
7015 	  pos = XEXP (SET_DEST (x), 2);
7016 
7017 	  /* A constant position should stay within the width of INNER.  */
7018 	  if (CONST_INT_P (pos)
7019 	      && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7020 	    break;
7021 
7022 	  if (BITS_BIG_ENDIAN)
7023 	    {
7024 	      if (CONST_INT_P (pos))
7025 		pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7026 			       - INTVAL (pos));
7027 	      else if (GET_CODE (pos) == MINUS
7028 		       && CONST_INT_P (XEXP (pos, 1))
7029 		       && (INTVAL (XEXP (pos, 1))
7030 			   == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7031 		/* If position is ADJUST - X, new position is X.  */
7032 		pos = XEXP (pos, 0);
7033 	      else
7034 		pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7035 					   GEN_INT (GET_MODE_PRECISION (
7036 						    GET_MODE (inner))
7037 						    - len),
7038 					   pos);
7039 	    }
7040 	}
7041 
7042       /* A SUBREG between two modes that occupy the same numbers of words
7043 	 can be done by moving the SUBREG to the source.  */
7044       else if (GET_CODE (SET_DEST (x)) == SUBREG
7045 	       /* We need SUBREGs to compute nonzero_bits properly.  */
7046 	       && nonzero_sign_valid
7047 	       && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7048 		     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7049 		   == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7050 			+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7051 	{
7052 	  x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
7053 			   gen_lowpart
7054 			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
7055 			    SET_SRC (x)));
7056 	  continue;
7057 	}
7058       else
7059 	break;
7060 
7061       while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7062 	inner = SUBREG_REG (inner);
7063 
7064       compute_mode = GET_MODE (inner);
7065 
7066       /* Don't attempt bitwise arithmetic on non scalar integer modes.  */
7067       if (! SCALAR_INT_MODE_P (compute_mode))
7068 	{
7069 	  enum machine_mode imode;
7070 
7071 	  /* Don't do anything for vector or complex integral types.  */
7072 	  if (! FLOAT_MODE_P (compute_mode))
7073 	    break;
7074 
7075 	  /* Try to find an integral mode to pun with.  */
7076 	  imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7077 	  if (imode == BLKmode)
7078 	    break;
7079 
7080 	  compute_mode = imode;
7081 	  inner = gen_lowpart (imode, inner);
7082 	}
7083 
7084       /* Compute a mask of LEN bits, if we can do this on the host machine.  */
7085       if (len >= HOST_BITS_PER_WIDE_INT)
7086 	break;
7087 
7088       /* Now compute the equivalent expression.  Make a copy of INNER
7089 	 for the SET_DEST in case it is a MEM into which we will substitute;
7090 	 we don't want shared RTL in that case.  */
7091       mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
7092       cleared = simplify_gen_binary (AND, compute_mode,
7093 				     simplify_gen_unary (NOT, compute_mode,
7094 				       simplify_gen_binary (ASHIFT,
7095 							    compute_mode,
7096 							    mask, pos),
7097 				       compute_mode),
7098 				     inner);
7099       masked = simplify_gen_binary (ASHIFT, compute_mode,
7100 				    simplify_gen_binary (
7101 				      AND, compute_mode,
7102 				      gen_lowpart (compute_mode, SET_SRC (x)),
7103 				      mask),
7104 				    pos);
7105 
7106       x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7107 		       simplify_gen_binary (IOR, compute_mode,
7108 					    cleared, masked));
7109     }
7110 
7111   return x;
7112 }
7113 
7114 /* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
7115    it is an RTX that represents a variable starting position; otherwise,
7116    POS is the (constant) starting bit position (counted from the LSB).
7117 
7118    UNSIGNEDP is nonzero for an unsigned reference and zero for a
7119    signed reference.
7120 
7121    IN_DEST is nonzero if this is a reference in the destination of a
7122    SET.  This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If nonzero,
7123    a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7124    be used.
7125 
7126    IN_COMPARE is nonzero if we are in a COMPARE.  This means that a
7127    ZERO_EXTRACT should be built even for bits starting at bit 0.
7128 
7129    MODE is the desired mode of the result (if IN_DEST == 0).
7130 
7131    The result is an RTX for the extraction or NULL_RTX if the target
7132    can't handle it.  */
7133 
7134 static rtx
7135 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7136 		 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7137 		 int in_dest, int in_compare)
7138 {
7139   /* This mode describes the size of the storage area
7140      to fetch the overall value from.  Within that, we
7141      ignore the POS lowest bits, etc.  */
7142   enum machine_mode is_mode = GET_MODE (inner);
7143   enum machine_mode inner_mode;
7144   enum machine_mode wanted_inner_mode;
7145   enum machine_mode wanted_inner_reg_mode = word_mode;
7146   enum machine_mode pos_mode = word_mode;
7147   enum machine_mode extraction_mode = word_mode;
7148   enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7149   rtx new_rtx = 0;
7150   rtx orig_pos_rtx = pos_rtx;
7151   HOST_WIDE_INT orig_pos;
7152 
7153   if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7154     {
7155       /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7156 	 consider just the QI as the memory to extract from.
7157 	 The subreg adds or removes high bits; its mode is
7158 	 irrelevant to the meaning of this extraction,
7159 	 since POS and LEN count from the lsb.  */
7160       if (MEM_P (SUBREG_REG (inner)))
7161 	is_mode = GET_MODE (SUBREG_REG (inner));
7162       inner = SUBREG_REG (inner);
7163     }
7164   else if (GET_CODE (inner) == ASHIFT
7165 	   && CONST_INT_P (XEXP (inner, 1))
7166 	   && pos_rtx == 0 && pos == 0
7167 	   && len > UINTVAL (XEXP (inner, 1)))
7168     {
7169       /* We're extracting the least significant bits of an rtx
7170 	 (ashift X (const_int C)), where LEN > C.  Extract the
7171 	 least significant (LEN - C) bits of X, giving an rtx
7172 	 whose mode is MODE, then shift it left C times.  */
7173       new_rtx = make_extraction (mode, XEXP (inner, 0),
7174 			     0, 0, len - INTVAL (XEXP (inner, 1)),
7175 			     unsignedp, in_dest, in_compare);
7176       if (new_rtx != 0)
7177 	return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7178     }
7179 
7180   inner_mode = GET_MODE (inner);
7181 
7182   if (pos_rtx && CONST_INT_P (pos_rtx))
7183     pos = INTVAL (pos_rtx), pos_rtx = 0;
7184 
7185   /* See if this can be done without an extraction.  We never can if the
7186      width of the field is not the same as that of some integer mode. For
7187      registers, we can only avoid the extraction if the position is at the
7188      low-order bit and this is either not in the destination or we have the
7189      appropriate STRICT_LOW_PART operation available.
7190 
7191      For MEM, we can avoid an extract if the field starts on an appropriate
7192      boundary and we can change the mode of the memory reference.  */
7193 
7194   if (tmode != BLKmode
7195       && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7196 	   && !MEM_P (inner)
7197 	   && (inner_mode == tmode
7198 	       || !REG_P (inner)
7199 	       || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7200 	       || reg_truncated_to_mode (tmode, inner))
7201 	   && (! in_dest
7202 	       || (REG_P (inner)
7203 		   && have_insn_for (STRICT_LOW_PART, tmode))))
7204 	  || (MEM_P (inner) && pos_rtx == 0
7205 	      && (pos
7206 		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7207 		     : BITS_PER_UNIT)) == 0
7208 	      /* We can't do this if we are widening INNER_MODE (it
7209 		 may not be aligned, for one thing).  */
7210 	      && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7211 	      && (inner_mode == tmode
7212 		  || (! mode_dependent_address_p (XEXP (inner, 0))
7213 		      && ! MEM_VOLATILE_P (inner))))))
7214     {
7215       /* If INNER is a MEM, make a new MEM that encompasses just the desired
7216 	 field.  If the original and current mode are the same, we need not
7217 	 adjust the offset.  Otherwise, we do if bytes big endian.
7218 
7219 	 If INNER is not a MEM, get a piece consisting of just the field
7220 	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
7221 
7222       if (MEM_P (inner))
7223 	{
7224 	  HOST_WIDE_INT offset;
7225 
7226 	  /* POS counts from lsb, but make OFFSET count in memory order.  */
7227 	  if (BYTES_BIG_ENDIAN)
7228 	    offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7229 	  else
7230 	    offset = pos / BITS_PER_UNIT;
7231 
7232 	  new_rtx = adjust_address_nv (inner, tmode, offset);
7233 	}
7234       else if (REG_P (inner))
7235 	{
7236 	  if (tmode != inner_mode)
7237 	    {
7238 	      /* We can't call gen_lowpart in a DEST since we
7239 		 always want a SUBREG (see below) and it would sometimes
7240 		 return a new hard register.  */
7241 	      if (pos || in_dest)
7242 		{
7243 		  HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7244 
7245 		  if (WORDS_BIG_ENDIAN
7246 		      && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7247 		    final_word = ((GET_MODE_SIZE (inner_mode)
7248 				   - GET_MODE_SIZE (tmode))
7249 				  / UNITS_PER_WORD) - final_word;
7250 
7251 		  final_word *= UNITS_PER_WORD;
7252 		  if (BYTES_BIG_ENDIAN &&
7253 		      GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7254 		    final_word += (GET_MODE_SIZE (inner_mode)
7255 				   - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7256 
7257 		  /* Avoid creating invalid subregs, for example when
7258 		     simplifying (x>>32)&255.  */
7259 		  if (!validate_subreg (tmode, inner_mode, inner, final_word))
7260 		    return NULL_RTX;
7261 
7262 		  new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7263 		}
7264 	      else
7265 		new_rtx = gen_lowpart (tmode, inner);
7266 	    }
7267 	  else
7268 	    new_rtx = inner;
7269 	}
7270       else
7271 	new_rtx = force_to_mode (inner, tmode,
7272 			     len >= HOST_BITS_PER_WIDE_INT
7273 			     ? ~(unsigned HOST_WIDE_INT) 0
7274 			     : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7275 			     0);
7276 
7277       /* If this extraction is going into the destination of a SET,
7278 	 make a STRICT_LOW_PART unless we made a MEM.  */
7279 
7280       if (in_dest)
7281 	return (MEM_P (new_rtx) ? new_rtx
7282 		: (GET_CODE (new_rtx) != SUBREG
7283 		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
7284 		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7285 
7286       if (mode == tmode)
7287 	return new_rtx;
7288 
7289       if (CONST_INT_P (new_rtx)
7290 	  || GET_CODE (new_rtx) == CONST_DOUBLE)
7291 	return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7292 					 mode, new_rtx, tmode);
7293 
7294       /* If we know that no extraneous bits are set, and that the high
7295 	 bit is not set, convert the extraction to the cheaper of
7296 	 sign and zero extension, that are equivalent in these cases.  */
7297       if (flag_expensive_optimizations
7298 	  && (HWI_COMPUTABLE_MODE_P (tmode)
7299 	      && ((nonzero_bits (new_rtx, tmode)
7300 		   & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7301 		  == 0)))
7302 	{
7303 	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7304 	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7305 
7306 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7307 	     backends.  */
7308 	  if (set_src_cost (temp, optimize_this_for_speed_p)
7309 	      <= set_src_cost (temp1, optimize_this_for_speed_p))
7310 	    return temp;
7311 	  return temp1;
7312 	}
7313 
7314       /* Otherwise, sign- or zero-extend unless we already are in the
7315 	 proper mode.  */
7316 
7317       return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7318 			     mode, new_rtx));
7319     }
7320 
7321   /* Unless this is a COMPARE or we have a funny memory reference,
7322      don't do anything with zero-extending field extracts starting at
7323      the low-order bit since they are simple AND operations.  */
7324   if (pos_rtx == 0 && pos == 0 && ! in_dest
7325       && ! in_compare && unsignedp)
7326     return 0;
7327 
7328   /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7329      if the position is not a constant and the length is not 1.  In all
7330      other cases, we would only be going outside our object in cases when
7331      an original shift would have been undefined.  */
7332   if (MEM_P (inner)
7333       && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7334 	  || (pos_rtx != 0 && len != 1)))
7335     return 0;
7336 
7337   /* Get the mode to use should INNER not be a MEM, the mode for the position,
7338      and the mode for the result.  */
7339   if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7340     {
7341       wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7342       pos_mode = mode_for_extraction (EP_insv, 2);
7343       extraction_mode = mode_for_extraction (EP_insv, 3);
7344     }
7345 
7346   if (! in_dest && unsignedp
7347       && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7348     {
7349       wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7350       pos_mode = mode_for_extraction (EP_extzv, 3);
7351       extraction_mode = mode_for_extraction (EP_extzv, 0);
7352     }
7353 
7354   if (! in_dest && ! unsignedp
7355       && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7356     {
7357       wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7358       pos_mode = mode_for_extraction (EP_extv, 3);
7359       extraction_mode = mode_for_extraction (EP_extv, 0);
7360     }
7361 
7362   /* Never narrow an object, since that might not be safe.  */
7363 
7364   if (mode != VOIDmode
7365       && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7366     extraction_mode = mode;
7367 
7368   if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7369       && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7370     pos_mode = GET_MODE (pos_rtx);
7371 
7372   /* If this is not from memory, the desired mode is the preferred mode
7373      for an extraction pattern's first input operand, or word_mode if there
7374      is none.  */
7375   if (!MEM_P (inner))
7376     wanted_inner_mode = wanted_inner_reg_mode;
7377   else
7378     {
7379       /* Be careful not to go beyond the extracted object and maintain the
7380 	 natural alignment of the memory.  */
7381       wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7382       while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7383 	     > GET_MODE_BITSIZE (wanted_inner_mode))
7384 	{
7385 	  wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7386 	  gcc_assert (wanted_inner_mode != VOIDmode);
7387 	}
7388 
7389       /* If we have to change the mode of memory and cannot, the desired mode
7390 	 is EXTRACTION_MODE.  */
7391       if (inner_mode != wanted_inner_mode
7392 	  && (mode_dependent_address_p (XEXP (inner, 0))
7393 	      || MEM_VOLATILE_P (inner)
7394 	      || pos_rtx))
7395 	wanted_inner_mode = extraction_mode;
7396     }
7397 
7398   orig_pos = pos;
7399 
7400   if (BITS_BIG_ENDIAN)
7401     {
7402       /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7403 	 BITS_BIG_ENDIAN style.  If position is constant, compute new
7404 	 position.  Otherwise, build subtraction.
7405 	 Note that POS is relative to the mode of the original argument.
7406 	 If it's a MEM we need to recompute POS relative to that.
7407 	 However, if we're extracting from (or inserting into) a register,
7408 	 we want to recompute POS relative to wanted_inner_mode.  */
7409       int width = (MEM_P (inner)
7410 		   ? GET_MODE_BITSIZE (is_mode)
7411 		   : GET_MODE_BITSIZE (wanted_inner_mode));
7412 
7413       if (pos_rtx == 0)
7414 	pos = width - len - pos;
7415       else
7416 	pos_rtx
7417 	  = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7418       /* POS may be less than 0 now, but we check for that below.
7419 	 Note that it can only be less than 0 if !MEM_P (inner).  */
7420     }
7421 
7422   /* If INNER has a wider mode, and this is a constant extraction, try to
7423      make it smaller and adjust the byte to point to the byte containing
7424      the value.  */
7425   if (wanted_inner_mode != VOIDmode
7426       && inner_mode != wanted_inner_mode
7427       && ! pos_rtx
7428       && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7429       && MEM_P (inner)
7430       && ! mode_dependent_address_p (XEXP (inner, 0))
7431       && ! MEM_VOLATILE_P (inner))
7432     {
7433       int offset = 0;
7434 
7435       /* The computations below will be correct if the machine is big
7436 	 endian in both bits and bytes or little endian in bits and bytes.
7437 	 If it is mixed, we must adjust.  */
7438 
7439       /* If bytes are big endian and we had a paradoxical SUBREG, we must
7440 	 adjust OFFSET to compensate.  */
7441       if (BYTES_BIG_ENDIAN
7442 	  && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7443 	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7444 
7445       /* We can now move to the desired byte.  */
7446       offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7447 		* GET_MODE_SIZE (wanted_inner_mode);
7448       pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7449 
7450       if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7451 	  && is_mode != wanted_inner_mode)
7452 	offset = (GET_MODE_SIZE (is_mode)
7453 		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
7454 
7455       inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7456     }
7457 
7458   /* If INNER is not memory, get it into the proper mode.  If we are changing
7459      its mode, POS must be a constant and smaller than the size of the new
7460      mode.  */
7461   else if (!MEM_P (inner))
7462     {
7463       /* On the LHS, don't create paradoxical subregs implicitely truncating
7464 	 the register unless TRULY_NOOP_TRUNCATION.  */
7465       if (in_dest
7466 	  && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7467 					     wanted_inner_mode))
7468 	return NULL_RTX;
7469 
7470       if (GET_MODE (inner) != wanted_inner_mode
7471 	  && (pos_rtx != 0
7472 	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7473 	return NULL_RTX;
7474 
7475       if (orig_pos < 0)
7476 	return NULL_RTX;
7477 
7478       inner = force_to_mode (inner, wanted_inner_mode,
7479 			     pos_rtx
7480 			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7481 			     ? ~(unsigned HOST_WIDE_INT) 0
7482 			     : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7483 				<< orig_pos),
7484 			     0);
7485     }
7486 
7487   /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
7488      have to zero extend.  Otherwise, we can just use a SUBREG.  */
7489   if (pos_rtx != 0
7490       && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7491     {
7492       rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7493 
7494       /* If we know that no extraneous bits are set, and that the high
7495 	 bit is not set, convert extraction to cheaper one - either
7496 	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7497 	 cases.  */
7498       if (flag_expensive_optimizations
7499 	  && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7500 	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7501 		   & ~(((unsigned HOST_WIDE_INT)
7502 			GET_MODE_MASK (GET_MODE (pos_rtx)))
7503 		       >> 1))
7504 		  == 0)))
7505 	{
7506 	  rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7507 
7508 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7509 	     backends.  */
7510 	  if (set_src_cost (temp1, optimize_this_for_speed_p)
7511 	      < set_src_cost (temp, optimize_this_for_speed_p))
7512 	    temp = temp1;
7513 	}
7514       pos_rtx = temp;
7515     }
7516   else if (pos_rtx != 0
7517 	   && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7518     pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7519 
7520   /* Make POS_RTX unless we already have it and it is correct.  If we don't
7521      have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7522      be a CONST_INT.  */
7523   if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7524     pos_rtx = orig_pos_rtx;
7525 
7526   else if (pos_rtx == 0)
7527     pos_rtx = GEN_INT (pos);
7528 
7529   /* Make the required operation.  See if we can use existing rtx.  */
7530   new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7531 			 extraction_mode, inner, GEN_INT (len), pos_rtx);
7532   if (! in_dest)
7533     new_rtx = gen_lowpart (mode, new_rtx);
7534 
7535   return new_rtx;
7536 }
7537 
7538 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7539    with any other operations in X.  Return X without that shift if so.  */
7540 
7541 static rtx
7542 extract_left_shift (rtx x, int count)
7543 {
7544   enum rtx_code code = GET_CODE (x);
7545   enum machine_mode mode = GET_MODE (x);
7546   rtx tem;
7547 
7548   switch (code)
7549     {
7550     case ASHIFT:
7551       /* This is the shift itself.  If it is wide enough, we will return
7552 	 either the value being shifted if the shift count is equal to
7553 	 COUNT or a shift for the difference.  */
7554       if (CONST_INT_P (XEXP (x, 1))
7555 	  && INTVAL (XEXP (x, 1)) >= count)
7556 	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7557 				     INTVAL (XEXP (x, 1)) - count);
7558       break;
7559 
7560     case NEG:  case NOT:
7561       if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7562 	return simplify_gen_unary (code, mode, tem, mode);
7563 
7564       break;
7565 
7566     case PLUS:  case IOR:  case XOR:  case AND:
7567       /* If we can safely shift this constant and we find the inner shift,
7568 	 make a new operation.  */
7569       if (CONST_INT_P (XEXP (x, 1))
7570 	  && (UINTVAL (XEXP (x, 1))
7571 	      & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7572 	  && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7573 	return simplify_gen_binary (code, mode, tem,
7574 				    GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7575 
7576       break;
7577 
7578     default:
7579       break;
7580     }
7581 
7582   return 0;
7583 }
7584 
7585 /* Look at the expression rooted at X.  Look for expressions
7586    equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7587    Form these expressions.
7588 
7589    Return the new rtx, usually just X.
7590 
7591    Also, for machines like the VAX that don't have logical shift insns,
7592    try to convert logical to arithmetic shift operations in cases where
7593    they are equivalent.  This undoes the canonicalizations to logical
7594    shifts done elsewhere.
7595 
7596    We try, as much as possible, to re-use rtl expressions to save memory.
7597 
7598    IN_CODE says what kind of expression we are processing.  Normally, it is
7599    SET.  In a memory address (inside a MEM, PLUS or minus, the latter two
7600    being kludges), it is MEM.  When processing the arguments of a comparison
7601    or a COMPARE against zero, it is COMPARE.  */
7602 
7603 static rtx
7604 make_compound_operation (rtx x, enum rtx_code in_code)
7605 {
7606   enum rtx_code code = GET_CODE (x);
7607   enum machine_mode mode = GET_MODE (x);
7608   int mode_width = GET_MODE_PRECISION (mode);
7609   rtx rhs, lhs;
7610   enum rtx_code next_code;
7611   int i, j;
7612   rtx new_rtx = 0;
7613   rtx tem;
7614   const char *fmt;
7615 
7616   /* Select the code to be used in recursive calls.  Once we are inside an
7617      address, we stay there.  If we have a comparison, set to COMPARE,
7618      but once inside, go back to our default of SET.  */
7619 
7620   next_code = (code == MEM ? MEM
7621 	       : ((code == PLUS || code == MINUS)
7622 		  && SCALAR_INT_MODE_P (mode)) ? MEM
7623 	       : ((code == COMPARE || COMPARISON_P (x))
7624 		  && XEXP (x, 1) == const0_rtx) ? COMPARE
7625 	       : in_code == COMPARE ? SET : in_code);
7626 
7627   /* Process depending on the code of this operation.  If NEW is set
7628      nonzero, it will be returned.  */
7629 
7630   switch (code)
7631     {
7632     case ASHIFT:
7633       /* Convert shifts by constants into multiplications if inside
7634 	 an address.  */
7635       if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7636 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7637 	  && INTVAL (XEXP (x, 1)) >= 0
7638 	  && SCALAR_INT_MODE_P (mode))
7639 	{
7640 	  HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7641 	  HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7642 
7643 	  new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7644 	  if (GET_CODE (new_rtx) == NEG)
7645 	    {
7646 	      new_rtx = XEXP (new_rtx, 0);
7647 	      multval = -multval;
7648 	    }
7649 	  multval = trunc_int_for_mode (multval, mode);
7650 	  new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7651 	}
7652       break;
7653 
7654     case PLUS:
7655       lhs = XEXP (x, 0);
7656       rhs = XEXP (x, 1);
7657       lhs = make_compound_operation (lhs, next_code);
7658       rhs = make_compound_operation (rhs, next_code);
7659       if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7660 	  && SCALAR_INT_MODE_P (mode))
7661 	{
7662 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7663 				     XEXP (lhs, 1));
7664 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7665 	}
7666       else if (GET_CODE (lhs) == MULT
7667 	       && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7668 	{
7669 	  tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7670 				     simplify_gen_unary (NEG, mode,
7671 							 XEXP (lhs, 1),
7672 							 mode));
7673 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7674 	}
7675       else
7676 	{
7677 	  SUBST (XEXP (x, 0), lhs);
7678 	  SUBST (XEXP (x, 1), rhs);
7679 	  goto maybe_swap;
7680 	}
7681       x = gen_lowpart (mode, new_rtx);
7682       goto maybe_swap;
7683 
7684     case MINUS:
7685       lhs = XEXP (x, 0);
7686       rhs = XEXP (x, 1);
7687       lhs = make_compound_operation (lhs, next_code);
7688       rhs = make_compound_operation (rhs, next_code);
7689       if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7690 	  && SCALAR_INT_MODE_P (mode))
7691 	{
7692 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7693 				     XEXP (rhs, 1));
7694 	  new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7695 	}
7696       else if (GET_CODE (rhs) == MULT
7697 	       && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7698 	{
7699 	  tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7700 				     simplify_gen_unary (NEG, mode,
7701 							 XEXP (rhs, 1),
7702 							 mode));
7703 	  new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7704 	}
7705       else
7706 	{
7707 	  SUBST (XEXP (x, 0), lhs);
7708 	  SUBST (XEXP (x, 1), rhs);
7709 	  return x;
7710 	}
7711       return gen_lowpart (mode, new_rtx);
7712 
7713     case AND:
7714       /* If the second operand is not a constant, we can't do anything
7715 	 with it.  */
7716       if (!CONST_INT_P (XEXP (x, 1)))
7717 	break;
7718 
7719       /* If the constant is a power of two minus one and the first operand
7720 	 is a logical right shift, make an extraction.  */
7721       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7722 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7723 	{
7724 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7725 	  new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7726 				 0, in_code == COMPARE);
7727 	}
7728 
7729       /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
7730       else if (GET_CODE (XEXP (x, 0)) == SUBREG
7731 	       && subreg_lowpart_p (XEXP (x, 0))
7732 	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7733 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7734 	{
7735 	  new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7736 					 next_code);
7737 	  new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7738 				 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7739 				 0, in_code == COMPARE);
7740 	}
7741       /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
7742       else if ((GET_CODE (XEXP (x, 0)) == XOR
7743 		|| GET_CODE (XEXP (x, 0)) == IOR)
7744 	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7745 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7746 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7747 	{
7748 	  /* Apply the distributive law, and then try to make extractions.  */
7749 	  new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7750 				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7751 					     XEXP (x, 1)),
7752 				gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7753 					     XEXP (x, 1)));
7754 	  new_rtx = make_compound_operation (new_rtx, in_code);
7755 	}
7756 
7757       /* If we are have (and (rotate X C) M) and C is larger than the number
7758 	 of bits in M, this is an extraction.  */
7759 
7760       else if (GET_CODE (XEXP (x, 0)) == ROTATE
7761 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7762 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7763 	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7764 	{
7765 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7766 	  new_rtx = make_extraction (mode, new_rtx,
7767 				 (GET_MODE_PRECISION (mode)
7768 				  - INTVAL (XEXP (XEXP (x, 0), 1))),
7769 				 NULL_RTX, i, 1, 0, in_code == COMPARE);
7770 	}
7771 
7772       /* On machines without logical shifts, if the operand of the AND is
7773 	 a logical shift and our mask turns off all the propagated sign
7774 	 bits, we can replace the logical shift with an arithmetic shift.  */
7775       else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7776 	       && !have_insn_for (LSHIFTRT, mode)
7777 	       && have_insn_for (ASHIFTRT, mode)
7778 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7779 	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7780 	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7781 	       && mode_width <= HOST_BITS_PER_WIDE_INT)
7782 	{
7783 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7784 
7785 	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7786 	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7787 	    SUBST (XEXP (x, 0),
7788 		   gen_rtx_ASHIFTRT (mode,
7789 				     make_compound_operation
7790 				     (XEXP (XEXP (x, 0), 0), next_code),
7791 				     XEXP (XEXP (x, 0), 1)));
7792 	}
7793 
7794       /* If the constant is one less than a power of two, this might be
7795 	 representable by an extraction even if no shift is present.
7796 	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7797 	 we are in a COMPARE.  */
7798       else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7799 	new_rtx = make_extraction (mode,
7800 			       make_compound_operation (XEXP (x, 0),
7801 							next_code),
7802 			       0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7803 
7804       /* If we are in a comparison and this is an AND with a power of two,
7805 	 convert this into the appropriate bit extract.  */
7806       else if (in_code == COMPARE
7807 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7808 	new_rtx = make_extraction (mode,
7809 			       make_compound_operation (XEXP (x, 0),
7810 							next_code),
7811 			       i, NULL_RTX, 1, 1, 0, 1);
7812 
7813       break;
7814 
7815     case LSHIFTRT:
7816       /* If the sign bit is known to be zero, replace this with an
7817 	 arithmetic shift.  */
7818       if (have_insn_for (ASHIFTRT, mode)
7819 	  && ! have_insn_for (LSHIFTRT, mode)
7820 	  && mode_width <= HOST_BITS_PER_WIDE_INT
7821 	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7822 	{
7823 	  new_rtx = gen_rtx_ASHIFTRT (mode,
7824 				  make_compound_operation (XEXP (x, 0),
7825 							   next_code),
7826 				  XEXP (x, 1));
7827 	  break;
7828 	}
7829 
7830       /* ... fall through ...  */
7831 
7832     case ASHIFTRT:
7833       lhs = XEXP (x, 0);
7834       rhs = XEXP (x, 1);
7835 
7836       /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7837 	 this is a SIGN_EXTRACT.  */
7838       if (CONST_INT_P (rhs)
7839 	  && GET_CODE (lhs) == ASHIFT
7840 	  && CONST_INT_P (XEXP (lhs, 1))
7841 	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7842 	  && INTVAL (XEXP (lhs, 1)) >= 0
7843 	  && INTVAL (rhs) < mode_width)
7844 	{
7845 	  new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7846 	  new_rtx = make_extraction (mode, new_rtx,
7847 				 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7848 				 NULL_RTX, mode_width - INTVAL (rhs),
7849 				 code == LSHIFTRT, 0, in_code == COMPARE);
7850 	  break;
7851 	}
7852 
7853       /* See if we have operations between an ASHIFTRT and an ASHIFT.
7854 	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
7855 	 also do this for some cases of SIGN_EXTRACT, but it doesn't
7856 	 seem worth the effort; the case checked for occurs on Alpha.  */
7857 
7858       if (!OBJECT_P (lhs)
7859 	  && ! (GET_CODE (lhs) == SUBREG
7860 		&& (OBJECT_P (SUBREG_REG (lhs))))
7861 	  && CONST_INT_P (rhs)
7862 	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7863 	  && INTVAL (rhs) < mode_width
7864 	  && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7865 	new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7866 			       0, NULL_RTX, mode_width - INTVAL (rhs),
7867 			       code == LSHIFTRT, 0, in_code == COMPARE);
7868 
7869       break;
7870 
7871     case SUBREG:
7872       /* Call ourselves recursively on the inner expression.  If we are
7873 	 narrowing the object and it has a different RTL code from
7874 	 what it originally did, do this SUBREG as a force_to_mode.  */
7875       {
7876 	rtx inner = SUBREG_REG (x), simplified;
7877 
7878 	tem = make_compound_operation (inner, in_code);
7879 
7880 	simplified
7881 	  = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7882 	if (simplified)
7883 	  tem = simplified;
7884 
7885 	if (GET_CODE (tem) != GET_CODE (inner)
7886 	    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7887 	    && subreg_lowpart_p (x))
7888 	  {
7889 	    rtx newer
7890 	      = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7891 
7892 	    /* If we have something other than a SUBREG, we might have
7893 	       done an expansion, so rerun ourselves.  */
7894 	    if (GET_CODE (newer) != SUBREG)
7895 	      newer = make_compound_operation (newer, in_code);
7896 
7897 	    /* force_to_mode can expand compounds.  If it just re-expanded the
7898 	       compound, use gen_lowpart to convert to the desired mode.  */
7899 	    if (rtx_equal_p (newer, x)
7900 		/* Likewise if it re-expanded the compound only partially.
7901 		   This happens for SUBREG of ZERO_EXTRACT if they extract
7902 		   the same number of bits.  */
7903 		|| (GET_CODE (newer) == SUBREG
7904 		    && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7905 			|| GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7906 		    && GET_CODE (inner) == AND
7907 		    && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7908 	      return gen_lowpart (GET_MODE (x), tem);
7909 
7910 	    return newer;
7911 	  }
7912 
7913 	if (simplified)
7914 	  return tem;
7915       }
7916       break;
7917 
7918     default:
7919       break;
7920     }
7921 
7922   if (new_rtx)
7923     {
7924       x = gen_lowpart (mode, new_rtx);
7925       code = GET_CODE (x);
7926     }
7927 
7928   /* Now recursively process each operand of this operation.  We need to
7929      handle ZERO_EXTEND specially so that we don't lose track of the
7930      inner mode.  */
7931   if (GET_CODE (x) == ZERO_EXTEND)
7932     {
7933       new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7934       tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7935 					    new_rtx, GET_MODE (XEXP (x, 0)));
7936       if (tem)
7937 	return tem;
7938       SUBST (XEXP (x, 0), new_rtx);
7939       return x;
7940     }
7941 
7942   fmt = GET_RTX_FORMAT (code);
7943   for (i = 0; i < GET_RTX_LENGTH (code); i++)
7944     if (fmt[i] == 'e')
7945       {
7946 	new_rtx = make_compound_operation (XEXP (x, i), next_code);
7947 	SUBST (XEXP (x, i), new_rtx);
7948       }
7949     else if (fmt[i] == 'E')
7950       for (j = 0; j < XVECLEN (x, i); j++)
7951 	{
7952 	  new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7953 	  SUBST (XVECEXP (x, i, j), new_rtx);
7954 	}
7955 
7956  maybe_swap:
7957   /* If this is a commutative operation, the changes to the operands
7958      may have made it noncanonical.  */
7959   if (COMMUTATIVE_ARITH_P (x)
7960       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7961     {
7962       tem = XEXP (x, 0);
7963       SUBST (XEXP (x, 0), XEXP (x, 1));
7964       SUBST (XEXP (x, 1), tem);
7965     }
7966 
7967   return x;
7968 }
7969 
7970 /* Given M see if it is a value that would select a field of bits
7971    within an item, but not the entire word.  Return -1 if not.
7972    Otherwise, return the starting position of the field, where 0 is the
7973    low-order bit.
7974 
7975    *PLEN is set to the length of the field.  */
7976 
7977 static int
7978 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7979 {
7980   /* Get the bit number of the first 1 bit from the right, -1 if none.  */
7981   int pos = m ? ctz_hwi (m) : -1;
7982   int len = 0;
7983 
7984   if (pos >= 0)
7985     /* Now shift off the low-order zero bits and see if we have a
7986        power of two minus 1.  */
7987     len = exact_log2 ((m >> pos) + 1);
7988 
7989   if (len <= 0)
7990     pos = -1;
7991 
7992   *plen = len;
7993   return pos;
7994 }
7995 
7996 /* If X refers to a register that equals REG in value, replace these
7997    references with REG.  */
7998 static rtx
7999 canon_reg_for_combine (rtx x, rtx reg)
8000 {
8001   rtx op0, op1, op2;
8002   const char *fmt;
8003   int i;
8004   bool copied;
8005 
8006   enum rtx_code code = GET_CODE (x);
8007   switch (GET_RTX_CLASS (code))
8008     {
8009     case RTX_UNARY:
8010       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8011       if (op0 != XEXP (x, 0))
8012 	return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8013 				   GET_MODE (reg));
8014       break;
8015 
8016     case RTX_BIN_ARITH:
8017     case RTX_COMM_ARITH:
8018       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8019       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8020       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8021 	return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8022       break;
8023 
8024     case RTX_COMPARE:
8025     case RTX_COMM_COMPARE:
8026       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8027       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8028       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8029 	return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8030 					GET_MODE (op0), op0, op1);
8031       break;
8032 
8033     case RTX_TERNARY:
8034     case RTX_BITFIELD_OPS:
8035       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8036       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8037       op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8038       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8039 	return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8040 				     GET_MODE (op0), op0, op1, op2);
8041 
8042     case RTX_OBJ:
8043       if (REG_P (x))
8044 	{
8045 	  if (rtx_equal_p (get_last_value (reg), x)
8046 	      || rtx_equal_p (reg, get_last_value (x)))
8047 	    return reg;
8048 	  else
8049 	    break;
8050 	}
8051 
8052       /* fall through */
8053 
8054     default:
8055       fmt = GET_RTX_FORMAT (code);
8056       copied = false;
8057       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8058 	if (fmt[i] == 'e')
8059 	  {
8060 	    rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8061 	    if (op != XEXP (x, i))
8062 	      {
8063 		if (!copied)
8064 		  {
8065 		    copied = true;
8066 		    x = copy_rtx (x);
8067 		  }
8068 		XEXP (x, i) = op;
8069 	      }
8070 	  }
8071 	else if (fmt[i] == 'E')
8072 	  {
8073 	    int j;
8074 	    for (j = 0; j < XVECLEN (x, i); j++)
8075 	      {
8076 		rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8077 		if (op != XVECEXP (x, i, j))
8078 		  {
8079 		    if (!copied)
8080 		      {
8081 			copied = true;
8082 			x = copy_rtx (x);
8083 		      }
8084 		    XVECEXP (x, i, j) = op;
8085 		  }
8086 	      }
8087 	  }
8088 
8089       break;
8090     }
8091 
8092   return x;
8093 }
8094 
8095 /* Return X converted to MODE.  If the value is already truncated to
8096    MODE we can just return a subreg even though in the general case we
8097    would need an explicit truncation.  */
8098 
8099 static rtx
8100 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
8101 {
8102   if (!CONST_INT_P (x)
8103       && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8104       && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8105       && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8106     {
8107       /* Bit-cast X into an integer mode.  */
8108       if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8109 	x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8110       x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8111 			      x, GET_MODE (x));
8112     }
8113 
8114   return gen_lowpart (mode, x);
8115 }
8116 
8117 /* See if X can be simplified knowing that we will only refer to it in
8118    MODE and will only refer to those bits that are nonzero in MASK.
8119    If other bits are being computed or if masking operations are done
8120    that select a superset of the bits in MASK, they can sometimes be
8121    ignored.
8122 
8123    Return a possibly simplified expression, but always convert X to
8124    MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
8125 
8126    If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8127    are all off in X.  This is used when X will be complemented, by either
8128    NOT, NEG, or XOR.  */
8129 
8130 static rtx
8131 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8132 	       int just_select)
8133 {
8134   enum rtx_code code = GET_CODE (x);
8135   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8136   enum machine_mode op_mode;
8137   unsigned HOST_WIDE_INT fuller_mask, nonzero;
8138   rtx op0, op1, temp;
8139 
8140   /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
8141      code below will do the wrong thing since the mode of such an
8142      expression is VOIDmode.
8143 
8144      Also do nothing if X is a CLOBBER; this can happen if X was
8145      the return value from a call to gen_lowpart.  */
8146   if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8147     return x;
8148 
8149   /* We want to perform the operation is its present mode unless we know
8150      that the operation is valid in MODE, in which case we do the operation
8151      in MODE.  */
8152   op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8153 	      && have_insn_for (code, mode))
8154 	     ? mode : GET_MODE (x));
8155 
8156   /* It is not valid to do a right-shift in a narrower mode
8157      than the one it came in with.  */
8158   if ((code == LSHIFTRT || code == ASHIFTRT)
8159       && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8160     op_mode = GET_MODE (x);
8161 
8162   /* Truncate MASK to fit OP_MODE.  */
8163   if (op_mode)
8164     mask &= GET_MODE_MASK (op_mode);
8165 
8166   /* When we have an arithmetic operation, or a shift whose count we
8167      do not know, we need to assume that all bits up to the highest-order
8168      bit in MASK will be needed.  This is how we form such a mask.  */
8169   if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8170     fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8171   else
8172     fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8173 		   - 1);
8174 
8175   /* Determine what bits of X are guaranteed to be (non)zero.  */
8176   nonzero = nonzero_bits (x, mode);
8177 
8178   /* If none of the bits in X are needed, return a zero.  */
8179   if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8180     x = const0_rtx;
8181 
8182   /* If X is a CONST_INT, return a new one.  Do this here since the
8183      test below will fail.  */
8184   if (CONST_INT_P (x))
8185     {
8186       if (SCALAR_INT_MODE_P (mode))
8187 	return gen_int_mode (INTVAL (x) & mask, mode);
8188       else
8189 	{
8190 	  x = GEN_INT (INTVAL (x) & mask);
8191 	  return gen_lowpart_common (mode, x);
8192 	}
8193     }
8194 
8195   /* If X is narrower than MODE and we want all the bits in X's mode, just
8196      get X in the proper mode.  */
8197   if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8198       && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8199     return gen_lowpart (mode, x);
8200 
8201   /* We can ignore the effect of a SUBREG if it narrows the mode or
8202      if the constant masks to zero all the bits the mode doesn't have.  */
8203   if (GET_CODE (x) == SUBREG
8204       && subreg_lowpart_p (x)
8205       && ((GET_MODE_SIZE (GET_MODE (x))
8206 	   < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8207 	  || (0 == (mask
8208 		    & GET_MODE_MASK (GET_MODE (x))
8209 		    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8210     return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8211 
8212   /* The arithmetic simplifications here only work for scalar integer modes.  */
8213   if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8214     return gen_lowpart_or_truncate (mode, x);
8215 
8216   switch (code)
8217     {
8218     case CLOBBER:
8219       /* If X is a (clobber (const_int)), return it since we know we are
8220 	 generating something that won't match.  */
8221       return x;
8222 
8223     case SIGN_EXTEND:
8224     case ZERO_EXTEND:
8225     case ZERO_EXTRACT:
8226     case SIGN_EXTRACT:
8227       x = expand_compound_operation (x);
8228       if (GET_CODE (x) != code)
8229 	return force_to_mode (x, mode, mask, next_select);
8230       break;
8231 
8232     case TRUNCATE:
8233       /* Similarly for a truncate.  */
8234       return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8235 
8236     case AND:
8237       /* If this is an AND with a constant, convert it into an AND
8238 	 whose constant is the AND of that constant with MASK.  If it
8239 	 remains an AND of MASK, delete it since it is redundant.  */
8240 
8241       if (CONST_INT_P (XEXP (x, 1)))
8242 	{
8243 	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8244 				      mask & INTVAL (XEXP (x, 1)));
8245 
8246 	  /* If X is still an AND, see if it is an AND with a mask that
8247 	     is just some low-order bits.  If so, and it is MASK, we don't
8248 	     need it.  */
8249 
8250 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8251 	      && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8252 		  == mask))
8253 	    x = XEXP (x, 0);
8254 
8255 	  /* If it remains an AND, try making another AND with the bits
8256 	     in the mode mask that aren't in MASK turned on.  If the
8257 	     constant in the AND is wide enough, this might make a
8258 	     cheaper constant.  */
8259 
8260 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8261 	      && GET_MODE_MASK (GET_MODE (x)) != mask
8262 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8263 	    {
8264 	      unsigned HOST_WIDE_INT cval
8265 		= UINTVAL (XEXP (x, 1))
8266 		  | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8267 	      int width = GET_MODE_PRECISION (GET_MODE (x));
8268 	      rtx y;
8269 
8270 	      /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8271 		 number, sign extend it.  */
8272 	      if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8273 		  && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8274 		cval |= (unsigned HOST_WIDE_INT) -1 << width;
8275 
8276 	      y = simplify_gen_binary (AND, GET_MODE (x),
8277 				       XEXP (x, 0), GEN_INT (cval));
8278 	      if (set_src_cost (y, optimize_this_for_speed_p)
8279 	          < set_src_cost (x, optimize_this_for_speed_p))
8280 		x = y;
8281 	    }
8282 
8283 	  break;
8284 	}
8285 
8286       goto binop;
8287 
8288     case PLUS:
8289       /* In (and (plus FOO C1) M), if M is a mask that just turns off
8290 	 low-order bits (as in an alignment operation) and FOO is already
8291 	 aligned to that boundary, mask C1 to that boundary as well.
8292 	 This may eliminate that PLUS and, later, the AND.  */
8293 
8294       {
8295 	unsigned int width = GET_MODE_PRECISION (mode);
8296 	unsigned HOST_WIDE_INT smask = mask;
8297 
8298 	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8299 	   number, sign extend it.  */
8300 
8301 	if (width < HOST_BITS_PER_WIDE_INT
8302 	    && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8303 	  smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8304 
8305 	if (CONST_INT_P (XEXP (x, 1))
8306 	    && exact_log2 (- smask) >= 0
8307 	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8308 	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8309 	  return force_to_mode (plus_constant (XEXP (x, 0),
8310 					       (INTVAL (XEXP (x, 1)) & smask)),
8311 				mode, smask, next_select);
8312       }
8313 
8314       /* ... fall through ...  */
8315 
8316     case MULT:
8317       /* For PLUS, MINUS and MULT, we need any bits less significant than the
8318 	 most significant bit in MASK since carries from those bits will
8319 	 affect the bits we are interested in.  */
8320       mask = fuller_mask;
8321       goto binop;
8322 
8323     case MINUS:
8324       /* If X is (minus C Y) where C's least set bit is larger than any bit
8325 	 in the mask, then we may replace with (neg Y).  */
8326       if (CONST_INT_P (XEXP (x, 0))
8327 	  && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8328 					& -INTVAL (XEXP (x, 0))))
8329 	      > mask))
8330 	{
8331 	  x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8332 				  GET_MODE (x));
8333 	  return force_to_mode (x, mode, mask, next_select);
8334 	}
8335 
8336       /* Similarly, if C contains every bit in the fuller_mask, then we may
8337 	 replace with (not Y).  */
8338       if (CONST_INT_P (XEXP (x, 0))
8339 	  && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8340 	{
8341 	  x = simplify_gen_unary (NOT, GET_MODE (x),
8342 				  XEXP (x, 1), GET_MODE (x));
8343 	  return force_to_mode (x, mode, mask, next_select);
8344 	}
8345 
8346       mask = fuller_mask;
8347       goto binop;
8348 
8349     case IOR:
8350     case XOR:
8351       /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8352 	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8353 	 operation which may be a bitfield extraction.  Ensure that the
8354 	 constant we form is not wider than the mode of X.  */
8355 
8356       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8357 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8358 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8359 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8360 	  && CONST_INT_P (XEXP (x, 1))
8361 	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
8362 	       + floor_log2 (INTVAL (XEXP (x, 1))))
8363 	      < GET_MODE_PRECISION (GET_MODE (x)))
8364 	  && (UINTVAL (XEXP (x, 1))
8365 	      & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8366 	{
8367 	  temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8368 			  << INTVAL (XEXP (XEXP (x, 0), 1)));
8369 	  temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8370 				      XEXP (XEXP (x, 0), 0), temp);
8371 	  x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8372 				   XEXP (XEXP (x, 0), 1));
8373 	  return force_to_mode (x, mode, mask, next_select);
8374 	}
8375 
8376     binop:
8377       /* For most binary operations, just propagate into the operation and
8378 	 change the mode if we have an operation of that mode.  */
8379 
8380       op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8381       op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8382 
8383       /* If we ended up truncating both operands, truncate the result of the
8384 	 operation instead.  */
8385       if (GET_CODE (op0) == TRUNCATE
8386 	  && GET_CODE (op1) == TRUNCATE)
8387 	{
8388 	  op0 = XEXP (op0, 0);
8389 	  op1 = XEXP (op1, 0);
8390 	}
8391 
8392       op0 = gen_lowpart_or_truncate (op_mode, op0);
8393       op1 = gen_lowpart_or_truncate (op_mode, op1);
8394 
8395       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8396 	x = simplify_gen_binary (code, op_mode, op0, op1);
8397       break;
8398 
8399     case ASHIFT:
8400       /* For left shifts, do the same, but just for the first operand.
8401 	 However, we cannot do anything with shifts where we cannot
8402 	 guarantee that the counts are smaller than the size of the mode
8403 	 because such a count will have a different meaning in a
8404 	 wider mode.  */
8405 
8406       if (! (CONST_INT_P (XEXP (x, 1))
8407 	     && INTVAL (XEXP (x, 1)) >= 0
8408 	     && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8409 	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8410 		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8411 		    < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8412 	break;
8413 
8414       /* If the shift count is a constant and we can do arithmetic in
8415 	 the mode of the shift, refine which bits we need.  Otherwise, use the
8416 	 conservative form of the mask.  */
8417       if (CONST_INT_P (XEXP (x, 1))
8418 	  && INTVAL (XEXP (x, 1)) >= 0
8419 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8420 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8421 	mask >>= INTVAL (XEXP (x, 1));
8422       else
8423 	mask = fuller_mask;
8424 
8425       op0 = gen_lowpart_or_truncate (op_mode,
8426 				     force_to_mode (XEXP (x, 0), op_mode,
8427 						    mask, next_select));
8428 
8429       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8430 	x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8431       break;
8432 
8433     case LSHIFTRT:
8434       /* Here we can only do something if the shift count is a constant,
8435 	 this shift constant is valid for the host, and we can do arithmetic
8436 	 in OP_MODE.  */
8437 
8438       if (CONST_INT_P (XEXP (x, 1))
8439 	  && INTVAL (XEXP (x, 1)) >= 0
8440 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8441 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8442 	{
8443 	  rtx inner = XEXP (x, 0);
8444 	  unsigned HOST_WIDE_INT inner_mask;
8445 
8446 	  /* Select the mask of the bits we need for the shift operand.  */
8447 	  inner_mask = mask << INTVAL (XEXP (x, 1));
8448 
8449 	  /* We can only change the mode of the shift if we can do arithmetic
8450 	     in the mode of the shift and INNER_MASK is no wider than the
8451 	     width of X's mode.  */
8452 	  if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8453 	    op_mode = GET_MODE (x);
8454 
8455 	  inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8456 
8457 	  if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8458 	    x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8459 	}
8460 
8461       /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8462 	 shift and AND produces only copies of the sign bit (C2 is one less
8463 	 than a power of two), we can do this with just a shift.  */
8464 
8465       if (GET_CODE (x) == LSHIFTRT
8466 	  && CONST_INT_P (XEXP (x, 1))
8467 	  /* The shift puts one of the sign bit copies in the least significant
8468 	     bit.  */
8469 	  && ((INTVAL (XEXP (x, 1))
8470 	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8471 	      >= GET_MODE_PRECISION (GET_MODE (x)))
8472 	  && exact_log2 (mask + 1) >= 0
8473 	  /* Number of bits left after the shift must be more than the mask
8474 	     needs.  */
8475 	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8476 	      <= GET_MODE_PRECISION (GET_MODE (x)))
8477 	  /* Must be more sign bit copies than the mask needs.  */
8478 	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8479 	      >= exact_log2 (mask + 1)))
8480 	x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8481 				 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8482 					  - exact_log2 (mask + 1)));
8483 
8484       goto shiftrt;
8485 
8486     case ASHIFTRT:
8487       /* If we are just looking for the sign bit, we don't need this shift at
8488 	 all, even if it has a variable count.  */
8489       if (val_signbit_p (GET_MODE (x), mask))
8490 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8491 
8492       /* If this is a shift by a constant, get a mask that contains those bits
8493 	 that are not copies of the sign bit.  We then have two cases:  If
8494 	 MASK only includes those bits, this can be a logical shift, which may
8495 	 allow simplifications.  If MASK is a single-bit field not within
8496 	 those bits, we are requesting a copy of the sign bit and hence can
8497 	 shift the sign bit to the appropriate location.  */
8498 
8499       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8500 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8501 	{
8502 	  int i;
8503 
8504 	  /* If the considered data is wider than HOST_WIDE_INT, we can't
8505 	     represent a mask for all its bits in a single scalar.
8506 	     But we only care about the lower bits, so calculate these.  */
8507 
8508 	  if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8509 	    {
8510 	      nonzero = ~(unsigned HOST_WIDE_INT) 0;
8511 
8512 	      /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8513 		 is the number of bits a full-width mask would have set.
8514 		 We need only shift if these are fewer than nonzero can
8515 		 hold.  If not, we must keep all bits set in nonzero.  */
8516 
8517 	      if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8518 		  < HOST_BITS_PER_WIDE_INT)
8519 		nonzero >>= INTVAL (XEXP (x, 1))
8520 			    + HOST_BITS_PER_WIDE_INT
8521 			    - GET_MODE_PRECISION (GET_MODE (x)) ;
8522 	    }
8523 	  else
8524 	    {
8525 	      nonzero = GET_MODE_MASK (GET_MODE (x));
8526 	      nonzero >>= INTVAL (XEXP (x, 1));
8527 	    }
8528 
8529 	  if ((mask & ~nonzero) == 0)
8530 	    {
8531 	      x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8532 					XEXP (x, 0), INTVAL (XEXP (x, 1)));
8533 	      if (GET_CODE (x) != ASHIFTRT)
8534 		return force_to_mode (x, mode, mask, next_select);
8535 	    }
8536 
8537 	  else if ((i = exact_log2 (mask)) >= 0)
8538 	    {
8539 	      x = simplify_shift_const
8540 		  (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8541 		   GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8542 
8543 	      if (GET_CODE (x) != ASHIFTRT)
8544 		return force_to_mode (x, mode, mask, next_select);
8545 	    }
8546 	}
8547 
8548       /* If MASK is 1, convert this to an LSHIFTRT.  This can be done
8549 	 even if the shift count isn't a constant.  */
8550       if (mask == 1)
8551 	x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8552 				 XEXP (x, 0), XEXP (x, 1));
8553 
8554     shiftrt:
8555 
8556       /* If this is a zero- or sign-extension operation that just affects bits
8557 	 we don't care about, remove it.  Be sure the call above returned
8558 	 something that is still a shift.  */
8559 
8560       if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8561 	  && CONST_INT_P (XEXP (x, 1))
8562 	  && INTVAL (XEXP (x, 1)) >= 0
8563 	  && (INTVAL (XEXP (x, 1))
8564 	      <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8565 	  && GET_CODE (XEXP (x, 0)) == ASHIFT
8566 	  && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8567 	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8568 			      next_select);
8569 
8570       break;
8571 
8572     case ROTATE:
8573     case ROTATERT:
8574       /* If the shift count is constant and we can do computations
8575 	 in the mode of X, compute where the bits we care about are.
8576 	 Otherwise, we can't do anything.  Don't change the mode of
8577 	 the shift or propagate MODE into the shift, though.  */
8578       if (CONST_INT_P (XEXP (x, 1))
8579 	  && INTVAL (XEXP (x, 1)) >= 0)
8580 	{
8581 	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8582 					    GET_MODE (x), GEN_INT (mask),
8583 					    XEXP (x, 1));
8584 	  if (temp && CONST_INT_P (temp))
8585 	    SUBST (XEXP (x, 0),
8586 		   force_to_mode (XEXP (x, 0), GET_MODE (x),
8587 				  INTVAL (temp), next_select));
8588 	}
8589       break;
8590 
8591     case NEG:
8592       /* If we just want the low-order bit, the NEG isn't needed since it
8593 	 won't change the low-order bit.  */
8594       if (mask == 1)
8595 	return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8596 
8597       /* We need any bits less significant than the most significant bit in
8598 	 MASK since carries from those bits will affect the bits we are
8599 	 interested in.  */
8600       mask = fuller_mask;
8601       goto unop;
8602 
8603     case NOT:
8604       /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8605 	 same as the XOR case above.  Ensure that the constant we form is not
8606 	 wider than the mode of X.  */
8607 
8608       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8609 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8610 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8611 	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8612 	      < GET_MODE_PRECISION (GET_MODE (x)))
8613 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8614 	{
8615 	  temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8616 			       GET_MODE (x));
8617 	  temp = simplify_gen_binary (XOR, GET_MODE (x),
8618 				      XEXP (XEXP (x, 0), 0), temp);
8619 	  x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8620 				   temp, XEXP (XEXP (x, 0), 1));
8621 
8622 	  return force_to_mode (x, mode, mask, next_select);
8623 	}
8624 
8625       /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8626 	 use the full mask inside the NOT.  */
8627       mask = fuller_mask;
8628 
8629     unop:
8630       op0 = gen_lowpart_or_truncate (op_mode,
8631 				     force_to_mode (XEXP (x, 0), mode, mask,
8632 						    next_select));
8633       if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8634 	x = simplify_gen_unary (code, op_mode, op0, op_mode);
8635       break;
8636 
8637     case NE:
8638       /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8639 	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8640 	 which is equal to STORE_FLAG_VALUE.  */
8641       if ((mask & ~STORE_FLAG_VALUE) == 0
8642 	  && XEXP (x, 1) == const0_rtx
8643 	  && GET_MODE (XEXP (x, 0)) == mode
8644 	  && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8645 	  && (nonzero_bits (XEXP (x, 0), mode)
8646 	      == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8647 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8648 
8649       break;
8650 
8651     case IF_THEN_ELSE:
8652       /* We have no way of knowing if the IF_THEN_ELSE can itself be
8653 	 written in a narrower mode.  We play it safe and do not do so.  */
8654 
8655       SUBST (XEXP (x, 1),
8656 	     gen_lowpart_or_truncate (GET_MODE (x),
8657 				      force_to_mode (XEXP (x, 1), mode,
8658 						     mask, next_select)));
8659       SUBST (XEXP (x, 2),
8660 	     gen_lowpart_or_truncate (GET_MODE (x),
8661 				      force_to_mode (XEXP (x, 2), mode,
8662 						     mask, next_select)));
8663       break;
8664 
8665     default:
8666       break;
8667     }
8668 
8669   /* Ensure we return a value of the proper mode.  */
8670   return gen_lowpart_or_truncate (mode, x);
8671 }
8672 
8673 /* Return nonzero if X is an expression that has one of two values depending on
8674    whether some other value is zero or nonzero.  In that case, we return the
8675    value that is being tested, *PTRUE is set to the value if the rtx being
8676    returned has a nonzero value, and *PFALSE is set to the other alternative.
8677 
8678    If we return zero, we set *PTRUE and *PFALSE to X.  */
8679 
8680 static rtx
8681 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8682 {
8683   enum machine_mode mode = GET_MODE (x);
8684   enum rtx_code code = GET_CODE (x);
8685   rtx cond0, cond1, true0, true1, false0, false1;
8686   unsigned HOST_WIDE_INT nz;
8687 
8688   /* If we are comparing a value against zero, we are done.  */
8689   if ((code == NE || code == EQ)
8690       && XEXP (x, 1) == const0_rtx)
8691     {
8692       *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8693       *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8694       return XEXP (x, 0);
8695     }
8696 
8697   /* If this is a unary operation whose operand has one of two values, apply
8698      our opcode to compute those values.  */
8699   else if (UNARY_P (x)
8700 	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8701     {
8702       *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8703       *pfalse = simplify_gen_unary (code, mode, false0,
8704 				    GET_MODE (XEXP (x, 0)));
8705       return cond0;
8706     }
8707 
8708   /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8709      make can't possibly match and would suppress other optimizations.  */
8710   else if (code == COMPARE)
8711     ;
8712 
8713   /* If this is a binary operation, see if either side has only one of two
8714      values.  If either one does or if both do and they are conditional on
8715      the same value, compute the new true and false values.  */
8716   else if (BINARY_P (x))
8717     {
8718       cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8719       cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8720 
8721       if ((cond0 != 0 || cond1 != 0)
8722 	  && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8723 	{
8724 	  /* If if_then_else_cond returned zero, then true/false are the
8725 	     same rtl.  We must copy one of them to prevent invalid rtl
8726 	     sharing.  */
8727 	  if (cond0 == 0)
8728 	    true0 = copy_rtx (true0);
8729 	  else if (cond1 == 0)
8730 	    true1 = copy_rtx (true1);
8731 
8732 	  if (COMPARISON_P (x))
8733 	    {
8734 	      *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8735 						true0, true1);
8736 	      *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8737 						 false0, false1);
8738 	     }
8739 	  else
8740 	    {
8741 	      *ptrue = simplify_gen_binary (code, mode, true0, true1);
8742 	      *pfalse = simplify_gen_binary (code, mode, false0, false1);
8743 	    }
8744 
8745 	  return cond0 ? cond0 : cond1;
8746 	}
8747 
8748       /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8749 	 operands is zero when the other is nonzero, and vice-versa,
8750 	 and STORE_FLAG_VALUE is 1 or -1.  */
8751 
8752       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8753 	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
8754 	      || code == UMAX)
8755 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8756 	{
8757 	  rtx op0 = XEXP (XEXP (x, 0), 1);
8758 	  rtx op1 = XEXP (XEXP (x, 1), 1);
8759 
8760 	  cond0 = XEXP (XEXP (x, 0), 0);
8761 	  cond1 = XEXP (XEXP (x, 1), 0);
8762 
8763 	  if (COMPARISON_P (cond0)
8764 	      && COMPARISON_P (cond1)
8765 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8766 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8767 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8768 		  || ((swap_condition (GET_CODE (cond0))
8769 		       == reversed_comparison_code (cond1, NULL))
8770 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8771 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8772 	      && ! side_effects_p (x))
8773 	    {
8774 	      *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8775 	      *pfalse = simplify_gen_binary (MULT, mode,
8776 					     (code == MINUS
8777 					      ? simplify_gen_unary (NEG, mode,
8778 								    op1, mode)
8779 					      : op1),
8780 					      const_true_rtx);
8781 	      return cond0;
8782 	    }
8783 	}
8784 
8785       /* Similarly for MULT, AND and UMIN, except that for these the result
8786 	 is always zero.  */
8787       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8788 	  && (code == MULT || code == AND || code == UMIN)
8789 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8790 	{
8791 	  cond0 = XEXP (XEXP (x, 0), 0);
8792 	  cond1 = XEXP (XEXP (x, 1), 0);
8793 
8794 	  if (COMPARISON_P (cond0)
8795 	      && COMPARISON_P (cond1)
8796 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8797 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8798 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8799 		  || ((swap_condition (GET_CODE (cond0))
8800 		       == reversed_comparison_code (cond1, NULL))
8801 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8802 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8803 	      && ! side_effects_p (x))
8804 	    {
8805 	      *ptrue = *pfalse = const0_rtx;
8806 	      return cond0;
8807 	    }
8808 	}
8809     }
8810 
8811   else if (code == IF_THEN_ELSE)
8812     {
8813       /* If we have IF_THEN_ELSE already, extract the condition and
8814 	 canonicalize it if it is NE or EQ.  */
8815       cond0 = XEXP (x, 0);
8816       *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8817       if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8818 	return XEXP (cond0, 0);
8819       else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8820 	{
8821 	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8822 	  return XEXP (cond0, 0);
8823 	}
8824       else
8825 	return cond0;
8826     }
8827 
8828   /* If X is a SUBREG, we can narrow both the true and false values
8829      if the inner expression, if there is a condition.  */
8830   else if (code == SUBREG
8831 	   && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8832 					       &true0, &false0)))
8833     {
8834       true0 = simplify_gen_subreg (mode, true0,
8835 				   GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8836       false0 = simplify_gen_subreg (mode, false0,
8837 				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8838       if (true0 && false0)
8839 	{
8840 	  *ptrue = true0;
8841 	  *pfalse = false0;
8842 	  return cond0;
8843 	}
8844     }
8845 
8846   /* If X is a constant, this isn't special and will cause confusions
8847      if we treat it as such.  Likewise if it is equivalent to a constant.  */
8848   else if (CONSTANT_P (x)
8849 	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8850     ;
8851 
8852   /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8853      will be least confusing to the rest of the compiler.  */
8854   else if (mode == BImode)
8855     {
8856       *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8857       return x;
8858     }
8859 
8860   /* If X is known to be either 0 or -1, those are the true and
8861      false values when testing X.  */
8862   else if (x == constm1_rtx || x == const0_rtx
8863 	   || (mode != VOIDmode
8864 	       && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8865     {
8866       *ptrue = constm1_rtx, *pfalse = const0_rtx;
8867       return x;
8868     }
8869 
8870   /* Likewise for 0 or a single bit.  */
8871   else if (HWI_COMPUTABLE_MODE_P (mode)
8872 	   && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8873     {
8874       *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8875       return x;
8876     }
8877 
8878   /* Otherwise fail; show no condition with true and false values the same.  */
8879   *ptrue = *pfalse = x;
8880   return 0;
8881 }
8882 
8883 /* Return the value of expression X given the fact that condition COND
8884    is known to be true when applied to REG as its first operand and VAL
8885    as its second.  X is known to not be shared and so can be modified in
8886    place.
8887 
8888    We only handle the simplest cases, and specifically those cases that
8889    arise with IF_THEN_ELSE expressions.  */
8890 
8891 static rtx
8892 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8893 {
8894   enum rtx_code code = GET_CODE (x);
8895   rtx temp;
8896   const char *fmt;
8897   int i, j;
8898 
8899   if (side_effects_p (x))
8900     return x;
8901 
8902   /* If either operand of the condition is a floating point value,
8903      then we have to avoid collapsing an EQ comparison.  */
8904   if (cond == EQ
8905       && rtx_equal_p (x, reg)
8906       && ! FLOAT_MODE_P (GET_MODE (x))
8907       && ! FLOAT_MODE_P (GET_MODE (val)))
8908     return val;
8909 
8910   if (cond == UNEQ && rtx_equal_p (x, reg))
8911     return val;
8912 
8913   /* If X is (abs REG) and we know something about REG's relationship
8914      with zero, we may be able to simplify this.  */
8915 
8916   if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8917     switch (cond)
8918       {
8919       case GE:  case GT:  case EQ:
8920 	return XEXP (x, 0);
8921       case LT:  case LE:
8922 	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8923 				   XEXP (x, 0),
8924 				   GET_MODE (XEXP (x, 0)));
8925       default:
8926 	break;
8927       }
8928 
8929   /* The only other cases we handle are MIN, MAX, and comparisons if the
8930      operands are the same as REG and VAL.  */
8931 
8932   else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8933     {
8934       if (rtx_equal_p (XEXP (x, 0), val))
8935 	cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8936 
8937       if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8938 	{
8939 	  if (COMPARISON_P (x))
8940 	    {
8941 	      if (comparison_dominates_p (cond, code))
8942 		return const_true_rtx;
8943 
8944 	      code = reversed_comparison_code (x, NULL);
8945 	      if (code != UNKNOWN
8946 		  && comparison_dominates_p (cond, code))
8947 		return const0_rtx;
8948 	      else
8949 		return x;
8950 	    }
8951 	  else if (code == SMAX || code == SMIN
8952 		   || code == UMIN || code == UMAX)
8953 	    {
8954 	      int unsignedp = (code == UMIN || code == UMAX);
8955 
8956 	      /* Do not reverse the condition when it is NE or EQ.
8957 		 This is because we cannot conclude anything about
8958 		 the value of 'SMAX (x, y)' when x is not equal to y,
8959 		 but we can when x equals y.  */
8960 	      if ((code == SMAX || code == UMAX)
8961 		  && ! (cond == EQ || cond == NE))
8962 		cond = reverse_condition (cond);
8963 
8964 	      switch (cond)
8965 		{
8966 		case GE:   case GT:
8967 		  return unsignedp ? x : XEXP (x, 1);
8968 		case LE:   case LT:
8969 		  return unsignedp ? x : XEXP (x, 0);
8970 		case GEU:  case GTU:
8971 		  return unsignedp ? XEXP (x, 1) : x;
8972 		case LEU:  case LTU:
8973 		  return unsignedp ? XEXP (x, 0) : x;
8974 		default:
8975 		  break;
8976 		}
8977 	    }
8978 	}
8979     }
8980   else if (code == SUBREG)
8981     {
8982       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8983       rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8984 
8985       if (SUBREG_REG (x) != r)
8986 	{
8987 	  /* We must simplify subreg here, before we lose track of the
8988 	     original inner_mode.  */
8989 	  new_rtx = simplify_subreg (GET_MODE (x), r,
8990 				 inner_mode, SUBREG_BYTE (x));
8991 	  if (new_rtx)
8992 	    return new_rtx;
8993 	  else
8994 	    SUBST (SUBREG_REG (x), r);
8995 	}
8996 
8997       return x;
8998     }
8999   /* We don't have to handle SIGN_EXTEND here, because even in the
9000      case of replacing something with a modeless CONST_INT, a
9001      CONST_INT is already (supposed to be) a valid sign extension for
9002      its narrower mode, which implies it's already properly
9003      sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
9004      story is different.  */
9005   else if (code == ZERO_EXTEND)
9006     {
9007       enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9008       rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9009 
9010       if (XEXP (x, 0) != r)
9011 	{
9012 	  /* We must simplify the zero_extend here, before we lose
9013 	     track of the original inner_mode.  */
9014 	  new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9015 					  r, inner_mode);
9016 	  if (new_rtx)
9017 	    return new_rtx;
9018 	  else
9019 	    SUBST (XEXP (x, 0), r);
9020 	}
9021 
9022       return x;
9023     }
9024 
9025   fmt = GET_RTX_FORMAT (code);
9026   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9027     {
9028       if (fmt[i] == 'e')
9029 	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9030       else if (fmt[i] == 'E')
9031 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9032 	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9033 						cond, reg, val));
9034     }
9035 
9036   return x;
9037 }
9038 
9039 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9040    assignment as a field assignment.  */
9041 
9042 static int
9043 rtx_equal_for_field_assignment_p (rtx x, rtx y)
9044 {
9045   if (x == y || rtx_equal_p (x, y))
9046     return 1;
9047 
9048   if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9049     return 0;
9050 
9051   /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9052      Note that all SUBREGs of MEM are paradoxical; otherwise they
9053      would have been rewritten.  */
9054   if (MEM_P (x) && GET_CODE (y) == SUBREG
9055       && MEM_P (SUBREG_REG (y))
9056       && rtx_equal_p (SUBREG_REG (y),
9057 		      gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9058     return 1;
9059 
9060   if (MEM_P (y) && GET_CODE (x) == SUBREG
9061       && MEM_P (SUBREG_REG (x))
9062       && rtx_equal_p (SUBREG_REG (x),
9063 		      gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9064     return 1;
9065 
9066   /* We used to see if get_last_value of X and Y were the same but that's
9067      not correct.  In one direction, we'll cause the assignment to have
9068      the wrong destination and in the case, we'll import a register into this
9069      insn that might have already have been dead.   So fail if none of the
9070      above cases are true.  */
9071   return 0;
9072 }
9073 
9074 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9075    Return that assignment if so.
9076 
9077    We only handle the most common cases.  */
9078 
9079 static rtx
9080 make_field_assignment (rtx x)
9081 {
9082   rtx dest = SET_DEST (x);
9083   rtx src = SET_SRC (x);
9084   rtx assign;
9085   rtx rhs, lhs;
9086   HOST_WIDE_INT c1;
9087   HOST_WIDE_INT pos;
9088   unsigned HOST_WIDE_INT len;
9089   rtx other;
9090   enum machine_mode mode;
9091 
9092   /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9093      a clear of a one-bit field.  We will have changed it to
9094      (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
9095      for a SUBREG.  */
9096 
9097   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9098       && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9099       && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9100       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9101     {
9102       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9103 				1, 1, 1, 0);
9104       if (assign != 0)
9105 	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9106       return x;
9107     }
9108 
9109   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9110       && subreg_lowpart_p (XEXP (src, 0))
9111       && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9112 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9113       && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9114       && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9115       && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9116       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9117     {
9118       assign = make_extraction (VOIDmode, dest, 0,
9119 				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9120 				1, 1, 1, 0);
9121       if (assign != 0)
9122 	return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9123       return x;
9124     }
9125 
9126   /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9127      one-bit field.  */
9128   if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9129       && XEXP (XEXP (src, 0), 0) == const1_rtx
9130       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9131     {
9132       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9133 				1, 1, 1, 0);
9134       if (assign != 0)
9135 	return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9136       return x;
9137     }
9138 
9139   /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9140      SRC is an AND with all bits of that field set, then we can discard
9141      the AND.  */
9142   if (GET_CODE (dest) == ZERO_EXTRACT
9143       && CONST_INT_P (XEXP (dest, 1))
9144       && GET_CODE (src) == AND
9145       && CONST_INT_P (XEXP (src, 1)))
9146     {
9147       HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9148       unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9149       unsigned HOST_WIDE_INT ze_mask;
9150 
9151       if (width >= HOST_BITS_PER_WIDE_INT)
9152 	ze_mask = -1;
9153       else
9154 	ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9155 
9156       /* Complete overlap.  We can remove the source AND.  */
9157       if ((and_mask & ze_mask) == ze_mask)
9158 	return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9159 
9160       /* Partial overlap.  We can reduce the source AND.  */
9161       if ((and_mask & ze_mask) != and_mask)
9162 	{
9163 	  mode = GET_MODE (src);
9164 	  src = gen_rtx_AND (mode, XEXP (src, 0),
9165 			     gen_int_mode (and_mask & ze_mask, mode));
9166 	  return gen_rtx_SET (VOIDmode, dest, src);
9167 	}
9168     }
9169 
9170   /* The other case we handle is assignments into a constant-position
9171      field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
9172      a mask that has all one bits except for a group of zero bits and
9173      OTHER is known to have zeros where C1 has ones, this is such an
9174      assignment.  Compute the position and length from C1.  Shift OTHER
9175      to the appropriate position, force it to the required mode, and
9176      make the extraction.  Check for the AND in both operands.  */
9177 
9178   if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9179     return x;
9180 
9181   rhs = expand_compound_operation (XEXP (src, 0));
9182   lhs = expand_compound_operation (XEXP (src, 1));
9183 
9184   if (GET_CODE (rhs) == AND
9185       && CONST_INT_P (XEXP (rhs, 1))
9186       && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9187     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9188   else if (GET_CODE (lhs) == AND
9189 	   && CONST_INT_P (XEXP (lhs, 1))
9190 	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9191     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9192   else
9193     return x;
9194 
9195   pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9196   if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9197       || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9198       || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9199     return x;
9200 
9201   assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9202   if (assign == 0)
9203     return x;
9204 
9205   /* The mode to use for the source is the mode of the assignment, or of
9206      what is inside a possible STRICT_LOW_PART.  */
9207   mode = (GET_CODE (assign) == STRICT_LOW_PART
9208 	  ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9209 
9210   /* Shift OTHER right POS places and make it the source, restricting it
9211      to the proper length and mode.  */
9212 
9213   src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9214 						     GET_MODE (src),
9215 						     other, pos),
9216 			       dest);
9217   src = force_to_mode (src, mode,
9218 		       GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9219 		       ? ~(unsigned HOST_WIDE_INT) 0
9220 		       : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9221 		       0);
9222 
9223   /* If SRC is masked by an AND that does not make a difference in
9224      the value being stored, strip it.  */
9225   if (GET_CODE (assign) == ZERO_EXTRACT
9226       && CONST_INT_P (XEXP (assign, 1))
9227       && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9228       && GET_CODE (src) == AND
9229       && CONST_INT_P (XEXP (src, 1))
9230       && UINTVAL (XEXP (src, 1))
9231 	 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9232     src = XEXP (src, 0);
9233 
9234   return gen_rtx_SET (VOIDmode, assign, src);
9235 }
9236 
9237 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9238    if so.  */
9239 
9240 static rtx
9241 apply_distributive_law (rtx x)
9242 {
9243   enum rtx_code code = GET_CODE (x);
9244   enum rtx_code inner_code;
9245   rtx lhs, rhs, other;
9246   rtx tem;
9247 
9248   /* Distributivity is not true for floating point as it can change the
9249      value.  So we don't do it unless -funsafe-math-optimizations.  */
9250   if (FLOAT_MODE_P (GET_MODE (x))
9251       && ! flag_unsafe_math_optimizations)
9252     return x;
9253 
9254   /* The outer operation can only be one of the following:  */
9255   if (code != IOR && code != AND && code != XOR
9256       && code != PLUS && code != MINUS)
9257     return x;
9258 
9259   lhs = XEXP (x, 0);
9260   rhs = XEXP (x, 1);
9261 
9262   /* If either operand is a primitive we can't do anything, so get out
9263      fast.  */
9264   if (OBJECT_P (lhs) || OBJECT_P (rhs))
9265     return x;
9266 
9267   lhs = expand_compound_operation (lhs);
9268   rhs = expand_compound_operation (rhs);
9269   inner_code = GET_CODE (lhs);
9270   if (inner_code != GET_CODE (rhs))
9271     return x;
9272 
9273   /* See if the inner and outer operations distribute.  */
9274   switch (inner_code)
9275     {
9276     case LSHIFTRT:
9277     case ASHIFTRT:
9278     case AND:
9279     case IOR:
9280       /* These all distribute except over PLUS.  */
9281       if (code == PLUS || code == MINUS)
9282 	return x;
9283       break;
9284 
9285     case MULT:
9286       if (code != PLUS && code != MINUS)
9287 	return x;
9288       break;
9289 
9290     case ASHIFT:
9291       /* This is also a multiply, so it distributes over everything.  */
9292       break;
9293 
9294     case SUBREG:
9295       /* Non-paradoxical SUBREGs distributes over all operations,
9296 	 provided the inner modes and byte offsets are the same, this
9297 	 is an extraction of a low-order part, we don't convert an fp
9298 	 operation to int or vice versa, this is not a vector mode,
9299 	 and we would not be converting a single-word operation into a
9300 	 multi-word operation.  The latter test is not required, but
9301 	 it prevents generating unneeded multi-word operations.  Some
9302 	 of the previous tests are redundant given the latter test,
9303 	 but are retained because they are required for correctness.
9304 
9305 	 We produce the result slightly differently in this case.  */
9306 
9307       if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9308 	  || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9309 	  || ! subreg_lowpart_p (lhs)
9310 	  || (GET_MODE_CLASS (GET_MODE (lhs))
9311 	      != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9312 	  || paradoxical_subreg_p (lhs)
9313 	  || VECTOR_MODE_P (GET_MODE (lhs))
9314 	  || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9315 	  /* Result might need to be truncated.  Don't change mode if
9316 	     explicit truncation is needed.  */
9317 	  || !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
9318 					     GET_MODE (SUBREG_REG (lhs))))
9319 	return x;
9320 
9321       tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9322 				 SUBREG_REG (lhs), SUBREG_REG (rhs));
9323       return gen_lowpart (GET_MODE (x), tem);
9324 
9325     default:
9326       return x;
9327     }
9328 
9329   /* Set LHS and RHS to the inner operands (A and B in the example
9330      above) and set OTHER to the common operand (C in the example).
9331      There is only one way to do this unless the inner operation is
9332      commutative.  */
9333   if (COMMUTATIVE_ARITH_P (lhs)
9334       && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9335     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9336   else if (COMMUTATIVE_ARITH_P (lhs)
9337 	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9338     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9339   else if (COMMUTATIVE_ARITH_P (lhs)
9340 	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9341     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9342   else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9343     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9344   else
9345     return x;
9346 
9347   /* Form the new inner operation, seeing if it simplifies first.  */
9348   tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9349 
9350   /* There is one exception to the general way of distributing:
9351      (a | c) ^ (b | c) -> (a ^ b) & ~c  */
9352   if (code == XOR && inner_code == IOR)
9353     {
9354       inner_code = AND;
9355       other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9356     }
9357 
9358   /* We may be able to continuing distributing the result, so call
9359      ourselves recursively on the inner operation before forming the
9360      outer operation, which we return.  */
9361   return simplify_gen_binary (inner_code, GET_MODE (x),
9362 			      apply_distributive_law (tem), other);
9363 }
9364 
9365 /* See if X is of the form (* (+ A B) C), and if so convert to
9366    (+ (* A C) (* B C)) and try to simplify.
9367 
9368    Most of the time, this results in no change.  However, if some of
9369    the operands are the same or inverses of each other, simplifications
9370    will result.
9371 
9372    For example, (and (ior A B) (not B)) can occur as the result of
9373    expanding a bit field assignment.  When we apply the distributive
9374    law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9375    which then simplifies to (and (A (not B))).
9376 
9377    Note that no checks happen on the validity of applying the inverse
9378    distributive law.  This is pointless since we can do it in the
9379    few places where this routine is called.
9380 
9381    N is the index of the term that is decomposed (the arithmetic operation,
9382    i.e. (+ A B) in the first example above).  !N is the index of the term that
9383    is distributed, i.e. of C in the first example above.  */
9384 static rtx
9385 distribute_and_simplify_rtx (rtx x, int n)
9386 {
9387   enum machine_mode mode;
9388   enum rtx_code outer_code, inner_code;
9389   rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9390 
9391   /* Distributivity is not true for floating point as it can change the
9392      value.  So we don't do it unless -funsafe-math-optimizations.  */
9393   if (FLOAT_MODE_P (GET_MODE (x))
9394       && ! flag_unsafe_math_optimizations)
9395     return NULL_RTX;
9396 
9397   decomposed = XEXP (x, n);
9398   if (!ARITHMETIC_P (decomposed))
9399     return NULL_RTX;
9400 
9401   mode = GET_MODE (x);
9402   outer_code = GET_CODE (x);
9403   distributed = XEXP (x, !n);
9404 
9405   inner_code = GET_CODE (decomposed);
9406   inner_op0 = XEXP (decomposed, 0);
9407   inner_op1 = XEXP (decomposed, 1);
9408 
9409   /* Special case (and (xor B C) (not A)), which is equivalent to
9410      (xor (ior A B) (ior A C))  */
9411   if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9412     {
9413       distributed = XEXP (distributed, 0);
9414       outer_code = IOR;
9415     }
9416 
9417   if (n == 0)
9418     {
9419       /* Distribute the second term.  */
9420       new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9421       new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9422     }
9423   else
9424     {
9425       /* Distribute the first term.  */
9426       new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9427       new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9428     }
9429 
9430   tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9431 						     new_op0, new_op1));
9432   if (GET_CODE (tmp) != outer_code
9433       && (set_src_cost (tmp, optimize_this_for_speed_p)
9434 	  < set_src_cost (x, optimize_this_for_speed_p)))
9435     return tmp;
9436 
9437   return NULL_RTX;
9438 }
9439 
9440 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9441    in MODE.  Return an equivalent form, if different from (and VAROP
9442    (const_int CONSTOP)).  Otherwise, return NULL_RTX.  */
9443 
9444 static rtx
9445 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9446 			  unsigned HOST_WIDE_INT constop)
9447 {
9448   unsigned HOST_WIDE_INT nonzero;
9449   unsigned HOST_WIDE_INT orig_constop;
9450   rtx orig_varop;
9451   int i;
9452 
9453   orig_varop = varop;
9454   orig_constop = constop;
9455   if (GET_CODE (varop) == CLOBBER)
9456     return NULL_RTX;
9457 
9458   /* Simplify VAROP knowing that we will be only looking at some of the
9459      bits in it.
9460 
9461      Note by passing in CONSTOP, we guarantee that the bits not set in
9462      CONSTOP are not significant and will never be examined.  We must
9463      ensure that is the case by explicitly masking out those bits
9464      before returning.  */
9465   varop = force_to_mode (varop, mode, constop, 0);
9466 
9467   /* If VAROP is a CLOBBER, we will fail so return it.  */
9468   if (GET_CODE (varop) == CLOBBER)
9469     return varop;
9470 
9471   /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9472      to VAROP and return the new constant.  */
9473   if (CONST_INT_P (varop))
9474     return gen_int_mode (INTVAL (varop) & constop, mode);
9475 
9476   /* See what bits may be nonzero in VAROP.  Unlike the general case of
9477      a call to nonzero_bits, here we don't care about bits outside
9478      MODE.  */
9479 
9480   nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9481 
9482   /* Turn off all bits in the constant that are known to already be zero.
9483      Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9484      which is tested below.  */
9485 
9486   constop &= nonzero;
9487 
9488   /* If we don't have any bits left, return zero.  */
9489   if (constop == 0)
9490     return const0_rtx;
9491 
9492   /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9493      a power of two, we can replace this with an ASHIFT.  */
9494   if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9495       && (i = exact_log2 (constop)) >= 0)
9496     return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9497 
9498   /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9499      or XOR, then try to apply the distributive law.  This may eliminate
9500      operations if either branch can be simplified because of the AND.
9501      It may also make some cases more complex, but those cases probably
9502      won't match a pattern either with or without this.  */
9503 
9504   if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9505     return
9506       gen_lowpart
9507 	(mode,
9508 	 apply_distributive_law
9509 	 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9510 			       simplify_and_const_int (NULL_RTX,
9511 						       GET_MODE (varop),
9512 						       XEXP (varop, 0),
9513 						       constop),
9514 			       simplify_and_const_int (NULL_RTX,
9515 						       GET_MODE (varop),
9516 						       XEXP (varop, 1),
9517 						       constop))));
9518 
9519   /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9520      the AND and see if one of the operands simplifies to zero.  If so, we
9521      may eliminate it.  */
9522 
9523   if (GET_CODE (varop) == PLUS
9524       && exact_log2 (constop + 1) >= 0)
9525     {
9526       rtx o0, o1;
9527 
9528       o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9529       o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9530       if (o0 == const0_rtx)
9531 	return o1;
9532       if (o1 == const0_rtx)
9533 	return o0;
9534     }
9535 
9536   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
9537   varop = gen_lowpart (mode, varop);
9538   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9539     return NULL_RTX;
9540 
9541   /* If we are only masking insignificant bits, return VAROP.  */
9542   if (constop == nonzero)
9543     return varop;
9544 
9545   if (varop == orig_varop && constop == orig_constop)
9546     return NULL_RTX;
9547 
9548   /* Otherwise, return an AND.  */
9549   return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9550 }
9551 
9552 
9553 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9554    in MODE.
9555 
9556    Return an equivalent form, if different from X.  Otherwise, return X.  If
9557    X is zero, we are to always construct the equivalent form.  */
9558 
9559 static rtx
9560 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9561 			unsigned HOST_WIDE_INT constop)
9562 {
9563   rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9564   if (tem)
9565     return tem;
9566 
9567   if (!x)
9568     x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9569 			     gen_int_mode (constop, mode));
9570   if (GET_MODE (x) != mode)
9571     x = gen_lowpart (mode, x);
9572   return x;
9573 }
9574 
9575 /* Given a REG, X, compute which bits in X can be nonzero.
9576    We don't care about bits outside of those defined in MODE.
9577 
9578    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9579    a shift, AND, or zero_extract, we can do better.  */
9580 
9581 static rtx
9582 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9583 			      const_rtx known_x ATTRIBUTE_UNUSED,
9584 			      enum machine_mode known_mode ATTRIBUTE_UNUSED,
9585 			      unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9586 			      unsigned HOST_WIDE_INT *nonzero)
9587 {
9588   rtx tem;
9589   reg_stat_type *rsp;
9590 
9591   /* If X is a register whose nonzero bits value is current, use it.
9592      Otherwise, if X is a register whose value we can find, use that
9593      value.  Otherwise, use the previously-computed global nonzero bits
9594      for this register.  */
9595 
9596   rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9597   if (rsp->last_set_value != 0
9598       && (rsp->last_set_mode == mode
9599 	  || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9600 	      && GET_MODE_CLASS (mode) == MODE_INT))
9601       && ((rsp->last_set_label >= label_tick_ebb_start
9602 	   && rsp->last_set_label < label_tick)
9603 	  || (rsp->last_set_label == label_tick
9604               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9605 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9606 	      && REG_N_SETS (REGNO (x)) == 1
9607 	      && !REGNO_REG_SET_P
9608 	          (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9609     {
9610       *nonzero &= rsp->last_set_nonzero_bits;
9611       return NULL;
9612     }
9613 
9614   tem = get_last_value (x);
9615 
9616   if (tem)
9617     {
9618 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9619       /* If X is narrower than MODE and TEM is a non-negative
9620 	 constant that would appear negative in the mode of X,
9621 	 sign-extend it for use in reg_nonzero_bits because some
9622 	 machines (maybe most) will actually do the sign-extension
9623 	 and this is the conservative approach.
9624 
9625 	 ??? For 2.5, try to tighten up the MD files in this regard
9626 	 instead of this kludge.  */
9627 
9628       if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9629 	  && CONST_INT_P (tem)
9630 	  && INTVAL (tem) > 0
9631 	  && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9632 	tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9633 #endif
9634       return tem;
9635     }
9636   else if (nonzero_sign_valid && rsp->nonzero_bits)
9637     {
9638       unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9639 
9640       if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9641 	/* We don't know anything about the upper bits.  */
9642 	mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9643       *nonzero &= mask;
9644     }
9645 
9646   return NULL;
9647 }
9648 
9649 /* Return the number of bits at the high-order end of X that are known to
9650    be equal to the sign bit.  X will be used in mode MODE; if MODE is
9651    VOIDmode, X will be used in its own mode.  The returned value  will always
9652    be between 1 and the number of bits in MODE.  */
9653 
9654 static rtx
9655 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9656 				     const_rtx known_x ATTRIBUTE_UNUSED,
9657 				     enum machine_mode known_mode
9658 				     ATTRIBUTE_UNUSED,
9659 				     unsigned int known_ret ATTRIBUTE_UNUSED,
9660 				     unsigned int *result)
9661 {
9662   rtx tem;
9663   reg_stat_type *rsp;
9664 
9665   rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9666   if (rsp->last_set_value != 0
9667       && rsp->last_set_mode == mode
9668       && ((rsp->last_set_label >= label_tick_ebb_start
9669 	   && rsp->last_set_label < label_tick)
9670 	  || (rsp->last_set_label == label_tick
9671               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9672 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9673 	      && REG_N_SETS (REGNO (x)) == 1
9674 	      && !REGNO_REG_SET_P
9675 	          (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9676     {
9677       *result = rsp->last_set_sign_bit_copies;
9678       return NULL;
9679     }
9680 
9681   tem = get_last_value (x);
9682   if (tem != 0)
9683     return tem;
9684 
9685   if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9686       && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9687     *result = rsp->sign_bit_copies;
9688 
9689   return NULL;
9690 }
9691 
9692 /* Return the number of "extended" bits there are in X, when interpreted
9693    as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
9694    unsigned quantities, this is the number of high-order zero bits.
9695    For signed quantities, this is the number of copies of the sign bit
9696    minus 1.  In both case, this function returns the number of "spare"
9697    bits.  For example, if two quantities for which this function returns
9698    at least 1 are added, the addition is known not to overflow.
9699 
9700    This function will always return 0 unless called during combine, which
9701    implies that it must be called from a define_split.  */
9702 
9703 unsigned int
9704 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9705 {
9706   if (nonzero_sign_valid == 0)
9707     return 0;
9708 
9709   return (unsignedp
9710 	  ? (HWI_COMPUTABLE_MODE_P (mode)
9711 	     ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9712 			       - floor_log2 (nonzero_bits (x, mode)))
9713 	     : 0)
9714 	  : num_sign_bit_copies (x, mode) - 1);
9715 }
9716 
9717 /* This function is called from `simplify_shift_const' to merge two
9718    outer operations.  Specifically, we have already found that we need
9719    to perform operation *POP0 with constant *PCONST0 at the outermost
9720    position.  We would now like to also perform OP1 with constant CONST1
9721    (with *POP0 being done last).
9722 
9723    Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9724    the resulting operation.  *PCOMP_P is set to 1 if we would need to
9725    complement the innermost operand, otherwise it is unchanged.
9726 
9727    MODE is the mode in which the operation will be done.  No bits outside
9728    the width of this mode matter.  It is assumed that the width of this mode
9729    is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9730 
9731    If *POP0 or OP1 are UNKNOWN, it means no operation is required.  Only NEG, PLUS,
9732    IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
9733    result is simply *PCONST0.
9734 
9735    If the resulting operation cannot be expressed as one operation, we
9736    return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
9737 
9738 static int
9739 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9740 {
9741   enum rtx_code op0 = *pop0;
9742   HOST_WIDE_INT const0 = *pconst0;
9743 
9744   const0 &= GET_MODE_MASK (mode);
9745   const1 &= GET_MODE_MASK (mode);
9746 
9747   /* If OP0 is an AND, clear unimportant bits in CONST1.  */
9748   if (op0 == AND)
9749     const1 &= const0;
9750 
9751   /* If OP0 or OP1 is UNKNOWN, this is easy.  Similarly if they are the same or
9752      if OP0 is SET.  */
9753 
9754   if (op1 == UNKNOWN || op0 == SET)
9755     return 1;
9756 
9757   else if (op0 == UNKNOWN)
9758     op0 = op1, const0 = const1;
9759 
9760   else if (op0 == op1)
9761     {
9762       switch (op0)
9763 	{
9764 	case AND:
9765 	  const0 &= const1;
9766 	  break;
9767 	case IOR:
9768 	  const0 |= const1;
9769 	  break;
9770 	case XOR:
9771 	  const0 ^= const1;
9772 	  break;
9773 	case PLUS:
9774 	  const0 += const1;
9775 	  break;
9776 	case NEG:
9777 	  op0 = UNKNOWN;
9778 	  break;
9779 	default:
9780 	  break;
9781 	}
9782     }
9783 
9784   /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
9785   else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9786     return 0;
9787 
9788   /* If the two constants aren't the same, we can't do anything.  The
9789      remaining six cases can all be done.  */
9790   else if (const0 != const1)
9791     return 0;
9792 
9793   else
9794     switch (op0)
9795       {
9796       case IOR:
9797 	if (op1 == AND)
9798 	  /* (a & b) | b == b */
9799 	  op0 = SET;
9800 	else /* op1 == XOR */
9801 	  /* (a ^ b) | b == a | b */
9802 	  {;}
9803 	break;
9804 
9805       case XOR:
9806 	if (op1 == AND)
9807 	  /* (a & b) ^ b == (~a) & b */
9808 	  op0 = AND, *pcomp_p = 1;
9809 	else /* op1 == IOR */
9810 	  /* (a | b) ^ b == a & ~b */
9811 	  op0 = AND, const0 = ~const0;
9812 	break;
9813 
9814       case AND:
9815 	if (op1 == IOR)
9816 	  /* (a | b) & b == b */
9817 	op0 = SET;
9818 	else /* op1 == XOR */
9819 	  /* (a ^ b) & b) == (~a) & b */
9820 	  *pcomp_p = 1;
9821 	break;
9822       default:
9823 	break;
9824       }
9825 
9826   /* Check for NO-OP cases.  */
9827   const0 &= GET_MODE_MASK (mode);
9828   if (const0 == 0
9829       && (op0 == IOR || op0 == XOR || op0 == PLUS))
9830     op0 = UNKNOWN;
9831   else if (const0 == 0 && op0 == AND)
9832     op0 = SET;
9833   else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9834 	   && op0 == AND)
9835     op0 = UNKNOWN;
9836 
9837   *pop0 = op0;
9838 
9839   /* ??? Slightly redundant with the above mask, but not entirely.
9840      Moving this above means we'd have to sign-extend the mode mask
9841      for the final test.  */
9842   if (op0 != UNKNOWN && op0 != NEG)
9843     *pconst0 = trunc_int_for_mode (const0, mode);
9844 
9845   return 1;
9846 }
9847 
9848 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9849    the shift in.  The original shift operation CODE is performed on OP in
9850    ORIG_MODE.  Return the wider mode MODE if we can perform the operation
9851    in that mode.  Return ORIG_MODE otherwise.  We can also assume that the
9852    result of the shift is subject to operation OUTER_CODE with operand
9853    OUTER_CONST.  */
9854 
9855 static enum machine_mode
9856 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9857 		      enum machine_mode orig_mode, enum machine_mode mode,
9858 		      enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9859 {
9860   if (orig_mode == mode)
9861     return mode;
9862   gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9863 
9864   /* In general we can't perform in wider mode for right shift and rotate.  */
9865   switch (code)
9866     {
9867     case ASHIFTRT:
9868       /* We can still widen if the bits brought in from the left are identical
9869 	 to the sign bit of ORIG_MODE.  */
9870       if (num_sign_bit_copies (op, mode)
9871 	  > (unsigned) (GET_MODE_PRECISION (mode)
9872 			- GET_MODE_PRECISION (orig_mode)))
9873 	return mode;
9874       return orig_mode;
9875 
9876     case LSHIFTRT:
9877       /* Similarly here but with zero bits.  */
9878       if (HWI_COMPUTABLE_MODE_P (mode)
9879 	  && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9880 	return mode;
9881 
9882       /* We can also widen if the bits brought in will be masked off.  This
9883 	 operation is performed in ORIG_MODE.  */
9884       if (outer_code == AND)
9885 	{
9886 	  int care_bits = low_bitmask_len (orig_mode, outer_const);
9887 
9888 	  if (care_bits >= 0
9889 	      && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9890 	    return mode;
9891 	}
9892       /* fall through */
9893 
9894     case ROTATE:
9895       return orig_mode;
9896 
9897     case ROTATERT:
9898       gcc_unreachable ();
9899 
9900     default:
9901       return mode;
9902     }
9903 }
9904 
9905 /* Simplify a shift of VAROP by ORIG_COUNT bits.  CODE says what kind
9906    of shift.  The result of the shift is RESULT_MODE.  Return NULL_RTX
9907    if we cannot simplify it.  Otherwise, return a simplified value.
9908 
9909    The shift is normally computed in the widest mode we find in VAROP, as
9910    long as it isn't a different number of words than RESULT_MODE.  Exceptions
9911    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
9912 
9913 static rtx
9914 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9915 			rtx varop, int orig_count)
9916 {
9917   enum rtx_code orig_code = code;
9918   rtx orig_varop = varop;
9919   int count;
9920   enum machine_mode mode = result_mode;
9921   enum machine_mode shift_mode, tmode;
9922   unsigned int mode_words
9923     = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9924   /* We form (outer_op (code varop count) (outer_const)).  */
9925   enum rtx_code outer_op = UNKNOWN;
9926   HOST_WIDE_INT outer_const = 0;
9927   int complement_p = 0;
9928   rtx new_rtx, x;
9929 
9930   /* Make sure and truncate the "natural" shift on the way in.  We don't
9931      want to do this inside the loop as it makes it more difficult to
9932      combine shifts.  */
9933   if (SHIFT_COUNT_TRUNCATED)
9934     orig_count &= GET_MODE_BITSIZE (mode) - 1;
9935 
9936   /* If we were given an invalid count, don't do anything except exactly
9937      what was requested.  */
9938 
9939   if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9940     return NULL_RTX;
9941 
9942   count = orig_count;
9943 
9944   /* Unless one of the branches of the `if' in this loop does a `continue',
9945      we will `break' the loop after the `if'.  */
9946 
9947   while (count != 0)
9948     {
9949       /* If we have an operand of (clobber (const_int 0)), fail.  */
9950       if (GET_CODE (varop) == CLOBBER)
9951 	return NULL_RTX;
9952 
9953       /* Convert ROTATERT to ROTATE.  */
9954       if (code == ROTATERT)
9955 	{
9956 	  unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9957 	  code = ROTATE;
9958 	  if (VECTOR_MODE_P (result_mode))
9959 	    count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9960 	  else
9961 	    count = bitsize - count;
9962 	}
9963 
9964       shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9965 					 mode, outer_op, outer_const);
9966 
9967       /* Handle cases where the count is greater than the size of the mode
9968 	 minus 1.  For ASHIFT, use the size minus one as the count (this can
9969 	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
9970 	 take the count modulo the size.  For other shifts, the result is
9971 	 zero.
9972 
9973 	 Since these shifts are being produced by the compiler by combining
9974 	 multiple operations, each of which are defined, we know what the
9975 	 result is supposed to be.  */
9976 
9977       if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9978 	{
9979 	  if (code == ASHIFTRT)
9980 	    count = GET_MODE_PRECISION (shift_mode) - 1;
9981 	  else if (code == ROTATE || code == ROTATERT)
9982 	    count %= GET_MODE_PRECISION (shift_mode);
9983 	  else
9984 	    {
9985 	      /* We can't simply return zero because there may be an
9986 		 outer op.  */
9987 	      varop = const0_rtx;
9988 	      count = 0;
9989 	      break;
9990 	    }
9991 	}
9992 
9993       /* If we discovered we had to complement VAROP, leave.  Making a NOT
9994 	 here would cause an infinite loop.  */
9995       if (complement_p)
9996 	break;
9997 
9998       /* An arithmetic right shift of a quantity known to be -1 or 0
9999 	 is a no-op.  */
10000       if (code == ASHIFTRT
10001 	  && (num_sign_bit_copies (varop, shift_mode)
10002 	      == GET_MODE_PRECISION (shift_mode)))
10003 	{
10004 	  count = 0;
10005 	  break;
10006 	}
10007 
10008       /* If we are doing an arithmetic right shift and discarding all but
10009 	 the sign bit copies, this is equivalent to doing a shift by the
10010 	 bitsize minus one.  Convert it into that shift because it will often
10011 	 allow other simplifications.  */
10012 
10013       if (code == ASHIFTRT
10014 	  && (count + num_sign_bit_copies (varop, shift_mode)
10015 	      >= GET_MODE_PRECISION (shift_mode)))
10016 	count = GET_MODE_PRECISION (shift_mode) - 1;
10017 
10018       /* We simplify the tests below and elsewhere by converting
10019 	 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10020 	 `make_compound_operation' will convert it to an ASHIFTRT for
10021 	 those machines (such as VAX) that don't have an LSHIFTRT.  */
10022       if (code == ASHIFTRT
10023 	  && val_signbit_known_clear_p (shift_mode,
10024 					nonzero_bits (varop, shift_mode)))
10025 	code = LSHIFTRT;
10026 
10027       if (((code == LSHIFTRT
10028 	    && HWI_COMPUTABLE_MODE_P (shift_mode)
10029 	    && !(nonzero_bits (varop, shift_mode) >> count))
10030 	   || (code == ASHIFT
10031 	       && HWI_COMPUTABLE_MODE_P (shift_mode)
10032 	       && !((nonzero_bits (varop, shift_mode) << count)
10033 		    & GET_MODE_MASK (shift_mode))))
10034 	  && !side_effects_p (varop))
10035 	varop = const0_rtx;
10036 
10037       switch (GET_CODE (varop))
10038 	{
10039 	case SIGN_EXTEND:
10040 	case ZERO_EXTEND:
10041 	case SIGN_EXTRACT:
10042 	case ZERO_EXTRACT:
10043 	  new_rtx = expand_compound_operation (varop);
10044 	  if (new_rtx != varop)
10045 	    {
10046 	      varop = new_rtx;
10047 	      continue;
10048 	    }
10049 	  break;
10050 
10051 	case MEM:
10052 	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10053 	     minus the width of a smaller mode, we can do this with a
10054 	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
10055 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10056 	      && ! mode_dependent_address_p (XEXP (varop, 0))
10057 	      && ! MEM_VOLATILE_P (varop)
10058 	      && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10059 					 MODE_INT, 1)) != BLKmode)
10060 	    {
10061 	      new_rtx = adjust_address_nv (varop, tmode,
10062 				       BYTES_BIG_ENDIAN ? 0
10063 				       : count / BITS_PER_UNIT);
10064 
10065 	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10066 				     : ZERO_EXTEND, mode, new_rtx);
10067 	      count = 0;
10068 	      continue;
10069 	    }
10070 	  break;
10071 
10072 	case SUBREG:
10073 	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
10074 	     the same number of words as what we've seen so far.  Then store
10075 	     the widest mode in MODE.  */
10076 	  if (subreg_lowpart_p (varop)
10077 	      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10078 		  > GET_MODE_SIZE (GET_MODE (varop)))
10079 	      && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10080 				  + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10081 		 == mode_words
10082 	      && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10083 	      && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10084 	    {
10085 	      varop = SUBREG_REG (varop);
10086 	      if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10087 		mode = GET_MODE (varop);
10088 	      continue;
10089 	    }
10090 	  break;
10091 
10092 	case MULT:
10093 	  /* Some machines use MULT instead of ASHIFT because MULT
10094 	     is cheaper.  But it is still better on those machines to
10095 	     merge two shifts into one.  */
10096 	  if (CONST_INT_P (XEXP (varop, 1))
10097 	      && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10098 	    {
10099 	      varop
10100 		= simplify_gen_binary (ASHIFT, GET_MODE (varop),
10101 				       XEXP (varop, 0),
10102 				       GEN_INT (exact_log2 (
10103 						UINTVAL (XEXP (varop, 1)))));
10104 	      continue;
10105 	    }
10106 	  break;
10107 
10108 	case UDIV:
10109 	  /* Similar, for when divides are cheaper.  */
10110 	  if (CONST_INT_P (XEXP (varop, 1))
10111 	      && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10112 	    {
10113 	      varop
10114 		= simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10115 				       XEXP (varop, 0),
10116 				       GEN_INT (exact_log2 (
10117 						UINTVAL (XEXP (varop, 1)))));
10118 	      continue;
10119 	    }
10120 	  break;
10121 
10122 	case ASHIFTRT:
10123 	  /* If we are extracting just the sign bit of an arithmetic
10124 	     right shift, that shift is not needed.  However, the sign
10125 	     bit of a wider mode may be different from what would be
10126 	     interpreted as the sign bit in a narrower mode, so, if
10127 	     the result is narrower, don't discard the shift.  */
10128 	  if (code == LSHIFTRT
10129 	      && count == (GET_MODE_BITSIZE (result_mode) - 1)
10130 	      && (GET_MODE_BITSIZE (result_mode)
10131 		  >= GET_MODE_BITSIZE (GET_MODE (varop))))
10132 	    {
10133 	      varop = XEXP (varop, 0);
10134 	      continue;
10135 	    }
10136 
10137 	  /* ... fall through ...  */
10138 
10139 	case LSHIFTRT:
10140 	case ASHIFT:
10141 	case ROTATE:
10142 	  /* Here we have two nested shifts.  The result is usually the
10143 	     AND of a new shift with a mask.  We compute the result below.  */
10144 	  if (CONST_INT_P (XEXP (varop, 1))
10145 	      && INTVAL (XEXP (varop, 1)) >= 0
10146 	      && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10147 	      && HWI_COMPUTABLE_MODE_P (result_mode)
10148 	      && HWI_COMPUTABLE_MODE_P (mode)
10149 	      && !VECTOR_MODE_P (result_mode))
10150 	    {
10151 	      enum rtx_code first_code = GET_CODE (varop);
10152 	      unsigned int first_count = INTVAL (XEXP (varop, 1));
10153 	      unsigned HOST_WIDE_INT mask;
10154 	      rtx mask_rtx;
10155 
10156 	      /* We have one common special case.  We can't do any merging if
10157 		 the inner code is an ASHIFTRT of a smaller mode.  However, if
10158 		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10159 		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10160 		 we can convert it to
10161 		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10162 		 This simplifies certain SIGN_EXTEND operations.  */
10163 	      if (code == ASHIFT && first_code == ASHIFTRT
10164 		  && count == (GET_MODE_PRECISION (result_mode)
10165 			       - GET_MODE_PRECISION (GET_MODE (varop))))
10166 		{
10167 		  /* C3 has the low-order C1 bits zero.  */
10168 
10169 		  mask = GET_MODE_MASK (mode)
10170 			 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10171 
10172 		  varop = simplify_and_const_int (NULL_RTX, result_mode,
10173 						  XEXP (varop, 0), mask);
10174 		  varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10175 						varop, count);
10176 		  count = first_count;
10177 		  code = ASHIFTRT;
10178 		  continue;
10179 		}
10180 
10181 	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10182 		 than C1 high-order bits equal to the sign bit, we can convert
10183 		 this to either an ASHIFT or an ASHIFTRT depending on the
10184 		 two counts.
10185 
10186 		 We cannot do this if VAROP's mode is not SHIFT_MODE.  */
10187 
10188 	      if (code == ASHIFTRT && first_code == ASHIFT
10189 		  && GET_MODE (varop) == shift_mode
10190 		  && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10191 		      > first_count))
10192 		{
10193 		  varop = XEXP (varop, 0);
10194 		  count -= first_count;
10195 		  if (count < 0)
10196 		    {
10197 		      count = -count;
10198 		      code = ASHIFT;
10199 		    }
10200 
10201 		  continue;
10202 		}
10203 
10204 	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
10205 		 we can only do this if FIRST_CODE is also ASHIFTRT.
10206 
10207 		 We can't do the case when CODE is ROTATE and FIRST_CODE is
10208 		 ASHIFTRT.
10209 
10210 		 If the mode of this shift is not the mode of the outer shift,
10211 		 we can't do this if either shift is a right shift or ROTATE.
10212 
10213 		 Finally, we can't do any of these if the mode is too wide
10214 		 unless the codes are the same.
10215 
10216 		 Handle the case where the shift codes are the same
10217 		 first.  */
10218 
10219 	      if (code == first_code)
10220 		{
10221 		  if (GET_MODE (varop) != result_mode
10222 		      && (code == ASHIFTRT || code == LSHIFTRT
10223 			  || code == ROTATE))
10224 		    break;
10225 
10226 		  count += first_count;
10227 		  varop = XEXP (varop, 0);
10228 		  continue;
10229 		}
10230 
10231 	      if (code == ASHIFTRT
10232 		  || (code == ROTATE && first_code == ASHIFTRT)
10233 		  || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10234 		  || (GET_MODE (varop) != result_mode
10235 		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
10236 			  || first_code == ROTATE
10237 			  || code == ROTATE)))
10238 		break;
10239 
10240 	      /* To compute the mask to apply after the shift, shift the
10241 		 nonzero bits of the inner shift the same way the
10242 		 outer shift will.  */
10243 
10244 	      mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10245 
10246 	      mask_rtx
10247 		= simplify_const_binary_operation (code, result_mode, mask_rtx,
10248 						   GEN_INT (count));
10249 
10250 	      /* Give up if we can't compute an outer operation to use.  */
10251 	      if (mask_rtx == 0
10252 		  || !CONST_INT_P (mask_rtx)
10253 		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
10254 					INTVAL (mask_rtx),
10255 					result_mode, &complement_p))
10256 		break;
10257 
10258 	      /* If the shifts are in the same direction, we add the
10259 		 counts.  Otherwise, we subtract them.  */
10260 	      if ((code == ASHIFTRT || code == LSHIFTRT)
10261 		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10262 		count += first_count;
10263 	      else
10264 		count -= first_count;
10265 
10266 	      /* If COUNT is positive, the new shift is usually CODE,
10267 		 except for the two exceptions below, in which case it is
10268 		 FIRST_CODE.  If the count is negative, FIRST_CODE should
10269 		 always be used  */
10270 	      if (count > 0
10271 		  && ((first_code == ROTATE && code == ASHIFT)
10272 		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
10273 		code = first_code;
10274 	      else if (count < 0)
10275 		code = first_code, count = -count;
10276 
10277 	      varop = XEXP (varop, 0);
10278 	      continue;
10279 	    }
10280 
10281 	  /* If we have (A << B << C) for any shift, we can convert this to
10282 	     (A << C << B).  This wins if A is a constant.  Only try this if
10283 	     B is not a constant.  */
10284 
10285 	  else if (GET_CODE (varop) == code
10286 		   && CONST_INT_P (XEXP (varop, 0))
10287 		   && !CONST_INT_P (XEXP (varop, 1)))
10288 	    {
10289 	      rtx new_rtx = simplify_const_binary_operation (code, mode,
10290 							 XEXP (varop, 0),
10291 							 GEN_INT (count));
10292 	      varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10293 	      count = 0;
10294 	      continue;
10295 	    }
10296 	  break;
10297 
10298 	case NOT:
10299 	  if (VECTOR_MODE_P (mode))
10300 	    break;
10301 
10302 	  /* Make this fit the case below.  */
10303 	  varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10304 	  continue;
10305 
10306 	case IOR:
10307 	case AND:
10308 	case XOR:
10309 	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10310 	     with C the size of VAROP - 1 and the shift is logical if
10311 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10312 	     we have an (le X 0) operation.   If we have an arithmetic shift
10313 	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
10314 	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
10315 
10316 	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10317 	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10318 	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10319 	      && (code == LSHIFTRT || code == ASHIFTRT)
10320 	      && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10321 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10322 	    {
10323 	      count = 0;
10324 	      varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10325 				  const0_rtx);
10326 
10327 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10328 		varop = gen_rtx_NEG (GET_MODE (varop), varop);
10329 
10330 	      continue;
10331 	    }
10332 
10333 	  /* If we have (shift (logical)), move the logical to the outside
10334 	     to allow it to possibly combine with another logical and the
10335 	     shift to combine with another shift.  This also canonicalizes to
10336 	     what a ZERO_EXTRACT looks like.  Also, some machines have
10337 	     (and (shift)) insns.  */
10338 
10339 	  if (CONST_INT_P (XEXP (varop, 1))
10340 	      /* We can't do this if we have (ashiftrt (xor))  and the
10341 		 constant has its sign bit set in shift_mode.  */
10342 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10343 		   && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10344 					      shift_mode))
10345 	      && (new_rtx = simplify_const_binary_operation (code, result_mode,
10346 							 XEXP (varop, 1),
10347 							 GEN_INT (count))) != 0
10348 	      && CONST_INT_P (new_rtx)
10349 	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10350 				  INTVAL (new_rtx), result_mode, &complement_p))
10351 	    {
10352 	      varop = XEXP (varop, 0);
10353 	      continue;
10354 	    }
10355 
10356 	  /* If we can't do that, try to simplify the shift in each arm of the
10357 	     logical expression, make a new logical expression, and apply
10358 	     the inverse distributive law.  This also can't be done
10359 	     for some (ashiftrt (xor)).  */
10360 	  if (CONST_INT_P (XEXP (varop, 1))
10361 	     && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10362 		  && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10363 					     shift_mode)))
10364 	    {
10365 	      rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10366 					      XEXP (varop, 0), count);
10367 	      rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10368 					      XEXP (varop, 1), count);
10369 
10370 	      varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10371 					   lhs, rhs);
10372 	      varop = apply_distributive_law (varop);
10373 
10374 	      count = 0;
10375 	      continue;
10376 	    }
10377 	  break;
10378 
10379 	case EQ:
10380 	  /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10381 	     says that the sign bit can be tested, FOO has mode MODE, C is
10382 	     GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10383 	     that may be nonzero.  */
10384 	  if (code == LSHIFTRT
10385 	      && XEXP (varop, 1) == const0_rtx
10386 	      && GET_MODE (XEXP (varop, 0)) == result_mode
10387 	      && count == (GET_MODE_PRECISION (result_mode) - 1)
10388 	      && HWI_COMPUTABLE_MODE_P (result_mode)
10389 	      && STORE_FLAG_VALUE == -1
10390 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10391 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10392 				  &complement_p))
10393 	    {
10394 	      varop = XEXP (varop, 0);
10395 	      count = 0;
10396 	      continue;
10397 	    }
10398 	  break;
10399 
10400 	case NEG:
10401 	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10402 	     than the number of bits in the mode is equivalent to A.  */
10403 	  if (code == LSHIFTRT
10404 	      && count == (GET_MODE_PRECISION (result_mode) - 1)
10405 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10406 	    {
10407 	      varop = XEXP (varop, 0);
10408 	      count = 0;
10409 	      continue;
10410 	    }
10411 
10412 	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
10413 	     NEG outside to allow shifts to combine.  */
10414 	  if (code == ASHIFT
10415 	      && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10416 				  &complement_p))
10417 	    {
10418 	      varop = XEXP (varop, 0);
10419 	      continue;
10420 	    }
10421 	  break;
10422 
10423 	case PLUS:
10424 	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10425 	     is one less than the number of bits in the mode is
10426 	     equivalent to (xor A 1).  */
10427 	  if (code == LSHIFTRT
10428 	      && count == (GET_MODE_PRECISION (result_mode) - 1)
10429 	      && XEXP (varop, 1) == constm1_rtx
10430 	      && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10431 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10432 				  &complement_p))
10433 	    {
10434 	      count = 0;
10435 	      varop = XEXP (varop, 0);
10436 	      continue;
10437 	    }
10438 
10439 	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10440 	     that might be nonzero in BAR are those being shifted out and those
10441 	     bits are known zero in FOO, we can replace the PLUS with FOO.
10442 	     Similarly in the other operand order.  This code occurs when
10443 	     we are computing the size of a variable-size array.  */
10444 
10445 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10446 	      && count < HOST_BITS_PER_WIDE_INT
10447 	      && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10448 	      && (nonzero_bits (XEXP (varop, 1), result_mode)
10449 		  & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10450 	    {
10451 	      varop = XEXP (varop, 0);
10452 	      continue;
10453 	    }
10454 	  else if ((code == ASHIFTRT || code == LSHIFTRT)
10455 		   && count < HOST_BITS_PER_WIDE_INT
10456 		   && HWI_COMPUTABLE_MODE_P (result_mode)
10457 		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10458 			    >> count)
10459 		   && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10460 			    & nonzero_bits (XEXP (varop, 1),
10461 						 result_mode)))
10462 	    {
10463 	      varop = XEXP (varop, 1);
10464 	      continue;
10465 	    }
10466 
10467 	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
10468 	  if (code == ASHIFT
10469 	      && CONST_INT_P (XEXP (varop, 1))
10470 	      && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10471 							 XEXP (varop, 1),
10472 							 GEN_INT (count))) != 0
10473 	      && CONST_INT_P (new_rtx)
10474 	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
10475 				  INTVAL (new_rtx), result_mode, &complement_p))
10476 	    {
10477 	      varop = XEXP (varop, 0);
10478 	      continue;
10479 	    }
10480 
10481 	  /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10482 	     signbit', and attempt to change the PLUS to an XOR and move it to
10483 	     the outer operation as is done above in the AND/IOR/XOR case
10484 	     leg for shift(logical). See details in logical handling above
10485 	     for reasoning in doing so.  */
10486 	  if (code == LSHIFTRT
10487 	      && CONST_INT_P (XEXP (varop, 1))
10488 	      && mode_signbit_p (result_mode, XEXP (varop, 1))
10489 	      && (new_rtx = simplify_const_binary_operation (code, result_mode,
10490 							 XEXP (varop, 1),
10491 							 GEN_INT (count))) != 0
10492 	      && CONST_INT_P (new_rtx)
10493 	      && merge_outer_ops (&outer_op, &outer_const, XOR,
10494 				  INTVAL (new_rtx), result_mode, &complement_p))
10495 	    {
10496 	      varop = XEXP (varop, 0);
10497 	      continue;
10498 	    }
10499 
10500 	  break;
10501 
10502 	case MINUS:
10503 	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10504 	     with C the size of VAROP - 1 and the shift is logical if
10505 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10506 	     we have a (gt X 0) operation.  If the shift is arithmetic with
10507 	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10508 	     we have a (neg (gt X 0)) operation.  */
10509 
10510 	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10511 	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10512 	      && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10513 	      && (code == LSHIFTRT || code == ASHIFTRT)
10514 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10515 	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10516 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10517 	    {
10518 	      count = 0;
10519 	      varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10520 				  const0_rtx);
10521 
10522 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10523 		varop = gen_rtx_NEG (GET_MODE (varop), varop);
10524 
10525 	      continue;
10526 	    }
10527 	  break;
10528 
10529 	case TRUNCATE:
10530 	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10531 	     if the truncate does not affect the value.  */
10532 	  if (code == LSHIFTRT
10533 	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10534 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10535 	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
10536 		  >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10537 		      - GET_MODE_PRECISION (GET_MODE (varop)))))
10538 	    {
10539 	      rtx varop_inner = XEXP (varop, 0);
10540 
10541 	      varop_inner
10542 		= gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10543 				    XEXP (varop_inner, 0),
10544 				    GEN_INT
10545 				    (count + INTVAL (XEXP (varop_inner, 1))));
10546 	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10547 	      count = 0;
10548 	      continue;
10549 	    }
10550 	  break;
10551 
10552 	default:
10553 	  break;
10554 	}
10555 
10556       break;
10557     }
10558 
10559   shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10560 				     outer_op, outer_const);
10561 
10562   /* We have now finished analyzing the shift.  The result should be
10563      a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
10564      OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10565      to the result of the shift.  OUTER_CONST is the relevant constant,
10566      but we must turn off all bits turned off in the shift.  */
10567 
10568   if (outer_op == UNKNOWN
10569       && orig_code == code && orig_count == count
10570       && varop == orig_varop
10571       && shift_mode == GET_MODE (varop))
10572     return NULL_RTX;
10573 
10574   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
10575   varop = gen_lowpart (shift_mode, varop);
10576   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10577     return NULL_RTX;
10578 
10579   /* If we have an outer operation and we just made a shift, it is
10580      possible that we could have simplified the shift were it not
10581      for the outer operation.  So try to do the simplification
10582      recursively.  */
10583 
10584   if (outer_op != UNKNOWN)
10585     x = simplify_shift_const_1 (code, shift_mode, varop, count);
10586   else
10587     x = NULL_RTX;
10588 
10589   if (x == NULL_RTX)
10590     x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10591 
10592   /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10593      turn off all the bits that the shift would have turned off.  */
10594   if (orig_code == LSHIFTRT && result_mode != shift_mode)
10595     x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10596 				GET_MODE_MASK (result_mode) >> orig_count);
10597 
10598   /* Do the remainder of the processing in RESULT_MODE.  */
10599   x = gen_lowpart_or_truncate (result_mode, x);
10600 
10601   /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10602      operation.  */
10603   if (complement_p)
10604     x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10605 
10606   if (outer_op != UNKNOWN)
10607     {
10608       if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10609 	  && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10610 	outer_const = trunc_int_for_mode (outer_const, result_mode);
10611 
10612       if (outer_op == AND)
10613 	x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10614       else if (outer_op == SET)
10615 	{
10616 	  /* This means that we have determined that the result is
10617 	     equivalent to a constant.  This should be rare.  */
10618 	  if (!side_effects_p (x))
10619 	    x = GEN_INT (outer_const);
10620 	}
10621       else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10622 	x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10623       else
10624 	x = simplify_gen_binary (outer_op, result_mode, x,
10625 				 GEN_INT (outer_const));
10626     }
10627 
10628   return x;
10629 }
10630 
10631 /* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
10632    The result of the shift is RESULT_MODE.  If we cannot simplify it,
10633    return X or, if it is NULL, synthesize the expression with
10634    simplify_gen_binary.  Otherwise, return a simplified value.
10635 
10636    The shift is normally computed in the widest mode we find in VAROP, as
10637    long as it isn't a different number of words than RESULT_MODE.  Exceptions
10638    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
10639 
10640 static rtx
10641 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10642 		      rtx varop, int count)
10643 {
10644   rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10645   if (tem)
10646     return tem;
10647 
10648   if (!x)
10649     x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10650   if (GET_MODE (x) != result_mode)
10651     x = gen_lowpart (result_mode, x);
10652   return x;
10653 }
10654 
10655 
10656 /* Like recog, but we receive the address of a pointer to a new pattern.
10657    We try to match the rtx that the pointer points to.
10658    If that fails, we may try to modify or replace the pattern,
10659    storing the replacement into the same pointer object.
10660 
10661    Modifications include deletion or addition of CLOBBERs.
10662 
10663    PNOTES is a pointer to a location where any REG_UNUSED notes added for
10664    the CLOBBERs are placed.
10665 
10666    The value is the final insn code from the pattern ultimately matched,
10667    or -1.  */
10668 
10669 static int
10670 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10671 {
10672   rtx pat = *pnewpat;
10673   int insn_code_number;
10674   int num_clobbers_to_add = 0;
10675   int i;
10676   rtx notes = 0;
10677   rtx old_notes, old_pat;
10678 
10679   /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10680      we use to indicate that something didn't match.  If we find such a
10681      thing, force rejection.  */
10682   if (GET_CODE (pat) == PARALLEL)
10683     for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10684       if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10685 	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10686 	return -1;
10687 
10688   old_pat = PATTERN (insn);
10689   old_notes = REG_NOTES (insn);
10690   PATTERN (insn) = pat;
10691   REG_NOTES (insn) = 0;
10692 
10693   insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10694   if (dump_file && (dump_flags & TDF_DETAILS))
10695     {
10696       if (insn_code_number < 0)
10697 	fputs ("Failed to match this instruction:\n", dump_file);
10698       else
10699 	fputs ("Successfully matched this instruction:\n", dump_file);
10700       print_rtl_single (dump_file, pat);
10701     }
10702 
10703   /* If it isn't, there is the possibility that we previously had an insn
10704      that clobbered some register as a side effect, but the combined
10705      insn doesn't need to do that.  So try once more without the clobbers
10706      unless this represents an ASM insn.  */
10707 
10708   if (insn_code_number < 0 && ! check_asm_operands (pat)
10709       && GET_CODE (pat) == PARALLEL)
10710     {
10711       int pos;
10712 
10713       for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10714 	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10715 	  {
10716 	    if (i != pos)
10717 	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10718 	    pos++;
10719 	  }
10720 
10721       SUBST_INT (XVECLEN (pat, 0), pos);
10722 
10723       if (pos == 1)
10724 	pat = XVECEXP (pat, 0, 0);
10725 
10726       PATTERN (insn) = pat;
10727       insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10728       if (dump_file && (dump_flags & TDF_DETAILS))
10729 	{
10730 	  if (insn_code_number < 0)
10731 	    fputs ("Failed to match this instruction:\n", dump_file);
10732 	  else
10733 	    fputs ("Successfully matched this instruction:\n", dump_file);
10734 	  print_rtl_single (dump_file, pat);
10735 	}
10736     }
10737   PATTERN (insn) = old_pat;
10738   REG_NOTES (insn) = old_notes;
10739 
10740   /* Recognize all noop sets, these will be killed by followup pass.  */
10741   if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10742     insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10743 
10744   /* If we had any clobbers to add, make a new pattern than contains
10745      them.  Then check to make sure that all of them are dead.  */
10746   if (num_clobbers_to_add)
10747     {
10748       rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10749 				     rtvec_alloc (GET_CODE (pat) == PARALLEL
10750 						  ? (XVECLEN (pat, 0)
10751 						     + num_clobbers_to_add)
10752 						  : num_clobbers_to_add + 1));
10753 
10754       if (GET_CODE (pat) == PARALLEL)
10755 	for (i = 0; i < XVECLEN (pat, 0); i++)
10756 	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10757       else
10758 	XVECEXP (newpat, 0, 0) = pat;
10759 
10760       add_clobbers (newpat, insn_code_number);
10761 
10762       for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10763 	   i < XVECLEN (newpat, 0); i++)
10764 	{
10765 	  if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10766 	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10767 	    return -1;
10768 	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10769 	    {
10770 	      gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10771 	      notes = alloc_reg_note (REG_UNUSED,
10772 				      XEXP (XVECEXP (newpat, 0, i), 0), notes);
10773 	    }
10774 	}
10775       pat = newpat;
10776     }
10777 
10778   *pnewpat = pat;
10779   *pnotes = notes;
10780 
10781   return insn_code_number;
10782 }
10783 
10784 /* Like gen_lowpart_general but for use by combine.  In combine it
10785    is not possible to create any new pseudoregs.  However, it is
10786    safe to create invalid memory addresses, because combine will
10787    try to recognize them and all they will do is make the combine
10788    attempt fail.
10789 
10790    If for some reason this cannot do its job, an rtx
10791    (clobber (const_int 0)) is returned.
10792    An insn containing that will not be recognized.  */
10793 
10794 static rtx
10795 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10796 {
10797   enum machine_mode imode = GET_MODE (x);
10798   unsigned int osize = GET_MODE_SIZE (omode);
10799   unsigned int isize = GET_MODE_SIZE (imode);
10800   rtx result;
10801 
10802   if (omode == imode)
10803     return x;
10804 
10805   /* We can only support MODE being wider than a word if X is a
10806      constant integer or has a mode the same size.  */
10807   if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10808       && ! ((imode == VOIDmode
10809 	     && (CONST_INT_P (x)
10810 		 || GET_CODE (x) == CONST_DOUBLE))
10811 	    || isize == osize))
10812     goto fail;
10813 
10814   /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
10815      won't know what to do.  So we will strip off the SUBREG here and
10816      process normally.  */
10817   if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10818     {
10819       x = SUBREG_REG (x);
10820 
10821       /* For use in case we fall down into the address adjustments
10822 	 further below, we need to adjust the known mode and size of
10823 	 x; imode and isize, since we just adjusted x.  */
10824       imode = GET_MODE (x);
10825 
10826       if (imode == omode)
10827 	return x;
10828 
10829       isize = GET_MODE_SIZE (imode);
10830     }
10831 
10832   result = gen_lowpart_common (omode, x);
10833 
10834   if (result)
10835     return result;
10836 
10837   if (MEM_P (x))
10838     {
10839       int offset = 0;
10840 
10841       /* Refuse to work on a volatile memory ref or one with a mode-dependent
10842 	 address.  */
10843       if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10844 	goto fail;
10845 
10846       /* If we want to refer to something bigger than the original memref,
10847 	 generate a paradoxical subreg instead.  That will force a reload
10848 	 of the original memref X.  */
10849       if (isize < osize)
10850 	return gen_rtx_SUBREG (omode, x, 0);
10851 
10852       if (WORDS_BIG_ENDIAN)
10853 	offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10854 
10855       /* Adjust the address so that the address-after-the-data is
10856 	 unchanged.  */
10857       if (BYTES_BIG_ENDIAN)
10858 	offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10859 
10860       return adjust_address_nv (x, omode, offset);
10861     }
10862 
10863   /* If X is a comparison operator, rewrite it in a new mode.  This
10864      probably won't match, but may allow further simplifications.  */
10865   else if (COMPARISON_P (x))
10866     return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10867 
10868   /* If we couldn't simplify X any other way, just enclose it in a
10869      SUBREG.  Normally, this SUBREG won't match, but some patterns may
10870      include an explicit SUBREG or we may simplify it further in combine.  */
10871   else
10872     {
10873       int offset = 0;
10874       rtx res;
10875 
10876       offset = subreg_lowpart_offset (omode, imode);
10877       if (imode == VOIDmode)
10878 	{
10879 	  imode = int_mode_for_mode (omode);
10880 	  x = gen_lowpart_common (imode, x);
10881 	  if (x == NULL)
10882 	    goto fail;
10883 	}
10884       res = simplify_gen_subreg (omode, x, imode, offset);
10885       if (res)
10886 	return res;
10887     }
10888 
10889  fail:
10890   return gen_rtx_CLOBBER (omode, const0_rtx);
10891 }
10892 
10893 /* Try to simplify a comparison between OP0 and a constant OP1,
10894    where CODE is the comparison code that will be tested, into a
10895    (CODE OP0 const0_rtx) form.
10896 
10897    The result is a possibly different comparison code to use.
10898    *POP1 may be updated.  */
10899 
10900 static enum rtx_code
10901 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10902 {
10903   enum machine_mode mode = GET_MODE (op0);
10904   unsigned int mode_width = GET_MODE_PRECISION (mode);
10905   HOST_WIDE_INT const_op = INTVAL (*pop1);
10906 
10907   /* Get the constant we are comparing against and turn off all bits
10908      not on in our mode.  */
10909   if (mode != VOIDmode)
10910     const_op = trunc_int_for_mode (const_op, mode);
10911 
10912   /* If we are comparing against a constant power of two and the value
10913      being compared can only have that single bit nonzero (e.g., it was
10914      `and'ed with that bit), we can replace this with a comparison
10915      with zero.  */
10916   if (const_op
10917       && (code == EQ || code == NE || code == GE || code == GEU
10918 	  || code == LT || code == LTU)
10919       && mode_width <= HOST_BITS_PER_WIDE_INT
10920       && exact_log2 (const_op) >= 0
10921       && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10922     {
10923       code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10924       const_op = 0;
10925     }
10926 
10927   /* Similarly, if we are comparing a value known to be either -1 or
10928      0 with -1, change it to the opposite comparison against zero.  */
10929   if (const_op == -1
10930       && (code == EQ || code == NE || code == GT || code == LE
10931 	  || code == GEU || code == LTU)
10932       && num_sign_bit_copies (op0, mode) == mode_width)
10933     {
10934       code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10935       const_op = 0;
10936     }
10937 
10938   /* Do some canonicalizations based on the comparison code.  We prefer
10939      comparisons against zero and then prefer equality comparisons.
10940      If we can reduce the size of a constant, we will do that too.  */
10941   switch (code)
10942     {
10943     case LT:
10944       /* < C is equivalent to <= (C - 1) */
10945       if (const_op > 0)
10946 	{
10947 	  const_op -= 1;
10948 	  code = LE;
10949 	  /* ... fall through to LE case below.  */
10950 	}
10951       else
10952 	break;
10953 
10954     case LE:
10955       /* <= C is equivalent to < (C + 1); we do this for C < 0  */
10956       if (const_op < 0)
10957 	{
10958 	  const_op += 1;
10959 	  code = LT;
10960 	}
10961 
10962       /* If we are doing a <= 0 comparison on a value known to have
10963 	 a zero sign bit, we can replace this with == 0.  */
10964       else if (const_op == 0
10965 	       && mode_width <= HOST_BITS_PER_WIDE_INT
10966 	       && (nonzero_bits (op0, mode)
10967 		   & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10968 	       == 0)
10969 	code = EQ;
10970       break;
10971 
10972     case GE:
10973       /* >= C is equivalent to > (C - 1).  */
10974       if (const_op > 0)
10975 	{
10976 	  const_op -= 1;
10977 	  code = GT;
10978 	  /* ... fall through to GT below.  */
10979 	}
10980       else
10981 	break;
10982 
10983     case GT:
10984       /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
10985       if (const_op < 0)
10986 	{
10987 	  const_op += 1;
10988 	  code = GE;
10989 	}
10990 
10991       /* If we are doing a > 0 comparison on a value known to have
10992 	 a zero sign bit, we can replace this with != 0.  */
10993       else if (const_op == 0
10994 	       && mode_width <= HOST_BITS_PER_WIDE_INT
10995 	       && (nonzero_bits (op0, mode)
10996 		   & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10997 	       == 0)
10998 	code = NE;
10999       break;
11000 
11001     case LTU:
11002       /* < C is equivalent to <= (C - 1).  */
11003       if (const_op > 0)
11004 	{
11005 	  const_op -= 1;
11006 	  code = LEU;
11007 	  /* ... fall through ...  */
11008 	}
11009       /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
11010       else if (mode_width <= HOST_BITS_PER_WIDE_INT
11011 	       && (unsigned HOST_WIDE_INT) const_op
11012 	       == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11013 	{
11014 	  const_op = 0;
11015 	  code = GE;
11016 	  break;
11017 	}
11018       else
11019 	break;
11020 
11021     case LEU:
11022       /* unsigned <= 0 is equivalent to == 0 */
11023       if (const_op == 0)
11024 	code = EQ;
11025       /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
11026       else if (mode_width <= HOST_BITS_PER_WIDE_INT
11027 	       && (unsigned HOST_WIDE_INT) const_op
11028 	       == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11029 	{
11030 	  const_op = 0;
11031 	  code = GE;
11032 	}
11033       break;
11034 
11035     case GEU:
11036       /* >= C is equivalent to > (C - 1).  */
11037       if (const_op > 1)
11038 	{
11039 	  const_op -= 1;
11040 	  code = GTU;
11041 	  /* ... fall through ...  */
11042 	}
11043 
11044       /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
11045       else if (mode_width <= HOST_BITS_PER_WIDE_INT
11046 	       && (unsigned HOST_WIDE_INT) const_op
11047 	       == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11048 	{
11049 	  const_op = 0;
11050 	  code = LT;
11051 	  break;
11052 	}
11053       else
11054 	break;
11055 
11056     case GTU:
11057       /* unsigned > 0 is equivalent to != 0 */
11058       if (const_op == 0)
11059 	code = NE;
11060       /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
11061       else if (mode_width <= HOST_BITS_PER_WIDE_INT
11062 	       && (unsigned HOST_WIDE_INT) const_op
11063 	       == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11064 	{
11065 	  const_op = 0;
11066 	  code = LT;
11067 	}
11068       break;
11069 
11070     default:
11071       break;
11072     }
11073 
11074   *pop1 = GEN_INT (const_op);
11075   return code;
11076 }
11077 
11078 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11079    comparison code that will be tested.
11080 
11081    The result is a possibly different comparison code to use.  *POP0 and
11082    *POP1 may be updated.
11083 
11084    It is possible that we might detect that a comparison is either always
11085    true or always false.  However, we do not perform general constant
11086    folding in combine, so this knowledge isn't useful.  Such tautologies
11087    should have been detected earlier.  Hence we ignore all such cases.  */
11088 
11089 static enum rtx_code
11090 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11091 {
11092   rtx op0 = *pop0;
11093   rtx op1 = *pop1;
11094   rtx tem, tem1;
11095   int i;
11096   enum machine_mode mode, tmode;
11097 
11098   /* Try a few ways of applying the same transformation to both operands.  */
11099   while (1)
11100     {
11101 #ifndef WORD_REGISTER_OPERATIONS
11102       /* The test below this one won't handle SIGN_EXTENDs on these machines,
11103 	 so check specially.  */
11104       if (code != GTU && code != GEU && code != LTU && code != LEU
11105 	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11106 	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
11107 	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
11108 	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11109 	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11110 	  && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11111 	      == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11112 	  && CONST_INT_P (XEXP (op0, 1))
11113 	  && XEXP (op0, 1) == XEXP (op1, 1)
11114 	  && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11115 	  && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11116 	  && (INTVAL (XEXP (op0, 1))
11117 	      == (GET_MODE_PRECISION (GET_MODE (op0))
11118 		  - (GET_MODE_PRECISION
11119 		     (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11120 	{
11121 	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11122 	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11123 	}
11124 #endif
11125 
11126       /* If both operands are the same constant shift, see if we can ignore the
11127 	 shift.  We can if the shift is a rotate or if the bits shifted out of
11128 	 this shift are known to be zero for both inputs and if the type of
11129 	 comparison is compatible with the shift.  */
11130       if (GET_CODE (op0) == GET_CODE (op1)
11131 	  && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11132 	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11133 	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11134 		  && (code != GT && code != LT && code != GE && code != LE))
11135 	      || (GET_CODE (op0) == ASHIFTRT
11136 		  && (code != GTU && code != LTU
11137 		      && code != GEU && code != LEU)))
11138 	  && CONST_INT_P (XEXP (op0, 1))
11139 	  && INTVAL (XEXP (op0, 1)) >= 0
11140 	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11141 	  && XEXP (op0, 1) == XEXP (op1, 1))
11142 	{
11143 	  enum machine_mode mode = GET_MODE (op0);
11144 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11145 	  int shift_count = INTVAL (XEXP (op0, 1));
11146 
11147 	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11148 	    mask &= (mask >> shift_count) << shift_count;
11149 	  else if (GET_CODE (op0) == ASHIFT)
11150 	    mask = (mask & (mask << shift_count)) >> shift_count;
11151 
11152 	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11153 	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11154 	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11155 	  else
11156 	    break;
11157 	}
11158 
11159       /* If both operands are AND's of a paradoxical SUBREG by constant, the
11160 	 SUBREGs are of the same mode, and, in both cases, the AND would
11161 	 be redundant if the comparison was done in the narrower mode,
11162 	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11163 	 and the operand's possibly nonzero bits are 0xffffff01; in that case
11164 	 if we only care about QImode, we don't need the AND).  This case
11165 	 occurs if the output mode of an scc insn is not SImode and
11166 	 STORE_FLAG_VALUE == 1 (e.g., the 386).
11167 
11168 	 Similarly, check for a case where the AND's are ZERO_EXTEND
11169 	 operations from some narrower mode even though a SUBREG is not
11170 	 present.  */
11171 
11172       else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11173 	       && CONST_INT_P (XEXP (op0, 1))
11174 	       && CONST_INT_P (XEXP (op1, 1)))
11175 	{
11176 	  rtx inner_op0 = XEXP (op0, 0);
11177 	  rtx inner_op1 = XEXP (op1, 0);
11178 	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11179 	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11180 	  int changed = 0;
11181 
11182 	  if (paradoxical_subreg_p (inner_op0)
11183 	      && GET_CODE (inner_op1) == SUBREG
11184 	      && (GET_MODE (SUBREG_REG (inner_op0))
11185 		  == GET_MODE (SUBREG_REG (inner_op1)))
11186 	      && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11187 		  <= HOST_BITS_PER_WIDE_INT)
11188 	      && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11189 					     GET_MODE (SUBREG_REG (inner_op0)))))
11190 	      && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11191 					     GET_MODE (SUBREG_REG (inner_op1))))))
11192 	    {
11193 	      op0 = SUBREG_REG (inner_op0);
11194 	      op1 = SUBREG_REG (inner_op1);
11195 
11196 	      /* The resulting comparison is always unsigned since we masked
11197 		 off the original sign bit.  */
11198 	      code = unsigned_condition (code);
11199 
11200 	      changed = 1;
11201 	    }
11202 
11203 	  else if (c0 == c1)
11204 	    for (tmode = GET_CLASS_NARROWEST_MODE
11205 		 (GET_MODE_CLASS (GET_MODE (op0)));
11206 		 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11207 	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11208 		{
11209 		  op0 = gen_lowpart (tmode, inner_op0);
11210 		  op1 = gen_lowpart (tmode, inner_op1);
11211 		  code = unsigned_condition (code);
11212 		  changed = 1;
11213 		  break;
11214 		}
11215 
11216 	  if (! changed)
11217 	    break;
11218 	}
11219 
11220       /* If both operands are NOT, we can strip off the outer operation
11221 	 and adjust the comparison code for swapped operands; similarly for
11222 	 NEG, except that this must be an equality comparison.  */
11223       else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11224 	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11225 		   && (code == EQ || code == NE)))
11226 	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11227 
11228       else
11229 	break;
11230     }
11231 
11232   /* If the first operand is a constant, swap the operands and adjust the
11233      comparison code appropriately, but don't do this if the second operand
11234      is already a constant integer.  */
11235   if (swap_commutative_operands_p (op0, op1))
11236     {
11237       tem = op0, op0 = op1, op1 = tem;
11238       code = swap_condition (code);
11239     }
11240 
11241   /* We now enter a loop during which we will try to simplify the comparison.
11242      For the most part, we only are concerned with comparisons with zero,
11243      but some things may really be comparisons with zero but not start
11244      out looking that way.  */
11245 
11246   while (CONST_INT_P (op1))
11247     {
11248       enum machine_mode mode = GET_MODE (op0);
11249       unsigned int mode_width = GET_MODE_PRECISION (mode);
11250       unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11251       int equality_comparison_p;
11252       int sign_bit_comparison_p;
11253       int unsigned_comparison_p;
11254       HOST_WIDE_INT const_op;
11255 
11256       /* We only want to handle integral modes.  This catches VOIDmode,
11257 	 CCmode, and the floating-point modes.  An exception is that we
11258 	 can handle VOIDmode if OP0 is a COMPARE or a comparison
11259 	 operation.  */
11260 
11261       if (GET_MODE_CLASS (mode) != MODE_INT
11262 	  && ! (mode == VOIDmode
11263 		&& (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11264 	break;
11265 
11266       /* Try to simplify the compare to constant, possibly changing the
11267 	 comparison op, and/or changing op1 to zero.  */
11268       code = simplify_compare_const (code, op0, &op1);
11269       const_op = INTVAL (op1);
11270 
11271       /* Compute some predicates to simplify code below.  */
11272 
11273       equality_comparison_p = (code == EQ || code == NE);
11274       sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11275       unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11276 			       || code == GEU);
11277 
11278       /* If this is a sign bit comparison and we can do arithmetic in
11279 	 MODE, say that we will only be needing the sign bit of OP0.  */
11280       if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11281 	op0 = force_to_mode (op0, mode,
11282 			     (unsigned HOST_WIDE_INT) 1
11283 			     << (GET_MODE_PRECISION (mode) - 1),
11284 			     0);
11285 
11286       /* Now try cases based on the opcode of OP0.  If none of the cases
11287 	 does a "continue", we exit this loop immediately after the
11288 	 switch.  */
11289 
11290       switch (GET_CODE (op0))
11291 	{
11292 	case ZERO_EXTRACT:
11293 	  /* If we are extracting a single bit from a variable position in
11294 	     a constant that has only a single bit set and are comparing it
11295 	     with zero, we can convert this into an equality comparison
11296 	     between the position and the location of the single bit.  */
11297 	  /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11298 	     have already reduced the shift count modulo the word size.  */
11299 	  if (!SHIFT_COUNT_TRUNCATED
11300 	      && CONST_INT_P (XEXP (op0, 0))
11301 	      && XEXP (op0, 1) == const1_rtx
11302 	      && equality_comparison_p && const_op == 0
11303 	      && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11304 	    {
11305 	      if (BITS_BIG_ENDIAN)
11306 		{
11307 		  enum machine_mode new_mode
11308 		    = mode_for_extraction (EP_extzv, 1);
11309 		  if (new_mode == MAX_MACHINE_MODE)
11310 		    i = BITS_PER_WORD - 1 - i;
11311 		  else
11312 		    {
11313 		      mode = new_mode;
11314 		      i = (GET_MODE_PRECISION (mode) - 1 - i);
11315 		    }
11316 		}
11317 
11318 	      op0 = XEXP (op0, 2);
11319 	      op1 = GEN_INT (i);
11320 	      const_op = i;
11321 
11322 	      /* Result is nonzero iff shift count is equal to I.  */
11323 	      code = reverse_condition (code);
11324 	      continue;
11325 	    }
11326 
11327 	  /* ... fall through ...  */
11328 
11329 	case SIGN_EXTRACT:
11330 	  tem = expand_compound_operation (op0);
11331 	  if (tem != op0)
11332 	    {
11333 	      op0 = tem;
11334 	      continue;
11335 	    }
11336 	  break;
11337 
11338 	case NOT:
11339 	  /* If testing for equality, we can take the NOT of the constant.  */
11340 	  if (equality_comparison_p
11341 	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11342 	    {
11343 	      op0 = XEXP (op0, 0);
11344 	      op1 = tem;
11345 	      continue;
11346 	    }
11347 
11348 	  /* If just looking at the sign bit, reverse the sense of the
11349 	     comparison.  */
11350 	  if (sign_bit_comparison_p)
11351 	    {
11352 	      op0 = XEXP (op0, 0);
11353 	      code = (code == GE ? LT : GE);
11354 	      continue;
11355 	    }
11356 	  break;
11357 
11358 	case NEG:
11359 	  /* If testing for equality, we can take the NEG of the constant.  */
11360 	  if (equality_comparison_p
11361 	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11362 	    {
11363 	      op0 = XEXP (op0, 0);
11364 	      op1 = tem;
11365 	      continue;
11366 	    }
11367 
11368 	  /* The remaining cases only apply to comparisons with zero.  */
11369 	  if (const_op != 0)
11370 	    break;
11371 
11372 	  /* When X is ABS or is known positive,
11373 	     (neg X) is < 0 if and only if X != 0.  */
11374 
11375 	  if (sign_bit_comparison_p
11376 	      && (GET_CODE (XEXP (op0, 0)) == ABS
11377 		  || (mode_width <= HOST_BITS_PER_WIDE_INT
11378 		      && (nonzero_bits (XEXP (op0, 0), mode)
11379 			  & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11380 			 == 0)))
11381 	    {
11382 	      op0 = XEXP (op0, 0);
11383 	      code = (code == LT ? NE : EQ);
11384 	      continue;
11385 	    }
11386 
11387 	  /* If we have NEG of something whose two high-order bits are the
11388 	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
11389 	  if (num_sign_bit_copies (op0, mode) >= 2)
11390 	    {
11391 	      op0 = XEXP (op0, 0);
11392 	      code = swap_condition (code);
11393 	      continue;
11394 	    }
11395 	  break;
11396 
11397 	case ROTATE:
11398 	  /* If we are testing equality and our count is a constant, we
11399 	     can perform the inverse operation on our RHS.  */
11400 	  if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11401 	      && (tem = simplify_binary_operation (ROTATERT, mode,
11402 						   op1, XEXP (op0, 1))) != 0)
11403 	    {
11404 	      op0 = XEXP (op0, 0);
11405 	      op1 = tem;
11406 	      continue;
11407 	    }
11408 
11409 	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11410 	     a particular bit.  Convert it to an AND of a constant of that
11411 	     bit.  This will be converted into a ZERO_EXTRACT.  */
11412 	  if (const_op == 0 && sign_bit_comparison_p
11413 	      && CONST_INT_P (XEXP (op0, 1))
11414 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
11415 	    {
11416 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11417 					    ((unsigned HOST_WIDE_INT) 1
11418 					     << (mode_width - 1
11419 						 - INTVAL (XEXP (op0, 1)))));
11420 	      code = (code == LT ? NE : EQ);
11421 	      continue;
11422 	    }
11423 
11424 	  /* Fall through.  */
11425 
11426 	case ABS:
11427 	  /* ABS is ignorable inside an equality comparison with zero.  */
11428 	  if (const_op == 0 && equality_comparison_p)
11429 	    {
11430 	      op0 = XEXP (op0, 0);
11431 	      continue;
11432 	    }
11433 	  break;
11434 
11435 	case SIGN_EXTEND:
11436 	  /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11437 	     (compare FOO CONST) if CONST fits in FOO's mode and we
11438 	     are either testing inequality or have an unsigned
11439 	     comparison with ZERO_EXTEND or a signed comparison with
11440 	     SIGN_EXTEND.  But don't do it if we don't have a compare
11441 	     insn of the given mode, since we'd have to revert it
11442 	     later on, and then we wouldn't know whether to sign- or
11443 	     zero-extend.  */
11444 	  mode = GET_MODE (XEXP (op0, 0));
11445 	  if (GET_MODE_CLASS (mode) == MODE_INT
11446 	      && ! unsigned_comparison_p
11447 	      && HWI_COMPUTABLE_MODE_P (mode)
11448 	      && trunc_int_for_mode (const_op, mode) == const_op
11449 	      && have_insn_for (COMPARE, mode))
11450 	    {
11451 	      op0 = XEXP (op0, 0);
11452 	      continue;
11453 	    }
11454 	  break;
11455 
11456 	case SUBREG:
11457 	  /* Check for the case where we are comparing A - C1 with C2, that is
11458 
11459 	       (subreg:MODE (plus (A) (-C1))) op (C2)
11460 
11461 	     with C1 a constant, and try to lift the SUBREG, i.e. to do the
11462 	     comparison in the wider mode.  One of the following two conditions
11463 	     must be true in order for this to be valid:
11464 
11465 	       1. The mode extension results in the same bit pattern being added
11466 		  on both sides and the comparison is equality or unsigned.  As
11467 		  C2 has been truncated to fit in MODE, the pattern can only be
11468 		  all 0s or all 1s.
11469 
11470 	       2. The mode extension results in the sign bit being copied on
11471 		  each side.
11472 
11473 	     The difficulty here is that we have predicates for A but not for
11474 	     (A - C1) so we need to check that C1 is within proper bounds so
11475 	     as to perturbate A as little as possible.  */
11476 
11477 	  if (mode_width <= HOST_BITS_PER_WIDE_INT
11478 	      && subreg_lowpart_p (op0)
11479 	      && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11480 	      && GET_CODE (SUBREG_REG (op0)) == PLUS
11481 	      && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11482 	    {
11483 	      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11484 	      rtx a = XEXP (SUBREG_REG (op0), 0);
11485 	      HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11486 
11487 	      if ((c1 > 0
11488 		   && (unsigned HOST_WIDE_INT) c1
11489 		       < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11490 		   && (equality_comparison_p || unsigned_comparison_p)
11491 		   /* (A - C1) zero-extends if it is positive and sign-extends
11492 		      if it is negative, C2 both zero- and sign-extends.  */
11493 		   && ((0 == (nonzero_bits (a, inner_mode)
11494 			      & ~GET_MODE_MASK (mode))
11495 			&& const_op >= 0)
11496 		       /* (A - C1) sign-extends if it is positive and 1-extends
11497 			  if it is negative, C2 both sign- and 1-extends.  */
11498 		       || (num_sign_bit_copies (a, inner_mode)
11499 			   > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11500 					     - mode_width)
11501 			   && const_op < 0)))
11502 		  || ((unsigned HOST_WIDE_INT) c1
11503 		       < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11504 		      /* (A - C1) always sign-extends, like C2.  */
11505 		      && num_sign_bit_copies (a, inner_mode)
11506 			 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11507 					   - (mode_width - 1))))
11508 		{
11509 		  op0 = SUBREG_REG (op0);
11510 		  continue;
11511 		}
11512 	    }
11513 
11514 	  /* If the inner mode is narrower and we are extracting the low part,
11515 	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
11516 	  if (subreg_lowpart_p (op0)
11517 	      && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11518 	    /* Fall through */ ;
11519 	  else
11520 	    break;
11521 
11522 	  /* ... fall through ...  */
11523 
11524 	case ZERO_EXTEND:
11525 	  mode = GET_MODE (XEXP (op0, 0));
11526 	  if (GET_MODE_CLASS (mode) == MODE_INT
11527 	      && (unsigned_comparison_p || equality_comparison_p)
11528 	      && HWI_COMPUTABLE_MODE_P (mode)
11529 	      && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11530 	      && const_op >= 0
11531 	      && have_insn_for (COMPARE, mode))
11532 	    {
11533 	      op0 = XEXP (op0, 0);
11534 	      continue;
11535 	    }
11536 	  break;
11537 
11538 	case PLUS:
11539 	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
11540 	     this for equality comparisons due to pathological cases involving
11541 	     overflows.  */
11542 	  if (equality_comparison_p
11543 	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
11544 							op1, XEXP (op0, 1))))
11545 	    {
11546 	      op0 = XEXP (op0, 0);
11547 	      op1 = tem;
11548 	      continue;
11549 	    }
11550 
11551 	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
11552 	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11553 	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11554 	    {
11555 	      op0 = XEXP (XEXP (op0, 0), 0);
11556 	      code = (code == LT ? EQ : NE);
11557 	      continue;
11558 	    }
11559 	  break;
11560 
11561 	case MINUS:
11562 	  /* We used to optimize signed comparisons against zero, but that
11563 	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
11564 	     arrive here as equality comparisons, or (GEU, LTU) are
11565 	     optimized away.  No need to special-case them.  */
11566 
11567 	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
11568 	     (eq B (minus A C)), whichever simplifies.  We can only do
11569 	     this for equality comparisons due to pathological cases involving
11570 	     overflows.  */
11571 	  if (equality_comparison_p
11572 	      && 0 != (tem = simplify_binary_operation (PLUS, mode,
11573 							XEXP (op0, 1), op1)))
11574 	    {
11575 	      op0 = XEXP (op0, 0);
11576 	      op1 = tem;
11577 	      continue;
11578 	    }
11579 
11580 	  if (equality_comparison_p
11581 	      && 0 != (tem = simplify_binary_operation (MINUS, mode,
11582 							XEXP (op0, 0), op1)))
11583 	    {
11584 	      op0 = XEXP (op0, 1);
11585 	      op1 = tem;
11586 	      continue;
11587 	    }
11588 
11589 	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11590 	     of bits in X minus 1, is one iff X > 0.  */
11591 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11592 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11593 	      && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11594 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11595 	    {
11596 	      op0 = XEXP (op0, 1);
11597 	      code = (code == GE ? LE : GT);
11598 	      continue;
11599 	    }
11600 	  break;
11601 
11602 	case XOR:
11603 	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
11604 	     if C is zero or B is a constant.  */
11605 	  if (equality_comparison_p
11606 	      && 0 != (tem = simplify_binary_operation (XOR, mode,
11607 							XEXP (op0, 1), op1)))
11608 	    {
11609 	      op0 = XEXP (op0, 0);
11610 	      op1 = tem;
11611 	      continue;
11612 	    }
11613 	  break;
11614 
11615 	case EQ:  case NE:
11616 	case UNEQ:  case LTGT:
11617 	case LT:  case LTU:  case UNLT:  case LE:  case LEU:  case UNLE:
11618 	case GT:  case GTU:  case UNGT:  case GE:  case GEU:  case UNGE:
11619 	case UNORDERED: case ORDERED:
11620 	  /* We can't do anything if OP0 is a condition code value, rather
11621 	     than an actual data value.  */
11622 	  if (const_op != 0
11623 	      || CC0_P (XEXP (op0, 0))
11624 	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11625 	    break;
11626 
11627 	  /* Get the two operands being compared.  */
11628 	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11629 	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11630 	  else
11631 	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11632 
11633 	  /* Check for the cases where we simply want the result of the
11634 	     earlier test or the opposite of that result.  */
11635 	  if (code == NE || code == EQ
11636 	      || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11637 		  && (code == LT || code == GE)))
11638 	    {
11639 	      enum rtx_code new_code;
11640 	      if (code == LT || code == NE)
11641 		new_code = GET_CODE (op0);
11642 	      else
11643 		new_code = reversed_comparison_code (op0, NULL);
11644 
11645 	      if (new_code != UNKNOWN)
11646 		{
11647 		  code = new_code;
11648 		  op0 = tem;
11649 		  op1 = tem1;
11650 		  continue;
11651 		}
11652 	    }
11653 	  break;
11654 
11655 	case IOR:
11656 	  /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11657 	     iff X <= 0.  */
11658 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11659 	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11660 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11661 	    {
11662 	      op0 = XEXP (op0, 1);
11663 	      code = (code == GE ? GT : LE);
11664 	      continue;
11665 	    }
11666 	  break;
11667 
11668 	case AND:
11669 	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
11670 	     will be converted to a ZERO_EXTRACT later.  */
11671 	  if (const_op == 0 && equality_comparison_p
11672 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
11673 	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11674 	    {
11675 	      op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11676 				      XEXP (XEXP (op0, 0), 1));
11677 	      op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11678 	      continue;
11679 	    }
11680 
11681 	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11682 	     zero and X is a comparison and C1 and C2 describe only bits set
11683 	     in STORE_FLAG_VALUE, we can compare with X.  */
11684 	  if (const_op == 0 && equality_comparison_p
11685 	      && mode_width <= HOST_BITS_PER_WIDE_INT
11686 	      && CONST_INT_P (XEXP (op0, 1))
11687 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11688 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11689 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11690 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11691 	    {
11692 	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11693 		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
11694 	      if ((~STORE_FLAG_VALUE & mask) == 0
11695 		  && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11696 		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11697 			  && COMPARISON_P (tem))))
11698 		{
11699 		  op0 = XEXP (XEXP (op0, 0), 0);
11700 		  continue;
11701 		}
11702 	    }
11703 
11704 	  /* If we are doing an equality comparison of an AND of a bit equal
11705 	     to the sign bit, replace this with a LT or GE comparison of
11706 	     the underlying value.  */
11707 	  if (equality_comparison_p
11708 	      && const_op == 0
11709 	      && CONST_INT_P (XEXP (op0, 1))
11710 	      && mode_width <= HOST_BITS_PER_WIDE_INT
11711 	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11712 		  == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11713 	    {
11714 	      op0 = XEXP (op0, 0);
11715 	      code = (code == EQ ? GE : LT);
11716 	      continue;
11717 	    }
11718 
11719 	  /* If this AND operation is really a ZERO_EXTEND from a narrower
11720 	     mode, the constant fits within that mode, and this is either an
11721 	     equality or unsigned comparison, try to do this comparison in
11722 	     the narrower mode.
11723 
11724 	     Note that in:
11725 
11726 	     (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11727 	     -> (ne:DI (reg:SI 4) (const_int 0))
11728 
11729 	     unless TRULY_NOOP_TRUNCATION allows it or the register is
11730 	     known to hold a value of the required mode the
11731 	     transformation is invalid.  */
11732 	  if ((equality_comparison_p || unsigned_comparison_p)
11733 	      && CONST_INT_P (XEXP (op0, 1))
11734 	      && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11735 				   & GET_MODE_MASK (mode))
11736 				  + 1)) >= 0
11737 	      && const_op >> i == 0
11738 	      && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11739 	      && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11740 		  || (REG_P (XEXP (op0, 0))
11741 		      && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11742 	    {
11743 	      op0 = gen_lowpart (tmode, XEXP (op0, 0));
11744 	      continue;
11745 	    }
11746 
11747 	  /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11748 	     fits in both M1 and M2 and the SUBREG is either paradoxical
11749 	     or represents the low part, permute the SUBREG and the AND
11750 	     and try again.  */
11751 	  if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11752 	    {
11753 	      unsigned HOST_WIDE_INT c1;
11754 	      tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11755 	      /* Require an integral mode, to avoid creating something like
11756 		 (AND:SF ...).  */
11757 	      if (SCALAR_INT_MODE_P (tmode)
11758 		  /* It is unsafe to commute the AND into the SUBREG if the
11759 		     SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11760 		     not defined.  As originally written the upper bits
11761 		     have a defined value due to the AND operation.
11762 		     However, if we commute the AND inside the SUBREG then
11763 		     they no longer have defined values and the meaning of
11764 		     the code has been changed.  */
11765 		  && (0
11766 #ifdef WORD_REGISTER_OPERATIONS
11767 		      || (mode_width > GET_MODE_PRECISION (tmode)
11768 			  && mode_width <= BITS_PER_WORD)
11769 #endif
11770 		      || (mode_width <= GET_MODE_PRECISION (tmode)
11771 			  && subreg_lowpart_p (XEXP (op0, 0))))
11772 		  && CONST_INT_P (XEXP (op0, 1))
11773 		  && mode_width <= HOST_BITS_PER_WIDE_INT
11774 		  && HWI_COMPUTABLE_MODE_P (tmode)
11775 		  && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11776 		  && (c1 & ~GET_MODE_MASK (tmode)) == 0
11777 		  && c1 != mask
11778 		  && c1 != GET_MODE_MASK (tmode))
11779 		{
11780 		  op0 = simplify_gen_binary (AND, tmode,
11781 					     SUBREG_REG (XEXP (op0, 0)),
11782 					     gen_int_mode (c1, tmode));
11783 		  op0 = gen_lowpart (mode, op0);
11784 		  continue;
11785 		}
11786 	    }
11787 
11788 	  /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0).  */
11789 	  if (const_op == 0 && equality_comparison_p
11790 	      && XEXP (op0, 1) == const1_rtx
11791 	      && GET_CODE (XEXP (op0, 0)) == NOT)
11792 	    {
11793 	      op0 = simplify_and_const_int (NULL_RTX, mode,
11794 					    XEXP (XEXP (op0, 0), 0), 1);
11795 	      code = (code == NE ? EQ : NE);
11796 	      continue;
11797 	    }
11798 
11799 	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11800 	     (eq (and (lshiftrt X) 1) 0).
11801 	     Also handle the case where (not X) is expressed using xor.  */
11802 	  if (const_op == 0 && equality_comparison_p
11803 	      && XEXP (op0, 1) == const1_rtx
11804 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11805 	    {
11806 	      rtx shift_op = XEXP (XEXP (op0, 0), 0);
11807 	      rtx shift_count = XEXP (XEXP (op0, 0), 1);
11808 
11809 	      if (GET_CODE (shift_op) == NOT
11810 		  || (GET_CODE (shift_op) == XOR
11811 		      && CONST_INT_P (XEXP (shift_op, 1))
11812 		      && CONST_INT_P (shift_count)
11813 		      && HWI_COMPUTABLE_MODE_P (mode)
11814 		      && (UINTVAL (XEXP (shift_op, 1))
11815 			  == (unsigned HOST_WIDE_INT) 1
11816 			       << INTVAL (shift_count))))
11817 		{
11818 		  op0
11819 		    = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11820 		  op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11821 		  code = (code == NE ? EQ : NE);
11822 		  continue;
11823 		}
11824 	    }
11825 	  break;
11826 
11827 	case ASHIFT:
11828 	  /* If we have (compare (ashift FOO N) (const_int C)) and
11829 	     the high order N bits of FOO (N+1 if an inequality comparison)
11830 	     are known to be zero, we can do this by comparing FOO with C
11831 	     shifted right N bits so long as the low-order N bits of C are
11832 	     zero.  */
11833 	  if (CONST_INT_P (XEXP (op0, 1))
11834 	      && INTVAL (XEXP (op0, 1)) >= 0
11835 	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11836 		  < HOST_BITS_PER_WIDE_INT)
11837 	      && (((unsigned HOST_WIDE_INT) const_op
11838 		   & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11839 		      - 1)) == 0)
11840 	      && mode_width <= HOST_BITS_PER_WIDE_INT
11841 	      && (nonzero_bits (XEXP (op0, 0), mode)
11842 		  & ~(mask >> (INTVAL (XEXP (op0, 1))
11843 			       + ! equality_comparison_p))) == 0)
11844 	    {
11845 	      /* We must perform a logical shift, not an arithmetic one,
11846 		 as we want the top N bits of C to be zero.  */
11847 	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11848 
11849 	      temp >>= INTVAL (XEXP (op0, 1));
11850 	      op1 = gen_int_mode (temp, mode);
11851 	      op0 = XEXP (op0, 0);
11852 	      continue;
11853 	    }
11854 
11855 	  /* If we are doing a sign bit comparison, it means we are testing
11856 	     a particular bit.  Convert it to the appropriate AND.  */
11857 	  if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11858 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
11859 	    {
11860 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11861 					    ((unsigned HOST_WIDE_INT) 1
11862 					     << (mode_width - 1
11863 						 - INTVAL (XEXP (op0, 1)))));
11864 	      code = (code == LT ? NE : EQ);
11865 	      continue;
11866 	    }
11867 
11868 	  /* If this an equality comparison with zero and we are shifting
11869 	     the low bit to the sign bit, we can convert this to an AND of the
11870 	     low-order bit.  */
11871 	  if (const_op == 0 && equality_comparison_p
11872 	      && CONST_INT_P (XEXP (op0, 1))
11873 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11874 	    {
11875 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11876 	      continue;
11877 	    }
11878 	  break;
11879 
11880 	case ASHIFTRT:
11881 	  /* If this is an equality comparison with zero, we can do this
11882 	     as a logical shift, which might be much simpler.  */
11883 	  if (equality_comparison_p && const_op == 0
11884 	      && CONST_INT_P (XEXP (op0, 1)))
11885 	    {
11886 	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11887 					  XEXP (op0, 0),
11888 					  INTVAL (XEXP (op0, 1)));
11889 	      continue;
11890 	    }
11891 
11892 	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11893 	     do the comparison in a narrower mode.  */
11894 	  if (! unsigned_comparison_p
11895 	      && CONST_INT_P (XEXP (op0, 1))
11896 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
11897 	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11898 	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11899 					 MODE_INT, 1)) != BLKmode
11900 	      && (((unsigned HOST_WIDE_INT) const_op
11901 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
11902 		  <= GET_MODE_MASK (tmode)))
11903 	    {
11904 	      op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11905 	      continue;
11906 	    }
11907 
11908 	  /* Likewise if OP0 is a PLUS of a sign extension with a
11909 	     constant, which is usually represented with the PLUS
11910 	     between the shifts.  */
11911 	  if (! unsigned_comparison_p
11912 	      && CONST_INT_P (XEXP (op0, 1))
11913 	      && GET_CODE (XEXP (op0, 0)) == PLUS
11914 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11915 	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11916 	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11917 	      && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11918 					 MODE_INT, 1)) != BLKmode
11919 	      && (((unsigned HOST_WIDE_INT) const_op
11920 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
11921 		  <= GET_MODE_MASK (tmode)))
11922 	    {
11923 	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11924 	      rtx add_const = XEXP (XEXP (op0, 0), 1);
11925 	      rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11926 						   add_const, XEXP (op0, 1));
11927 
11928 	      op0 = simplify_gen_binary (PLUS, tmode,
11929 					 gen_lowpart (tmode, inner),
11930 					 new_const);
11931 	      continue;
11932 	    }
11933 
11934 	  /* ... fall through ...  */
11935 	case LSHIFTRT:
11936 	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11937 	     the low order N bits of FOO are known to be zero, we can do this
11938 	     by comparing FOO with C shifted left N bits so long as no
11939 	     overflow occurs.  Even if the low order N bits of FOO aren't known
11940 	     to be zero, if the comparison is >= or < we can use the same
11941 	     optimization and for > or <= by setting all the low
11942 	     order N bits in the comparison constant.  */
11943 	  if (CONST_INT_P (XEXP (op0, 1))
11944 	      && INTVAL (XEXP (op0, 1)) > 0
11945 	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11946 	      && mode_width <= HOST_BITS_PER_WIDE_INT
11947 	      && (((unsigned HOST_WIDE_INT) const_op
11948 		   + (GET_CODE (op0) != LSHIFTRT
11949 		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11950 			 + 1)
11951 		      : 0))
11952 		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11953 	    {
11954 	      unsigned HOST_WIDE_INT low_bits
11955 		= (nonzero_bits (XEXP (op0, 0), mode)
11956 		   & (((unsigned HOST_WIDE_INT) 1
11957 		       << INTVAL (XEXP (op0, 1))) - 1));
11958 	      if (low_bits == 0 || !equality_comparison_p)
11959 		{
11960 		  /* If the shift was logical, then we must make the condition
11961 		     unsigned.  */
11962 		  if (GET_CODE (op0) == LSHIFTRT)
11963 		    code = unsigned_condition (code);
11964 
11965 		  const_op <<= INTVAL (XEXP (op0, 1));
11966 		  if (low_bits != 0
11967 		      && (code == GT || code == GTU
11968 			  || code == LE || code == LEU))
11969 		    const_op
11970 		      |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11971 		  op1 = GEN_INT (const_op);
11972 		  op0 = XEXP (op0, 0);
11973 		  continue;
11974 		}
11975 	    }
11976 
11977 	  /* If we are using this shift to extract just the sign bit, we
11978 	     can replace this with an LT or GE comparison.  */
11979 	  if (const_op == 0
11980 	      && (equality_comparison_p || sign_bit_comparison_p)
11981 	      && CONST_INT_P (XEXP (op0, 1))
11982 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11983 	    {
11984 	      op0 = XEXP (op0, 0);
11985 	      code = (code == NE || code == GT ? LT : GE);
11986 	      continue;
11987 	    }
11988 	  break;
11989 
11990 	default:
11991 	  break;
11992 	}
11993 
11994       break;
11995     }
11996 
11997   /* Now make any compound operations involved in this comparison.  Then,
11998      check for an outmost SUBREG on OP0 that is not doing anything or is
11999      paradoxical.  The latter transformation must only be performed when
12000      it is known that the "extra" bits will be the same in op0 and op1 or
12001      that they don't matter.  There are three cases to consider:
12002 
12003      1. SUBREG_REG (op0) is a register.  In this case the bits are don't
12004      care bits and we can assume they have any convenient value.  So
12005      making the transformation is safe.
12006 
12007      2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12008      In this case the upper bits of op0 are undefined.  We should not make
12009      the simplification in that case as we do not know the contents of
12010      those bits.
12011 
12012      3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12013      UNKNOWN.  In that case we know those bits are zeros or ones.  We must
12014      also be sure that they are the same as the upper bits of op1.
12015 
12016      We can never remove a SUBREG for a non-equality comparison because
12017      the sign bit is in a different place in the underlying object.  */
12018 
12019   op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12020   op1 = make_compound_operation (op1, SET);
12021 
12022   if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12023       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12024       && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12025       && (code == NE || code == EQ))
12026     {
12027       if (paradoxical_subreg_p (op0))
12028 	{
12029 	  /* For paradoxical subregs, allow case 1 as above.  Case 3 isn't
12030 	     implemented.  */
12031 	  if (REG_P (SUBREG_REG (op0)))
12032 	    {
12033 	      op0 = SUBREG_REG (op0);
12034 	      op1 = gen_lowpart (GET_MODE (op0), op1);
12035 	    }
12036 	}
12037       else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12038 		<= HOST_BITS_PER_WIDE_INT)
12039 	       && (nonzero_bits (SUBREG_REG (op0),
12040 				 GET_MODE (SUBREG_REG (op0)))
12041 		   & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12042 	{
12043 	  tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12044 
12045 	  if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12046 	       & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12047 	    op0 = SUBREG_REG (op0), op1 = tem;
12048 	}
12049     }
12050 
12051   /* We now do the opposite procedure: Some machines don't have compare
12052      insns in all modes.  If OP0's mode is an integer mode smaller than a
12053      word and we can't do a compare in that mode, see if there is a larger
12054      mode for which we can do the compare.  There are a number of cases in
12055      which we can use the wider mode.  */
12056 
12057   mode = GET_MODE (op0);
12058   if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12059       && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12060       && ! have_insn_for (COMPARE, mode))
12061     for (tmode = GET_MODE_WIDER_MODE (mode);
12062 	 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12063 	 tmode = GET_MODE_WIDER_MODE (tmode))
12064       if (have_insn_for (COMPARE, tmode))
12065 	{
12066 	  int zero_extended;
12067 
12068 	  /* If this is a test for negative, we can make an explicit
12069 	     test of the sign bit.  Test this first so we can use
12070 	     a paradoxical subreg to extend OP0.  */
12071 
12072 	  if (op1 == const0_rtx && (code == LT || code == GE)
12073 	      && HWI_COMPUTABLE_MODE_P (mode))
12074 	    {
12075 	      op0 = simplify_gen_binary (AND, tmode,
12076 					 gen_lowpart (tmode, op0),
12077 					 GEN_INT ((unsigned HOST_WIDE_INT) 1
12078 						  << (GET_MODE_BITSIZE (mode)
12079 						      - 1)));
12080 	      code = (code == LT) ? NE : EQ;
12081 	      break;
12082 	    }
12083 
12084 	  /* If the only nonzero bits in OP0 and OP1 are those in the
12085 	     narrower mode and this is an equality or unsigned comparison,
12086 	     we can use the wider mode.  Similarly for sign-extended
12087 	     values, in which case it is true for all comparisons.  */
12088 	  zero_extended = ((code == EQ || code == NE
12089 			    || code == GEU || code == GTU
12090 			    || code == LEU || code == LTU)
12091 			   && (nonzero_bits (op0, tmode)
12092 			       & ~GET_MODE_MASK (mode)) == 0
12093 			   && ((CONST_INT_P (op1)
12094 				|| (nonzero_bits (op1, tmode)
12095 				    & ~GET_MODE_MASK (mode)) == 0)));
12096 
12097 	  if (zero_extended
12098 	      || ((num_sign_bit_copies (op0, tmode)
12099 		   > (unsigned int) (GET_MODE_PRECISION (tmode)
12100 				     - GET_MODE_PRECISION (mode)))
12101 		  && (num_sign_bit_copies (op1, tmode)
12102 		      > (unsigned int) (GET_MODE_PRECISION (tmode)
12103 					- GET_MODE_PRECISION (mode)))))
12104 	    {
12105 	      /* If OP0 is an AND and we don't have an AND in MODE either,
12106 		 make a new AND in the proper mode.  */
12107 	      if (GET_CODE (op0) == AND
12108 		  && !have_insn_for (AND, mode))
12109 		op0 = simplify_gen_binary (AND, tmode,
12110 					   gen_lowpart (tmode,
12111 							XEXP (op0, 0)),
12112 					   gen_lowpart (tmode,
12113 							XEXP (op0, 1)));
12114 	      else
12115 		{
12116 		  if (zero_extended)
12117 		    {
12118 		      op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12119 		      op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12120 		    }
12121 		  else
12122 		    {
12123 		      op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12124 		      op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12125 		    }
12126 		  break;
12127 		}
12128 	    }
12129 	}
12130 
12131 #ifdef CANONICALIZE_COMPARISON
12132   /* If this machine only supports a subset of valid comparisons, see if we
12133      can convert an unsupported one into a supported one.  */
12134   CANONICALIZE_COMPARISON (code, op0, op1);
12135 #endif
12136 
12137   *pop0 = op0;
12138   *pop1 = op1;
12139 
12140   return code;
12141 }
12142 
12143 /* Utility function for record_value_for_reg.  Count number of
12144    rtxs in X.  */
12145 static int
12146 count_rtxs (rtx x)
12147 {
12148   enum rtx_code code = GET_CODE (x);
12149   const char *fmt;
12150   int i, j, ret = 1;
12151 
12152   if (GET_RTX_CLASS (code) == '2'
12153       || GET_RTX_CLASS (code) == 'c')
12154     {
12155       rtx x0 = XEXP (x, 0);
12156       rtx x1 = XEXP (x, 1);
12157 
12158       if (x0 == x1)
12159 	return 1 + 2 * count_rtxs (x0);
12160 
12161       if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12162 	   || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12163 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12164 	return 2 + 2 * count_rtxs (x0)
12165 	       + count_rtxs (x == XEXP (x1, 0)
12166 			     ? XEXP (x1, 1) : XEXP (x1, 0));
12167 
12168       if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12169 	   || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12170 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12171 	return 2 + 2 * count_rtxs (x1)
12172 	       + count_rtxs (x == XEXP (x0, 0)
12173 			     ? XEXP (x0, 1) : XEXP (x0, 0));
12174     }
12175 
12176   fmt = GET_RTX_FORMAT (code);
12177   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12178     if (fmt[i] == 'e')
12179       ret += count_rtxs (XEXP (x, i));
12180     else if (fmt[i] == 'E')
12181       for (j = 0; j < XVECLEN (x, i); j++)
12182 	ret += count_rtxs (XVECEXP (x, i, j));
12183 
12184   return ret;
12185 }
12186 
12187 /* Utility function for following routine.  Called when X is part of a value
12188    being stored into last_set_value.  Sets last_set_table_tick
12189    for each register mentioned.  Similar to mention_regs in cse.c  */
12190 
12191 static void
12192 update_table_tick (rtx x)
12193 {
12194   enum rtx_code code = GET_CODE (x);
12195   const char *fmt = GET_RTX_FORMAT (code);
12196   int i, j;
12197 
12198   if (code == REG)
12199     {
12200       unsigned int regno = REGNO (x);
12201       unsigned int endregno = END_REGNO (x);
12202       unsigned int r;
12203 
12204       for (r = regno; r < endregno; r++)
12205 	{
12206 	  reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12207 	  rsp->last_set_table_tick = label_tick;
12208 	}
12209 
12210       return;
12211     }
12212 
12213   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12214     if (fmt[i] == 'e')
12215       {
12216 	/* Check for identical subexpressions.  If x contains
12217 	   identical subexpression we only have to traverse one of
12218 	   them.  */
12219 	if (i == 0 && ARITHMETIC_P (x))
12220 	  {
12221 	    /* Note that at this point x1 has already been
12222 	       processed.  */
12223 	    rtx x0 = XEXP (x, 0);
12224 	    rtx x1 = XEXP (x, 1);
12225 
12226 	    /* If x0 and x1 are identical then there is no need to
12227 	       process x0.  */
12228 	    if (x0 == x1)
12229 	      break;
12230 
12231 	    /* If x0 is identical to a subexpression of x1 then while
12232 	       processing x1, x0 has already been processed.  Thus we
12233 	       are done with x.  */
12234 	    if (ARITHMETIC_P (x1)
12235 		&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12236 	      break;
12237 
12238 	    /* If x1 is identical to a subexpression of x0 then we
12239 	       still have to process the rest of x0.  */
12240 	    if (ARITHMETIC_P (x0)
12241 		&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12242 	      {
12243 		update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12244 		break;
12245 	      }
12246 	  }
12247 
12248 	update_table_tick (XEXP (x, i));
12249       }
12250     else if (fmt[i] == 'E')
12251       for (j = 0; j < XVECLEN (x, i); j++)
12252 	update_table_tick (XVECEXP (x, i, j));
12253 }
12254 
12255 /* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
12256    are saying that the register is clobbered and we no longer know its
12257    value.  If INSN is zero, don't update reg_stat[].last_set; this is
12258    only permitted with VALUE also zero and is used to invalidate the
12259    register.  */
12260 
12261 static void
12262 record_value_for_reg (rtx reg, rtx insn, rtx value)
12263 {
12264   unsigned int regno = REGNO (reg);
12265   unsigned int endregno = END_REGNO (reg);
12266   unsigned int i;
12267   reg_stat_type *rsp;
12268 
12269   /* If VALUE contains REG and we have a previous value for REG, substitute
12270      the previous value.  */
12271   if (value && insn && reg_overlap_mentioned_p (reg, value))
12272     {
12273       rtx tem;
12274 
12275       /* Set things up so get_last_value is allowed to see anything set up to
12276 	 our insn.  */
12277       subst_low_luid = DF_INSN_LUID (insn);
12278       tem = get_last_value (reg);
12279 
12280       /* If TEM is simply a binary operation with two CLOBBERs as operands,
12281 	 it isn't going to be useful and will take a lot of time to process,
12282 	 so just use the CLOBBER.  */
12283 
12284       if (tem)
12285 	{
12286 	  if (ARITHMETIC_P (tem)
12287 	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
12288 	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12289 	    tem = XEXP (tem, 0);
12290 	  else if (count_occurrences (value, reg, 1) >= 2)
12291 	    {
12292 	      /* If there are two or more occurrences of REG in VALUE,
12293 		 prevent the value from growing too much.  */
12294 	      if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12295 		tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12296 	    }
12297 
12298 	  value = replace_rtx (copy_rtx (value), reg, tem);
12299 	}
12300     }
12301 
12302   /* For each register modified, show we don't know its value, that
12303      we don't know about its bitwise content, that its value has been
12304      updated, and that we don't know the location of the death of the
12305      register.  */
12306   for (i = regno; i < endregno; i++)
12307     {
12308       rsp = VEC_index (reg_stat_type, reg_stat, i);
12309 
12310       if (insn)
12311 	rsp->last_set = insn;
12312 
12313       rsp->last_set_value = 0;
12314       rsp->last_set_mode = VOIDmode;
12315       rsp->last_set_nonzero_bits = 0;
12316       rsp->last_set_sign_bit_copies = 0;
12317       rsp->last_death = 0;
12318       rsp->truncated_to_mode = VOIDmode;
12319     }
12320 
12321   /* Mark registers that are being referenced in this value.  */
12322   if (value)
12323     update_table_tick (value);
12324 
12325   /* Now update the status of each register being set.
12326      If someone is using this register in this block, set this register
12327      to invalid since we will get confused between the two lives in this
12328      basic block.  This makes using this register always invalid.  In cse, we
12329      scan the table to invalidate all entries using this register, but this
12330      is too much work for us.  */
12331 
12332   for (i = regno; i < endregno; i++)
12333     {
12334       rsp = VEC_index (reg_stat_type, reg_stat, i);
12335       rsp->last_set_label = label_tick;
12336       if (!insn
12337 	  || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12338 	rsp->last_set_invalid = 1;
12339       else
12340 	rsp->last_set_invalid = 0;
12341     }
12342 
12343   /* The value being assigned might refer to X (like in "x++;").  In that
12344      case, we must replace it with (clobber (const_int 0)) to prevent
12345      infinite loops.  */
12346   rsp = VEC_index (reg_stat_type, reg_stat, regno);
12347   if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12348     {
12349       value = copy_rtx (value);
12350       if (!get_last_value_validate (&value, insn, label_tick, 1))
12351 	value = 0;
12352     }
12353 
12354   /* For the main register being modified, update the value, the mode, the
12355      nonzero bits, and the number of sign bit copies.  */
12356 
12357   rsp->last_set_value = value;
12358 
12359   if (value)
12360     {
12361       enum machine_mode mode = GET_MODE (reg);
12362       subst_low_luid = DF_INSN_LUID (insn);
12363       rsp->last_set_mode = mode;
12364       if (GET_MODE_CLASS (mode) == MODE_INT
12365 	  && HWI_COMPUTABLE_MODE_P (mode))
12366 	mode = nonzero_bits_mode;
12367       rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12368       rsp->last_set_sign_bit_copies
12369 	= num_sign_bit_copies (value, GET_MODE (reg));
12370     }
12371 }
12372 
12373 /* Called via note_stores from record_dead_and_set_regs to handle one
12374    SET or CLOBBER in an insn.  DATA is the instruction in which the
12375    set is occurring.  */
12376 
12377 static void
12378 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12379 {
12380   rtx record_dead_insn = (rtx) data;
12381 
12382   if (GET_CODE (dest) == SUBREG)
12383     dest = SUBREG_REG (dest);
12384 
12385   if (!record_dead_insn)
12386     {
12387       if (REG_P (dest))
12388 	record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12389       return;
12390     }
12391 
12392   if (REG_P (dest))
12393     {
12394       /* If we are setting the whole register, we know its value.  Otherwise
12395 	 show that we don't know the value.  We can handle SUBREG in
12396 	 some cases.  */
12397       if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12398 	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12399       else if (GET_CODE (setter) == SET
12400 	       && GET_CODE (SET_DEST (setter)) == SUBREG
12401 	       && SUBREG_REG (SET_DEST (setter)) == dest
12402 	       && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12403 	       && subreg_lowpart_p (SET_DEST (setter)))
12404 	record_value_for_reg (dest, record_dead_insn,
12405 			      gen_lowpart (GET_MODE (dest),
12406 						       SET_SRC (setter)));
12407       else
12408 	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12409     }
12410   else if (MEM_P (dest)
12411 	   /* Ignore pushes, they clobber nothing.  */
12412 	   && ! push_operand (dest, GET_MODE (dest)))
12413     mem_last_set = DF_INSN_LUID (record_dead_insn);
12414 }
12415 
12416 /* Update the records of when each REG was most recently set or killed
12417    for the things done by INSN.  This is the last thing done in processing
12418    INSN in the combiner loop.
12419 
12420    We update reg_stat[], in particular fields last_set, last_set_value,
12421    last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12422    last_death, and also the similar information mem_last_set (which insn
12423    most recently modified memory) and last_call_luid (which insn was the
12424    most recent subroutine call).  */
12425 
12426 static void
12427 record_dead_and_set_regs (rtx insn)
12428 {
12429   rtx link;
12430   unsigned int i;
12431 
12432   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12433     {
12434       if (REG_NOTE_KIND (link) == REG_DEAD
12435 	  && REG_P (XEXP (link, 0)))
12436 	{
12437 	  unsigned int regno = REGNO (XEXP (link, 0));
12438 	  unsigned int endregno = END_REGNO (XEXP (link, 0));
12439 
12440 	  for (i = regno; i < endregno; i++)
12441 	    {
12442 	      reg_stat_type *rsp;
12443 
12444 	      rsp = VEC_index (reg_stat_type, reg_stat, i);
12445 	      rsp->last_death = insn;
12446 	    }
12447 	}
12448       else if (REG_NOTE_KIND (link) == REG_INC)
12449 	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12450     }
12451 
12452   if (CALL_P (insn))
12453     {
12454       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12455 	if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12456 	  {
12457 	    reg_stat_type *rsp;
12458 
12459 	    rsp = VEC_index (reg_stat_type, reg_stat, i);
12460 	    rsp->last_set_invalid = 1;
12461 	    rsp->last_set = insn;
12462 	    rsp->last_set_value = 0;
12463 	    rsp->last_set_mode = VOIDmode;
12464 	    rsp->last_set_nonzero_bits = 0;
12465 	    rsp->last_set_sign_bit_copies = 0;
12466 	    rsp->last_death = 0;
12467 	    rsp->truncated_to_mode = VOIDmode;
12468 	  }
12469 
12470       last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12471 
12472       /* We can't combine into a call pattern.  Remember, though, that
12473 	 the return value register is set at this LUID.  We could
12474 	 still replace a register with the return value from the
12475 	 wrong subroutine call!  */
12476       note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12477     }
12478   else
12479     note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12480 }
12481 
12482 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12483    register present in the SUBREG, so for each such SUBREG go back and
12484    adjust nonzero and sign bit information of the registers that are
12485    known to have some zero/sign bits set.
12486 
12487    This is needed because when combine blows the SUBREGs away, the
12488    information on zero/sign bits is lost and further combines can be
12489    missed because of that.  */
12490 
12491 static void
12492 record_promoted_value (rtx insn, rtx subreg)
12493 {
12494   struct insn_link *links;
12495   rtx set;
12496   unsigned int regno = REGNO (SUBREG_REG (subreg));
12497   enum machine_mode mode = GET_MODE (subreg);
12498 
12499   if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12500     return;
12501 
12502   for (links = LOG_LINKS (insn); links;)
12503     {
12504       reg_stat_type *rsp;
12505 
12506       insn = links->insn;
12507       set = single_set (insn);
12508 
12509       if (! set || !REG_P (SET_DEST (set))
12510 	  || REGNO (SET_DEST (set)) != regno
12511 	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12512 	{
12513 	  links = links->next;
12514 	  continue;
12515 	}
12516 
12517       rsp = VEC_index (reg_stat_type, reg_stat, regno);
12518       if (rsp->last_set == insn)
12519 	{
12520 	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12521 	    rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12522 	}
12523 
12524       if (REG_P (SET_SRC (set)))
12525 	{
12526 	  regno = REGNO (SET_SRC (set));
12527 	  links = LOG_LINKS (insn);
12528 	}
12529       else
12530 	break;
12531     }
12532 }
12533 
12534 /* Check if X, a register, is known to contain a value already
12535    truncated to MODE.  In this case we can use a subreg to refer to
12536    the truncated value even though in the generic case we would need
12537    an explicit truncation.  */
12538 
12539 static bool
12540 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12541 {
12542   reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12543   enum machine_mode truncated = rsp->truncated_to_mode;
12544 
12545   if (truncated == 0
12546       || rsp->truncation_label < label_tick_ebb_start)
12547     return false;
12548   if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12549     return true;
12550   if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12551     return true;
12552   return false;
12553 }
12554 
12555 /* Callback for for_each_rtx.  If *P is a hard reg or a subreg record the mode
12556    that the register is accessed in.  For non-TRULY_NOOP_TRUNCATION targets we
12557    might be able to turn a truncate into a subreg using this information.
12558    Return -1 if traversing *P is complete or 0 otherwise.  */
12559 
12560 static int
12561 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12562 {
12563   rtx x = *p;
12564   enum machine_mode truncated_mode;
12565   reg_stat_type *rsp;
12566 
12567   if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12568     {
12569       enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12570       truncated_mode = GET_MODE (x);
12571 
12572       if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12573 	return -1;
12574 
12575       if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12576 	return -1;
12577 
12578       x = SUBREG_REG (x);
12579     }
12580   /* ??? For hard-regs we now record everything.  We might be able to
12581      optimize this using last_set_mode.  */
12582   else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12583     truncated_mode = GET_MODE (x);
12584   else
12585     return 0;
12586 
12587   rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12588   if (rsp->truncated_to_mode == 0
12589       || rsp->truncation_label < label_tick_ebb_start
12590       || (GET_MODE_SIZE (truncated_mode)
12591 	  < GET_MODE_SIZE (rsp->truncated_to_mode)))
12592     {
12593       rsp->truncated_to_mode = truncated_mode;
12594       rsp->truncation_label = label_tick;
12595     }
12596 
12597   return -1;
12598 }
12599 
12600 /* Callback for note_uses.  Find hardregs and subregs of pseudos and
12601    the modes they are used in.  This can help truning TRUNCATEs into
12602    SUBREGs.  */
12603 
12604 static void
12605 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12606 {
12607   for_each_rtx (x, record_truncated_value, NULL);
12608 }
12609 
12610 /* Scan X for promoted SUBREGs.  For each one found,
12611    note what it implies to the registers used in it.  */
12612 
12613 static void
12614 check_promoted_subreg (rtx insn, rtx x)
12615 {
12616   if (GET_CODE (x) == SUBREG
12617       && SUBREG_PROMOTED_VAR_P (x)
12618       && REG_P (SUBREG_REG (x)))
12619     record_promoted_value (insn, x);
12620   else
12621     {
12622       const char *format = GET_RTX_FORMAT (GET_CODE (x));
12623       int i, j;
12624 
12625       for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12626 	switch (format[i])
12627 	  {
12628 	  case 'e':
12629 	    check_promoted_subreg (insn, XEXP (x, i));
12630 	    break;
12631 	  case 'V':
12632 	  case 'E':
12633 	    if (XVEC (x, i) != 0)
12634 	      for (j = 0; j < XVECLEN (x, i); j++)
12635 		check_promoted_subreg (insn, XVECEXP (x, i, j));
12636 	    break;
12637 	  }
12638     }
12639 }
12640 
12641 /* Verify that all the registers and memory references mentioned in *LOC are
12642    still valid.  *LOC was part of a value set in INSN when label_tick was
12643    equal to TICK.  Return 0 if some are not.  If REPLACE is nonzero, replace
12644    the invalid references with (clobber (const_int 0)) and return 1.  This
12645    replacement is useful because we often can get useful information about
12646    the form of a value (e.g., if it was produced by a shift that always
12647    produces -1 or 0) even though we don't know exactly what registers it
12648    was produced from.  */
12649 
12650 static int
12651 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12652 {
12653   rtx x = *loc;
12654   const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12655   int len = GET_RTX_LENGTH (GET_CODE (x));
12656   int i, j;
12657 
12658   if (REG_P (x))
12659     {
12660       unsigned int regno = REGNO (x);
12661       unsigned int endregno = END_REGNO (x);
12662       unsigned int j;
12663 
12664       for (j = regno; j < endregno; j++)
12665 	{
12666 	  reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12667 	  if (rsp->last_set_invalid
12668 	      /* If this is a pseudo-register that was only set once and not
12669 		 live at the beginning of the function, it is always valid.  */
12670 	      || (! (regno >= FIRST_PSEUDO_REGISTER
12671 		     && REG_N_SETS (regno) == 1
12672 		     && (!REGNO_REG_SET_P
12673 			 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12674 		  && rsp->last_set_label > tick))
12675 	  {
12676 	    if (replace)
12677 	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12678 	    return replace;
12679 	  }
12680 	}
12681 
12682       return 1;
12683     }
12684   /* If this is a memory reference, make sure that there were no stores after
12685      it that might have clobbered the value.  We don't have alias info, so we
12686      assume any store invalidates it.  Moreover, we only have local UIDs, so
12687      we also assume that there were stores in the intervening basic blocks.  */
12688   else if (MEM_P (x) && !MEM_READONLY_P (x)
12689 	   && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12690     {
12691       if (replace)
12692 	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12693       return replace;
12694     }
12695 
12696   for (i = 0; i < len; i++)
12697     {
12698       if (fmt[i] == 'e')
12699 	{
12700 	  /* Check for identical subexpressions.  If x contains
12701 	     identical subexpression we only have to traverse one of
12702 	     them.  */
12703 	  if (i == 1 && ARITHMETIC_P (x))
12704 	    {
12705 	      /* Note that at this point x0 has already been checked
12706 		 and found valid.  */
12707 	      rtx x0 = XEXP (x, 0);
12708 	      rtx x1 = XEXP (x, 1);
12709 
12710 	      /* If x0 and x1 are identical then x is also valid.  */
12711 	      if (x0 == x1)
12712 		return 1;
12713 
12714 	      /* If x1 is identical to a subexpression of x0 then
12715 		 while checking x0, x1 has already been checked.  Thus
12716 		 it is valid and so as x.  */
12717 	      if (ARITHMETIC_P (x0)
12718 		  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12719 		return 1;
12720 
12721 	      /* If x0 is identical to a subexpression of x1 then x is
12722 		 valid iff the rest of x1 is valid.  */
12723 	      if (ARITHMETIC_P (x1)
12724 		  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12725 		return
12726 		  get_last_value_validate (&XEXP (x1,
12727 						  x0 == XEXP (x1, 0) ? 1 : 0),
12728 					   insn, tick, replace);
12729 	    }
12730 
12731 	  if (get_last_value_validate (&XEXP (x, i), insn, tick,
12732 				       replace) == 0)
12733 	    return 0;
12734 	}
12735       else if (fmt[i] == 'E')
12736 	for (j = 0; j < XVECLEN (x, i); j++)
12737 	  if (get_last_value_validate (&XVECEXP (x, i, j),
12738 				       insn, tick, replace) == 0)
12739 	    return 0;
12740     }
12741 
12742   /* If we haven't found a reason for it to be invalid, it is valid.  */
12743   return 1;
12744 }
12745 
12746 /* Get the last value assigned to X, if known.  Some registers
12747    in the value may be replaced with (clobber (const_int 0)) if their value
12748    is known longer known reliably.  */
12749 
12750 static rtx
12751 get_last_value (const_rtx x)
12752 {
12753   unsigned int regno;
12754   rtx value;
12755   reg_stat_type *rsp;
12756 
12757   /* If this is a non-paradoxical SUBREG, get the value of its operand and
12758      then convert it to the desired mode.  If this is a paradoxical SUBREG,
12759      we cannot predict what values the "extra" bits might have.  */
12760   if (GET_CODE (x) == SUBREG
12761       && subreg_lowpart_p (x)
12762       && !paradoxical_subreg_p (x)
12763       && (value = get_last_value (SUBREG_REG (x))) != 0)
12764     return gen_lowpart (GET_MODE (x), value);
12765 
12766   if (!REG_P (x))
12767     return 0;
12768 
12769   regno = REGNO (x);
12770   rsp = VEC_index (reg_stat_type, reg_stat, regno);
12771   value = rsp->last_set_value;
12772 
12773   /* If we don't have a value, or if it isn't for this basic block and
12774      it's either a hard register, set more than once, or it's a live
12775      at the beginning of the function, return 0.
12776 
12777      Because if it's not live at the beginning of the function then the reg
12778      is always set before being used (is never used without being set).
12779      And, if it's set only once, and it's always set before use, then all
12780      uses must have the same last value, even if it's not from this basic
12781      block.  */
12782 
12783   if (value == 0
12784       || (rsp->last_set_label < label_tick_ebb_start
12785 	  && (regno < FIRST_PSEUDO_REGISTER
12786 	      || REG_N_SETS (regno) != 1
12787 	      || REGNO_REG_SET_P
12788 		 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12789     return 0;
12790 
12791   /* If the value was set in a later insn than the ones we are processing,
12792      we can't use it even if the register was only set once.  */
12793   if (rsp->last_set_label == label_tick
12794       && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12795     return 0;
12796 
12797   /* If the value has all its registers valid, return it.  */
12798   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12799     return value;
12800 
12801   /* Otherwise, make a copy and replace any invalid register with
12802      (clobber (const_int 0)).  If that fails for some reason, return 0.  */
12803 
12804   value = copy_rtx (value);
12805   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12806     return value;
12807 
12808   return 0;
12809 }
12810 
12811 /* Return nonzero if expression X refers to a REG or to memory
12812    that is set in an instruction more recent than FROM_LUID.  */
12813 
12814 static int
12815 use_crosses_set_p (const_rtx x, int from_luid)
12816 {
12817   const char *fmt;
12818   int i;
12819   enum rtx_code code = GET_CODE (x);
12820 
12821   if (code == REG)
12822     {
12823       unsigned int regno = REGNO (x);
12824       unsigned endreg = END_REGNO (x);
12825 
12826 #ifdef PUSH_ROUNDING
12827       /* Don't allow uses of the stack pointer to be moved,
12828 	 because we don't know whether the move crosses a push insn.  */
12829       if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12830 	return 1;
12831 #endif
12832       for (; regno < endreg; regno++)
12833 	{
12834 	  reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12835 	  if (rsp->last_set
12836 	      && rsp->last_set_label == label_tick
12837 	      && DF_INSN_LUID (rsp->last_set) > from_luid)
12838 	    return 1;
12839 	}
12840       return 0;
12841     }
12842 
12843   if (code == MEM && mem_last_set > from_luid)
12844     return 1;
12845 
12846   fmt = GET_RTX_FORMAT (code);
12847 
12848   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12849     {
12850       if (fmt[i] == 'E')
12851 	{
12852 	  int j;
12853 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12854 	    if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12855 	      return 1;
12856 	}
12857       else if (fmt[i] == 'e'
12858 	       && use_crosses_set_p (XEXP (x, i), from_luid))
12859 	return 1;
12860     }
12861   return 0;
12862 }
12863 
12864 /* Define three variables used for communication between the following
12865    routines.  */
12866 
12867 static unsigned int reg_dead_regno, reg_dead_endregno;
12868 static int reg_dead_flag;
12869 
12870 /* Function called via note_stores from reg_dead_at_p.
12871 
12872    If DEST is within [reg_dead_regno, reg_dead_endregno), set
12873    reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
12874 
12875 static void
12876 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12877 {
12878   unsigned int regno, endregno;
12879 
12880   if (!REG_P (dest))
12881     return;
12882 
12883   regno = REGNO (dest);
12884   endregno = END_REGNO (dest);
12885   if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12886     reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12887 }
12888 
12889 /* Return nonzero if REG is known to be dead at INSN.
12890 
12891    We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
12892    referencing REG, it is dead.  If we hit a SET referencing REG, it is
12893    live.  Otherwise, see if it is live or dead at the start of the basic
12894    block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
12895    must be assumed to be always live.  */
12896 
12897 static int
12898 reg_dead_at_p (rtx reg, rtx insn)
12899 {
12900   basic_block block;
12901   unsigned int i;
12902 
12903   /* Set variables for reg_dead_at_p_1.  */
12904   reg_dead_regno = REGNO (reg);
12905   reg_dead_endregno = END_REGNO (reg);
12906 
12907   reg_dead_flag = 0;
12908 
12909   /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  For fixed registers
12910      we allow the machine description to decide whether use-and-clobber
12911      patterns are OK.  */
12912   if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12913     {
12914       for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12915 	if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12916 	  return 0;
12917     }
12918 
12919   /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12920      beginning of basic block.  */
12921   block = BLOCK_FOR_INSN (insn);
12922   for (;;)
12923     {
12924       if (INSN_P (insn))
12925         {
12926 	  note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12927 	  if (reg_dead_flag)
12928 	    return reg_dead_flag == 1 ? 1 : 0;
12929 
12930 	  if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12931 	    return 1;
12932         }
12933 
12934       if (insn == BB_HEAD (block))
12935 	break;
12936 
12937       insn = PREV_INSN (insn);
12938     }
12939 
12940   /* Look at live-in sets for the basic block that we were in.  */
12941   for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12942     if (REGNO_REG_SET_P (df_get_live_in (block), i))
12943       return 0;
12944 
12945   return 1;
12946 }
12947 
12948 /* Note hard registers in X that are used.  */
12949 
12950 static void
12951 mark_used_regs_combine (rtx x)
12952 {
12953   RTX_CODE code = GET_CODE (x);
12954   unsigned int regno;
12955   int i;
12956 
12957   switch (code)
12958     {
12959     case LABEL_REF:
12960     case SYMBOL_REF:
12961     case CONST_INT:
12962     case CONST:
12963     case CONST_DOUBLE:
12964     case CONST_VECTOR:
12965     case PC:
12966     case ADDR_VEC:
12967     case ADDR_DIFF_VEC:
12968     case ASM_INPUT:
12969 #ifdef HAVE_cc0
12970     /* CC0 must die in the insn after it is set, so we don't need to take
12971        special note of it here.  */
12972     case CC0:
12973 #endif
12974       return;
12975 
12976     case CLOBBER:
12977       /* If we are clobbering a MEM, mark any hard registers inside the
12978 	 address as used.  */
12979       if (MEM_P (XEXP (x, 0)))
12980 	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12981       return;
12982 
12983     case REG:
12984       regno = REGNO (x);
12985       /* A hard reg in a wide mode may really be multiple registers.
12986 	 If so, mark all of them just like the first.  */
12987       if (regno < FIRST_PSEUDO_REGISTER)
12988 	{
12989 	  /* None of this applies to the stack, frame or arg pointers.  */
12990 	  if (regno == STACK_POINTER_REGNUM
12991 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12992 	      || regno == HARD_FRAME_POINTER_REGNUM
12993 #endif
12994 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12995 	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12996 #endif
12997 	      || regno == FRAME_POINTER_REGNUM)
12998 	    return;
12999 
13000 	  add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13001 	}
13002       return;
13003 
13004     case SET:
13005       {
13006 	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13007 	   the address.  */
13008 	rtx testreg = SET_DEST (x);
13009 
13010 	while (GET_CODE (testreg) == SUBREG
13011 	       || GET_CODE (testreg) == ZERO_EXTRACT
13012 	       || GET_CODE (testreg) == STRICT_LOW_PART)
13013 	  testreg = XEXP (testreg, 0);
13014 
13015 	if (MEM_P (testreg))
13016 	  mark_used_regs_combine (XEXP (testreg, 0));
13017 
13018 	mark_used_regs_combine (SET_SRC (x));
13019       }
13020       return;
13021 
13022     default:
13023       break;
13024     }
13025 
13026   /* Recursively scan the operands of this expression.  */
13027 
13028   {
13029     const char *fmt = GET_RTX_FORMAT (code);
13030 
13031     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13032       {
13033 	if (fmt[i] == 'e')
13034 	  mark_used_regs_combine (XEXP (x, i));
13035 	else if (fmt[i] == 'E')
13036 	  {
13037 	    int j;
13038 
13039 	    for (j = 0; j < XVECLEN (x, i); j++)
13040 	      mark_used_regs_combine (XVECEXP (x, i, j));
13041 	  }
13042       }
13043   }
13044 }
13045 
13046 /* Remove register number REGNO from the dead registers list of INSN.
13047 
13048    Return the note used to record the death, if there was one.  */
13049 
13050 rtx
13051 remove_death (unsigned int regno, rtx insn)
13052 {
13053   rtx note = find_regno_note (insn, REG_DEAD, regno);
13054 
13055   if (note)
13056     remove_note (insn, note);
13057 
13058   return note;
13059 }
13060 
13061 /* For each register (hardware or pseudo) used within expression X, if its
13062    death is in an instruction with luid between FROM_LUID (inclusive) and
13063    TO_INSN (exclusive), put a REG_DEAD note for that register in the
13064    list headed by PNOTES.
13065 
13066    That said, don't move registers killed by maybe_kill_insn.
13067 
13068    This is done when X is being merged by combination into TO_INSN.  These
13069    notes will then be distributed as needed.  */
13070 
13071 static void
13072 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
13073 	     rtx *pnotes)
13074 {
13075   const char *fmt;
13076   int len, i;
13077   enum rtx_code code = GET_CODE (x);
13078 
13079   if (code == REG)
13080     {
13081       unsigned int regno = REGNO (x);
13082       rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
13083 
13084       /* Don't move the register if it gets killed in between from and to.  */
13085       if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13086 	  && ! reg_referenced_p (x, maybe_kill_insn))
13087 	return;
13088 
13089       if (where_dead
13090 	  && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13091 	  && DF_INSN_LUID (where_dead) >= from_luid
13092 	  && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13093 	{
13094 	  rtx note = remove_death (regno, where_dead);
13095 
13096 	  /* It is possible for the call above to return 0.  This can occur
13097 	     when last_death points to I2 or I1 that we combined with.
13098 	     In that case make a new note.
13099 
13100 	     We must also check for the case where X is a hard register
13101 	     and NOTE is a death note for a range of hard registers
13102 	     including X.  In that case, we must put REG_DEAD notes for
13103 	     the remaining registers in place of NOTE.  */
13104 
13105 	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13106 	      && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13107 		  > GET_MODE_SIZE (GET_MODE (x))))
13108 	    {
13109 	      unsigned int deadregno = REGNO (XEXP (note, 0));
13110 	      unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13111 	      unsigned int ourend = END_HARD_REGNO (x);
13112 	      unsigned int i;
13113 
13114 	      for (i = deadregno; i < deadend; i++)
13115 		if (i < regno || i >= ourend)
13116 		  add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13117 	    }
13118 
13119 	  /* If we didn't find any note, or if we found a REG_DEAD note that
13120 	     covers only part of the given reg, and we have a multi-reg hard
13121 	     register, then to be safe we must check for REG_DEAD notes
13122 	     for each register other than the first.  They could have
13123 	     their own REG_DEAD notes lying around.  */
13124 	  else if ((note == 0
13125 		    || (note != 0
13126 			&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13127 			    < GET_MODE_SIZE (GET_MODE (x)))))
13128 		   && regno < FIRST_PSEUDO_REGISTER
13129 		   && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13130 	    {
13131 	      unsigned int ourend = END_HARD_REGNO (x);
13132 	      unsigned int i, offset;
13133 	      rtx oldnotes = 0;
13134 
13135 	      if (note)
13136 		offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13137 	      else
13138 		offset = 1;
13139 
13140 	      for (i = regno + offset; i < ourend; i++)
13141 		move_deaths (regno_reg_rtx[i],
13142 			     maybe_kill_insn, from_luid, to_insn, &oldnotes);
13143 	    }
13144 
13145 	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13146 	    {
13147 	      XEXP (note, 1) = *pnotes;
13148 	      *pnotes = note;
13149 	    }
13150 	  else
13151 	    *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13152 	}
13153 
13154       return;
13155     }
13156 
13157   else if (GET_CODE (x) == SET)
13158     {
13159       rtx dest = SET_DEST (x);
13160 
13161       move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13162 
13163       /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13164 	 that accesses one word of a multi-word item, some
13165 	 piece of everything register in the expression is used by
13166 	 this insn, so remove any old death.  */
13167       /* ??? So why do we test for equality of the sizes?  */
13168 
13169       if (GET_CODE (dest) == ZERO_EXTRACT
13170 	  || GET_CODE (dest) == STRICT_LOW_PART
13171 	  || (GET_CODE (dest) == SUBREG
13172 	      && (((GET_MODE_SIZE (GET_MODE (dest))
13173 		    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13174 		  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13175 		       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13176 	{
13177 	  move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13178 	  return;
13179 	}
13180 
13181       /* If this is some other SUBREG, we know it replaces the entire
13182 	 value, so use that as the destination.  */
13183       if (GET_CODE (dest) == SUBREG)
13184 	dest = SUBREG_REG (dest);
13185 
13186       /* If this is a MEM, adjust deaths of anything used in the address.
13187 	 For a REG (the only other possibility), the entire value is
13188 	 being replaced so the old value is not used in this insn.  */
13189 
13190       if (MEM_P (dest))
13191 	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13192 		     to_insn, pnotes);
13193       return;
13194     }
13195 
13196   else if (GET_CODE (x) == CLOBBER)
13197     return;
13198 
13199   len = GET_RTX_LENGTH (code);
13200   fmt = GET_RTX_FORMAT (code);
13201 
13202   for (i = 0; i < len; i++)
13203     {
13204       if (fmt[i] == 'E')
13205 	{
13206 	  int j;
13207 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13208 	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13209 			 to_insn, pnotes);
13210 	}
13211       else if (fmt[i] == 'e')
13212 	move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13213     }
13214 }
13215 
13216 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13217    pattern of an insn.  X must be a REG.  */
13218 
13219 static int
13220 reg_bitfield_target_p (rtx x, rtx body)
13221 {
13222   int i;
13223 
13224   if (GET_CODE (body) == SET)
13225     {
13226       rtx dest = SET_DEST (body);
13227       rtx target;
13228       unsigned int regno, tregno, endregno, endtregno;
13229 
13230       if (GET_CODE (dest) == ZERO_EXTRACT)
13231 	target = XEXP (dest, 0);
13232       else if (GET_CODE (dest) == STRICT_LOW_PART)
13233 	target = SUBREG_REG (XEXP (dest, 0));
13234       else
13235 	return 0;
13236 
13237       if (GET_CODE (target) == SUBREG)
13238 	target = SUBREG_REG (target);
13239 
13240       if (!REG_P (target))
13241 	return 0;
13242 
13243       tregno = REGNO (target), regno = REGNO (x);
13244       if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13245 	return target == x;
13246 
13247       endtregno = end_hard_regno (GET_MODE (target), tregno);
13248       endregno = end_hard_regno (GET_MODE (x), regno);
13249 
13250       return endregno > tregno && regno < endtregno;
13251     }
13252 
13253   else if (GET_CODE (body) == PARALLEL)
13254     for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13255       if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13256 	return 1;
13257 
13258   return 0;
13259 }
13260 
13261 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13262    as appropriate.  I3 and I2 are the insns resulting from the combination
13263    insns including FROM (I2 may be zero).
13264 
13265    ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13266    not need REG_DEAD notes because they are being substituted for.  This
13267    saves searching in the most common cases.
13268 
13269    Each note in the list is either ignored or placed on some insns, depending
13270    on the type of note.  */
13271 
13272 static void
13273 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13274 		  rtx elim_i1, rtx elim_i0)
13275 {
13276   rtx note, next_note;
13277   rtx tem;
13278 
13279   for (note = notes; note; note = next_note)
13280     {
13281       rtx place = 0, place2 = 0;
13282 
13283       next_note = XEXP (note, 1);
13284       switch (REG_NOTE_KIND (note))
13285 	{
13286 	case REG_BR_PROB:
13287 	case REG_BR_PRED:
13288 	  /* Doesn't matter much where we put this, as long as it's somewhere.
13289 	     It is preferable to keep these notes on branches, which is most
13290 	     likely to be i3.  */
13291 	  place = i3;
13292 	  break;
13293 
13294 	case REG_NON_LOCAL_GOTO:
13295 	  if (JUMP_P (i3))
13296 	    place = i3;
13297 	  else
13298 	    {
13299 	      gcc_assert (i2 && JUMP_P (i2));
13300 	      place = i2;
13301 	    }
13302 	  break;
13303 
13304 	case REG_EH_REGION:
13305 	  /* These notes must remain with the call or trapping instruction.  */
13306 	  if (CALL_P (i3))
13307 	    place = i3;
13308 	  else if (i2 && CALL_P (i2))
13309 	    place = i2;
13310 	  else
13311 	    {
13312 	      gcc_assert (cfun->can_throw_non_call_exceptions);
13313 	      if (may_trap_p (i3))
13314 		place = i3;
13315 	      else if (i2 && may_trap_p (i2))
13316 		place = i2;
13317 	      /* ??? Otherwise assume we've combined things such that we
13318 		 can now prove that the instructions can't trap.  Drop the
13319 		 note in this case.  */
13320 	    }
13321 	  break;
13322 
13323 	case REG_ARGS_SIZE:
13324 	  /* ??? How to distribute between i3-i1.  Assume i3 contains the
13325 	     entire adjustment.  Assert i3 contains at least some adjust.  */
13326 	  if (!noop_move_p (i3))
13327 	    {
13328 	      int old_size, args_size = INTVAL (XEXP (note, 0));
13329 	      /* fixup_args_size_notes looks at REG_NORETURN note,
13330 		 so ensure the note is placed there first.  */
13331 	      if (CALL_P (i3))
13332 		{
13333 		  rtx *np;
13334 		  for (np = &next_note; *np; np = &XEXP (*np, 1))
13335 		    if (REG_NOTE_KIND (*np) == REG_NORETURN)
13336 		      {
13337 			rtx n = *np;
13338 			*np = XEXP (n, 1);
13339 			XEXP (n, 1) = REG_NOTES (i3);
13340 			REG_NOTES (i3) = n;
13341 			break;
13342 		      }
13343 		}
13344 	      old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13345 	      /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13346 		 REG_ARGS_SIZE note to all noreturn calls, allow that here.  */
13347 	      gcc_assert (old_size != args_size
13348 			  || (CALL_P (i3)
13349 			      && !ACCUMULATE_OUTGOING_ARGS
13350 			      && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13351 	    }
13352 	  break;
13353 
13354 	case REG_NORETURN:
13355 	case REG_SETJMP:
13356 	case REG_TM:
13357 	  /* These notes must remain with the call.  It should not be
13358 	     possible for both I2 and I3 to be a call.  */
13359 	  if (CALL_P (i3))
13360 	    place = i3;
13361 	  else
13362 	    {
13363 	      gcc_assert (i2 && CALL_P (i2));
13364 	      place = i2;
13365 	    }
13366 	  break;
13367 
13368 	case REG_UNUSED:
13369 	  /* Any clobbers for i3 may still exist, and so we must process
13370 	     REG_UNUSED notes from that insn.
13371 
13372 	     Any clobbers from i2 or i1 can only exist if they were added by
13373 	     recog_for_combine.  In that case, recog_for_combine created the
13374 	     necessary REG_UNUSED notes.  Trying to keep any original
13375 	     REG_UNUSED notes from these insns can cause incorrect output
13376 	     if it is for the same register as the original i3 dest.
13377 	     In that case, we will notice that the register is set in i3,
13378 	     and then add a REG_UNUSED note for the destination of i3, which
13379 	     is wrong.  However, it is possible to have REG_UNUSED notes from
13380 	     i2 or i1 for register which were both used and clobbered, so
13381 	     we keep notes from i2 or i1 if they will turn into REG_DEAD
13382 	     notes.  */
13383 
13384 	  /* If this register is set or clobbered in I3, put the note there
13385 	     unless there is one already.  */
13386 	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13387 	    {
13388 	      if (from_insn != i3)
13389 		break;
13390 
13391 	      if (! (REG_P (XEXP (note, 0))
13392 		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13393 		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13394 		place = i3;
13395 	    }
13396 	  /* Otherwise, if this register is used by I3, then this register
13397 	     now dies here, so we must put a REG_DEAD note here unless there
13398 	     is one already.  */
13399 	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13400 		   && ! (REG_P (XEXP (note, 0))
13401 			 ? find_regno_note (i3, REG_DEAD,
13402 					    REGNO (XEXP (note, 0)))
13403 			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13404 	    {
13405 	      PUT_REG_NOTE_KIND (note, REG_DEAD);
13406 	      place = i3;
13407 	    }
13408 	  break;
13409 
13410 	case REG_EQUAL:
13411 	case REG_EQUIV:
13412 	case REG_NOALIAS:
13413 	  /* These notes say something about results of an insn.  We can
13414 	     only support them if they used to be on I3 in which case they
13415 	     remain on I3.  Otherwise they are ignored.
13416 
13417 	     If the note refers to an expression that is not a constant, we
13418 	     must also ignore the note since we cannot tell whether the
13419 	     equivalence is still true.  It might be possible to do
13420 	     slightly better than this (we only have a problem if I2DEST
13421 	     or I1DEST is present in the expression), but it doesn't
13422 	     seem worth the trouble.  */
13423 
13424 	  if (from_insn == i3
13425 	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13426 	    place = i3;
13427 	  break;
13428 
13429 	case REG_INC:
13430 	  /* These notes say something about how a register is used.  They must
13431 	     be present on any use of the register in I2 or I3.  */
13432 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13433 	    place = i3;
13434 
13435 	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13436 	    {
13437 	      if (place)
13438 		place2 = i2;
13439 	      else
13440 		place = i2;
13441 	    }
13442 	  break;
13443 
13444 	case REG_LABEL_TARGET:
13445 	case REG_LABEL_OPERAND:
13446 	  /* This can show up in several ways -- either directly in the
13447 	     pattern, or hidden off in the constant pool with (or without?)
13448 	     a REG_EQUAL note.  */
13449 	  /* ??? Ignore the without-reg_equal-note problem for now.  */
13450 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13451 	      || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13452 		  && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13453 		  && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13454 	    place = i3;
13455 
13456 	  if (i2
13457 	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13458 		  || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13459 		      && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13460 		      && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13461 	    {
13462 	      if (place)
13463 		place2 = i2;
13464 	      else
13465 		place = i2;
13466 	    }
13467 
13468 	  /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13469 	     as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13470 	     there.  */
13471 	  if (place && JUMP_P (place)
13472 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13473 	      && (JUMP_LABEL (place) == NULL
13474 		  || JUMP_LABEL (place) == XEXP (note, 0)))
13475 	    {
13476 	      rtx label = JUMP_LABEL (place);
13477 
13478 	      if (!label)
13479 		JUMP_LABEL (place) = XEXP (note, 0);
13480 	      else if (LABEL_P (label))
13481 		LABEL_NUSES (label)--;
13482 	    }
13483 
13484 	  if (place2 && JUMP_P (place2)
13485 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13486 	      && (JUMP_LABEL (place2) == NULL
13487 		  || JUMP_LABEL (place2) == XEXP (note, 0)))
13488 	    {
13489 	      rtx label = JUMP_LABEL (place2);
13490 
13491 	      if (!label)
13492 		JUMP_LABEL (place2) = XEXP (note, 0);
13493 	      else if (LABEL_P (label))
13494 		LABEL_NUSES (label)--;
13495 	      place2 = 0;
13496 	    }
13497 	  break;
13498 
13499 	case REG_NONNEG:
13500 	  /* This note says something about the value of a register prior
13501 	     to the execution of an insn.  It is too much trouble to see
13502 	     if the note is still correct in all situations.  It is better
13503 	     to simply delete it.  */
13504 	  break;
13505 
13506 	case REG_DEAD:
13507 	  /* If we replaced the right hand side of FROM_INSN with a
13508 	     REG_EQUAL note, the original use of the dying register
13509 	     will not have been combined into I3 and I2.  In such cases,
13510 	     FROM_INSN is guaranteed to be the first of the combined
13511 	     instructions, so we simply need to search back before
13512 	     FROM_INSN for the previous use or set of this register,
13513 	     then alter the notes there appropriately.
13514 
13515 	     If the register is used as an input in I3, it dies there.
13516 	     Similarly for I2, if it is nonzero and adjacent to I3.
13517 
13518 	     If the register is not used as an input in either I3 or I2
13519 	     and it is not one of the registers we were supposed to eliminate,
13520 	     there are two possibilities.  We might have a non-adjacent I2
13521 	     or we might have somehow eliminated an additional register
13522 	     from a computation.  For example, we might have had A & B where
13523 	     we discover that B will always be zero.  In this case we will
13524 	     eliminate the reference to A.
13525 
13526 	     In both cases, we must search to see if we can find a previous
13527 	     use of A and put the death note there.  */
13528 
13529 	  if (from_insn
13530 	      && from_insn == i2mod
13531 	      && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13532 	    tem = from_insn;
13533 	  else
13534 	    {
13535 	      if (from_insn
13536 		  && CALL_P (from_insn)
13537 		  && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13538 		place = from_insn;
13539 	      else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13540 		place = i3;
13541 	      else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13542 		       && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13543 		place = i2;
13544 	      else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13545 			&& !(i2mod
13546 			     && reg_overlap_mentioned_p (XEXP (note, 0),
13547 							 i2mod_old_rhs)))
13548 		       || rtx_equal_p (XEXP (note, 0), elim_i1)
13549 		       || rtx_equal_p (XEXP (note, 0), elim_i0))
13550 		break;
13551 	      tem = i3;
13552 	    }
13553 
13554 	  if (place == 0)
13555 	    {
13556 	      basic_block bb = this_basic_block;
13557 
13558 	      for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13559 		{
13560 		  if (!NONDEBUG_INSN_P (tem))
13561 		    {
13562 		      if (tem == BB_HEAD (bb))
13563 			break;
13564 		      continue;
13565 		    }
13566 
13567 		  /* If the register is being set at TEM, see if that is all
13568 		     TEM is doing.  If so, delete TEM.  Otherwise, make this
13569 		     into a REG_UNUSED note instead. Don't delete sets to
13570 		     global register vars.  */
13571 		  if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13572 		       || !global_regs[REGNO (XEXP (note, 0))])
13573 		      && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13574 		    {
13575 		      rtx set = single_set (tem);
13576 		      rtx inner_dest = 0;
13577 #ifdef HAVE_cc0
13578 		      rtx cc0_setter = NULL_RTX;
13579 #endif
13580 
13581 		      if (set != 0)
13582 			for (inner_dest = SET_DEST (set);
13583 			     (GET_CODE (inner_dest) == STRICT_LOW_PART
13584 			      || GET_CODE (inner_dest) == SUBREG
13585 			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
13586 			     inner_dest = XEXP (inner_dest, 0))
13587 			  ;
13588 
13589 		      /* Verify that it was the set, and not a clobber that
13590 			 modified the register.
13591 
13592 			 CC0 targets must be careful to maintain setter/user
13593 			 pairs.  If we cannot delete the setter due to side
13594 			 effects, mark the user with an UNUSED note instead
13595 			 of deleting it.  */
13596 
13597 		      if (set != 0 && ! side_effects_p (SET_SRC (set))
13598 			  && rtx_equal_p (XEXP (note, 0), inner_dest)
13599 #ifdef HAVE_cc0
13600 			  && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13601 			      || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13602 				  && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13603 #endif
13604 			  )
13605 			{
13606 			  /* Move the notes and links of TEM elsewhere.
13607 			     This might delete other dead insns recursively.
13608 			     First set the pattern to something that won't use
13609 			     any register.  */
13610 			  rtx old_notes = REG_NOTES (tem);
13611 
13612 			  PATTERN (tem) = pc_rtx;
13613 			  REG_NOTES (tem) = NULL;
13614 
13615 			  distribute_notes (old_notes, tem, tem, NULL_RTX,
13616 					    NULL_RTX, NULL_RTX, NULL_RTX);
13617 			  distribute_links (LOG_LINKS (tem));
13618 
13619 			  SET_INSN_DELETED (tem);
13620 			  if (tem == i2)
13621 			    i2 = NULL_RTX;
13622 
13623 #ifdef HAVE_cc0
13624 			  /* Delete the setter too.  */
13625 			  if (cc0_setter)
13626 			    {
13627 			      PATTERN (cc0_setter) = pc_rtx;
13628 			      old_notes = REG_NOTES (cc0_setter);
13629 			      REG_NOTES (cc0_setter) = NULL;
13630 
13631 			      distribute_notes (old_notes, cc0_setter,
13632 						cc0_setter, NULL_RTX,
13633 						NULL_RTX, NULL_RTX, NULL_RTX);
13634 			      distribute_links (LOG_LINKS (cc0_setter));
13635 
13636 			      SET_INSN_DELETED (cc0_setter);
13637 			      if (cc0_setter == i2)
13638 				i2 = NULL_RTX;
13639 			    }
13640 #endif
13641 			}
13642 		      else
13643 			{
13644 			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
13645 
13646 			  /*  If there isn't already a REG_UNUSED note, put one
13647 			      here.  Do not place a REG_DEAD note, even if
13648 			      the register is also used here; that would not
13649 			      match the algorithm used in lifetime analysis
13650 			      and can cause the consistency check in the
13651 			      scheduler to fail.  */
13652 			  if (! find_regno_note (tem, REG_UNUSED,
13653 						 REGNO (XEXP (note, 0))))
13654 			    place = tem;
13655 			  break;
13656 			}
13657 		    }
13658 		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13659 			   || (CALL_P (tem)
13660 			       && find_reg_fusage (tem, USE, XEXP (note, 0))))
13661 		    {
13662 		      place = tem;
13663 
13664 		      /* If we are doing a 3->2 combination, and we have a
13665 			 register which formerly died in i3 and was not used
13666 			 by i2, which now no longer dies in i3 and is used in
13667 			 i2 but does not die in i2, and place is between i2
13668 			 and i3, then we may need to move a link from place to
13669 			 i2.  */
13670 		      if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13671 			  && from_insn
13672 			  && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13673 			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13674 			{
13675 			  struct insn_link *links = LOG_LINKS (place);
13676 			  LOG_LINKS (place) = NULL;
13677 			  distribute_links (links);
13678 			}
13679 		      break;
13680 		    }
13681 
13682 		  if (tem == BB_HEAD (bb))
13683 		    break;
13684 		}
13685 
13686 	    }
13687 
13688 	  /* If the register is set or already dead at PLACE, we needn't do
13689 	     anything with this note if it is still a REG_DEAD note.
13690 	     We check here if it is set at all, not if is it totally replaced,
13691 	     which is what `dead_or_set_p' checks, so also check for it being
13692 	     set partially.  */
13693 
13694 	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
13695 	    {
13696 	      unsigned int regno = REGNO (XEXP (note, 0));
13697 	      reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13698 
13699 	      if (dead_or_set_p (place, XEXP (note, 0))
13700 		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13701 		{
13702 		  /* Unless the register previously died in PLACE, clear
13703 		     last_death.  [I no longer understand why this is
13704 		     being done.] */
13705 		  if (rsp->last_death != place)
13706 		    rsp->last_death = 0;
13707 		  place = 0;
13708 		}
13709 	      else
13710 		rsp->last_death = place;
13711 
13712 	      /* If this is a death note for a hard reg that is occupying
13713 		 multiple registers, ensure that we are still using all
13714 		 parts of the object.  If we find a piece of the object
13715 		 that is unused, we must arrange for an appropriate REG_DEAD
13716 		 note to be added for it.  However, we can't just emit a USE
13717 		 and tag the note to it, since the register might actually
13718 		 be dead; so we recourse, and the recursive call then finds
13719 		 the previous insn that used this register.  */
13720 
13721 	      if (place && regno < FIRST_PSEUDO_REGISTER
13722 		  && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13723 		{
13724 		  unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13725 		  int all_used = 1;
13726 		  unsigned int i;
13727 
13728 		  for (i = regno; i < endregno; i++)
13729 		    if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13730 			 && ! find_regno_fusage (place, USE, i))
13731 			|| dead_or_set_regno_p (place, i))
13732 		      all_used = 0;
13733 
13734 		  if (! all_used)
13735 		    {
13736 		      /* Put only REG_DEAD notes for pieces that are
13737 			 not already dead or set.  */
13738 
13739 		      for (i = regno; i < endregno;
13740 			   i += hard_regno_nregs[i][reg_raw_mode[i]])
13741 			{
13742 			  rtx piece = regno_reg_rtx[i];
13743 			  basic_block bb = this_basic_block;
13744 
13745 			  if (! dead_or_set_p (place, piece)
13746 			      && ! reg_bitfield_target_p (piece,
13747 							  PATTERN (place)))
13748 			    {
13749 			      rtx new_note = alloc_reg_note (REG_DEAD, piece,
13750 							     NULL_RTX);
13751 
13752 			      distribute_notes (new_note, place, place,
13753 						NULL_RTX, NULL_RTX, NULL_RTX,
13754 						NULL_RTX);
13755 			    }
13756 			  else if (! refers_to_regno_p (i, i + 1,
13757 							PATTERN (place), 0)
13758 				   && ! find_regno_fusage (place, USE, i))
13759 			    for (tem = PREV_INSN (place); ;
13760 				 tem = PREV_INSN (tem))
13761 			      {
13762 				if (!NONDEBUG_INSN_P (tem))
13763 				  {
13764 				    if (tem == BB_HEAD (bb))
13765 			 	      break;
13766 				    continue;
13767 				  }
13768 				if (dead_or_set_p (tem, piece)
13769 				    || reg_bitfield_target_p (piece,
13770 							      PATTERN (tem)))
13771 				  {
13772 				    add_reg_note (tem, REG_UNUSED, piece);
13773 				    break;
13774 				  }
13775 			      }
13776 
13777 			}
13778 
13779 		      place = 0;
13780 		    }
13781 		}
13782 	    }
13783 	  break;
13784 
13785 	default:
13786 	  /* Any other notes should not be present at this point in the
13787 	     compilation.  */
13788 	  gcc_unreachable ();
13789 	}
13790 
13791       if (place)
13792 	{
13793 	  XEXP (note, 1) = REG_NOTES (place);
13794 	  REG_NOTES (place) = note;
13795 	}
13796 
13797       if (place2)
13798 	add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13799     }
13800 }
13801 
13802 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13803    I3, I2, and I1 to new locations.  This is also called to add a link
13804    pointing at I3 when I3's destination is changed.  */
13805 
13806 static void
13807 distribute_links (struct insn_link *links)
13808 {
13809   struct insn_link *link, *next_link;
13810 
13811   for (link = links; link; link = next_link)
13812     {
13813       rtx place = 0;
13814       rtx insn;
13815       rtx set, reg;
13816 
13817       next_link = link->next;
13818 
13819       /* If the insn that this link points to is a NOTE or isn't a single
13820 	 set, ignore it.  In the latter case, it isn't clear what we
13821 	 can do other than ignore the link, since we can't tell which
13822 	 register it was for.  Such links wouldn't be used by combine
13823 	 anyway.
13824 
13825 	 It is not possible for the destination of the target of the link to
13826 	 have been changed by combine.  The only potential of this is if we
13827 	 replace I3, I2, and I1 by I3 and I2.  But in that case the
13828 	 destination of I2 also remains unchanged.  */
13829 
13830       if (NOTE_P (link->insn)
13831 	  || (set = single_set (link->insn)) == 0)
13832 	continue;
13833 
13834       reg = SET_DEST (set);
13835       while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13836 	     || GET_CODE (reg) == STRICT_LOW_PART)
13837 	reg = XEXP (reg, 0);
13838 
13839       /* A LOG_LINK is defined as being placed on the first insn that uses
13840 	 a register and points to the insn that sets the register.  Start
13841 	 searching at the next insn after the target of the link and stop
13842 	 when we reach a set of the register or the end of the basic block.
13843 
13844 	 Note that this correctly handles the link that used to point from
13845 	 I3 to I2.  Also note that not much searching is typically done here
13846 	 since most links don't point very far away.  */
13847 
13848       for (insn = NEXT_INSN (link->insn);
13849 	   (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13850 		     || BB_HEAD (this_basic_block->next_bb) != insn));
13851 	   insn = NEXT_INSN (insn))
13852 	if (DEBUG_INSN_P (insn))
13853 	  continue;
13854 	else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13855 	  {
13856 	    if (reg_referenced_p (reg, PATTERN (insn)))
13857 	      place = insn;
13858 	    break;
13859 	  }
13860 	else if (CALL_P (insn)
13861 		 && find_reg_fusage (insn, USE, reg))
13862 	  {
13863 	    place = insn;
13864 	    break;
13865 	  }
13866 	else if (INSN_P (insn) && reg_set_p (reg, insn))
13867 	  break;
13868 
13869       /* If we found a place to put the link, place it there unless there
13870 	 is already a link to the same insn as LINK at that point.  */
13871 
13872       if (place)
13873 	{
13874 	  struct insn_link *link2;
13875 
13876 	  FOR_EACH_LOG_LINK (link2, place)
13877 	    if (link2->insn == link->insn)
13878 	      break;
13879 
13880 	  if (link2 == NULL)
13881 	    {
13882 	      link->next = LOG_LINKS (place);
13883 	      LOG_LINKS (place) = link;
13884 
13885 	      /* Set added_links_insn to the earliest insn we added a
13886 		 link to.  */
13887 	      if (added_links_insn == 0
13888 		  || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13889 		added_links_insn = place;
13890 	    }
13891 	}
13892     }
13893 }
13894 
13895 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13896    Check whether the expression pointer to by LOC is a register or
13897    memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13898    Otherwise return zero.  */
13899 
13900 static int
13901 unmentioned_reg_p_1 (rtx *loc, void *expr)
13902 {
13903   rtx x = *loc;
13904 
13905   if (x != NULL_RTX
13906       && (REG_P (x) || MEM_P (x))
13907       && ! reg_mentioned_p (x, (rtx) expr))
13908     return 1;
13909   return 0;
13910 }
13911 
13912 /* Check for any register or memory mentioned in EQUIV that is not
13913    mentioned in EXPR.  This is used to restrict EQUIV to "specializations"
13914    of EXPR where some registers may have been replaced by constants.  */
13915 
13916 static bool
13917 unmentioned_reg_p (rtx equiv, rtx expr)
13918 {
13919   return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13920 }
13921 
13922 void
13923 dump_combine_stats (FILE *file)
13924 {
13925   fprintf
13926     (file,
13927      ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13928      combine_attempts, combine_merges, combine_extras, combine_successes);
13929 }
13930 
13931 void
13932 dump_combine_total_stats (FILE *file)
13933 {
13934   fprintf
13935     (file,
13936      "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13937      total_attempts, total_merges, total_extras, total_successes);
13938 }
13939 
13940 static bool
13941 gate_handle_combine (void)
13942 {
13943   return (optimize > 0);
13944 }
13945 
13946 /* Try combining insns through substitution.  */
13947 static unsigned int
13948 rest_of_handle_combine (void)
13949 {
13950   int rebuild_jump_labels_after_combine;
13951 
13952   df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13953   df_note_add_problem ();
13954   df_analyze ();
13955 
13956   regstat_init_n_sets_and_refs ();
13957 
13958   rebuild_jump_labels_after_combine
13959     = combine_instructions (get_insns (), max_reg_num ());
13960 
13961   /* Combining insns may have turned an indirect jump into a
13962      direct jump.  Rebuild the JUMP_LABEL fields of jumping
13963      instructions.  */
13964   if (rebuild_jump_labels_after_combine)
13965     {
13966       timevar_push (TV_JUMP);
13967       rebuild_jump_labels (get_insns ());
13968       cleanup_cfg (0);
13969       timevar_pop (TV_JUMP);
13970     }
13971 
13972   regstat_free_n_sets_and_refs ();
13973   return 0;
13974 }
13975 
13976 struct rtl_opt_pass pass_combine =
13977 {
13978  {
13979   RTL_PASS,
13980   "combine",                            /* name */
13981   gate_handle_combine,                  /* gate */
13982   rest_of_handle_combine,               /* execute */
13983   NULL,                                 /* sub */
13984   NULL,                                 /* next */
13985   0,                                    /* static_pass_number */
13986   TV_COMBINE,                           /* tv_id */
13987   PROP_cfglayout,                       /* properties_required */
13988   0,                                    /* properties_provided */
13989   0,                                    /* properties_destroyed */
13990   0,                                    /* todo_flags_start */
13991   TODO_df_finish | TODO_verify_rtl_sharing |
13992   TODO_ggc_collect,                     /* todo_flags_finish */
13993  }
13994 };
13995