xref: /dragonfly/contrib/gcc-4.7/gcc/cse.c (revision cfd1aba3)
1 /* Common subexpression elimination for GNU compiler.
2    Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4    2011 Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "diagnostic-core.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "timevar.h"
41 #include "except.h"
42 #include "target.h"
43 #include "params.h"
44 #include "rtlhooks-def.h"
45 #include "tree-pass.h"
46 #include "df.h"
47 #include "dbgcnt.h"
48 
49 /* The basic idea of common subexpression elimination is to go
50    through the code, keeping a record of expressions that would
51    have the same value at the current scan point, and replacing
52    expressions encountered with the cheapest equivalent expression.
53 
54    It is too complicated to keep track of the different possibilities
55    when control paths merge in this code; so, at each label, we forget all
56    that is known and start fresh.  This can be described as processing each
57    extended basic block separately.  We have a separate pass to perform
58    global CSE.
59 
60    Note CSE can turn a conditional or computed jump into a nop or
61    an unconditional jump.  When this occurs we arrange to run the jump
62    optimizer after CSE to delete the unreachable code.
63 
64    We use two data structures to record the equivalent expressions:
65    a hash table for most expressions, and a vector of "quantity
66    numbers" to record equivalent (pseudo) registers.
67 
68    The use of the special data structure for registers is desirable
69    because it is faster.  It is possible because registers references
70    contain a fairly small number, the register number, taken from
71    a contiguously allocated series, and two register references are
72    identical if they have the same number.  General expressions
73    do not have any such thing, so the only way to retrieve the
74    information recorded on an expression other than a register
75    is to keep it in a hash table.
76 
77 Registers and "quantity numbers":
78 
79    At the start of each basic block, all of the (hardware and pseudo)
80    registers used in the function are given distinct quantity
81    numbers to indicate their contents.  During scan, when the code
82    copies one register into another, we copy the quantity number.
83    When a register is loaded in any other way, we allocate a new
84    quantity number to describe the value generated by this operation.
85    `REG_QTY (N)' records what quantity register N is currently thought
86    of as containing.
87 
88    All real quantity numbers are greater than or equal to zero.
89    If register N has not been assigned a quantity, `REG_QTY (N)' will
90    equal -N - 1, which is always negative.
91 
92    Quantity numbers below zero do not exist and none of the `qty_table'
93    entries should be referenced with a negative index.
94 
95    We also maintain a bidirectional chain of registers for each
96    quantity number.  The `qty_table` members `first_reg' and `last_reg',
97    and `reg_eqv_table' members `next' and `prev' hold these chains.
98 
99    The first register in a chain is the one whose lifespan is least local.
100    Among equals, it is the one that was seen first.
101    We replace any equivalent register with that one.
102 
103    If two registers have the same quantity number, it must be true that
104    REG expressions with qty_table `mode' must be in the hash table for both
105    registers and must be in the same class.
106 
107    The converse is not true.  Since hard registers may be referenced in
108    any mode, two REG expressions might be equivalent in the hash table
109    but not have the same quantity number if the quantity number of one
110    of the registers is not the same mode as those expressions.
111 
112 Constants and quantity numbers
113 
114    When a quantity has a known constant value, that value is stored
115    in the appropriate qty_table `const_rtx'.  This is in addition to
116    putting the constant in the hash table as is usual for non-regs.
117 
118    Whether a reg or a constant is preferred is determined by the configuration
119    macro CONST_COSTS and will often depend on the constant value.  In any
120    event, expressions containing constants can be simplified, by fold_rtx.
121 
122    When a quantity has a known nearly constant value (such as an address
123    of a stack slot), that value is stored in the appropriate qty_table
124    `const_rtx'.
125 
126    Integer constants don't have a machine mode.  However, cse
127    determines the intended machine mode from the destination
128    of the instruction that moves the constant.  The machine mode
129    is recorded in the hash table along with the actual RTL
130    constant expression so that different modes are kept separate.
131 
132 Other expressions:
133 
134    To record known equivalences among expressions in general
135    we use a hash table called `table'.  It has a fixed number of buckets
136    that contain chains of `struct table_elt' elements for expressions.
137    These chains connect the elements whose expressions have the same
138    hash codes.
139 
140    Other chains through the same elements connect the elements which
141    currently have equivalent values.
142 
143    Register references in an expression are canonicalized before hashing
144    the expression.  This is done using `reg_qty' and qty_table `first_reg'.
145    The hash code of a register reference is computed using the quantity
146    number, not the register number.
147 
148    When the value of an expression changes, it is necessary to remove from the
149    hash table not just that expression but all expressions whose values
150    could be different as a result.
151 
152      1. If the value changing is in memory, except in special cases
153      ANYTHING referring to memory could be changed.  That is because
154      nobody knows where a pointer does not point.
155      The function `invalidate_memory' removes what is necessary.
156 
157      The special cases are when the address is constant or is
158      a constant plus a fixed register such as the frame pointer
159      or a static chain pointer.  When such addresses are stored in,
160      we can tell exactly which other such addresses must be invalidated
161      due to overlap.  `invalidate' does this.
162      All expressions that refer to non-constant
163      memory addresses are also invalidated.  `invalidate_memory' does this.
164 
165      2. If the value changing is a register, all expressions
166      containing references to that register, and only those,
167      must be removed.
168 
169    Because searching the entire hash table for expressions that contain
170    a register is very slow, we try to figure out when it isn't necessary.
171    Precisely, this is necessary only when expressions have been
172    entered in the hash table using this register, and then the value has
173    changed, and then another expression wants to be added to refer to
174    the register's new value.  This sequence of circumstances is rare
175    within any one basic block.
176 
177    `REG_TICK' and `REG_IN_TABLE', accessors for members of
178    cse_reg_info, are used to detect this case.  REG_TICK (i) is
179    incremented whenever a value is stored in register i.
180    REG_IN_TABLE (i) holds -1 if no references to register i have been
181    entered in the table; otherwise, it contains the value REG_TICK (i)
182    had when the references were entered.  If we want to enter a
183    reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
184    remove old references.  Until we want to enter a new entry, the
185    mere fact that the two vectors don't match makes the entries be
186    ignored if anyone tries to match them.
187 
188    Registers themselves are entered in the hash table as well as in
189    the equivalent-register chains.  However, `REG_TICK' and
190    `REG_IN_TABLE' do not apply to expressions which are simple
191    register references.  These expressions are removed from the table
192    immediately when they become invalid, and this can be done even if
193    we do not immediately search for all the expressions that refer to
194    the register.
195 
196    A CLOBBER rtx in an instruction invalidates its operand for further
197    reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
198    invalidates everything that resides in memory.
199 
200 Related expressions:
201 
202    Constant expressions that differ only by an additive integer
203    are called related.  When a constant expression is put in
204    the table, the related expression with no constant term
205    is also entered.  These are made to point at each other
206    so that it is possible to find out if there exists any
207    register equivalent to an expression related to a given expression.  */
208 
209 /* Length of qty_table vector.  We know in advance we will not need
210    a quantity number this big.  */
211 
212 static int max_qty;
213 
214 /* Next quantity number to be allocated.
215    This is 1 + the largest number needed so far.  */
216 
217 static int next_qty;
218 
219 /* Per-qty information tracking.
220 
221    `first_reg' and `last_reg' track the head and tail of the
222    chain of registers which currently contain this quantity.
223 
224    `mode' contains the machine mode of this quantity.
225 
226    `const_rtx' holds the rtx of the constant value of this
227    quantity, if known.  A summations of the frame/arg pointer
228    and a constant can also be entered here.  When this holds
229    a known value, `const_insn' is the insn which stored the
230    constant value.
231 
232    `comparison_{code,const,qty}' are used to track when a
233    comparison between a quantity and some constant or register has
234    been passed.  In such a case, we know the results of the comparison
235    in case we see it again.  These members record a comparison that
236    is known to be true.  `comparison_code' holds the rtx code of such
237    a comparison, else it is set to UNKNOWN and the other two
238    comparison members are undefined.  `comparison_const' holds
239    the constant being compared against, or zero if the comparison
240    is not against a constant.  `comparison_qty' holds the quantity
241    being compared against when the result is known.  If the comparison
242    is not with a register, `comparison_qty' is -1.  */
243 
244 struct qty_table_elem
245 {
246   rtx const_rtx;
247   rtx const_insn;
248   rtx comparison_const;
249   int comparison_qty;
250   unsigned int first_reg, last_reg;
251   /* The sizes of these fields should match the sizes of the
252      code and mode fields of struct rtx_def (see rtl.h).  */
253   ENUM_BITFIELD(rtx_code) comparison_code : 16;
254   ENUM_BITFIELD(machine_mode) mode : 8;
255 };
256 
257 /* The table of all qtys, indexed by qty number.  */
258 static struct qty_table_elem *qty_table;
259 
260 /* Structure used to pass arguments via for_each_rtx to function
261    cse_change_cc_mode.  */
262 struct change_cc_mode_args
263 {
264   rtx insn;
265   rtx newreg;
266 };
267 
268 #ifdef HAVE_cc0
269 /* For machines that have a CC0, we do not record its value in the hash
270    table since its use is guaranteed to be the insn immediately following
271    its definition and any other insn is presumed to invalidate it.
272 
273    Instead, we store below the current and last value assigned to CC0.
274    If it should happen to be a constant, it is stored in preference
275    to the actual assigned value.  In case it is a constant, we store
276    the mode in which the constant should be interpreted.  */
277 
278 static rtx this_insn_cc0, prev_insn_cc0;
279 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
280 #endif
281 
282 /* Insn being scanned.  */
283 
284 static rtx this_insn;
285 static bool optimize_this_for_speed_p;
286 
287 /* Index by register number, gives the number of the next (or
288    previous) register in the chain of registers sharing the same
289    value.
290 
291    Or -1 if this register is at the end of the chain.
292 
293    If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined.  */
294 
295 /* Per-register equivalence chain.  */
296 struct reg_eqv_elem
297 {
298   int next, prev;
299 };
300 
301 /* The table of all register equivalence chains.  */
302 static struct reg_eqv_elem *reg_eqv_table;
303 
304 struct cse_reg_info
305 {
306   /* The timestamp at which this register is initialized.  */
307   unsigned int timestamp;
308 
309   /* The quantity number of the register's current contents.  */
310   int reg_qty;
311 
312   /* The number of times the register has been altered in the current
313      basic block.  */
314   int reg_tick;
315 
316   /* The REG_TICK value at which rtx's containing this register are
317      valid in the hash table.  If this does not equal the current
318      reg_tick value, such expressions existing in the hash table are
319      invalid.  */
320   int reg_in_table;
321 
322   /* The SUBREG that was set when REG_TICK was last incremented.  Set
323      to -1 if the last store was to the whole register, not a subreg.  */
324   unsigned int subreg_ticked;
325 };
326 
327 /* A table of cse_reg_info indexed by register numbers.  */
328 static struct cse_reg_info *cse_reg_info_table;
329 
330 /* The size of the above table.  */
331 static unsigned int cse_reg_info_table_size;
332 
333 /* The index of the first entry that has not been initialized.  */
334 static unsigned int cse_reg_info_table_first_uninitialized;
335 
336 /* The timestamp at the beginning of the current run of
337    cse_extended_basic_block.  We increment this variable at the beginning of
338    the current run of cse_extended_basic_block.  The timestamp field of a
339    cse_reg_info entry matches the value of this variable if and only
340    if the entry has been initialized during the current run of
341    cse_extended_basic_block.  */
342 static unsigned int cse_reg_info_timestamp;
343 
344 /* A HARD_REG_SET containing all the hard registers for which there is
345    currently a REG expression in the hash table.  Note the difference
346    from the above variables, which indicate if the REG is mentioned in some
347    expression in the table.  */
348 
349 static HARD_REG_SET hard_regs_in_table;
350 
351 /* True if CSE has altered the CFG.  */
352 static bool cse_cfg_altered;
353 
354 /* True if CSE has altered conditional jump insns in such a way
355    that jump optimization should be redone.  */
356 static bool cse_jumps_altered;
357 
358 /* True if we put a LABEL_REF into the hash table for an INSN
359    without a REG_LABEL_OPERAND, we have to rerun jump after CSE
360    to put in the note.  */
361 static bool recorded_label_ref;
362 
363 /* canon_hash stores 1 in do_not_record
364    if it notices a reference to CC0, PC, or some other volatile
365    subexpression.  */
366 
367 static int do_not_record;
368 
369 /* canon_hash stores 1 in hash_arg_in_memory
370    if it notices a reference to memory within the expression being hashed.  */
371 
372 static int hash_arg_in_memory;
373 
374 /* The hash table contains buckets which are chains of `struct table_elt's,
375    each recording one expression's information.
376    That expression is in the `exp' field.
377 
378    The canon_exp field contains a canonical (from the point of view of
379    alias analysis) version of the `exp' field.
380 
381    Those elements with the same hash code are chained in both directions
382    through the `next_same_hash' and `prev_same_hash' fields.
383 
384    Each set of expressions with equivalent values
385    are on a two-way chain through the `next_same_value'
386    and `prev_same_value' fields, and all point with
387    the `first_same_value' field at the first element in
388    that chain.  The chain is in order of increasing cost.
389    Each element's cost value is in its `cost' field.
390 
391    The `in_memory' field is nonzero for elements that
392    involve any reference to memory.  These elements are removed
393    whenever a write is done to an unidentified location in memory.
394    To be safe, we assume that a memory address is unidentified unless
395    the address is either a symbol constant or a constant plus
396    the frame pointer or argument pointer.
397 
398    The `related_value' field is used to connect related expressions
399    (that differ by adding an integer).
400    The related expressions are chained in a circular fashion.
401    `related_value' is zero for expressions for which this
402    chain is not useful.
403 
404    The `cost' field stores the cost of this element's expression.
405    The `regcost' field stores the value returned by approx_reg_cost for
406    this element's expression.
407 
408    The `is_const' flag is set if the element is a constant (including
409    a fixed address).
410 
411    The `flag' field is used as a temporary during some search routines.
412 
413    The `mode' field is usually the same as GET_MODE (`exp'), but
414    if `exp' is a CONST_INT and has no machine mode then the `mode'
415    field is the mode it was being used as.  Each constant is
416    recorded separately for each mode it is used with.  */
417 
418 struct table_elt
419 {
420   rtx exp;
421   rtx canon_exp;
422   struct table_elt *next_same_hash;
423   struct table_elt *prev_same_hash;
424   struct table_elt *next_same_value;
425   struct table_elt *prev_same_value;
426   struct table_elt *first_same_value;
427   struct table_elt *related_value;
428   int cost;
429   int regcost;
430   /* The size of this field should match the size
431      of the mode field of struct rtx_def (see rtl.h).  */
432   ENUM_BITFIELD(machine_mode) mode : 8;
433   char in_memory;
434   char is_const;
435   char flag;
436 };
437 
438 /* We don't want a lot of buckets, because we rarely have very many
439    things stored in the hash table, and a lot of buckets slows
440    down a lot of loops that happen frequently.  */
441 #define HASH_SHIFT	5
442 #define HASH_SIZE	(1 << HASH_SHIFT)
443 #define HASH_MASK	(HASH_SIZE - 1)
444 
445 /* Compute hash code of X in mode M.  Special-case case where X is a pseudo
446    register (hard registers may require `do_not_record' to be set).  */
447 
448 #define HASH(X, M)	\
449  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
450   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
451   : canon_hash (X, M)) & HASH_MASK)
452 
453 /* Like HASH, but without side-effects.  */
454 #define SAFE_HASH(X, M)	\
455  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
456   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
457   : safe_hash (X, M)) & HASH_MASK)
458 
459 /* Determine whether register number N is considered a fixed register for the
460    purpose of approximating register costs.
461    It is desirable to replace other regs with fixed regs, to reduce need for
462    non-fixed hard regs.
463    A reg wins if it is either the frame pointer or designated as fixed.  */
464 #define FIXED_REGNO_P(N)  \
465   ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
466    || fixed_regs[N] || global_regs[N])
467 
468 /* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
469    hard registers and pointers into the frame are the cheapest with a cost
470    of 0.  Next come pseudos with a cost of one and other hard registers with
471    a cost of 2.  Aside from these special cases, call `rtx_cost'.  */
472 
473 #define CHEAP_REGNO(N)							\
474   (REGNO_PTR_FRAME_P(N)							\
475    || (HARD_REGISTER_NUM_P (N)						\
476        && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
477 
478 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
479 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
480 
481 /* Get the number of times this register has been updated in this
482    basic block.  */
483 
484 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
485 
486 /* Get the point at which REG was recorded in the table.  */
487 
488 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
489 
490 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
491    SUBREG).  */
492 
493 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
494 
495 /* Get the quantity number for REG.  */
496 
497 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
498 
499 /* Determine if the quantity number for register X represents a valid index
500    into the qty_table.  */
501 
502 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
503 
504 /* Compare table_elt X and Y and return true iff X is cheaper than Y.  */
505 
506 #define CHEAPER(X, Y) \
507  (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
508 
509 static struct table_elt *table[HASH_SIZE];
510 
511 /* Chain of `struct table_elt's made so far for this function
512    but currently removed from the table.  */
513 
514 static struct table_elt *free_element_chain;
515 
516 /* Set to the cost of a constant pool reference if one was found for a
517    symbolic constant.  If this was found, it means we should try to
518    convert constants into constant pool entries if they don't fit in
519    the insn.  */
520 
521 static int constant_pool_entries_cost;
522 static int constant_pool_entries_regcost;
523 
524 /* Trace a patch through the CFG.  */
525 
526 struct branch_path
527 {
528   /* The basic block for this path entry.  */
529   basic_block bb;
530 };
531 
532 /* This data describes a block that will be processed by
533    cse_extended_basic_block.  */
534 
535 struct cse_basic_block_data
536 {
537   /* Total number of SETs in block.  */
538   int nsets;
539   /* Size of current branch path, if any.  */
540   int path_size;
541   /* Current path, indicating which basic_blocks will be processed.  */
542   struct branch_path *path;
543 };
544 
545 
546 /* Pointers to the live in/live out bitmaps for the boundaries of the
547    current EBB.  */
548 static bitmap cse_ebb_live_in, cse_ebb_live_out;
549 
550 /* A simple bitmap to track which basic blocks have been visited
551    already as part of an already processed extended basic block.  */
552 static sbitmap cse_visited_basic_blocks;
553 
554 static bool fixed_base_plus_p (rtx x);
555 static int notreg_cost (rtx, enum rtx_code, int);
556 static int approx_reg_cost_1 (rtx *, void *);
557 static int approx_reg_cost (rtx);
558 static int preferable (int, int, int, int);
559 static void new_basic_block (void);
560 static void make_new_qty (unsigned int, enum machine_mode);
561 static void make_regs_eqv (unsigned int, unsigned int);
562 static void delete_reg_equiv (unsigned int);
563 static int mention_regs (rtx);
564 static int insert_regs (rtx, struct table_elt *, int);
565 static void remove_from_table (struct table_elt *, unsigned);
566 static void remove_pseudo_from_table (rtx, unsigned);
567 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
568 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
569 static rtx lookup_as_function (rtx, enum rtx_code);
570 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
571 					    enum machine_mode, int, int);
572 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
573 				 enum machine_mode);
574 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
575 static void invalidate (rtx, enum machine_mode);
576 static void remove_invalid_refs (unsigned int);
577 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
578 					enum machine_mode);
579 static void rehash_using_reg (rtx);
580 static void invalidate_memory (void);
581 static void invalidate_for_call (void);
582 static rtx use_related_value (rtx, struct table_elt *);
583 
584 static inline unsigned canon_hash (rtx, enum machine_mode);
585 static inline unsigned safe_hash (rtx, enum machine_mode);
586 static inline unsigned hash_rtx_string (const char *);
587 
588 static rtx canon_reg (rtx, rtx);
589 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
590 					   enum machine_mode *,
591 					   enum machine_mode *);
592 static rtx fold_rtx (rtx, rtx);
593 static rtx equiv_constant (rtx);
594 static void record_jump_equiv (rtx, bool);
595 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
596 			      int);
597 static void cse_insn (rtx);
598 static void cse_prescan_path (struct cse_basic_block_data *);
599 static void invalidate_from_clobbers (rtx);
600 static rtx cse_process_notes (rtx, rtx, bool *);
601 static void cse_extended_basic_block (struct cse_basic_block_data *);
602 static void count_reg_usage (rtx, int *, rtx, int);
603 static int check_for_label_ref (rtx *, void *);
604 extern void dump_class (struct table_elt*);
605 static void get_cse_reg_info_1 (unsigned int regno);
606 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
607 static int check_dependence (rtx *, void *);
608 
609 static void flush_hash_table (void);
610 static bool insn_live_p (rtx, int *);
611 static bool set_live_p (rtx, rtx, int *);
612 static int cse_change_cc_mode (rtx *, void *);
613 static void cse_change_cc_mode_insn (rtx, rtx);
614 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
615 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
616 				       bool);
617 
618 
619 #undef RTL_HOOKS_GEN_LOWPART
620 #define RTL_HOOKS_GEN_LOWPART		gen_lowpart_if_possible
621 
622 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
623 
624 /* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
625    virtual regs here because the simplify_*_operation routines are called
626    by integrate.c, which is called before virtual register instantiation.  */
627 
628 static bool
629 fixed_base_plus_p (rtx x)
630 {
631   switch (GET_CODE (x))
632     {
633     case REG:
634       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
635 	return true;
636       if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
637 	return true;
638       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
639 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
640 	return true;
641       return false;
642 
643     case PLUS:
644       if (!CONST_INT_P (XEXP (x, 1)))
645 	return false;
646       return fixed_base_plus_p (XEXP (x, 0));
647 
648     default:
649       return false;
650     }
651 }
652 
653 /* Dump the expressions in the equivalence class indicated by CLASSP.
654    This function is used only for debugging.  */
655 void
656 dump_class (struct table_elt *classp)
657 {
658   struct table_elt *elt;
659 
660   fprintf (stderr, "Equivalence chain for ");
661   print_rtl (stderr, classp->exp);
662   fprintf (stderr, ": \n");
663 
664   for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
665     {
666       print_rtl (stderr, elt->exp);
667       fprintf (stderr, "\n");
668     }
669 }
670 
671 /* Subroutine of approx_reg_cost; called through for_each_rtx.  */
672 
673 static int
674 approx_reg_cost_1 (rtx *xp, void *data)
675 {
676   rtx x = *xp;
677   int *cost_p = (int *) data;
678 
679   if (x && REG_P (x))
680     {
681       unsigned int regno = REGNO (x);
682 
683       if (! CHEAP_REGNO (regno))
684 	{
685 	  if (regno < FIRST_PSEUDO_REGISTER)
686 	    {
687 	      if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
688 		return 1;
689 	      *cost_p += 2;
690 	    }
691 	  else
692 	    *cost_p += 1;
693 	}
694     }
695 
696   return 0;
697 }
698 
699 /* Return an estimate of the cost of the registers used in an rtx.
700    This is mostly the number of different REG expressions in the rtx;
701    however for some exceptions like fixed registers we use a cost of
702    0.  If any other hard register reference occurs, return MAX_COST.  */
703 
704 static int
705 approx_reg_cost (rtx x)
706 {
707   int cost = 0;
708 
709   if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
710     return MAX_COST;
711 
712   return cost;
713 }
714 
715 /* Return a negative value if an rtx A, whose costs are given by COST_A
716    and REGCOST_A, is more desirable than an rtx B.
717    Return a positive value if A is less desirable, or 0 if the two are
718    equally good.  */
719 static int
720 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
721 {
722   /* First, get rid of cases involving expressions that are entirely
723      unwanted.  */
724   if (cost_a != cost_b)
725     {
726       if (cost_a == MAX_COST)
727 	return 1;
728       if (cost_b == MAX_COST)
729 	return -1;
730     }
731 
732   /* Avoid extending lifetimes of hardregs.  */
733   if (regcost_a != regcost_b)
734     {
735       if (regcost_a == MAX_COST)
736 	return 1;
737       if (regcost_b == MAX_COST)
738 	return -1;
739     }
740 
741   /* Normal operation costs take precedence.  */
742   if (cost_a != cost_b)
743     return cost_a - cost_b;
744   /* Only if these are identical consider effects on register pressure.  */
745   if (regcost_a != regcost_b)
746     return regcost_a - regcost_b;
747   return 0;
748 }
749 
750 /* Internal function, to compute cost when X is not a register; called
751    from COST macro to keep it simple.  */
752 
753 static int
754 notreg_cost (rtx x, enum rtx_code outer, int opno)
755 {
756   return ((GET_CODE (x) == SUBREG
757 	   && REG_P (SUBREG_REG (x))
758 	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
759 	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
760 	   && (GET_MODE_SIZE (GET_MODE (x))
761 	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
762 	   && subreg_lowpart_p (x)
763 	   && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
764 					     GET_MODE (SUBREG_REG (x))))
765 	  ? 0
766 	  : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
767 }
768 
769 
770 /* Initialize CSE_REG_INFO_TABLE.  */
771 
772 static void
773 init_cse_reg_info (unsigned int nregs)
774 {
775   /* Do we need to grow the table?  */
776   if (nregs > cse_reg_info_table_size)
777     {
778       unsigned int new_size;
779 
780       if (cse_reg_info_table_size < 2048)
781 	{
782 	  /* Compute a new size that is a power of 2 and no smaller
783 	     than the large of NREGS and 64.  */
784 	  new_size = (cse_reg_info_table_size
785 		      ? cse_reg_info_table_size : 64);
786 
787 	  while (new_size < nregs)
788 	    new_size *= 2;
789 	}
790       else
791 	{
792 	  /* If we need a big table, allocate just enough to hold
793 	     NREGS registers.  */
794 	  new_size = nregs;
795 	}
796 
797       /* Reallocate the table with NEW_SIZE entries.  */
798       free (cse_reg_info_table);
799       cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
800       cse_reg_info_table_size = new_size;
801       cse_reg_info_table_first_uninitialized = 0;
802     }
803 
804   /* Do we have all of the first NREGS entries initialized?  */
805   if (cse_reg_info_table_first_uninitialized < nregs)
806     {
807       unsigned int old_timestamp = cse_reg_info_timestamp - 1;
808       unsigned int i;
809 
810       /* Put the old timestamp on newly allocated entries so that they
811 	 will all be considered out of date.  We do not touch those
812 	 entries beyond the first NREGS entries to be nice to the
813 	 virtual memory.  */
814       for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
815 	cse_reg_info_table[i].timestamp = old_timestamp;
816 
817       cse_reg_info_table_first_uninitialized = nregs;
818     }
819 }
820 
821 /* Given REGNO, initialize the cse_reg_info entry for REGNO.  */
822 
823 static void
824 get_cse_reg_info_1 (unsigned int regno)
825 {
826   /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
827      entry will be considered to have been initialized.  */
828   cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
829 
830   /* Initialize the rest of the entry.  */
831   cse_reg_info_table[regno].reg_tick = 1;
832   cse_reg_info_table[regno].reg_in_table = -1;
833   cse_reg_info_table[regno].subreg_ticked = -1;
834   cse_reg_info_table[regno].reg_qty = -regno - 1;
835 }
836 
837 /* Find a cse_reg_info entry for REGNO.  */
838 
839 static inline struct cse_reg_info *
840 get_cse_reg_info (unsigned int regno)
841 {
842   struct cse_reg_info *p = &cse_reg_info_table[regno];
843 
844   /* If this entry has not been initialized, go ahead and initialize
845      it.  */
846   if (p->timestamp != cse_reg_info_timestamp)
847     get_cse_reg_info_1 (regno);
848 
849   return p;
850 }
851 
852 /* Clear the hash table and initialize each register with its own quantity,
853    for a new basic block.  */
854 
855 static void
856 new_basic_block (void)
857 {
858   int i;
859 
860   next_qty = 0;
861 
862   /* Invalidate cse_reg_info_table.  */
863   cse_reg_info_timestamp++;
864 
865   /* Clear out hash table state for this pass.  */
866   CLEAR_HARD_REG_SET (hard_regs_in_table);
867 
868   /* The per-quantity values used to be initialized here, but it is
869      much faster to initialize each as it is made in `make_new_qty'.  */
870 
871   for (i = 0; i < HASH_SIZE; i++)
872     {
873       struct table_elt *first;
874 
875       first = table[i];
876       if (first != NULL)
877 	{
878 	  struct table_elt *last = first;
879 
880 	  table[i] = NULL;
881 
882 	  while (last->next_same_hash != NULL)
883 	    last = last->next_same_hash;
884 
885 	  /* Now relink this hash entire chain into
886 	     the free element list.  */
887 
888 	  last->next_same_hash = free_element_chain;
889 	  free_element_chain = first;
890 	}
891     }
892 
893 #ifdef HAVE_cc0
894   prev_insn_cc0 = 0;
895 #endif
896 }
897 
898 /* Say that register REG contains a quantity in mode MODE not in any
899    register before and initialize that quantity.  */
900 
901 static void
902 make_new_qty (unsigned int reg, enum machine_mode mode)
903 {
904   int q;
905   struct qty_table_elem *ent;
906   struct reg_eqv_elem *eqv;
907 
908   gcc_assert (next_qty < max_qty);
909 
910   q = REG_QTY (reg) = next_qty++;
911   ent = &qty_table[q];
912   ent->first_reg = reg;
913   ent->last_reg = reg;
914   ent->mode = mode;
915   ent->const_rtx = ent->const_insn = NULL_RTX;
916   ent->comparison_code = UNKNOWN;
917 
918   eqv = &reg_eqv_table[reg];
919   eqv->next = eqv->prev = -1;
920 }
921 
922 /* Make reg NEW equivalent to reg OLD.
923    OLD is not changing; NEW is.  */
924 
925 static void
926 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
927 {
928   unsigned int lastr, firstr;
929   int q = REG_QTY (old_reg);
930   struct qty_table_elem *ent;
931 
932   ent = &qty_table[q];
933 
934   /* Nothing should become eqv until it has a "non-invalid" qty number.  */
935   gcc_assert (REGNO_QTY_VALID_P (old_reg));
936 
937   REG_QTY (new_reg) = q;
938   firstr = ent->first_reg;
939   lastr = ent->last_reg;
940 
941   /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
942      hard regs.  Among pseudos, if NEW will live longer than any other reg
943      of the same qty, and that is beyond the current basic block,
944      make it the new canonical replacement for this qty.  */
945   if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
946       /* Certain fixed registers might be of the class NO_REGS.  This means
947 	 that not only can they not be allocated by the compiler, but
948 	 they cannot be used in substitutions or canonicalizations
949 	 either.  */
950       && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
951       && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
952 	  || (new_reg >= FIRST_PSEUDO_REGISTER
953 	      && (firstr < FIRST_PSEUDO_REGISTER
954 		  || (bitmap_bit_p (cse_ebb_live_out, new_reg)
955 		      && !bitmap_bit_p (cse_ebb_live_out, firstr))
956 		  || (bitmap_bit_p (cse_ebb_live_in, new_reg)
957 		      && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
958     {
959       reg_eqv_table[firstr].prev = new_reg;
960       reg_eqv_table[new_reg].next = firstr;
961       reg_eqv_table[new_reg].prev = -1;
962       ent->first_reg = new_reg;
963     }
964   else
965     {
966       /* If NEW is a hard reg (known to be non-fixed), insert at end.
967 	 Otherwise, insert before any non-fixed hard regs that are at the
968 	 end.  Registers of class NO_REGS cannot be used as an
969 	 equivalent for anything.  */
970       while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
971 	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
972 	     && new_reg >= FIRST_PSEUDO_REGISTER)
973 	lastr = reg_eqv_table[lastr].prev;
974       reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
975       if (reg_eqv_table[lastr].next >= 0)
976 	reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
977       else
978 	qty_table[q].last_reg = new_reg;
979       reg_eqv_table[lastr].next = new_reg;
980       reg_eqv_table[new_reg].prev = lastr;
981     }
982 }
983 
984 /* Remove REG from its equivalence class.  */
985 
986 static void
987 delete_reg_equiv (unsigned int reg)
988 {
989   struct qty_table_elem *ent;
990   int q = REG_QTY (reg);
991   int p, n;
992 
993   /* If invalid, do nothing.  */
994   if (! REGNO_QTY_VALID_P (reg))
995     return;
996 
997   ent = &qty_table[q];
998 
999   p = reg_eqv_table[reg].prev;
1000   n = reg_eqv_table[reg].next;
1001 
1002   if (n != -1)
1003     reg_eqv_table[n].prev = p;
1004   else
1005     ent->last_reg = p;
1006   if (p != -1)
1007     reg_eqv_table[p].next = n;
1008   else
1009     ent->first_reg = n;
1010 
1011   REG_QTY (reg) = -reg - 1;
1012 }
1013 
1014 /* Remove any invalid expressions from the hash table
1015    that refer to any of the registers contained in expression X.
1016 
1017    Make sure that newly inserted references to those registers
1018    as subexpressions will be considered valid.
1019 
1020    mention_regs is not called when a register itself
1021    is being stored in the table.
1022 
1023    Return 1 if we have done something that may have changed the hash code
1024    of X.  */
1025 
1026 static int
1027 mention_regs (rtx x)
1028 {
1029   enum rtx_code code;
1030   int i, j;
1031   const char *fmt;
1032   int changed = 0;
1033 
1034   if (x == 0)
1035     return 0;
1036 
1037   code = GET_CODE (x);
1038   if (code == REG)
1039     {
1040       unsigned int regno = REGNO (x);
1041       unsigned int endregno = END_REGNO (x);
1042       unsigned int i;
1043 
1044       for (i = regno; i < endregno; i++)
1045 	{
1046 	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1047 	    remove_invalid_refs (i);
1048 
1049 	  REG_IN_TABLE (i) = REG_TICK (i);
1050 	  SUBREG_TICKED (i) = -1;
1051 	}
1052 
1053       return 0;
1054     }
1055 
1056   /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1057      pseudo if they don't use overlapping words.  We handle only pseudos
1058      here for simplicity.  */
1059   if (code == SUBREG && REG_P (SUBREG_REG (x))
1060       && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1061     {
1062       unsigned int i = REGNO (SUBREG_REG (x));
1063 
1064       if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1065 	{
1066 	  /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1067 	     the last store to this register really stored into this
1068 	     subreg, then remove the memory of this subreg.
1069 	     Otherwise, remove any memory of the entire register and
1070 	     all its subregs from the table.  */
1071 	  if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1072 	      || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1073 	    remove_invalid_refs (i);
1074 	  else
1075 	    remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1076 	}
1077 
1078       REG_IN_TABLE (i) = REG_TICK (i);
1079       SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1080       return 0;
1081     }
1082 
1083   /* If X is a comparison or a COMPARE and either operand is a register
1084      that does not have a quantity, give it one.  This is so that a later
1085      call to record_jump_equiv won't cause X to be assigned a different
1086      hash code and not found in the table after that call.
1087 
1088      It is not necessary to do this here, since rehash_using_reg can
1089      fix up the table later, but doing this here eliminates the need to
1090      call that expensive function in the most common case where the only
1091      use of the register is in the comparison.  */
1092 
1093   if (code == COMPARE || COMPARISON_P (x))
1094     {
1095       if (REG_P (XEXP (x, 0))
1096 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1097 	if (insert_regs (XEXP (x, 0), NULL, 0))
1098 	  {
1099 	    rehash_using_reg (XEXP (x, 0));
1100 	    changed = 1;
1101 	  }
1102 
1103       if (REG_P (XEXP (x, 1))
1104 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1105 	if (insert_regs (XEXP (x, 1), NULL, 0))
1106 	  {
1107 	    rehash_using_reg (XEXP (x, 1));
1108 	    changed = 1;
1109 	  }
1110     }
1111 
1112   fmt = GET_RTX_FORMAT (code);
1113   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1114     if (fmt[i] == 'e')
1115       changed |= mention_regs (XEXP (x, i));
1116     else if (fmt[i] == 'E')
1117       for (j = 0; j < XVECLEN (x, i); j++)
1118 	changed |= mention_regs (XVECEXP (x, i, j));
1119 
1120   return changed;
1121 }
1122 
1123 /* Update the register quantities for inserting X into the hash table
1124    with a value equivalent to CLASSP.
1125    (If the class does not contain a REG, it is irrelevant.)
1126    If MODIFIED is nonzero, X is a destination; it is being modified.
1127    Note that delete_reg_equiv should be called on a register
1128    before insert_regs is done on that register with MODIFIED != 0.
1129 
1130    Nonzero value means that elements of reg_qty have changed
1131    so X's hash code may be different.  */
1132 
1133 static int
1134 insert_regs (rtx x, struct table_elt *classp, int modified)
1135 {
1136   if (REG_P (x))
1137     {
1138       unsigned int regno = REGNO (x);
1139       int qty_valid;
1140 
1141       /* If REGNO is in the equivalence table already but is of the
1142 	 wrong mode for that equivalence, don't do anything here.  */
1143 
1144       qty_valid = REGNO_QTY_VALID_P (regno);
1145       if (qty_valid)
1146 	{
1147 	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1148 
1149 	  if (ent->mode != GET_MODE (x))
1150 	    return 0;
1151 	}
1152 
1153       if (modified || ! qty_valid)
1154 	{
1155 	  if (classp)
1156 	    for (classp = classp->first_same_value;
1157 		 classp != 0;
1158 		 classp = classp->next_same_value)
1159 	      if (REG_P (classp->exp)
1160 		  && GET_MODE (classp->exp) == GET_MODE (x))
1161 		{
1162 		  unsigned c_regno = REGNO (classp->exp);
1163 
1164 		  gcc_assert (REGNO_QTY_VALID_P (c_regno));
1165 
1166 		  /* Suppose that 5 is hard reg and 100 and 101 are
1167 		     pseudos.  Consider
1168 
1169 		     (set (reg:si 100) (reg:si 5))
1170 		     (set (reg:si 5) (reg:si 100))
1171 		     (set (reg:di 101) (reg:di 5))
1172 
1173 		     We would now set REG_QTY (101) = REG_QTY (5), but the
1174 		     entry for 5 is in SImode.  When we use this later in
1175 		     copy propagation, we get the register in wrong mode.  */
1176 		  if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1177 		    continue;
1178 
1179 		  make_regs_eqv (regno, c_regno);
1180 		  return 1;
1181 		}
1182 
1183 	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1184 	     than REG_IN_TABLE to find out if there was only a single preceding
1185 	     invalidation - for the SUBREG - or another one, which would be
1186 	     for the full register.  However, if we find here that REG_TICK
1187 	     indicates that the register is invalid, it means that it has
1188 	     been invalidated in a separate operation.  The SUBREG might be used
1189 	     now (then this is a recursive call), or we might use the full REG
1190 	     now and a SUBREG of it later.  So bump up REG_TICK so that
1191 	     mention_regs will do the right thing.  */
1192 	  if (! modified
1193 	      && REG_IN_TABLE (regno) >= 0
1194 	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1195 	    REG_TICK (regno)++;
1196 	  make_new_qty (regno, GET_MODE (x));
1197 	  return 1;
1198 	}
1199 
1200       return 0;
1201     }
1202 
1203   /* If X is a SUBREG, we will likely be inserting the inner register in the
1204      table.  If that register doesn't have an assigned quantity number at
1205      this point but does later, the insertion that we will be doing now will
1206      not be accessible because its hash code will have changed.  So assign
1207      a quantity number now.  */
1208 
1209   else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1210 	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1211     {
1212       insert_regs (SUBREG_REG (x), NULL, 0);
1213       mention_regs (x);
1214       return 1;
1215     }
1216   else
1217     return mention_regs (x);
1218 }
1219 
1220 
1221 /* Compute upper and lower anchors for CST.  Also compute the offset of CST
1222    from these anchors/bases such that *_BASE + *_OFFS = CST.  Return false iff
1223    CST is equal to an anchor.  */
1224 
1225 static bool
1226 compute_const_anchors (rtx cst,
1227 		       HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1228 		       HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1229 {
1230   HOST_WIDE_INT n = INTVAL (cst);
1231 
1232   *lower_base = n & ~(targetm.const_anchor - 1);
1233   if (*lower_base == n)
1234     return false;
1235 
1236   *upper_base =
1237     (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1238   *upper_offs = n - *upper_base;
1239   *lower_offs = n - *lower_base;
1240   return true;
1241 }
1242 
1243 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE.  */
1244 
1245 static void
1246 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1247 		     enum machine_mode mode)
1248 {
1249   struct table_elt *elt;
1250   unsigned hash;
1251   rtx anchor_exp;
1252   rtx exp;
1253 
1254   anchor_exp = GEN_INT (anchor);
1255   hash = HASH (anchor_exp, mode);
1256   elt = lookup (anchor_exp, hash, mode);
1257   if (!elt)
1258     elt = insert (anchor_exp, NULL, hash, mode);
1259 
1260   exp = plus_constant (reg, offs);
1261   /* REG has just been inserted and the hash codes recomputed.  */
1262   mention_regs (exp);
1263   hash = HASH (exp, mode);
1264 
1265   /* Use the cost of the register rather than the whole expression.  When
1266      looking up constant anchors we will further offset the corresponding
1267      expression therefore it does not make sense to prefer REGs over
1268      reg-immediate additions.  Prefer instead the oldest expression.  Also
1269      don't prefer pseudos over hard regs so that we derive constants in
1270      argument registers from other argument registers rather than from the
1271      original pseudo that was used to synthesize the constant.  */
1272   insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1273 }
1274 
1275 /* The constant CST is equivalent to the register REG.  Create
1276    equivalences between the two anchors of CST and the corresponding
1277    register-offset expressions using REG.  */
1278 
1279 static void
1280 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1281 {
1282   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1283 
1284   if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1285 			      &upper_base, &upper_offs))
1286       return;
1287 
1288   /* Ignore anchors of value 0.  Constants accessible from zero are
1289      simple.  */
1290   if (lower_base != 0)
1291     insert_const_anchor (lower_base, reg, -lower_offs, mode);
1292 
1293   if (upper_base != 0)
1294     insert_const_anchor (upper_base, reg, -upper_offs, mode);
1295 }
1296 
1297 /* We need to express ANCHOR_ELT->exp + OFFS.  Walk the equivalence list of
1298    ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1299    valid expression.  Return the cheapest and oldest of such expressions.  In
1300    *OLD, return how old the resulting expression is compared to the other
1301    equivalent expressions.  */
1302 
1303 static rtx
1304 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1305 			   unsigned *old)
1306 {
1307   struct table_elt *elt;
1308   unsigned idx;
1309   struct table_elt *match_elt;
1310   rtx match;
1311 
1312   /* Find the cheapest and *oldest* expression to maximize the chance of
1313      reusing the same pseudo.  */
1314 
1315   match_elt = NULL;
1316   match = NULL_RTX;
1317   for (elt = anchor_elt->first_same_value, idx = 0;
1318        elt;
1319        elt = elt->next_same_value, idx++)
1320     {
1321       if (match_elt && CHEAPER (match_elt, elt))
1322 	return match;
1323 
1324       if (REG_P (elt->exp)
1325 	  || (GET_CODE (elt->exp) == PLUS
1326 	      && REG_P (XEXP (elt->exp, 0))
1327 	      && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1328 	{
1329 	  rtx x;
1330 
1331 	  /* Ignore expressions that are no longer valid.  */
1332 	  if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1333 	    continue;
1334 
1335 	  x = plus_constant (elt->exp, offs);
1336 	  if (REG_P (x)
1337 	      || (GET_CODE (x) == PLUS
1338 		  && IN_RANGE (INTVAL (XEXP (x, 1)),
1339 			       -targetm.const_anchor,
1340 			       targetm.const_anchor - 1)))
1341 	    {
1342 	      match = x;
1343 	      match_elt = elt;
1344 	      *old = idx;
1345 	    }
1346 	}
1347     }
1348 
1349   return match;
1350 }
1351 
1352 /* Try to express the constant SRC_CONST using a register+offset expression
1353    derived from a constant anchor.  Return it if successful or NULL_RTX,
1354    otherwise.  */
1355 
1356 static rtx
1357 try_const_anchors (rtx src_const, enum machine_mode mode)
1358 {
1359   struct table_elt *lower_elt, *upper_elt;
1360   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1361   rtx lower_anchor_rtx, upper_anchor_rtx;
1362   rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1363   unsigned lower_old, upper_old;
1364 
1365   if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1366 			      &upper_base, &upper_offs))
1367     return NULL_RTX;
1368 
1369   lower_anchor_rtx = GEN_INT (lower_base);
1370   upper_anchor_rtx = GEN_INT (upper_base);
1371   lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1372   upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1373 
1374   if (lower_elt)
1375     lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1376   if (upper_elt)
1377     upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1378 
1379   if (!lower_exp)
1380     return upper_exp;
1381   if (!upper_exp)
1382     return lower_exp;
1383 
1384   /* Return the older expression.  */
1385   return (upper_old > lower_old ? upper_exp : lower_exp);
1386 }
1387 
1388 /* Look in or update the hash table.  */
1389 
1390 /* Remove table element ELT from use in the table.
1391    HASH is its hash code, made using the HASH macro.
1392    It's an argument because often that is known in advance
1393    and we save much time not recomputing it.  */
1394 
1395 static void
1396 remove_from_table (struct table_elt *elt, unsigned int hash)
1397 {
1398   if (elt == 0)
1399     return;
1400 
1401   /* Mark this element as removed.  See cse_insn.  */
1402   elt->first_same_value = 0;
1403 
1404   /* Remove the table element from its equivalence class.  */
1405 
1406   {
1407     struct table_elt *prev = elt->prev_same_value;
1408     struct table_elt *next = elt->next_same_value;
1409 
1410     if (next)
1411       next->prev_same_value = prev;
1412 
1413     if (prev)
1414       prev->next_same_value = next;
1415     else
1416       {
1417 	struct table_elt *newfirst = next;
1418 	while (next)
1419 	  {
1420 	    next->first_same_value = newfirst;
1421 	    next = next->next_same_value;
1422 	  }
1423       }
1424   }
1425 
1426   /* Remove the table element from its hash bucket.  */
1427 
1428   {
1429     struct table_elt *prev = elt->prev_same_hash;
1430     struct table_elt *next = elt->next_same_hash;
1431 
1432     if (next)
1433       next->prev_same_hash = prev;
1434 
1435     if (prev)
1436       prev->next_same_hash = next;
1437     else if (table[hash] == elt)
1438       table[hash] = next;
1439     else
1440       {
1441 	/* This entry is not in the proper hash bucket.  This can happen
1442 	   when two classes were merged by `merge_equiv_classes'.  Search
1443 	   for the hash bucket that it heads.  This happens only very
1444 	   rarely, so the cost is acceptable.  */
1445 	for (hash = 0; hash < HASH_SIZE; hash++)
1446 	  if (table[hash] == elt)
1447 	    table[hash] = next;
1448       }
1449   }
1450 
1451   /* Remove the table element from its related-value circular chain.  */
1452 
1453   if (elt->related_value != 0 && elt->related_value != elt)
1454     {
1455       struct table_elt *p = elt->related_value;
1456 
1457       while (p->related_value != elt)
1458 	p = p->related_value;
1459       p->related_value = elt->related_value;
1460       if (p->related_value == p)
1461 	p->related_value = 0;
1462     }
1463 
1464   /* Now add it to the free element chain.  */
1465   elt->next_same_hash = free_element_chain;
1466   free_element_chain = elt;
1467 }
1468 
1469 /* Same as above, but X is a pseudo-register.  */
1470 
1471 static void
1472 remove_pseudo_from_table (rtx x, unsigned int hash)
1473 {
1474   struct table_elt *elt;
1475 
1476   /* Because a pseudo-register can be referenced in more than one
1477      mode, we might have to remove more than one table entry.  */
1478   while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1479     remove_from_table (elt, hash);
1480 }
1481 
1482 /* Look up X in the hash table and return its table element,
1483    or 0 if X is not in the table.
1484 
1485    MODE is the machine-mode of X, or if X is an integer constant
1486    with VOIDmode then MODE is the mode with which X will be used.
1487 
1488    Here we are satisfied to find an expression whose tree structure
1489    looks like X.  */
1490 
1491 static struct table_elt *
1492 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1493 {
1494   struct table_elt *p;
1495 
1496   for (p = table[hash]; p; p = p->next_same_hash)
1497     if (mode == p->mode && ((x == p->exp && REG_P (x))
1498 			    || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1499       return p;
1500 
1501   return 0;
1502 }
1503 
1504 /* Like `lookup' but don't care whether the table element uses invalid regs.
1505    Also ignore discrepancies in the machine mode of a register.  */
1506 
1507 static struct table_elt *
1508 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1509 {
1510   struct table_elt *p;
1511 
1512   if (REG_P (x))
1513     {
1514       unsigned int regno = REGNO (x);
1515 
1516       /* Don't check the machine mode when comparing registers;
1517 	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
1518       for (p = table[hash]; p; p = p->next_same_hash)
1519 	if (REG_P (p->exp)
1520 	    && REGNO (p->exp) == regno)
1521 	  return p;
1522     }
1523   else
1524     {
1525       for (p = table[hash]; p; p = p->next_same_hash)
1526 	if (mode == p->mode
1527 	    && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1528 	  return p;
1529     }
1530 
1531   return 0;
1532 }
1533 
1534 /* Look for an expression equivalent to X and with code CODE.
1535    If one is found, return that expression.  */
1536 
1537 static rtx
1538 lookup_as_function (rtx x, enum rtx_code code)
1539 {
1540   struct table_elt *p
1541     = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1542 
1543   if (p == 0)
1544     return 0;
1545 
1546   for (p = p->first_same_value; p; p = p->next_same_value)
1547     if (GET_CODE (p->exp) == code
1548 	/* Make sure this is a valid entry in the table.  */
1549 	&& exp_equiv_p (p->exp, p->exp, 1, false))
1550       return p->exp;
1551 
1552   return 0;
1553 }
1554 
1555 /* Insert X in the hash table, assuming HASH is its hash code and
1556    CLASSP is an element of the class it should go in (or 0 if a new
1557    class should be made).  COST is the code of X and reg_cost is the
1558    cost of registers in X.  It is inserted at the proper position to
1559    keep the class in the order cheapest first.
1560 
1561    MODE is the machine-mode of X, or if X is an integer constant
1562    with VOIDmode then MODE is the mode with which X will be used.
1563 
1564    For elements of equal cheapness, the most recent one
1565    goes in front, except that the first element in the list
1566    remains first unless a cheaper element is added.  The order of
1567    pseudo-registers does not matter, as canon_reg will be called to
1568    find the cheapest when a register is retrieved from the table.
1569 
1570    The in_memory field in the hash table element is set to 0.
1571    The caller must set it nonzero if appropriate.
1572 
1573    You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1574    and if insert_regs returns a nonzero value
1575    you must then recompute its hash code before calling here.
1576 
1577    If necessary, update table showing constant values of quantities.  */
1578 
1579 static struct table_elt *
1580 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1581 		   enum machine_mode mode, int cost, int reg_cost)
1582 {
1583   struct table_elt *elt;
1584 
1585   /* If X is a register and we haven't made a quantity for it,
1586      something is wrong.  */
1587   gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1588 
1589   /* If X is a hard register, show it is being put in the table.  */
1590   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1591     add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1592 
1593   /* Put an element for X into the right hash bucket.  */
1594 
1595   elt = free_element_chain;
1596   if (elt)
1597     free_element_chain = elt->next_same_hash;
1598   else
1599     elt = XNEW (struct table_elt);
1600 
1601   elt->exp = x;
1602   elt->canon_exp = NULL_RTX;
1603   elt->cost = cost;
1604   elt->regcost = reg_cost;
1605   elt->next_same_value = 0;
1606   elt->prev_same_value = 0;
1607   elt->next_same_hash = table[hash];
1608   elt->prev_same_hash = 0;
1609   elt->related_value = 0;
1610   elt->in_memory = 0;
1611   elt->mode = mode;
1612   elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1613 
1614   if (table[hash])
1615     table[hash]->prev_same_hash = elt;
1616   table[hash] = elt;
1617 
1618   /* Put it into the proper value-class.  */
1619   if (classp)
1620     {
1621       classp = classp->first_same_value;
1622       if (CHEAPER (elt, classp))
1623 	/* Insert at the head of the class.  */
1624 	{
1625 	  struct table_elt *p;
1626 	  elt->next_same_value = classp;
1627 	  classp->prev_same_value = elt;
1628 	  elt->first_same_value = elt;
1629 
1630 	  for (p = classp; p; p = p->next_same_value)
1631 	    p->first_same_value = elt;
1632 	}
1633       else
1634 	{
1635 	  /* Insert not at head of the class.  */
1636 	  /* Put it after the last element cheaper than X.  */
1637 	  struct table_elt *p, *next;
1638 
1639 	  for (p = classp;
1640 	       (next = p->next_same_value) && CHEAPER (next, elt);
1641 	       p = next)
1642 	    ;
1643 
1644 	  /* Put it after P and before NEXT.  */
1645 	  elt->next_same_value = next;
1646 	  if (next)
1647 	    next->prev_same_value = elt;
1648 
1649 	  elt->prev_same_value = p;
1650 	  p->next_same_value = elt;
1651 	  elt->first_same_value = classp;
1652 	}
1653     }
1654   else
1655     elt->first_same_value = elt;
1656 
1657   /* If this is a constant being set equivalent to a register or a register
1658      being set equivalent to a constant, note the constant equivalence.
1659 
1660      If this is a constant, it cannot be equivalent to a different constant,
1661      and a constant is the only thing that can be cheaper than a register.  So
1662      we know the register is the head of the class (before the constant was
1663      inserted).
1664 
1665      If this is a register that is not already known equivalent to a
1666      constant, we must check the entire class.
1667 
1668      If this is a register that is already known equivalent to an insn,
1669      update the qtys `const_insn' to show that `this_insn' is the latest
1670      insn making that quantity equivalent to the constant.  */
1671 
1672   if (elt->is_const && classp && REG_P (classp->exp)
1673       && !REG_P (x))
1674     {
1675       int exp_q = REG_QTY (REGNO (classp->exp));
1676       struct qty_table_elem *exp_ent = &qty_table[exp_q];
1677 
1678       exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1679       exp_ent->const_insn = this_insn;
1680     }
1681 
1682   else if (REG_P (x)
1683 	   && classp
1684 	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1685 	   && ! elt->is_const)
1686     {
1687       struct table_elt *p;
1688 
1689       for (p = classp; p != 0; p = p->next_same_value)
1690 	{
1691 	  if (p->is_const && !REG_P (p->exp))
1692 	    {
1693 	      int x_q = REG_QTY (REGNO (x));
1694 	      struct qty_table_elem *x_ent = &qty_table[x_q];
1695 
1696 	      x_ent->const_rtx
1697 		= gen_lowpart (GET_MODE (x), p->exp);
1698 	      x_ent->const_insn = this_insn;
1699 	      break;
1700 	    }
1701 	}
1702     }
1703 
1704   else if (REG_P (x)
1705 	   && qty_table[REG_QTY (REGNO (x))].const_rtx
1706 	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1707     qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1708 
1709   /* If this is a constant with symbolic value,
1710      and it has a term with an explicit integer value,
1711      link it up with related expressions.  */
1712   if (GET_CODE (x) == CONST)
1713     {
1714       rtx subexp = get_related_value (x);
1715       unsigned subhash;
1716       struct table_elt *subelt, *subelt_prev;
1717 
1718       if (subexp != 0)
1719 	{
1720 	  /* Get the integer-free subexpression in the hash table.  */
1721 	  subhash = SAFE_HASH (subexp, mode);
1722 	  subelt = lookup (subexp, subhash, mode);
1723 	  if (subelt == 0)
1724 	    subelt = insert (subexp, NULL, subhash, mode);
1725 	  /* Initialize SUBELT's circular chain if it has none.  */
1726 	  if (subelt->related_value == 0)
1727 	    subelt->related_value = subelt;
1728 	  /* Find the element in the circular chain that precedes SUBELT.  */
1729 	  subelt_prev = subelt;
1730 	  while (subelt_prev->related_value != subelt)
1731 	    subelt_prev = subelt_prev->related_value;
1732 	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
1733 	     This way the element that follows SUBELT is the oldest one.  */
1734 	  elt->related_value = subelt_prev->related_value;
1735 	  subelt_prev->related_value = elt;
1736 	}
1737     }
1738 
1739   return elt;
1740 }
1741 
1742 /* Wrap insert_with_costs by passing the default costs.  */
1743 
1744 static struct table_elt *
1745 insert (rtx x, struct table_elt *classp, unsigned int hash,
1746 	enum machine_mode mode)
1747 {
1748   return
1749     insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1750 }
1751 
1752 
1753 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1754    CLASS2 into CLASS1.  This is done when we have reached an insn which makes
1755    the two classes equivalent.
1756 
1757    CLASS1 will be the surviving class; CLASS2 should not be used after this
1758    call.
1759 
1760    Any invalid entries in CLASS2 will not be copied.  */
1761 
1762 static void
1763 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1764 {
1765   struct table_elt *elt, *next, *new_elt;
1766 
1767   /* Ensure we start with the head of the classes.  */
1768   class1 = class1->first_same_value;
1769   class2 = class2->first_same_value;
1770 
1771   /* If they were already equal, forget it.  */
1772   if (class1 == class2)
1773     return;
1774 
1775   for (elt = class2; elt; elt = next)
1776     {
1777       unsigned int hash;
1778       rtx exp = elt->exp;
1779       enum machine_mode mode = elt->mode;
1780 
1781       next = elt->next_same_value;
1782 
1783       /* Remove old entry, make a new one in CLASS1's class.
1784 	 Don't do this for invalid entries as we cannot find their
1785 	 hash code (it also isn't necessary).  */
1786       if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1787 	{
1788 	  bool need_rehash = false;
1789 
1790 	  hash_arg_in_memory = 0;
1791 	  hash = HASH (exp, mode);
1792 
1793 	  if (REG_P (exp))
1794 	    {
1795 	      need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1796 	      delete_reg_equiv (REGNO (exp));
1797 	    }
1798 
1799 	  if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1800 	    remove_pseudo_from_table (exp, hash);
1801 	  else
1802 	    remove_from_table (elt, hash);
1803 
1804 	  if (insert_regs (exp, class1, 0) || need_rehash)
1805 	    {
1806 	      rehash_using_reg (exp);
1807 	      hash = HASH (exp, mode);
1808 	    }
1809 	  new_elt = insert (exp, class1, hash, mode);
1810 	  new_elt->in_memory = hash_arg_in_memory;
1811 	}
1812     }
1813 }
1814 
1815 /* Flush the entire hash table.  */
1816 
1817 static void
1818 flush_hash_table (void)
1819 {
1820   int i;
1821   struct table_elt *p;
1822 
1823   for (i = 0; i < HASH_SIZE; i++)
1824     for (p = table[i]; p; p = table[i])
1825       {
1826 	/* Note that invalidate can remove elements
1827 	   after P in the current hash chain.  */
1828 	if (REG_P (p->exp))
1829 	  invalidate (p->exp, VOIDmode);
1830 	else
1831 	  remove_from_table (p, i);
1832       }
1833 }
1834 
1835 /* Function called for each rtx to check whether true dependence exist.  */
1836 struct check_dependence_data
1837 {
1838   enum machine_mode mode;
1839   rtx exp;
1840   rtx addr;
1841 };
1842 
1843 static int
1844 check_dependence (rtx *x, void *data)
1845 {
1846   struct check_dependence_data *d = (struct check_dependence_data *) data;
1847   if (*x && MEM_P (*x))
1848     return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX);
1849   else
1850     return 0;
1851 }
1852 
1853 /* Remove from the hash table, or mark as invalid, all expressions whose
1854    values could be altered by storing in X.  X is a register, a subreg, or
1855    a memory reference with nonvarying address (because, when a memory
1856    reference with a varying address is stored in, all memory references are
1857    removed by invalidate_memory so specific invalidation is superfluous).
1858    FULL_MODE, if not VOIDmode, indicates that this much should be
1859    invalidated instead of just the amount indicated by the mode of X.  This
1860    is only used for bitfield stores into memory.
1861 
1862    A nonvarying address may be just a register or just a symbol reference,
1863    or it may be either of those plus a numeric offset.  */
1864 
1865 static void
1866 invalidate (rtx x, enum machine_mode full_mode)
1867 {
1868   int i;
1869   struct table_elt *p;
1870   rtx addr;
1871 
1872   switch (GET_CODE (x))
1873     {
1874     case REG:
1875       {
1876 	/* If X is a register, dependencies on its contents are recorded
1877 	   through the qty number mechanism.  Just change the qty number of
1878 	   the register, mark it as invalid for expressions that refer to it,
1879 	   and remove it itself.  */
1880 	unsigned int regno = REGNO (x);
1881 	unsigned int hash = HASH (x, GET_MODE (x));
1882 
1883 	/* Remove REGNO from any quantity list it might be on and indicate
1884 	   that its value might have changed.  If it is a pseudo, remove its
1885 	   entry from the hash table.
1886 
1887 	   For a hard register, we do the first two actions above for any
1888 	   additional hard registers corresponding to X.  Then, if any of these
1889 	   registers are in the table, we must remove any REG entries that
1890 	   overlap these registers.  */
1891 
1892 	delete_reg_equiv (regno);
1893 	REG_TICK (regno)++;
1894 	SUBREG_TICKED (regno) = -1;
1895 
1896 	if (regno >= FIRST_PSEUDO_REGISTER)
1897 	  remove_pseudo_from_table (x, hash);
1898 	else
1899 	  {
1900 	    HOST_WIDE_INT in_table
1901 	      = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1902 	    unsigned int endregno = END_HARD_REGNO (x);
1903 	    unsigned int tregno, tendregno, rn;
1904 	    struct table_elt *p, *next;
1905 
1906 	    CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1907 
1908 	    for (rn = regno + 1; rn < endregno; rn++)
1909 	      {
1910 		in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1911 		CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1912 		delete_reg_equiv (rn);
1913 		REG_TICK (rn)++;
1914 		SUBREG_TICKED (rn) = -1;
1915 	      }
1916 
1917 	    if (in_table)
1918 	      for (hash = 0; hash < HASH_SIZE; hash++)
1919 		for (p = table[hash]; p; p = next)
1920 		  {
1921 		    next = p->next_same_hash;
1922 
1923 		    if (!REG_P (p->exp)
1924 			|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1925 		      continue;
1926 
1927 		    tregno = REGNO (p->exp);
1928 		    tendregno = END_HARD_REGNO (p->exp);
1929 		    if (tendregno > regno && tregno < endregno)
1930 		      remove_from_table (p, hash);
1931 		  }
1932 	  }
1933       }
1934       return;
1935 
1936     case SUBREG:
1937       invalidate (SUBREG_REG (x), VOIDmode);
1938       return;
1939 
1940     case PARALLEL:
1941       for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1942 	invalidate (XVECEXP (x, 0, i), VOIDmode);
1943       return;
1944 
1945     case EXPR_LIST:
1946       /* This is part of a disjoint return value; extract the location in
1947 	 question ignoring the offset.  */
1948       invalidate (XEXP (x, 0), VOIDmode);
1949       return;
1950 
1951     case MEM:
1952       addr = canon_rtx (get_addr (XEXP (x, 0)));
1953       /* Calculate the canonical version of X here so that
1954 	 true_dependence doesn't generate new RTL for X on each call.  */
1955       x = canon_rtx (x);
1956 
1957       /* Remove all hash table elements that refer to overlapping pieces of
1958 	 memory.  */
1959       if (full_mode == VOIDmode)
1960 	full_mode = GET_MODE (x);
1961 
1962       for (i = 0; i < HASH_SIZE; i++)
1963 	{
1964 	  struct table_elt *next;
1965 
1966 	  for (p = table[i]; p; p = next)
1967 	    {
1968 	      next = p->next_same_hash;
1969 	      if (p->in_memory)
1970 		{
1971 		  struct check_dependence_data d;
1972 
1973 		  /* Just canonicalize the expression once;
1974 		     otherwise each time we call invalidate
1975 		     true_dependence will canonicalize the
1976 		     expression again.  */
1977 		  if (!p->canon_exp)
1978 		    p->canon_exp = canon_rtx (p->exp);
1979 		  d.exp = x;
1980 		  d.addr = addr;
1981 		  d.mode = full_mode;
1982 		  if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1983 		    remove_from_table (p, i);
1984 		}
1985 	    }
1986 	}
1987       return;
1988 
1989     default:
1990       gcc_unreachable ();
1991     }
1992 }
1993 
1994 /* Remove all expressions that refer to register REGNO,
1995    since they are already invalid, and we are about to
1996    mark that register valid again and don't want the old
1997    expressions to reappear as valid.  */
1998 
1999 static void
2000 remove_invalid_refs (unsigned int regno)
2001 {
2002   unsigned int i;
2003   struct table_elt *p, *next;
2004 
2005   for (i = 0; i < HASH_SIZE; i++)
2006     for (p = table[i]; p; p = next)
2007       {
2008 	next = p->next_same_hash;
2009 	if (!REG_P (p->exp)
2010 	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2011 	  remove_from_table (p, i);
2012       }
2013 }
2014 
2015 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2016    and mode MODE.  */
2017 static void
2018 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2019 			    enum machine_mode mode)
2020 {
2021   unsigned int i;
2022   struct table_elt *p, *next;
2023   unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2024 
2025   for (i = 0; i < HASH_SIZE; i++)
2026     for (p = table[i]; p; p = next)
2027       {
2028 	rtx exp = p->exp;
2029 	next = p->next_same_hash;
2030 
2031 	if (!REG_P (exp)
2032 	    && (GET_CODE (exp) != SUBREG
2033 		|| !REG_P (SUBREG_REG (exp))
2034 		|| REGNO (SUBREG_REG (exp)) != regno
2035 		|| (((SUBREG_BYTE (exp)
2036 		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2037 		    && SUBREG_BYTE (exp) <= end))
2038 	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2039 	  remove_from_table (p, i);
2040       }
2041 }
2042 
2043 /* Recompute the hash codes of any valid entries in the hash table that
2044    reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2045 
2046    This is called when we make a jump equivalence.  */
2047 
2048 static void
2049 rehash_using_reg (rtx x)
2050 {
2051   unsigned int i;
2052   struct table_elt *p, *next;
2053   unsigned hash;
2054 
2055   if (GET_CODE (x) == SUBREG)
2056     x = SUBREG_REG (x);
2057 
2058   /* If X is not a register or if the register is known not to be in any
2059      valid entries in the table, we have no work to do.  */
2060 
2061   if (!REG_P (x)
2062       || REG_IN_TABLE (REGNO (x)) < 0
2063       || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2064     return;
2065 
2066   /* Scan all hash chains looking for valid entries that mention X.
2067      If we find one and it is in the wrong hash chain, move it.  */
2068 
2069   for (i = 0; i < HASH_SIZE; i++)
2070     for (p = table[i]; p; p = next)
2071       {
2072 	next = p->next_same_hash;
2073 	if (reg_mentioned_p (x, p->exp)
2074 	    && exp_equiv_p (p->exp, p->exp, 1, false)
2075 	    && i != (hash = SAFE_HASH (p->exp, p->mode)))
2076 	  {
2077 	    if (p->next_same_hash)
2078 	      p->next_same_hash->prev_same_hash = p->prev_same_hash;
2079 
2080 	    if (p->prev_same_hash)
2081 	      p->prev_same_hash->next_same_hash = p->next_same_hash;
2082 	    else
2083 	      table[i] = p->next_same_hash;
2084 
2085 	    p->next_same_hash = table[hash];
2086 	    p->prev_same_hash = 0;
2087 	    if (table[hash])
2088 	      table[hash]->prev_same_hash = p;
2089 	    table[hash] = p;
2090 	  }
2091       }
2092 }
2093 
2094 /* Remove from the hash table any expression that is a call-clobbered
2095    register.  Also update their TICK values.  */
2096 
2097 static void
2098 invalidate_for_call (void)
2099 {
2100   unsigned int regno, endregno;
2101   unsigned int i;
2102   unsigned hash;
2103   struct table_elt *p, *next;
2104   int in_table = 0;
2105 
2106   /* Go through all the hard registers.  For each that is clobbered in
2107      a CALL_INSN, remove the register from quantity chains and update
2108      reg_tick if defined.  Also see if any of these registers is currently
2109      in the table.  */
2110 
2111   for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2112     if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2113       {
2114 	delete_reg_equiv (regno);
2115 	if (REG_TICK (regno) >= 0)
2116 	  {
2117 	    REG_TICK (regno)++;
2118 	    SUBREG_TICKED (regno) = -1;
2119 	  }
2120 
2121 	in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2122       }
2123 
2124   /* In the case where we have no call-clobbered hard registers in the
2125      table, we are done.  Otherwise, scan the table and remove any
2126      entry that overlaps a call-clobbered register.  */
2127 
2128   if (in_table)
2129     for (hash = 0; hash < HASH_SIZE; hash++)
2130       for (p = table[hash]; p; p = next)
2131 	{
2132 	  next = p->next_same_hash;
2133 
2134 	  if (!REG_P (p->exp)
2135 	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2136 	    continue;
2137 
2138 	  regno = REGNO (p->exp);
2139 	  endregno = END_HARD_REGNO (p->exp);
2140 
2141 	  for (i = regno; i < endregno; i++)
2142 	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2143 	      {
2144 		remove_from_table (p, hash);
2145 		break;
2146 	      }
2147 	}
2148 }
2149 
2150 /* Given an expression X of type CONST,
2151    and ELT which is its table entry (or 0 if it
2152    is not in the hash table),
2153    return an alternate expression for X as a register plus integer.
2154    If none can be found, return 0.  */
2155 
2156 static rtx
2157 use_related_value (rtx x, struct table_elt *elt)
2158 {
2159   struct table_elt *relt = 0;
2160   struct table_elt *p, *q;
2161   HOST_WIDE_INT offset;
2162 
2163   /* First, is there anything related known?
2164      If we have a table element, we can tell from that.
2165      Otherwise, must look it up.  */
2166 
2167   if (elt != 0 && elt->related_value != 0)
2168     relt = elt;
2169   else if (elt == 0 && GET_CODE (x) == CONST)
2170     {
2171       rtx subexp = get_related_value (x);
2172       if (subexp != 0)
2173 	relt = lookup (subexp,
2174 		       SAFE_HASH (subexp, GET_MODE (subexp)),
2175 		       GET_MODE (subexp));
2176     }
2177 
2178   if (relt == 0)
2179     return 0;
2180 
2181   /* Search all related table entries for one that has an
2182      equivalent register.  */
2183 
2184   p = relt;
2185   while (1)
2186     {
2187       /* This loop is strange in that it is executed in two different cases.
2188 	 The first is when X is already in the table.  Then it is searching
2189 	 the RELATED_VALUE list of X's class (RELT).  The second case is when
2190 	 X is not in the table.  Then RELT points to a class for the related
2191 	 value.
2192 
2193 	 Ensure that, whatever case we are in, that we ignore classes that have
2194 	 the same value as X.  */
2195 
2196       if (rtx_equal_p (x, p->exp))
2197 	q = 0;
2198       else
2199 	for (q = p->first_same_value; q; q = q->next_same_value)
2200 	  if (REG_P (q->exp))
2201 	    break;
2202 
2203       if (q)
2204 	break;
2205 
2206       p = p->related_value;
2207 
2208       /* We went all the way around, so there is nothing to be found.
2209 	 Alternatively, perhaps RELT was in the table for some other reason
2210 	 and it has no related values recorded.  */
2211       if (p == relt || p == 0)
2212 	break;
2213     }
2214 
2215   if (q == 0)
2216     return 0;
2217 
2218   offset = (get_integer_term (x) - get_integer_term (p->exp));
2219   /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
2220   return plus_constant (q->exp, offset);
2221 }
2222 
2223 
2224 /* Hash a string.  Just add its bytes up.  */
2225 static inline unsigned
2226 hash_rtx_string (const char *ps)
2227 {
2228   unsigned hash = 0;
2229   const unsigned char *p = (const unsigned char *) ps;
2230 
2231   if (p)
2232     while (*p)
2233       hash += *p++;
2234 
2235   return hash;
2236 }
2237 
2238 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2239    When the callback returns true, we continue with the new rtx.  */
2240 
2241 unsigned
2242 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2243              int *do_not_record_p, int *hash_arg_in_memory_p,
2244              bool have_reg_qty, hash_rtx_callback_function cb)
2245 {
2246   int i, j;
2247   unsigned hash = 0;
2248   enum rtx_code code;
2249   const char *fmt;
2250   enum machine_mode newmode;
2251   rtx newx;
2252 
2253   /* Used to turn recursion into iteration.  We can't rely on GCC's
2254      tail-recursion elimination since we need to keep accumulating values
2255      in HASH.  */
2256  repeat:
2257   if (x == 0)
2258     return hash;
2259 
2260   /* Invoke the callback first.  */
2261   if (cb != NULL
2262       && ((*cb) (x, mode, &newx, &newmode)))
2263     {
2264       hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2265                            hash_arg_in_memory_p, have_reg_qty, cb);
2266       return hash;
2267     }
2268 
2269   code = GET_CODE (x);
2270   switch (code)
2271     {
2272     case REG:
2273       {
2274 	unsigned int regno = REGNO (x);
2275 
2276 	if (do_not_record_p && !reload_completed)
2277 	  {
2278 	    /* On some machines, we can't record any non-fixed hard register,
2279 	       because extending its life will cause reload problems.  We
2280 	       consider ap, fp, sp, gp to be fixed for this purpose.
2281 
2282 	       We also consider CCmode registers to be fixed for this purpose;
2283 	       failure to do so leads to failure to simplify 0<100 type of
2284 	       conditionals.
2285 
2286 	       On all machines, we can't record any global registers.
2287 	       Nor should we record any register that is in a small
2288 	       class, as defined by TARGET_CLASS_LIKELY_SPILLED_P.  */
2289 	    bool record;
2290 
2291 	    if (regno >= FIRST_PSEUDO_REGISTER)
2292 	      record = true;
2293 	    else if (x == frame_pointer_rtx
2294 		     || x == hard_frame_pointer_rtx
2295 		     || x == arg_pointer_rtx
2296 		     || x == stack_pointer_rtx
2297 		     || x == pic_offset_table_rtx)
2298 	      record = true;
2299 	    else if (global_regs[regno])
2300 	      record = false;
2301 	    else if (fixed_regs[regno])
2302 	      record = true;
2303 	    else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2304 	      record = true;
2305 	    else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2306 	      record = false;
2307 	    else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2308 	      record = false;
2309 	    else
2310 	      record = true;
2311 
2312 	    if (!record)
2313 	      {
2314 		*do_not_record_p = 1;
2315 		return 0;
2316 	      }
2317 	  }
2318 
2319 	hash += ((unsigned int) REG << 7);
2320         hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2321 	return hash;
2322       }
2323 
2324     /* We handle SUBREG of a REG specially because the underlying
2325        reg changes its hash value with every value change; we don't
2326        want to have to forget unrelated subregs when one subreg changes.  */
2327     case SUBREG:
2328       {
2329 	if (REG_P (SUBREG_REG (x)))
2330 	  {
2331 	    hash += (((unsigned int) SUBREG << 7)
2332 		     + REGNO (SUBREG_REG (x))
2333 		     + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2334 	    return hash;
2335 	  }
2336 	break;
2337       }
2338 
2339     case CONST_INT:
2340       hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2341                + (unsigned int) INTVAL (x));
2342       return hash;
2343 
2344     case CONST_DOUBLE:
2345       /* This is like the general case, except that it only counts
2346 	 the integers representing the constant.  */
2347       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2348       if (GET_MODE (x) != VOIDmode)
2349 	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2350       else
2351 	hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2352 		 + (unsigned int) CONST_DOUBLE_HIGH (x));
2353       return hash;
2354 
2355     case CONST_FIXED:
2356       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2357       hash += fixed_hash (CONST_FIXED_VALUE (x));
2358       return hash;
2359 
2360     case CONST_VECTOR:
2361       {
2362 	int units;
2363 	rtx elt;
2364 
2365 	units = CONST_VECTOR_NUNITS (x);
2366 
2367 	for (i = 0; i < units; ++i)
2368 	  {
2369 	    elt = CONST_VECTOR_ELT (x, i);
2370 	    hash += hash_rtx_cb (elt, GET_MODE (elt),
2371                                  do_not_record_p, hash_arg_in_memory_p,
2372                                  have_reg_qty, cb);
2373 	  }
2374 
2375 	return hash;
2376       }
2377 
2378       /* Assume there is only one rtx object for any given label.  */
2379     case LABEL_REF:
2380       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2381 	 differences and differences between each stage's debugging dumps.  */
2382 	 hash += (((unsigned int) LABEL_REF << 7)
2383 		  + CODE_LABEL_NUMBER (XEXP (x, 0)));
2384       return hash;
2385 
2386     case SYMBOL_REF:
2387       {
2388 	/* Don't hash on the symbol's address to avoid bootstrap differences.
2389 	   Different hash values may cause expressions to be recorded in
2390 	   different orders and thus different registers to be used in the
2391 	   final assembler.  This also avoids differences in the dump files
2392 	   between various stages.  */
2393 	unsigned int h = 0;
2394 	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2395 
2396 	while (*p)
2397 	  h += (h << 7) + *p++; /* ??? revisit */
2398 
2399 	hash += ((unsigned int) SYMBOL_REF << 7) + h;
2400 	return hash;
2401       }
2402 
2403     case MEM:
2404       /* We don't record if marked volatile or if BLKmode since we don't
2405 	 know the size of the move.  */
2406       if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2407 	{
2408 	  *do_not_record_p = 1;
2409 	  return 0;
2410 	}
2411       if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2412 	*hash_arg_in_memory_p = 1;
2413 
2414       /* Now that we have already found this special case,
2415 	 might as well speed it up as much as possible.  */
2416       hash += (unsigned) MEM;
2417       x = XEXP (x, 0);
2418       goto repeat;
2419 
2420     case USE:
2421       /* A USE that mentions non-volatile memory needs special
2422 	 handling since the MEM may be BLKmode which normally
2423 	 prevents an entry from being made.  Pure calls are
2424 	 marked by a USE which mentions BLKmode memory.
2425 	 See calls.c:emit_call_1.  */
2426       if (MEM_P (XEXP (x, 0))
2427 	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
2428 	{
2429 	  hash += (unsigned) USE;
2430 	  x = XEXP (x, 0);
2431 
2432 	  if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2433 	    *hash_arg_in_memory_p = 1;
2434 
2435 	  /* Now that we have already found this special case,
2436 	     might as well speed it up as much as possible.  */
2437 	  hash += (unsigned) MEM;
2438 	  x = XEXP (x, 0);
2439 	  goto repeat;
2440 	}
2441       break;
2442 
2443     case PRE_DEC:
2444     case PRE_INC:
2445     case POST_DEC:
2446     case POST_INC:
2447     case PRE_MODIFY:
2448     case POST_MODIFY:
2449     case PC:
2450     case CC0:
2451     case CALL:
2452     case UNSPEC_VOLATILE:
2453       if (do_not_record_p) {
2454         *do_not_record_p = 1;
2455         return 0;
2456       }
2457       else
2458         return hash;
2459       break;
2460 
2461     case ASM_OPERANDS:
2462       if (do_not_record_p && MEM_VOLATILE_P (x))
2463 	{
2464 	  *do_not_record_p = 1;
2465 	  return 0;
2466 	}
2467       else
2468 	{
2469 	  /* We don't want to take the filename and line into account.  */
2470 	  hash += (unsigned) code + (unsigned) GET_MODE (x)
2471 	    + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2472 	    + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2473 	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2474 
2475 	  if (ASM_OPERANDS_INPUT_LENGTH (x))
2476 	    {
2477 	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2478 		{
2479 		  hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2480                                         GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2481                                         do_not_record_p, hash_arg_in_memory_p,
2482                                         have_reg_qty, cb)
2483 			   + hash_rtx_string
2484                            (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2485 		}
2486 
2487 	      hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2488 	      x = ASM_OPERANDS_INPUT (x, 0);
2489 	      mode = GET_MODE (x);
2490 	      goto repeat;
2491 	    }
2492 
2493 	  return hash;
2494 	}
2495       break;
2496 
2497     default:
2498       break;
2499     }
2500 
2501   i = GET_RTX_LENGTH (code) - 1;
2502   hash += (unsigned) code + (unsigned) GET_MODE (x);
2503   fmt = GET_RTX_FORMAT (code);
2504   for (; i >= 0; i--)
2505     {
2506       switch (fmt[i])
2507 	{
2508 	case 'e':
2509 	  /* If we are about to do the last recursive call
2510 	     needed at this level, change it into iteration.
2511 	     This function  is called enough to be worth it.  */
2512 	  if (i == 0)
2513 	    {
2514 	      x = XEXP (x, i);
2515 	      goto repeat;
2516 	    }
2517 
2518 	  hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2519                                hash_arg_in_memory_p,
2520                                have_reg_qty, cb);
2521 	  break;
2522 
2523 	case 'E':
2524 	  for (j = 0; j < XVECLEN (x, i); j++)
2525 	    hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2526                                  hash_arg_in_memory_p,
2527                                  have_reg_qty, cb);
2528 	  break;
2529 
2530 	case 's':
2531 	  hash += hash_rtx_string (XSTR (x, i));
2532 	  break;
2533 
2534 	case 'i':
2535 	  hash += (unsigned int) XINT (x, i);
2536 	  break;
2537 
2538 	case '0': case 't':
2539 	  /* Unused.  */
2540 	  break;
2541 
2542 	default:
2543 	  gcc_unreachable ();
2544 	}
2545     }
2546 
2547   return hash;
2548 }
2549 
2550 /* Hash an rtx.  We are careful to make sure the value is never negative.
2551    Equivalent registers hash identically.
2552    MODE is used in hashing for CONST_INTs only;
2553    otherwise the mode of X is used.
2554 
2555    Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2556 
2557    If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2558    a MEM rtx which does not have the MEM_READONLY_P flag set.
2559 
2560    Note that cse_insn knows that the hash code of a MEM expression
2561    is just (int) MEM plus the hash code of the address.  */
2562 
2563 unsigned
2564 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2565 	  int *hash_arg_in_memory_p, bool have_reg_qty)
2566 {
2567   return hash_rtx_cb (x, mode, do_not_record_p,
2568                       hash_arg_in_memory_p, have_reg_qty, NULL);
2569 }
2570 
2571 /* Hash an rtx X for cse via hash_rtx.
2572    Stores 1 in do_not_record if any subexpression is volatile.
2573    Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2574    does not have the MEM_READONLY_P flag set.  */
2575 
2576 static inline unsigned
2577 canon_hash (rtx x, enum machine_mode mode)
2578 {
2579   return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2580 }
2581 
2582 /* Like canon_hash but with no side effects, i.e. do_not_record
2583    and hash_arg_in_memory are not changed.  */
2584 
2585 static inline unsigned
2586 safe_hash (rtx x, enum machine_mode mode)
2587 {
2588   int dummy_do_not_record;
2589   return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2590 }
2591 
2592 /* Return 1 iff X and Y would canonicalize into the same thing,
2593    without actually constructing the canonicalization of either one.
2594    If VALIDATE is nonzero,
2595    we assume X is an expression being processed from the rtl
2596    and Y was found in the hash table.  We check register refs
2597    in Y for being marked as valid.
2598 
2599    If FOR_GCSE is true, we compare X and Y for equivalence for GCSE.  */
2600 
2601 int
2602 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2603 {
2604   int i, j;
2605   enum rtx_code code;
2606   const char *fmt;
2607 
2608   /* Note: it is incorrect to assume an expression is equivalent to itself
2609      if VALIDATE is nonzero.  */
2610   if (x == y && !validate)
2611     return 1;
2612 
2613   if (x == 0 || y == 0)
2614     return x == y;
2615 
2616   code = GET_CODE (x);
2617   if (code != GET_CODE (y))
2618     return 0;
2619 
2620   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2621   if (GET_MODE (x) != GET_MODE (y))
2622     return 0;
2623 
2624   /* MEMs refering to different address space are not equivalent.  */
2625   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2626     return 0;
2627 
2628   switch (code)
2629     {
2630     case PC:
2631     case CC0:
2632     case CONST_INT:
2633     case CONST_DOUBLE:
2634     case CONST_FIXED:
2635       return x == y;
2636 
2637     case LABEL_REF:
2638       return XEXP (x, 0) == XEXP (y, 0);
2639 
2640     case SYMBOL_REF:
2641       return XSTR (x, 0) == XSTR (y, 0);
2642 
2643     case REG:
2644       if (for_gcse)
2645 	return REGNO (x) == REGNO (y);
2646       else
2647 	{
2648 	  unsigned int regno = REGNO (y);
2649 	  unsigned int i;
2650 	  unsigned int endregno = END_REGNO (y);
2651 
2652 	  /* If the quantities are not the same, the expressions are not
2653 	     equivalent.  If there are and we are not to validate, they
2654 	     are equivalent.  Otherwise, ensure all regs are up-to-date.  */
2655 
2656 	  if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2657 	    return 0;
2658 
2659 	  if (! validate)
2660 	    return 1;
2661 
2662 	  for (i = regno; i < endregno; i++)
2663 	    if (REG_IN_TABLE (i) != REG_TICK (i))
2664 	      return 0;
2665 
2666 	  return 1;
2667 	}
2668 
2669     case MEM:
2670       if (for_gcse)
2671 	{
2672 	  /* A volatile mem should not be considered equivalent to any
2673 	     other.  */
2674 	  if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2675 	    return 0;
2676 
2677 	  /* Can't merge two expressions in different alias sets, since we
2678 	     can decide that the expression is transparent in a block when
2679 	     it isn't, due to it being set with the different alias set.
2680 
2681 	     Also, can't merge two expressions with different MEM_ATTRS.
2682 	     They could e.g. be two different entities allocated into the
2683 	     same space on the stack (see e.g. PR25130).  In that case, the
2684 	     MEM addresses can be the same, even though the two MEMs are
2685 	     absolutely not equivalent.
2686 
2687 	     But because really all MEM attributes should be the same for
2688 	     equivalent MEMs, we just use the invariant that MEMs that have
2689 	     the same attributes share the same mem_attrs data structure.  */
2690 	  if (MEM_ATTRS (x) != MEM_ATTRS (y))
2691 	    return 0;
2692 	}
2693       break;
2694 
2695     /*  For commutative operations, check both orders.  */
2696     case PLUS:
2697     case MULT:
2698     case AND:
2699     case IOR:
2700     case XOR:
2701     case NE:
2702     case EQ:
2703       return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2704 			     validate, for_gcse)
2705 	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2706 				validate, for_gcse))
2707 	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2708 				validate, for_gcse)
2709 		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2710 				   validate, for_gcse)));
2711 
2712     case ASM_OPERANDS:
2713       /* We don't use the generic code below because we want to
2714 	 disregard filename and line numbers.  */
2715 
2716       /* A volatile asm isn't equivalent to any other.  */
2717       if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2718 	return 0;
2719 
2720       if (GET_MODE (x) != GET_MODE (y)
2721 	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2722 	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2723 		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2724 	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2725 	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2726 	return 0;
2727 
2728       if (ASM_OPERANDS_INPUT_LENGTH (x))
2729 	{
2730 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2731 	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2732 			       ASM_OPERANDS_INPUT (y, i),
2733 			       validate, for_gcse)
2734 		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2735 			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2736 	      return 0;
2737 	}
2738 
2739       return 1;
2740 
2741     default:
2742       break;
2743     }
2744 
2745   /* Compare the elements.  If any pair of corresponding elements
2746      fail to match, return 0 for the whole thing.  */
2747 
2748   fmt = GET_RTX_FORMAT (code);
2749   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2750     {
2751       switch (fmt[i])
2752 	{
2753 	case 'e':
2754 	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2755 			      validate, for_gcse))
2756 	    return 0;
2757 	  break;
2758 
2759 	case 'E':
2760 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2761 	    return 0;
2762 	  for (j = 0; j < XVECLEN (x, i); j++)
2763 	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2764 				validate, for_gcse))
2765 	      return 0;
2766 	  break;
2767 
2768 	case 's':
2769 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
2770 	    return 0;
2771 	  break;
2772 
2773 	case 'i':
2774 	  if (XINT (x, i) != XINT (y, i))
2775 	    return 0;
2776 	  break;
2777 
2778 	case 'w':
2779 	  if (XWINT (x, i) != XWINT (y, i))
2780 	    return 0;
2781 	  break;
2782 
2783 	case '0':
2784 	case 't':
2785 	  break;
2786 
2787 	default:
2788 	  gcc_unreachable ();
2789 	}
2790     }
2791 
2792   return 1;
2793 }
2794 
2795 /* Subroutine of canon_reg.  Pass *XLOC through canon_reg, and validate
2796    the result if necessary.  INSN is as for canon_reg.  */
2797 
2798 static void
2799 validate_canon_reg (rtx *xloc, rtx insn)
2800 {
2801   if (*xloc)
2802     {
2803       rtx new_rtx = canon_reg (*xloc, insn);
2804 
2805       /* If replacing pseudo with hard reg or vice versa, ensure the
2806          insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2807       gcc_assert (insn && new_rtx);
2808       validate_change (insn, xloc, new_rtx, 1);
2809     }
2810 }
2811 
2812 /* Canonicalize an expression:
2813    replace each register reference inside it
2814    with the "oldest" equivalent register.
2815 
2816    If INSN is nonzero validate_change is used to ensure that INSN remains valid
2817    after we make our substitution.  The calls are made with IN_GROUP nonzero
2818    so apply_change_group must be called upon the outermost return from this
2819    function (unless INSN is zero).  The result of apply_change_group can
2820    generally be discarded since the changes we are making are optional.  */
2821 
2822 static rtx
2823 canon_reg (rtx x, rtx insn)
2824 {
2825   int i;
2826   enum rtx_code code;
2827   const char *fmt;
2828 
2829   if (x == 0)
2830     return x;
2831 
2832   code = GET_CODE (x);
2833   switch (code)
2834     {
2835     case PC:
2836     case CC0:
2837     case CONST:
2838     case CONST_INT:
2839     case CONST_DOUBLE:
2840     case CONST_FIXED:
2841     case CONST_VECTOR:
2842     case SYMBOL_REF:
2843     case LABEL_REF:
2844     case ADDR_VEC:
2845     case ADDR_DIFF_VEC:
2846       return x;
2847 
2848     case REG:
2849       {
2850 	int first;
2851 	int q;
2852 	struct qty_table_elem *ent;
2853 
2854 	/* Never replace a hard reg, because hard regs can appear
2855 	   in more than one machine mode, and we must preserve the mode
2856 	   of each occurrence.  Also, some hard regs appear in
2857 	   MEMs that are shared and mustn't be altered.  Don't try to
2858 	   replace any reg that maps to a reg of class NO_REGS.  */
2859 	if (REGNO (x) < FIRST_PSEUDO_REGISTER
2860 	    || ! REGNO_QTY_VALID_P (REGNO (x)))
2861 	  return x;
2862 
2863 	q = REG_QTY (REGNO (x));
2864 	ent = &qty_table[q];
2865 	first = ent->first_reg;
2866 	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2867 		: REGNO_REG_CLASS (first) == NO_REGS ? x
2868 		: gen_rtx_REG (ent->mode, first));
2869       }
2870 
2871     default:
2872       break;
2873     }
2874 
2875   fmt = GET_RTX_FORMAT (code);
2876   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2877     {
2878       int j;
2879 
2880       if (fmt[i] == 'e')
2881 	validate_canon_reg (&XEXP (x, i), insn);
2882       else if (fmt[i] == 'E')
2883 	for (j = 0; j < XVECLEN (x, i); j++)
2884 	  validate_canon_reg (&XVECEXP (x, i, j), insn);
2885     }
2886 
2887   return x;
2888 }
2889 
2890 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2891    operation (EQ, NE, GT, etc.), follow it back through the hash table and
2892    what values are being compared.
2893 
2894    *PARG1 and *PARG2 are updated to contain the rtx representing the values
2895    actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
2896    was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2897    compared to produce cc0.
2898 
2899    The return value is the comparison operator and is either the code of
2900    A or the code corresponding to the inverse of the comparison.  */
2901 
2902 static enum rtx_code
2903 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2904 		      enum machine_mode *pmode1, enum machine_mode *pmode2)
2905 {
2906   rtx arg1, arg2;
2907 
2908   arg1 = *parg1, arg2 = *parg2;
2909 
2910   /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
2911 
2912   while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2913     {
2914       /* Set nonzero when we find something of interest.  */
2915       rtx x = 0;
2916       int reverse_code = 0;
2917       struct table_elt *p = 0;
2918 
2919       /* If arg1 is a COMPARE, extract the comparison arguments from it.
2920 	 On machines with CC0, this is the only case that can occur, since
2921 	 fold_rtx will return the COMPARE or item being compared with zero
2922 	 when given CC0.  */
2923 
2924       if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2925 	x = arg1;
2926 
2927       /* If ARG1 is a comparison operator and CODE is testing for
2928 	 STORE_FLAG_VALUE, get the inner arguments.  */
2929 
2930       else if (COMPARISON_P (arg1))
2931 	{
2932 #ifdef FLOAT_STORE_FLAG_VALUE
2933 	  REAL_VALUE_TYPE fsfv;
2934 #endif
2935 
2936 	  if (code == NE
2937 	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2938 		  && code == LT && STORE_FLAG_VALUE == -1)
2939 #ifdef FLOAT_STORE_FLAG_VALUE
2940 	      || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2941 		  && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2942 		      REAL_VALUE_NEGATIVE (fsfv)))
2943 #endif
2944 	      )
2945 	    x = arg1;
2946 	  else if (code == EQ
2947 		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2948 		       && code == GE && STORE_FLAG_VALUE == -1)
2949 #ifdef FLOAT_STORE_FLAG_VALUE
2950 		   || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2951 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2952 			   REAL_VALUE_NEGATIVE (fsfv)))
2953 #endif
2954 		   )
2955 	    x = arg1, reverse_code = 1;
2956 	}
2957 
2958       /* ??? We could also check for
2959 
2960 	 (ne (and (eq (...) (const_int 1))) (const_int 0))
2961 
2962 	 and related forms, but let's wait until we see them occurring.  */
2963 
2964       if (x == 0)
2965 	/* Look up ARG1 in the hash table and see if it has an equivalence
2966 	   that lets us see what is being compared.  */
2967 	p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2968       if (p)
2969 	{
2970 	  p = p->first_same_value;
2971 
2972 	  /* If what we compare is already known to be constant, that is as
2973 	     good as it gets.
2974 	     We need to break the loop in this case, because otherwise we
2975 	     can have an infinite loop when looking at a reg that is known
2976 	     to be a constant which is the same as a comparison of a reg
2977 	     against zero which appears later in the insn stream, which in
2978 	     turn is constant and the same as the comparison of the first reg
2979 	     against zero...  */
2980 	  if (p->is_const)
2981 	    break;
2982 	}
2983 
2984       for (; p; p = p->next_same_value)
2985 	{
2986 	  enum machine_mode inner_mode = GET_MODE (p->exp);
2987 #ifdef FLOAT_STORE_FLAG_VALUE
2988 	  REAL_VALUE_TYPE fsfv;
2989 #endif
2990 
2991 	  /* If the entry isn't valid, skip it.  */
2992 	  if (! exp_equiv_p (p->exp, p->exp, 1, false))
2993 	    continue;
2994 
2995 	  /* If it's the same comparison we're already looking at, skip it.  */
2996 	  if (COMPARISON_P (p->exp)
2997 	      && XEXP (p->exp, 0) == arg1
2998 	      && XEXP (p->exp, 1) == arg2)
2999 	    continue;
3000 
3001 	  if (GET_CODE (p->exp) == COMPARE
3002 	      /* Another possibility is that this machine has a compare insn
3003 		 that includes the comparison code.  In that case, ARG1 would
3004 		 be equivalent to a comparison operation that would set ARG1 to
3005 		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
3006 		 ORIG_CODE is the actual comparison being done; if it is an EQ,
3007 		 we must reverse ORIG_CODE.  On machine with a negative value
3008 		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
3009 	      || ((code == NE
3010 		   || (code == LT
3011 		       && val_signbit_known_set_p (inner_mode,
3012 						   STORE_FLAG_VALUE))
3013 #ifdef FLOAT_STORE_FLAG_VALUE
3014 		   || (code == LT
3015 		       && SCALAR_FLOAT_MODE_P (inner_mode)
3016 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3017 			   REAL_VALUE_NEGATIVE (fsfv)))
3018 #endif
3019 		   )
3020 		  && COMPARISON_P (p->exp)))
3021 	    {
3022 	      x = p->exp;
3023 	      break;
3024 	    }
3025 	  else if ((code == EQ
3026 		    || (code == GE
3027 			&& val_signbit_known_set_p (inner_mode,
3028 						    STORE_FLAG_VALUE))
3029 #ifdef FLOAT_STORE_FLAG_VALUE
3030 		    || (code == GE
3031 			&& SCALAR_FLOAT_MODE_P (inner_mode)
3032 			&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3033 			    REAL_VALUE_NEGATIVE (fsfv)))
3034 #endif
3035 		    )
3036 		   && COMPARISON_P (p->exp))
3037 	    {
3038 	      reverse_code = 1;
3039 	      x = p->exp;
3040 	      break;
3041 	    }
3042 
3043 	  /* If this non-trapping address, e.g. fp + constant, the
3044 	     equivalent is a better operand since it may let us predict
3045 	     the value of the comparison.  */
3046 	  else if (!rtx_addr_can_trap_p (p->exp))
3047 	    {
3048 	      arg1 = p->exp;
3049 	      continue;
3050 	    }
3051 	}
3052 
3053       /* If we didn't find a useful equivalence for ARG1, we are done.
3054 	 Otherwise, set up for the next iteration.  */
3055       if (x == 0)
3056 	break;
3057 
3058       /* If we need to reverse the comparison, make sure that that is
3059 	 possible -- we can't necessarily infer the value of GE from LT
3060 	 with floating-point operands.  */
3061       if (reverse_code)
3062 	{
3063 	  enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3064 	  if (reversed == UNKNOWN)
3065 	    break;
3066 	  else
3067 	    code = reversed;
3068 	}
3069       else if (COMPARISON_P (x))
3070 	code = GET_CODE (x);
3071       arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3072     }
3073 
3074   /* Return our results.  Return the modes from before fold_rtx
3075      because fold_rtx might produce const_int, and then it's too late.  */
3076   *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3077   *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3078 
3079   return code;
3080 }
3081 
3082 /* If X is a nontrivial arithmetic operation on an argument for which
3083    a constant value can be determined, return the result of operating
3084    on that value, as a constant.  Otherwise, return X, possibly with
3085    one or more operands changed to a forward-propagated constant.
3086 
3087    If X is a register whose contents are known, we do NOT return
3088    those contents here; equiv_constant is called to perform that task.
3089    For SUBREGs and MEMs, we do that both here and in equiv_constant.
3090 
3091    INSN is the insn that we may be modifying.  If it is 0, make a copy
3092    of X before modifying it.  */
3093 
3094 static rtx
3095 fold_rtx (rtx x, rtx insn)
3096 {
3097   enum rtx_code code;
3098   enum machine_mode mode;
3099   const char *fmt;
3100   int i;
3101   rtx new_rtx = 0;
3102   int changed = 0;
3103 
3104   /* Operands of X.  */
3105   rtx folded_arg0;
3106   rtx folded_arg1;
3107 
3108   /* Constant equivalents of first three operands of X;
3109      0 when no such equivalent is known.  */
3110   rtx const_arg0;
3111   rtx const_arg1;
3112   rtx const_arg2;
3113 
3114   /* The mode of the first operand of X.  We need this for sign and zero
3115      extends.  */
3116   enum machine_mode mode_arg0;
3117 
3118   if (x == 0)
3119     return x;
3120 
3121   /* Try to perform some initial simplifications on X.  */
3122   code = GET_CODE (x);
3123   switch (code)
3124     {
3125     case MEM:
3126     case SUBREG:
3127       if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3128         return new_rtx;
3129       return x;
3130 
3131     case CONST:
3132     case CONST_INT:
3133     case CONST_DOUBLE:
3134     case CONST_FIXED:
3135     case CONST_VECTOR:
3136     case SYMBOL_REF:
3137     case LABEL_REF:
3138     case REG:
3139     case PC:
3140       /* No use simplifying an EXPR_LIST
3141 	 since they are used only for lists of args
3142 	 in a function call's REG_EQUAL note.  */
3143     case EXPR_LIST:
3144       return x;
3145 
3146 #ifdef HAVE_cc0
3147     case CC0:
3148       return prev_insn_cc0;
3149 #endif
3150 
3151     case ASM_OPERANDS:
3152       if (insn)
3153 	{
3154 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3155 	    validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3156 			     fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3157 	}
3158       return x;
3159 
3160 #ifdef NO_FUNCTION_CSE
3161     case CALL:
3162       if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3163 	return x;
3164       break;
3165 #endif
3166 
3167     /* Anything else goes through the loop below.  */
3168     default:
3169       break;
3170     }
3171 
3172   mode = GET_MODE (x);
3173   const_arg0 = 0;
3174   const_arg1 = 0;
3175   const_arg2 = 0;
3176   mode_arg0 = VOIDmode;
3177 
3178   /* Try folding our operands.
3179      Then see which ones have constant values known.  */
3180 
3181   fmt = GET_RTX_FORMAT (code);
3182   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3183     if (fmt[i] == 'e')
3184       {
3185 	rtx folded_arg = XEXP (x, i), const_arg;
3186 	enum machine_mode mode_arg = GET_MODE (folded_arg);
3187 
3188 	switch (GET_CODE (folded_arg))
3189 	  {
3190 	  case MEM:
3191 	  case REG:
3192 	  case SUBREG:
3193 	    const_arg = equiv_constant (folded_arg);
3194 	    break;
3195 
3196 	  case CONST:
3197 	  case CONST_INT:
3198 	  case SYMBOL_REF:
3199 	  case LABEL_REF:
3200 	  case CONST_DOUBLE:
3201 	  case CONST_FIXED:
3202 	  case CONST_VECTOR:
3203 	    const_arg = folded_arg;
3204 	    break;
3205 
3206 #ifdef HAVE_cc0
3207 	  case CC0:
3208 	    folded_arg = prev_insn_cc0;
3209 	    mode_arg = prev_insn_cc0_mode;
3210 	    const_arg = equiv_constant (folded_arg);
3211 	    break;
3212 #endif
3213 
3214 	  default:
3215 	    folded_arg = fold_rtx (folded_arg, insn);
3216 	    const_arg = equiv_constant (folded_arg);
3217 	    break;
3218 	  }
3219 
3220 	/* For the first three operands, see if the operand
3221 	   is constant or equivalent to a constant.  */
3222 	switch (i)
3223 	  {
3224 	  case 0:
3225 	    folded_arg0 = folded_arg;
3226 	    const_arg0 = const_arg;
3227 	    mode_arg0 = mode_arg;
3228 	    break;
3229 	  case 1:
3230 	    folded_arg1 = folded_arg;
3231 	    const_arg1 = const_arg;
3232 	    break;
3233 	  case 2:
3234 	    const_arg2 = const_arg;
3235 	    break;
3236 	  }
3237 
3238 	/* Pick the least expensive of the argument and an equivalent constant
3239 	   argument.  */
3240 	if (const_arg != 0
3241 	    && const_arg != folded_arg
3242 	    && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3243 
3244 	    /* It's not safe to substitute the operand of a conversion
3245 	       operator with a constant, as the conversion's identity
3246 	       depends upon the mode of its operand.  This optimization
3247 	       is handled by the call to simplify_unary_operation.  */
3248 	    && (GET_RTX_CLASS (code) != RTX_UNARY
3249 		|| GET_MODE (const_arg) == mode_arg0
3250 		|| (code != ZERO_EXTEND
3251 		    && code != SIGN_EXTEND
3252 		    && code != TRUNCATE
3253 		    && code != FLOAT_TRUNCATE
3254 		    && code != FLOAT_EXTEND
3255 		    && code != FLOAT
3256 		    && code != FIX
3257 		    && code != UNSIGNED_FLOAT
3258 		    && code != UNSIGNED_FIX)))
3259 	  folded_arg = const_arg;
3260 
3261 	if (folded_arg == XEXP (x, i))
3262 	  continue;
3263 
3264 	if (insn == NULL_RTX && !changed)
3265 	  x = copy_rtx (x);
3266 	changed = 1;
3267 	validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3268       }
3269 
3270   if (changed)
3271     {
3272       /* Canonicalize X if necessary, and keep const_argN and folded_argN
3273 	 consistent with the order in X.  */
3274       if (canonicalize_change_group (insn, x))
3275 	{
3276 	  rtx tem;
3277 	  tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3278 	  tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3279 	}
3280 
3281       apply_change_group ();
3282     }
3283 
3284   /* If X is an arithmetic operation, see if we can simplify it.  */
3285 
3286   switch (GET_RTX_CLASS (code))
3287     {
3288     case RTX_UNARY:
3289       {
3290 	/* We can't simplify extension ops unless we know the
3291 	   original mode.  */
3292 	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3293 	    && mode_arg0 == VOIDmode)
3294 	  break;
3295 
3296 	new_rtx = simplify_unary_operation (code, mode,
3297 					const_arg0 ? const_arg0 : folded_arg0,
3298 					mode_arg0);
3299       }
3300       break;
3301 
3302     case RTX_COMPARE:
3303     case RTX_COMM_COMPARE:
3304       /* See what items are actually being compared and set FOLDED_ARG[01]
3305 	 to those values and CODE to the actual comparison code.  If any are
3306 	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
3307 	 do anything if both operands are already known to be constant.  */
3308 
3309       /* ??? Vector mode comparisons are not supported yet.  */
3310       if (VECTOR_MODE_P (mode))
3311 	break;
3312 
3313       if (const_arg0 == 0 || const_arg1 == 0)
3314 	{
3315 	  struct table_elt *p0, *p1;
3316 	  rtx true_rtx, false_rtx;
3317 	  enum machine_mode mode_arg1;
3318 
3319 	  if (SCALAR_FLOAT_MODE_P (mode))
3320 	    {
3321 #ifdef FLOAT_STORE_FLAG_VALUE
3322 	      true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3323 			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3324 #else
3325 	      true_rtx = NULL_RTX;
3326 #endif
3327 	      false_rtx = CONST0_RTX (mode);
3328 	    }
3329 	  else
3330 	    {
3331 	      true_rtx = const_true_rtx;
3332 	      false_rtx = const0_rtx;
3333 	    }
3334 
3335 	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3336 				       &mode_arg0, &mode_arg1);
3337 
3338 	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3339 	     what kinds of things are being compared, so we can't do
3340 	     anything with this comparison.  */
3341 
3342 	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3343 	    break;
3344 
3345 	  const_arg0 = equiv_constant (folded_arg0);
3346 	  const_arg1 = equiv_constant (folded_arg1);
3347 
3348 	  /* If we do not now have two constants being compared, see
3349 	     if we can nevertheless deduce some things about the
3350 	     comparison.  */
3351 	  if (const_arg0 == 0 || const_arg1 == 0)
3352 	    {
3353 	      if (const_arg1 != NULL)
3354 		{
3355 		  rtx cheapest_simplification;
3356 		  int cheapest_cost;
3357 		  rtx simp_result;
3358 		  struct table_elt *p;
3359 
3360 		  /* See if we can find an equivalent of folded_arg0
3361 		     that gets us a cheaper expression, possibly a
3362 		     constant through simplifications.  */
3363 		  p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3364 			      mode_arg0);
3365 
3366 		  if (p != NULL)
3367 		    {
3368 		      cheapest_simplification = x;
3369 		      cheapest_cost = COST (x);
3370 
3371 		      for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3372 			{
3373 			  int cost;
3374 
3375 			  /* If the entry isn't valid, skip it.  */
3376 			  if (! exp_equiv_p (p->exp, p->exp, 1, false))
3377 			    continue;
3378 
3379 			  /* Try to simplify using this equivalence.  */
3380 			  simp_result
3381 			    = simplify_relational_operation (code, mode,
3382 							     mode_arg0,
3383 							     p->exp,
3384 							     const_arg1);
3385 
3386 			  if (simp_result == NULL)
3387 			    continue;
3388 
3389 			  cost = COST (simp_result);
3390 			  if (cost < cheapest_cost)
3391 			    {
3392 			      cheapest_cost = cost;
3393 			      cheapest_simplification = simp_result;
3394 			    }
3395 			}
3396 
3397 		      /* If we have a cheaper expression now, use that
3398 			 and try folding it further, from the top.  */
3399 		      if (cheapest_simplification != x)
3400 			return fold_rtx (copy_rtx (cheapest_simplification),
3401 					 insn);
3402 		    }
3403 		}
3404 
3405 	      /* See if the two operands are the same.  */
3406 
3407 	      if ((REG_P (folded_arg0)
3408 		   && REG_P (folded_arg1)
3409 		   && (REG_QTY (REGNO (folded_arg0))
3410 		       == REG_QTY (REGNO (folded_arg1))))
3411 		  || ((p0 = lookup (folded_arg0,
3412 				    SAFE_HASH (folded_arg0, mode_arg0),
3413 				    mode_arg0))
3414 		      && (p1 = lookup (folded_arg1,
3415 				       SAFE_HASH (folded_arg1, mode_arg0),
3416 				       mode_arg0))
3417 		      && p0->first_same_value == p1->first_same_value))
3418 		folded_arg1 = folded_arg0;
3419 
3420 	      /* If FOLDED_ARG0 is a register, see if the comparison we are
3421 		 doing now is either the same as we did before or the reverse
3422 		 (we only check the reverse if not floating-point).  */
3423 	      else if (REG_P (folded_arg0))
3424 		{
3425 		  int qty = REG_QTY (REGNO (folded_arg0));
3426 
3427 		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3428 		    {
3429 		      struct qty_table_elem *ent = &qty_table[qty];
3430 
3431 		      if ((comparison_dominates_p (ent->comparison_code, code)
3432 			   || (! FLOAT_MODE_P (mode_arg0)
3433 			       && comparison_dominates_p (ent->comparison_code,
3434 						          reverse_condition (code))))
3435 			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
3436 			      || (const_arg1
3437 				  && rtx_equal_p (ent->comparison_const,
3438 						  const_arg1))
3439 			      || (REG_P (folded_arg1)
3440 				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3441 			{
3442 			  if (comparison_dominates_p (ent->comparison_code, code))
3443 			    {
3444 			      if (true_rtx)
3445 				return true_rtx;
3446 			      else
3447 				break;
3448 			    }
3449 			  else
3450 			    return false_rtx;
3451 			}
3452 		    }
3453 		}
3454 	    }
3455 	}
3456 
3457       /* If we are comparing against zero, see if the first operand is
3458 	 equivalent to an IOR with a constant.  If so, we may be able to
3459 	 determine the result of this comparison.  */
3460       if (const_arg1 == const0_rtx && !const_arg0)
3461 	{
3462 	  rtx y = lookup_as_function (folded_arg0, IOR);
3463 	  rtx inner_const;
3464 
3465 	  if (y != 0
3466 	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3467 	      && CONST_INT_P (inner_const)
3468 	      && INTVAL (inner_const) != 0)
3469 	    folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3470 	}
3471 
3472       {
3473 	rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3474 	rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3475         new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3476       }
3477       break;
3478 
3479     case RTX_BIN_ARITH:
3480     case RTX_COMM_ARITH:
3481       switch (code)
3482 	{
3483 	case PLUS:
3484 	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
3485 	     with that LABEL_REF as its second operand.  If so, the result is
3486 	     the first operand of that MINUS.  This handles switches with an
3487 	     ADDR_DIFF_VEC table.  */
3488 	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3489 	    {
3490 	      rtx y
3491 		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
3492 		: lookup_as_function (folded_arg0, MINUS);
3493 
3494 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3495 		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3496 		return XEXP (y, 0);
3497 
3498 	      /* Now try for a CONST of a MINUS like the above.  */
3499 	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3500 			: lookup_as_function (folded_arg0, CONST))) != 0
3501 		  && GET_CODE (XEXP (y, 0)) == MINUS
3502 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3503 		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3504 		return XEXP (XEXP (y, 0), 0);
3505 	    }
3506 
3507 	  /* Likewise if the operands are in the other order.  */
3508 	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3509 	    {
3510 	      rtx y
3511 		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
3512 		: lookup_as_function (folded_arg1, MINUS);
3513 
3514 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3515 		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3516 		return XEXP (y, 0);
3517 
3518 	      /* Now try for a CONST of a MINUS like the above.  */
3519 	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3520 			: lookup_as_function (folded_arg1, CONST))) != 0
3521 		  && GET_CODE (XEXP (y, 0)) == MINUS
3522 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3523 		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3524 		return XEXP (XEXP (y, 0), 0);
3525 	    }
3526 
3527 	  /* If second operand is a register equivalent to a negative
3528 	     CONST_INT, see if we can find a register equivalent to the
3529 	     positive constant.  Make a MINUS if so.  Don't do this for
3530 	     a non-negative constant since we might then alternate between
3531 	     choosing positive and negative constants.  Having the positive
3532 	     constant previously-used is the more common case.  Be sure
3533 	     the resulting constant is non-negative; if const_arg1 were
3534 	     the smallest negative number this would overflow: depending
3535 	     on the mode, this would either just be the same value (and
3536 	     hence not save anything) or be incorrect.  */
3537 	  if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3538 	      && INTVAL (const_arg1) < 0
3539 	      /* This used to test
3540 
3541 	         -INTVAL (const_arg1) >= 0
3542 
3543 		 But The Sun V5.0 compilers mis-compiled that test.  So
3544 		 instead we test for the problematic value in a more direct
3545 		 manner and hope the Sun compilers get it correct.  */
3546 	      && INTVAL (const_arg1) !=
3547 	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3548 	      && REG_P (folded_arg1))
3549 	    {
3550 	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
3551 	      struct table_elt *p
3552 		= lookup (new_const, SAFE_HASH (new_const, mode), mode);
3553 
3554 	      if (p)
3555 		for (p = p->first_same_value; p; p = p->next_same_value)
3556 		  if (REG_P (p->exp))
3557 		    return simplify_gen_binary (MINUS, mode, folded_arg0,
3558 						canon_reg (p->exp, NULL_RTX));
3559 	    }
3560 	  goto from_plus;
3561 
3562 	case MINUS:
3563 	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3564 	     If so, produce (PLUS Z C2-C).  */
3565 	  if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3566 	    {
3567 	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3568 	      if (y && CONST_INT_P (XEXP (y, 1)))
3569 		return fold_rtx (plus_constant (copy_rtx (y),
3570 						-INTVAL (const_arg1)),
3571 				 NULL_RTX);
3572 	    }
3573 
3574 	  /* Fall through.  */
3575 
3576 	from_plus:
3577 	case SMIN:    case SMAX:      case UMIN:    case UMAX:
3578 	case IOR:     case AND:       case XOR:
3579 	case MULT:
3580 	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
3581 	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3582 	     is known to be of similar form, we may be able to replace the
3583 	     operation with a combined operation.  This may eliminate the
3584 	     intermediate operation if every use is simplified in this way.
3585 	     Note that the similar optimization done by combine.c only works
3586 	     if the intermediate operation's result has only one reference.  */
3587 
3588 	  if (REG_P (folded_arg0)
3589 	      && const_arg1 && CONST_INT_P (const_arg1))
3590 	    {
3591 	      int is_shift
3592 		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3593 	      rtx y, inner_const, new_const;
3594 	      rtx canon_const_arg1 = const_arg1;
3595 	      enum rtx_code associate_code;
3596 
3597 	      if (is_shift
3598 		  && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3599 		      || INTVAL (const_arg1) < 0))
3600 		{
3601 		  if (SHIFT_COUNT_TRUNCATED)
3602 		    canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3603 						& (GET_MODE_BITSIZE (mode)
3604 						   - 1));
3605 		  else
3606 		    break;
3607 		}
3608 
3609 	      y = lookup_as_function (folded_arg0, code);
3610 	      if (y == 0)
3611 		break;
3612 
3613 	      /* If we have compiled a statement like
3614 		 "if (x == (x & mask1))", and now are looking at
3615 		 "x & mask2", we will have a case where the first operand
3616 		 of Y is the same as our first operand.  Unless we detect
3617 		 this case, an infinite loop will result.  */
3618 	      if (XEXP (y, 0) == folded_arg0)
3619 		break;
3620 
3621 	      inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3622 	      if (!inner_const || !CONST_INT_P (inner_const))
3623 		break;
3624 
3625 	      /* Don't associate these operations if they are a PLUS with the
3626 		 same constant and it is a power of two.  These might be doable
3627 		 with a pre- or post-increment.  Similarly for two subtracts of
3628 		 identical powers of two with post decrement.  */
3629 
3630 	      if (code == PLUS && const_arg1 == inner_const
3631 		  && ((HAVE_PRE_INCREMENT
3632 			  && exact_log2 (INTVAL (const_arg1)) >= 0)
3633 		      || (HAVE_POST_INCREMENT
3634 			  && exact_log2 (INTVAL (const_arg1)) >= 0)
3635 		      || (HAVE_PRE_DECREMENT
3636 			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
3637 		      || (HAVE_POST_DECREMENT
3638 			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3639 		break;
3640 
3641 	      /* ??? Vector mode shifts by scalar
3642 		 shift operand are not supported yet.  */
3643 	      if (is_shift && VECTOR_MODE_P (mode))
3644                 break;
3645 
3646 	      if (is_shift
3647 		  && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3648 		      || INTVAL (inner_const) < 0))
3649 		{
3650 		  if (SHIFT_COUNT_TRUNCATED)
3651 		    inner_const = GEN_INT (INTVAL (inner_const)
3652 					   & (GET_MODE_BITSIZE (mode) - 1));
3653 		  else
3654 		    break;
3655 		}
3656 
3657 	      /* Compute the code used to compose the constants.  For example,
3658 		 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS.  */
3659 
3660 	      associate_code = (is_shift || code == MINUS ? PLUS : code);
3661 
3662 	      new_const = simplify_binary_operation (associate_code, mode,
3663 						     canon_const_arg1,
3664 						     inner_const);
3665 
3666 	      if (new_const == 0)
3667 		break;
3668 
3669 	      /* If we are associating shift operations, don't let this
3670 		 produce a shift of the size of the object or larger.
3671 		 This could occur when we follow a sign-extend by a right
3672 		 shift on a machine that does a sign-extend as a pair
3673 		 of shifts.  */
3674 
3675 	      if (is_shift
3676 		  && CONST_INT_P (new_const)
3677 		  && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3678 		{
3679 		  /* As an exception, we can turn an ASHIFTRT of this
3680 		     form into a shift of the number of bits - 1.  */
3681 		  if (code == ASHIFTRT)
3682 		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3683 		  else if (!side_effects_p (XEXP (y, 0)))
3684 		    return CONST0_RTX (mode);
3685 		  else
3686 		    break;
3687 		}
3688 
3689 	      y = copy_rtx (XEXP (y, 0));
3690 
3691 	      /* If Y contains our first operand (the most common way this
3692 		 can happen is if Y is a MEM), we would do into an infinite
3693 		 loop if we tried to fold it.  So don't in that case.  */
3694 
3695 	      if (! reg_mentioned_p (folded_arg0, y))
3696 		y = fold_rtx (y, insn);
3697 
3698 	      return simplify_gen_binary (code, mode, y, new_const);
3699 	    }
3700 	  break;
3701 
3702 	case DIV:       case UDIV:
3703 	  /* ??? The associative optimization performed immediately above is
3704 	     also possible for DIV and UDIV using associate_code of MULT.
3705 	     However, we would need extra code to verify that the
3706 	     multiplication does not overflow, that is, there is no overflow
3707 	     in the calculation of new_const.  */
3708 	  break;
3709 
3710 	default:
3711 	  break;
3712 	}
3713 
3714       new_rtx = simplify_binary_operation (code, mode,
3715 				       const_arg0 ? const_arg0 : folded_arg0,
3716 				       const_arg1 ? const_arg1 : folded_arg1);
3717       break;
3718 
3719     case RTX_OBJ:
3720       /* (lo_sum (high X) X) is simply X.  */
3721       if (code == LO_SUM && const_arg0 != 0
3722 	  && GET_CODE (const_arg0) == HIGH
3723 	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3724 	return const_arg1;
3725       break;
3726 
3727     case RTX_TERNARY:
3728     case RTX_BITFIELD_OPS:
3729       new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3730 					const_arg0 ? const_arg0 : folded_arg0,
3731 					const_arg1 ? const_arg1 : folded_arg1,
3732 					const_arg2 ? const_arg2 : XEXP (x, 2));
3733       break;
3734 
3735     default:
3736       break;
3737     }
3738 
3739   return new_rtx ? new_rtx : x;
3740 }
3741 
3742 /* Return a constant value currently equivalent to X.
3743    Return 0 if we don't know one.  */
3744 
3745 static rtx
3746 equiv_constant (rtx x)
3747 {
3748   if (REG_P (x)
3749       && REGNO_QTY_VALID_P (REGNO (x)))
3750     {
3751       int x_q = REG_QTY (REGNO (x));
3752       struct qty_table_elem *x_ent = &qty_table[x_q];
3753 
3754       if (x_ent->const_rtx)
3755 	x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3756     }
3757 
3758   if (x == 0 || CONSTANT_P (x))
3759     return x;
3760 
3761   if (GET_CODE (x) == SUBREG)
3762     {
3763       enum machine_mode mode = GET_MODE (x);
3764       enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3765       rtx new_rtx;
3766 
3767       /* See if we previously assigned a constant value to this SUBREG.  */
3768       if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3769           || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3770           || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3771         return new_rtx;
3772 
3773       /* If we didn't and if doing so makes sense, see if we previously
3774 	 assigned a constant value to the enclosing word mode SUBREG.  */
3775       if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3776 	  && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3777 	{
3778 	  int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3779 	  if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3780 	    {
3781 	      rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3782 	      new_rtx = lookup_as_function (y, CONST_INT);
3783 	      if (new_rtx)
3784 		return gen_lowpart (mode, new_rtx);
3785 	    }
3786 	}
3787 
3788       /* Otherwise see if we already have a constant for the inner REG.  */
3789       if (REG_P (SUBREG_REG (x))
3790 	  && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3791         return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3792 
3793       return 0;
3794     }
3795 
3796   /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3797      the hash table in case its value was seen before.  */
3798 
3799   if (MEM_P (x))
3800     {
3801       struct table_elt *elt;
3802 
3803       x = avoid_constant_pool_reference (x);
3804       if (CONSTANT_P (x))
3805 	return x;
3806 
3807       elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3808       if (elt == 0)
3809 	return 0;
3810 
3811       for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3812 	if (elt->is_const && CONSTANT_P (elt->exp))
3813 	  return elt->exp;
3814     }
3815 
3816   return 0;
3817 }
3818 
3819 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3820    "taken" branch.
3821 
3822    In certain cases, this can cause us to add an equivalence.  For example,
3823    if we are following the taken case of
3824 	if (i == 2)
3825    we can add the fact that `i' and '2' are now equivalent.
3826 
3827    In any case, we can record that this comparison was passed.  If the same
3828    comparison is seen later, we will know its value.  */
3829 
3830 static void
3831 record_jump_equiv (rtx insn, bool taken)
3832 {
3833   int cond_known_true;
3834   rtx op0, op1;
3835   rtx set;
3836   enum machine_mode mode, mode0, mode1;
3837   int reversed_nonequality = 0;
3838   enum rtx_code code;
3839 
3840   /* Ensure this is the right kind of insn.  */
3841   gcc_assert (any_condjump_p (insn));
3842 
3843   set = pc_set (insn);
3844 
3845   /* See if this jump condition is known true or false.  */
3846   if (taken)
3847     cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3848   else
3849     cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3850 
3851   /* Get the type of comparison being done and the operands being compared.
3852      If we had to reverse a non-equality condition, record that fact so we
3853      know that it isn't valid for floating-point.  */
3854   code = GET_CODE (XEXP (SET_SRC (set), 0));
3855   op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3856   op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3857 
3858   code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3859   if (! cond_known_true)
3860     {
3861       code = reversed_comparison_code_parts (code, op0, op1, insn);
3862 
3863       /* Don't remember if we can't find the inverse.  */
3864       if (code == UNKNOWN)
3865 	return;
3866     }
3867 
3868   /* The mode is the mode of the non-constant.  */
3869   mode = mode0;
3870   if (mode1 != VOIDmode)
3871     mode = mode1;
3872 
3873   record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3874 }
3875 
3876 /* Yet another form of subreg creation.  In this case, we want something in
3877    MODE, and we should assume OP has MODE iff it is naturally modeless.  */
3878 
3879 static rtx
3880 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3881 {
3882   enum machine_mode op_mode = GET_MODE (op);
3883   if (op_mode == mode || op_mode == VOIDmode)
3884     return op;
3885   return lowpart_subreg (mode, op, op_mode);
3886 }
3887 
3888 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3889    REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3890    Make any useful entries we can with that information.  Called from
3891    above function and called recursively.  */
3892 
3893 static void
3894 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3895 		  rtx op1, int reversed_nonequality)
3896 {
3897   unsigned op0_hash, op1_hash;
3898   int op0_in_memory, op1_in_memory;
3899   struct table_elt *op0_elt, *op1_elt;
3900 
3901   /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3902      we know that they are also equal in the smaller mode (this is also
3903      true for all smaller modes whether or not there is a SUBREG, but
3904      is not worth testing for with no SUBREG).  */
3905 
3906   /* Note that GET_MODE (op0) may not equal MODE.  */
3907   if (code == EQ && paradoxical_subreg_p (op0))
3908     {
3909       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3910       rtx tem = record_jump_cond_subreg (inner_mode, op1);
3911       if (tem)
3912 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3913 			  reversed_nonequality);
3914     }
3915 
3916   if (code == EQ && paradoxical_subreg_p (op1))
3917     {
3918       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3919       rtx tem = record_jump_cond_subreg (inner_mode, op0);
3920       if (tem)
3921 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3922 			  reversed_nonequality);
3923     }
3924 
3925   /* Similarly, if this is an NE comparison, and either is a SUBREG
3926      making a smaller mode, we know the whole thing is also NE.  */
3927 
3928   /* Note that GET_MODE (op0) may not equal MODE;
3929      if we test MODE instead, we can get an infinite recursion
3930      alternating between two modes each wider than MODE.  */
3931 
3932   if (code == NE && GET_CODE (op0) == SUBREG
3933       && subreg_lowpart_p (op0)
3934       && (GET_MODE_SIZE (GET_MODE (op0))
3935 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3936     {
3937       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3938       rtx tem = record_jump_cond_subreg (inner_mode, op1);
3939       if (tem)
3940 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3941 			  reversed_nonequality);
3942     }
3943 
3944   if (code == NE && GET_CODE (op1) == SUBREG
3945       && subreg_lowpart_p (op1)
3946       && (GET_MODE_SIZE (GET_MODE (op1))
3947 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3948     {
3949       enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3950       rtx tem = record_jump_cond_subreg (inner_mode, op0);
3951       if (tem)
3952 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3953 			  reversed_nonequality);
3954     }
3955 
3956   /* Hash both operands.  */
3957 
3958   do_not_record = 0;
3959   hash_arg_in_memory = 0;
3960   op0_hash = HASH (op0, mode);
3961   op0_in_memory = hash_arg_in_memory;
3962 
3963   if (do_not_record)
3964     return;
3965 
3966   do_not_record = 0;
3967   hash_arg_in_memory = 0;
3968   op1_hash = HASH (op1, mode);
3969   op1_in_memory = hash_arg_in_memory;
3970 
3971   if (do_not_record)
3972     return;
3973 
3974   /* Look up both operands.  */
3975   op0_elt = lookup (op0, op0_hash, mode);
3976   op1_elt = lookup (op1, op1_hash, mode);
3977 
3978   /* If both operands are already equivalent or if they are not in the
3979      table but are identical, do nothing.  */
3980   if ((op0_elt != 0 && op1_elt != 0
3981        && op0_elt->first_same_value == op1_elt->first_same_value)
3982       || op0 == op1 || rtx_equal_p (op0, op1))
3983     return;
3984 
3985   /* If we aren't setting two things equal all we can do is save this
3986      comparison.   Similarly if this is floating-point.  In the latter
3987      case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3988      If we record the equality, we might inadvertently delete code
3989      whose intent was to change -0 to +0.  */
3990 
3991   if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3992     {
3993       struct qty_table_elem *ent;
3994       int qty;
3995 
3996       /* If we reversed a floating-point comparison, if OP0 is not a
3997 	 register, or if OP1 is neither a register or constant, we can't
3998 	 do anything.  */
3999 
4000       if (!REG_P (op1))
4001 	op1 = equiv_constant (op1);
4002 
4003       if ((reversed_nonequality && FLOAT_MODE_P (mode))
4004 	  || !REG_P (op0) || op1 == 0)
4005 	return;
4006 
4007       /* Put OP0 in the hash table if it isn't already.  This gives it a
4008 	 new quantity number.  */
4009       if (op0_elt == 0)
4010 	{
4011 	  if (insert_regs (op0, NULL, 0))
4012 	    {
4013 	      rehash_using_reg (op0);
4014 	      op0_hash = HASH (op0, mode);
4015 
4016 	      /* If OP0 is contained in OP1, this changes its hash code
4017 		 as well.  Faster to rehash than to check, except
4018 		 for the simple case of a constant.  */
4019 	      if (! CONSTANT_P (op1))
4020 		op1_hash = HASH (op1,mode);
4021 	    }
4022 
4023 	  op0_elt = insert (op0, NULL, op0_hash, mode);
4024 	  op0_elt->in_memory = op0_in_memory;
4025 	}
4026 
4027       qty = REG_QTY (REGNO (op0));
4028       ent = &qty_table[qty];
4029 
4030       ent->comparison_code = code;
4031       if (REG_P (op1))
4032 	{
4033 	  /* Look it up again--in case op0 and op1 are the same.  */
4034 	  op1_elt = lookup (op1, op1_hash, mode);
4035 
4036 	  /* Put OP1 in the hash table so it gets a new quantity number.  */
4037 	  if (op1_elt == 0)
4038 	    {
4039 	      if (insert_regs (op1, NULL, 0))
4040 		{
4041 		  rehash_using_reg (op1);
4042 		  op1_hash = HASH (op1, mode);
4043 		}
4044 
4045 	      op1_elt = insert (op1, NULL, op1_hash, mode);
4046 	      op1_elt->in_memory = op1_in_memory;
4047 	    }
4048 
4049 	  ent->comparison_const = NULL_RTX;
4050 	  ent->comparison_qty = REG_QTY (REGNO (op1));
4051 	}
4052       else
4053 	{
4054 	  ent->comparison_const = op1;
4055 	  ent->comparison_qty = -1;
4056 	}
4057 
4058       return;
4059     }
4060 
4061   /* If either side is still missing an equivalence, make it now,
4062      then merge the equivalences.  */
4063 
4064   if (op0_elt == 0)
4065     {
4066       if (insert_regs (op0, NULL, 0))
4067 	{
4068 	  rehash_using_reg (op0);
4069 	  op0_hash = HASH (op0, mode);
4070 	}
4071 
4072       op0_elt = insert (op0, NULL, op0_hash, mode);
4073       op0_elt->in_memory = op0_in_memory;
4074     }
4075 
4076   if (op1_elt == 0)
4077     {
4078       if (insert_regs (op1, NULL, 0))
4079 	{
4080 	  rehash_using_reg (op1);
4081 	  op1_hash = HASH (op1, mode);
4082 	}
4083 
4084       op1_elt = insert (op1, NULL, op1_hash, mode);
4085       op1_elt->in_memory = op1_in_memory;
4086     }
4087 
4088   merge_equiv_classes (op0_elt, op1_elt);
4089 }
4090 
4091 /* CSE processing for one instruction.
4092    First simplify sources and addresses of all assignments
4093    in the instruction, using previously-computed equivalents values.
4094    Then install the new sources and destinations in the table
4095    of available values.  */
4096 
4097 /* Data on one SET contained in the instruction.  */
4098 
4099 struct set
4100 {
4101   /* The SET rtx itself.  */
4102   rtx rtl;
4103   /* The SET_SRC of the rtx (the original value, if it is changing).  */
4104   rtx src;
4105   /* The hash-table element for the SET_SRC of the SET.  */
4106   struct table_elt *src_elt;
4107   /* Hash value for the SET_SRC.  */
4108   unsigned src_hash;
4109   /* Hash value for the SET_DEST.  */
4110   unsigned dest_hash;
4111   /* The SET_DEST, with SUBREG, etc., stripped.  */
4112   rtx inner_dest;
4113   /* Nonzero if the SET_SRC is in memory.  */
4114   char src_in_memory;
4115   /* Nonzero if the SET_SRC contains something
4116      whose value cannot be predicted and understood.  */
4117   char src_volatile;
4118   /* Original machine mode, in case it becomes a CONST_INT.
4119      The size of this field should match the size of the mode
4120      field of struct rtx_def (see rtl.h).  */
4121   ENUM_BITFIELD(machine_mode) mode : 8;
4122   /* A constant equivalent for SET_SRC, if any.  */
4123   rtx src_const;
4124   /* Hash value of constant equivalent for SET_SRC.  */
4125   unsigned src_const_hash;
4126   /* Table entry for constant equivalent for SET_SRC, if any.  */
4127   struct table_elt *src_const_elt;
4128   /* Table entry for the destination address.  */
4129   struct table_elt *dest_addr_elt;
4130 };
4131 
4132 static void
4133 cse_insn (rtx insn)
4134 {
4135   rtx x = PATTERN (insn);
4136   int i;
4137   rtx tem;
4138   int n_sets = 0;
4139 
4140   rtx src_eqv = 0;
4141   struct table_elt *src_eqv_elt = 0;
4142   int src_eqv_volatile = 0;
4143   int src_eqv_in_memory = 0;
4144   unsigned src_eqv_hash = 0;
4145 
4146   struct set *sets = (struct set *) 0;
4147 
4148   this_insn = insn;
4149 #ifdef HAVE_cc0
4150   /* Records what this insn does to set CC0.  */
4151   this_insn_cc0 = 0;
4152   this_insn_cc0_mode = VOIDmode;
4153 #endif
4154 
4155   /* Find all the SETs and CLOBBERs in this instruction.
4156      Record all the SETs in the array `set' and count them.
4157      Also determine whether there is a CLOBBER that invalidates
4158      all memory references, or all references at varying addresses.  */
4159 
4160   if (CALL_P (insn))
4161     {
4162       for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4163 	{
4164 	  if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4165 	    invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4166 	  XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4167 	}
4168     }
4169 
4170   if (GET_CODE (x) == SET)
4171     {
4172       sets = XALLOCA (struct set);
4173       sets[0].rtl = x;
4174 
4175       /* Ignore SETs that are unconditional jumps.
4176 	 They never need cse processing, so this does not hurt.
4177 	 The reason is not efficiency but rather
4178 	 so that we can test at the end for instructions
4179 	 that have been simplified to unconditional jumps
4180 	 and not be misled by unchanged instructions
4181 	 that were unconditional jumps to begin with.  */
4182       if (SET_DEST (x) == pc_rtx
4183 	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
4184 	;
4185 
4186       /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4187 	 The hard function value register is used only once, to copy to
4188 	 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4189 	 Ensure we invalidate the destination register.  On the 80386 no
4190 	 other code would invalidate it since it is a fixed_reg.
4191 	 We need not check the return of apply_change_group; see canon_reg.  */
4192 
4193       else if (GET_CODE (SET_SRC (x)) == CALL)
4194 	{
4195 	  canon_reg (SET_SRC (x), insn);
4196 	  apply_change_group ();
4197 	  fold_rtx (SET_SRC (x), insn);
4198 	  invalidate (SET_DEST (x), VOIDmode);
4199 	}
4200       else
4201 	n_sets = 1;
4202     }
4203   else if (GET_CODE (x) == PARALLEL)
4204     {
4205       int lim = XVECLEN (x, 0);
4206 
4207       sets = XALLOCAVEC (struct set, lim);
4208 
4209       /* Find all regs explicitly clobbered in this insn,
4210 	 and ensure they are not replaced with any other regs
4211 	 elsewhere in this insn.
4212 	 When a reg that is clobbered is also used for input,
4213 	 we should presume that that is for a reason,
4214 	 and we should not substitute some other register
4215 	 which is not supposed to be clobbered.
4216 	 Therefore, this loop cannot be merged into the one below
4217 	 because a CALL may precede a CLOBBER and refer to the
4218 	 value clobbered.  We must not let a canonicalization do
4219 	 anything in that case.  */
4220       for (i = 0; i < lim; i++)
4221 	{
4222 	  rtx y = XVECEXP (x, 0, i);
4223 	  if (GET_CODE (y) == CLOBBER)
4224 	    {
4225 	      rtx clobbered = XEXP (y, 0);
4226 
4227 	      if (REG_P (clobbered)
4228 		  || GET_CODE (clobbered) == SUBREG)
4229 		invalidate (clobbered, VOIDmode);
4230 	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
4231 		       || GET_CODE (clobbered) == ZERO_EXTRACT)
4232 		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4233 	    }
4234 	}
4235 
4236       for (i = 0; i < lim; i++)
4237 	{
4238 	  rtx y = XVECEXP (x, 0, i);
4239 	  if (GET_CODE (y) == SET)
4240 	    {
4241 	      /* As above, we ignore unconditional jumps and call-insns and
4242 		 ignore the result of apply_change_group.  */
4243 	      if (GET_CODE (SET_SRC (y)) == CALL)
4244 		{
4245 		  canon_reg (SET_SRC (y), insn);
4246 		  apply_change_group ();
4247 		  fold_rtx (SET_SRC (y), insn);
4248 		  invalidate (SET_DEST (y), VOIDmode);
4249 		}
4250 	      else if (SET_DEST (y) == pc_rtx
4251 		       && GET_CODE (SET_SRC (y)) == LABEL_REF)
4252 		;
4253 	      else
4254 		sets[n_sets++].rtl = y;
4255 	    }
4256 	  else if (GET_CODE (y) == CLOBBER)
4257 	    {
4258 	      /* If we clobber memory, canon the address.
4259 		 This does nothing when a register is clobbered
4260 		 because we have already invalidated the reg.  */
4261 	      if (MEM_P (XEXP (y, 0)))
4262 		canon_reg (XEXP (y, 0), insn);
4263 	    }
4264 	  else if (GET_CODE (y) == USE
4265 		   && ! (REG_P (XEXP (y, 0))
4266 			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4267 	    canon_reg (y, insn);
4268 	  else if (GET_CODE (y) == CALL)
4269 	    {
4270 	      /* The result of apply_change_group can be ignored; see
4271 		 canon_reg.  */
4272 	      canon_reg (y, insn);
4273 	      apply_change_group ();
4274 	      fold_rtx (y, insn);
4275 	    }
4276 	}
4277     }
4278   else if (GET_CODE (x) == CLOBBER)
4279     {
4280       if (MEM_P (XEXP (x, 0)))
4281 	canon_reg (XEXP (x, 0), insn);
4282     }
4283   /* Canonicalize a USE of a pseudo register or memory location.  */
4284   else if (GET_CODE (x) == USE
4285 	   && ! (REG_P (XEXP (x, 0))
4286 		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4287     canon_reg (x, insn);
4288   else if (GET_CODE (x) == ASM_OPERANDS)
4289     {
4290       for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4291 	{
4292 	  rtx input = ASM_OPERANDS_INPUT (x, i);
4293 	  if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4294 	    {
4295 	      input = canon_reg (input, insn);
4296 	      validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4297 	    }
4298 	}
4299     }
4300   else if (GET_CODE (x) == CALL)
4301     {
4302       /* The result of apply_change_group can be ignored; see canon_reg.  */
4303       canon_reg (x, insn);
4304       apply_change_group ();
4305       fold_rtx (x, insn);
4306     }
4307   else if (DEBUG_INSN_P (insn))
4308     canon_reg (PATTERN (insn), insn);
4309 
4310   /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4311      is a STRICT_LOW_PART.  The latter condition is necessary because SRC_EQV
4312      is handled specially for this case, and if it isn't set, then there will
4313      be no equivalence for the destination.  */
4314   if (n_sets == 1 && REG_NOTES (insn) != 0
4315       && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4316       && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4317 	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4318     {
4319       /* The result of apply_change_group can be ignored; see canon_reg.  */
4320       canon_reg (XEXP (tem, 0), insn);
4321       apply_change_group ();
4322       src_eqv = fold_rtx (XEXP (tem, 0), insn);
4323       XEXP (tem, 0) = copy_rtx (src_eqv);
4324       df_notes_rescan (insn);
4325     }
4326 
4327   /* Canonicalize sources and addresses of destinations.
4328      We do this in a separate pass to avoid problems when a MATCH_DUP is
4329      present in the insn pattern.  In that case, we want to ensure that
4330      we don't break the duplicate nature of the pattern.  So we will replace
4331      both operands at the same time.  Otherwise, we would fail to find an
4332      equivalent substitution in the loop calling validate_change below.
4333 
4334      We used to suppress canonicalization of DEST if it appears in SRC,
4335      but we don't do this any more.  */
4336 
4337   for (i = 0; i < n_sets; i++)
4338     {
4339       rtx dest = SET_DEST (sets[i].rtl);
4340       rtx src = SET_SRC (sets[i].rtl);
4341       rtx new_rtx = canon_reg (src, insn);
4342 
4343       validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4344 
4345       if (GET_CODE (dest) == ZERO_EXTRACT)
4346 	{
4347 	  validate_change (insn, &XEXP (dest, 1),
4348 			   canon_reg (XEXP (dest, 1), insn), 1);
4349 	  validate_change (insn, &XEXP (dest, 2),
4350 			   canon_reg (XEXP (dest, 2), insn), 1);
4351 	}
4352 
4353       while (GET_CODE (dest) == SUBREG
4354 	     || GET_CODE (dest) == ZERO_EXTRACT
4355 	     || GET_CODE (dest) == STRICT_LOW_PART)
4356 	dest = XEXP (dest, 0);
4357 
4358       if (MEM_P (dest))
4359 	canon_reg (dest, insn);
4360     }
4361 
4362   /* Now that we have done all the replacements, we can apply the change
4363      group and see if they all work.  Note that this will cause some
4364      canonicalizations that would have worked individually not to be applied
4365      because some other canonicalization didn't work, but this should not
4366      occur often.
4367 
4368      The result of apply_change_group can be ignored; see canon_reg.  */
4369 
4370   apply_change_group ();
4371 
4372   /* Set sets[i].src_elt to the class each source belongs to.
4373      Detect assignments from or to volatile things
4374      and set set[i] to zero so they will be ignored
4375      in the rest of this function.
4376 
4377      Nothing in this loop changes the hash table or the register chains.  */
4378 
4379   for (i = 0; i < n_sets; i++)
4380     {
4381       bool repeat = false;
4382       rtx src, dest;
4383       rtx src_folded;
4384       struct table_elt *elt = 0, *p;
4385       enum machine_mode mode;
4386       rtx src_eqv_here;
4387       rtx src_const = 0;
4388       rtx src_related = 0;
4389       bool src_related_is_const_anchor = false;
4390       struct table_elt *src_const_elt = 0;
4391       int src_cost = MAX_COST;
4392       int src_eqv_cost = MAX_COST;
4393       int src_folded_cost = MAX_COST;
4394       int src_related_cost = MAX_COST;
4395       int src_elt_cost = MAX_COST;
4396       int src_regcost = MAX_COST;
4397       int src_eqv_regcost = MAX_COST;
4398       int src_folded_regcost = MAX_COST;
4399       int src_related_regcost = MAX_COST;
4400       int src_elt_regcost = MAX_COST;
4401       /* Set nonzero if we need to call force_const_mem on with the
4402 	 contents of src_folded before using it.  */
4403       int src_folded_force_flag = 0;
4404 
4405       dest = SET_DEST (sets[i].rtl);
4406       src = SET_SRC (sets[i].rtl);
4407 
4408       /* If SRC is a constant that has no machine mode,
4409 	 hash it with the destination's machine mode.
4410 	 This way we can keep different modes separate.  */
4411 
4412       mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4413       sets[i].mode = mode;
4414 
4415       if (src_eqv)
4416 	{
4417 	  enum machine_mode eqvmode = mode;
4418 	  if (GET_CODE (dest) == STRICT_LOW_PART)
4419 	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4420 	  do_not_record = 0;
4421 	  hash_arg_in_memory = 0;
4422 	  src_eqv_hash = HASH (src_eqv, eqvmode);
4423 
4424 	  /* Find the equivalence class for the equivalent expression.  */
4425 
4426 	  if (!do_not_record)
4427 	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4428 
4429 	  src_eqv_volatile = do_not_record;
4430 	  src_eqv_in_memory = hash_arg_in_memory;
4431 	}
4432 
4433       /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4434 	 value of the INNER register, not the destination.  So it is not
4435 	 a valid substitution for the source.  But save it for later.  */
4436       if (GET_CODE (dest) == STRICT_LOW_PART)
4437 	src_eqv_here = 0;
4438       else
4439 	src_eqv_here = src_eqv;
4440 
4441       /* Simplify and foldable subexpressions in SRC.  Then get the fully-
4442 	 simplified result, which may not necessarily be valid.  */
4443       src_folded = fold_rtx (src, insn);
4444 
4445 #if 0
4446       /* ??? This caused bad code to be generated for the m68k port with -O2.
4447 	 Suppose src is (CONST_INT -1), and that after truncation src_folded
4448 	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
4449 	 At the end we will add src and src_const to the same equivalence
4450 	 class.  We now have 3 and -1 on the same equivalence class.  This
4451 	 causes later instructions to be mis-optimized.  */
4452       /* If storing a constant in a bitfield, pre-truncate the constant
4453 	 so we will be able to record it later.  */
4454       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4455 	{
4456 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4457 
4458 	  if (CONST_INT_P (src)
4459 	      && CONST_INT_P (width)
4460 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4461 	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4462 	    src_folded
4463 	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4464 					  << INTVAL (width)) - 1));
4465 	}
4466 #endif
4467 
4468       /* Compute SRC's hash code, and also notice if it
4469 	 should not be recorded at all.  In that case,
4470 	 prevent any further processing of this assignment.  */
4471       do_not_record = 0;
4472       hash_arg_in_memory = 0;
4473 
4474       sets[i].src = src;
4475       sets[i].src_hash = HASH (src, mode);
4476       sets[i].src_volatile = do_not_record;
4477       sets[i].src_in_memory = hash_arg_in_memory;
4478 
4479       /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4480 	 a pseudo, do not record SRC.  Using SRC as a replacement for
4481 	 anything else will be incorrect in that situation.  Note that
4482 	 this usually occurs only for stack slots, in which case all the
4483 	 RTL would be referring to SRC, so we don't lose any optimization
4484 	 opportunities by not having SRC in the hash table.  */
4485 
4486       if (MEM_P (src)
4487 	  && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4488 	  && REG_P (dest)
4489 	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4490 	sets[i].src_volatile = 1;
4491 
4492 #if 0
4493       /* It is no longer clear why we used to do this, but it doesn't
4494 	 appear to still be needed.  So let's try without it since this
4495 	 code hurts cse'ing widened ops.  */
4496       /* If source is a paradoxical subreg (such as QI treated as an SI),
4497 	 treat it as volatile.  It may do the work of an SI in one context
4498 	 where the extra bits are not being used, but cannot replace an SI
4499 	 in general.  */
4500       if (paradoxical_subreg_p (src))
4501 	sets[i].src_volatile = 1;
4502 #endif
4503 
4504       /* Locate all possible equivalent forms for SRC.  Try to replace
4505          SRC in the insn with each cheaper equivalent.
4506 
4507          We have the following types of equivalents: SRC itself, a folded
4508          version, a value given in a REG_EQUAL note, or a value related
4509 	 to a constant.
4510 
4511          Each of these equivalents may be part of an additional class
4512          of equivalents (if more than one is in the table, they must be in
4513          the same class; we check for this).
4514 
4515 	 If the source is volatile, we don't do any table lookups.
4516 
4517          We note any constant equivalent for possible later use in a
4518          REG_NOTE.  */
4519 
4520       if (!sets[i].src_volatile)
4521 	elt = lookup (src, sets[i].src_hash, mode);
4522 
4523       sets[i].src_elt = elt;
4524 
4525       if (elt && src_eqv_here && src_eqv_elt)
4526 	{
4527 	  if (elt->first_same_value != src_eqv_elt->first_same_value)
4528 	    {
4529 	      /* The REG_EQUAL is indicating that two formerly distinct
4530 		 classes are now equivalent.  So merge them.  */
4531 	      merge_equiv_classes (elt, src_eqv_elt);
4532 	      src_eqv_hash = HASH (src_eqv, elt->mode);
4533 	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4534 	    }
4535 
4536 	  src_eqv_here = 0;
4537 	}
4538 
4539       else if (src_eqv_elt)
4540 	elt = src_eqv_elt;
4541 
4542       /* Try to find a constant somewhere and record it in `src_const'.
4543 	 Record its table element, if any, in `src_const_elt'.  Look in
4544 	 any known equivalences first.  (If the constant is not in the
4545 	 table, also set `sets[i].src_const_hash').  */
4546       if (elt)
4547 	for (p = elt->first_same_value; p; p = p->next_same_value)
4548 	  if (p->is_const)
4549 	    {
4550 	      src_const = p->exp;
4551 	      src_const_elt = elt;
4552 	      break;
4553 	    }
4554 
4555       if (src_const == 0
4556 	  && (CONSTANT_P (src_folded)
4557 	      /* Consider (minus (label_ref L1) (label_ref L2)) as
4558 		 "constant" here so we will record it. This allows us
4559 		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
4560 	      || (GET_CODE (src_folded) == MINUS
4561 		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4562 		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4563 	src_const = src_folded, src_const_elt = elt;
4564       else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4565 	src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4566 
4567       /* If we don't know if the constant is in the table, get its
4568 	 hash code and look it up.  */
4569       if (src_const && src_const_elt == 0)
4570 	{
4571 	  sets[i].src_const_hash = HASH (src_const, mode);
4572 	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4573 	}
4574 
4575       sets[i].src_const = src_const;
4576       sets[i].src_const_elt = src_const_elt;
4577 
4578       /* If the constant and our source are both in the table, mark them as
4579 	 equivalent.  Otherwise, if a constant is in the table but the source
4580 	 isn't, set ELT to it.  */
4581       if (src_const_elt && elt
4582 	  && src_const_elt->first_same_value != elt->first_same_value)
4583 	merge_equiv_classes (elt, src_const_elt);
4584       else if (src_const_elt && elt == 0)
4585 	elt = src_const_elt;
4586 
4587       /* See if there is a register linearly related to a constant
4588          equivalent of SRC.  */
4589       if (src_const
4590 	  && (GET_CODE (src_const) == CONST
4591 	      || (src_const_elt && src_const_elt->related_value != 0)))
4592 	{
4593 	  src_related = use_related_value (src_const, src_const_elt);
4594 	  if (src_related)
4595 	    {
4596 	      struct table_elt *src_related_elt
4597 		= lookup (src_related, HASH (src_related, mode), mode);
4598 	      if (src_related_elt && elt)
4599 		{
4600 		  if (elt->first_same_value
4601 		      != src_related_elt->first_same_value)
4602 		    /* This can occur when we previously saw a CONST
4603 		       involving a SYMBOL_REF and then see the SYMBOL_REF
4604 		       twice.  Merge the involved classes.  */
4605 		    merge_equiv_classes (elt, src_related_elt);
4606 
4607 		  src_related = 0;
4608 		  src_related_elt = 0;
4609 		}
4610 	      else if (src_related_elt && elt == 0)
4611 		elt = src_related_elt;
4612 	    }
4613 	}
4614 
4615       /* See if we have a CONST_INT that is already in a register in a
4616 	 wider mode.  */
4617 
4618       if (src_const && src_related == 0 && CONST_INT_P (src_const)
4619 	  && GET_MODE_CLASS (mode) == MODE_INT
4620 	  && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4621 	{
4622 	  enum machine_mode wider_mode;
4623 
4624 	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
4625 	       wider_mode != VOIDmode
4626 	       && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4627 	       && src_related == 0;
4628 	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4629 	    {
4630 	      struct table_elt *const_elt
4631 		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4632 
4633 	      if (const_elt == 0)
4634 		continue;
4635 
4636 	      for (const_elt = const_elt->first_same_value;
4637 		   const_elt; const_elt = const_elt->next_same_value)
4638 		if (REG_P (const_elt->exp))
4639 		  {
4640 		    src_related = gen_lowpart (mode, const_elt->exp);
4641 		    break;
4642 		  }
4643 	    }
4644 	}
4645 
4646       /* Another possibility is that we have an AND with a constant in
4647 	 a mode narrower than a word.  If so, it might have been generated
4648 	 as part of an "if" which would narrow the AND.  If we already
4649 	 have done the AND in a wider mode, we can use a SUBREG of that
4650 	 value.  */
4651 
4652       if (flag_expensive_optimizations && ! src_related
4653 	  && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4654 	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4655 	{
4656 	  enum machine_mode tmode;
4657 	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4658 
4659 	  for (tmode = GET_MODE_WIDER_MODE (mode);
4660 	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4661 	       tmode = GET_MODE_WIDER_MODE (tmode))
4662 	    {
4663 	      rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4664 	      struct table_elt *larger_elt;
4665 
4666 	      if (inner)
4667 		{
4668 		  PUT_MODE (new_and, tmode);
4669 		  XEXP (new_and, 0) = inner;
4670 		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4671 		  if (larger_elt == 0)
4672 		    continue;
4673 
4674 		  for (larger_elt = larger_elt->first_same_value;
4675 		       larger_elt; larger_elt = larger_elt->next_same_value)
4676 		    if (REG_P (larger_elt->exp))
4677 		      {
4678 			src_related
4679 			  = gen_lowpart (mode, larger_elt->exp);
4680 			break;
4681 		      }
4682 
4683 		  if (src_related)
4684 		    break;
4685 		}
4686 	    }
4687 	}
4688 
4689 #ifdef LOAD_EXTEND_OP
4690       /* See if a MEM has already been loaded with a widening operation;
4691 	 if it has, we can use a subreg of that.  Many CISC machines
4692 	 also have such operations, but this is only likely to be
4693 	 beneficial on these machines.  */
4694 
4695       if (flag_expensive_optimizations && src_related == 0
4696 	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4697 	  && GET_MODE_CLASS (mode) == MODE_INT
4698 	  && MEM_P (src) && ! do_not_record
4699 	  && LOAD_EXTEND_OP (mode) != UNKNOWN)
4700 	{
4701 	  struct rtx_def memory_extend_buf;
4702 	  rtx memory_extend_rtx = &memory_extend_buf;
4703 	  enum machine_mode tmode;
4704 
4705 	  /* Set what we are trying to extend and the operation it might
4706 	     have been extended with.  */
4707 	  memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4708 	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4709 	  XEXP (memory_extend_rtx, 0) = src;
4710 
4711 	  for (tmode = GET_MODE_WIDER_MODE (mode);
4712 	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4713 	       tmode = GET_MODE_WIDER_MODE (tmode))
4714 	    {
4715 	      struct table_elt *larger_elt;
4716 
4717 	      PUT_MODE (memory_extend_rtx, tmode);
4718 	      larger_elt = lookup (memory_extend_rtx,
4719 				   HASH (memory_extend_rtx, tmode), tmode);
4720 	      if (larger_elt == 0)
4721 		continue;
4722 
4723 	      for (larger_elt = larger_elt->first_same_value;
4724 		   larger_elt; larger_elt = larger_elt->next_same_value)
4725 		if (REG_P (larger_elt->exp))
4726 		  {
4727 		    src_related = gen_lowpart (mode, larger_elt->exp);
4728 		    break;
4729 		  }
4730 
4731 	      if (src_related)
4732 		break;
4733 	    }
4734 	}
4735 #endif /* LOAD_EXTEND_OP */
4736 
4737       /* Try to express the constant using a register+offset expression
4738 	 derived from a constant anchor.  */
4739 
4740       if (targetm.const_anchor
4741 	  && !src_related
4742 	  && src_const
4743 	  && GET_CODE (src_const) == CONST_INT)
4744 	{
4745 	  src_related = try_const_anchors (src_const, mode);
4746 	  src_related_is_const_anchor = src_related != NULL_RTX;
4747 	}
4748 
4749 
4750       if (src == src_folded)
4751 	src_folded = 0;
4752 
4753       /* At this point, ELT, if nonzero, points to a class of expressions
4754          equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4755 	 and SRC_RELATED, if nonzero, each contain additional equivalent
4756 	 expressions.  Prune these latter expressions by deleting expressions
4757 	 already in the equivalence class.
4758 
4759 	 Check for an equivalent identical to the destination.  If found,
4760 	 this is the preferred equivalent since it will likely lead to
4761 	 elimination of the insn.  Indicate this by placing it in
4762 	 `src_related'.  */
4763 
4764       if (elt)
4765 	elt = elt->first_same_value;
4766       for (p = elt; p; p = p->next_same_value)
4767 	{
4768 	  enum rtx_code code = GET_CODE (p->exp);
4769 
4770 	  /* If the expression is not valid, ignore it.  Then we do not
4771 	     have to check for validity below.  In most cases, we can use
4772 	     `rtx_equal_p', since canonicalization has already been done.  */
4773 	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4774 	    continue;
4775 
4776 	  /* Also skip paradoxical subregs, unless that's what we're
4777 	     looking for.  */
4778 	  if (paradoxical_subreg_p (p->exp)
4779 	      && ! (src != 0
4780 		    && GET_CODE (src) == SUBREG
4781 		    && GET_MODE (src) == GET_MODE (p->exp)
4782 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4783 			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4784 	    continue;
4785 
4786 	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4787 	    src = 0;
4788 	  else if (src_folded && GET_CODE (src_folded) == code
4789 		   && rtx_equal_p (src_folded, p->exp))
4790 	    src_folded = 0;
4791 	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4792 		   && rtx_equal_p (src_eqv_here, p->exp))
4793 	    src_eqv_here = 0;
4794 	  else if (src_related && GET_CODE (src_related) == code
4795 		   && rtx_equal_p (src_related, p->exp))
4796 	    src_related = 0;
4797 
4798 	  /* This is the same as the destination of the insns, we want
4799 	     to prefer it.  Copy it to src_related.  The code below will
4800 	     then give it a negative cost.  */
4801 	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4802 	    src_related = dest;
4803 	}
4804 
4805       /* Find the cheapest valid equivalent, trying all the available
4806          possibilities.  Prefer items not in the hash table to ones
4807          that are when they are equal cost.  Note that we can never
4808          worsen an insn as the current contents will also succeed.
4809 	 If we find an equivalent identical to the destination, use it as best,
4810 	 since this insn will probably be eliminated in that case.  */
4811       if (src)
4812 	{
4813 	  if (rtx_equal_p (src, dest))
4814 	    src_cost = src_regcost = -1;
4815 	  else
4816 	    {
4817 	      src_cost = COST (src);
4818 	      src_regcost = approx_reg_cost (src);
4819 	    }
4820 	}
4821 
4822       if (src_eqv_here)
4823 	{
4824 	  if (rtx_equal_p (src_eqv_here, dest))
4825 	    src_eqv_cost = src_eqv_regcost = -1;
4826 	  else
4827 	    {
4828 	      src_eqv_cost = COST (src_eqv_here);
4829 	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
4830 	    }
4831 	}
4832 
4833       if (src_folded)
4834 	{
4835 	  if (rtx_equal_p (src_folded, dest))
4836 	    src_folded_cost = src_folded_regcost = -1;
4837 	  else
4838 	    {
4839 	      src_folded_cost = COST (src_folded);
4840 	      src_folded_regcost = approx_reg_cost (src_folded);
4841 	    }
4842 	}
4843 
4844       if (src_related)
4845 	{
4846 	  if (rtx_equal_p (src_related, dest))
4847 	    src_related_cost = src_related_regcost = -1;
4848 	  else
4849 	    {
4850 	      src_related_cost = COST (src_related);
4851 	      src_related_regcost = approx_reg_cost (src_related);
4852 
4853 	      /* If a const-anchor is used to synthesize a constant that
4854 		 normally requires multiple instructions then slightly prefer
4855 		 it over the original sequence.  These instructions are likely
4856 		 to become redundant now.  We can't compare against the cost
4857 		 of src_eqv_here because, on MIPS for example, multi-insn
4858 		 constants have zero cost; they are assumed to be hoisted from
4859 		 loops.  */
4860 	      if (src_related_is_const_anchor
4861 		  && src_related_cost == src_cost
4862 		  && src_eqv_here)
4863 		src_related_cost--;
4864 	    }
4865 	}
4866 
4867       /* If this was an indirect jump insn, a known label will really be
4868 	 cheaper even though it looks more expensive.  */
4869       if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4870 	src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4871 
4872       /* Terminate loop when replacement made.  This must terminate since
4873          the current contents will be tested and will always be valid.  */
4874       while (1)
4875 	{
4876 	  rtx trial;
4877 
4878 	  /* Skip invalid entries.  */
4879 	  while (elt && !REG_P (elt->exp)
4880 		 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4881 	    elt = elt->next_same_value;
4882 
4883 	  /* A paradoxical subreg would be bad here: it'll be the right
4884 	     size, but later may be adjusted so that the upper bits aren't
4885 	     what we want.  So reject it.  */
4886 	  if (elt != 0
4887 	      && paradoxical_subreg_p (elt->exp)
4888 	      /* It is okay, though, if the rtx we're trying to match
4889 		 will ignore any of the bits we can't predict.  */
4890 	      && ! (src != 0
4891 		    && GET_CODE (src) == SUBREG
4892 		    && GET_MODE (src) == GET_MODE (elt->exp)
4893 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4894 			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4895 	    {
4896 	      elt = elt->next_same_value;
4897 	      continue;
4898 	    }
4899 
4900 	  if (elt)
4901 	    {
4902 	      src_elt_cost = elt->cost;
4903 	      src_elt_regcost = elt->regcost;
4904 	    }
4905 
4906 	  /* Find cheapest and skip it for the next time.   For items
4907 	     of equal cost, use this order:
4908 	     src_folded, src, src_eqv, src_related and hash table entry.  */
4909 	  if (src_folded
4910 	      && preferable (src_folded_cost, src_folded_regcost,
4911 			     src_cost, src_regcost) <= 0
4912 	      && preferable (src_folded_cost, src_folded_regcost,
4913 			     src_eqv_cost, src_eqv_regcost) <= 0
4914 	      && preferable (src_folded_cost, src_folded_regcost,
4915 			     src_related_cost, src_related_regcost) <= 0
4916 	      && preferable (src_folded_cost, src_folded_regcost,
4917 			     src_elt_cost, src_elt_regcost) <= 0)
4918 	    {
4919 	      trial = src_folded, src_folded_cost = MAX_COST;
4920 	      if (src_folded_force_flag)
4921 		{
4922 		  rtx forced = force_const_mem (mode, trial);
4923 		  if (forced)
4924 		    trial = forced;
4925 		}
4926 	    }
4927 	  else if (src
4928 		   && preferable (src_cost, src_regcost,
4929 				  src_eqv_cost, src_eqv_regcost) <= 0
4930 		   && preferable (src_cost, src_regcost,
4931 				  src_related_cost, src_related_regcost) <= 0
4932 		   && preferable (src_cost, src_regcost,
4933 				  src_elt_cost, src_elt_regcost) <= 0)
4934 	    trial = src, src_cost = MAX_COST;
4935 	  else if (src_eqv_here
4936 		   && preferable (src_eqv_cost, src_eqv_regcost,
4937 				  src_related_cost, src_related_regcost) <= 0
4938 		   && preferable (src_eqv_cost, src_eqv_regcost,
4939 				  src_elt_cost, src_elt_regcost) <= 0)
4940 	    trial = src_eqv_here, src_eqv_cost = MAX_COST;
4941 	  else if (src_related
4942 		   && preferable (src_related_cost, src_related_regcost,
4943 				  src_elt_cost, src_elt_regcost) <= 0)
4944 	    trial = src_related, src_related_cost = MAX_COST;
4945 	  else
4946 	    {
4947 	      trial = elt->exp;
4948 	      elt = elt->next_same_value;
4949 	      src_elt_cost = MAX_COST;
4950 	    }
4951 
4952 	  /* Avoid creation of overlapping memory moves.  */
4953 	  if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
4954 	    {
4955 	      rtx src, dest;
4956 
4957 	      /* BLKmode moves are not handled by cse anyway.  */
4958 	      if (GET_MODE (trial) == BLKmode)
4959 		break;
4960 
4961 	      src = canon_rtx (trial);
4962 	      dest = canon_rtx (SET_DEST (sets[i].rtl));
4963 
4964 	      if (!MEM_P (src) || !MEM_P (dest)
4965 		  || !nonoverlapping_memrefs_p (src, dest, false))
4966 		break;
4967 	    }
4968 
4969 	  /* Try to optimize
4970 	     (set (reg:M N) (const_int A))
4971 	     (set (reg:M2 O) (const_int B))
4972 	     (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
4973 		  (reg:M2 O)).  */
4974 	  if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
4975 	      && CONST_INT_P (trial)
4976 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
4977 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
4978 	      && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
4979 	      && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
4980 		  >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
4981 	      && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
4982 		  + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
4983 		  <= HOST_BITS_PER_WIDE_INT))
4984 	    {
4985 	      rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
4986 	      rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4987 	      rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
4988 	      unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
4989 	      struct table_elt *dest_elt
4990 		= lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
4991 	      rtx dest_cst = NULL;
4992 
4993 	      if (dest_elt)
4994 		for (p = dest_elt->first_same_value; p; p = p->next_same_value)
4995 		  if (p->is_const && CONST_INT_P (p->exp))
4996 		    {
4997 		      dest_cst = p->exp;
4998 		      break;
4999 		    }
5000 	      if (dest_cst)
5001 		{
5002 		  HOST_WIDE_INT val = INTVAL (dest_cst);
5003 		  HOST_WIDE_INT mask;
5004 		  unsigned int shift;
5005 		  if (BITS_BIG_ENDIAN)
5006 		    shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5007 			    - INTVAL (pos) - INTVAL (width);
5008 		  else
5009 		    shift = INTVAL (pos);
5010 		  if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5011 		    mask = ~(HOST_WIDE_INT) 0;
5012 		  else
5013 		    mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5014 		  val &= ~(mask << shift);
5015 		  val |= (INTVAL (trial) & mask) << shift;
5016 		  val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5017 		  validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5018 					   dest_reg, 1);
5019 		  validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5020 					   GEN_INT (val), 1);
5021 		  if (apply_change_group ())
5022 		    {
5023 		      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5024 		      if (note)
5025 			{
5026 			  remove_note (insn, note);
5027 			  df_notes_rescan (insn);
5028 			}
5029 		      src_eqv = NULL_RTX;
5030 		      src_eqv_elt = NULL;
5031 		      src_eqv_volatile = 0;
5032 		      src_eqv_in_memory = 0;
5033 		      src_eqv_hash = 0;
5034 		      repeat = true;
5035 		      break;
5036 		    }
5037 		}
5038 	    }
5039 
5040 	  /* We don't normally have an insn matching (set (pc) (pc)), so
5041 	     check for this separately here.  We will delete such an
5042 	     insn below.
5043 
5044 	     For other cases such as a table jump or conditional jump
5045 	     where we know the ultimate target, go ahead and replace the
5046 	     operand.  While that may not make a valid insn, we will
5047 	     reemit the jump below (and also insert any necessary
5048 	     barriers).  */
5049 	  if (n_sets == 1 && dest == pc_rtx
5050 	      && (trial == pc_rtx
5051 		  || (GET_CODE (trial) == LABEL_REF
5052 		      && ! condjump_p (insn))))
5053 	    {
5054 	      /* Don't substitute non-local labels, this confuses CFG.  */
5055 	      if (GET_CODE (trial) == LABEL_REF
5056 		  && LABEL_REF_NONLOCAL_P (trial))
5057 		continue;
5058 
5059 	      SET_SRC (sets[i].rtl) = trial;
5060 	      cse_jumps_altered = true;
5061 	      break;
5062 	    }
5063 
5064 	  /* Reject certain invalid forms of CONST that we create.  */
5065 	  else if (CONSTANT_P (trial)
5066 		   && GET_CODE (trial) == CONST
5067 		   /* Reject cases that will cause decode_rtx_const to
5068 		      die.  On the alpha when simplifying a switch, we
5069 		      get (const (truncate (minus (label_ref)
5070 		      (label_ref)))).  */
5071 		   && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5072 		       /* Likewise on IA-64, except without the
5073 			  truncate.  */
5074 		       || (GET_CODE (XEXP (trial, 0)) == MINUS
5075 			   && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5076 			   && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5077 	    /* Do nothing for this case.  */
5078 	    ;
5079 
5080 	  /* Look for a substitution that makes a valid insn.  */
5081 	  else if (validate_unshare_change
5082 		     (insn, &SET_SRC (sets[i].rtl), trial, 0))
5083 	    {
5084 	      rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5085 
5086 	      /* The result of apply_change_group can be ignored; see
5087 		 canon_reg.  */
5088 
5089 	      validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5090 	      apply_change_group ();
5091 
5092 	      break;
5093 	    }
5094 
5095 	  /* If we previously found constant pool entries for
5096 	     constants and this is a constant, try making a
5097 	     pool entry.  Put it in src_folded unless we already have done
5098 	     this since that is where it likely came from.  */
5099 
5100 	  else if (constant_pool_entries_cost
5101 		   && CONSTANT_P (trial)
5102 		   && (src_folded == 0
5103 		       || (!MEM_P (src_folded)
5104 			   && ! src_folded_force_flag))
5105 		   && GET_MODE_CLASS (mode) != MODE_CC
5106 		   && mode != VOIDmode)
5107 	    {
5108 	      src_folded_force_flag = 1;
5109 	      src_folded = trial;
5110 	      src_folded_cost = constant_pool_entries_cost;
5111 	      src_folded_regcost = constant_pool_entries_regcost;
5112 	    }
5113 	}
5114 
5115       /* If we changed the insn too much, handle this set from scratch.  */
5116       if (repeat)
5117 	{
5118 	  i--;
5119 	  continue;
5120 	}
5121 
5122       src = SET_SRC (sets[i].rtl);
5123 
5124       /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5125 	 However, there is an important exception:  If both are registers
5126 	 that are not the head of their equivalence class, replace SET_SRC
5127 	 with the head of the class.  If we do not do this, we will have
5128 	 both registers live over a portion of the basic block.  This way,
5129 	 their lifetimes will likely abut instead of overlapping.  */
5130       if (REG_P (dest)
5131 	  && REGNO_QTY_VALID_P (REGNO (dest)))
5132 	{
5133 	  int dest_q = REG_QTY (REGNO (dest));
5134 	  struct qty_table_elem *dest_ent = &qty_table[dest_q];
5135 
5136 	  if (dest_ent->mode == GET_MODE (dest)
5137 	      && dest_ent->first_reg != REGNO (dest)
5138 	      && REG_P (src) && REGNO (src) == REGNO (dest)
5139 	      /* Don't do this if the original insn had a hard reg as
5140 		 SET_SRC or SET_DEST.  */
5141 	      && (!REG_P (sets[i].src)
5142 		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5143 	      && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5144 	    /* We can't call canon_reg here because it won't do anything if
5145 	       SRC is a hard register.  */
5146 	    {
5147 	      int src_q = REG_QTY (REGNO (src));
5148 	      struct qty_table_elem *src_ent = &qty_table[src_q];
5149 	      int first = src_ent->first_reg;
5150 	      rtx new_src
5151 		= (first >= FIRST_PSEUDO_REGISTER
5152 		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5153 
5154 	      /* We must use validate-change even for this, because this
5155 		 might be a special no-op instruction, suitable only to
5156 		 tag notes onto.  */
5157 	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5158 		{
5159 		  src = new_src;
5160 		  /* If we had a constant that is cheaper than what we are now
5161 		     setting SRC to, use that constant.  We ignored it when we
5162 		     thought we could make this into a no-op.  */
5163 		  if (src_const && COST (src_const) < COST (src)
5164 		      && validate_change (insn, &SET_SRC (sets[i].rtl),
5165 					  src_const, 0))
5166 		    src = src_const;
5167 		}
5168 	    }
5169 	}
5170 
5171       /* If we made a change, recompute SRC values.  */
5172       if (src != sets[i].src)
5173 	{
5174 	  do_not_record = 0;
5175 	  hash_arg_in_memory = 0;
5176 	  sets[i].src = src;
5177 	  sets[i].src_hash = HASH (src, mode);
5178 	  sets[i].src_volatile = do_not_record;
5179 	  sets[i].src_in_memory = hash_arg_in_memory;
5180 	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5181 	}
5182 
5183       /* If this is a single SET, we are setting a register, and we have an
5184 	 equivalent constant, we want to add a REG_NOTE.   We don't want
5185 	 to write a REG_EQUAL note for a constant pseudo since verifying that
5186 	 that pseudo hasn't been eliminated is a pain.  Such a note also
5187 	 won't help anything.
5188 
5189 	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5190 	 which can be created for a reference to a compile time computable
5191 	 entry in a jump table.  */
5192 
5193       if (n_sets == 1 && src_const && REG_P (dest)
5194 	  && !REG_P (src_const)
5195 	  && ! (GET_CODE (src_const) == CONST
5196 		&& GET_CODE (XEXP (src_const, 0)) == MINUS
5197 		&& GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5198 		&& GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5199 	{
5200 	  /* We only want a REG_EQUAL note if src_const != src.  */
5201 	  if (! rtx_equal_p (src, src_const))
5202 	    {
5203 	      /* Make sure that the rtx is not shared.  */
5204 	      src_const = copy_rtx (src_const);
5205 
5206 	      /* Record the actual constant value in a REG_EQUAL note,
5207 		 making a new one if one does not already exist.  */
5208 	      set_unique_reg_note (insn, REG_EQUAL, src_const);
5209 	      df_notes_rescan (insn);
5210 	    }
5211 	}
5212 
5213       /* Now deal with the destination.  */
5214       do_not_record = 0;
5215 
5216       /* Look within any ZERO_EXTRACT to the MEM or REG within it.  */
5217       while (GET_CODE (dest) == SUBREG
5218 	     || GET_CODE (dest) == ZERO_EXTRACT
5219 	     || GET_CODE (dest) == STRICT_LOW_PART)
5220 	dest = XEXP (dest, 0);
5221 
5222       sets[i].inner_dest = dest;
5223 
5224       if (MEM_P (dest))
5225 	{
5226 #ifdef PUSH_ROUNDING
5227 	  /* Stack pushes invalidate the stack pointer.  */
5228 	  rtx addr = XEXP (dest, 0);
5229 	  if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5230 	      && XEXP (addr, 0) == stack_pointer_rtx)
5231 	    invalidate (stack_pointer_rtx, VOIDmode);
5232 #endif
5233 	  dest = fold_rtx (dest, insn);
5234 	}
5235 
5236       /* Compute the hash code of the destination now,
5237 	 before the effects of this instruction are recorded,
5238 	 since the register values used in the address computation
5239 	 are those before this instruction.  */
5240       sets[i].dest_hash = HASH (dest, mode);
5241 
5242       /* Don't enter a bit-field in the hash table
5243 	 because the value in it after the store
5244 	 may not equal what was stored, due to truncation.  */
5245 
5246       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5247 	{
5248 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5249 
5250 	  if (src_const != 0 && CONST_INT_P (src_const)
5251 	      && CONST_INT_P (width)
5252 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5253 	      && ! (INTVAL (src_const)
5254 		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5255 	    /* Exception: if the value is constant,
5256 	       and it won't be truncated, record it.  */
5257 	    ;
5258 	  else
5259 	    {
5260 	      /* This is chosen so that the destination will be invalidated
5261 		 but no new value will be recorded.
5262 		 We must invalidate because sometimes constant
5263 		 values can be recorded for bitfields.  */
5264 	      sets[i].src_elt = 0;
5265 	      sets[i].src_volatile = 1;
5266 	      src_eqv = 0;
5267 	      src_eqv_elt = 0;
5268 	    }
5269 	}
5270 
5271       /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5272 	 the insn.  */
5273       else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5274 	{
5275 	  /* One less use of the label this insn used to jump to.  */
5276 	  delete_insn_and_edges (insn);
5277 	  cse_jumps_altered = true;
5278 	  /* No more processing for this set.  */
5279 	  sets[i].rtl = 0;
5280 	}
5281 
5282       /* If this SET is now setting PC to a label, we know it used to
5283 	 be a conditional or computed branch.  */
5284       else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5285 	       && !LABEL_REF_NONLOCAL_P (src))
5286 	{
5287 	  /* We reemit the jump in as many cases as possible just in
5288 	     case the form of an unconditional jump is significantly
5289 	     different than a computed jump or conditional jump.
5290 
5291 	     If this insn has multiple sets, then reemitting the
5292 	     jump is nontrivial.  So instead we just force rerecognition
5293 	     and hope for the best.  */
5294 	  if (n_sets == 1)
5295 	    {
5296 	      rtx new_rtx, note;
5297 
5298 	      new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5299 	      JUMP_LABEL (new_rtx) = XEXP (src, 0);
5300 	      LABEL_NUSES (XEXP (src, 0))++;
5301 
5302 	      /* Make sure to copy over REG_NON_LOCAL_GOTO.  */
5303 	      note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5304 	      if (note)
5305 		{
5306 		  XEXP (note, 1) = NULL_RTX;
5307 		  REG_NOTES (new_rtx) = note;
5308 		}
5309 
5310 	      delete_insn_and_edges (insn);
5311 	      insn = new_rtx;
5312 	    }
5313 	  else
5314 	    INSN_CODE (insn) = -1;
5315 
5316 	  /* Do not bother deleting any unreachable code, let jump do it.  */
5317 	  cse_jumps_altered = true;
5318 	  sets[i].rtl = 0;
5319 	}
5320 
5321       /* If destination is volatile, invalidate it and then do no further
5322 	 processing for this assignment.  */
5323 
5324       else if (do_not_record)
5325 	{
5326 	  if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5327 	    invalidate (dest, VOIDmode);
5328 	  else if (MEM_P (dest))
5329 	    invalidate (dest, VOIDmode);
5330 	  else if (GET_CODE (dest) == STRICT_LOW_PART
5331 		   || GET_CODE (dest) == ZERO_EXTRACT)
5332 	    invalidate (XEXP (dest, 0), GET_MODE (dest));
5333 	  sets[i].rtl = 0;
5334 	}
5335 
5336       if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5337 	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5338 
5339 #ifdef HAVE_cc0
5340       /* If setting CC0, record what it was set to, or a constant, if it
5341 	 is equivalent to a constant.  If it is being set to a floating-point
5342 	 value, make a COMPARE with the appropriate constant of 0.  If we
5343 	 don't do this, later code can interpret this as a test against
5344 	 const0_rtx, which can cause problems if we try to put it into an
5345 	 insn as a floating-point operand.  */
5346       if (dest == cc0_rtx)
5347 	{
5348 	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5349 	  this_insn_cc0_mode = mode;
5350 	  if (FLOAT_MODE_P (mode))
5351 	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5352 					     CONST0_RTX (mode));
5353 	}
5354 #endif
5355     }
5356 
5357   /* Now enter all non-volatile source expressions in the hash table
5358      if they are not already present.
5359      Record their equivalence classes in src_elt.
5360      This way we can insert the corresponding destinations into
5361      the same classes even if the actual sources are no longer in them
5362      (having been invalidated).  */
5363 
5364   if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5365       && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5366     {
5367       struct table_elt *elt;
5368       struct table_elt *classp = sets[0].src_elt;
5369       rtx dest = SET_DEST (sets[0].rtl);
5370       enum machine_mode eqvmode = GET_MODE (dest);
5371 
5372       if (GET_CODE (dest) == STRICT_LOW_PART)
5373 	{
5374 	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5375 	  classp = 0;
5376 	}
5377       if (insert_regs (src_eqv, classp, 0))
5378 	{
5379 	  rehash_using_reg (src_eqv);
5380 	  src_eqv_hash = HASH (src_eqv, eqvmode);
5381 	}
5382       elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5383       elt->in_memory = src_eqv_in_memory;
5384       src_eqv_elt = elt;
5385 
5386       /* Check to see if src_eqv_elt is the same as a set source which
5387 	 does not yet have an elt, and if so set the elt of the set source
5388 	 to src_eqv_elt.  */
5389       for (i = 0; i < n_sets; i++)
5390 	if (sets[i].rtl && sets[i].src_elt == 0
5391 	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5392 	  sets[i].src_elt = src_eqv_elt;
5393     }
5394 
5395   for (i = 0; i < n_sets; i++)
5396     if (sets[i].rtl && ! sets[i].src_volatile
5397 	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5398       {
5399 	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5400 	  {
5401 	    /* REG_EQUAL in setting a STRICT_LOW_PART
5402 	       gives an equivalent for the entire destination register,
5403 	       not just for the subreg being stored in now.
5404 	       This is a more interesting equivalence, so we arrange later
5405 	       to treat the entire reg as the destination.  */
5406 	    sets[i].src_elt = src_eqv_elt;
5407 	    sets[i].src_hash = src_eqv_hash;
5408 	  }
5409 	else
5410 	  {
5411 	    /* Insert source and constant equivalent into hash table, if not
5412 	       already present.  */
5413 	    struct table_elt *classp = src_eqv_elt;
5414 	    rtx src = sets[i].src;
5415 	    rtx dest = SET_DEST (sets[i].rtl);
5416 	    enum machine_mode mode
5417 	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5418 
5419 	    /* It's possible that we have a source value known to be
5420 	       constant but don't have a REG_EQUAL note on the insn.
5421 	       Lack of a note will mean src_eqv_elt will be NULL.  This
5422 	       can happen where we've generated a SUBREG to access a
5423 	       CONST_INT that is already in a register in a wider mode.
5424 	       Ensure that the source expression is put in the proper
5425 	       constant class.  */
5426 	    if (!classp)
5427 	      classp = sets[i].src_const_elt;
5428 
5429 	    if (sets[i].src_elt == 0)
5430 	      {
5431 		struct table_elt *elt;
5432 
5433 		/* Note that these insert_regs calls cannot remove
5434 		   any of the src_elt's, because they would have failed to
5435 		   match if not still valid.  */
5436 		if (insert_regs (src, classp, 0))
5437 		  {
5438 		    rehash_using_reg (src);
5439 		    sets[i].src_hash = HASH (src, mode);
5440 		  }
5441 		elt = insert (src, classp, sets[i].src_hash, mode);
5442 		elt->in_memory = sets[i].src_in_memory;
5443 		sets[i].src_elt = classp = elt;
5444 	      }
5445 	    if (sets[i].src_const && sets[i].src_const_elt == 0
5446 		&& src != sets[i].src_const
5447 		&& ! rtx_equal_p (sets[i].src_const, src))
5448 	      sets[i].src_elt = insert (sets[i].src_const, classp,
5449 					sets[i].src_const_hash, mode);
5450 	  }
5451       }
5452     else if (sets[i].src_elt == 0)
5453       /* If we did not insert the source into the hash table (e.g., it was
5454 	 volatile), note the equivalence class for the REG_EQUAL value, if any,
5455 	 so that the destination goes into that class.  */
5456       sets[i].src_elt = src_eqv_elt;
5457 
5458   /* Record destination addresses in the hash table.  This allows us to
5459      check if they are invalidated by other sets.  */
5460   for (i = 0; i < n_sets; i++)
5461     {
5462       if (sets[i].rtl)
5463 	{
5464 	  rtx x = sets[i].inner_dest;
5465 	  struct table_elt *elt;
5466 	  enum machine_mode mode;
5467 	  unsigned hash;
5468 
5469 	  if (MEM_P (x))
5470 	    {
5471 	      x = XEXP (x, 0);
5472 	      mode = GET_MODE (x);
5473 	      hash = HASH (x, mode);
5474 	      elt = lookup (x, hash, mode);
5475 	      if (!elt)
5476 		{
5477 		  if (insert_regs (x, NULL, 0))
5478 		    {
5479 		      rtx dest = SET_DEST (sets[i].rtl);
5480 
5481 		      rehash_using_reg (x);
5482 		      hash = HASH (x, mode);
5483 		      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5484 		    }
5485 		  elt = insert (x, NULL, hash, mode);
5486 		}
5487 
5488 	      sets[i].dest_addr_elt = elt;
5489 	    }
5490 	  else
5491 	    sets[i].dest_addr_elt = NULL;
5492 	}
5493     }
5494 
5495   invalidate_from_clobbers (x);
5496 
5497   /* Some registers are invalidated by subroutine calls.  Memory is
5498      invalidated by non-constant calls.  */
5499 
5500   if (CALL_P (insn))
5501     {
5502       if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5503 	invalidate_memory ();
5504       invalidate_for_call ();
5505     }
5506 
5507   /* Now invalidate everything set by this instruction.
5508      If a SUBREG or other funny destination is being set,
5509      sets[i].rtl is still nonzero, so here we invalidate the reg
5510      a part of which is being set.  */
5511 
5512   for (i = 0; i < n_sets; i++)
5513     if (sets[i].rtl)
5514       {
5515 	/* We can't use the inner dest, because the mode associated with
5516 	   a ZERO_EXTRACT is significant.  */
5517 	rtx dest = SET_DEST (sets[i].rtl);
5518 
5519 	/* Needed for registers to remove the register from its
5520 	   previous quantity's chain.
5521 	   Needed for memory if this is a nonvarying address, unless
5522 	   we have just done an invalidate_memory that covers even those.  */
5523 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5524 	  invalidate (dest, VOIDmode);
5525 	else if (MEM_P (dest))
5526 	  invalidate (dest, VOIDmode);
5527 	else if (GET_CODE (dest) == STRICT_LOW_PART
5528 		 || GET_CODE (dest) == ZERO_EXTRACT)
5529 	  invalidate (XEXP (dest, 0), GET_MODE (dest));
5530       }
5531 
5532   /* A volatile ASM invalidates everything.  */
5533   if (NONJUMP_INSN_P (insn)
5534       && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5535       && MEM_VOLATILE_P (PATTERN (insn)))
5536     flush_hash_table ();
5537 
5538   /* Don't cse over a call to setjmp; on some machines (eg VAX)
5539      the regs restored by the longjmp come from a later time
5540      than the setjmp.  */
5541   if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5542     {
5543       flush_hash_table ();
5544       goto done;
5545     }
5546 
5547   /* Make sure registers mentioned in destinations
5548      are safe for use in an expression to be inserted.
5549      This removes from the hash table
5550      any invalid entry that refers to one of these registers.
5551 
5552      We don't care about the return value from mention_regs because
5553      we are going to hash the SET_DEST values unconditionally.  */
5554 
5555   for (i = 0; i < n_sets; i++)
5556     {
5557       if (sets[i].rtl)
5558 	{
5559 	  rtx x = SET_DEST (sets[i].rtl);
5560 
5561 	  if (!REG_P (x))
5562 	    mention_regs (x);
5563 	  else
5564 	    {
5565 	      /* We used to rely on all references to a register becoming
5566 		 inaccessible when a register changes to a new quantity,
5567 		 since that changes the hash code.  However, that is not
5568 		 safe, since after HASH_SIZE new quantities we get a
5569 		 hash 'collision' of a register with its own invalid
5570 		 entries.  And since SUBREGs have been changed not to
5571 		 change their hash code with the hash code of the register,
5572 		 it wouldn't work any longer at all.  So we have to check
5573 		 for any invalid references lying around now.
5574 		 This code is similar to the REG case in mention_regs,
5575 		 but it knows that reg_tick has been incremented, and
5576 		 it leaves reg_in_table as -1 .  */
5577 	      unsigned int regno = REGNO (x);
5578 	      unsigned int endregno = END_REGNO (x);
5579 	      unsigned int i;
5580 
5581 	      for (i = regno; i < endregno; i++)
5582 		{
5583 		  if (REG_IN_TABLE (i) >= 0)
5584 		    {
5585 		      remove_invalid_refs (i);
5586 		      REG_IN_TABLE (i) = -1;
5587 		    }
5588 		}
5589 	    }
5590 	}
5591     }
5592 
5593   /* We may have just removed some of the src_elt's from the hash table.
5594      So replace each one with the current head of the same class.
5595      Also check if destination addresses have been removed.  */
5596 
5597   for (i = 0; i < n_sets; i++)
5598     if (sets[i].rtl)
5599       {
5600 	if (sets[i].dest_addr_elt
5601 	    && sets[i].dest_addr_elt->first_same_value == 0)
5602 	  {
5603 	    /* The elt was removed, which means this destination is not
5604 	       valid after this instruction.  */
5605 	    sets[i].rtl = NULL_RTX;
5606 	  }
5607 	else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5608 	  /* If elt was removed, find current head of same class,
5609 	     or 0 if nothing remains of that class.  */
5610 	  {
5611 	    struct table_elt *elt = sets[i].src_elt;
5612 
5613 	    while (elt && elt->prev_same_value)
5614 	      elt = elt->prev_same_value;
5615 
5616 	    while (elt && elt->first_same_value == 0)
5617 	      elt = elt->next_same_value;
5618 	    sets[i].src_elt = elt ? elt->first_same_value : 0;
5619 	  }
5620       }
5621 
5622   /* Now insert the destinations into their equivalence classes.  */
5623 
5624   for (i = 0; i < n_sets; i++)
5625     if (sets[i].rtl)
5626       {
5627 	rtx dest = SET_DEST (sets[i].rtl);
5628 	struct table_elt *elt;
5629 
5630 	/* Don't record value if we are not supposed to risk allocating
5631 	   floating-point values in registers that might be wider than
5632 	   memory.  */
5633 	if ((flag_float_store
5634 	     && MEM_P (dest)
5635 	     && FLOAT_MODE_P (GET_MODE (dest)))
5636 	    /* Don't record BLKmode values, because we don't know the
5637 	       size of it, and can't be sure that other BLKmode values
5638 	       have the same or smaller size.  */
5639 	    || GET_MODE (dest) == BLKmode
5640 	    /* If we didn't put a REG_EQUAL value or a source into the hash
5641 	       table, there is no point is recording DEST.  */
5642 	    || sets[i].src_elt == 0
5643 	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5644 	       or SIGN_EXTEND, don't record DEST since it can cause
5645 	       some tracking to be wrong.
5646 
5647 	       ??? Think about this more later.  */
5648 	    || (paradoxical_subreg_p (dest)
5649 		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
5650 		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5651 	  continue;
5652 
5653 	/* STRICT_LOW_PART isn't part of the value BEING set,
5654 	   and neither is the SUBREG inside it.
5655 	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
5656 	if (GET_CODE (dest) == STRICT_LOW_PART)
5657 	  dest = SUBREG_REG (XEXP (dest, 0));
5658 
5659 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5660 	  /* Registers must also be inserted into chains for quantities.  */
5661 	  if (insert_regs (dest, sets[i].src_elt, 1))
5662 	    {
5663 	      /* If `insert_regs' changes something, the hash code must be
5664 		 recalculated.  */
5665 	      rehash_using_reg (dest);
5666 	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5667 	    }
5668 
5669 	elt = insert (dest, sets[i].src_elt,
5670 		      sets[i].dest_hash, GET_MODE (dest));
5671 
5672 	/* If this is a constant, insert the constant anchors with the
5673 	   equivalent register-offset expressions using register DEST.  */
5674 	if (targetm.const_anchor
5675 	    && REG_P (dest)
5676 	    && SCALAR_INT_MODE_P (GET_MODE (dest))
5677 	    && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5678 	  insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5679 
5680 	elt->in_memory = (MEM_P (sets[i].inner_dest)
5681 			  && !MEM_READONLY_P (sets[i].inner_dest));
5682 
5683 	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5684 	   narrower than M2, and both M1 and M2 are the same number of words,
5685 	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5686 	   make that equivalence as well.
5687 
5688 	   However, BAR may have equivalences for which gen_lowpart
5689 	   will produce a simpler value than gen_lowpart applied to
5690 	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5691 	   BAR's equivalences.  If we don't get a simplified form, make
5692 	   the SUBREG.  It will not be used in an equivalence, but will
5693 	   cause two similar assignments to be detected.
5694 
5695 	   Note the loop below will find SUBREG_REG (DEST) since we have
5696 	   already entered SRC and DEST of the SET in the table.  */
5697 
5698 	if (GET_CODE (dest) == SUBREG
5699 	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5700 		 / UNITS_PER_WORD)
5701 		== (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5702 	    && (GET_MODE_SIZE (GET_MODE (dest))
5703 		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5704 	    && sets[i].src_elt != 0)
5705 	  {
5706 	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5707 	    struct table_elt *elt, *classp = 0;
5708 
5709 	    for (elt = sets[i].src_elt->first_same_value; elt;
5710 		 elt = elt->next_same_value)
5711 	      {
5712 		rtx new_src = 0;
5713 		unsigned src_hash;
5714 		struct table_elt *src_elt;
5715 		int byte = 0;
5716 
5717 		/* Ignore invalid entries.  */
5718 		if (!REG_P (elt->exp)
5719 		    && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5720 		  continue;
5721 
5722 		/* We may have already been playing subreg games.  If the
5723 		   mode is already correct for the destination, use it.  */
5724 		if (GET_MODE (elt->exp) == new_mode)
5725 		  new_src = elt->exp;
5726 		else
5727 		  {
5728 		    /* Calculate big endian correction for the SUBREG_BYTE.
5729 		       We have already checked that M1 (GET_MODE (dest))
5730 		       is not narrower than M2 (new_mode).  */
5731 		    if (BYTES_BIG_ENDIAN)
5732 		      byte = (GET_MODE_SIZE (GET_MODE (dest))
5733 			      - GET_MODE_SIZE (new_mode));
5734 
5735 		    new_src = simplify_gen_subreg (new_mode, elt->exp,
5736 					           GET_MODE (dest), byte);
5737 		  }
5738 
5739 		/* The call to simplify_gen_subreg fails if the value
5740 		   is VOIDmode, yet we can't do any simplification, e.g.
5741 		   for EXPR_LISTs denoting function call results.
5742 		   It is invalid to construct a SUBREG with a VOIDmode
5743 		   SUBREG_REG, hence a zero new_src means we can't do
5744 		   this substitution.  */
5745 		if (! new_src)
5746 		  continue;
5747 
5748 		src_hash = HASH (new_src, new_mode);
5749 		src_elt = lookup (new_src, src_hash, new_mode);
5750 
5751 		/* Put the new source in the hash table is if isn't
5752 		   already.  */
5753 		if (src_elt == 0)
5754 		  {
5755 		    if (insert_regs (new_src, classp, 0))
5756 		      {
5757 			rehash_using_reg (new_src);
5758 			src_hash = HASH (new_src, new_mode);
5759 		      }
5760 		    src_elt = insert (new_src, classp, src_hash, new_mode);
5761 		    src_elt->in_memory = elt->in_memory;
5762 		  }
5763 		else if (classp && classp != src_elt->first_same_value)
5764 		  /* Show that two things that we've seen before are
5765 		     actually the same.  */
5766 		  merge_equiv_classes (src_elt, classp);
5767 
5768 		classp = src_elt->first_same_value;
5769 		/* Ignore invalid entries.  */
5770 		while (classp
5771 		       && !REG_P (classp->exp)
5772 		       && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5773 		  classp = classp->next_same_value;
5774 	      }
5775 	  }
5776       }
5777 
5778   /* Special handling for (set REG0 REG1) where REG0 is the
5779      "cheapest", cheaper than REG1.  After cse, REG1 will probably not
5780      be used in the sequel, so (if easily done) change this insn to
5781      (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5782      that computed their value.  Then REG1 will become a dead store
5783      and won't cloud the situation for later optimizations.
5784 
5785      Do not make this change if REG1 is a hard register, because it will
5786      then be used in the sequel and we may be changing a two-operand insn
5787      into a three-operand insn.
5788 
5789      Also do not do this if we are operating on a copy of INSN.  */
5790 
5791   if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5792       && NEXT_INSN (PREV_INSN (insn)) == insn
5793       && REG_P (SET_SRC (sets[0].rtl))
5794       && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5795       && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5796     {
5797       int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5798       struct qty_table_elem *src_ent = &qty_table[src_q];
5799 
5800       if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5801 	{
5802 	  /* Scan for the previous nonnote insn, but stop at a basic
5803 	     block boundary.  */
5804 	  rtx prev = insn;
5805 	  rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5806 	  do
5807 	    {
5808 	      prev = PREV_INSN (prev);
5809 	    }
5810 	  while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
5811 
5812 	  /* Do not swap the registers around if the previous instruction
5813 	     attaches a REG_EQUIV note to REG1.
5814 
5815 	     ??? It's not entirely clear whether we can transfer a REG_EQUIV
5816 	     from the pseudo that originally shadowed an incoming argument
5817 	     to another register.  Some uses of REG_EQUIV might rely on it
5818 	     being attached to REG1 rather than REG2.
5819 
5820 	     This section previously turned the REG_EQUIV into a REG_EQUAL
5821 	     note.  We cannot do that because REG_EQUIV may provide an
5822 	     uninitialized stack slot when REG_PARM_STACK_SPACE is used.  */
5823 	  if (NONJUMP_INSN_P (prev)
5824 	      && GET_CODE (PATTERN (prev)) == SET
5825 	      && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5826 	      && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5827 	    {
5828 	      rtx dest = SET_DEST (sets[0].rtl);
5829 	      rtx src = SET_SRC (sets[0].rtl);
5830 	      rtx note;
5831 
5832 	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5833 	      validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5834 	      validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5835 	      apply_change_group ();
5836 
5837 	      /* If INSN has a REG_EQUAL note, and this note mentions
5838 		 REG0, then we must delete it, because the value in
5839 		 REG0 has changed.  If the note's value is REG1, we must
5840 		 also delete it because that is now this insn's dest.  */
5841 	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5842 	      if (note != 0
5843 		  && (reg_mentioned_p (dest, XEXP (note, 0))
5844 		      || rtx_equal_p (src, XEXP (note, 0))))
5845 		remove_note (insn, note);
5846 	    }
5847 	}
5848     }
5849 
5850 done:;
5851 }
5852 
5853 /* Remove from the hash table all expressions that reference memory.  */
5854 
5855 static void
5856 invalidate_memory (void)
5857 {
5858   int i;
5859   struct table_elt *p, *next;
5860 
5861   for (i = 0; i < HASH_SIZE; i++)
5862     for (p = table[i]; p; p = next)
5863       {
5864 	next = p->next_same_hash;
5865 	if (p->in_memory)
5866 	  remove_from_table (p, i);
5867       }
5868 }
5869 
5870 /* Perform invalidation on the basis of everything about an insn
5871    except for invalidating the actual places that are SET in it.
5872    This includes the places CLOBBERed, and anything that might
5873    alias with something that is SET or CLOBBERed.
5874 
5875    X is the pattern of the insn.  */
5876 
5877 static void
5878 invalidate_from_clobbers (rtx x)
5879 {
5880   if (GET_CODE (x) == CLOBBER)
5881     {
5882       rtx ref = XEXP (x, 0);
5883       if (ref)
5884 	{
5885 	  if (REG_P (ref) || GET_CODE (ref) == SUBREG
5886 	      || MEM_P (ref))
5887 	    invalidate (ref, VOIDmode);
5888 	  else if (GET_CODE (ref) == STRICT_LOW_PART
5889 		   || GET_CODE (ref) == ZERO_EXTRACT)
5890 	    invalidate (XEXP (ref, 0), GET_MODE (ref));
5891 	}
5892     }
5893   else if (GET_CODE (x) == PARALLEL)
5894     {
5895       int i;
5896       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5897 	{
5898 	  rtx y = XVECEXP (x, 0, i);
5899 	  if (GET_CODE (y) == CLOBBER)
5900 	    {
5901 	      rtx ref = XEXP (y, 0);
5902 	      if (REG_P (ref) || GET_CODE (ref) == SUBREG
5903 		  || MEM_P (ref))
5904 		invalidate (ref, VOIDmode);
5905 	      else if (GET_CODE (ref) == STRICT_LOW_PART
5906 		       || GET_CODE (ref) == ZERO_EXTRACT)
5907 		invalidate (XEXP (ref, 0), GET_MODE (ref));
5908 	    }
5909 	}
5910     }
5911 }
5912 
5913 /* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
5914    and replace any registers in them with either an equivalent constant
5915    or the canonical form of the register.  If we are inside an address,
5916    only do this if the address remains valid.
5917 
5918    OBJECT is 0 except when within a MEM in which case it is the MEM.
5919 
5920    Return the replacement for X.  */
5921 
5922 static rtx
5923 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5924 {
5925   enum rtx_code code = GET_CODE (x);
5926   const char *fmt = GET_RTX_FORMAT (code);
5927   int i;
5928 
5929   switch (code)
5930     {
5931     case CONST_INT:
5932     case CONST:
5933     case SYMBOL_REF:
5934     case LABEL_REF:
5935     case CONST_DOUBLE:
5936     case CONST_FIXED:
5937     case CONST_VECTOR:
5938     case PC:
5939     case CC0:
5940     case LO_SUM:
5941       return x;
5942 
5943     case MEM:
5944       validate_change (x, &XEXP (x, 0),
5945 		       cse_process_notes (XEXP (x, 0), x, changed), 0);
5946       return x;
5947 
5948     case EXPR_LIST:
5949     case INSN_LIST:
5950       if (REG_NOTE_KIND (x) == REG_EQUAL)
5951 	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5952       if (XEXP (x, 1))
5953 	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5954       return x;
5955 
5956     case SIGN_EXTEND:
5957     case ZERO_EXTEND:
5958     case SUBREG:
5959       {
5960 	rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
5961 	/* We don't substitute VOIDmode constants into these rtx,
5962 	   since they would impede folding.  */
5963 	if (GET_MODE (new_rtx) != VOIDmode)
5964 	  validate_change (object, &XEXP (x, 0), new_rtx, 0);
5965 	return x;
5966       }
5967 
5968     case REG:
5969       i = REG_QTY (REGNO (x));
5970 
5971       /* Return a constant or a constant register.  */
5972       if (REGNO_QTY_VALID_P (REGNO (x)))
5973 	{
5974 	  struct qty_table_elem *ent = &qty_table[i];
5975 
5976 	  if (ent->const_rtx != NULL_RTX
5977 	      && (CONSTANT_P (ent->const_rtx)
5978 		  || REG_P (ent->const_rtx)))
5979 	    {
5980 	      rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
5981 	      if (new_rtx)
5982 		return copy_rtx (new_rtx);
5983 	    }
5984 	}
5985 
5986       /* Otherwise, canonicalize this register.  */
5987       return canon_reg (x, NULL_RTX);
5988 
5989     default:
5990       break;
5991     }
5992 
5993   for (i = 0; i < GET_RTX_LENGTH (code); i++)
5994     if (fmt[i] == 'e')
5995       validate_change (object, &XEXP (x, i),
5996 		       cse_process_notes (XEXP (x, i), object, changed), 0);
5997 
5998   return x;
5999 }
6000 
6001 static rtx
6002 cse_process_notes (rtx x, rtx object, bool *changed)
6003 {
6004   rtx new_rtx = cse_process_notes_1 (x, object, changed);
6005   if (new_rtx != x)
6006     *changed = true;
6007   return new_rtx;
6008 }
6009 
6010 
6011 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6012 
6013    DATA is a pointer to a struct cse_basic_block_data, that is used to
6014    describe the path.
6015    It is filled with a queue of basic blocks, starting with FIRST_BB
6016    and following a trace through the CFG.
6017 
6018    If all paths starting at FIRST_BB have been followed, or no new path
6019    starting at FIRST_BB can be constructed, this function returns FALSE.
6020    Otherwise, DATA->path is filled and the function returns TRUE indicating
6021    that a path to follow was found.
6022 
6023    If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6024    block in the path will be FIRST_BB.  */
6025 
6026 static bool
6027 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6028 	       int follow_jumps)
6029 {
6030   basic_block bb;
6031   edge e;
6032   int path_size;
6033 
6034   SET_BIT (cse_visited_basic_blocks, first_bb->index);
6035 
6036   /* See if there is a previous path.  */
6037   path_size = data->path_size;
6038 
6039   /* There is a previous path.  Make sure it started with FIRST_BB.  */
6040   if (path_size)
6041     gcc_assert (data->path[0].bb == first_bb);
6042 
6043   /* There was only one basic block in the last path.  Clear the path and
6044      return, so that paths starting at another basic block can be tried.  */
6045   if (path_size == 1)
6046     {
6047       path_size = 0;
6048       goto done;
6049     }
6050 
6051   /* If the path was empty from the beginning, construct a new path.  */
6052   if (path_size == 0)
6053     data->path[path_size++].bb = first_bb;
6054   else
6055     {
6056       /* Otherwise, path_size must be equal to or greater than 2, because
6057 	 a previous path exists that is at least two basic blocks long.
6058 
6059 	 Update the previous branch path, if any.  If the last branch was
6060 	 previously along the branch edge, take the fallthrough edge now.  */
6061       while (path_size >= 2)
6062 	{
6063 	  basic_block last_bb_in_path, previous_bb_in_path;
6064 	  edge e;
6065 
6066 	  --path_size;
6067 	  last_bb_in_path = data->path[path_size].bb;
6068 	  previous_bb_in_path = data->path[path_size - 1].bb;
6069 
6070 	  /* If we previously followed a path along the branch edge, try
6071 	     the fallthru edge now.  */
6072 	  if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6073 	      && any_condjump_p (BB_END (previous_bb_in_path))
6074 	      && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6075 	      && e == BRANCH_EDGE (previous_bb_in_path))
6076 	    {
6077 	      bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6078 	      if (bb != EXIT_BLOCK_PTR
6079 		  && single_pred_p (bb)
6080 		  /* We used to assert here that we would only see blocks
6081 		     that we have not visited yet.  But we may end up
6082 		     visiting basic blocks twice if the CFG has changed
6083 		     in this run of cse_main, because when the CFG changes
6084 		     the topological sort of the CFG also changes.  A basic
6085 		     blocks that previously had more than two predecessors
6086 		     may now have a single predecessor, and become part of
6087 		     a path that starts at another basic block.
6088 
6089 		     We still want to visit each basic block only once, so
6090 		     halt the path here if we have already visited BB.  */
6091 		  && !TEST_BIT (cse_visited_basic_blocks, bb->index))
6092 		{
6093 		  SET_BIT (cse_visited_basic_blocks, bb->index);
6094 		  data->path[path_size++].bb = bb;
6095 		  break;
6096 		}
6097 	    }
6098 
6099 	  data->path[path_size].bb = NULL;
6100 	}
6101 
6102       /* If only one block remains in the path, bail.  */
6103       if (path_size == 1)
6104 	{
6105 	  path_size = 0;
6106 	  goto done;
6107 	}
6108     }
6109 
6110   /* Extend the path if possible.  */
6111   if (follow_jumps)
6112     {
6113       bb = data->path[path_size - 1].bb;
6114       while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6115 	{
6116 	  if (single_succ_p (bb))
6117 	    e = single_succ_edge (bb);
6118 	  else if (EDGE_COUNT (bb->succs) == 2
6119 		   && any_condjump_p (BB_END (bb)))
6120 	    {
6121 	      /* First try to follow the branch.  If that doesn't lead
6122 		 to a useful path, follow the fallthru edge.  */
6123 	      e = BRANCH_EDGE (bb);
6124 	      if (!single_pred_p (e->dest))
6125 		e = FALLTHRU_EDGE (bb);
6126 	    }
6127 	  else
6128 	    e = NULL;
6129 
6130 	  if (e
6131 	      && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6132 	      && e->dest != EXIT_BLOCK_PTR
6133 	      && single_pred_p (e->dest)
6134 	      /* Avoid visiting basic blocks twice.  The large comment
6135 		 above explains why this can happen.  */
6136 	      && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
6137 	    {
6138 	      basic_block bb2 = e->dest;
6139 	      SET_BIT (cse_visited_basic_blocks, bb2->index);
6140 	      data->path[path_size++].bb = bb2;
6141 	      bb = bb2;
6142 	    }
6143 	  else
6144 	    bb = NULL;
6145 	}
6146     }
6147 
6148 done:
6149   data->path_size = path_size;
6150   return path_size != 0;
6151 }
6152 
6153 /* Dump the path in DATA to file F.  NSETS is the number of sets
6154    in the path.  */
6155 
6156 static void
6157 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6158 {
6159   int path_entry;
6160 
6161   fprintf (f, ";; Following path with %d sets: ", nsets);
6162   for (path_entry = 0; path_entry < data->path_size; path_entry++)
6163     fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6164   fputc ('\n', dump_file);
6165   fflush (f);
6166 }
6167 
6168 
6169 /* Return true if BB has exception handling successor edges.  */
6170 
6171 static bool
6172 have_eh_succ_edges (basic_block bb)
6173 {
6174   edge e;
6175   edge_iterator ei;
6176 
6177   FOR_EACH_EDGE (e, ei, bb->succs)
6178     if (e->flags & EDGE_EH)
6179       return true;
6180 
6181   return false;
6182 }
6183 
6184 
6185 /* Scan to the end of the path described by DATA.  Return an estimate of
6186    the total number of SETs of all insns in the path.  */
6187 
6188 static void
6189 cse_prescan_path (struct cse_basic_block_data *data)
6190 {
6191   int nsets = 0;
6192   int path_size = data->path_size;
6193   int path_entry;
6194 
6195   /* Scan to end of each basic block in the path.  */
6196   for (path_entry = 0; path_entry < path_size; path_entry++)
6197     {
6198       basic_block bb;
6199       rtx insn;
6200 
6201       bb = data->path[path_entry].bb;
6202 
6203       FOR_BB_INSNS (bb, insn)
6204 	{
6205 	  if (!INSN_P (insn))
6206 	    continue;
6207 
6208 	  /* A PARALLEL can have lots of SETs in it,
6209 	     especially if it is really an ASM_OPERANDS.  */
6210 	  if (GET_CODE (PATTERN (insn)) == PARALLEL)
6211 	    nsets += XVECLEN (PATTERN (insn), 0);
6212 	  else
6213 	    nsets += 1;
6214 	}
6215     }
6216 
6217   data->nsets = nsets;
6218 }
6219 
6220 /* Process a single extended basic block described by EBB_DATA.  */
6221 
6222 static void
6223 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6224 {
6225   int path_size = ebb_data->path_size;
6226   int path_entry;
6227   int num_insns = 0;
6228 
6229   /* Allocate the space needed by qty_table.  */
6230   qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6231 
6232   new_basic_block ();
6233   cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6234   cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6235   for (path_entry = 0; path_entry < path_size; path_entry++)
6236     {
6237       basic_block bb;
6238       rtx insn;
6239 
6240       bb = ebb_data->path[path_entry].bb;
6241 
6242       /* Invalidate recorded information for eh regs if there is an EH
6243 	 edge pointing to that bb.  */
6244       if (bb_has_eh_pred (bb))
6245 	{
6246 	  df_ref *def_rec;
6247 
6248 	  for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6249 	    {
6250 	      df_ref def = *def_rec;
6251 	      if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6252 		invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6253 	    }
6254 	}
6255 
6256       optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6257       FOR_BB_INSNS (bb, insn)
6258 	{
6259 	  /* If we have processed 1,000 insns, flush the hash table to
6260 	     avoid extreme quadratic behavior.  We must not include NOTEs
6261 	     in the count since there may be more of them when generating
6262 	     debugging information.  If we clear the table at different
6263 	     times, code generated with -g -O might be different than code
6264 	     generated with -O but not -g.
6265 
6266 	     FIXME: This is a real kludge and needs to be done some other
6267 		    way.  */
6268 	  if (NONDEBUG_INSN_P (insn)
6269 	      && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6270 	    {
6271 	      flush_hash_table ();
6272 	      num_insns = 0;
6273 	    }
6274 
6275 	  if (INSN_P (insn))
6276 	    {
6277 	      /* Process notes first so we have all notes in canonical forms
6278 		 when looking for duplicate operations.  */
6279 	      if (REG_NOTES (insn))
6280 		{
6281 		  bool changed = false;
6282 		  REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6283 						        NULL_RTX, &changed);
6284 		  if (changed)
6285 		    df_notes_rescan (insn);
6286 		}
6287 
6288 	      cse_insn (insn);
6289 
6290 	      /* If we haven't already found an insn where we added a LABEL_REF,
6291 		 check this one.  */
6292 	      if (INSN_P (insn) && !recorded_label_ref
6293 		  && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6294 				   (void *) insn))
6295 		recorded_label_ref = true;
6296 
6297 #ifdef HAVE_cc0
6298 	      if (NONDEBUG_INSN_P (insn))
6299 		{
6300 		  /* If the previous insn sets CC0 and this insn no
6301 		     longer references CC0, delete the previous insn.
6302 		     Here we use fact that nothing expects CC0 to be
6303 		     valid over an insn, which is true until the final
6304 		     pass.  */
6305 		  rtx prev_insn, tem;
6306 
6307 		  prev_insn = prev_nonnote_nondebug_insn (insn);
6308 		  if (prev_insn && NONJUMP_INSN_P (prev_insn)
6309 		      && (tem = single_set (prev_insn)) != NULL_RTX
6310 		      && SET_DEST (tem) == cc0_rtx
6311 		      && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6312 		    delete_insn (prev_insn);
6313 
6314 		  /* If this insn is not the last insn in the basic
6315 		     block, it will be PREV_INSN(insn) in the next
6316 		     iteration.  If we recorded any CC0-related
6317 		     information for this insn, remember it.  */
6318 		  if (insn != BB_END (bb))
6319 		    {
6320 		      prev_insn_cc0 = this_insn_cc0;
6321 		      prev_insn_cc0_mode = this_insn_cc0_mode;
6322 		    }
6323 		}
6324 #endif
6325 	    }
6326 	}
6327 
6328       /* With non-call exceptions, we are not always able to update
6329 	 the CFG properly inside cse_insn.  So clean up possibly
6330 	 redundant EH edges here.  */
6331       if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6332 	cse_cfg_altered |= purge_dead_edges (bb);
6333 
6334       /* If we changed a conditional jump, we may have terminated
6335 	 the path we are following.  Check that by verifying that
6336 	 the edge we would take still exists.  If the edge does
6337 	 not exist anymore, purge the remainder of the path.
6338 	 Note that this will cause us to return to the caller.  */
6339       if (path_entry < path_size - 1)
6340 	{
6341 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6342 	  if (!find_edge (bb, next_bb))
6343 	    {
6344 	      do
6345 		{
6346 		  path_size--;
6347 
6348 		  /* If we truncate the path, we must also reset the
6349 		     visited bit on the remaining blocks in the path,
6350 		     or we will never visit them at all.  */
6351 		  RESET_BIT (cse_visited_basic_blocks,
6352 			     ebb_data->path[path_size].bb->index);
6353 		  ebb_data->path[path_size].bb = NULL;
6354 		}
6355 	      while (path_size - 1 != path_entry);
6356 	      ebb_data->path_size = path_size;
6357 	    }
6358 	}
6359 
6360       /* If this is a conditional jump insn, record any known
6361 	 equivalences due to the condition being tested.  */
6362       insn = BB_END (bb);
6363       if (path_entry < path_size - 1
6364 	  && JUMP_P (insn)
6365 	  && single_set (insn)
6366 	  && any_condjump_p (insn))
6367 	{
6368 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6369 	  bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6370 	  record_jump_equiv (insn, taken);
6371 	}
6372 
6373 #ifdef HAVE_cc0
6374       /* Clear the CC0-tracking related insns, they can't provide
6375 	 useful information across basic block boundaries.  */
6376       prev_insn_cc0 = 0;
6377 #endif
6378     }
6379 
6380   gcc_assert (next_qty <= max_qty);
6381 
6382   free (qty_table);
6383 }
6384 
6385 
6386 /* Perform cse on the instructions of a function.
6387    F is the first instruction.
6388    NREGS is one plus the highest pseudo-reg number used in the instruction.
6389 
6390    Return 2 if jump optimizations should be redone due to simplifications
6391    in conditional jump instructions.
6392    Return 1 if the CFG should be cleaned up because it has been modified.
6393    Return 0 otherwise.  */
6394 
6395 int
6396 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6397 {
6398   struct cse_basic_block_data ebb_data;
6399   basic_block bb;
6400   int *rc_order = XNEWVEC (int, last_basic_block);
6401   int i, n_blocks;
6402 
6403   df_set_flags (DF_LR_RUN_DCE);
6404   df_analyze ();
6405   df_set_flags (DF_DEFER_INSN_RESCAN);
6406 
6407   reg_scan (get_insns (), max_reg_num ());
6408   init_cse_reg_info (nregs);
6409 
6410   ebb_data.path = XNEWVEC (struct branch_path,
6411 			   PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6412 
6413   cse_cfg_altered = false;
6414   cse_jumps_altered = false;
6415   recorded_label_ref = false;
6416   constant_pool_entries_cost = 0;
6417   constant_pool_entries_regcost = 0;
6418   ebb_data.path_size = 0;
6419   ebb_data.nsets = 0;
6420   rtl_hooks = cse_rtl_hooks;
6421 
6422   init_recog ();
6423   init_alias_analysis ();
6424 
6425   reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6426 
6427   /* Set up the table of already visited basic blocks.  */
6428   cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6429   sbitmap_zero (cse_visited_basic_blocks);
6430 
6431   /* Loop over basic blocks in reverse completion order (RPO),
6432      excluding the ENTRY and EXIT blocks.  */
6433   n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6434   i = 0;
6435   while (i < n_blocks)
6436     {
6437       /* Find the first block in the RPO queue that we have not yet
6438 	 processed before.  */
6439       do
6440 	{
6441 	  bb = BASIC_BLOCK (rc_order[i++]);
6442 	}
6443       while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6444 	     && i < n_blocks);
6445 
6446       /* Find all paths starting with BB, and process them.  */
6447       while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6448 	{
6449 	  /* Pre-scan the path.  */
6450 	  cse_prescan_path (&ebb_data);
6451 
6452 	  /* If this basic block has no sets, skip it.  */
6453 	  if (ebb_data.nsets == 0)
6454 	    continue;
6455 
6456 	  /* Get a reasonable estimate for the maximum number of qty's
6457 	     needed for this path.  For this, we take the number of sets
6458 	     and multiply that by MAX_RECOG_OPERANDS.  */
6459 	  max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6460 
6461 	  /* Dump the path we're about to process.  */
6462 	  if (dump_file)
6463 	    cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6464 
6465 	  cse_extended_basic_block (&ebb_data);
6466 	}
6467     }
6468 
6469   /* Clean up.  */
6470   end_alias_analysis ();
6471   free (reg_eqv_table);
6472   free (ebb_data.path);
6473   sbitmap_free (cse_visited_basic_blocks);
6474   free (rc_order);
6475   rtl_hooks = general_rtl_hooks;
6476 
6477   if (cse_jumps_altered || recorded_label_ref)
6478     return 2;
6479   else if (cse_cfg_altered)
6480     return 1;
6481   else
6482     return 0;
6483 }
6484 
6485 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6486    which there isn't a REG_LABEL_OPERAND note.
6487    Return one if so.  DATA is the insn.  */
6488 
6489 static int
6490 check_for_label_ref (rtx *rtl, void *data)
6491 {
6492   rtx insn = (rtx) data;
6493 
6494   /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6495      note for it, we must rerun jump since it needs to place the note.  If
6496      this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6497      don't do this since no REG_LABEL_OPERAND will be added.  */
6498   return (GET_CODE (*rtl) == LABEL_REF
6499 	  && ! LABEL_REF_NONLOCAL_P (*rtl)
6500 	  && (!JUMP_P (insn)
6501 	      || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6502 	  && LABEL_P (XEXP (*rtl, 0))
6503 	  && INSN_UID (XEXP (*rtl, 0)) != 0
6504 	  && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6505 }
6506 
6507 /* Count the number of times registers are used (not set) in X.
6508    COUNTS is an array in which we accumulate the count, INCR is how much
6509    we count each register usage.
6510 
6511    Don't count a usage of DEST, which is the SET_DEST of a SET which
6512    contains X in its SET_SRC.  This is because such a SET does not
6513    modify the liveness of DEST.
6514    DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6515    We must then count uses of a SET_DEST regardless, because the insn can't be
6516    deleted here.  */
6517 
6518 static void
6519 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6520 {
6521   enum rtx_code code;
6522   rtx note;
6523   const char *fmt;
6524   int i, j;
6525 
6526   if (x == 0)
6527     return;
6528 
6529   switch (code = GET_CODE (x))
6530     {
6531     case REG:
6532       if (x != dest)
6533 	counts[REGNO (x)] += incr;
6534       return;
6535 
6536     case PC:
6537     case CC0:
6538     case CONST:
6539     case CONST_INT:
6540     case CONST_DOUBLE:
6541     case CONST_FIXED:
6542     case CONST_VECTOR:
6543     case SYMBOL_REF:
6544     case LABEL_REF:
6545       return;
6546 
6547     case CLOBBER:
6548       /* If we are clobbering a MEM, mark any registers inside the address
6549          as being used.  */
6550       if (MEM_P (XEXP (x, 0)))
6551 	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6552       return;
6553 
6554     case SET:
6555       /* Unless we are setting a REG, count everything in SET_DEST.  */
6556       if (!REG_P (SET_DEST (x)))
6557 	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6558       count_reg_usage (SET_SRC (x), counts,
6559 		       dest ? dest : SET_DEST (x),
6560 		       incr);
6561       return;
6562 
6563     case DEBUG_INSN:
6564       return;
6565 
6566     case CALL_INSN:
6567     case INSN:
6568     case JUMP_INSN:
6569       /* We expect dest to be NULL_RTX here.  If the insn may trap,
6570 	 or if it cannot be deleted due to side-effects, mark this fact
6571 	 by setting DEST to pc_rtx.  */
6572       if (insn_could_throw_p (x) || side_effects_p (PATTERN (x)))
6573 	dest = pc_rtx;
6574       if (code == CALL_INSN)
6575 	count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6576       count_reg_usage (PATTERN (x), counts, dest, incr);
6577 
6578       /* Things used in a REG_EQUAL note aren't dead since loop may try to
6579 	 use them.  */
6580 
6581       note = find_reg_equal_equiv_note (x);
6582       if (note)
6583 	{
6584 	  rtx eqv = XEXP (note, 0);
6585 
6586 	  if (GET_CODE (eqv) == EXPR_LIST)
6587 	  /* This REG_EQUAL note describes the result of a function call.
6588 	     Process all the arguments.  */
6589 	    do
6590 	      {
6591 		count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6592 		eqv = XEXP (eqv, 1);
6593 	      }
6594 	    while (eqv && GET_CODE (eqv) == EXPR_LIST);
6595 	  else
6596 	    count_reg_usage (eqv, counts, dest, incr);
6597 	}
6598       return;
6599 
6600     case EXPR_LIST:
6601       if (REG_NOTE_KIND (x) == REG_EQUAL
6602 	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6603 	  /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6604 	     involving registers in the address.  */
6605 	  || GET_CODE (XEXP (x, 0)) == CLOBBER)
6606 	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6607 
6608       count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6609       return;
6610 
6611     case ASM_OPERANDS:
6612       /* Iterate over just the inputs, not the constraints as well.  */
6613       for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6614 	count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6615       return;
6616 
6617     case INSN_LIST:
6618       gcc_unreachable ();
6619 
6620     default:
6621       break;
6622     }
6623 
6624   fmt = GET_RTX_FORMAT (code);
6625   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6626     {
6627       if (fmt[i] == 'e')
6628 	count_reg_usage (XEXP (x, i), counts, dest, incr);
6629       else if (fmt[i] == 'E')
6630 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6631 	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6632     }
6633 }
6634 
6635 /* Return true if X is a dead register.  */
6636 
6637 static inline int
6638 is_dead_reg (rtx x, int *counts)
6639 {
6640   return (REG_P (x)
6641 	  && REGNO (x) >= FIRST_PSEUDO_REGISTER
6642 	  && counts[REGNO (x)] == 0);
6643 }
6644 
6645 /* Return true if set is live.  */
6646 static bool
6647 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0.  */
6648 	    int *counts)
6649 {
6650 #ifdef HAVE_cc0
6651   rtx tem;
6652 #endif
6653 
6654   if (set_noop_p (set))
6655     ;
6656 
6657 #ifdef HAVE_cc0
6658   else if (GET_CODE (SET_DEST (set)) == CC0
6659 	   && !side_effects_p (SET_SRC (set))
6660 	   && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6661 	       || !INSN_P (tem)
6662 	       || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6663     return false;
6664 #endif
6665   else if (!is_dead_reg (SET_DEST (set), counts)
6666 	   || side_effects_p (SET_SRC (set)))
6667     return true;
6668   return false;
6669 }
6670 
6671 /* Return true if insn is live.  */
6672 
6673 static bool
6674 insn_live_p (rtx insn, int *counts)
6675 {
6676   int i;
6677   if (insn_could_throw_p (insn))
6678     return true;
6679   else if (GET_CODE (PATTERN (insn)) == SET)
6680     return set_live_p (PATTERN (insn), insn, counts);
6681   else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6682     {
6683       for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6684 	{
6685 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
6686 
6687 	  if (GET_CODE (elt) == SET)
6688 	    {
6689 	      if (set_live_p (elt, insn, counts))
6690 		return true;
6691 	    }
6692 	  else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6693 	    return true;
6694 	}
6695       return false;
6696     }
6697   else if (DEBUG_INSN_P (insn))
6698     {
6699       rtx next;
6700 
6701       for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6702 	if (NOTE_P (next))
6703 	  continue;
6704 	else if (!DEBUG_INSN_P (next))
6705 	  return true;
6706 	else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6707 	  return false;
6708 
6709       return true;
6710     }
6711   else
6712     return true;
6713 }
6714 
6715 /* Count the number of stores into pseudo.  Callback for note_stores.  */
6716 
6717 static void
6718 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6719 {
6720   int *counts = (int *) data;
6721   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6722     counts[REGNO (x)]++;
6723 }
6724 
6725 struct dead_debug_insn_data
6726 {
6727   int *counts;
6728   rtx *replacements;
6729   bool seen_repl;
6730 };
6731 
6732 /* Return if a DEBUG_INSN needs to be reset because some dead
6733    pseudo doesn't have a replacement.  Callback for for_each_rtx.  */
6734 
6735 static int
6736 is_dead_debug_insn (rtx *loc, void *data)
6737 {
6738   rtx x = *loc;
6739   struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6740 
6741   if (is_dead_reg (x, ddid->counts))
6742     {
6743       if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6744 	ddid->seen_repl = true;
6745       else
6746 	return 1;
6747     }
6748   return 0;
6749 }
6750 
6751 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6752    Callback for simplify_replace_fn_rtx.  */
6753 
6754 static rtx
6755 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6756 {
6757   rtx *replacements = (rtx *) data;
6758 
6759   if (REG_P (x)
6760       && REGNO (x) >= FIRST_PSEUDO_REGISTER
6761       && replacements[REGNO (x)] != NULL_RTX)
6762     {
6763       if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6764 	return replacements[REGNO (x)];
6765       return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6766 			     GET_MODE (replacements[REGNO (x)]));
6767     }
6768   return NULL_RTX;
6769 }
6770 
6771 /* Scan all the insns and delete any that are dead; i.e., they store a register
6772    that is never used or they copy a register to itself.
6773 
6774    This is used to remove insns made obviously dead by cse, loop or other
6775    optimizations.  It improves the heuristics in loop since it won't try to
6776    move dead invariants out of loops or make givs for dead quantities.  The
6777    remaining passes of the compilation are also sped up.  */
6778 
6779 int
6780 delete_trivially_dead_insns (rtx insns, int nreg)
6781 {
6782   int *counts;
6783   rtx insn, prev;
6784   rtx *replacements = NULL;
6785   int ndead = 0;
6786 
6787   timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6788   /* First count the number of times each register is used.  */
6789   if (MAY_HAVE_DEBUG_INSNS)
6790     {
6791       counts = XCNEWVEC (int, nreg * 3);
6792       for (insn = insns; insn; insn = NEXT_INSN (insn))
6793 	if (DEBUG_INSN_P (insn))
6794 	  count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6795 			   NULL_RTX, 1);
6796 	else if (INSN_P (insn))
6797 	  {
6798 	    count_reg_usage (insn, counts, NULL_RTX, 1);
6799 	    note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6800 	  }
6801       /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6802 	 First one counts how many times each pseudo is used outside
6803 	 of debug insns, second counts how many times each pseudo is
6804 	 used in debug insns and third counts how many times a pseudo
6805 	 is stored.  */
6806     }
6807   else
6808     {
6809       counts = XCNEWVEC (int, nreg);
6810       for (insn = insns; insn; insn = NEXT_INSN (insn))
6811 	if (INSN_P (insn))
6812 	  count_reg_usage (insn, counts, NULL_RTX, 1);
6813       /* If no debug insns can be present, COUNTS is just an array
6814 	 which counts how many times each pseudo is used.  */
6815     }
6816   /* Go from the last insn to the first and delete insns that only set unused
6817      registers or copy a register to itself.  As we delete an insn, remove
6818      usage counts for registers it uses.
6819 
6820      The first jump optimization pass may leave a real insn as the last
6821      insn in the function.   We must not skip that insn or we may end
6822      up deleting code that is not really dead.
6823 
6824      If some otherwise unused register is only used in DEBUG_INSNs,
6825      try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6826      the setter.  Then go through DEBUG_INSNs and if a DEBUG_EXPR
6827      has been created for the unused register, replace it with
6828      the DEBUG_EXPR, otherwise reset the DEBUG_INSN.  */
6829   for (insn = get_last_insn (); insn; insn = prev)
6830     {
6831       int live_insn = 0;
6832 
6833       prev = PREV_INSN (insn);
6834       if (!INSN_P (insn))
6835 	continue;
6836 
6837       live_insn = insn_live_p (insn, counts);
6838 
6839       /* If this is a dead insn, delete it and show registers in it aren't
6840 	 being used.  */
6841 
6842       if (! live_insn && dbg_cnt (delete_trivial_dead))
6843 	{
6844 	  if (DEBUG_INSN_P (insn))
6845 	    count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6846 			     NULL_RTX, -1);
6847 	  else
6848 	    {
6849 	      rtx set;
6850 	      if (MAY_HAVE_DEBUG_INSNS
6851 		  && (set = single_set (insn)) != NULL_RTX
6852 		  && is_dead_reg (SET_DEST (set), counts)
6853 		  /* Used at least once in some DEBUG_INSN.  */
6854 		  && counts[REGNO (SET_DEST (set)) + nreg] > 0
6855 		  /* And set exactly once.  */
6856 		  && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
6857 		  && !side_effects_p (SET_SRC (set))
6858 		  && asm_noperands (PATTERN (insn)) < 0)
6859 		{
6860 		  rtx dval, bind;
6861 
6862 		  /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL).  */
6863 		  dval = make_debug_expr_from_rtl (SET_DEST (set));
6864 
6865 		  /* Emit a debug bind insn before the insn in which
6866 		     reg dies.  */
6867 		  bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
6868 					       DEBUG_EXPR_TREE_DECL (dval),
6869 					       SET_SRC (set),
6870 					       VAR_INIT_STATUS_INITIALIZED);
6871 		  count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
6872 
6873 		  bind = emit_debug_insn_before (bind, insn);
6874 		  df_insn_rescan (bind);
6875 
6876 		  if (replacements == NULL)
6877 		    replacements = XCNEWVEC (rtx, nreg);
6878 		  replacements[REGNO (SET_DEST (set))] = dval;
6879 		}
6880 
6881 	      count_reg_usage (insn, counts, NULL_RTX, -1);
6882 	      ndead++;
6883 	    }
6884 	  delete_insn_and_edges (insn);
6885 	}
6886     }
6887 
6888   if (MAY_HAVE_DEBUG_INSNS)
6889     {
6890       struct dead_debug_insn_data ddid;
6891       ddid.counts = counts;
6892       ddid.replacements = replacements;
6893       for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
6894 	if (DEBUG_INSN_P (insn))
6895 	  {
6896 	    /* If this debug insn references a dead register that wasn't replaced
6897 	       with an DEBUG_EXPR, reset the DEBUG_INSN.  */
6898 	    ddid.seen_repl = false;
6899 	    if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
6900 			      is_dead_debug_insn, &ddid))
6901 	      {
6902 		INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
6903 		df_insn_rescan (insn);
6904 	      }
6905 	    else if (ddid.seen_repl)
6906 	      {
6907 		INSN_VAR_LOCATION_LOC (insn)
6908 		  = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
6909 					     NULL_RTX, replace_dead_reg,
6910 					     replacements);
6911 		df_insn_rescan (insn);
6912 	      }
6913 	  }
6914       free (replacements);
6915     }
6916 
6917   if (dump_file && ndead)
6918     fprintf (dump_file, "Deleted %i trivially dead insns\n",
6919 	     ndead);
6920   /* Clean up.  */
6921   free (counts);
6922   timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6923   return ndead;
6924 }
6925 
6926 /* This function is called via for_each_rtx.  The argument, NEWREG, is
6927    a condition code register with the desired mode.  If we are looking
6928    at the same register in a different mode, replace it with
6929    NEWREG.  */
6930 
6931 static int
6932 cse_change_cc_mode (rtx *loc, void *data)
6933 {
6934   struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6935 
6936   if (*loc
6937       && REG_P (*loc)
6938       && REGNO (*loc) == REGNO (args->newreg)
6939       && GET_MODE (*loc) != GET_MODE (args->newreg))
6940     {
6941       validate_change (args->insn, loc, args->newreg, 1);
6942 
6943       return -1;
6944     }
6945   return 0;
6946 }
6947 
6948 /* Change the mode of any reference to the register REGNO (NEWREG) to
6949    GET_MODE (NEWREG) in INSN.  */
6950 
6951 static void
6952 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6953 {
6954   struct change_cc_mode_args args;
6955   int success;
6956 
6957   if (!INSN_P (insn))
6958     return;
6959 
6960   args.insn = insn;
6961   args.newreg = newreg;
6962 
6963   for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6964   for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6965 
6966   /* If the following assertion was triggered, there is most probably
6967      something wrong with the cc_modes_compatible back end function.
6968      CC modes only can be considered compatible if the insn - with the mode
6969      replaced by any of the compatible modes - can still be recognized.  */
6970   success = apply_change_group ();
6971   gcc_assert (success);
6972 }
6973 
6974 /* Change the mode of any reference to the register REGNO (NEWREG) to
6975    GET_MODE (NEWREG), starting at START.  Stop before END.  Stop at
6976    any instruction which modifies NEWREG.  */
6977 
6978 static void
6979 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6980 {
6981   rtx insn;
6982 
6983   for (insn = start; insn != end; insn = NEXT_INSN (insn))
6984     {
6985       if (! INSN_P (insn))
6986 	continue;
6987 
6988       if (reg_set_p (newreg, insn))
6989 	return;
6990 
6991       cse_change_cc_mode_insn (insn, newreg);
6992     }
6993 }
6994 
6995 /* BB is a basic block which finishes with CC_REG as a condition code
6996    register which is set to CC_SRC.  Look through the successors of BB
6997    to find blocks which have a single predecessor (i.e., this one),
6998    and look through those blocks for an assignment to CC_REG which is
6999    equivalent to CC_SRC.  CAN_CHANGE_MODE indicates whether we are
7000    permitted to change the mode of CC_SRC to a compatible mode.  This
7001    returns VOIDmode if no equivalent assignments were found.
7002    Otherwise it returns the mode which CC_SRC should wind up with.
7003    ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7004    but is passed unmodified down to recursive calls in order to prevent
7005    endless recursion.
7006 
7007    The main complexity in this function is handling the mode issues.
7008    We may have more than one duplicate which we can eliminate, and we
7009    try to find a mode which will work for multiple duplicates.  */
7010 
7011 static enum machine_mode
7012 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7013 	      bool can_change_mode)
7014 {
7015   bool found_equiv;
7016   enum machine_mode mode;
7017   unsigned int insn_count;
7018   edge e;
7019   rtx insns[2];
7020   enum machine_mode modes[2];
7021   rtx last_insns[2];
7022   unsigned int i;
7023   rtx newreg;
7024   edge_iterator ei;
7025 
7026   /* We expect to have two successors.  Look at both before picking
7027      the final mode for the comparison.  If we have more successors
7028      (i.e., some sort of table jump, although that seems unlikely),
7029      then we require all beyond the first two to use the same
7030      mode.  */
7031 
7032   found_equiv = false;
7033   mode = GET_MODE (cc_src);
7034   insn_count = 0;
7035   FOR_EACH_EDGE (e, ei, bb->succs)
7036     {
7037       rtx insn;
7038       rtx end;
7039 
7040       if (e->flags & EDGE_COMPLEX)
7041 	continue;
7042 
7043       if (EDGE_COUNT (e->dest->preds) != 1
7044 	  || e->dest == EXIT_BLOCK_PTR
7045 	  /* Avoid endless recursion on unreachable blocks.  */
7046 	  || e->dest == orig_bb)
7047 	continue;
7048 
7049       end = NEXT_INSN (BB_END (e->dest));
7050       for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7051 	{
7052 	  rtx set;
7053 
7054 	  if (! INSN_P (insn))
7055 	    continue;
7056 
7057 	  /* If CC_SRC is modified, we have to stop looking for
7058 	     something which uses it.  */
7059 	  if (modified_in_p (cc_src, insn))
7060 	    break;
7061 
7062 	  /* Check whether INSN sets CC_REG to CC_SRC.  */
7063 	  set = single_set (insn);
7064 	  if (set
7065 	      && REG_P (SET_DEST (set))
7066 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7067 	    {
7068 	      bool found;
7069 	      enum machine_mode set_mode;
7070 	      enum machine_mode comp_mode;
7071 
7072 	      found = false;
7073 	      set_mode = GET_MODE (SET_SRC (set));
7074 	      comp_mode = set_mode;
7075 	      if (rtx_equal_p (cc_src, SET_SRC (set)))
7076 		found = true;
7077 	      else if (GET_CODE (cc_src) == COMPARE
7078 		       && GET_CODE (SET_SRC (set)) == COMPARE
7079 		       && mode != set_mode
7080 		       && rtx_equal_p (XEXP (cc_src, 0),
7081 				       XEXP (SET_SRC (set), 0))
7082 		       && rtx_equal_p (XEXP (cc_src, 1),
7083 				       XEXP (SET_SRC (set), 1)))
7084 
7085 		{
7086 		  comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7087 		  if (comp_mode != VOIDmode
7088 		      && (can_change_mode || comp_mode == mode))
7089 		    found = true;
7090 		}
7091 
7092 	      if (found)
7093 		{
7094 		  found_equiv = true;
7095 		  if (insn_count < ARRAY_SIZE (insns))
7096 		    {
7097 		      insns[insn_count] = insn;
7098 		      modes[insn_count] = set_mode;
7099 		      last_insns[insn_count] = end;
7100 		      ++insn_count;
7101 
7102 		      if (mode != comp_mode)
7103 			{
7104 			  gcc_assert (can_change_mode);
7105 			  mode = comp_mode;
7106 
7107 			  /* The modified insn will be re-recognized later.  */
7108 			  PUT_MODE (cc_src, mode);
7109 			}
7110 		    }
7111 		  else
7112 		    {
7113 		      if (set_mode != mode)
7114 			{
7115 			  /* We found a matching expression in the
7116 			     wrong mode, but we don't have room to
7117 			     store it in the array.  Punt.  This case
7118 			     should be rare.  */
7119 			  break;
7120 			}
7121 		      /* INSN sets CC_REG to a value equal to CC_SRC
7122 			 with the right mode.  We can simply delete
7123 			 it.  */
7124 		      delete_insn (insn);
7125 		    }
7126 
7127 		  /* We found an instruction to delete.  Keep looking,
7128 		     in the hopes of finding a three-way jump.  */
7129 		  continue;
7130 		}
7131 
7132 	      /* We found an instruction which sets the condition
7133 		 code, so don't look any farther.  */
7134 	      break;
7135 	    }
7136 
7137 	  /* If INSN sets CC_REG in some other way, don't look any
7138 	     farther.  */
7139 	  if (reg_set_p (cc_reg, insn))
7140 	    break;
7141 	}
7142 
7143       /* If we fell off the bottom of the block, we can keep looking
7144 	 through successors.  We pass CAN_CHANGE_MODE as false because
7145 	 we aren't prepared to handle compatibility between the
7146 	 further blocks and this block.  */
7147       if (insn == end)
7148 	{
7149 	  enum machine_mode submode;
7150 
7151 	  submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7152 	  if (submode != VOIDmode)
7153 	    {
7154 	      gcc_assert (submode == mode);
7155 	      found_equiv = true;
7156 	      can_change_mode = false;
7157 	    }
7158 	}
7159     }
7160 
7161   if (! found_equiv)
7162     return VOIDmode;
7163 
7164   /* Now INSN_COUNT is the number of instructions we found which set
7165      CC_REG to a value equivalent to CC_SRC.  The instructions are in
7166      INSNS.  The modes used by those instructions are in MODES.  */
7167 
7168   newreg = NULL_RTX;
7169   for (i = 0; i < insn_count; ++i)
7170     {
7171       if (modes[i] != mode)
7172 	{
7173 	  /* We need to change the mode of CC_REG in INSNS[i] and
7174 	     subsequent instructions.  */
7175 	  if (! newreg)
7176 	    {
7177 	      if (GET_MODE (cc_reg) == mode)
7178 		newreg = cc_reg;
7179 	      else
7180 		newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7181 	    }
7182 	  cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7183 				    newreg);
7184 	}
7185 
7186       delete_insn_and_edges (insns[i]);
7187     }
7188 
7189   return mode;
7190 }
7191 
7192 /* If we have a fixed condition code register (or two), walk through
7193    the instructions and try to eliminate duplicate assignments.  */
7194 
7195 static void
7196 cse_condition_code_reg (void)
7197 {
7198   unsigned int cc_regno_1;
7199   unsigned int cc_regno_2;
7200   rtx cc_reg_1;
7201   rtx cc_reg_2;
7202   basic_block bb;
7203 
7204   if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7205     return;
7206 
7207   cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7208   if (cc_regno_2 != INVALID_REGNUM)
7209     cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7210   else
7211     cc_reg_2 = NULL_RTX;
7212 
7213   FOR_EACH_BB (bb)
7214     {
7215       rtx last_insn;
7216       rtx cc_reg;
7217       rtx insn;
7218       rtx cc_src_insn;
7219       rtx cc_src;
7220       enum machine_mode mode;
7221       enum machine_mode orig_mode;
7222 
7223       /* Look for blocks which end with a conditional jump based on a
7224 	 condition code register.  Then look for the instruction which
7225 	 sets the condition code register.  Then look through the
7226 	 successor blocks for instructions which set the condition
7227 	 code register to the same value.  There are other possible
7228 	 uses of the condition code register, but these are by far the
7229 	 most common and the ones which we are most likely to be able
7230 	 to optimize.  */
7231 
7232       last_insn = BB_END (bb);
7233       if (!JUMP_P (last_insn))
7234 	continue;
7235 
7236       if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7237 	cc_reg = cc_reg_1;
7238       else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7239 	cc_reg = cc_reg_2;
7240       else
7241 	continue;
7242 
7243       cc_src_insn = NULL_RTX;
7244       cc_src = NULL_RTX;
7245       for (insn = PREV_INSN (last_insn);
7246 	   insn && insn != PREV_INSN (BB_HEAD (bb));
7247 	   insn = PREV_INSN (insn))
7248 	{
7249 	  rtx set;
7250 
7251 	  if (! INSN_P (insn))
7252 	    continue;
7253 	  set = single_set (insn);
7254 	  if (set
7255 	      && REG_P (SET_DEST (set))
7256 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7257 	    {
7258 	      cc_src_insn = insn;
7259 	      cc_src = SET_SRC (set);
7260 	      break;
7261 	    }
7262 	  else if (reg_set_p (cc_reg, insn))
7263 	    break;
7264 	}
7265 
7266       if (! cc_src_insn)
7267 	continue;
7268 
7269       if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7270 	continue;
7271 
7272       /* Now CC_REG is a condition code register used for a
7273 	 conditional jump at the end of the block, and CC_SRC, in
7274 	 CC_SRC_INSN, is the value to which that condition code
7275 	 register is set, and CC_SRC is still meaningful at the end of
7276 	 the basic block.  */
7277 
7278       orig_mode = GET_MODE (cc_src);
7279       mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7280       if (mode != VOIDmode)
7281 	{
7282 	  gcc_assert (mode == GET_MODE (cc_src));
7283 	  if (mode != orig_mode)
7284 	    {
7285 	      rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7286 
7287 	      cse_change_cc_mode_insn (cc_src_insn, newreg);
7288 
7289 	      /* Do the same in the following insns that use the
7290 		 current value of CC_REG within BB.  */
7291 	      cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7292 					NEXT_INSN (last_insn),
7293 					newreg);
7294 	    }
7295 	}
7296     }
7297 }
7298 
7299 
7300 /* Perform common subexpression elimination.  Nonzero value from
7301    `cse_main' means that jumps were simplified and some code may now
7302    be unreachable, so do jump optimization again.  */
7303 static bool
7304 gate_handle_cse (void)
7305 {
7306   return optimize > 0;
7307 }
7308 
7309 static unsigned int
7310 rest_of_handle_cse (void)
7311 {
7312   int tem;
7313 
7314   if (dump_file)
7315     dump_flow_info (dump_file, dump_flags);
7316 
7317   tem = cse_main (get_insns (), max_reg_num ());
7318 
7319   /* If we are not running more CSE passes, then we are no longer
7320      expecting CSE to be run.  But always rerun it in a cheap mode.  */
7321   cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7322 
7323   if (tem == 2)
7324     {
7325       timevar_push (TV_JUMP);
7326       rebuild_jump_labels (get_insns ());
7327       cleanup_cfg (0);
7328       timevar_pop (TV_JUMP);
7329     }
7330   else if (tem == 1 || optimize > 1)
7331     cleanup_cfg (0);
7332 
7333   return 0;
7334 }
7335 
7336 struct rtl_opt_pass pass_cse =
7337 {
7338  {
7339   RTL_PASS,
7340   "cse1",                               /* name */
7341   gate_handle_cse,                      /* gate */
7342   rest_of_handle_cse,			/* execute */
7343   NULL,                                 /* sub */
7344   NULL,                                 /* next */
7345   0,                                    /* static_pass_number */
7346   TV_CSE,                               /* tv_id */
7347   0,                                    /* properties_required */
7348   0,                                    /* properties_provided */
7349   0,                                    /* properties_destroyed */
7350   0,                                    /* todo_flags_start */
7351   TODO_df_finish | TODO_verify_rtl_sharing |
7352   TODO_ggc_collect |
7353   TODO_verify_flow,                     /* todo_flags_finish */
7354  }
7355 };
7356 
7357 
7358 static bool
7359 gate_handle_cse2 (void)
7360 {
7361   return optimize > 0 && flag_rerun_cse_after_loop;
7362 }
7363 
7364 /* Run second CSE pass after loop optimizations.  */
7365 static unsigned int
7366 rest_of_handle_cse2 (void)
7367 {
7368   int tem;
7369 
7370   if (dump_file)
7371     dump_flow_info (dump_file, dump_flags);
7372 
7373   tem = cse_main (get_insns (), max_reg_num ());
7374 
7375   /* Run a pass to eliminate duplicated assignments to condition code
7376      registers.  We have to run this after bypass_jumps, because it
7377      makes it harder for that pass to determine whether a jump can be
7378      bypassed safely.  */
7379   cse_condition_code_reg ();
7380 
7381   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7382 
7383   if (tem == 2)
7384     {
7385       timevar_push (TV_JUMP);
7386       rebuild_jump_labels (get_insns ());
7387       cleanup_cfg (0);
7388       timevar_pop (TV_JUMP);
7389     }
7390   else if (tem == 1)
7391     cleanup_cfg (0);
7392 
7393   cse_not_expected = 1;
7394   return 0;
7395 }
7396 
7397 
7398 struct rtl_opt_pass pass_cse2 =
7399 {
7400  {
7401   RTL_PASS,
7402   "cse2",                               /* name */
7403   gate_handle_cse2,                     /* gate */
7404   rest_of_handle_cse2,			/* execute */
7405   NULL,                                 /* sub */
7406   NULL,                                 /* next */
7407   0,                                    /* static_pass_number */
7408   TV_CSE2,                              /* tv_id */
7409   0,                                    /* properties_required */
7410   0,                                    /* properties_provided */
7411   0,                                    /* properties_destroyed */
7412   0,                                    /* todo_flags_start */
7413   TODO_df_finish | TODO_verify_rtl_sharing |
7414   TODO_ggc_collect |
7415   TODO_verify_flow                      /* todo_flags_finish */
7416  }
7417 };
7418 
7419 static bool
7420 gate_handle_cse_after_global_opts (void)
7421 {
7422   return optimize > 0 && flag_rerun_cse_after_global_opts;
7423 }
7424 
7425 /* Run second CSE pass after loop optimizations.  */
7426 static unsigned int
7427 rest_of_handle_cse_after_global_opts (void)
7428 {
7429   int save_cfj;
7430   int tem;
7431 
7432   /* We only want to do local CSE, so don't follow jumps.  */
7433   save_cfj = flag_cse_follow_jumps;
7434   flag_cse_follow_jumps = 0;
7435 
7436   rebuild_jump_labels (get_insns ());
7437   tem = cse_main (get_insns (), max_reg_num ());
7438   purge_all_dead_edges ();
7439   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7440 
7441   cse_not_expected = !flag_rerun_cse_after_loop;
7442 
7443   /* If cse altered any jumps, rerun jump opts to clean things up.  */
7444   if (tem == 2)
7445     {
7446       timevar_push (TV_JUMP);
7447       rebuild_jump_labels (get_insns ());
7448       cleanup_cfg (0);
7449       timevar_pop (TV_JUMP);
7450     }
7451   else if (tem == 1)
7452     cleanup_cfg (0);
7453 
7454   flag_cse_follow_jumps = save_cfj;
7455   return 0;
7456 }
7457 
7458 struct rtl_opt_pass pass_cse_after_global_opts =
7459 {
7460  {
7461   RTL_PASS,
7462   "cse_local",                          /* name */
7463   gate_handle_cse_after_global_opts,    /* gate */
7464   rest_of_handle_cse_after_global_opts, /* execute */
7465   NULL,                                 /* sub */
7466   NULL,                                 /* next */
7467   0,                                    /* static_pass_number */
7468   TV_CSE,                               /* tv_id */
7469   0,                                    /* properties_required */
7470   0,                                    /* properties_provided */
7471   0,                                    /* properties_destroyed */
7472   0,                                    /* todo_flags_start */
7473   TODO_df_finish | TODO_verify_rtl_sharing |
7474   TODO_ggc_collect |
7475   TODO_verify_flow                      /* todo_flags_finish */
7476  }
7477 };
7478