xref: /dragonfly/contrib/gcc-4.7/gcc/doc/extend.texi (revision 25a2db75)
1@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2@c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3@c Free Software Foundation, Inc.
4
5@c This is part of the GCC manual.
6@c For copying conditions, see the file gcc.texi.
7
8@node C Extensions
9@chapter Extensions to the C Language Family
10@cindex extensions, C language
11@cindex C language extensions
12
13@opindex pedantic
14GNU C provides several language features not found in ISO standard C@.
15(The @option{-pedantic} option directs GCC to print a warning message if
16any of these features is used.)  To test for the availability of these
17features in conditional compilation, check for a predefined macro
18@code{__GNUC__}, which is always defined under GCC@.
19
20These extensions are available in C and Objective-C@.  Most of them are
21also available in C++.  @xref{C++ Extensions,,Extensions to the
22C++ Language}, for extensions that apply @emph{only} to C++.
23
24Some features that are in ISO C99 but not C90 or C++ are also, as
25extensions, accepted by GCC in C90 mode and in C++.
26
27@menu
28* Statement Exprs::     Putting statements and declarations inside expressions.
29* Local Labels::        Labels local to a block.
30* Labels as Values::    Getting pointers to labels, and computed gotos.
31* Nested Functions::    As in Algol and Pascal, lexical scoping of functions.
32* Constructing Calls::  Dispatching a call to another function.
33* Typeof::              @code{typeof}: referring to the type of an expression.
34* Conditionals::        Omitting the middle operand of a @samp{?:} expression.
35* Long Long::           Double-word integers---@code{long long int}.
36* __int128::			128-bit integers---@code{__int128}.
37* Complex::             Data types for complex numbers.
38* Floating Types::      Additional Floating Types.
39* Half-Precision::      Half-Precision Floating Point.
40* Decimal Float::       Decimal Floating Types.
41* Hex Floats::          Hexadecimal floating-point constants.
42* Fixed-Point::         Fixed-Point Types.
43* Named Address Spaces::Named address spaces.
44* Zero Length::         Zero-length arrays.
45* Variable Length::     Arrays whose length is computed at run time.
46* Empty Structures::    Structures with no members.
47* Variadic Macros::     Macros with a variable number of arguments.
48* Escaped Newlines::    Slightly looser rules for escaped newlines.
49* Subscripting::        Any array can be subscripted, even if not an lvalue.
50* Pointer Arith::       Arithmetic on @code{void}-pointers and function pointers.
51* Initializers::        Non-constant initializers.
52* Compound Literals::   Compound literals give structures, unions
53                        or arrays as values.
54* Designated Inits::    Labeling elements of initializers.
55* Cast to Union::       Casting to union type from any member of the union.
56* Case Ranges::         `case 1 ... 9' and such.
57* Mixed Declarations::  Mixing declarations and code.
58* Function Attributes:: Declaring that functions have no side effects,
59                        or that they can never return.
60* Attribute Syntax::    Formal syntax for attributes.
61* Function Prototypes:: Prototype declarations and old-style definitions.
62* C++ Comments::        C++ comments are recognized.
63* Dollar Signs::        Dollar sign is allowed in identifiers.
64* Character Escapes::   @samp{\e} stands for the character @key{ESC}.
65* Variable Attributes:: Specifying attributes of variables.
66* Type Attributes::     Specifying attributes of types.
67* Alignment::           Inquiring about the alignment of a type or variable.
68* Inline::              Defining inline functions (as fast as macros).
69* Volatiles::           What constitutes an access to a volatile object.
70* Extended Asm::        Assembler instructions with C expressions as operands.
71                        (With them you can define ``built-in'' functions.)
72* Constraints::         Constraints for asm operands
73* Asm Labels::          Specifying the assembler name to use for a C symbol.
74* Explicit Reg Vars::   Defining variables residing in specified registers.
75* Alternate Keywords::  @code{__const__}, @code{__asm__}, etc., for header files.
76* Incomplete Enums::    @code{enum foo;}, with details to follow.
77* Function Names::      Printable strings which are the name of the current
78                        function.
79* Return Address::      Getting the return or frame address of a function.
80* Vector Extensions::   Using vector instructions through built-in functions.
81* Offsetof::            Special syntax for implementing @code{offsetof}.
82* __sync Builtins::     Legacy built-in functions for atomic memory access.
83* __atomic Builtins::   Atomic built-in functions with memory model.
84* Object Size Checking:: Built-in functions for limited buffer overflow
85                        checking.
86* Other Builtins::      Other built-in functions.
87* Target Builtins::     Built-in functions specific to particular targets.
88* Target Format Checks:: Format checks specific to particular targets.
89* Pragmas::             Pragmas accepted by GCC.
90* Unnamed Fields::      Unnamed struct/union fields within structs/unions.
91* Thread-Local::        Per-thread variables.
92* Binary constants::    Binary constants using the @samp{0b} prefix.
93@end menu
94
95@node Statement Exprs
96@section Statements and Declarations in Expressions
97@cindex statements inside expressions
98@cindex declarations inside expressions
99@cindex expressions containing statements
100@cindex macros, statements in expressions
101
102@c the above section title wrapped and causes an underfull hbox.. i
103@c changed it from "within" to "in". --mew 4feb93
104A compound statement enclosed in parentheses may appear as an expression
105in GNU C@.  This allows you to use loops, switches, and local variables
106within an expression.
107
108Recall that a compound statement is a sequence of statements surrounded
109by braces; in this construct, parentheses go around the braces.  For
110example:
111
112@smallexample
113(@{ int y = foo (); int z;
114   if (y > 0) z = y;
115   else z = - y;
116   z; @})
117@end smallexample
118
119@noindent
120is a valid (though slightly more complex than necessary) expression
121for the absolute value of @code{foo ()}.
122
123The last thing in the compound statement should be an expression
124followed by a semicolon; the value of this subexpression serves as the
125value of the entire construct.  (If you use some other kind of statement
126last within the braces, the construct has type @code{void}, and thus
127effectively no value.)
128
129This feature is especially useful in making macro definitions ``safe'' (so
130that they evaluate each operand exactly once).  For example, the
131``maximum'' function is commonly defined as a macro in standard C as
132follows:
133
134@smallexample
135#define max(a,b) ((a) > (b) ? (a) : (b))
136@end smallexample
137
138@noindent
139@cindex side effects, macro argument
140But this definition computes either @var{a} or @var{b} twice, with bad
141results if the operand has side effects.  In GNU C, if you know the
142type of the operands (here taken as @code{int}), you can define
143the macro safely as follows:
144
145@smallexample
146#define maxint(a,b) \
147  (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
148@end smallexample
149
150Embedded statements are not allowed in constant expressions, such as
151the value of an enumeration constant, the width of a bit-field, or
152the initial value of a static variable.
153
154If you don't know the type of the operand, you can still do this, but you
155must use @code{typeof} (@pxref{Typeof}).
156
157In G++, the result value of a statement expression undergoes array and
158function pointer decay, and is returned by value to the enclosing
159expression.  For instance, if @code{A} is a class, then
160
161@smallexample
162        A a;
163
164        (@{a;@}).Foo ()
165@end smallexample
166
167@noindent
168will construct a temporary @code{A} object to hold the result of the
169statement expression, and that will be used to invoke @code{Foo}.
170Therefore the @code{this} pointer observed by @code{Foo} will not be the
171address of @code{a}.
172
173Any temporaries created within a statement within a statement expression
174will be destroyed at the statement's end.  This makes statement
175expressions inside macros slightly different from function calls.  In
176the latter case temporaries introduced during argument evaluation will
177be destroyed at the end of the statement that includes the function
178call.  In the statement expression case they will be destroyed during
179the statement expression.  For instance,
180
181@smallexample
182#define macro(a)  (@{__typeof__(a) b = (a); b + 3; @})
183template<typename T> T function(T a) @{ T b = a; return b + 3; @}
184
185void foo ()
186@{
187  macro (X ());
188  function (X ());
189@}
190@end smallexample
191
192@noindent
193will have different places where temporaries are destroyed.  For the
194@code{macro} case, the temporary @code{X} will be destroyed just after
195the initialization of @code{b}.  In the @code{function} case that
196temporary will be destroyed when the function returns.
197
198These considerations mean that it is probably a bad idea to use
199statement-expressions of this form in header files that are designed to
200work with C++.  (Note that some versions of the GNU C Library contained
201header files using statement-expression that lead to precisely this
202bug.)
203
204Jumping into a statement expression with @code{goto} or using a
205@code{switch} statement outside the statement expression with a
206@code{case} or @code{default} label inside the statement expression is
207not permitted.  Jumping into a statement expression with a computed
208@code{goto} (@pxref{Labels as Values}) yields undefined behavior.
209Jumping out of a statement expression is permitted, but if the
210statement expression is part of a larger expression then it is
211unspecified which other subexpressions of that expression have been
212evaluated except where the language definition requires certain
213subexpressions to be evaluated before or after the statement
214expression.  In any case, as with a function call the evaluation of a
215statement expression is not interleaved with the evaluation of other
216parts of the containing expression.  For example,
217
218@smallexample
219  foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
220@end smallexample
221
222@noindent
223will call @code{foo} and @code{bar1} and will not call @code{baz} but
224may or may not call @code{bar2}.  If @code{bar2} is called, it will be
225called after @code{foo} and before @code{bar1}
226
227@node Local Labels
228@section Locally Declared Labels
229@cindex local labels
230@cindex macros, local labels
231
232GCC allows you to declare @dfn{local labels} in any nested block
233scope.  A local label is just like an ordinary label, but you can
234only reference it (with a @code{goto} statement, or by taking its
235address) within the block in which it was declared.
236
237A local label declaration looks like this:
238
239@smallexample
240__label__ @var{label};
241@end smallexample
242
243@noindent
244or
245
246@smallexample
247__label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
248@end smallexample
249
250Local label declarations must come at the beginning of the block,
251before any ordinary declarations or statements.
252
253The label declaration defines the label @emph{name}, but does not define
254the label itself.  You must do this in the usual way, with
255@code{@var{label}:}, within the statements of the statement expression.
256
257The local label feature is useful for complex macros.  If a macro
258contains nested loops, a @code{goto} can be useful for breaking out of
259them.  However, an ordinary label whose scope is the whole function
260cannot be used: if the macro can be expanded several times in one
261function, the label will be multiply defined in that function.  A
262local label avoids this problem.  For example:
263
264@smallexample
265#define SEARCH(value, array, target)              \
266do @{                                              \
267  __label__ found;                                \
268  typeof (target) _SEARCH_target = (target);      \
269  typeof (*(array)) *_SEARCH_array = (array);     \
270  int i, j;                                       \
271  int value;                                      \
272  for (i = 0; i < max; i++)                       \
273    for (j = 0; j < max; j++)                     \
274      if (_SEARCH_array[i][j] == _SEARCH_target)  \
275        @{ (value) = i; goto found; @}              \
276  (value) = -1;                                   \
277 found:;                                          \
278@} while (0)
279@end smallexample
280
281This could also be written using a statement-expression:
282
283@smallexample
284#define SEARCH(array, target)                     \
285(@{                                                \
286  __label__ found;                                \
287  typeof (target) _SEARCH_target = (target);      \
288  typeof (*(array)) *_SEARCH_array = (array);     \
289  int i, j;                                       \
290  int value;                                      \
291  for (i = 0; i < max; i++)                       \
292    for (j = 0; j < max; j++)                     \
293      if (_SEARCH_array[i][j] == _SEARCH_target)  \
294        @{ value = i; goto found; @}                \
295  value = -1;                                     \
296 found:                                           \
297  value;                                          \
298@})
299@end smallexample
300
301Local label declarations also make the labels they declare visible to
302nested functions, if there are any.  @xref{Nested Functions}, for details.
303
304@node Labels as Values
305@section Labels as Values
306@cindex labels as values
307@cindex computed gotos
308@cindex goto with computed label
309@cindex address of a label
310
311You can get the address of a label defined in the current function
312(or a containing function) with the unary operator @samp{&&}.  The
313value has type @code{void *}.  This value is a constant and can be used
314wherever a constant of that type is valid.  For example:
315
316@smallexample
317void *ptr;
318/* @r{@dots{}} */
319ptr = &&foo;
320@end smallexample
321
322To use these values, you need to be able to jump to one.  This is done
323with the computed goto statement@footnote{The analogous feature in
324Fortran is called an assigned goto, but that name seems inappropriate in
325C, where one can do more than simply store label addresses in label
326variables.}, @code{goto *@var{exp};}.  For example,
327
328@smallexample
329goto *ptr;
330@end smallexample
331
332@noindent
333Any expression of type @code{void *} is allowed.
334
335One way of using these constants is in initializing a static array that
336will serve as a jump table:
337
338@smallexample
339static void *array[] = @{ &&foo, &&bar, &&hack @};
340@end smallexample
341
342Then you can select a label with indexing, like this:
343
344@smallexample
345goto *array[i];
346@end smallexample
347
348@noindent
349Note that this does not check whether the subscript is in bounds---array
350indexing in C never does that.
351
352Such an array of label values serves a purpose much like that of the
353@code{switch} statement.  The @code{switch} statement is cleaner, so
354use that rather than an array unless the problem does not fit a
355@code{switch} statement very well.
356
357Another use of label values is in an interpreter for threaded code.
358The labels within the interpreter function can be stored in the
359threaded code for super-fast dispatching.
360
361You may not use this mechanism to jump to code in a different function.
362If you do that, totally unpredictable things will happen.  The best way to
363avoid this is to store the label address only in automatic variables and
364never pass it as an argument.
365
366An alternate way to write the above example is
367
368@smallexample
369static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
370                             &&hack - &&foo @};
371goto *(&&foo + array[i]);
372@end smallexample
373
374@noindent
375This is more friendly to code living in shared libraries, as it reduces
376the number of dynamic relocations that are needed, and by consequence,
377allows the data to be read-only.
378
379The @code{&&foo} expressions for the same label might have different
380values if the containing function is inlined or cloned.  If a program
381relies on them being always the same,
382@code{__attribute__((__noinline__,__noclone__))} should be used to
383prevent inlining and cloning.  If @code{&&foo} is used in a static
384variable initializer, inlining and cloning is forbidden.
385
386@node Nested Functions
387@section Nested Functions
388@cindex nested functions
389@cindex downward funargs
390@cindex thunks
391
392A @dfn{nested function} is a function defined inside another function.
393(Nested functions are not supported for GNU C++.)  The nested function's
394name is local to the block where it is defined.  For example, here we
395define a nested function named @code{square}, and call it twice:
396
397@smallexample
398@group
399foo (double a, double b)
400@{
401  double square (double z) @{ return z * z; @}
402
403  return square (a) + square (b);
404@}
405@end group
406@end smallexample
407
408The nested function can access all the variables of the containing
409function that are visible at the point of its definition.  This is
410called @dfn{lexical scoping}.  For example, here we show a nested
411function which uses an inherited variable named @code{offset}:
412
413@smallexample
414@group
415bar (int *array, int offset, int size)
416@{
417  int access (int *array, int index)
418    @{ return array[index + offset]; @}
419  int i;
420  /* @r{@dots{}} */
421  for (i = 0; i < size; i++)
422    /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
423@}
424@end group
425@end smallexample
426
427Nested function definitions are permitted within functions in the places
428where variable definitions are allowed; that is, in any block, mixed
429with the other declarations and statements in the block.
430
431It is possible to call the nested function from outside the scope of its
432name by storing its address or passing the address to another function:
433
434@smallexample
435hack (int *array, int size)
436@{
437  void store (int index, int value)
438    @{ array[index] = value; @}
439
440  intermediate (store, size);
441@}
442@end smallexample
443
444Here, the function @code{intermediate} receives the address of
445@code{store} as an argument.  If @code{intermediate} calls @code{store},
446the arguments given to @code{store} are used to store into @code{array}.
447But this technique works only so long as the containing function
448(@code{hack}, in this example) does not exit.
449
450If you try to call the nested function through its address after the
451containing function has exited, all hell will break loose.  If you try
452to call it after a containing scope level has exited, and if it refers
453to some of the variables that are no longer in scope, you may be lucky,
454but it's not wise to take the risk.  If, however, the nested function
455does not refer to anything that has gone out of scope, you should be
456safe.
457
458GCC implements taking the address of a nested function using a technique
459called @dfn{trampolines}.  This technique was described in
460@cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
461C++ Conference Proceedings, October 17-21, 1988).
462
463A nested function can jump to a label inherited from a containing
464function, provided the label was explicitly declared in the containing
465function (@pxref{Local Labels}).  Such a jump returns instantly to the
466containing function, exiting the nested function which did the
467@code{goto} and any intermediate functions as well.  Here is an example:
468
469@smallexample
470@group
471bar (int *array, int offset, int size)
472@{
473  __label__ failure;
474  int access (int *array, int index)
475    @{
476      if (index > size)
477        goto failure;
478      return array[index + offset];
479    @}
480  int i;
481  /* @r{@dots{}} */
482  for (i = 0; i < size; i++)
483    /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
484  /* @r{@dots{}} */
485  return 0;
486
487 /* @r{Control comes here from @code{access}
488    if it detects an error.}  */
489 failure:
490  return -1;
491@}
492@end group
493@end smallexample
494
495A nested function always has no linkage.  Declaring one with
496@code{extern} or @code{static} is erroneous.  If you need to declare the nested function
497before its definition, use @code{auto} (which is otherwise meaningless
498for function declarations).
499
500@smallexample
501bar (int *array, int offset, int size)
502@{
503  __label__ failure;
504  auto int access (int *, int);
505  /* @r{@dots{}} */
506  int access (int *array, int index)
507    @{
508      if (index > size)
509        goto failure;
510      return array[index + offset];
511    @}
512  /* @r{@dots{}} */
513@}
514@end smallexample
515
516@node Constructing Calls
517@section Constructing Function Calls
518@cindex constructing calls
519@cindex forwarding calls
520
521Using the built-in functions described below, you can record
522the arguments a function received, and call another function
523with the same arguments, without knowing the number or types
524of the arguments.
525
526You can also record the return value of that function call,
527and later return that value, without knowing what data type
528the function tried to return (as long as your caller expects
529that data type).
530
531However, these built-in functions may interact badly with some
532sophisticated features or other extensions of the language.  It
533is, therefore, not recommended to use them outside very simple
534functions acting as mere forwarders for their arguments.
535
536@deftypefn {Built-in Function} {void *} __builtin_apply_args ()
537This built-in function returns a pointer to data
538describing how to perform a call with the same arguments as were passed
539to the current function.
540
541The function saves the arg pointer register, structure value address,
542and all registers that might be used to pass arguments to a function
543into a block of memory allocated on the stack.  Then it returns the
544address of that block.
545@end deftypefn
546
547@deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
548This built-in function invokes @var{function}
549with a copy of the parameters described by @var{arguments}
550and @var{size}.
551
552The value of @var{arguments} should be the value returned by
553@code{__builtin_apply_args}.  The argument @var{size} specifies the size
554of the stack argument data, in bytes.
555
556This function returns a pointer to data describing
557how to return whatever value was returned by @var{function}.  The data
558is saved in a block of memory allocated on the stack.
559
560It is not always simple to compute the proper value for @var{size}.  The
561value is used by @code{__builtin_apply} to compute the amount of data
562that should be pushed on the stack and copied from the incoming argument
563area.
564@end deftypefn
565
566@deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
567This built-in function returns the value described by @var{result} from
568the containing function.  You should specify, for @var{result}, a value
569returned by @code{__builtin_apply}.
570@end deftypefn
571
572@deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
573This built-in function represents all anonymous arguments of an inline
574function.  It can be used only in inline functions which will be always
575inlined, never compiled as a separate function, such as those using
576@code{__attribute__ ((__always_inline__))} or
577@code{__attribute__ ((__gnu_inline__))} extern inline functions.
578It must be only passed as last argument to some other function
579with variable arguments.  This is useful for writing small wrapper
580inlines for variable argument functions, when using preprocessor
581macros is undesirable.  For example:
582@smallexample
583extern int myprintf (FILE *f, const char *format, ...);
584extern inline __attribute__ ((__gnu_inline__)) int
585myprintf (FILE *f, const char *format, ...)
586@{
587  int r = fprintf (f, "myprintf: ");
588  if (r < 0)
589    return r;
590  int s = fprintf (f, format, __builtin_va_arg_pack ());
591  if (s < 0)
592    return s;
593  return r + s;
594@}
595@end smallexample
596@end deftypefn
597
598@deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
599This built-in function returns the number of anonymous arguments of
600an inline function.  It can be used only in inline functions which
601will be always inlined, never compiled as a separate function, such
602as those using @code{__attribute__ ((__always_inline__))} or
603@code{__attribute__ ((__gnu_inline__))} extern inline functions.
604For example following will do link or runtime checking of open
605arguments for optimized code:
606@smallexample
607#ifdef __OPTIMIZE__
608extern inline __attribute__((__gnu_inline__)) int
609myopen (const char *path, int oflag, ...)
610@{
611  if (__builtin_va_arg_pack_len () > 1)
612    warn_open_too_many_arguments ();
613
614  if (__builtin_constant_p (oflag))
615    @{
616      if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
617        @{
618          warn_open_missing_mode ();
619          return __open_2 (path, oflag);
620        @}
621      return open (path, oflag, __builtin_va_arg_pack ());
622    @}
623
624  if (__builtin_va_arg_pack_len () < 1)
625    return __open_2 (path, oflag);
626
627  return open (path, oflag, __builtin_va_arg_pack ());
628@}
629#endif
630@end smallexample
631@end deftypefn
632
633@node Typeof
634@section Referring to a Type with @code{typeof}
635@findex typeof
636@findex sizeof
637@cindex macros, types of arguments
638
639Another way to refer to the type of an expression is with @code{typeof}.
640The syntax of using of this keyword looks like @code{sizeof}, but the
641construct acts semantically like a type name defined with @code{typedef}.
642
643There are two ways of writing the argument to @code{typeof}: with an
644expression or with a type.  Here is an example with an expression:
645
646@smallexample
647typeof (x[0](1))
648@end smallexample
649
650@noindent
651This assumes that @code{x} is an array of pointers to functions;
652the type described is that of the values of the functions.
653
654Here is an example with a typename as the argument:
655
656@smallexample
657typeof (int *)
658@end smallexample
659
660@noindent
661Here the type described is that of pointers to @code{int}.
662
663If you are writing a header file that must work when included in ISO C
664programs, write @code{__typeof__} instead of @code{typeof}.
665@xref{Alternate Keywords}.
666
667A @code{typeof}-construct can be used anywhere a typedef name could be
668used.  For example, you can use it in a declaration, in a cast, or inside
669of @code{sizeof} or @code{typeof}.
670
671The operand of @code{typeof} is evaluated for its side effects if and
672only if it is an expression of variably modified type or the name of
673such a type.
674
675@code{typeof} is often useful in conjunction with the
676statements-within-expressions feature.  Here is how the two together can
677be used to define a safe ``maximum'' macro that operates on any
678arithmetic type and evaluates each of its arguments exactly once:
679
680@smallexample
681#define max(a,b) \
682  (@{ typeof (a) _a = (a); \
683      typeof (b) _b = (b); \
684    _a > _b ? _a : _b; @})
685@end smallexample
686
687@cindex underscores in variables in macros
688@cindex @samp{_} in variables in macros
689@cindex local variables in macros
690@cindex variables, local, in macros
691@cindex macros, local variables in
692
693The reason for using names that start with underscores for the local
694variables is to avoid conflicts with variable names that occur within the
695expressions that are substituted for @code{a} and @code{b}.  Eventually we
696hope to design a new form of declaration syntax that allows you to declare
697variables whose scopes start only after their initializers; this will be a
698more reliable way to prevent such conflicts.
699
700@noindent
701Some more examples of the use of @code{typeof}:
702
703@itemize @bullet
704@item
705This declares @code{y} with the type of what @code{x} points to.
706
707@smallexample
708typeof (*x) y;
709@end smallexample
710
711@item
712This declares @code{y} as an array of such values.
713
714@smallexample
715typeof (*x) y[4];
716@end smallexample
717
718@item
719This declares @code{y} as an array of pointers to characters:
720
721@smallexample
722typeof (typeof (char *)[4]) y;
723@end smallexample
724
725@noindent
726It is equivalent to the following traditional C declaration:
727
728@smallexample
729char *y[4];
730@end smallexample
731
732To see the meaning of the declaration using @code{typeof}, and why it
733might be a useful way to write, rewrite it with these macros:
734
735@smallexample
736#define pointer(T)  typeof(T *)
737#define array(T, N) typeof(T [N])
738@end smallexample
739
740@noindent
741Now the declaration can be rewritten this way:
742
743@smallexample
744array (pointer (char), 4) y;
745@end smallexample
746
747@noindent
748Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
749pointers to @code{char}.
750@end itemize
751
752@emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
753a more limited extension which permitted one to write
754
755@smallexample
756typedef @var{T} = @var{expr};
757@end smallexample
758
759@noindent
760with the effect of declaring @var{T} to have the type of the expression
761@var{expr}.  This extension does not work with GCC 3 (versions between
7623.0 and 3.2 will crash; 3.2.1 and later give an error).  Code which
763relies on it should be rewritten to use @code{typeof}:
764
765@smallexample
766typedef typeof(@var{expr}) @var{T};
767@end smallexample
768
769@noindent
770This will work with all versions of GCC@.
771
772@node Conditionals
773@section Conditionals with Omitted Operands
774@cindex conditional expressions, extensions
775@cindex omitted middle-operands
776@cindex middle-operands, omitted
777@cindex extensions, @code{?:}
778@cindex @code{?:} extensions
779
780The middle operand in a conditional expression may be omitted.  Then
781if the first operand is nonzero, its value is the value of the conditional
782expression.
783
784Therefore, the expression
785
786@smallexample
787x ? : y
788@end smallexample
789
790@noindent
791has the value of @code{x} if that is nonzero; otherwise, the value of
792@code{y}.
793
794This example is perfectly equivalent to
795
796@smallexample
797x ? x : y
798@end smallexample
799
800@cindex side effect in @code{?:}
801@cindex @code{?:} side effect
802@noindent
803In this simple case, the ability to omit the middle operand is not
804especially useful.  When it becomes useful is when the first operand does,
805or may (if it is a macro argument), contain a side effect.  Then repeating
806the operand in the middle would perform the side effect twice.  Omitting
807the middle operand uses the value already computed without the undesirable
808effects of recomputing it.
809
810@node __int128
811@section 128-bits integers
812@cindex @code{__int128} data types
813
814As an extension the integer scalar type @code{__int128} is supported for
815targets having an integer mode wide enough to hold 128-bit.
816Simply write @code{__int128} for a signed 128-bit integer, or
817@code{unsigned __int128} for an unsigned 128-bit integer.  There is no
818support in GCC to express an integer constant of type @code{__int128}
819for targets having @code{long long} integer with less then 128 bit width.
820
821@node Long Long
822@section Double-Word Integers
823@cindex @code{long long} data types
824@cindex double-word arithmetic
825@cindex multiprecision arithmetic
826@cindex @code{LL} integer suffix
827@cindex @code{ULL} integer suffix
828
829ISO C99 supports data types for integers that are at least 64 bits wide,
830and as an extension GCC supports them in C90 mode and in C++.
831Simply write @code{long long int} for a signed integer, or
832@code{unsigned long long int} for an unsigned integer.  To make an
833integer constant of type @code{long long int}, add the suffix @samp{LL}
834to the integer.  To make an integer constant of type @code{unsigned long
835long int}, add the suffix @samp{ULL} to the integer.
836
837You can use these types in arithmetic like any other integer types.
838Addition, subtraction, and bitwise boolean operations on these types
839are open-coded on all types of machines.  Multiplication is open-coded
840if the machine supports fullword-to-doubleword a widening multiply
841instruction.  Division and shifts are open-coded only on machines that
842provide special support.  The operations that are not open-coded use
843special library routines that come with GCC@.
844
845There may be pitfalls when you use @code{long long} types for function
846arguments, unless you declare function prototypes.  If a function
847expects type @code{int} for its argument, and you pass a value of type
848@code{long long int}, confusion will result because the caller and the
849subroutine will disagree about the number of bytes for the argument.
850Likewise, if the function expects @code{long long int} and you pass
851@code{int}.  The best way to avoid such problems is to use prototypes.
852
853@node Complex
854@section Complex Numbers
855@cindex complex numbers
856@cindex @code{_Complex} keyword
857@cindex @code{__complex__} keyword
858
859ISO C99 supports complex floating data types, and as an extension GCC
860supports them in C90 mode and in C++, and supports complex integer data
861types which are not part of ISO C99.  You can declare complex types
862using the keyword @code{_Complex}.  As an extension, the older GNU
863keyword @code{__complex__} is also supported.
864
865For example, @samp{_Complex double x;} declares @code{x} as a
866variable whose real part and imaginary part are both of type
867@code{double}.  @samp{_Complex short int y;} declares @code{y} to
868have real and imaginary parts of type @code{short int}; this is not
869likely to be useful, but it shows that the set of complex types is
870complete.
871
872To write a constant with a complex data type, use the suffix @samp{i} or
873@samp{j} (either one; they are equivalent).  For example, @code{2.5fi}
874has type @code{_Complex float} and @code{3i} has type
875@code{_Complex int}.  Such a constant always has a pure imaginary
876value, but you can form any complex value you like by adding one to a
877real constant.  This is a GNU extension; if you have an ISO C99
878conforming C library (such as GNU libc), and want to construct complex
879constants of floating type, you should include @code{<complex.h>} and
880use the macros @code{I} or @code{_Complex_I} instead.
881
882@cindex @code{__real__} keyword
883@cindex @code{__imag__} keyword
884To extract the real part of a complex-valued expression @var{exp}, write
885@code{__real__ @var{exp}}.  Likewise, use @code{__imag__} to
886extract the imaginary part.  This is a GNU extension; for values of
887floating type, you should use the ISO C99 functions @code{crealf},
888@code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
889@code{cimagl}, declared in @code{<complex.h>} and also provided as
890built-in functions by GCC@.
891
892@cindex complex conjugation
893The operator @samp{~} performs complex conjugation when used on a value
894with a complex type.  This is a GNU extension; for values of
895floating type, you should use the ISO C99 functions @code{conjf},
896@code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
897provided as built-in functions by GCC@.
898
899GCC can allocate complex automatic variables in a noncontiguous
900fashion; it's even possible for the real part to be in a register while
901the imaginary part is on the stack (or vice-versa).  Only the DWARF2
902debug info format can represent this, so use of DWARF2 is recommended.
903If you are using the stabs debug info format, GCC describes a noncontiguous
904complex variable as if it were two separate variables of noncomplex type.
905If the variable's actual name is @code{foo}, the two fictitious
906variables are named @code{foo$real} and @code{foo$imag}.  You can
907examine and set these two fictitious variables with your debugger.
908
909@node Floating Types
910@section Additional Floating Types
911@cindex additional floating types
912@cindex @code{__float80} data type
913@cindex @code{__float128} data type
914@cindex @code{w} floating point suffix
915@cindex @code{q} floating point suffix
916@cindex @code{W} floating point suffix
917@cindex @code{Q} floating point suffix
918
919As an extension, the GNU C compiler supports additional floating
920types, @code{__float80} and @code{__float128} to support 80bit
921(@code{XFmode}) and 128 bit (@code{TFmode}) floating types.
922Support for additional types includes the arithmetic operators:
923add, subtract, multiply, divide; unary arithmetic operators;
924relational operators; equality operators; and conversions to and from
925integer and other floating types.  Use a suffix @samp{w} or @samp{W}
926in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
927for @code{_float128}.  You can declare complex types using the
928corresponding internal complex type, @code{XCmode} for @code{__float80}
929type and @code{TCmode} for @code{__float128} type:
930
931@smallexample
932typedef _Complex float __attribute__((mode(TC))) _Complex128;
933typedef _Complex float __attribute__((mode(XC))) _Complex80;
934@end smallexample
935
936Not all targets support additional floating point types.  @code{__float80}
937and @code{__float128} types are supported on i386, x86_64 and ia64 targets.
938The @code{__float128} type is supported on hppa HP-UX targets.
939
940@node Half-Precision
941@section Half-Precision Floating Point
942@cindex half-precision floating point
943@cindex @code{__fp16} data type
944
945On ARM targets, GCC supports half-precision (16-bit) floating point via
946the @code{__fp16} type.  You must enable this type explicitly
947with the @option{-mfp16-format} command-line option in order to use it.
948
949ARM supports two incompatible representations for half-precision
950floating-point values.  You must choose one of the representations and
951use it consistently in your program.
952
953Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
954This format can represent normalized values in the range of @math{2^{-14}} to 65504.
955There are 11 bits of significand precision, approximately 3
956decimal digits.
957
958Specifying @option{-mfp16-format=alternative} selects the ARM
959alternative format.  This representation is similar to the IEEE
960format, but does not support infinities or NaNs.  Instead, the range
961of exponents is extended, so that this format can represent normalized
962values in the range of @math{2^{-14}} to 131008.
963
964The @code{__fp16} type is a storage format only.  For purposes
965of arithmetic and other operations, @code{__fp16} values in C or C++
966expressions are automatically promoted to @code{float}.  In addition,
967you cannot declare a function with a return value or parameters
968of type @code{__fp16}.
969
970Note that conversions from @code{double} to @code{__fp16}
971involve an intermediate conversion to @code{float}.  Because
972of rounding, this can sometimes produce a different result than a
973direct conversion.
974
975ARM provides hardware support for conversions between
976@code{__fp16} and @code{float} values
977as an extension to VFP and NEON (Advanced SIMD).  GCC generates
978code using these hardware instructions if you compile with
979options to select an FPU that provides them;
980for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
981in addition to the @option{-mfp16-format} option to select
982a half-precision format.
983
984Language-level support for the @code{__fp16} data type is
985independent of whether GCC generates code using hardware floating-point
986instructions.  In cases where hardware support is not specified, GCC
987implements conversions between @code{__fp16} and @code{float} values
988as library calls.
989
990@node Decimal Float
991@section Decimal Floating Types
992@cindex decimal floating types
993@cindex @code{_Decimal32} data type
994@cindex @code{_Decimal64} data type
995@cindex @code{_Decimal128} data type
996@cindex @code{df} integer suffix
997@cindex @code{dd} integer suffix
998@cindex @code{dl} integer suffix
999@cindex @code{DF} integer suffix
1000@cindex @code{DD} integer suffix
1001@cindex @code{DL} integer suffix
1002
1003As an extension, the GNU C compiler supports decimal floating types as
1004defined in the N1312 draft of ISO/IEC WDTR24732.  Support for decimal
1005floating types in GCC will evolve as the draft technical report changes.
1006Calling conventions for any target might also change.  Not all targets
1007support decimal floating types.
1008
1009The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1010@code{_Decimal128}.  They use a radix of ten, unlike the floating types
1011@code{float}, @code{double}, and @code{long double} whose radix is not
1012specified by the C standard but is usually two.
1013
1014Support for decimal floating types includes the arithmetic operators
1015add, subtract, multiply, divide; unary arithmetic operators;
1016relational operators; equality operators; and conversions to and from
1017integer and other floating types.  Use a suffix @samp{df} or
1018@samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1019or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1020@code{_Decimal128}.
1021
1022GCC support of decimal float as specified by the draft technical report
1023is incomplete:
1024
1025@itemize @bullet
1026@item
1027When the value of a decimal floating type cannot be represented in the
1028integer type to which it is being converted, the result is undefined
1029rather than the result value specified by the draft technical report.
1030
1031@item
1032GCC does not provide the C library functionality associated with
1033@file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1034@file{wchar.h}, which must come from a separate C library implementation.
1035Because of this the GNU C compiler does not define macro
1036@code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1037the technical report.
1038@end itemize
1039
1040Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1041are supported by the DWARF2 debug information format.
1042
1043@node Hex Floats
1044@section Hex Floats
1045@cindex hex floats
1046
1047ISO C99 supports floating-point numbers written not only in the usual
1048decimal notation, such as @code{1.55e1}, but also numbers such as
1049@code{0x1.fp3} written in hexadecimal format.  As a GNU extension, GCC
1050supports this in C90 mode (except in some cases when strictly
1051conforming) and in C++.  In that format the
1052@samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1053mandatory.  The exponent is a decimal number that indicates the power of
10542 by which the significant part will be multiplied.  Thus @samp{0x1.f} is
1055@tex
1056$1 {15\over16}$,
1057@end tex
1058@ifnottex
10591 15/16,
1060@end ifnottex
1061@samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1062is the same as @code{1.55e1}.
1063
1064Unlike for floating-point numbers in the decimal notation the exponent
1065is always required in the hexadecimal notation.  Otherwise the compiler
1066would not be able to resolve the ambiguity of, e.g., @code{0x1.f}.  This
1067could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1068extension for floating-point constants of type @code{float}.
1069
1070@node Fixed-Point
1071@section Fixed-Point Types
1072@cindex fixed-point types
1073@cindex @code{_Fract} data type
1074@cindex @code{_Accum} data type
1075@cindex @code{_Sat} data type
1076@cindex @code{hr} fixed-suffix
1077@cindex @code{r} fixed-suffix
1078@cindex @code{lr} fixed-suffix
1079@cindex @code{llr} fixed-suffix
1080@cindex @code{uhr} fixed-suffix
1081@cindex @code{ur} fixed-suffix
1082@cindex @code{ulr} fixed-suffix
1083@cindex @code{ullr} fixed-suffix
1084@cindex @code{hk} fixed-suffix
1085@cindex @code{k} fixed-suffix
1086@cindex @code{lk} fixed-suffix
1087@cindex @code{llk} fixed-suffix
1088@cindex @code{uhk} fixed-suffix
1089@cindex @code{uk} fixed-suffix
1090@cindex @code{ulk} fixed-suffix
1091@cindex @code{ullk} fixed-suffix
1092@cindex @code{HR} fixed-suffix
1093@cindex @code{R} fixed-suffix
1094@cindex @code{LR} fixed-suffix
1095@cindex @code{LLR} fixed-suffix
1096@cindex @code{UHR} fixed-suffix
1097@cindex @code{UR} fixed-suffix
1098@cindex @code{ULR} fixed-suffix
1099@cindex @code{ULLR} fixed-suffix
1100@cindex @code{HK} fixed-suffix
1101@cindex @code{K} fixed-suffix
1102@cindex @code{LK} fixed-suffix
1103@cindex @code{LLK} fixed-suffix
1104@cindex @code{UHK} fixed-suffix
1105@cindex @code{UK} fixed-suffix
1106@cindex @code{ULK} fixed-suffix
1107@cindex @code{ULLK} fixed-suffix
1108
1109As an extension, the GNU C compiler supports fixed-point types as
1110defined in the N1169 draft of ISO/IEC DTR 18037.  Support for fixed-point
1111types in GCC will evolve as the draft technical report changes.
1112Calling conventions for any target might also change.  Not all targets
1113support fixed-point types.
1114
1115The fixed-point types are
1116@code{short _Fract},
1117@code{_Fract},
1118@code{long _Fract},
1119@code{long long _Fract},
1120@code{unsigned short _Fract},
1121@code{unsigned _Fract},
1122@code{unsigned long _Fract},
1123@code{unsigned long long _Fract},
1124@code{_Sat short _Fract},
1125@code{_Sat _Fract},
1126@code{_Sat long _Fract},
1127@code{_Sat long long _Fract},
1128@code{_Sat unsigned short _Fract},
1129@code{_Sat unsigned _Fract},
1130@code{_Sat unsigned long _Fract},
1131@code{_Sat unsigned long long _Fract},
1132@code{short _Accum},
1133@code{_Accum},
1134@code{long _Accum},
1135@code{long long _Accum},
1136@code{unsigned short _Accum},
1137@code{unsigned _Accum},
1138@code{unsigned long _Accum},
1139@code{unsigned long long _Accum},
1140@code{_Sat short _Accum},
1141@code{_Sat _Accum},
1142@code{_Sat long _Accum},
1143@code{_Sat long long _Accum},
1144@code{_Sat unsigned short _Accum},
1145@code{_Sat unsigned _Accum},
1146@code{_Sat unsigned long _Accum},
1147@code{_Sat unsigned long long _Accum}.
1148
1149Fixed-point data values contain fractional and optional integral parts.
1150The format of fixed-point data varies and depends on the target machine.
1151
1152Support for fixed-point types includes:
1153@itemize @bullet
1154@item
1155prefix and postfix increment and decrement operators (@code{++}, @code{--})
1156@item
1157unary arithmetic operators (@code{+}, @code{-}, @code{!})
1158@item
1159binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1160@item
1161binary shift operators (@code{<<}, @code{>>})
1162@item
1163relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1164@item
1165equality operators (@code{==}, @code{!=})
1166@item
1167assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1168@code{<<=}, @code{>>=})
1169@item
1170conversions to and from integer, floating-point, or fixed-point types
1171@end itemize
1172
1173Use a suffix in a fixed-point literal constant:
1174@itemize
1175@item @samp{hr} or @samp{HR} for @code{short _Fract} and
1176@code{_Sat short _Fract}
1177@item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1178@item @samp{lr} or @samp{LR} for @code{long _Fract} and
1179@code{_Sat long _Fract}
1180@item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1181@code{_Sat long long _Fract}
1182@item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1183@code{_Sat unsigned short _Fract}
1184@item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1185@code{_Sat unsigned _Fract}
1186@item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1187@code{_Sat unsigned long _Fract}
1188@item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1189and @code{_Sat unsigned long long _Fract}
1190@item @samp{hk} or @samp{HK} for @code{short _Accum} and
1191@code{_Sat short _Accum}
1192@item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1193@item @samp{lk} or @samp{LK} for @code{long _Accum} and
1194@code{_Sat long _Accum}
1195@item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1196@code{_Sat long long _Accum}
1197@item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1198@code{_Sat unsigned short _Accum}
1199@item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1200@code{_Sat unsigned _Accum}
1201@item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1202@code{_Sat unsigned long _Accum}
1203@item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1204and @code{_Sat unsigned long long _Accum}
1205@end itemize
1206
1207GCC support of fixed-point types as specified by the draft technical report
1208is incomplete:
1209
1210@itemize @bullet
1211@item
1212Pragmas to control overflow and rounding behaviors are not implemented.
1213@end itemize
1214
1215Fixed-point types are supported by the DWARF2 debug information format.
1216
1217@node Named Address Spaces
1218@section Named Address Spaces
1219@cindex Named Address Spaces
1220
1221As an extension, the GNU C compiler supports named address spaces as
1222defined in the N1275 draft of ISO/IEC DTR 18037.  Support for named
1223address spaces in GCC will evolve as the draft technical report
1224changes.  Calling conventions for any target might also change.  At
1225present, only the AVR, SPU, M32C, and RL78 targets support address
1226spaces other than the generic address space.
1227
1228Address space identifiers may be used exactly like any other C type
1229qualifier (e.g., @code{const} or @code{volatile}).  See the N1275
1230document for more details.
1231
1232@anchor{AVR Named Address Spaces}
1233@subsection AVR Named Address Spaces
1234
1235On the AVR target, there are several address spaces that can be used
1236in order to put read-only data into the flash memory and access that
1237data by means of the special instructions @code{LPM} or @code{ELPM}
1238needed to read from flash.
1239
1240Per default, any data including read-only data is located in RAM
1241(the generic address space) so that non-generic address spaces are
1242needed to locate read-only data in flash memory
1243@emph{and} to generate the right instructions to access this data
1244without using (inline) assembler code.
1245
1246@table @code
1247@item __flash
1248@cindex @code{__flash} AVR Named Address Spaces
1249The @code{__flash} qualifier will locate data in the
1250@code{.progmem.data} section. Data will be read using the @code{LPM}
1251instruction. Pointers to this address space are 16 bits wide.
1252
1253@item __flash1
1254@item __flash2
1255@item __flash3
1256@item __flash4
1257@item __flash5
1258@cindex @code{__flash1} AVR Named Address Spaces
1259@cindex @code{__flash2} AVR Named Address Spaces
1260@cindex @code{__flash3} AVR Named Address Spaces
1261@cindex @code{__flash4} AVR Named Address Spaces
1262@cindex @code{__flash5} AVR Named Address Spaces
1263These are 16-bit address spaces locating data in section
1264@code{.progmem@var{N}.data} where @var{N} refers to
1265address space @code{__flash@var{N}}.
1266The compiler will set the @code{RAMPZ} segment register approptiately
1267before reading data by means of the @code{ELPM} instruction.
1268
1269@item __memx
1270@cindex @code{__memx} AVR Named Address Spaces
1271This is a 24-bit address space that linearizes flash and RAM:
1272If the high bit of the address is set, data is read from
1273RAM using the lower two bytes as RAM address.
1274If the high bit of the address is clear, data is read from flash
1275with @code{RAMPZ} set according to the high byte of the address.
1276
1277Objects in this address space will be located in @code{.progmem.data}.
1278@end table
1279
1280@b{Example}
1281
1282@example
1283char my_read (const __flash char ** p)
1284@{
1285    /* p is a pointer to RAM that points to a pointer to flash.
1286       The first indirection of p will read that flash pointer
1287       from RAM and the second indirection reads a char from this
1288       flash address.  */
1289
1290    return **p;
1291@}
1292
1293/* Locate array[] in flash memory */
1294const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1295
1296int i = 1;
1297
1298int main (void)
1299@{
1300   /* Return 17 by reading from flash memory */
1301   return array[array[i]];
1302@}
1303@end example
1304
1305For each named address space supported by avr-gcc there is an equally
1306named but uppercase built-in macro defined.
1307The purpose is to facilitate testing if respective address space
1308support is available or not:
1309
1310@example
1311#ifdef __FLASH
1312const __flash int var = 1;
1313
1314int read_var (void)
1315@{
1316    return var;
1317@}
1318#else
1319#include <avr/pgmspace.h> /* From AVR-LibC */
1320
1321const int var PROGMEM = 1;
1322
1323int read_var (void)
1324@{
1325    return (int) pgm_read_word (&var);
1326@}
1327#endif /* __FLASH */
1328@end example
1329
1330Notice that attribute @ref{AVR Variable Attributes,@code{progmem}}
1331locates data in flash but
1332accesses to these data will read from generic address space, i.e.@:
1333from RAM,
1334so that you need special accessors like @code{pgm_read_byte}
1335from @w{@uref{http://nongnu.org/avr-libc/user-manual,AVR-LibC}}
1336together with attribute @code{progmem}.
1337
1338@b{Limitations and caveats}
1339
1340@itemize
1341@item
1342Reading across the 64@tie{}KiB section boundary of
1343the @code{__flash} or @code{__flash@var{N}} address spaces
1344will show undefined behaviour. The only address space that
1345supports reading across the 64@tie{}KiB flash segment boundaries is
1346@code{__memx}.
1347
1348@item
1349If you use one of the @code{__flash@var{N}} address spaces
1350you will have to arrange your linker skript to locate the
1351@code{.progmem@var{N}.data} sections according to your needs.
1352
1353@item
1354Any data or pointers to the non-generic address spaces must
1355be qualified as @code{const}, i.e.@: as read-only data.
1356This still applies if the data in one of these address
1357spaces like software version number or calibration lookup table are intended to
1358be changed after load time by, say, a boot loader. In this case
1359the right qualification is @code{const} @code{volatile} so that the compiler
1360must not optimize away known values or insert them
1361as immediates into operands of instructions.
1362
1363@item
1364Code like the following is not yet supported because of missing
1365support in avr-binutils,
1366see @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1367@example
1368extern const __memx char foo;
1369const __memx void *pfoo = &foo;
1370@end example
1371The code will throw an assembler warning and the high byte of
1372@code{pfoo} will be initialized with@tie{}@code{0}, i.e.@: the
1373initialization will be as if @code{foo} was located in the first
137464@tie{}KiB chunk of flash.
1375
1376@end itemize
1377
1378@subsection M32C Named Address Spaces
1379@cindex @code{__far} M32C Named Address Spaces
1380
1381On the M32C target, with the R8C and M16C cpu variants, variables
1382qualified with @code{__far} are accessed using 32-bit addresses in
1383order to access memory beyond the first 64@tie{}Ki bytes.  If
1384@code{__far} is used with the M32CM or M32C cpu variants, it has no
1385effect.
1386
1387@subsection RL78 Named Address Spaces
1388@cindex @code{__far} RL78 Named Address Spaces
1389
1390On the RL78 target, variables qualified with @code{__far} are accessed
1391with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1392addresses.  Non-far variables are assumed to appear in the topmost
139364@tie{}KiB of the address space.
1394
1395@subsection SPU Named Address Spaces
1396@cindex @code{__ea} SPU Named Address Spaces
1397
1398On the SPU target variables may be declared as
1399belonging to another address space by qualifying the type with the
1400@code{__ea} address space identifier:
1401
1402@smallexample
1403extern int __ea i;
1404@end smallexample
1405
1406When the variable @code{i} is accessed, the compiler will generate
1407special code to access this variable.  It may use runtime library
1408support, or generate special machine instructions to access that address
1409space.
1410
1411@node Zero Length
1412@section Arrays of Length Zero
1413@cindex arrays of length zero
1414@cindex zero-length arrays
1415@cindex length-zero arrays
1416@cindex flexible array members
1417
1418Zero-length arrays are allowed in GNU C@.  They are very useful as the
1419last element of a structure which is really a header for a variable-length
1420object:
1421
1422@smallexample
1423struct line @{
1424  int length;
1425  char contents[0];
1426@};
1427
1428struct line *thisline = (struct line *)
1429  malloc (sizeof (struct line) + this_length);
1430thisline->length = this_length;
1431@end smallexample
1432
1433In ISO C90, you would have to give @code{contents} a length of 1, which
1434means either you waste space or complicate the argument to @code{malloc}.
1435
1436In ISO C99, you would use a @dfn{flexible array member}, which is
1437slightly different in syntax and semantics:
1438
1439@itemize @bullet
1440@item
1441Flexible array members are written as @code{contents[]} without
1442the @code{0}.
1443
1444@item
1445Flexible array members have incomplete type, and so the @code{sizeof}
1446operator may not be applied.  As a quirk of the original implementation
1447of zero-length arrays, @code{sizeof} evaluates to zero.
1448
1449@item
1450Flexible array members may only appear as the last member of a
1451@code{struct} that is otherwise non-empty.
1452
1453@item
1454A structure containing a flexible array member, or a union containing
1455such a structure (possibly recursively), may not be a member of a
1456structure or an element of an array.  (However, these uses are
1457permitted by GCC as extensions.)
1458@end itemize
1459
1460GCC versions before 3.0 allowed zero-length arrays to be statically
1461initialized, as if they were flexible arrays.  In addition to those
1462cases that were useful, it also allowed initializations in situations
1463that would corrupt later data.  Non-empty initialization of zero-length
1464arrays is now treated like any case where there are more initializer
1465elements than the array holds, in that a suitable warning about "excess
1466elements in array" is given, and the excess elements (all of them, in
1467this case) are ignored.
1468
1469Instead GCC allows static initialization of flexible array members.
1470This is equivalent to defining a new structure containing the original
1471structure followed by an array of sufficient size to contain the data.
1472I.e.@: in the following, @code{f1} is constructed as if it were declared
1473like @code{f2}.
1474
1475@smallexample
1476struct f1 @{
1477  int x; int y[];
1478@} f1 = @{ 1, @{ 2, 3, 4 @} @};
1479
1480struct f2 @{
1481  struct f1 f1; int data[3];
1482@} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1483@end smallexample
1484
1485@noindent
1486The convenience of this extension is that @code{f1} has the desired
1487type, eliminating the need to consistently refer to @code{f2.f1}.
1488
1489This has symmetry with normal static arrays, in that an array of
1490unknown size is also written with @code{[]}.
1491
1492Of course, this extension only makes sense if the extra data comes at
1493the end of a top-level object, as otherwise we would be overwriting
1494data at subsequent offsets.  To avoid undue complication and confusion
1495with initialization of deeply nested arrays, we simply disallow any
1496non-empty initialization except when the structure is the top-level
1497object.  For example:
1498
1499@smallexample
1500struct foo @{ int x; int y[]; @};
1501struct bar @{ struct foo z; @};
1502
1503struct foo a = @{ 1, @{ 2, 3, 4 @} @};        // @r{Valid.}
1504struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @};    // @r{Invalid.}
1505struct bar c = @{ @{ 1, @{ @} @} @};            // @r{Valid.}
1506struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @};  // @r{Invalid.}
1507@end smallexample
1508
1509@node Empty Structures
1510@section Structures With No Members
1511@cindex empty structures
1512@cindex zero-size structures
1513
1514GCC permits a C structure to have no members:
1515
1516@smallexample
1517struct empty @{
1518@};
1519@end smallexample
1520
1521The structure will have size zero.  In C++, empty structures are part
1522of the language.  G++ treats empty structures as if they had a single
1523member of type @code{char}.
1524
1525@node Variable Length
1526@section Arrays of Variable Length
1527@cindex variable-length arrays
1528@cindex arrays of variable length
1529@cindex VLAs
1530
1531Variable-length automatic arrays are allowed in ISO C99, and as an
1532extension GCC accepts them in C90 mode and in C++.  These arrays are
1533declared like any other automatic arrays, but with a length that is not
1534a constant expression.  The storage is allocated at the point of
1535declaration and deallocated when the brace-level is exited.  For
1536example:
1537
1538@smallexample
1539FILE *
1540concat_fopen (char *s1, char *s2, char *mode)
1541@{
1542  char str[strlen (s1) + strlen (s2) + 1];
1543  strcpy (str, s1);
1544  strcat (str, s2);
1545  return fopen (str, mode);
1546@}
1547@end smallexample
1548
1549@cindex scope of a variable length array
1550@cindex variable-length array scope
1551@cindex deallocating variable length arrays
1552Jumping or breaking out of the scope of the array name deallocates the
1553storage.  Jumping into the scope is not allowed; you get an error
1554message for it.
1555
1556@cindex @code{alloca} vs variable-length arrays
1557You can use the function @code{alloca} to get an effect much like
1558variable-length arrays.  The function @code{alloca} is available in
1559many other C implementations (but not in all).  On the other hand,
1560variable-length arrays are more elegant.
1561
1562There are other differences between these two methods.  Space allocated
1563with @code{alloca} exists until the containing @emph{function} returns.
1564The space for a variable-length array is deallocated as soon as the array
1565name's scope ends.  (If you use both variable-length arrays and
1566@code{alloca} in the same function, deallocation of a variable-length array
1567will also deallocate anything more recently allocated with @code{alloca}.)
1568
1569You can also use variable-length arrays as arguments to functions:
1570
1571@smallexample
1572struct entry
1573tester (int len, char data[len][len])
1574@{
1575  /* @r{@dots{}} */
1576@}
1577@end smallexample
1578
1579The length of an array is computed once when the storage is allocated
1580and is remembered for the scope of the array in case you access it with
1581@code{sizeof}.
1582
1583If you want to pass the array first and the length afterward, you can
1584use a forward declaration in the parameter list---another GNU extension.
1585
1586@smallexample
1587struct entry
1588tester (int len; char data[len][len], int len)
1589@{
1590  /* @r{@dots{}} */
1591@}
1592@end smallexample
1593
1594@cindex parameter forward declaration
1595The @samp{int len} before the semicolon is a @dfn{parameter forward
1596declaration}, and it serves the purpose of making the name @code{len}
1597known when the declaration of @code{data} is parsed.
1598
1599You can write any number of such parameter forward declarations in the
1600parameter list.  They can be separated by commas or semicolons, but the
1601last one must end with a semicolon, which is followed by the ``real''
1602parameter declarations.  Each forward declaration must match a ``real''
1603declaration in parameter name and data type.  ISO C99 does not support
1604parameter forward declarations.
1605
1606@node Variadic Macros
1607@section Macros with a Variable Number of Arguments.
1608@cindex variable number of arguments
1609@cindex macro with variable arguments
1610@cindex rest argument (in macro)
1611@cindex variadic macros
1612
1613In the ISO C standard of 1999, a macro can be declared to accept a
1614variable number of arguments much as a function can.  The syntax for
1615defining the macro is similar to that of a function.  Here is an
1616example:
1617
1618@smallexample
1619#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1620@end smallexample
1621
1622Here @samp{@dots{}} is a @dfn{variable argument}.  In the invocation of
1623such a macro, it represents the zero or more tokens until the closing
1624parenthesis that ends the invocation, including any commas.  This set of
1625tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1626wherever it appears.  See the CPP manual for more information.
1627
1628GCC has long supported variadic macros, and used a different syntax that
1629allowed you to give a name to the variable arguments just like any other
1630argument.  Here is an example:
1631
1632@smallexample
1633#define debug(format, args...) fprintf (stderr, format, args)
1634@end smallexample
1635
1636This is in all ways equivalent to the ISO C example above, but arguably
1637more readable and descriptive.
1638
1639GNU CPP has two further variadic macro extensions, and permits them to
1640be used with either of the above forms of macro definition.
1641
1642In standard C, you are not allowed to leave the variable argument out
1643entirely; but you are allowed to pass an empty argument.  For example,
1644this invocation is invalid in ISO C, because there is no comma after
1645the string:
1646
1647@smallexample
1648debug ("A message")
1649@end smallexample
1650
1651GNU CPP permits you to completely omit the variable arguments in this
1652way.  In the above examples, the compiler would complain, though since
1653the expansion of the macro still has the extra comma after the format
1654string.
1655
1656To help solve this problem, CPP behaves specially for variable arguments
1657used with the token paste operator, @samp{##}.  If instead you write
1658
1659@smallexample
1660#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1661@end smallexample
1662
1663and if the variable arguments are omitted or empty, the @samp{##}
1664operator causes the preprocessor to remove the comma before it.  If you
1665do provide some variable arguments in your macro invocation, GNU CPP
1666does not complain about the paste operation and instead places the
1667variable arguments after the comma.  Just like any other pasted macro
1668argument, these arguments are not macro expanded.
1669
1670@node Escaped Newlines
1671@section Slightly Looser Rules for Escaped Newlines
1672@cindex escaped newlines
1673@cindex newlines (escaped)
1674
1675Recently, the preprocessor has relaxed its treatment of escaped
1676newlines.  Previously, the newline had to immediately follow a
1677backslash.  The current implementation allows whitespace in the form
1678of spaces, horizontal and vertical tabs, and form feeds between the
1679backslash and the subsequent newline.  The preprocessor issues a
1680warning, but treats it as a valid escaped newline and combines the two
1681lines to form a single logical line.  This works within comments and
1682tokens, as well as between tokens.  Comments are @emph{not} treated as
1683whitespace for the purposes of this relaxation, since they have not
1684yet been replaced with spaces.
1685
1686@node Subscripting
1687@section Non-Lvalue Arrays May Have Subscripts
1688@cindex subscripting
1689@cindex arrays, non-lvalue
1690
1691@cindex subscripting and function values
1692In ISO C99, arrays that are not lvalues still decay to pointers, and
1693may be subscripted, although they may not be modified or used after
1694the next sequence point and the unary @samp{&} operator may not be
1695applied to them.  As an extension, GCC allows such arrays to be
1696subscripted in C90 mode, though otherwise they do not decay to
1697pointers outside C99 mode.  For example,
1698this is valid in GNU C though not valid in C90:
1699
1700@smallexample
1701@group
1702struct foo @{int a[4];@};
1703
1704struct foo f();
1705
1706bar (int index)
1707@{
1708  return f().a[index];
1709@}
1710@end group
1711@end smallexample
1712
1713@node Pointer Arith
1714@section Arithmetic on @code{void}- and Function-Pointers
1715@cindex void pointers, arithmetic
1716@cindex void, size of pointer to
1717@cindex function pointers, arithmetic
1718@cindex function, size of pointer to
1719
1720In GNU C, addition and subtraction operations are supported on pointers to
1721@code{void} and on pointers to functions.  This is done by treating the
1722size of a @code{void} or of a function as 1.
1723
1724A consequence of this is that @code{sizeof} is also allowed on @code{void}
1725and on function types, and returns 1.
1726
1727@opindex Wpointer-arith
1728The option @option{-Wpointer-arith} requests a warning if these extensions
1729are used.
1730
1731@node Initializers
1732@section Non-Constant Initializers
1733@cindex initializers, non-constant
1734@cindex non-constant initializers
1735
1736As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1737automatic variable are not required to be constant expressions in GNU C@.
1738Here is an example of an initializer with run-time varying elements:
1739
1740@smallexample
1741foo (float f, float g)
1742@{
1743  float beat_freqs[2] = @{ f-g, f+g @};
1744  /* @r{@dots{}} */
1745@}
1746@end smallexample
1747
1748@node Compound Literals
1749@section Compound Literals
1750@cindex constructor expressions
1751@cindex initializations in expressions
1752@cindex structures, constructor expression
1753@cindex expressions, constructor
1754@cindex compound literals
1755@c The GNU C name for what C99 calls compound literals was "constructor expressions".
1756
1757ISO C99 supports compound literals.  A compound literal looks like
1758a cast containing an initializer.  Its value is an object of the
1759type specified in the cast, containing the elements specified in
1760the initializer; it is an lvalue.  As an extension, GCC supports
1761compound literals in C90 mode and in C++, though the semantics are
1762somewhat different in C++.
1763
1764Usually, the specified type is a structure.  Assume that
1765@code{struct foo} and @code{structure} are declared as shown:
1766
1767@smallexample
1768struct foo @{int a; char b[2];@} structure;
1769@end smallexample
1770
1771@noindent
1772Here is an example of constructing a @code{struct foo} with a compound literal:
1773
1774@smallexample
1775structure = ((struct foo) @{x + y, 'a', 0@});
1776@end smallexample
1777
1778@noindent
1779This is equivalent to writing the following:
1780
1781@smallexample
1782@{
1783  struct foo temp = @{x + y, 'a', 0@};
1784  structure = temp;
1785@}
1786@end smallexample
1787
1788You can also construct an array, though this is dangerous in C++, as
1789explained below.  If all the elements of the compound literal are
1790(made up of) simple constant expressions, suitable for use in
1791initializers of objects of static storage duration, then the compound
1792literal can be coerced to a pointer to its first element and used in
1793such an initializer, as shown here:
1794
1795@smallexample
1796char **foo = (char *[]) @{ "x", "y", "z" @};
1797@end smallexample
1798
1799Compound literals for scalar types and union types are
1800also allowed, but then the compound literal is equivalent
1801to a cast.
1802
1803As a GNU extension, GCC allows initialization of objects with static storage
1804duration by compound literals (which is not possible in ISO C99, because
1805the initializer is not a constant).
1806It is handled as if the object was initialized only with the bracket
1807enclosed list if the types of the compound literal and the object match.
1808The initializer list of the compound literal must be constant.
1809If the object being initialized has array type of unknown size, the size is
1810determined by compound literal size.
1811
1812@smallexample
1813static struct foo x = (struct foo) @{1, 'a', 'b'@};
1814static int y[] = (int []) @{1, 2, 3@};
1815static int z[] = (int [3]) @{1@};
1816@end smallexample
1817
1818@noindent
1819The above lines are equivalent to the following:
1820@smallexample
1821static struct foo x = @{1, 'a', 'b'@};
1822static int y[] = @{1, 2, 3@};
1823static int z[] = @{1, 0, 0@};
1824@end smallexample
1825
1826In C, a compound literal designates an unnamed object with static or
1827automatic storage duration.  In C++, a compound literal designates a
1828temporary object, which only lives until the end of its
1829full-expression.  As a result, well-defined C code that takes the
1830address of a subobject of a compound literal can be undefined in C++.
1831For instance, if the array compound literal example above appeared
1832inside a function, any subsequent use of @samp{foo} in C++ has
1833undefined behavior because the lifetime of the array ends after the
1834declaration of @samp{foo}.  As a result, the C++ compiler now rejects
1835the conversion of a temporary array to a pointer.
1836
1837As an optimization, the C++ compiler sometimes gives array compound
1838literals longer lifetimes: when the array either appears outside a
1839function or has const-qualified type.  If @samp{foo} and its
1840initializer had elements of @samp{char *const} type rather than
1841@samp{char *}, or if @samp{foo} were a global variable, the array
1842would have static storage duration.  But it is probably safest just to
1843avoid the use of array compound literals in code compiled as C++.
1844
1845@node Designated Inits
1846@section Designated Initializers
1847@cindex initializers with labeled elements
1848@cindex labeled elements in initializers
1849@cindex case labels in initializers
1850@cindex designated initializers
1851
1852Standard C90 requires the elements of an initializer to appear in a fixed
1853order, the same as the order of the elements in the array or structure
1854being initialized.
1855
1856In ISO C99 you can give the elements in any order, specifying the array
1857indices or structure field names they apply to, and GNU C allows this as
1858an extension in C90 mode as well.  This extension is not
1859implemented in GNU C++.
1860
1861To specify an array index, write
1862@samp{[@var{index}] =} before the element value.  For example,
1863
1864@smallexample
1865int a[6] = @{ [4] = 29, [2] = 15 @};
1866@end smallexample
1867
1868@noindent
1869is equivalent to
1870
1871@smallexample
1872int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1873@end smallexample
1874
1875@noindent
1876The index values must be constant expressions, even if the array being
1877initialized is automatic.
1878
1879An alternative syntax for this which has been obsolete since GCC 2.5 but
1880GCC still accepts is to write @samp{[@var{index}]} before the element
1881value, with no @samp{=}.
1882
1883To initialize a range of elements to the same value, write
1884@samp{[@var{first} ... @var{last}] = @var{value}}.  This is a GNU
1885extension.  For example,
1886
1887@smallexample
1888int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
1889@end smallexample
1890
1891@noindent
1892If the value in it has side-effects, the side-effects will happen only once,
1893not for each initialized field by the range initializer.
1894
1895@noindent
1896Note that the length of the array is the highest value specified
1897plus one.
1898
1899In a structure initializer, specify the name of a field to initialize
1900with @samp{.@var{fieldname} =} before the element value.  For example,
1901given the following structure,
1902
1903@smallexample
1904struct point @{ int x, y; @};
1905@end smallexample
1906
1907@noindent
1908the following initialization
1909
1910@smallexample
1911struct point p = @{ .y = yvalue, .x = xvalue @};
1912@end smallexample
1913
1914@noindent
1915is equivalent to
1916
1917@smallexample
1918struct point p = @{ xvalue, yvalue @};
1919@end smallexample
1920
1921Another syntax which has the same meaning, obsolete since GCC 2.5, is
1922@samp{@var{fieldname}:}, as shown here:
1923
1924@smallexample
1925struct point p = @{ y: yvalue, x: xvalue @};
1926@end smallexample
1927
1928@cindex designators
1929The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1930@dfn{designator}.  You can also use a designator (or the obsolete colon
1931syntax) when initializing a union, to specify which element of the union
1932should be used.  For example,
1933
1934@smallexample
1935union foo @{ int i; double d; @};
1936
1937union foo f = @{ .d = 4 @};
1938@end smallexample
1939
1940@noindent
1941will convert 4 to a @code{double} to store it in the union using
1942the second element.  By contrast, casting 4 to type @code{union foo}
1943would store it into the union as the integer @code{i}, since it is
1944an integer.  (@xref{Cast to Union}.)
1945
1946You can combine this technique of naming elements with ordinary C
1947initialization of successive elements.  Each initializer element that
1948does not have a designator applies to the next consecutive element of the
1949array or structure.  For example,
1950
1951@smallexample
1952int a[6] = @{ [1] = v1, v2, [4] = v4 @};
1953@end smallexample
1954
1955@noindent
1956is equivalent to
1957
1958@smallexample
1959int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
1960@end smallexample
1961
1962Labeling the elements of an array initializer is especially useful
1963when the indices are characters or belong to an @code{enum} type.
1964For example:
1965
1966@smallexample
1967int whitespace[256]
1968  = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
1969      ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
1970@end smallexample
1971
1972@cindex designator lists
1973You can also write a series of @samp{.@var{fieldname}} and
1974@samp{[@var{index}]} designators before an @samp{=} to specify a
1975nested subobject to initialize; the list is taken relative to the
1976subobject corresponding to the closest surrounding brace pair.  For
1977example, with the @samp{struct point} declaration above:
1978
1979@smallexample
1980struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
1981@end smallexample
1982
1983@noindent
1984If the same field is initialized multiple times, it will have value from
1985the last initialization.  If any such overridden initialization has
1986side-effect, it is unspecified whether the side-effect happens or not.
1987Currently, GCC will discard them and issue a warning.
1988
1989@node Case Ranges
1990@section Case Ranges
1991@cindex case ranges
1992@cindex ranges in case statements
1993
1994You can specify a range of consecutive values in a single @code{case} label,
1995like this:
1996
1997@smallexample
1998case @var{low} ... @var{high}:
1999@end smallexample
2000
2001@noindent
2002This has the same effect as the proper number of individual @code{case}
2003labels, one for each integer value from @var{low} to @var{high}, inclusive.
2004
2005This feature is especially useful for ranges of ASCII character codes:
2006
2007@smallexample
2008case 'A' ... 'Z':
2009@end smallexample
2010
2011@strong{Be careful:} Write spaces around the @code{...}, for otherwise
2012it may be parsed wrong when you use it with integer values.  For example,
2013write this:
2014
2015@smallexample
2016case 1 ... 5:
2017@end smallexample
2018
2019@noindent
2020rather than this:
2021
2022@smallexample
2023case 1...5:
2024@end smallexample
2025
2026@node Cast to Union
2027@section Cast to a Union Type
2028@cindex cast to a union
2029@cindex union, casting to a
2030
2031A cast to union type is similar to other casts, except that the type
2032specified is a union type.  You can specify the type either with
2033@code{union @var{tag}} or with a typedef name.  A cast to union is actually
2034a constructor though, not a cast, and hence does not yield an lvalue like
2035normal casts.  (@xref{Compound Literals}.)
2036
2037The types that may be cast to the union type are those of the members
2038of the union.  Thus, given the following union and variables:
2039
2040@smallexample
2041union foo @{ int i; double d; @};
2042int x;
2043double y;
2044@end smallexample
2045
2046@noindent
2047both @code{x} and @code{y} can be cast to type @code{union foo}.
2048
2049Using the cast as the right-hand side of an assignment to a variable of
2050union type is equivalent to storing in a member of the union:
2051
2052@smallexample
2053union foo u;
2054/* @r{@dots{}} */
2055u = (union foo) x  @equiv{}  u.i = x
2056u = (union foo) y  @equiv{}  u.d = y
2057@end smallexample
2058
2059You can also use the union cast as a function argument:
2060
2061@smallexample
2062void hack (union foo);
2063/* @r{@dots{}} */
2064hack ((union foo) x);
2065@end smallexample
2066
2067@node Mixed Declarations
2068@section Mixed Declarations and Code
2069@cindex mixed declarations and code
2070@cindex declarations, mixed with code
2071@cindex code, mixed with declarations
2072
2073ISO C99 and ISO C++ allow declarations and code to be freely mixed
2074within compound statements.  As an extension, GCC also allows this in
2075C90 mode.  For example, you could do:
2076
2077@smallexample
2078int i;
2079/* @r{@dots{}} */
2080i++;
2081int j = i + 2;
2082@end smallexample
2083
2084Each identifier is visible from where it is declared until the end of
2085the enclosing block.
2086
2087@node Function Attributes
2088@section Declaring Attributes of Functions
2089@cindex function attributes
2090@cindex declaring attributes of functions
2091@cindex functions that never return
2092@cindex functions that return more than once
2093@cindex functions that have no side effects
2094@cindex functions in arbitrary sections
2095@cindex functions that behave like malloc
2096@cindex @code{volatile} applied to function
2097@cindex @code{const} applied to function
2098@cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2099@cindex functions with non-null pointer arguments
2100@cindex functions that are passed arguments in registers on the 386
2101@cindex functions that pop the argument stack on the 386
2102@cindex functions that do not pop the argument stack on the 386
2103@cindex functions that have different compilation options on the 386
2104@cindex functions that have different optimization options
2105@cindex functions that are dynamically resolved
2106
2107In GNU C, you declare certain things about functions called in your program
2108which help the compiler optimize function calls and check your code more
2109carefully.
2110
2111The keyword @code{__attribute__} allows you to specify special
2112attributes when making a declaration.  This keyword is followed by an
2113attribute specification inside double parentheses.  The following
2114attributes are currently defined for functions on all targets:
2115@code{aligned}, @code{alloc_size}, @code{noreturn},
2116@code{returns_twice}, @code{noinline}, @code{noclone},
2117@code{always_inline}, @code{flatten}, @code{pure}, @code{const},
2118@code{nothrow}, @code{sentinel}, @code{format}, @code{format_arg},
2119@code{no_instrument_function}, @code{no_split_stack},
2120@code{section}, @code{constructor},
2121@code{destructor}, @code{used}, @code{unused}, @code{deprecated},
2122@code{weak}, @code{malloc}, @code{alias}, @code{ifunc},
2123@code{warn_unused_result}, @code{nonnull}, @code{gnu_inline},
2124@code{externally_visible}, @code{hot}, @code{cold}, @code{artificial},
2125@code{error} and @code{warning}.  Several other attributes are defined
2126for functions on particular target systems.  Other attributes,
2127including @code{section} are supported for variables declarations
2128(@pxref{Variable Attributes}) and for types (@pxref{Type Attributes}).
2129
2130GCC plugins may provide their own attributes.
2131
2132You may also specify attributes with @samp{__} preceding and following
2133each keyword.  This allows you to use them in header files without
2134being concerned about a possible macro of the same name.  For example,
2135you may use @code{__noreturn__} instead of @code{noreturn}.
2136
2137@xref{Attribute Syntax}, for details of the exact syntax for using
2138attributes.
2139
2140@table @code
2141@c Keep this table alphabetized by attribute name.  Treat _ as space.
2142
2143@item alias ("@var{target}")
2144@cindex @code{alias} attribute
2145The @code{alias} attribute causes the declaration to be emitted as an
2146alias for another symbol, which must be specified.  For instance,
2147
2148@smallexample
2149void __f () @{ /* @r{Do something.} */; @}
2150void f () __attribute__ ((weak, alias ("__f")));
2151@end smallexample
2152
2153defines @samp{f} to be a weak alias for @samp{__f}.  In C++, the
2154mangled name for the target must be used.  It is an error if @samp{__f}
2155is not defined in the same translation unit.
2156
2157Not all target machines support this attribute.
2158
2159@item aligned (@var{alignment})
2160@cindex @code{aligned} attribute
2161This attribute specifies a minimum alignment for the function,
2162measured in bytes.
2163
2164You cannot use this attribute to decrease the alignment of a function,
2165only to increase it.  However, when you explicitly specify a function
2166alignment this will override the effect of the
2167@option{-falign-functions} (@pxref{Optimize Options}) option for this
2168function.
2169
2170Note that the effectiveness of @code{aligned} attributes may be
2171limited by inherent limitations in your linker.  On many systems, the
2172linker is only able to arrange for functions to be aligned up to a
2173certain maximum alignment.  (For some linkers, the maximum supported
2174alignment may be very very small.)  See your linker documentation for
2175further information.
2176
2177The @code{aligned} attribute can also be used for variables and fields
2178(@pxref{Variable Attributes}.)
2179
2180@item alloc_size
2181@cindex @code{alloc_size} attribute
2182The @code{alloc_size} attribute is used to tell the compiler that the
2183function return value points to memory, where the size is given by
2184one or two of the functions parameters.  GCC uses this
2185information to improve the correctness of @code{__builtin_object_size}.
2186
2187The function parameter(s) denoting the allocated size are specified by
2188one or two integer arguments supplied to the attribute.  The allocated size
2189is either the value of the single function argument specified or the product
2190of the two function arguments specified.  Argument numbering starts at
2191one.
2192
2193For instance,
2194
2195@smallexample
2196void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2197void my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2198@end smallexample
2199
2200declares that my_calloc will return memory of the size given by
2201the product of parameter 1 and 2 and that my_realloc will return memory
2202of the size given by parameter 2.
2203
2204@item always_inline
2205@cindex @code{always_inline} function attribute
2206Generally, functions are not inlined unless optimization is specified.
2207For functions declared inline, this attribute inlines the function even
2208if no optimization level was specified.
2209
2210@item gnu_inline
2211@cindex @code{gnu_inline} function attribute
2212This attribute should be used with a function which is also declared
2213with the @code{inline} keyword.  It directs GCC to treat the function
2214as if it were defined in gnu90 mode even when compiling in C99 or
2215gnu99 mode.
2216
2217If the function is declared @code{extern}, then this definition of the
2218function is used only for inlining.  In no case is the function
2219compiled as a standalone function, not even if you take its address
2220explicitly.  Such an address becomes an external reference, as if you
2221had only declared the function, and had not defined it.  This has
2222almost the effect of a macro.  The way to use this is to put a
2223function definition in a header file with this attribute, and put
2224another copy of the function, without @code{extern}, in a library
2225file.  The definition in the header file will cause most calls to the
2226function to be inlined.  If any uses of the function remain, they will
2227refer to the single copy in the library.  Note that the two
2228definitions of the functions need not be precisely the same, although
2229if they do not have the same effect your program may behave oddly.
2230
2231In C, if the function is neither @code{extern} nor @code{static}, then
2232the function is compiled as a standalone function, as well as being
2233inlined where possible.
2234
2235This is how GCC traditionally handled functions declared
2236@code{inline}.  Since ISO C99 specifies a different semantics for
2237@code{inline}, this function attribute is provided as a transition
2238measure and as a useful feature in its own right.  This attribute is
2239available in GCC 4.1.3 and later.  It is available if either of the
2240preprocessor macros @code{__GNUC_GNU_INLINE__} or
2241@code{__GNUC_STDC_INLINE__} are defined.  @xref{Inline,,An Inline
2242Function is As Fast As a Macro}.
2243
2244In C++, this attribute does not depend on @code{extern} in any way,
2245but it still requires the @code{inline} keyword to enable its special
2246behavior.
2247
2248@item artificial
2249@cindex @code{artificial} function attribute
2250This attribute is useful for small inline wrappers which if possible
2251should appear during debugging as a unit, depending on the debug
2252info format it will either mean marking the function as artificial
2253or using the caller location for all instructions within the inlined
2254body.
2255
2256@item bank_switch
2257@cindex interrupt handler functions
2258When added to an interrupt handler with the M32C port, causes the
2259prologue and epilogue to use bank switching to preserve the registers
2260rather than saving them on the stack.
2261
2262@item flatten
2263@cindex @code{flatten} function attribute
2264Generally, inlining into a function is limited.  For a function marked with
2265this attribute, every call inside this function will be inlined, if possible.
2266Whether the function itself is considered for inlining depends on its size and
2267the current inlining parameters.
2268
2269@item error ("@var{message}")
2270@cindex @code{error} function attribute
2271If this attribute is used on a function declaration and a call to such a function
2272is not eliminated through dead code elimination or other optimizations, an error
2273which will include @var{message} will be diagnosed.  This is useful
2274for compile time checking, especially together with @code{__builtin_constant_p}
2275and inline functions where checking the inline function arguments is not
2276possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2277While it is possible to leave the function undefined and thus invoke
2278a link failure, when using this attribute the problem will be diagnosed
2279earlier and with exact location of the call even in presence of inline
2280functions or when not emitting debugging information.
2281
2282@item warning ("@var{message}")
2283@cindex @code{warning} function attribute
2284If this attribute is used on a function declaration and a call to such a function
2285is not eliminated through dead code elimination or other optimizations, a warning
2286which will include @var{message} will be diagnosed.  This is useful
2287for compile time checking, especially together with @code{__builtin_constant_p}
2288and inline functions.  While it is possible to define the function with
2289a message in @code{.gnu.warning*} section, when using this attribute the problem
2290will be diagnosed earlier and with exact location of the call even in presence
2291of inline functions or when not emitting debugging information.
2292
2293@item cdecl
2294@cindex functions that do pop the argument stack on the 386
2295@opindex mrtd
2296On the Intel 386, the @code{cdecl} attribute causes the compiler to
2297assume that the calling function will pop off the stack space used to
2298pass arguments.  This is
2299useful to override the effects of the @option{-mrtd} switch.
2300
2301@item const
2302@cindex @code{const} function attribute
2303Many functions do not examine any values except their arguments, and
2304have no effects except the return value.  Basically this is just slightly
2305more strict class than the @code{pure} attribute below, since function is not
2306allowed to read global memory.
2307
2308@cindex pointer arguments
2309Note that a function that has pointer arguments and examines the data
2310pointed to must @emph{not} be declared @code{const}.  Likewise, a
2311function that calls a non-@code{const} function usually must not be
2312@code{const}.  It does not make sense for a @code{const} function to
2313return @code{void}.
2314
2315The attribute @code{const} is not implemented in GCC versions earlier
2316than 2.5.  An alternative way to declare that a function has no side
2317effects, which works in the current version and in some older versions,
2318is as follows:
2319
2320@smallexample
2321typedef int intfn ();
2322
2323extern const intfn square;
2324@end smallexample
2325
2326This approach does not work in GNU C++ from 2.6.0 on, since the language
2327specifies that the @samp{const} must be attached to the return value.
2328
2329@item constructor
2330@itemx destructor
2331@itemx constructor (@var{priority})
2332@itemx destructor (@var{priority})
2333@cindex @code{constructor} function attribute
2334@cindex @code{destructor} function attribute
2335The @code{constructor} attribute causes the function to be called
2336automatically before execution enters @code{main ()}.  Similarly, the
2337@code{destructor} attribute causes the function to be called
2338automatically after @code{main ()} has completed or @code{exit ()} has
2339been called.  Functions with these attributes are useful for
2340initializing data that will be used implicitly during the execution of
2341the program.
2342
2343You may provide an optional integer priority to control the order in
2344which constructor and destructor functions are run.  A constructor
2345with a smaller priority number runs before a constructor with a larger
2346priority number; the opposite relationship holds for destructors.  So,
2347if you have a constructor that allocates a resource and a destructor
2348that deallocates the same resource, both functions typically have the
2349same priority.  The priorities for constructor and destructor
2350functions are the same as those specified for namespace-scope C++
2351objects (@pxref{C++ Attributes}).
2352
2353These attributes are not currently implemented for Objective-C@.
2354
2355@item deprecated
2356@itemx deprecated (@var{msg})
2357@cindex @code{deprecated} attribute.
2358The @code{deprecated} attribute results in a warning if the function
2359is used anywhere in the source file.  This is useful when identifying
2360functions that are expected to be removed in a future version of a
2361program.  The warning also includes the location of the declaration
2362of the deprecated function, to enable users to easily find further
2363information about why the function is deprecated, or what they should
2364do instead.  Note that the warnings only occurs for uses:
2365
2366@smallexample
2367int old_fn () __attribute__ ((deprecated));
2368int old_fn ();
2369int (*fn_ptr)() = old_fn;
2370@end smallexample
2371
2372results in a warning on line 3 but not line 2.  The optional msg
2373argument, which must be a string, will be printed in the warning if
2374present.
2375
2376The @code{deprecated} attribute can also be used for variables and
2377types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2378
2379@item disinterrupt
2380@cindex @code{disinterrupt} attribute
2381On Epiphany and MeP targets, this attribute causes the compiler to emit
2382instructions to disable interrupts for the duration of the given
2383function.
2384
2385@item dllexport
2386@cindex @code{__declspec(dllexport)}
2387On Microsoft Windows targets and Symbian OS targets the
2388@code{dllexport} attribute causes the compiler to provide a global
2389pointer to a pointer in a DLL, so that it can be referenced with the
2390@code{dllimport} attribute.  On Microsoft Windows targets, the pointer
2391name is formed by combining @code{_imp__} and the function or variable
2392name.
2393
2394You can use @code{__declspec(dllexport)} as a synonym for
2395@code{__attribute__ ((dllexport))} for compatibility with other
2396compilers.
2397
2398On systems that support the @code{visibility} attribute, this
2399attribute also implies ``default'' visibility.  It is an error to
2400explicitly specify any other visibility.
2401
2402In previous versions of GCC, the @code{dllexport} attribute was ignored
2403for inlined functions, unless the @option{-fkeep-inline-functions} flag
2404had been used.  The default behaviour now is to emit all dllexported
2405inline functions; however, this can cause object file-size bloat, in
2406which case the old behaviour can be restored by using
2407@option{-fno-keep-inline-dllexport}.
2408
2409The attribute is also ignored for undefined symbols.
2410
2411When applied to C++ classes, the attribute marks defined non-inlined
2412member functions and static data members as exports.  Static consts
2413initialized in-class are not marked unless they are also defined
2414out-of-class.
2415
2416For Microsoft Windows targets there are alternative methods for
2417including the symbol in the DLL's export table such as using a
2418@file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2419the @option{--export-all} linker flag.
2420
2421@item dllimport
2422@cindex @code{__declspec(dllimport)}
2423On Microsoft Windows and Symbian OS targets, the @code{dllimport}
2424attribute causes the compiler to reference a function or variable via
2425a global pointer to a pointer that is set up by the DLL exporting the
2426symbol.  The attribute implies @code{extern}.  On Microsoft Windows
2427targets, the pointer name is formed by combining @code{_imp__} and the
2428function or variable name.
2429
2430You can use @code{__declspec(dllimport)} as a synonym for
2431@code{__attribute__ ((dllimport))} for compatibility with other
2432compilers.
2433
2434On systems that support the @code{visibility} attribute, this
2435attribute also implies ``default'' visibility.  It is an error to
2436explicitly specify any other visibility.
2437
2438Currently, the attribute is ignored for inlined functions.  If the
2439attribute is applied to a symbol @emph{definition}, an error is reported.
2440If a symbol previously declared @code{dllimport} is later defined, the
2441attribute is ignored in subsequent references, and a warning is emitted.
2442The attribute is also overridden by a subsequent declaration as
2443@code{dllexport}.
2444
2445When applied to C++ classes, the attribute marks non-inlined
2446member functions and static data members as imports.  However, the
2447attribute is ignored for virtual methods to allow creation of vtables
2448using thunks.
2449
2450On the SH Symbian OS target the @code{dllimport} attribute also has
2451another affect---it can cause the vtable and run-time type information
2452for a class to be exported.  This happens when the class has a
2453dllimport'ed constructor or a non-inline, non-pure virtual function
2454and, for either of those two conditions, the class also has an inline
2455constructor or destructor and has a key function that is defined in
2456the current translation unit.
2457
2458For Microsoft Windows based targets the use of the @code{dllimport}
2459attribute on functions is not necessary, but provides a small
2460performance benefit by eliminating a thunk in the DLL@.  The use of the
2461@code{dllimport} attribute on imported variables was required on older
2462versions of the GNU linker, but can now be avoided by passing the
2463@option{--enable-auto-import} switch to the GNU linker.  As with
2464functions, using the attribute for a variable eliminates a thunk in
2465the DLL@.
2466
2467One drawback to using this attribute is that a pointer to a
2468@emph{variable} marked as @code{dllimport} cannot be used as a constant
2469address. However, a pointer to a @emph{function} with the
2470@code{dllimport} attribute can be used as a constant initializer; in
2471this case, the address of a stub function in the import lib is
2472referenced.  On Microsoft Windows targets, the attribute can be disabled
2473for functions by setting the @option{-mnop-fun-dllimport} flag.
2474
2475@item eightbit_data
2476@cindex eight bit data on the H8/300, H8/300H, and H8S
2477Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2478variable should be placed into the eight bit data section.
2479The compiler will generate more efficient code for certain operations
2480on data in the eight bit data area.  Note the eight bit data area is limited to
2481256 bytes of data.
2482
2483You must use GAS and GLD from GNU binutils version 2.7 or later for
2484this attribute to work correctly.
2485
2486@item exception_handler
2487@cindex exception handler functions on the Blackfin processor
2488Use this attribute on the Blackfin to indicate that the specified function
2489is an exception handler.  The compiler will generate function entry and
2490exit sequences suitable for use in an exception handler when this
2491attribute is present.
2492
2493@item externally_visible
2494@cindex @code{externally_visible} attribute.
2495This attribute, attached to a global variable or function, nullifies
2496the effect of the @option{-fwhole-program} command-line option, so the
2497object remains visible outside the current compilation unit. If @option{-fwhole-program} is used together with @option{-flto} and @command{gold} is used as the linker plugin, @code{externally_visible} attributes are automatically added to functions (not variable yet due to a current @command{gold} issue) that are accessed outside of LTO objects according to resolution file produced by @command{gold}.  For other linkers that cannot generate resolution file, explicit @code{externally_visible} attributes are still necessary.
2498
2499@item far
2500@cindex functions which handle memory bank switching
2501On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2502use a calling convention that takes care of switching memory banks when
2503entering and leaving a function.  This calling convention is also the
2504default when using the @option{-mlong-calls} option.
2505
2506On 68HC12 the compiler will use the @code{call} and @code{rtc} instructions
2507to call and return from a function.
2508
2509On 68HC11 the compiler will generate a sequence of instructions
2510to invoke a board-specific routine to switch the memory bank and call the
2511real function.  The board-specific routine simulates a @code{call}.
2512At the end of a function, it will jump to a board-specific routine
2513instead of using @code{rts}.  The board-specific return routine simulates
2514the @code{rtc}.
2515
2516On MeP targets this causes the compiler to use a calling convention
2517which assumes the called function is too far away for the built-in
2518addressing modes.
2519
2520@item fast_interrupt
2521@cindex interrupt handler functions
2522Use this attribute on the M32C and RX ports to indicate that the specified
2523function is a fast interrupt handler.  This is just like the
2524@code{interrupt} attribute, except that @code{freit} is used to return
2525instead of @code{reit}.
2526
2527@item fastcall
2528@cindex functions that pop the argument stack on the 386
2529On the Intel 386, the @code{fastcall} attribute causes the compiler to
2530pass the first argument (if of integral type) in the register ECX and
2531the second argument (if of integral type) in the register EDX@.  Subsequent
2532and other typed arguments are passed on the stack.  The called function will
2533pop the arguments off the stack.  If the number of arguments is variable all
2534arguments are pushed on the stack.
2535
2536@item thiscall
2537@cindex functions that pop the argument stack on the 386
2538On the Intel 386, the @code{thiscall} attribute causes the compiler to
2539pass the first argument (if of integral type) in the register ECX.
2540Subsequent and other typed arguments are passed on the stack. The called
2541function will pop the arguments off the stack.
2542If the number of arguments is variable all arguments are pushed on the
2543stack.
2544The @code{thiscall} attribute is intended for C++ non-static member functions.
2545As gcc extension this calling convention can be used for C-functions
2546and for static member methods.
2547
2548@item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2549@cindex @code{format} function attribute
2550@opindex Wformat
2551The @code{format} attribute specifies that a function takes @code{printf},
2552@code{scanf}, @code{strftime} or @code{strfmon} style arguments which
2553should be type-checked against a format string.  For example, the
2554declaration:
2555
2556@smallexample
2557extern int
2558my_printf (void *my_object, const char *my_format, ...)
2559      __attribute__ ((format (printf, 2, 3)));
2560@end smallexample
2561
2562@noindent
2563causes the compiler to check the arguments in calls to @code{my_printf}
2564for consistency with the @code{printf} style format string argument
2565@code{my_format}.
2566
2567The parameter @var{archetype} determines how the format string is
2568interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2569@code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2570@code{strfmon}.  (You can also use @code{__printf__},
2571@code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.)  On
2572MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2573@code{ms_strftime} are also present.
2574@var{archtype} values such as @code{printf} refer to the formats accepted
2575by the system's C run-time library, while @code{gnu_} values always refer
2576to the formats accepted by the GNU C Library.  On Microsoft Windows
2577targets, @code{ms_} values refer to the formats accepted by the
2578@file{msvcrt.dll} library.
2579The parameter @var{string-index}
2580specifies which argument is the format string argument (starting
2581from 1), while @var{first-to-check} is the number of the first
2582argument to check against the format string.  For functions
2583where the arguments are not available to be checked (such as
2584@code{vprintf}), specify the third parameter as zero.  In this case the
2585compiler only checks the format string for consistency.  For
2586@code{strftime} formats, the third parameter is required to be zero.
2587Since non-static C++ methods have an implicit @code{this} argument, the
2588arguments of such methods should be counted from two, not one, when
2589giving values for @var{string-index} and @var{first-to-check}.
2590
2591In the example above, the format string (@code{my_format}) is the second
2592argument of the function @code{my_print}, and the arguments to check
2593start with the third argument, so the correct parameters for the format
2594attribute are 2 and 3.
2595
2596@opindex ffreestanding
2597@opindex fno-builtin
2598The @code{format} attribute allows you to identify your own functions
2599which take format strings as arguments, so that GCC can check the
2600calls to these functions for errors.  The compiler always (unless
2601@option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2602for the standard library functions @code{printf}, @code{fprintf},
2603@code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2604@code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2605warnings are requested (using @option{-Wformat}), so there is no need to
2606modify the header file @file{stdio.h}.  In C99 mode, the functions
2607@code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2608@code{vsscanf} are also checked.  Except in strictly conforming C
2609standard modes, the X/Open function @code{strfmon} is also checked as
2610are @code{printf_unlocked} and @code{fprintf_unlocked}.
2611@xref{C Dialect Options,,Options Controlling C Dialect}.
2612
2613For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2614recognized in the same context.  Declarations including these format attributes
2615will be parsed for correct syntax, however the result of checking of such format
2616strings is not yet defined, and will not be carried out by this version of the
2617compiler.
2618
2619The target may also provide additional types of format checks.
2620@xref{Target Format Checks,,Format Checks Specific to Particular
2621Target Machines}.
2622
2623@item format_arg (@var{string-index})
2624@cindex @code{format_arg} function attribute
2625@opindex Wformat-nonliteral
2626The @code{format_arg} attribute specifies that a function takes a format
2627string for a @code{printf}, @code{scanf}, @code{strftime} or
2628@code{strfmon} style function and modifies it (for example, to translate
2629it into another language), so the result can be passed to a
2630@code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2631function (with the remaining arguments to the format function the same
2632as they would have been for the unmodified string).  For example, the
2633declaration:
2634
2635@smallexample
2636extern char *
2637my_dgettext (char *my_domain, const char *my_format)
2638      __attribute__ ((format_arg (2)));
2639@end smallexample
2640
2641@noindent
2642causes the compiler to check the arguments in calls to a @code{printf},
2643@code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2644format string argument is a call to the @code{my_dgettext} function, for
2645consistency with the format string argument @code{my_format}.  If the
2646@code{format_arg} attribute had not been specified, all the compiler
2647could tell in such calls to format functions would be that the format
2648string argument is not constant; this would generate a warning when
2649@option{-Wformat-nonliteral} is used, but the calls could not be checked
2650without the attribute.
2651
2652The parameter @var{string-index} specifies which argument is the format
2653string argument (starting from one).  Since non-static C++ methods have
2654an implicit @code{this} argument, the arguments of such methods should
2655be counted from two.
2656
2657The @code{format-arg} attribute allows you to identify your own
2658functions which modify format strings, so that GCC can check the
2659calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2660type function whose operands are a call to one of your own function.
2661The compiler always treats @code{gettext}, @code{dgettext}, and
2662@code{dcgettext} in this manner except when strict ISO C support is
2663requested by @option{-ansi} or an appropriate @option{-std} option, or
2664@option{-ffreestanding} or @option{-fno-builtin}
2665is used.  @xref{C Dialect Options,,Options
2666Controlling C Dialect}.
2667
2668For Objective-C dialects, the @code{format-arg} attribute may refer to an
2669@code{NSString} reference for compatibility with the @code{format} attribute
2670above.
2671
2672The target may also allow additional types in @code{format-arg} attributes.
2673@xref{Target Format Checks,,Format Checks Specific to Particular
2674Target Machines}.
2675
2676@item function_vector
2677@cindex calling functions through the function vector on H8/300, M16C, M32C and SH2A processors
2678Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2679function should be called through the function vector.  Calling a
2680function through the function vector will reduce code size, however;
2681the function vector has a limited size (maximum 128 entries on the H8/300
2682and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
2683
2684In SH2A target, this attribute declares a function to be called using the
2685TBR relative addressing mode.  The argument to this attribute is the entry
2686number of the same function in a vector table containing all the TBR
2687relative addressable functions.  For the successful jump, register TBR
2688should contain the start address of this TBR relative vector table.
2689In the startup routine of the user application, user needs to care of this
2690TBR register initialization.  The TBR relative vector table can have at
2691max 256 function entries.  The jumps to these functions will be generated
2692using a SH2A specific, non delayed branch instruction JSR/N @@(disp8,TBR).
2693You must use GAS and GLD from GNU binutils version 2.7 or later for
2694this attribute to work correctly.
2695
2696Please refer the example of M16C target, to see the use of this
2697attribute while declaring a function,
2698
2699In an application, for a function being called once, this attribute will
2700save at least 8 bytes of code; and if other successive calls are being
2701made to the same function, it will save 2 bytes of code per each of these
2702calls.
2703
2704On M16C/M32C targets, the @code{function_vector} attribute declares a
2705special page subroutine call function. Use of this attribute reduces
2706the code size by 2 bytes for each call generated to the
2707subroutine. The argument to the attribute is the vector number entry
2708from the special page vector table which contains the 16 low-order
2709bits of the subroutine's entry address. Each vector table has special
2710page number (18 to 255) which are used in @code{jsrs} instruction.
2711Jump addresses of the routines are generated by adding 0x0F0000 (in
2712case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
2713byte addresses set in the vector table. Therefore you need to ensure
2714that all the special page vector routines should get mapped within the
2715address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2716(for M32C).
2717
2718In the following example 2 bytes will be saved for each call to
2719function @code{foo}.
2720
2721@smallexample
2722void foo (void) __attribute__((function_vector(0x18)));
2723void foo (void)
2724@{
2725@}
2726
2727void bar (void)
2728@{
2729    foo();
2730@}
2731@end smallexample
2732
2733If functions are defined in one file and are called in another file,
2734then be sure to write this declaration in both files.
2735
2736This attribute is ignored for R8C target.
2737
2738@item ifunc ("@var{resolver}")
2739@cindex @code{ifunc} attribute
2740The @code{ifunc} attribute is used to mark a function as an indirect
2741function using the STT_GNU_IFUNC symbol type extension to the ELF
2742standard.  This allows the resolution of the symbol value to be
2743determined dynamically at load time, and an optimized version of the
2744routine can be selected for the particular processor or other system
2745characteristics determined then.  To use this attribute, first define
2746the implementation functions available, and a resolver function that
2747returns a pointer to the selected implementation function.  The
2748implementation functions' declarations must match the API of the
2749function being implemented, the resolver's declaration is be a
2750function returning pointer to void function returning void:
2751
2752@smallexample
2753void *my_memcpy (void *dst, const void *src, size_t len)
2754@{
2755  @dots{}
2756@}
2757
2758static void (*resolve_memcpy (void)) (void)
2759@{
2760  return my_memcpy; // we'll just always select this routine
2761@}
2762@end smallexample
2763
2764The exported header file declaring the function the user calls would
2765contain:
2766
2767@smallexample
2768extern void *memcpy (void *, const void *, size_t);
2769@end smallexample
2770
2771allowing the user to call this as a regular function, unaware of the
2772implementation.  Finally, the indirect function needs to be defined in
2773the same translation unit as the resolver function:
2774
2775@smallexample
2776void *memcpy (void *, const void *, size_t)
2777     __attribute__ ((ifunc ("resolve_memcpy")));
2778@end smallexample
2779
2780Indirect functions cannot be weak, and require a recent binutils (at
2781least version 2.20.1), and GNU C library (at least version 2.11.1).
2782
2783@item interrupt
2784@cindex interrupt handler functions
2785Use this attribute on the ARM, AVR, CR16, Epiphany, M32C, M32R/D, m68k, MeP, MIPS,
2786RL78, RX and Xstormy16 ports to indicate that the specified function is an
2787interrupt handler.  The compiler will generate function entry and exit
2788sequences suitable for use in an interrupt handler when this attribute
2789is present.  With Epiphany targets it may also generate a special section with
2790code to initialize the interrupt vector table.
2791
2792Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
2793and SH processors can be specified via the @code{interrupt_handler} attribute.
2794
2795Note, on the AVR, the hardware globally disables interrupts when an
2796interrupt is executed.  The first instruction of an interrupt handler
2797declared with this attribute will be a @code{SEI} instruction to
2798re-enable interrupts.  See also the @code{signal} function attribute
2799that does not insert a @code{SEI} instuction.  If both @code{signal} and
2800@code{interrupt} are specified for the same function, @code{signal}
2801will be silently ignored.
2802
2803Note, for the ARM, you can specify the kind of interrupt to be handled by
2804adding an optional parameter to the interrupt attribute like this:
2805
2806@smallexample
2807void f () __attribute__ ((interrupt ("IRQ")));
2808@end smallexample
2809
2810Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
2811
2812On ARMv7-M the interrupt type is ignored, and the attribute means the function
2813may be called with a word aligned stack pointer.
2814
2815On Epiphany targets one or more optional parameters can be added like this:
2816
2817@smallexample
2818void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
2819@end smallexample
2820
2821Permissible values for these parameters are: @w{@code{reset}},
2822@w{@code{software_exception}}, @w{@code{page_miss}},
2823@w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
2824@w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
2825Multiple parameters indicate that multiple entries in the interrupt
2826vector table should be initialized for this function, i.e. for each
2827parameter @w{@var{name}}, a jump to the function will be emitted in
2828the section @w{ivt_entry_@var{name}}.  The parameter(s) may be omitted
2829entirely, in which case no interrupt vector table entry will be provided.
2830
2831Note, on Epiphany targets, interrupts are enabled inside the function
2832unless the @code{disinterrupt} attribute is also specified.
2833
2834On Epiphany targets, you can also use the following attribute to
2835modify the behavior of an interrupt handler:
2836@table @code
2837@item forwarder_section
2838@cindex @code{forwarder_section} attribute
2839The interrupt handler may be in external memory which cannot be
2840reached by a branch instruction, so generate a local memory trampoline
2841to transfer control.  The single parameter identifies the section where
2842the trampoline will be placed.
2843@end table
2844
2845The following examples are all valid uses of these attributes on
2846Epiphany targets:
2847@smallexample
2848void __attribute__ ((interrupt)) universal_handler ();
2849void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
2850void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
2851void __attribute__ ((interrupt ("timer0"), disinterrupt))
2852  fast_timer_handler ();
2853void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp")))
2854  external_dma_handler ();
2855@end smallexample
2856
2857On MIPS targets, you can use the following attributes to modify the behavior
2858of an interrupt handler:
2859@table @code
2860@item use_shadow_register_set
2861@cindex @code{use_shadow_register_set} attribute
2862Assume that the handler uses a shadow register set, instead of
2863the main general-purpose registers.
2864
2865@item keep_interrupts_masked
2866@cindex @code{keep_interrupts_masked} attribute
2867Keep interrupts masked for the whole function.  Without this attribute,
2868GCC tries to reenable interrupts for as much of the function as it can.
2869
2870@item use_debug_exception_return
2871@cindex @code{use_debug_exception_return} attribute
2872Return using the @code{deret} instruction.  Interrupt handlers that don't
2873have this attribute return using @code{eret} instead.
2874@end table
2875
2876You can use any combination of these attributes, as shown below:
2877@smallexample
2878void __attribute__ ((interrupt)) v0 ();
2879void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
2880void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
2881void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
2882void __attribute__ ((interrupt, use_shadow_register_set,
2883                     keep_interrupts_masked)) v4 ();
2884void __attribute__ ((interrupt, use_shadow_register_set,
2885                     use_debug_exception_return)) v5 ();
2886void __attribute__ ((interrupt, keep_interrupts_masked,
2887                     use_debug_exception_return)) v6 ();
2888void __attribute__ ((interrupt, use_shadow_register_set,
2889                     keep_interrupts_masked,
2890                     use_debug_exception_return)) v7 ();
2891@end smallexample
2892
2893On RL78, use @code{brk_interrupt} instead of @code{interrupt} for
2894handlers intended to be used with the @code{BRK} opcode (i.e.  those
2895that must end with @code{RETB} instead of @code{RETI}).
2896
2897@item interrupt_handler
2898@cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
2899Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
2900indicate that the specified function is an interrupt handler.  The compiler
2901will generate function entry and exit sequences suitable for use in an
2902interrupt handler when this attribute is present.
2903
2904@item interrupt_thread
2905@cindex interrupt thread functions on fido
2906Use this attribute on fido, a subarchitecture of the m68k, to indicate
2907that the specified function is an interrupt handler that is designed
2908to run as a thread.  The compiler omits generate prologue/epilogue
2909sequences and replaces the return instruction with a @code{sleep}
2910instruction.  This attribute is available only on fido.
2911
2912@item isr
2913@cindex interrupt service routines on ARM
2914Use this attribute on ARM to write Interrupt Service Routines. This is an
2915alias to the @code{interrupt} attribute above.
2916
2917@item kspisusp
2918@cindex User stack pointer in interrupts on the Blackfin
2919When used together with @code{interrupt_handler}, @code{exception_handler}
2920or @code{nmi_handler}, code will be generated to load the stack pointer
2921from the USP register in the function prologue.
2922
2923@item l1_text
2924@cindex @code{l1_text} function attribute
2925This attribute specifies a function to be placed into L1 Instruction
2926SRAM@. The function will be put into a specific section named @code{.l1.text}.
2927With @option{-mfdpic}, function calls with a such function as the callee
2928or caller will use inlined PLT.
2929
2930@item l2
2931@cindex @code{l2} function attribute
2932On the Blackfin, this attribute specifies a function to be placed into L2
2933SRAM. The function will be put into a specific section named
2934@code{.l1.text}. With @option{-mfdpic}, callers of such functions will use
2935an inlined PLT.
2936
2937@item leaf
2938@cindex @code{leaf} function attribute
2939Calls to external functions with this attribute must return to the current
2940compilation unit only by return or by exception handling.  In particular, leaf
2941functions are not allowed to call callback function passed to it from the current
2942compilation unit or directly call functions exported by the unit or longjmp
2943into the unit.  Leaf function might still call functions from other compilation
2944units and thus they are not necessarily leaf in the sense that they contain no
2945function calls at all.
2946
2947The attribute is intended for library functions to improve dataflow analysis.
2948The compiler takes the hint that any data not escaping the current compilation unit can
2949not be used or modified by the leaf function.  For example, the @code{sin} function
2950is a leaf function, but @code{qsort} is not.
2951
2952Note that leaf functions might invoke signals and signal handlers might be
2953defined in the current compilation unit and use static variables.  The only
2954compliant way to write such a signal handler is to declare such variables
2955@code{volatile}.
2956
2957The attribute has no effect on functions defined within the current compilation
2958unit.  This is to allow easy merging of multiple compilation units into one,
2959for example, by using the link time optimization.  For this reason the
2960attribute is not allowed on types to annotate indirect calls.
2961
2962@item long_call/short_call
2963@cindex indirect calls on ARM
2964This attribute specifies how a particular function is called on
2965ARM and Epiphany.  Both attributes override the
2966@option{-mlong-calls} (@pxref{ARM Options})
2967command-line switch and @code{#pragma long_calls} settings.  The
2968@code{long_call} attribute indicates that the function might be far
2969away from the call site and require a different (more expensive)
2970calling sequence.   The @code{short_call} attribute always places
2971the offset to the function from the call site into the @samp{BL}
2972instruction directly.
2973
2974@item longcall/shortcall
2975@cindex functions called via pointer on the RS/6000 and PowerPC
2976On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
2977indicates that the function might be far away from the call site and
2978require a different (more expensive) calling sequence.  The
2979@code{shortcall} attribute indicates that the function is always close
2980enough for the shorter calling sequence to be used.  These attributes
2981override both the @option{-mlongcall} switch and, on the RS/6000 and
2982PowerPC, the @code{#pragma longcall} setting.
2983
2984@xref{RS/6000 and PowerPC Options}, for more information on whether long
2985calls are necessary.
2986
2987@item long_call/near/far
2988@cindex indirect calls on MIPS
2989These attributes specify how a particular function is called on MIPS@.
2990The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
2991command-line switch.  The @code{long_call} and @code{far} attributes are
2992synonyms, and cause the compiler to always call
2993the function by first loading its address into a register, and then using
2994the contents of that register.  The @code{near} attribute has the opposite
2995effect; it specifies that non-PIC calls should be made using the more
2996efficient @code{jal} instruction.
2997
2998@item malloc
2999@cindex @code{malloc} attribute
3000The @code{malloc} attribute is used to tell the compiler that a function
3001may be treated as if any non-@code{NULL} pointer it returns cannot
3002alias any other pointer valid when the function returns and that the memory
3003has undefined content.
3004This will often improve optimization.
3005Standard functions with this property include @code{malloc} and
3006@code{calloc}.  @code{realloc}-like functions do not have this
3007property as the memory pointed to does not have undefined content.
3008
3009@item mips16/nomips16
3010@cindex @code{mips16} attribute
3011@cindex @code{nomips16} attribute
3012
3013On MIPS targets, you can use the @code{mips16} and @code{nomips16}
3014function attributes to locally select or turn off MIPS16 code generation.
3015A function with the @code{mips16} attribute is emitted as MIPS16 code,
3016while MIPS16 code generation is disabled for functions with the
3017@code{nomips16} attribute.  These attributes override the
3018@option{-mips16} and @option{-mno-mips16} options on the command line
3019(@pxref{MIPS Options}).
3020
3021When compiling files containing mixed MIPS16 and non-MIPS16 code, the
3022preprocessor symbol @code{__mips16} reflects the setting on the command line,
3023not that within individual functions.  Mixed MIPS16 and non-MIPS16 code
3024may interact badly with some GCC extensions such as @code{__builtin_apply}
3025(@pxref{Constructing Calls}).
3026
3027@item model (@var{model-name})
3028@cindex function addressability on the M32R/D
3029@cindex variable addressability on the IA-64
3030
3031On the M32R/D, use this attribute to set the addressability of an
3032object, and of the code generated for a function.  The identifier
3033@var{model-name} is one of @code{small}, @code{medium}, or
3034@code{large}, representing each of the code models.
3035
3036Small model objects live in the lower 16MB of memory (so that their
3037addresses can be loaded with the @code{ld24} instruction), and are
3038callable with the @code{bl} instruction.
3039
3040Medium model objects may live anywhere in the 32-bit address space (the
3041compiler will generate @code{seth/add3} instructions to load their addresses),
3042and are callable with the @code{bl} instruction.
3043
3044Large model objects may live anywhere in the 32-bit address space (the
3045compiler will generate @code{seth/add3} instructions to load their addresses),
3046and may not be reachable with the @code{bl} instruction (the compiler will
3047generate the much slower @code{seth/add3/jl} instruction sequence).
3048
3049On IA-64, use this attribute to set the addressability of an object.
3050At present, the only supported identifier for @var{model-name} is
3051@code{small}, indicating addressability via ``small'' (22-bit)
3052addresses (so that their addresses can be loaded with the @code{addl}
3053instruction).  Caveat: such addressing is by definition not position
3054independent and hence this attribute must not be used for objects
3055defined by shared libraries.
3056
3057@item ms_abi/sysv_abi
3058@cindex @code{ms_abi} attribute
3059@cindex @code{sysv_abi} attribute
3060
3061On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI attribute
3062to indicate which calling convention should be used for a function.  The
3063@code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
3064while the @code{sysv_abi} attribute tells the compiler to use the ABI
3065used on GNU/Linux and other systems.  The default is to use the Microsoft ABI
3066when targeting Windows.  On all other systems, the default is the x86/AMD ABI.
3067
3068Note, the @code{ms_abi} attribute for Windows 64-bit targets currently
3069requires the @option{-maccumulate-outgoing-args} option.
3070
3071@item callee_pop_aggregate_return (@var{number})
3072@cindex @code{callee_pop_aggregate_return} attribute
3073
3074On 32-bit i?86-*-* targets, you can control by those attribute for
3075aggregate return in memory, if the caller is responsible to pop the hidden
3076pointer together with the rest of the arguments - @var{number} equal to
3077zero -, or if the callee is responsible to pop hidden pointer - @var{number}
3078equal to one.  The default i386 ABI assumes that the callee pops the
3079stack for hidden pointer.
3080
3081Note, that on 32-bit i386 Windows targets the compiler assumes that the
3082caller pops the stack for hidden pointer.
3083
3084@item ms_hook_prologue
3085@cindex @code{ms_hook_prologue} attribute
3086
3087On 32 bit i[34567]86-*-* targets and 64 bit x86_64-*-* targets, you can use
3088this function attribute to make gcc generate the "hot-patching" function
3089prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
3090and newer.
3091
3092@item naked
3093@cindex function without a prologue/epilogue code
3094Use this attribute on the ARM, AVR, MCORE, RX and SPU ports to indicate that
3095the specified function does not need prologue/epilogue sequences generated by
3096the compiler.  It is up to the programmer to provide these sequences. The
3097only statements that can be safely included in naked functions are
3098@code{asm} statements that do not have operands.  All other statements,
3099including declarations of local variables, @code{if} statements, and so
3100forth, should be avoided.  Naked functions should be used to implement the
3101body of an assembly function, while allowing the compiler to construct
3102the requisite function declaration for the assembler.
3103
3104@item near
3105@cindex functions which do not handle memory bank switching on 68HC11/68HC12
3106On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
3107use the normal calling convention based on @code{jsr} and @code{rts}.
3108This attribute can be used to cancel the effect of the @option{-mlong-calls}
3109option.
3110
3111On MeP targets this attribute causes the compiler to assume the called
3112function is close enough to use the normal calling convention,
3113overriding the @code{-mtf} command line option.
3114
3115@item nesting
3116@cindex Allow nesting in an interrupt handler on the Blackfin processor.
3117Use this attribute together with @code{interrupt_handler},
3118@code{exception_handler} or @code{nmi_handler} to indicate that the function
3119entry code should enable nested interrupts or exceptions.
3120
3121@item nmi_handler
3122@cindex NMI handler functions on the Blackfin processor
3123Use this attribute on the Blackfin to indicate that the specified function
3124is an NMI handler.  The compiler will generate function entry and
3125exit sequences suitable for use in an NMI handler when this
3126attribute is present.
3127
3128@item no_instrument_function
3129@cindex @code{no_instrument_function} function attribute
3130@opindex finstrument-functions
3131If @option{-finstrument-functions} is given, profiling function calls will
3132be generated at entry and exit of most user-compiled functions.
3133Functions with this attribute will not be so instrumented.
3134
3135@item no_split_stack
3136@cindex @code{no_split_stack} function attribute
3137@opindex fsplit-stack
3138If @option{-fsplit-stack} is given, functions will have a small
3139prologue which decides whether to split the stack.  Functions with the
3140@code{no_split_stack} attribute will not have that prologue, and thus
3141may run with only a small amount of stack space available.
3142
3143@item noinline
3144@cindex @code{noinline} function attribute
3145This function attribute prevents a function from being considered for
3146inlining.
3147@c Don't enumerate the optimizations by name here; we try to be
3148@c future-compatible with this mechanism.
3149If the function does not have side-effects, there are optimizations
3150other than inlining that causes function calls to be optimized away,
3151although the function call is live.  To keep such calls from being
3152optimized away, put
3153@smallexample
3154asm ("");
3155@end smallexample
3156(@pxref{Extended Asm}) in the called function, to serve as a special
3157side-effect.
3158
3159@item noclone
3160@cindex @code{noclone} function attribute
3161This function attribute prevents a function from being considered for
3162cloning - a mechanism which produces specialized copies of functions
3163and which is (currently) performed by interprocedural constant
3164propagation.
3165
3166@item nonnull (@var{arg-index}, @dots{})
3167@cindex @code{nonnull} function attribute
3168The @code{nonnull} attribute specifies that some function parameters should
3169be non-null pointers.  For instance, the declaration:
3170
3171@smallexample
3172extern void *
3173my_memcpy (void *dest, const void *src, size_t len)
3174        __attribute__((nonnull (1, 2)));
3175@end smallexample
3176
3177@noindent
3178causes the compiler to check that, in calls to @code{my_memcpy},
3179arguments @var{dest} and @var{src} are non-null.  If the compiler
3180determines that a null pointer is passed in an argument slot marked
3181as non-null, and the @option{-Wnonnull} option is enabled, a warning
3182is issued.  The compiler may also choose to make optimizations based
3183on the knowledge that certain function arguments will not be null.
3184
3185If no argument index list is given to the @code{nonnull} attribute,
3186all pointer arguments are marked as non-null.  To illustrate, the
3187following declaration is equivalent to the previous example:
3188
3189@smallexample
3190extern void *
3191my_memcpy (void *dest, const void *src, size_t len)
3192        __attribute__((nonnull));
3193@end smallexample
3194
3195@item noreturn
3196@cindex @code{noreturn} function attribute
3197A few standard library functions, such as @code{abort} and @code{exit},
3198cannot return.  GCC knows this automatically.  Some programs define
3199their own functions that never return.  You can declare them
3200@code{noreturn} to tell the compiler this fact.  For example,
3201
3202@smallexample
3203@group
3204void fatal () __attribute__ ((noreturn));
3205
3206void
3207fatal (/* @r{@dots{}} */)
3208@{
3209  /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3210  exit (1);
3211@}
3212@end group
3213@end smallexample
3214
3215The @code{noreturn} keyword tells the compiler to assume that
3216@code{fatal} cannot return.  It can then optimize without regard to what
3217would happen if @code{fatal} ever did return.  This makes slightly
3218better code.  More importantly, it helps avoid spurious warnings of
3219uninitialized variables.
3220
3221The @code{noreturn} keyword does not affect the exceptional path when that
3222applies: a @code{noreturn}-marked function may still return to the caller
3223by throwing an exception or calling @code{longjmp}.
3224
3225Do not assume that registers saved by the calling function are
3226restored before calling the @code{noreturn} function.
3227
3228It does not make sense for a @code{noreturn} function to have a return
3229type other than @code{void}.
3230
3231The attribute @code{noreturn} is not implemented in GCC versions
3232earlier than 2.5.  An alternative way to declare that a function does
3233not return, which works in the current version and in some older
3234versions, is as follows:
3235
3236@smallexample
3237typedef void voidfn ();
3238
3239volatile voidfn fatal;
3240@end smallexample
3241
3242This approach does not work in GNU C++.
3243
3244@item nothrow
3245@cindex @code{nothrow} function attribute
3246The @code{nothrow} attribute is used to inform the compiler that a
3247function cannot throw an exception.  For example, most functions in
3248the standard C library can be guaranteed not to throw an exception
3249with the notable exceptions of @code{qsort} and @code{bsearch} that
3250take function pointer arguments.  The @code{nothrow} attribute is not
3251implemented in GCC versions earlier than 3.3.
3252
3253@item optimize
3254@cindex @code{optimize} function attribute
3255The @code{optimize} attribute is used to specify that a function is to
3256be compiled with different optimization options than specified on the
3257command line.  Arguments can either be numbers or strings.  Numbers
3258are assumed to be an optimization level.  Strings that begin with
3259@code{O} are assumed to be an optimization option, while other options
3260are assumed to be used with a @code{-f} prefix.  You can also use the
3261@samp{#pragma GCC optimize} pragma to set the optimization options
3262that affect more than one function.
3263@xref{Function Specific Option Pragmas}, for details about the
3264@samp{#pragma GCC optimize} pragma.
3265
3266This can be used for instance to have frequently executed functions
3267compiled with more aggressive optimization options that produce faster
3268and larger code, while other functions can be called with less
3269aggressive options.
3270
3271@item OS_main/OS_task
3272@cindex @code{OS_main} AVR function attribute
3273@cindex @code{OS_task} AVR function attribute
3274On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3275do not save/restore any call-saved register in their prologue/epilogue.
3276
3277The @code{OS_main} attribute can be used when there @emph{is
3278guarantee} that interrupts are disabled at the time when the function
3279is entered.  This will save resources when the stack pointer has to be
3280changed to set up a frame for local variables.
3281
3282The @code{OS_task} attribute can be used when there is @emph{no
3283guarantee} that interrupts are disabled at that time when the function
3284is entered like for, e@.g@. task functions in a multi-threading operating
3285system. In that case, changing the stack pointer register will be
3286guarded by save/clear/restore of the global interrupt enable flag.
3287
3288The differences to the @code{naked} function attribute are:
3289@itemize @bullet
3290@item @code{naked} functions do not have a return instruction whereas
3291@code{OS_main} and @code{OS_task} functions will have a @code{RET} or
3292@code{RETI} return instruction.
3293@item @code{naked} functions do not set up a frame for local variables
3294or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3295as needed.
3296@end itemize
3297
3298@item pcs
3299@cindex @code{pcs} function attribute
3300
3301The @code{pcs} attribute can be used to control the calling convention
3302used for a function on ARM.  The attribute takes an argument that specifies
3303the calling convention to use.
3304
3305When compiling using the AAPCS ABI (or a variant of that) then valid
3306values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}.  In
3307order to use a variant other than @code{"aapcs"} then the compiler must
3308be permitted to use the appropriate co-processor registers (i.e., the
3309VFP registers must be available in order to use @code{"aapcs-vfp"}).
3310For example,
3311
3312@smallexample
3313/* Argument passed in r0, and result returned in r0+r1.  */
3314double f2d (float) __attribute__((pcs("aapcs")));
3315@end smallexample
3316
3317Variadic functions always use the @code{"aapcs"} calling convention and
3318the compiler will reject attempts to specify an alternative.
3319
3320@item pure
3321@cindex @code{pure} function attribute
3322Many functions have no effects except the return value and their
3323return value depends only on the parameters and/or global variables.
3324Such a function can be subject
3325to common subexpression elimination and loop optimization just as an
3326arithmetic operator would be.  These functions should be declared
3327with the attribute @code{pure}.  For example,
3328
3329@smallexample
3330int square (int) __attribute__ ((pure));
3331@end smallexample
3332
3333@noindent
3334says that the hypothetical function @code{square} is safe to call
3335fewer times than the program says.
3336
3337Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
3338Interesting non-pure functions are functions with infinite loops or those
3339depending on volatile memory or other system resource, that may change between
3340two consecutive calls (such as @code{feof} in a multithreading environment).
3341
3342The attribute @code{pure} is not implemented in GCC versions earlier
3343than 2.96.
3344
3345@item hot
3346@cindex @code{hot} function attribute
3347The @code{hot} attribute is used to inform the compiler that a function is a
3348hot spot of the compiled program.  The function is optimized more aggressively
3349and on many target it is placed into special subsection of the text section so
3350all hot functions appears close together improving locality.
3351
3352When profile feedback is available, via @option{-fprofile-use}, hot functions
3353are automatically detected and this attribute is ignored.
3354
3355The @code{hot} attribute is not implemented in GCC versions earlier
3356than 4.3.
3357
3358@item cold
3359@cindex @code{cold} function attribute
3360The @code{cold} attribute is used to inform the compiler that a function is
3361unlikely executed.  The function is optimized for size rather than speed and on
3362many targets it is placed into special subsection of the text section so all
3363cold functions appears close together improving code locality of non-cold parts
3364of program.  The paths leading to call of cold functions within code are marked
3365as unlikely by the branch prediction mechanism. It is thus useful to mark
3366functions used to handle unlikely conditions, such as @code{perror}, as cold to
3367improve optimization of hot functions that do call marked functions in rare
3368occasions.
3369
3370When profile feedback is available, via @option{-fprofile-use}, hot functions
3371are automatically detected and this attribute is ignored.
3372
3373The @code{cold} attribute is not implemented in GCC versions earlier than 4.3.
3374
3375@item regparm (@var{number})
3376@cindex @code{regparm} attribute
3377@cindex functions that are passed arguments in registers on the 386
3378On the Intel 386, the @code{regparm} attribute causes the compiler to
3379pass arguments number one to @var{number} if they are of integral type
3380in registers EAX, EDX, and ECX instead of on the stack.  Functions that
3381take a variable number of arguments will continue to be passed all of their
3382arguments on the stack.
3383
3384Beware that on some ELF systems this attribute is unsuitable for
3385global functions in shared libraries with lazy binding (which is the
3386default).  Lazy binding will send the first call via resolving code in
3387the loader, which might assume EAX, EDX and ECX can be clobbered, as
3388per the standard calling conventions.  Solaris 8 is affected by this.
3389GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
3390safe since the loaders there save EAX, EDX and ECX.  (Lazy binding can be
3391disabled with the linker or the loader if desired, to avoid the
3392problem.)
3393
3394@item sseregparm
3395@cindex @code{sseregparm} attribute
3396On the Intel 386 with SSE support, the @code{sseregparm} attribute
3397causes the compiler to pass up to 3 floating point arguments in
3398SSE registers instead of on the stack.  Functions that take a
3399variable number of arguments will continue to pass all of their
3400floating point arguments on the stack.
3401
3402@item force_align_arg_pointer
3403@cindex @code{force_align_arg_pointer} attribute
3404On the Intel x86, the @code{force_align_arg_pointer} attribute may be
3405applied to individual function definitions, generating an alternate
3406prologue and epilogue that realigns the runtime stack if necessary.
3407This supports mixing legacy codes that run with a 4-byte aligned stack
3408with modern codes that keep a 16-byte stack for SSE compatibility.
3409
3410@item resbank
3411@cindex @code{resbank} attribute
3412On the SH2A target, this attribute enables the high-speed register
3413saving and restoration using a register bank for @code{interrupt_handler}
3414routines.  Saving to the bank is performed automatically after the CPU
3415accepts an interrupt that uses a register bank.
3416
3417The nineteen 32-bit registers comprising general register R0 to R14,
3418control register GBR, and system registers MACH, MACL, and PR and the
3419vector table address offset are saved into a register bank.  Register
3420banks are stacked in first-in last-out (FILO) sequence.  Restoration
3421from the bank is executed by issuing a RESBANK instruction.
3422
3423@item returns_twice
3424@cindex @code{returns_twice} attribute
3425The @code{returns_twice} attribute tells the compiler that a function may
3426return more than one time.  The compiler will ensure that all registers
3427are dead before calling such a function and will emit a warning about
3428the variables that may be clobbered after the second return from the
3429function.  Examples of such functions are @code{setjmp} and @code{vfork}.
3430The @code{longjmp}-like counterpart of such function, if any, might need
3431to be marked with the @code{noreturn} attribute.
3432
3433@item saveall
3434@cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
3435Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
3436all registers except the stack pointer should be saved in the prologue
3437regardless of whether they are used or not.
3438
3439@item save_volatiles
3440@cindex save volatile registers on the MicroBlaze
3441Use this attribute on the MicroBlaze to indicate that the function is
3442an interrupt handler.  All volatile registers (in addition to non-volatile
3443registers) will be saved in the function prologue.  If the function is a leaf
3444function, only volatiles used by the function are saved.  A normal function
3445return is generated instead of a return from interrupt.
3446
3447@item section ("@var{section-name}")
3448@cindex @code{section} function attribute
3449Normally, the compiler places the code it generates in the @code{text} section.
3450Sometimes, however, you need additional sections, or you need certain
3451particular functions to appear in special sections.  The @code{section}
3452attribute specifies that a function lives in a particular section.
3453For example, the declaration:
3454
3455@smallexample
3456extern void foobar (void) __attribute__ ((section ("bar")));
3457@end smallexample
3458
3459@noindent
3460puts the function @code{foobar} in the @code{bar} section.
3461
3462Some file formats do not support arbitrary sections so the @code{section}
3463attribute is not available on all platforms.
3464If you need to map the entire contents of a module to a particular
3465section, consider using the facilities of the linker instead.
3466
3467@item sentinel
3468@cindex @code{sentinel} function attribute
3469This function attribute ensures that a parameter in a function call is
3470an explicit @code{NULL}.  The attribute is only valid on variadic
3471functions.  By default, the sentinel is located at position zero, the
3472last parameter of the function call.  If an optional integer position
3473argument P is supplied to the attribute, the sentinel must be located at
3474position P counting backwards from the end of the argument list.
3475
3476@smallexample
3477__attribute__ ((sentinel))
3478is equivalent to
3479__attribute__ ((sentinel(0)))
3480@end smallexample
3481
3482The attribute is automatically set with a position of 0 for the built-in
3483functions @code{execl} and @code{execlp}.  The built-in function
3484@code{execle} has the attribute set with a position of 1.
3485
3486A valid @code{NULL} in this context is defined as zero with any pointer
3487type.  If your system defines the @code{NULL} macro with an integer type
3488then you need to add an explicit cast.  GCC replaces @code{stddef.h}
3489with a copy that redefines NULL appropriately.
3490
3491The warnings for missing or incorrect sentinels are enabled with
3492@option{-Wformat}.
3493
3494@item short_call
3495See long_call/short_call.
3496
3497@item shortcall
3498See longcall/shortcall.
3499
3500@item signal
3501@cindex interrupt handler functions on the AVR processors
3502Use this attribute on the AVR to indicate that the specified
3503function is an interrupt handler.  The compiler will generate function
3504entry and exit sequences suitable for use in an interrupt handler when this
3505attribute is present.
3506
3507See also the @code{interrupt} function attribute.
3508
3509The AVR hardware globally disables interrupts when an interrupt is executed.
3510Interrupt handler functions defined with the @code{signal} attribute
3511do not re-enable interrupts.  It is save to enable interrupts in a
3512@code{signal} handler.  This ``save'' only applies to the code
3513generated by the compiler and not to the IRQ-layout of the
3514application which is responsibility of the application.
3515
3516If both @code{signal} and @code{interrupt} are specified for the same
3517function, @code{signal} will be silently ignored.
3518
3519@item sp_switch
3520Use this attribute on the SH to indicate an @code{interrupt_handler}
3521function should switch to an alternate stack.  It expects a string
3522argument that names a global variable holding the address of the
3523alternate stack.
3524
3525@smallexample
3526void *alt_stack;
3527void f () __attribute__ ((interrupt_handler,
3528                          sp_switch ("alt_stack")));
3529@end smallexample
3530
3531@item stdcall
3532@cindex functions that pop the argument stack on the 386
3533On the Intel 386, the @code{stdcall} attribute causes the compiler to
3534assume that the called function will pop off the stack space used to
3535pass arguments, unless it takes a variable number of arguments.
3536
3537@item syscall_linkage
3538@cindex @code{syscall_linkage} attribute
3539This attribute is used to modify the IA64 calling convention by marking
3540all input registers as live at all function exits.  This makes it possible
3541to restart a system call after an interrupt without having to save/restore
3542the input registers.  This also prevents kernel data from leaking into
3543application code.
3544
3545@item target
3546@cindex @code{target} function attribute
3547The @code{target} attribute is used to specify that a function is to
3548be compiled with different target options than specified on the
3549command line.  This can be used for instance to have functions
3550compiled with a different ISA (instruction set architecture) than the
3551default.  You can also use the @samp{#pragma GCC target} pragma to set
3552more than one function to be compiled with specific target options.
3553@xref{Function Specific Option Pragmas}, for details about the
3554@samp{#pragma GCC target} pragma.
3555
3556For instance on a 386, you could compile one function with
3557@code{target("sse4.1,arch=core2")} and another with
3558@code{target("sse4a,arch=amdfam10")} that would be equivalent to
3559compiling the first function with @option{-msse4.1} and
3560@option{-march=core2} options, and the second function with
3561@option{-msse4a} and @option{-march=amdfam10} options.  It is up to the
3562user to make sure that a function is only invoked on a machine that
3563supports the particular ISA it was compiled for (for example by using
3564@code{cpuid} on 386 to determine what feature bits and architecture
3565family are used).
3566
3567@smallexample
3568int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3569int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3570@end smallexample
3571
3572On the 386, the following options are allowed:
3573
3574@table @samp
3575@item abm
3576@itemx no-abm
3577@cindex @code{target("abm")} attribute
3578Enable/disable the generation of the advanced bit instructions.
3579
3580@item aes
3581@itemx no-aes
3582@cindex @code{target("aes")} attribute
3583Enable/disable the generation of the AES instructions.
3584
3585@item mmx
3586@itemx no-mmx
3587@cindex @code{target("mmx")} attribute
3588Enable/disable the generation of the MMX instructions.
3589
3590@item pclmul
3591@itemx no-pclmul
3592@cindex @code{target("pclmul")} attribute
3593Enable/disable the generation of the PCLMUL instructions.
3594
3595@item popcnt
3596@itemx no-popcnt
3597@cindex @code{target("popcnt")} attribute
3598Enable/disable the generation of the POPCNT instruction.
3599
3600@item sse
3601@itemx no-sse
3602@cindex @code{target("sse")} attribute
3603Enable/disable the generation of the SSE instructions.
3604
3605@item sse2
3606@itemx no-sse2
3607@cindex @code{target("sse2")} attribute
3608Enable/disable the generation of the SSE2 instructions.
3609
3610@item sse3
3611@itemx no-sse3
3612@cindex @code{target("sse3")} attribute
3613Enable/disable the generation of the SSE3 instructions.
3614
3615@item sse4
3616@itemx no-sse4
3617@cindex @code{target("sse4")} attribute
3618Enable/disable the generation of the SSE4 instructions (both SSE4.1
3619and SSE4.2).
3620
3621@item sse4.1
3622@itemx no-sse4.1
3623@cindex @code{target("sse4.1")} attribute
3624Enable/disable the generation of the sse4.1 instructions.
3625
3626@item sse4.2
3627@itemx no-sse4.2
3628@cindex @code{target("sse4.2")} attribute
3629Enable/disable the generation of the sse4.2 instructions.
3630
3631@item sse4a
3632@itemx no-sse4a
3633@cindex @code{target("sse4a")} attribute
3634Enable/disable the generation of the SSE4A instructions.
3635
3636@item fma4
3637@itemx no-fma4
3638@cindex @code{target("fma4")} attribute
3639Enable/disable the generation of the FMA4 instructions.
3640
3641@item xop
3642@itemx no-xop
3643@cindex @code{target("xop")} attribute
3644Enable/disable the generation of the XOP instructions.
3645
3646@item lwp
3647@itemx no-lwp
3648@cindex @code{target("lwp")} attribute
3649Enable/disable the generation of the LWP instructions.
3650
3651@item ssse3
3652@itemx no-ssse3
3653@cindex @code{target("ssse3")} attribute
3654Enable/disable the generation of the SSSE3 instructions.
3655
3656@item cld
3657@itemx no-cld
3658@cindex @code{target("cld")} attribute
3659Enable/disable the generation of the CLD before string moves.
3660
3661@item fancy-math-387
3662@itemx no-fancy-math-387
3663@cindex @code{target("fancy-math-387")} attribute
3664Enable/disable the generation of the @code{sin}, @code{cos}, and
3665@code{sqrt} instructions on the 387 floating point unit.
3666
3667@item fused-madd
3668@itemx no-fused-madd
3669@cindex @code{target("fused-madd")} attribute
3670Enable/disable the generation of the fused multiply/add instructions.
3671
3672@item ieee-fp
3673@itemx no-ieee-fp
3674@cindex @code{target("ieee-fp")} attribute
3675Enable/disable the generation of floating point that depends on IEEE arithmetic.
3676
3677@item inline-all-stringops
3678@itemx no-inline-all-stringops
3679@cindex @code{target("inline-all-stringops")} attribute
3680Enable/disable inlining of string operations.
3681
3682@item inline-stringops-dynamically
3683@itemx no-inline-stringops-dynamically
3684@cindex @code{target("inline-stringops-dynamically")} attribute
3685Enable/disable the generation of the inline code to do small string
3686operations and calling the library routines for large operations.
3687
3688@item align-stringops
3689@itemx no-align-stringops
3690@cindex @code{target("align-stringops")} attribute
3691Do/do not align destination of inlined string operations.
3692
3693@item recip
3694@itemx no-recip
3695@cindex @code{target("recip")} attribute
3696Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
3697instructions followed an additional Newton-Raphson step instead of
3698doing a floating point division.
3699
3700@item arch=@var{ARCH}
3701@cindex @code{target("arch=@var{ARCH}")} attribute
3702Specify the architecture to generate code for in compiling the function.
3703
3704@item tune=@var{TUNE}
3705@cindex @code{target("tune=@var{TUNE}")} attribute
3706Specify the architecture to tune for in compiling the function.
3707
3708@item fpmath=@var{FPMATH}
3709@cindex @code{target("fpmath=@var{FPMATH}")} attribute
3710Specify which floating point unit to use.  The
3711@code{target("fpmath=sse,387")} option must be specified as
3712@code{target("fpmath=sse+387")} because the comma would separate
3713different options.
3714@end table
3715
3716On the PowerPC, the following options are allowed:
3717
3718@table @samp
3719@item altivec
3720@itemx no-altivec
3721@cindex @code{target("altivec")} attribute
3722Generate code that uses (does not use) AltiVec instructions.  In
372332-bit code, you cannot enable Altivec instructions unless
3724@option{-mabi=altivec} was used on the command line.
3725
3726@item cmpb
3727@itemx no-cmpb
3728@cindex @code{target("cmpb")} attribute
3729Generate code that uses (does not use) the compare bytes instruction
3730implemented on the POWER6 processor and other processors that support
3731the PowerPC V2.05 architecture.
3732
3733@item dlmzb
3734@itemx no-dlmzb
3735@cindex @code{target("dlmzb")} attribute
3736Generate code that uses (does not use) the string-search @samp{dlmzb}
3737instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
3738generated by default when targetting those processors.
3739
3740@item fprnd
3741@itemx no-fprnd
3742@cindex @code{target("fprnd")} attribute
3743Generate code that uses (does not use) the FP round to integer
3744instructions implemented on the POWER5+ processor and other processors
3745that support the PowerPC V2.03 architecture.
3746
3747@item hard-dfp
3748@itemx no-hard-dfp
3749@cindex @code{target("hard-dfp")} attribute
3750Generate code that uses (does not use) the decimal floating point
3751instructions implemented on some POWER processors.
3752
3753@item isel
3754@itemx no-isel
3755@cindex @code{target("isel")} attribute
3756Generate code that uses (does not use) ISEL instruction.
3757
3758@item mfcrf
3759@itemx no-mfcrf
3760@cindex @code{target("mfcrf")} attribute
3761Generate code that uses (does not use) the move from condition
3762register field instruction implemented on the POWER4 processor and
3763other processors that support the PowerPC V2.01 architecture.
3764
3765@item mfpgpr
3766@itemx no-mfpgpr
3767@cindex @code{target("mfpgpr")} attribute
3768Generate code that uses (does not use) the FP move to/from general
3769purpose register instructions implemented on the POWER6X processor and
3770other processors that support the extended PowerPC V2.05 architecture.
3771
3772@item mulhw
3773@itemx no-mulhw
3774@cindex @code{target("mulhw")} attribute
3775Generate code that uses (does not use) the half-word multiply and
3776multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
3777These instructions are generated by default when targetting those
3778processors.
3779
3780@item multiple
3781@itemx no-multiple
3782@cindex @code{target("multiple")} attribute
3783Generate code that uses (does not use) the load multiple word
3784instructions and the store multiple word instructions.
3785
3786@item update
3787@itemx no-update
3788@cindex @code{target("update")} attribute
3789Generate code that uses (does not use) the load or store instructions
3790that update the base register to the address of the calculated memory
3791location.
3792
3793@item popcntb
3794@itemx no-popcntb
3795@cindex @code{target("popcntb")} attribute
3796Generate code that uses (does not use) the popcount and double
3797precision FP reciprocal estimate instruction implemented on the POWER5
3798processor and other processors that support the PowerPC V2.02
3799architecture.
3800
3801@item popcntd
3802@itemx no-popcntd
3803@cindex @code{target("popcntd")} attribute
3804Generate code that uses (does not use) the popcount instruction
3805implemented on the POWER7 processor and other processors that support
3806the PowerPC V2.06 architecture.
3807
3808@item powerpc-gfxopt
3809@itemx no-powerpc-gfxopt
3810@cindex @code{target("powerpc-gfxopt")} attribute
3811Generate code that uses (does not use) the optional PowerPC
3812architecture instructions in the Graphics group, including
3813floating-point select.
3814
3815@item powerpc-gpopt
3816@itemx no-powerpc-gpopt
3817@cindex @code{target("powerpc-gpopt")} attribute
3818Generate code that uses (does not use) the optional PowerPC
3819architecture instructions in the General Purpose group, including
3820floating-point square root.
3821
3822@item recip-precision
3823@itemx no-recip-precision
3824@cindex @code{target("recip-precision")} attribute
3825Assume (do not assume) that the reciprocal estimate instructions
3826provide higher precision estimates than is mandated by the powerpc
3827ABI.
3828
3829@item string
3830@itemx no-string
3831@cindex @code{target("string")} attribute
3832Generate code that uses (does not use) the load string instructions
3833and the store string word instructions to save multiple registers and
3834do small block moves.
3835
3836@item vsx
3837@itemx no-vsx
3838@cindex @code{target("vsx")} attribute
3839Generate code that uses (does not use) vector/scalar (VSX)
3840instructions, and also enable the use of built-in functions that allow
3841more direct access to the VSX instruction set.  In 32-bit code, you
3842cannot enable VSX or Altivec instructions unless
3843@option{-mabi=altivec} was used on the command line.
3844
3845@item friz
3846@itemx no-friz
3847@cindex @code{target("friz")} attribute
3848Generate (do not generate) the @code{friz} instruction when the
3849@option{-funsafe-math-optimizations} option is used to optimize
3850rounding a floating point value to 64-bit integer and back to floating
3851point.  The @code{friz} instruction does not return the same value if
3852the floating point number is too large to fit in an integer.
3853
3854@item avoid-indexed-addresses
3855@itemx no-avoid-indexed-addresses
3856@cindex @code{target("avoid-indexed-addresses")} attribute
3857Generate code that tries to avoid (not avoid) the use of indexed load
3858or store instructions.
3859
3860@item paired
3861@itemx no-paired
3862@cindex @code{target("paired")} attribute
3863Generate code that uses (does not use) the generation of PAIRED simd
3864instructions.
3865
3866@item longcall
3867@itemx no-longcall
3868@cindex @code{target("longcall")} attribute
3869Generate code that assumes (does not assume) that all calls are far
3870away so that a longer more expensive calling sequence is required.
3871
3872@item cpu=@var{CPU}
3873@cindex @code{target("cpu=@var{CPU}")} attribute
3874Specify the architecture to generate code for when compiling the
3875function.  If you select the @code{target("cpu=power7")} attribute when
3876generating 32-bit code, VSX and Altivec instructions are not generated
3877unless you use the @option{-mabi=altivec} option on the command line.
3878
3879@item tune=@var{TUNE}
3880@cindex @code{target("tune=@var{TUNE}")} attribute
3881Specify the architecture to tune for when compiling the function.  If
3882you do not specify the @code{target("tune=@var{TUNE}")} attribute and
3883you do specify the @code{target("cpu=@var{CPU}")} attribute,
3884compilation will tune for the @var{CPU} architecture, and not the
3885default tuning specified on the command line.
3886@end table
3887
3888On the 386/x86_64 and PowerPC backends, you can use either multiple
3889strings to specify multiple options, or you can separate the option
3890with a comma (@code{,}).
3891
3892On the 386/x86_64 and PowerPC backends, the inliner will not inline a
3893function that has different target options than the caller, unless the
3894callee has a subset of the target options of the caller.  For example
3895a function declared with @code{target("sse3")} can inline a function
3896with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
3897
3898The @code{target} attribute is not implemented in GCC versions earlier
3899than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends.  It is
3900not currently implemented for other backends.
3901
3902@item tiny_data
3903@cindex tiny data section on the H8/300H and H8S
3904Use this attribute on the H8/300H and H8S to indicate that the specified
3905variable should be placed into the tiny data section.
3906The compiler will generate more efficient code for loads and stores
3907on data in the tiny data section.  Note the tiny data area is limited to
3908slightly under 32kbytes of data.
3909
3910@item trap_exit
3911Use this attribute on the SH for an @code{interrupt_handler} to return using
3912@code{trapa} instead of @code{rte}.  This attribute expects an integer
3913argument specifying the trap number to be used.
3914
3915@item unused
3916@cindex @code{unused} attribute.
3917This attribute, attached to a function, means that the function is meant
3918to be possibly unused.  GCC will not produce a warning for this
3919function.
3920
3921@item used
3922@cindex @code{used} attribute.
3923This attribute, attached to a function, means that code must be emitted
3924for the function even if it appears that the function is not referenced.
3925This is useful, for example, when the function is referenced only in
3926inline assembly.
3927
3928When applied to a member function of a C++ class template, the
3929attribute also means that the function will be instantiated if the
3930class itself is instantiated.
3931
3932@item version_id
3933@cindex @code{version_id} attribute
3934This IA64 HP-UX attribute, attached to a global variable or function, renames a
3935symbol to contain a version string, thus allowing for function level
3936versioning.  HP-UX system header files may use version level functioning
3937for some system calls.
3938
3939@smallexample
3940extern int foo () __attribute__((version_id ("20040821")));
3941@end smallexample
3942
3943Calls to @var{foo} will be mapped to calls to @var{foo@{20040821@}}.
3944
3945@item visibility ("@var{visibility_type}")
3946@cindex @code{visibility} attribute
3947This attribute affects the linkage of the declaration to which it is attached.
3948There are four supported @var{visibility_type} values: default,
3949hidden, protected or internal visibility.
3950
3951@smallexample
3952void __attribute__ ((visibility ("protected")))
3953f () @{ /* @r{Do something.} */; @}
3954int i __attribute__ ((visibility ("hidden")));
3955@end smallexample
3956
3957The possible values of @var{visibility_type} correspond to the
3958visibility settings in the ELF gABI.
3959
3960@table @dfn
3961@c keep this list of visibilities in alphabetical order.
3962
3963@item default
3964Default visibility is the normal case for the object file format.
3965This value is available for the visibility attribute to override other
3966options that may change the assumed visibility of entities.
3967
3968On ELF, default visibility means that the declaration is visible to other
3969modules and, in shared libraries, means that the declared entity may be
3970overridden.
3971
3972On Darwin, default visibility means that the declaration is visible to
3973other modules.
3974
3975Default visibility corresponds to ``external linkage'' in the language.
3976
3977@item hidden
3978Hidden visibility indicates that the entity declared will have a new
3979form of linkage, which we'll call ``hidden linkage''.  Two
3980declarations of an object with hidden linkage refer to the same object
3981if they are in the same shared object.
3982
3983@item internal
3984Internal visibility is like hidden visibility, but with additional
3985processor specific semantics.  Unless otherwise specified by the
3986psABI, GCC defines internal visibility to mean that a function is
3987@emph{never} called from another module.  Compare this with hidden
3988functions which, while they cannot be referenced directly by other
3989modules, can be referenced indirectly via function pointers.  By
3990indicating that a function cannot be called from outside the module,
3991GCC may for instance omit the load of a PIC register since it is known
3992that the calling function loaded the correct value.
3993
3994@item protected
3995Protected visibility is like default visibility except that it
3996indicates that references within the defining module will bind to the
3997definition in that module.  That is, the declared entity cannot be
3998overridden by another module.
3999
4000@end table
4001
4002All visibilities are supported on many, but not all, ELF targets
4003(supported when the assembler supports the @samp{.visibility}
4004pseudo-op).  Default visibility is supported everywhere.  Hidden
4005visibility is supported on Darwin targets.
4006
4007The visibility attribute should be applied only to declarations which
4008would otherwise have external linkage.  The attribute should be applied
4009consistently, so that the same entity should not be declared with
4010different settings of the attribute.
4011
4012In C++, the visibility attribute applies to types as well as functions
4013and objects, because in C++ types have linkage.  A class must not have
4014greater visibility than its non-static data member types and bases,
4015and class members default to the visibility of their class.  Also, a
4016declaration without explicit visibility is limited to the visibility
4017of its type.
4018
4019In C++, you can mark member functions and static member variables of a
4020class with the visibility attribute.  This is useful if you know a
4021particular method or static member variable should only be used from
4022one shared object; then you can mark it hidden while the rest of the
4023class has default visibility.  Care must be taken to avoid breaking
4024the One Definition Rule; for example, it is usually not useful to mark
4025an inline method as hidden without marking the whole class as hidden.
4026
4027A C++ namespace declaration can also have the visibility attribute.
4028This attribute applies only to the particular namespace body, not to
4029other definitions of the same namespace; it is equivalent to using
4030@samp{#pragma GCC visibility} before and after the namespace
4031definition (@pxref{Visibility Pragmas}).
4032
4033In C++, if a template argument has limited visibility, this
4034restriction is implicitly propagated to the template instantiation.
4035Otherwise, template instantiations and specializations default to the
4036visibility of their template.
4037
4038If both the template and enclosing class have explicit visibility, the
4039visibility from the template is used.
4040
4041@item vliw
4042@cindex @code{vliw} attribute
4043On MeP, the @code{vliw} attribute tells the compiler to emit
4044instructions in VLIW mode instead of core mode.  Note that this
4045attribute is not allowed unless a VLIW coprocessor has been configured
4046and enabled through command line options.
4047
4048@item warn_unused_result
4049@cindex @code{warn_unused_result} attribute
4050The @code{warn_unused_result} attribute causes a warning to be emitted
4051if a caller of the function with this attribute does not use its
4052return value.  This is useful for functions where not checking
4053the result is either a security problem or always a bug, such as
4054@code{realloc}.
4055
4056@smallexample
4057int fn () __attribute__ ((warn_unused_result));
4058int foo ()
4059@{
4060  if (fn () < 0) return -1;
4061  fn ();
4062  return 0;
4063@}
4064@end smallexample
4065
4066results in warning on line 5.
4067
4068@item weak
4069@cindex @code{weak} attribute
4070The @code{weak} attribute causes the declaration to be emitted as a weak
4071symbol rather than a global.  This is primarily useful in defining
4072library functions which can be overridden in user code, though it can
4073also be used with non-function declarations.  Weak symbols are supported
4074for ELF targets, and also for a.out targets when using the GNU assembler
4075and linker.
4076
4077@item weakref
4078@itemx weakref ("@var{target}")
4079@cindex @code{weakref} attribute
4080The @code{weakref} attribute marks a declaration as a weak reference.
4081Without arguments, it should be accompanied by an @code{alias} attribute
4082naming the target symbol.  Optionally, the @var{target} may be given as
4083an argument to @code{weakref} itself.  In either case, @code{weakref}
4084implicitly marks the declaration as @code{weak}.  Without a
4085@var{target}, given as an argument to @code{weakref} or to @code{alias},
4086@code{weakref} is equivalent to @code{weak}.
4087
4088@smallexample
4089static int x() __attribute__ ((weakref ("y")));
4090/* is equivalent to... */
4091static int x() __attribute__ ((weak, weakref, alias ("y")));
4092/* and to... */
4093static int x() __attribute__ ((weakref));
4094static int x() __attribute__ ((alias ("y")));
4095@end smallexample
4096
4097A weak reference is an alias that does not by itself require a
4098definition to be given for the target symbol.  If the target symbol is
4099only referenced through weak references, then it becomes a @code{weak}
4100undefined symbol.  If it is directly referenced, however, then such
4101strong references prevail, and a definition will be required for the
4102symbol, not necessarily in the same translation unit.
4103
4104The effect is equivalent to moving all references to the alias to a
4105separate translation unit, renaming the alias to the aliased symbol,
4106declaring it as weak, compiling the two separate translation units and
4107performing a reloadable link on them.
4108
4109At present, a declaration to which @code{weakref} is attached can
4110only be @code{static}.
4111
4112@end table
4113
4114You can specify multiple attributes in a declaration by separating them
4115by commas within the double parentheses or by immediately following an
4116attribute declaration with another attribute declaration.
4117
4118@cindex @code{#pragma}, reason for not using
4119@cindex pragma, reason for not using
4120Some people object to the @code{__attribute__} feature, suggesting that
4121ISO C's @code{#pragma} should be used instead.  At the time
4122@code{__attribute__} was designed, there were two reasons for not doing
4123this.
4124
4125@enumerate
4126@item
4127It is impossible to generate @code{#pragma} commands from a macro.
4128
4129@item
4130There is no telling what the same @code{#pragma} might mean in another
4131compiler.
4132@end enumerate
4133
4134These two reasons applied to almost any application that might have been
4135proposed for @code{#pragma}.  It was basically a mistake to use
4136@code{#pragma} for @emph{anything}.
4137
4138The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
4139to be generated from macros.  In addition, a @code{#pragma GCC}
4140namespace is now in use for GCC-specific pragmas.  However, it has been
4141found convenient to use @code{__attribute__} to achieve a natural
4142attachment of attributes to their corresponding declarations, whereas
4143@code{#pragma GCC} is of use for constructs that do not naturally form
4144part of the grammar.  @xref{Other Directives,,Miscellaneous
4145Preprocessing Directives, cpp, The GNU C Preprocessor}.
4146
4147@node Attribute Syntax
4148@section Attribute Syntax
4149@cindex attribute syntax
4150
4151This section describes the syntax with which @code{__attribute__} may be
4152used, and the constructs to which attribute specifiers bind, for the C
4153language.  Some details may vary for C++ and Objective-C@.  Because of
4154infelicities in the grammar for attributes, some forms described here
4155may not be successfully parsed in all cases.
4156
4157There are some problems with the semantics of attributes in C++.  For
4158example, there are no manglings for attributes, although they may affect
4159code generation, so problems may arise when attributed types are used in
4160conjunction with templates or overloading.  Similarly, @code{typeid}
4161does not distinguish between types with different attributes.  Support
4162for attributes in C++ may be restricted in future to attributes on
4163declarations only, but not on nested declarators.
4164
4165@xref{Function Attributes}, for details of the semantics of attributes
4166applying to functions.  @xref{Variable Attributes}, for details of the
4167semantics of attributes applying to variables.  @xref{Type Attributes},
4168for details of the semantics of attributes applying to structure, union
4169and enumerated types.
4170
4171An @dfn{attribute specifier} is of the form
4172@code{__attribute__ ((@var{attribute-list}))}.  An @dfn{attribute list}
4173is a possibly empty comma-separated sequence of @dfn{attributes}, where
4174each attribute is one of the following:
4175
4176@itemize @bullet
4177@item
4178Empty.  Empty attributes are ignored.
4179
4180@item
4181A word (which may be an identifier such as @code{unused}, or a reserved
4182word such as @code{const}).
4183
4184@item
4185A word, followed by, in parentheses, parameters for the attribute.
4186These parameters take one of the following forms:
4187
4188@itemize @bullet
4189@item
4190An identifier.  For example, @code{mode} attributes use this form.
4191
4192@item
4193An identifier followed by a comma and a non-empty comma-separated list
4194of expressions.  For example, @code{format} attributes use this form.
4195
4196@item
4197A possibly empty comma-separated list of expressions.  For example,
4198@code{format_arg} attributes use this form with the list being a single
4199integer constant expression, and @code{alias} attributes use this form
4200with the list being a single string constant.
4201@end itemize
4202@end itemize
4203
4204An @dfn{attribute specifier list} is a sequence of one or more attribute
4205specifiers, not separated by any other tokens.
4206
4207In GNU C, an attribute specifier list may appear after the colon following a
4208label, other than a @code{case} or @code{default} label.  The only
4209attribute it makes sense to use after a label is @code{unused}.  This
4210feature is intended for code generated by programs which contains labels
4211that may be unused but which is compiled with @option{-Wall}.  It would
4212not normally be appropriate to use in it human-written code, though it
4213could be useful in cases where the code that jumps to the label is
4214contained within an @code{#ifdef} conditional.  GNU C++ only permits
4215attributes on labels if the attribute specifier is immediately
4216followed by a semicolon (i.e., the label applies to an empty
4217statement).  If the semicolon is missing, C++ label attributes are
4218ambiguous, as it is permissible for a declaration, which could begin
4219with an attribute list, to be labelled in C++.  Declarations cannot be
4220labelled in C90 or C99, so the ambiguity does not arise there.
4221
4222An attribute specifier list may appear as part of a @code{struct},
4223@code{union} or @code{enum} specifier.  It may go either immediately
4224after the @code{struct}, @code{union} or @code{enum} keyword, or after
4225the closing brace.  The former syntax is preferred.
4226Where attribute specifiers follow the closing brace, they are considered
4227to relate to the structure, union or enumerated type defined, not to any
4228enclosing declaration the type specifier appears in, and the type
4229defined is not complete until after the attribute specifiers.
4230@c Otherwise, there would be the following problems: a shift/reduce
4231@c conflict between attributes binding the struct/union/enum and
4232@c binding to the list of specifiers/qualifiers; and "aligned"
4233@c attributes could use sizeof for the structure, but the size could be
4234@c changed later by "packed" attributes.
4235
4236Otherwise, an attribute specifier appears as part of a declaration,
4237counting declarations of unnamed parameters and type names, and relates
4238to that declaration (which may be nested in another declaration, for
4239example in the case of a parameter declaration), or to a particular declarator
4240within a declaration.  Where an
4241attribute specifier is applied to a parameter declared as a function or
4242an array, it should apply to the function or array rather than the
4243pointer to which the parameter is implicitly converted, but this is not
4244yet correctly implemented.
4245
4246Any list of specifiers and qualifiers at the start of a declaration may
4247contain attribute specifiers, whether or not such a list may in that
4248context contain storage class specifiers.  (Some attributes, however,
4249are essentially in the nature of storage class specifiers, and only make
4250sense where storage class specifiers may be used; for example,
4251@code{section}.)  There is one necessary limitation to this syntax: the
4252first old-style parameter declaration in a function definition cannot
4253begin with an attribute specifier, because such an attribute applies to
4254the function instead by syntax described below (which, however, is not
4255yet implemented in this case).  In some other cases, attribute
4256specifiers are permitted by this grammar but not yet supported by the
4257compiler.  All attribute specifiers in this place relate to the
4258declaration as a whole.  In the obsolescent usage where a type of
4259@code{int} is implied by the absence of type specifiers, such a list of
4260specifiers and qualifiers may be an attribute specifier list with no
4261other specifiers or qualifiers.
4262
4263At present, the first parameter in a function prototype must have some
4264type specifier which is not an attribute specifier; this resolves an
4265ambiguity in the interpretation of @code{void f(int
4266(__attribute__((foo)) x))}, but is subject to change.  At present, if
4267the parentheses of a function declarator contain only attributes then
4268those attributes are ignored, rather than yielding an error or warning
4269or implying a single parameter of type int, but this is subject to
4270change.
4271
4272An attribute specifier list may appear immediately before a declarator
4273(other than the first) in a comma-separated list of declarators in a
4274declaration of more than one identifier using a single list of
4275specifiers and qualifiers.  Such attribute specifiers apply
4276only to the identifier before whose declarator they appear.  For
4277example, in
4278
4279@smallexample
4280__attribute__((noreturn)) void d0 (void),
4281    __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
4282     d2 (void)
4283@end smallexample
4284
4285@noindent
4286the @code{noreturn} attribute applies to all the functions
4287declared; the @code{format} attribute only applies to @code{d1}.
4288
4289An attribute specifier list may appear immediately before the comma,
4290@code{=} or semicolon terminating the declaration of an identifier other
4291than a function definition.  Such attribute specifiers apply
4292to the declared object or function.  Where an
4293assembler name for an object or function is specified (@pxref{Asm
4294Labels}), the attribute must follow the @code{asm}
4295specification.
4296
4297An attribute specifier list may, in future, be permitted to appear after
4298the declarator in a function definition (before any old-style parameter
4299declarations or the function body).
4300
4301Attribute specifiers may be mixed with type qualifiers appearing inside
4302the @code{[]} of a parameter array declarator, in the C99 construct by
4303which such qualifiers are applied to the pointer to which the array is
4304implicitly converted.  Such attribute specifiers apply to the pointer,
4305not to the array, but at present this is not implemented and they are
4306ignored.
4307
4308An attribute specifier list may appear at the start of a nested
4309declarator.  At present, there are some limitations in this usage: the
4310attributes correctly apply to the declarator, but for most individual
4311attributes the semantics this implies are not implemented.
4312When attribute specifiers follow the @code{*} of a pointer
4313declarator, they may be mixed with any type qualifiers present.
4314The following describes the formal semantics of this syntax.  It will make the
4315most sense if you are familiar with the formal specification of
4316declarators in the ISO C standard.
4317
4318Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
4319D1}, where @code{T} contains declaration specifiers that specify a type
4320@var{Type} (such as @code{int}) and @code{D1} is a declarator that
4321contains an identifier @var{ident}.  The type specified for @var{ident}
4322for derived declarators whose type does not include an attribute
4323specifier is as in the ISO C standard.
4324
4325If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
4326and the declaration @code{T D} specifies the type
4327``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4328@code{T D1} specifies the type ``@var{derived-declarator-type-list}
4329@var{attribute-specifier-list} @var{Type}'' for @var{ident}.
4330
4331If @code{D1} has the form @code{*
4332@var{type-qualifier-and-attribute-specifier-list} D}, and the
4333declaration @code{T D} specifies the type
4334``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4335@code{T D1} specifies the type ``@var{derived-declarator-type-list}
4336@var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
4337@var{ident}.
4338
4339For example,
4340
4341@smallexample
4342void (__attribute__((noreturn)) ****f) (void);
4343@end smallexample
4344
4345@noindent
4346specifies the type ``pointer to pointer to pointer to pointer to
4347non-returning function returning @code{void}''.  As another example,
4348
4349@smallexample
4350char *__attribute__((aligned(8))) *f;
4351@end smallexample
4352
4353@noindent
4354specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
4355Note again that this does not work with most attributes; for example,
4356the usage of @samp{aligned} and @samp{noreturn} attributes given above
4357is not yet supported.
4358
4359For compatibility with existing code written for compiler versions that
4360did not implement attributes on nested declarators, some laxity is
4361allowed in the placing of attributes.  If an attribute that only applies
4362to types is applied to a declaration, it will be treated as applying to
4363the type of that declaration.  If an attribute that only applies to
4364declarations is applied to the type of a declaration, it will be treated
4365as applying to that declaration; and, for compatibility with code
4366placing the attributes immediately before the identifier declared, such
4367an attribute applied to a function return type will be treated as
4368applying to the function type, and such an attribute applied to an array
4369element type will be treated as applying to the array type.  If an
4370attribute that only applies to function types is applied to a
4371pointer-to-function type, it will be treated as applying to the pointer
4372target type; if such an attribute is applied to a function return type
4373that is not a pointer-to-function type, it will be treated as applying
4374to the function type.
4375
4376@node Function Prototypes
4377@section Prototypes and Old-Style Function Definitions
4378@cindex function prototype declarations
4379@cindex old-style function definitions
4380@cindex promotion of formal parameters
4381
4382GNU C extends ISO C to allow a function prototype to override a later
4383old-style non-prototype definition.  Consider the following example:
4384
4385@smallexample
4386/* @r{Use prototypes unless the compiler is old-fashioned.}  */
4387#ifdef __STDC__
4388#define P(x) x
4389#else
4390#define P(x) ()
4391#endif
4392
4393/* @r{Prototype function declaration.}  */
4394int isroot P((uid_t));
4395
4396/* @r{Old-style function definition.}  */
4397int
4398isroot (x)   /* @r{??? lossage here ???} */
4399     uid_t x;
4400@{
4401  return x == 0;
4402@}
4403@end smallexample
4404
4405Suppose the type @code{uid_t} happens to be @code{short}.  ISO C does
4406not allow this example, because subword arguments in old-style
4407non-prototype definitions are promoted.  Therefore in this example the
4408function definition's argument is really an @code{int}, which does not
4409match the prototype argument type of @code{short}.
4410
4411This restriction of ISO C makes it hard to write code that is portable
4412to traditional C compilers, because the programmer does not know
4413whether the @code{uid_t} type is @code{short}, @code{int}, or
4414@code{long}.  Therefore, in cases like these GNU C allows a prototype
4415to override a later old-style definition.  More precisely, in GNU C, a
4416function prototype argument type overrides the argument type specified
4417by a later old-style definition if the former type is the same as the
4418latter type before promotion.  Thus in GNU C the above example is
4419equivalent to the following:
4420
4421@smallexample
4422int isroot (uid_t);
4423
4424int
4425isroot (uid_t x)
4426@{
4427  return x == 0;
4428@}
4429@end smallexample
4430
4431@noindent
4432GNU C++ does not support old-style function definitions, so this
4433extension is irrelevant.
4434
4435@node C++ Comments
4436@section C++ Style Comments
4437@cindex @code{//}
4438@cindex C++ comments
4439@cindex comments, C++ style
4440
4441In GNU C, you may use C++ style comments, which start with @samp{//} and
4442continue until the end of the line.  Many other C implementations allow
4443such comments, and they are included in the 1999 C standard.  However,
4444C++ style comments are not recognized if you specify an @option{-std}
4445option specifying a version of ISO C before C99, or @option{-ansi}
4446(equivalent to @option{-std=c90}).
4447
4448@node Dollar Signs
4449@section Dollar Signs in Identifier Names
4450@cindex $
4451@cindex dollar signs in identifier names
4452@cindex identifier names, dollar signs in
4453
4454In GNU C, you may normally use dollar signs in identifier names.
4455This is because many traditional C implementations allow such identifiers.
4456However, dollar signs in identifiers are not supported on a few target
4457machines, typically because the target assembler does not allow them.
4458
4459@node Character Escapes
4460@section The Character @key{ESC} in Constants
4461
4462You can use the sequence @samp{\e} in a string or character constant to
4463stand for the ASCII character @key{ESC}.
4464
4465@node Variable Attributes
4466@section Specifying Attributes of Variables
4467@cindex attribute of variables
4468@cindex variable attributes
4469
4470The keyword @code{__attribute__} allows you to specify special
4471attributes of variables or structure fields.  This keyword is followed
4472by an attribute specification inside double parentheses.  Some
4473attributes are currently defined generically for variables.
4474Other attributes are defined for variables on particular target
4475systems.  Other attributes are available for functions
4476(@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
4477Other front ends might define more attributes
4478(@pxref{C++ Extensions,,Extensions to the C++ Language}).
4479
4480You may also specify attributes with @samp{__} preceding and following
4481each keyword.  This allows you to use them in header files without
4482being concerned about a possible macro of the same name.  For example,
4483you may use @code{__aligned__} instead of @code{aligned}.
4484
4485@xref{Attribute Syntax}, for details of the exact syntax for using
4486attributes.
4487
4488@table @code
4489@cindex @code{aligned} attribute
4490@item aligned (@var{alignment})
4491This attribute specifies a minimum alignment for the variable or
4492structure field, measured in bytes.  For example, the declaration:
4493
4494@smallexample
4495int x __attribute__ ((aligned (16))) = 0;
4496@end smallexample
4497
4498@noindent
4499causes the compiler to allocate the global variable @code{x} on a
450016-byte boundary.  On a 68040, this could be used in conjunction with
4501an @code{asm} expression to access the @code{move16} instruction which
4502requires 16-byte aligned operands.
4503
4504You can also specify the alignment of structure fields.  For example, to
4505create a double-word aligned @code{int} pair, you could write:
4506
4507@smallexample
4508struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
4509@end smallexample
4510
4511@noindent
4512This is an alternative to creating a union with a @code{double} member
4513that forces the union to be double-word aligned.
4514
4515As in the preceding examples, you can explicitly specify the alignment
4516(in bytes) that you wish the compiler to use for a given variable or
4517structure field.  Alternatively, you can leave out the alignment factor
4518and just ask the compiler to align a variable or field to the
4519default alignment for the target architecture you are compiling for.
4520The default alignment is sufficient for all scalar types, but may not be
4521enough for all vector types on a target which supports vector operations.
4522The default alignment is fixed for a particular target ABI.
4523
4524Gcc also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
4525which is the largest alignment ever used for any data type on the
4526target machine you are compiling for.  For example, you could write:
4527
4528@smallexample
4529short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
4530@end smallexample
4531
4532The compiler automatically sets the alignment for the declared
4533variable or field to @code{__BIGGEST_ALIGNMENT__}.  Doing this can
4534often make copy operations more efficient, because the compiler can
4535use whatever instructions copy the biggest chunks of memory when
4536performing copies to or from the variables or fields that you have
4537aligned this way.  Note that the value of @code{__BIGGEST_ALIGNMENT__}
4538may change depending on command line options.
4539
4540When used on a struct, or struct member, the @code{aligned} attribute can
4541only increase the alignment; in order to decrease it, the @code{packed}
4542attribute must be specified as well.  When used as part of a typedef, the
4543@code{aligned} attribute can both increase and decrease alignment, and
4544specifying the @code{packed} attribute will generate a warning.
4545
4546Note that the effectiveness of @code{aligned} attributes may be limited
4547by inherent limitations in your linker.  On many systems, the linker is
4548only able to arrange for variables to be aligned up to a certain maximum
4549alignment.  (For some linkers, the maximum supported alignment may
4550be very very small.)  If your linker is only able to align variables
4551up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4552in an @code{__attribute__} will still only provide you with 8 byte
4553alignment.  See your linker documentation for further information.
4554
4555The @code{aligned} attribute can also be used for functions
4556(@pxref{Function Attributes}.)
4557
4558@item cleanup (@var{cleanup_function})
4559@cindex @code{cleanup} attribute
4560The @code{cleanup} attribute runs a function when the variable goes
4561out of scope.  This attribute can only be applied to auto function
4562scope variables; it may not be applied to parameters or variables
4563with static storage duration.  The function must take one parameter,
4564a pointer to a type compatible with the variable.  The return value
4565of the function (if any) is ignored.
4566
4567If @option{-fexceptions} is enabled, then @var{cleanup_function}
4568will be run during the stack unwinding that happens during the
4569processing of the exception.  Note that the @code{cleanup} attribute
4570does not allow the exception to be caught, only to perform an action.
4571It is undefined what happens if @var{cleanup_function} does not
4572return normally.
4573
4574@item common
4575@itemx nocommon
4576@cindex @code{common} attribute
4577@cindex @code{nocommon} attribute
4578@opindex fcommon
4579@opindex fno-common
4580The @code{common} attribute requests GCC to place a variable in
4581``common'' storage.  The @code{nocommon} attribute requests the
4582opposite---to allocate space for it directly.
4583
4584These attributes override the default chosen by the
4585@option{-fno-common} and @option{-fcommon} flags respectively.
4586
4587@item deprecated
4588@itemx deprecated (@var{msg})
4589@cindex @code{deprecated} attribute
4590The @code{deprecated} attribute results in a warning if the variable
4591is used anywhere in the source file.  This is useful when identifying
4592variables that are expected to be removed in a future version of a
4593program.  The warning also includes the location of the declaration
4594of the deprecated variable, to enable users to easily find further
4595information about why the variable is deprecated, or what they should
4596do instead.  Note that the warning only occurs for uses:
4597
4598@smallexample
4599extern int old_var __attribute__ ((deprecated));
4600extern int old_var;
4601int new_fn () @{ return old_var; @}
4602@end smallexample
4603
4604results in a warning on line 3 but not line 2.  The optional msg
4605argument, which must be a string, will be printed in the warning if
4606present.
4607
4608The @code{deprecated} attribute can also be used for functions and
4609types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
4610
4611@item mode (@var{mode})
4612@cindex @code{mode} attribute
4613This attribute specifies the data type for the declaration---whichever
4614type corresponds to the mode @var{mode}.  This in effect lets you
4615request an integer or floating point type according to its width.
4616
4617You may also specify a mode of @samp{byte} or @samp{__byte__} to
4618indicate the mode corresponding to a one-byte integer, @samp{word} or
4619@samp{__word__} for the mode of a one-word integer, and @samp{pointer}
4620or @samp{__pointer__} for the mode used to represent pointers.
4621
4622@item packed
4623@cindex @code{packed} attribute
4624The @code{packed} attribute specifies that a variable or structure field
4625should have the smallest possible alignment---one byte for a variable,
4626and one bit for a field, unless you specify a larger value with the
4627@code{aligned} attribute.
4628
4629Here is a structure in which the field @code{x} is packed, so that it
4630immediately follows @code{a}:
4631
4632@smallexample
4633struct foo
4634@{
4635  char a;
4636  int x[2] __attribute__ ((packed));
4637@};
4638@end smallexample
4639
4640@emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
4641@code{packed} attribute on bit-fields of type @code{char}.  This has
4642been fixed in GCC 4.4 but the change can lead to differences in the
4643structure layout.  See the documentation of
4644@option{-Wpacked-bitfield-compat} for more information.
4645
4646@item section ("@var{section-name}")
4647@cindex @code{section} variable attribute
4648Normally, the compiler places the objects it generates in sections like
4649@code{data} and @code{bss}.  Sometimes, however, you need additional sections,
4650or you need certain particular variables to appear in special sections,
4651for example to map to special hardware.  The @code{section}
4652attribute specifies that a variable (or function) lives in a particular
4653section.  For example, this small program uses several specific section names:
4654
4655@smallexample
4656struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
4657struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
4658char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
4659int init_data __attribute__ ((section ("INITDATA")));
4660
4661main()
4662@{
4663  /* @r{Initialize stack pointer} */
4664  init_sp (stack + sizeof (stack));
4665
4666  /* @r{Initialize initialized data} */
4667  memcpy (&init_data, &data, &edata - &data);
4668
4669  /* @r{Turn on the serial ports} */
4670  init_duart (&a);
4671  init_duart (&b);
4672@}
4673@end smallexample
4674
4675@noindent
4676Use the @code{section} attribute with
4677@emph{global} variables and not @emph{local} variables,
4678as shown in the example.
4679
4680You may use the @code{section} attribute with initialized or
4681uninitialized global variables but the linker requires
4682each object be defined once, with the exception that uninitialized
4683variables tentatively go in the @code{common} (or @code{bss}) section
4684and can be multiply ``defined''.  Using the @code{section} attribute
4685will change what section the variable goes into and may cause the
4686linker to issue an error if an uninitialized variable has multiple
4687definitions.  You can force a variable to be initialized with the
4688@option{-fno-common} flag or the @code{nocommon} attribute.
4689
4690Some file formats do not support arbitrary sections so the @code{section}
4691attribute is not available on all platforms.
4692If you need to map the entire contents of a module to a particular
4693section, consider using the facilities of the linker instead.
4694
4695@item shared
4696@cindex @code{shared} variable attribute
4697On Microsoft Windows, in addition to putting variable definitions in a named
4698section, the section can also be shared among all running copies of an
4699executable or DLL@.  For example, this small program defines shared data
4700by putting it in a named section @code{shared} and marking the section
4701shareable:
4702
4703@smallexample
4704int foo __attribute__((section ("shared"), shared)) = 0;
4705
4706int
4707main()
4708@{
4709  /* @r{Read and write foo.  All running
4710     copies see the same value.}  */
4711  return 0;
4712@}
4713@end smallexample
4714
4715@noindent
4716You may only use the @code{shared} attribute along with @code{section}
4717attribute with a fully initialized global definition because of the way
4718linkers work.  See @code{section} attribute for more information.
4719
4720The @code{shared} attribute is only available on Microsoft Windows@.
4721
4722@item tls_model ("@var{tls_model}")
4723@cindex @code{tls_model} attribute
4724The @code{tls_model} attribute sets thread-local storage model
4725(@pxref{Thread-Local}) of a particular @code{__thread} variable,
4726overriding @option{-ftls-model=} command-line switch on a per-variable
4727basis.
4728The @var{tls_model} argument should be one of @code{global-dynamic},
4729@code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
4730
4731Not all targets support this attribute.
4732
4733@item unused
4734This attribute, attached to a variable, means that the variable is meant
4735to be possibly unused.  GCC will not produce a warning for this
4736variable.
4737
4738@item used
4739This attribute, attached to a variable, means that the variable must be
4740emitted even if it appears that the variable is not referenced.
4741
4742When applied to a static data member of a C++ class template, the
4743attribute also means that the member will be instantiated if the
4744class itself is instantiated.
4745
4746@item vector_size (@var{bytes})
4747This attribute specifies the vector size for the variable, measured in
4748bytes.  For example, the declaration:
4749
4750@smallexample
4751int foo __attribute__ ((vector_size (16)));
4752@end smallexample
4753
4754@noindent
4755causes the compiler to set the mode for @code{foo}, to be 16 bytes,
4756divided into @code{int} sized units.  Assuming a 32-bit int (a vector of
47574 units of 4 bytes), the corresponding mode of @code{foo} will be V4SI@.
4758
4759This attribute is only applicable to integral and float scalars,
4760although arrays, pointers, and function return values are allowed in
4761conjunction with this construct.
4762
4763Aggregates with this attribute are invalid, even if they are of the same
4764size as a corresponding scalar.  For example, the declaration:
4765
4766@smallexample
4767struct S @{ int a; @};
4768struct S  __attribute__ ((vector_size (16))) foo;
4769@end smallexample
4770
4771@noindent
4772is invalid even if the size of the structure is the same as the size of
4773the @code{int}.
4774
4775@item selectany
4776The @code{selectany} attribute causes an initialized global variable to
4777have link-once semantics.  When multiple definitions of the variable are
4778encountered by the linker, the first is selected and the remainder are
4779discarded.  Following usage by the Microsoft compiler, the linker is told
4780@emph{not} to warn about size or content differences of the multiple
4781definitions.
4782
4783Although the primary usage of this attribute is for POD types, the
4784attribute can also be applied to global C++ objects that are initialized
4785by a constructor.  In this case, the static initialization and destruction
4786code for the object is emitted in each translation defining the object,
4787but the calls to the constructor and destructor are protected by a
4788link-once guard variable.
4789
4790The @code{selectany} attribute is only available on Microsoft Windows
4791targets.  You can use @code{__declspec (selectany)} as a synonym for
4792@code{__attribute__ ((selectany))} for compatibility with other
4793compilers.
4794
4795@item weak
4796The @code{weak} attribute is described in @ref{Function Attributes}.
4797
4798@item dllimport
4799The @code{dllimport} attribute is described in @ref{Function Attributes}.
4800
4801@item dllexport
4802The @code{dllexport} attribute is described in @ref{Function Attributes}.
4803
4804@end table
4805
4806@anchor{AVR Variable Attributes}
4807@subsection AVR Variable Attributes
4808
4809@table @code
4810@item progmem
4811@cindex @code{progmem} AVR variable attribute
4812The @code{progmem} attribute is used on the AVR to place read-only
4813data in the non-volatile program memory (flash). The @code{progmem}
4814attribute accomplishes this by putting respective variables into a
4815section whose name starts with @code{.progmem}.
4816
4817This attribute works similar to the @code{section} attribute
4818but adds additional checking. Notice that just like the
4819@code{section} attribute, @code{progmem} affects the location
4820of the data but not how this data is accessed.
4821
4822In order to read data located with the @code{progmem} attribute
4823(inline) assembler must be used.
4824@example
4825/* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual,AVR-LibC}} */
4826#include <avr/pgmspace.h>
4827
4828/* Locate var in flash memory */
4829const int var[2] PROGMEM = @{ 1, 2 @};
4830
4831int read_var (int i)
4832@{
4833    /* Access var[] by accessor macro from avr/pgmspace.h */
4834    return (int) pgm_read_word (& var[i]);
4835@}
4836@end example
4837
4838AVR is a Harvard architecture processor and data and read-only data
4839normally resides in the data memory (RAM).
4840
4841See also the @ref{AVR Named Address Spaces} section for
4842an alternate way to locate and access data in flash memory.
4843@end table
4844
4845@subsection Blackfin Variable Attributes
4846
4847Three attributes are currently defined for the Blackfin.
4848
4849@table @code
4850@item l1_data
4851@itemx l1_data_A
4852@itemx l1_data_B
4853@cindex @code{l1_data} variable attribute
4854@cindex @code{l1_data_A} variable attribute
4855@cindex @code{l1_data_B} variable attribute
4856Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
4857Variables with @code{l1_data} attribute will be put into the specific section
4858named @code{.l1.data}. Those with @code{l1_data_A} attribute will be put into
4859the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
4860attribute will be put into the specific section named @code{.l1.data.B}.
4861
4862@item l2
4863@cindex @code{l2} variable attribute
4864Use this attribute on the Blackfin to place the variable into L2 SRAM.
4865Variables with @code{l2} attribute will be put into the specific section
4866named @code{.l2.data}.
4867@end table
4868
4869@subsection M32R/D Variable Attributes
4870
4871One attribute is currently defined for the M32R/D@.
4872
4873@table @code
4874@item model (@var{model-name})
4875@cindex variable addressability on the M32R/D
4876Use this attribute on the M32R/D to set the addressability of an object.
4877The identifier @var{model-name} is one of @code{small}, @code{medium},
4878or @code{large}, representing each of the code models.
4879
4880Small model objects live in the lower 16MB of memory (so that their
4881addresses can be loaded with the @code{ld24} instruction).
4882
4883Medium and large model objects may live anywhere in the 32-bit address space
4884(the compiler will generate @code{seth/add3} instructions to load their
4885addresses).
4886@end table
4887
4888@anchor{MeP Variable Attributes}
4889@subsection MeP Variable Attributes
4890
4891The MeP target has a number of addressing modes and busses.  The
4892@code{near} space spans the standard memory space's first 16 megabytes
4893(24 bits).  The @code{far} space spans the entire 32-bit memory space.
4894The @code{based} space is a 128 byte region in the memory space which
4895is addressed relative to the @code{$tp} register.  The @code{tiny}
4896space is a 65536 byte region relative to the @code{$gp} register.  In
4897addition to these memory regions, the MeP target has a separate 16-bit
4898control bus which is specified with @code{cb} attributes.
4899
4900@table @code
4901
4902@item based
4903Any variable with the @code{based} attribute will be assigned to the
4904@code{.based} section, and will be accessed with relative to the
4905@code{$tp} register.
4906
4907@item tiny
4908Likewise, the @code{tiny} attribute assigned variables to the
4909@code{.tiny} section, relative to the @code{$gp} register.
4910
4911@item near
4912Variables with the @code{near} attribute are assumed to have addresses
4913that fit in a 24-bit addressing mode.  This is the default for large
4914variables (@code{-mtiny=4} is the default) but this attribute can
4915override @code{-mtiny=} for small variables, or override @code{-ml}.
4916
4917@item far
4918Variables with the @code{far} attribute are addressed using a full
491932-bit address.  Since this covers the entire memory space, this
4920allows modules to make no assumptions about where variables might be
4921stored.
4922
4923@item io
4924@itemx io (@var{addr})
4925Variables with the @code{io} attribute are used to address
4926memory-mapped peripherals.  If an address is specified, the variable
4927is assigned that address, else it is not assigned an address (it is
4928assumed some other module will assign an address).  Example:
4929
4930@example
4931int timer_count __attribute__((io(0x123)));
4932@end example
4933
4934@item cb
4935@itemx cb (@var{addr})
4936Variables with the @code{cb} attribute are used to access the control
4937bus, using special instructions.  @code{addr} indicates the control bus
4938address.  Example:
4939
4940@example
4941int cpu_clock __attribute__((cb(0x123)));
4942@end example
4943
4944@end table
4945
4946@anchor{i386 Variable Attributes}
4947@subsection i386 Variable Attributes
4948
4949Two attributes are currently defined for i386 configurations:
4950@code{ms_struct} and @code{gcc_struct}
4951
4952@table @code
4953@item ms_struct
4954@itemx gcc_struct
4955@cindex @code{ms_struct} attribute
4956@cindex @code{gcc_struct} attribute
4957
4958If @code{packed} is used on a structure, or if bit-fields are used
4959it may be that the Microsoft ABI packs them differently
4960than GCC would normally pack them.  Particularly when moving packed
4961data between functions compiled with GCC and the native Microsoft compiler
4962(either via function call or as data in a file), it may be necessary to access
4963either format.
4964
4965Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
4966compilers to match the native Microsoft compiler.
4967
4968The Microsoft structure layout algorithm is fairly simple with the exception
4969of the bitfield packing:
4970
4971The padding and alignment of members of structures and whether a bit field
4972can straddle a storage-unit boundary
4973
4974@enumerate
4975@item Structure members are stored sequentially in the order in which they are
4976declared: the first member has the lowest memory address and the last member
4977the highest.
4978
4979@item Every data object has an alignment-requirement. The alignment-requirement
4980for all data except structures, unions, and arrays is either the size of the
4981object or the current packing size (specified with either the aligned attribute
4982or the pack pragma), whichever is less. For structures,  unions, and arrays,
4983the alignment-requirement is the largest alignment-requirement of its members.
4984Every object is allocated an offset so that:
4985
4986offset %  alignment-requirement == 0
4987
4988@item Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
4989unit if the integral types are the same size and if the next bit field fits
4990into the current allocation unit without crossing the boundary imposed by the
4991common alignment requirements of the bit fields.
4992@end enumerate
4993
4994Handling of zero-length bitfields:
4995
4996MSVC interprets zero-length bitfields in the following ways:
4997
4998@enumerate
4999@item If a zero-length bitfield is inserted between two bitfields that would
5000normally be coalesced, the bitfields will not be coalesced.
5001
5002For example:
5003
5004@smallexample
5005struct
5006 @{
5007   unsigned long bf_1 : 12;
5008   unsigned long : 0;
5009   unsigned long bf_2 : 12;
5010 @} t1;
5011@end smallexample
5012
5013The size of @code{t1} would be 8 bytes with the zero-length bitfield.  If the
5014zero-length bitfield were removed, @code{t1}'s size would be 4 bytes.
5015
5016@item If a zero-length bitfield is inserted after a bitfield, @code{foo}, and the
5017alignment of the zero-length bitfield is greater than the member that follows it,
5018@code{bar}, @code{bar} will be aligned as the type of the zero-length bitfield.
5019
5020For example:
5021
5022@smallexample
5023struct
5024 @{
5025   char foo : 4;
5026   short : 0;
5027   char bar;
5028 @} t2;
5029
5030struct
5031 @{
5032   char foo : 4;
5033   short : 0;
5034   double bar;
5035 @} t3;
5036@end smallexample
5037
5038For @code{t2}, @code{bar} will be placed at offset 2, rather than offset 1.
5039Accordingly, the size of @code{t2} will be 4.  For @code{t3}, the zero-length
5040bitfield will not affect the alignment of @code{bar} or, as a result, the size
5041of the structure.
5042
5043Taking this into account, it is important to note the following:
5044
5045@enumerate
5046@item If a zero-length bitfield follows a normal bitfield, the type of the
5047zero-length bitfield may affect the alignment of the structure as whole. For
5048example, @code{t2} has a size of 4 bytes, since the zero-length bitfield follows a
5049normal bitfield, and is of type short.
5050
5051@item Even if a zero-length bitfield is not followed by a normal bitfield, it may
5052still affect the alignment of the structure:
5053
5054@smallexample
5055struct
5056 @{
5057   char foo : 6;
5058   long : 0;
5059 @} t4;
5060@end smallexample
5061
5062Here, @code{t4} will take up 4 bytes.
5063@end enumerate
5064
5065@item Zero-length bitfields following non-bitfield members are ignored:
5066
5067@smallexample
5068struct
5069 @{
5070   char foo;
5071   long : 0;
5072   char bar;
5073 @} t5;
5074@end smallexample
5075
5076Here, @code{t5} will take up 2 bytes.
5077@end enumerate
5078@end table
5079
5080@subsection PowerPC Variable Attributes
5081
5082Three attributes currently are defined for PowerPC configurations:
5083@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5084
5085For full documentation of the struct attributes please see the
5086documentation in @ref{i386 Variable Attributes}.
5087
5088For documentation of @code{altivec} attribute please see the
5089documentation in @ref{PowerPC Type Attributes}.
5090
5091@subsection SPU Variable Attributes
5092
5093The SPU supports the @code{spu_vector} attribute for variables.  For
5094documentation of this attribute please see the documentation in
5095@ref{SPU Type Attributes}.
5096
5097@subsection Xstormy16 Variable Attributes
5098
5099One attribute is currently defined for xstormy16 configurations:
5100@code{below100}.
5101
5102@table @code
5103@item below100
5104@cindex @code{below100} attribute
5105
5106If a variable has the @code{below100} attribute (@code{BELOW100} is
5107allowed also), GCC will place the variable in the first 0x100 bytes of
5108memory and use special opcodes to access it.  Such variables will be
5109placed in either the @code{.bss_below100} section or the
5110@code{.data_below100} section.
5111
5112@end table
5113
5114@node Type Attributes
5115@section Specifying Attributes of Types
5116@cindex attribute of types
5117@cindex type attributes
5118
5119The keyword @code{__attribute__} allows you to specify special
5120attributes of @code{struct} and @code{union} types when you define
5121such types.  This keyword is followed by an attribute specification
5122inside double parentheses.  Seven attributes are currently defined for
5123types: @code{aligned}, @code{packed}, @code{transparent_union},
5124@code{unused}, @code{deprecated}, @code{visibility}, and
5125@code{may_alias}.  Other attributes are defined for functions
5126(@pxref{Function Attributes}) and for variables (@pxref{Variable
5127Attributes}).
5128
5129You may also specify any one of these attributes with @samp{__}
5130preceding and following its keyword.  This allows you to use these
5131attributes in header files without being concerned about a possible
5132macro of the same name.  For example, you may use @code{__aligned__}
5133instead of @code{aligned}.
5134
5135You may specify type attributes in an enum, struct or union type
5136declaration or definition, or for other types in a @code{typedef}
5137declaration.
5138
5139For an enum, struct or union type, you may specify attributes either
5140between the enum, struct or union tag and the name of the type, or
5141just past the closing curly brace of the @emph{definition}.  The
5142former syntax is preferred.
5143
5144@xref{Attribute Syntax}, for details of the exact syntax for using
5145attributes.
5146
5147@table @code
5148@cindex @code{aligned} attribute
5149@item aligned (@var{alignment})
5150This attribute specifies a minimum alignment (in bytes) for variables
5151of the specified type.  For example, the declarations:
5152
5153@smallexample
5154struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
5155typedef int more_aligned_int __attribute__ ((aligned (8)));
5156@end smallexample
5157
5158@noindent
5159force the compiler to insure (as far as it can) that each variable whose
5160type is @code{struct S} or @code{more_aligned_int} will be allocated and
5161aligned @emph{at least} on a 8-byte boundary.  On a SPARC, having all
5162variables of type @code{struct S} aligned to 8-byte boundaries allows
5163the compiler to use the @code{ldd} and @code{std} (doubleword load and
5164store) instructions when copying one variable of type @code{struct S} to
5165another, thus improving run-time efficiency.
5166
5167Note that the alignment of any given @code{struct} or @code{union} type
5168is required by the ISO C standard to be at least a perfect multiple of
5169the lowest common multiple of the alignments of all of the members of
5170the @code{struct} or @code{union} in question.  This means that you @emph{can}
5171effectively adjust the alignment of a @code{struct} or @code{union}
5172type by attaching an @code{aligned} attribute to any one of the members
5173of such a type, but the notation illustrated in the example above is a
5174more obvious, intuitive, and readable way to request the compiler to
5175adjust the alignment of an entire @code{struct} or @code{union} type.
5176
5177As in the preceding example, you can explicitly specify the alignment
5178(in bytes) that you wish the compiler to use for a given @code{struct}
5179or @code{union} type.  Alternatively, you can leave out the alignment factor
5180and just ask the compiler to align a type to the maximum
5181useful alignment for the target machine you are compiling for.  For
5182example, you could write:
5183
5184@smallexample
5185struct S @{ short f[3]; @} __attribute__ ((aligned));
5186@end smallexample
5187
5188Whenever you leave out the alignment factor in an @code{aligned}
5189attribute specification, the compiler automatically sets the alignment
5190for the type to the largest alignment which is ever used for any data
5191type on the target machine you are compiling for.  Doing this can often
5192make copy operations more efficient, because the compiler can use
5193whatever instructions copy the biggest chunks of memory when performing
5194copies to or from the variables which have types that you have aligned
5195this way.
5196
5197In the example above, if the size of each @code{short} is 2 bytes, then
5198the size of the entire @code{struct S} type is 6 bytes.  The smallest
5199power of two which is greater than or equal to that is 8, so the
5200compiler sets the alignment for the entire @code{struct S} type to 8
5201bytes.
5202
5203Note that although you can ask the compiler to select a time-efficient
5204alignment for a given type and then declare only individual stand-alone
5205objects of that type, the compiler's ability to select a time-efficient
5206alignment is primarily useful only when you plan to create arrays of
5207variables having the relevant (efficiently aligned) type.  If you
5208declare or use arrays of variables of an efficiently-aligned type, then
5209it is likely that your program will also be doing pointer arithmetic (or
5210subscripting, which amounts to the same thing) on pointers to the
5211relevant type, and the code that the compiler generates for these
5212pointer arithmetic operations will often be more efficient for
5213efficiently-aligned types than for other types.
5214
5215The @code{aligned} attribute can only increase the alignment; but you
5216can decrease it by specifying @code{packed} as well.  See below.
5217
5218Note that the effectiveness of @code{aligned} attributes may be limited
5219by inherent limitations in your linker.  On many systems, the linker is
5220only able to arrange for variables to be aligned up to a certain maximum
5221alignment.  (For some linkers, the maximum supported alignment may
5222be very very small.)  If your linker is only able to align variables
5223up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
5224in an @code{__attribute__} will still only provide you with 8 byte
5225alignment.  See your linker documentation for further information.
5226
5227@item packed
5228This attribute, attached to @code{struct} or @code{union} type
5229definition, specifies that each member (other than zero-width bitfields)
5230of the structure or union is placed to minimize the memory required.  When
5231attached to an @code{enum} definition, it indicates that the smallest
5232integral type should be used.
5233
5234@opindex fshort-enums
5235Specifying this attribute for @code{struct} and @code{union} types is
5236equivalent to specifying the @code{packed} attribute on each of the
5237structure or union members.  Specifying the @option{-fshort-enums}
5238flag on the line is equivalent to specifying the @code{packed}
5239attribute on all @code{enum} definitions.
5240
5241In the following example @code{struct my_packed_struct}'s members are
5242packed closely together, but the internal layout of its @code{s} member
5243is not packed---to do that, @code{struct my_unpacked_struct} would need to
5244be packed too.
5245
5246@smallexample
5247struct my_unpacked_struct
5248 @{
5249    char c;
5250    int i;
5251 @};
5252
5253struct __attribute__ ((__packed__)) my_packed_struct
5254  @{
5255     char c;
5256     int  i;
5257     struct my_unpacked_struct s;
5258  @};
5259@end smallexample
5260
5261You may only specify this attribute on the definition of an @code{enum},
5262@code{struct} or @code{union}, not on a @code{typedef} which does not
5263also define the enumerated type, structure or union.
5264
5265@item transparent_union
5266This attribute, attached to a @code{union} type definition, indicates
5267that any function parameter having that union type causes calls to that
5268function to be treated in a special way.
5269
5270First, the argument corresponding to a transparent union type can be of
5271any type in the union; no cast is required.  Also, if the union contains
5272a pointer type, the corresponding argument can be a null pointer
5273constant or a void pointer expression; and if the union contains a void
5274pointer type, the corresponding argument can be any pointer expression.
5275If the union member type is a pointer, qualifiers like @code{const} on
5276the referenced type must be respected, just as with normal pointer
5277conversions.
5278
5279Second, the argument is passed to the function using the calling
5280conventions of the first member of the transparent union, not the calling
5281conventions of the union itself.  All members of the union must have the
5282same machine representation; this is necessary for this argument passing
5283to work properly.
5284
5285Transparent unions are designed for library functions that have multiple
5286interfaces for compatibility reasons.  For example, suppose the
5287@code{wait} function must accept either a value of type @code{int *} to
5288comply with Posix, or a value of type @code{union wait *} to comply with
5289the 4.1BSD interface.  If @code{wait}'s parameter were @code{void *},
5290@code{wait} would accept both kinds of arguments, but it would also
5291accept any other pointer type and this would make argument type checking
5292less useful.  Instead, @code{<sys/wait.h>} might define the interface
5293as follows:
5294
5295@smallexample
5296typedef union __attribute__ ((__transparent_union__))
5297  @{
5298    int *__ip;
5299    union wait *__up;
5300  @} wait_status_ptr_t;
5301
5302pid_t wait (wait_status_ptr_t);
5303@end smallexample
5304
5305This interface allows either @code{int *} or @code{union wait *}
5306arguments to be passed, using the @code{int *} calling convention.
5307The program can call @code{wait} with arguments of either type:
5308
5309@smallexample
5310int w1 () @{ int w; return wait (&w); @}
5311int w2 () @{ union wait w; return wait (&w); @}
5312@end smallexample
5313
5314With this interface, @code{wait}'s implementation might look like this:
5315
5316@smallexample
5317pid_t wait (wait_status_ptr_t p)
5318@{
5319  return waitpid (-1, p.__ip, 0);
5320@}
5321@end smallexample
5322
5323@item unused
5324When attached to a type (including a @code{union} or a @code{struct}),
5325this attribute means that variables of that type are meant to appear
5326possibly unused.  GCC will not produce a warning for any variables of
5327that type, even if the variable appears to do nothing.  This is often
5328the case with lock or thread classes, which are usually defined and then
5329not referenced, but contain constructors and destructors that have
5330nontrivial bookkeeping functions.
5331
5332@item deprecated
5333@itemx deprecated (@var{msg})
5334The @code{deprecated} attribute results in a warning if the type
5335is used anywhere in the source file.  This is useful when identifying
5336types that are expected to be removed in a future version of a program.
5337If possible, the warning also includes the location of the declaration
5338of the deprecated type, to enable users to easily find further
5339information about why the type is deprecated, or what they should do
5340instead.  Note that the warnings only occur for uses and then only
5341if the type is being applied to an identifier that itself is not being
5342declared as deprecated.
5343
5344@smallexample
5345typedef int T1 __attribute__ ((deprecated));
5346T1 x;
5347typedef T1 T2;
5348T2 y;
5349typedef T1 T3 __attribute__ ((deprecated));
5350T3 z __attribute__ ((deprecated));
5351@end smallexample
5352
5353results in a warning on line 2 and 3 but not lines 4, 5, or 6.  No
5354warning is issued for line 4 because T2 is not explicitly
5355deprecated.  Line 5 has no warning because T3 is explicitly
5356deprecated.  Similarly for line 6.  The optional msg
5357argument, which must be a string, will be printed in the warning if
5358present.
5359
5360The @code{deprecated} attribute can also be used for functions and
5361variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
5362
5363@item may_alias
5364Accesses through pointers to types with this attribute are not subject
5365to type-based alias analysis, but are instead assumed to be able to alias
5366any other type of objects.  In the context of 6.5/7 an lvalue expression
5367dereferencing such a pointer is treated like having a character type.
5368See @option{-fstrict-aliasing} for more information on aliasing issues.
5369This extension exists to support some vector APIs, in which pointers to
5370one vector type are permitted to alias pointers to a different vector type.
5371
5372Note that an object of a type with this attribute does not have any
5373special semantics.
5374
5375Example of use:
5376
5377@smallexample
5378typedef short __attribute__((__may_alias__)) short_a;
5379
5380int
5381main (void)
5382@{
5383  int a = 0x12345678;
5384  short_a *b = (short_a *) &a;
5385
5386  b[1] = 0;
5387
5388  if (a == 0x12345678)
5389    abort();
5390
5391  exit(0);
5392@}
5393@end smallexample
5394
5395If you replaced @code{short_a} with @code{short} in the variable
5396declaration, the above program would abort when compiled with
5397@option{-fstrict-aliasing}, which is on by default at @option{-O2} or
5398above in recent GCC versions.
5399
5400@item visibility
5401In C++, attribute visibility (@pxref{Function Attributes}) can also be
5402applied to class, struct, union and enum types.  Unlike other type
5403attributes, the attribute must appear between the initial keyword and
5404the name of the type; it cannot appear after the body of the type.
5405
5406Note that the type visibility is applied to vague linkage entities
5407associated with the class (vtable, typeinfo node, etc.).  In
5408particular, if a class is thrown as an exception in one shared object
5409and caught in another, the class must have default visibility.
5410Otherwise the two shared objects will be unable to use the same
5411typeinfo node and exception handling will break.
5412
5413@end table
5414
5415@subsection ARM Type Attributes
5416
5417On those ARM targets that support @code{dllimport} (such as Symbian
5418OS), you can use the @code{notshared} attribute to indicate that the
5419virtual table and other similar data for a class should not be
5420exported from a DLL@.  For example:
5421
5422@smallexample
5423class __declspec(notshared) C @{
5424public:
5425  __declspec(dllimport) C();
5426  virtual void f();
5427@}
5428
5429__declspec(dllexport)
5430C::C() @{@}
5431@end smallexample
5432
5433In this code, @code{C::C} is exported from the current DLL, but the
5434virtual table for @code{C} is not exported.  (You can use
5435@code{__attribute__} instead of @code{__declspec} if you prefer, but
5436most Symbian OS code uses @code{__declspec}.)
5437
5438@anchor{MeP Type Attributes}
5439@subsection MeP Type Attributes
5440
5441Many of the MeP variable attributes may be applied to types as well.
5442Specifically, the @code{based}, @code{tiny}, @code{near}, and
5443@code{far} attributes may be applied to either.  The @code{io} and
5444@code{cb} attributes may not be applied to types.
5445
5446@anchor{i386 Type Attributes}
5447@subsection i386 Type Attributes
5448
5449Two attributes are currently defined for i386 configurations:
5450@code{ms_struct} and @code{gcc_struct}.
5451
5452@table @code
5453
5454@item ms_struct
5455@itemx gcc_struct
5456@cindex @code{ms_struct}
5457@cindex @code{gcc_struct}
5458
5459If @code{packed} is used on a structure, or if bit-fields are used
5460it may be that the Microsoft ABI packs them differently
5461than GCC would normally pack them.  Particularly when moving packed
5462data between functions compiled with GCC and the native Microsoft compiler
5463(either via function call or as data in a file), it may be necessary to access
5464either format.
5465
5466Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
5467compilers to match the native Microsoft compiler.
5468@end table
5469
5470To specify multiple attributes, separate them by commas within the
5471double parentheses: for example, @samp{__attribute__ ((aligned (16),
5472packed))}.
5473
5474@anchor{PowerPC Type Attributes}
5475@subsection PowerPC Type Attributes
5476
5477Three attributes currently are defined for PowerPC configurations:
5478@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5479
5480For full documentation of the @code{ms_struct} and @code{gcc_struct}
5481attributes please see the documentation in @ref{i386 Type Attributes}.
5482
5483The @code{altivec} attribute allows one to declare AltiVec vector data
5484types supported by the AltiVec Programming Interface Manual.  The
5485attribute requires an argument to specify one of three vector types:
5486@code{vector__}, @code{pixel__} (always followed by unsigned short),
5487and @code{bool__} (always followed by unsigned).
5488
5489@smallexample
5490__attribute__((altivec(vector__)))
5491__attribute__((altivec(pixel__))) unsigned short
5492__attribute__((altivec(bool__))) unsigned
5493@end smallexample
5494
5495These attributes mainly are intended to support the @code{__vector},
5496@code{__pixel}, and @code{__bool} AltiVec keywords.
5497
5498@anchor{SPU Type Attributes}
5499@subsection SPU Type Attributes
5500
5501The SPU supports the @code{spu_vector} attribute for types.  This attribute
5502allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
5503Language Extensions Specification.  It is intended to support the
5504@code{__vector} keyword.
5505
5506@node Alignment
5507@section Inquiring on Alignment of Types or Variables
5508@cindex alignment
5509@cindex type alignment
5510@cindex variable alignment
5511
5512The keyword @code{__alignof__} allows you to inquire about how an object
5513is aligned, or the minimum alignment usually required by a type.  Its
5514syntax is just like @code{sizeof}.
5515
5516For example, if the target machine requires a @code{double} value to be
5517aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
5518This is true on many RISC machines.  On more traditional machine
5519designs, @code{__alignof__ (double)} is 4 or even 2.
5520
5521Some machines never actually require alignment; they allow reference to any
5522data type even at an odd address.  For these machines, @code{__alignof__}
5523reports the smallest alignment that GCC will give the data type, usually as
5524mandated by the target ABI.
5525
5526If the operand of @code{__alignof__} is an lvalue rather than a type,
5527its value is the required alignment for its type, taking into account
5528any minimum alignment specified with GCC's @code{__attribute__}
5529extension (@pxref{Variable Attributes}).  For example, after this
5530declaration:
5531
5532@smallexample
5533struct foo @{ int x; char y; @} foo1;
5534@end smallexample
5535
5536@noindent
5537the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
5538alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
5539
5540It is an error to ask for the alignment of an incomplete type.
5541
5542
5543@node Inline
5544@section An Inline Function is As Fast As a Macro
5545@cindex inline functions
5546@cindex integrating function code
5547@cindex open coding
5548@cindex macros, inline alternative
5549
5550By declaring a function inline, you can direct GCC to make
5551calls to that function faster.  One way GCC can achieve this is to
5552integrate that function's code into the code for its callers.  This
5553makes execution faster by eliminating the function-call overhead; in
5554addition, if any of the actual argument values are constant, their
5555known values may permit simplifications at compile time so that not
5556all of the inline function's code needs to be included.  The effect on
5557code size is less predictable; object code may be larger or smaller
5558with function inlining, depending on the particular case.  You can
5559also direct GCC to try to integrate all ``simple enough'' functions
5560into their callers with the option @option{-finline-functions}.
5561
5562GCC implements three different semantics of declaring a function
5563inline.  One is available with @option{-std=gnu89} or
5564@option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
5565on all inline declarations, another when
5566@option{-std=c99}, @option{-std=c11},
5567@option{-std=gnu99} or @option{-std=gnu11}
5568(without @option{-fgnu89-inline}), and the third
5569is used when compiling C++.
5570
5571To declare a function inline, use the @code{inline} keyword in its
5572declaration, like this:
5573
5574@smallexample
5575static inline int
5576inc (int *a)
5577@{
5578  return (*a)++;
5579@}
5580@end smallexample
5581
5582If you are writing a header file to be included in ISO C90 programs, write
5583@code{__inline__} instead of @code{inline}.  @xref{Alternate Keywords}.
5584
5585The three types of inlining behave similarly in two important cases:
5586when the @code{inline} keyword is used on a @code{static} function,
5587like the example above, and when a function is first declared without
5588using the @code{inline} keyword and then is defined with
5589@code{inline}, like this:
5590
5591@smallexample
5592extern int inc (int *a);
5593inline int
5594inc (int *a)
5595@{
5596  return (*a)++;
5597@}
5598@end smallexample
5599
5600In both of these common cases, the program behaves the same as if you
5601had not used the @code{inline} keyword, except for its speed.
5602
5603@cindex inline functions, omission of
5604@opindex fkeep-inline-functions
5605When a function is both inline and @code{static}, if all calls to the
5606function are integrated into the caller, and the function's address is
5607never used, then the function's own assembler code is never referenced.
5608In this case, GCC does not actually output assembler code for the
5609function, unless you specify the option @option{-fkeep-inline-functions}.
5610Some calls cannot be integrated for various reasons (in particular,
5611calls that precede the function's definition cannot be integrated, and
5612neither can recursive calls within the definition).  If there is a
5613nonintegrated call, then the function is compiled to assembler code as
5614usual.  The function must also be compiled as usual if the program
5615refers to its address, because that can't be inlined.
5616
5617@opindex Winline
5618Note that certain usages in a function definition can make it unsuitable
5619for inline substitution.  Among these usages are: use of varargs, use of
5620alloca, use of variable sized data types (@pxref{Variable Length}),
5621use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
5622and nested functions (@pxref{Nested Functions}).  Using @option{-Winline}
5623will warn when a function marked @code{inline} could not be substituted,
5624and will give the reason for the failure.
5625
5626@cindex automatic @code{inline} for C++ member fns
5627@cindex @code{inline} automatic for C++ member fns
5628@cindex member fns, automatically @code{inline}
5629@cindex C++ member fns, automatically @code{inline}
5630@opindex fno-default-inline
5631As required by ISO C++, GCC considers member functions defined within
5632the body of a class to be marked inline even if they are
5633not explicitly declared with the @code{inline} keyword.  You can
5634override this with @option{-fno-default-inline}; @pxref{C++ Dialect
5635Options,,Options Controlling C++ Dialect}.
5636
5637GCC does not inline any functions when not optimizing unless you specify
5638the @samp{always_inline} attribute for the function, like this:
5639
5640@smallexample
5641/* @r{Prototype.}  */
5642inline void foo (const char) __attribute__((always_inline));
5643@end smallexample
5644
5645The remainder of this section is specific to GNU C90 inlining.
5646
5647@cindex non-static inline function
5648When an inline function is not @code{static}, then the compiler must assume
5649that there may be calls from other source files; since a global symbol can
5650be defined only once in any program, the function must not be defined in
5651the other source files, so the calls therein cannot be integrated.
5652Therefore, a non-@code{static} inline function is always compiled on its
5653own in the usual fashion.
5654
5655If you specify both @code{inline} and @code{extern} in the function
5656definition, then the definition is used only for inlining.  In no case
5657is the function compiled on its own, not even if you refer to its
5658address explicitly.  Such an address becomes an external reference, as
5659if you had only declared the function, and had not defined it.
5660
5661This combination of @code{inline} and @code{extern} has almost the
5662effect of a macro.  The way to use it is to put a function definition in
5663a header file with these keywords, and put another copy of the
5664definition (lacking @code{inline} and @code{extern}) in a library file.
5665The definition in the header file will cause most calls to the function
5666to be inlined.  If any uses of the function remain, they will refer to
5667the single copy in the library.
5668
5669@node Volatiles
5670@section When is a Volatile Object Accessed?
5671@cindex accessing volatiles
5672@cindex volatile read
5673@cindex volatile write
5674@cindex volatile access
5675
5676C has the concept of volatile objects.  These are normally accessed by
5677pointers and used for accessing hardware or inter-thread
5678communication.  The standard encourages compilers to refrain from
5679optimizations concerning accesses to volatile objects, but leaves it
5680implementation defined as to what constitutes a volatile access.  The
5681minimum requirement is that at a sequence point all previous accesses
5682to volatile objects have stabilized and no subsequent accesses have
5683occurred.  Thus an implementation is free to reorder and combine
5684volatile accesses which occur between sequence points, but cannot do
5685so for accesses across a sequence point.  The use of volatile does
5686not allow you to violate the restriction on updating objects multiple
5687times between two sequence points.
5688
5689Accesses to non-volatile objects are not ordered with respect to
5690volatile accesses.  You cannot use a volatile object as a memory
5691barrier to order a sequence of writes to non-volatile memory.  For
5692instance:
5693
5694@smallexample
5695int *ptr = @var{something};
5696volatile int vobj;
5697*ptr = @var{something};
5698vobj = 1;
5699@end smallexample
5700
5701Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
5702that the write to @var{*ptr} will have occurred by the time the update
5703of @var{vobj} has happened.  If you need this guarantee, you must use
5704a stronger memory barrier such as:
5705
5706@smallexample
5707int *ptr = @var{something};
5708volatile int vobj;
5709*ptr = @var{something};
5710asm volatile ("" : : : "memory");
5711vobj = 1;
5712@end smallexample
5713
5714A scalar volatile object is read when it is accessed in a void context:
5715
5716@smallexample
5717volatile int *src = @var{somevalue};
5718*src;
5719@end smallexample
5720
5721Such expressions are rvalues, and GCC implements this as a
5722read of the volatile object being pointed to.
5723
5724Assignments are also expressions and have an rvalue.  However when
5725assigning to a scalar volatile, the volatile object is not reread,
5726regardless of whether the assignment expression's rvalue is used or
5727not.  If the assignment's rvalue is used, the value is that assigned
5728to the volatile object.  For instance, there is no read of @var{vobj}
5729in all the following cases:
5730
5731@smallexample
5732int obj;
5733volatile int vobj;
5734vobj = @var{something};
5735obj = vobj = @var{something};
5736obj ? vobj = @var{onething} : vobj = @var{anotherthing};
5737obj = (@var{something}, vobj = @var{anotherthing});
5738@end smallexample
5739
5740If you need to read the volatile object after an assignment has
5741occurred, you must use a separate expression with an intervening
5742sequence point.
5743
5744As bitfields are not individually addressable, volatile bitfields may
5745be implicitly read when written to, or when adjacent bitfields are
5746accessed.  Bitfield operations may be optimized such that adjacent
5747bitfields are only partially accessed, if they straddle a storage unit
5748boundary.  For these reasons it is unwise to use volatile bitfields to
5749access hardware.
5750
5751@node Extended Asm
5752@section Assembler Instructions with C Expression Operands
5753@cindex extended @code{asm}
5754@cindex @code{asm} expressions
5755@cindex assembler instructions
5756@cindex registers
5757
5758In an assembler instruction using @code{asm}, you can specify the
5759operands of the instruction using C expressions.  This means you need not
5760guess which registers or memory locations will contain the data you want
5761to use.
5762
5763You must specify an assembler instruction template much like what
5764appears in a machine description, plus an operand constraint string for
5765each operand.
5766
5767For example, here is how to use the 68881's @code{fsinx} instruction:
5768
5769@smallexample
5770asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
5771@end smallexample
5772
5773@noindent
5774Here @code{angle} is the C expression for the input operand while
5775@code{result} is that of the output operand.  Each has @samp{"f"} as its
5776operand constraint, saying that a floating point register is required.
5777The @samp{=} in @samp{=f} indicates that the operand is an output; all
5778output operands' constraints must use @samp{=}.  The constraints use the
5779same language used in the machine description (@pxref{Constraints}).
5780
5781Each operand is described by an operand-constraint string followed by
5782the C expression in parentheses.  A colon separates the assembler
5783template from the first output operand and another separates the last
5784output operand from the first input, if any.  Commas separate the
5785operands within each group.  The total number of operands is currently
5786limited to 30; this limitation may be lifted in some future version of
5787GCC@.
5788
5789If there are no output operands but there are input operands, you must
5790place two consecutive colons surrounding the place where the output
5791operands would go.
5792
5793As of GCC version 3.1, it is also possible to specify input and output
5794operands using symbolic names which can be referenced within the
5795assembler code.  These names are specified inside square brackets
5796preceding the constraint string, and can be referenced inside the
5797assembler code using @code{%[@var{name}]} instead of a percentage sign
5798followed by the operand number.  Using named operands the above example
5799could look like:
5800
5801@smallexample
5802asm ("fsinx %[angle],%[output]"
5803     : [output] "=f" (result)
5804     : [angle] "f" (angle));
5805@end smallexample
5806
5807@noindent
5808Note that the symbolic operand names have no relation whatsoever to
5809other C identifiers.  You may use any name you like, even those of
5810existing C symbols, but you must ensure that no two operands within the same
5811assembler construct use the same symbolic name.
5812
5813Output operand expressions must be lvalues; the compiler can check this.
5814The input operands need not be lvalues.  The compiler cannot check
5815whether the operands have data types that are reasonable for the
5816instruction being executed.  It does not parse the assembler instruction
5817template and does not know what it means or even whether it is valid
5818assembler input.  The extended @code{asm} feature is most often used for
5819machine instructions the compiler itself does not know exist.  If
5820the output expression cannot be directly addressed (for example, it is a
5821bit-field), your constraint must allow a register.  In that case, GCC
5822will use the register as the output of the @code{asm}, and then store
5823that register into the output.
5824
5825The ordinary output operands must be write-only; GCC will assume that
5826the values in these operands before the instruction are dead and need
5827not be generated.  Extended asm supports input-output or read-write
5828operands.  Use the constraint character @samp{+} to indicate such an
5829operand and list it with the output operands.  You should only use
5830read-write operands when the constraints for the operand (or the
5831operand in which only some of the bits are to be changed) allow a
5832register.
5833
5834You may, as an alternative, logically split its function into two
5835separate operands, one input operand and one write-only output
5836operand.  The connection between them is expressed by constraints
5837which say they need to be in the same location when the instruction
5838executes.  You can use the same C expression for both operands, or
5839different expressions.  For example, here we write the (fictitious)
5840@samp{combine} instruction with @code{bar} as its read-only source
5841operand and @code{foo} as its read-write destination:
5842
5843@smallexample
5844asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
5845@end smallexample
5846
5847@noindent
5848The constraint @samp{"0"} for operand 1 says that it must occupy the
5849same location as operand 0.  A number in constraint is allowed only in
5850an input operand and it must refer to an output operand.
5851
5852Only a number in the constraint can guarantee that one operand will be in
5853the same place as another.  The mere fact that @code{foo} is the value
5854of both operands is not enough to guarantee that they will be in the
5855same place in the generated assembler code.  The following would not
5856work reliably:
5857
5858@smallexample
5859asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
5860@end smallexample
5861
5862Various optimizations or reloading could cause operands 0 and 1 to be in
5863different registers; GCC knows no reason not to do so.  For example, the
5864compiler might find a copy of the value of @code{foo} in one register and
5865use it for operand 1, but generate the output operand 0 in a different
5866register (copying it afterward to @code{foo}'s own address).  Of course,
5867since the register for operand 1 is not even mentioned in the assembler
5868code, the result will not work, but GCC can't tell that.
5869
5870As of GCC version 3.1, one may write @code{[@var{name}]} instead of
5871the operand number for a matching constraint.  For example:
5872
5873@smallexample
5874asm ("cmoveq %1,%2,%[result]"
5875     : [result] "=r"(result)
5876     : "r" (test), "r"(new), "[result]"(old));
5877@end smallexample
5878
5879Sometimes you need to make an @code{asm} operand be a specific register,
5880but there's no matching constraint letter for that register @emph{by
5881itself}.  To force the operand into that register, use a local variable
5882for the operand and specify the register in the variable declaration.
5883@xref{Explicit Reg Vars}.  Then for the @code{asm} operand, use any
5884register constraint letter that matches the register:
5885
5886@smallexample
5887register int *p1 asm ("r0") = @dots{};
5888register int *p2 asm ("r1") = @dots{};
5889register int *result asm ("r0");
5890asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5891@end smallexample
5892
5893@anchor{Example of asm with clobbered asm reg}
5894In the above example, beware that a register that is call-clobbered by
5895the target ABI will be overwritten by any function call in the
5896assignment, including library calls for arithmetic operators.
5897Also a register may be clobbered when generating some operations,
5898like variable shift, memory copy or memory move on x86.
5899Assuming it is a call-clobbered register, this may happen to @code{r0}
5900above by the assignment to @code{p2}.  If you have to use such a
5901register, use temporary variables for expressions between the register
5902assignment and use:
5903
5904@smallexample
5905int t1 = @dots{};
5906register int *p1 asm ("r0") = @dots{};
5907register int *p2 asm ("r1") = t1;
5908register int *result asm ("r0");
5909asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5910@end smallexample
5911
5912Some instructions clobber specific hard registers.  To describe this,
5913write a third colon after the input operands, followed by the names of
5914the clobbered hard registers (given as strings).  Here is a realistic
5915example for the VAX:
5916
5917@smallexample
5918asm volatile ("movc3 %0,%1,%2"
5919              : /* @r{no outputs} */
5920              : "g" (from), "g" (to), "g" (count)
5921              : "r0", "r1", "r2", "r3", "r4", "r5");
5922@end smallexample
5923
5924You may not write a clobber description in a way that overlaps with an
5925input or output operand.  For example, you may not have an operand
5926describing a register class with one member if you mention that register
5927in the clobber list.  Variables declared to live in specific registers
5928(@pxref{Explicit Reg Vars}), and used as asm input or output operands must
5929have no part mentioned in the clobber description.
5930There is no way for you to specify that an input
5931operand is modified without also specifying it as an output
5932operand.  Note that if all the output operands you specify are for this
5933purpose (and hence unused), you will then also need to specify
5934@code{volatile} for the @code{asm} construct, as described below, to
5935prevent GCC from deleting the @code{asm} statement as unused.
5936
5937If you refer to a particular hardware register from the assembler code,
5938you will probably have to list the register after the third colon to
5939tell the compiler the register's value is modified.  In some assemblers,
5940the register names begin with @samp{%}; to produce one @samp{%} in the
5941assembler code, you must write @samp{%%} in the input.
5942
5943If your assembler instruction can alter the condition code register, add
5944@samp{cc} to the list of clobbered registers.  GCC on some machines
5945represents the condition codes as a specific hardware register;
5946@samp{cc} serves to name this register.  On other machines, the
5947condition code is handled differently, and specifying @samp{cc} has no
5948effect.  But it is valid no matter what the machine.
5949
5950If your assembler instructions access memory in an unpredictable
5951fashion, add @samp{memory} to the list of clobbered registers.  This
5952will cause GCC to not keep memory values cached in registers across the
5953assembler instruction and not optimize stores or loads to that memory.
5954You will also want to add the @code{volatile} keyword if the memory
5955affected is not listed in the inputs or outputs of the @code{asm}, as
5956the @samp{memory} clobber does not count as a side-effect of the
5957@code{asm}.  If you know how large the accessed memory is, you can add
5958it as input or output but if this is not known, you should add
5959@samp{memory}.  As an example, if you access ten bytes of a string, you
5960can use a memory input like:
5961
5962@smallexample
5963@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
5964@end smallexample
5965
5966Note that in the following example the memory input is necessary,
5967otherwise GCC might optimize the store to @code{x} away:
5968@smallexample
5969int foo ()
5970@{
5971  int x = 42;
5972  int *y = &x;
5973  int result;
5974  asm ("magic stuff accessing an 'int' pointed to by '%1'"
5975        "=&d" (r) : "a" (y), "m" (*y));
5976  return result;
5977@}
5978@end smallexample
5979
5980You can put multiple assembler instructions together in a single
5981@code{asm} template, separated by the characters normally used in assembly
5982code for the system.  A combination that works in most places is a newline
5983to break the line, plus a tab character to move to the instruction field
5984(written as @samp{\n\t}).  Sometimes semicolons can be used, if the
5985assembler allows semicolons as a line-breaking character.  Note that some
5986assembler dialects use semicolons to start a comment.
5987The input operands are guaranteed not to use any of the clobbered
5988registers, and neither will the output operands' addresses, so you can
5989read and write the clobbered registers as many times as you like.  Here
5990is an example of multiple instructions in a template; it assumes the
5991subroutine @code{_foo} accepts arguments in registers 9 and 10:
5992
5993@smallexample
5994asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
5995     : /* no outputs */
5996     : "g" (from), "g" (to)
5997     : "r9", "r10");
5998@end smallexample
5999
6000Unless an output operand has the @samp{&} constraint modifier, GCC
6001may allocate it in the same register as an unrelated input operand, on
6002the assumption the inputs are consumed before the outputs are produced.
6003This assumption may be false if the assembler code actually consists of
6004more than one instruction.  In such a case, use @samp{&} for each output
6005operand that may not overlap an input.  @xref{Modifiers}.
6006
6007If you want to test the condition code produced by an assembler
6008instruction, you must include a branch and a label in the @code{asm}
6009construct, as follows:
6010
6011@smallexample
6012asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
6013     : "g" (result)
6014     : "g" (input));
6015@end smallexample
6016
6017@noindent
6018This assumes your assembler supports local labels, as the GNU assembler
6019and most Unix assemblers do.
6020
6021Speaking of labels, jumps from one @code{asm} to another are not
6022supported.  The compiler's optimizers do not know about these jumps, and
6023therefore they cannot take account of them when deciding how to
6024optimize.  @xref{Extended asm with goto}.
6025
6026@cindex macros containing @code{asm}
6027Usually the most convenient way to use these @code{asm} instructions is to
6028encapsulate them in macros that look like functions.  For example,
6029
6030@smallexample
6031#define sin(x)       \
6032(@{ double __value, __arg = (x);   \
6033   asm ("fsinx %1,%0": "=f" (__value): "f" (__arg));  \
6034   __value; @})
6035@end smallexample
6036
6037@noindent
6038Here the variable @code{__arg} is used to make sure that the instruction
6039operates on a proper @code{double} value, and to accept only those
6040arguments @code{x} which can convert automatically to a @code{double}.
6041
6042Another way to make sure the instruction operates on the correct data
6043type is to use a cast in the @code{asm}.  This is different from using a
6044variable @code{__arg} in that it converts more different types.  For
6045example, if the desired type were @code{int}, casting the argument to
6046@code{int} would accept a pointer with no complaint, while assigning the
6047argument to an @code{int} variable named @code{__arg} would warn about
6048using a pointer unless the caller explicitly casts it.
6049
6050If an @code{asm} has output operands, GCC assumes for optimization
6051purposes the instruction has no side effects except to change the output
6052operands.  This does not mean instructions with a side effect cannot be
6053used, but you must be careful, because the compiler may eliminate them
6054if the output operands aren't used, or move them out of loops, or
6055replace two with one if they constitute a common subexpression.  Also,
6056if your instruction does have a side effect on a variable that otherwise
6057appears not to change, the old value of the variable may be reused later
6058if it happens to be found in a register.
6059
6060You can prevent an @code{asm} instruction from being deleted
6061by writing the keyword @code{volatile} after
6062the @code{asm}.  For example:
6063
6064@smallexample
6065#define get_and_set_priority(new)              \
6066(@{ int __old;                                  \
6067   asm volatile ("get_and_set_priority %0, %1" \
6068                 : "=g" (__old) : "g" (new));  \
6069   __old; @})
6070@end smallexample
6071
6072@noindent
6073The @code{volatile} keyword indicates that the instruction has
6074important side-effects.  GCC will not delete a volatile @code{asm} if
6075it is reachable.  (The instruction can still be deleted if GCC can
6076prove that control-flow will never reach the location of the
6077instruction.)  Note that even a volatile @code{asm} instruction
6078can be moved relative to other code, including across jump
6079instructions.  For example, on many targets there is a system
6080register which can be set to control the rounding mode of
6081floating point operations.  You might try
6082setting it with a volatile @code{asm}, like this PowerPC example:
6083
6084@smallexample
6085       asm volatile("mtfsf 255,%0" : : "f" (fpenv));
6086       sum = x + y;
6087@end smallexample
6088
6089@noindent
6090This will not work reliably, as the compiler may move the addition back
6091before the volatile @code{asm}.  To make it work you need to add an
6092artificial dependency to the @code{asm} referencing a variable in the code
6093you don't want moved, for example:
6094
6095@smallexample
6096    asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
6097    sum = x + y;
6098@end smallexample
6099
6100Similarly, you can't expect a
6101sequence of volatile @code{asm} instructions to remain perfectly
6102consecutive.  If you want consecutive output, use a single @code{asm}.
6103Also, GCC will perform some optimizations across a volatile @code{asm}
6104instruction; GCC does not ``forget everything'' when it encounters
6105a volatile @code{asm} instruction the way some other compilers do.
6106
6107An @code{asm} instruction without any output operands will be treated
6108identically to a volatile @code{asm} instruction.
6109
6110It is a natural idea to look for a way to give access to the condition
6111code left by the assembler instruction.  However, when we attempted to
6112implement this, we found no way to make it work reliably.  The problem
6113is that output operands might need reloading, which would result in
6114additional following ``store'' instructions.  On most machines, these
6115instructions would alter the condition code before there was time to
6116test it.  This problem doesn't arise for ordinary ``test'' and
6117``compare'' instructions because they don't have any output operands.
6118
6119For reasons similar to those described above, it is not possible to give
6120an assembler instruction access to the condition code left by previous
6121instructions.
6122
6123@anchor{Extended asm with goto}
6124As of GCC version 4.5, @code{asm goto} may be used to have the assembly
6125jump to one or more C labels.  In this form, a fifth section after the
6126clobber list contains a list of all C labels to which the assembly may jump.
6127Each label operand is implicitly self-named.  The @code{asm} is also assumed
6128to fall through to the next statement.
6129
6130This form of @code{asm} is restricted to not have outputs.  This is due
6131to a internal restriction in the compiler that control transfer instructions
6132cannot have outputs.  This restriction on @code{asm goto} may be lifted
6133in some future version of the compiler.  In the mean time, @code{asm goto}
6134may include a memory clobber, and so leave outputs in memory.
6135
6136@smallexample
6137int frob(int x)
6138@{
6139  int y;
6140  asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
6141            : : "r"(x), "r"(&y) : "r5", "memory" : error);
6142  return y;
6143 error:
6144  return -1;
6145@}
6146@end smallexample
6147
6148In this (inefficient) example, the @code{frob} instruction sets the
6149carry bit to indicate an error.  The @code{jc} instruction detects
6150this and branches to the @code{error} label.  Finally, the output
6151of the @code{frob} instruction (@code{%r5}) is stored into the memory
6152for variable @code{y}, which is later read by the @code{return} statement.
6153
6154@smallexample
6155void doit(void)
6156@{
6157  int i = 0;
6158  asm goto ("mfsr %%r1, 123; jmp %%r1;"
6159            ".pushsection doit_table;"
6160            ".long %l0, %l1, %l2, %l3;"
6161            ".popsection"
6162            : : : "r1" : label1, label2, label3, label4);
6163  __builtin_unreachable ();
6164
6165 label1:
6166  f1();
6167  return;
6168 label2:
6169  f2();
6170  return;
6171 label3:
6172  i = 1;
6173 label4:
6174  f3(i);
6175@}
6176@end smallexample
6177
6178In this (also inefficient) example, the @code{mfsr} instruction reads
6179an address from some out-of-band machine register, and the following
6180@code{jmp} instruction branches to that address.  The address read by
6181the @code{mfsr} instruction is assumed to have been previously set via
6182some application-specific mechanism to be one of the four values stored
6183in the @code{doit_table} section.  Finally, the @code{asm} is followed
6184by a call to @code{__builtin_unreachable} to indicate that the @code{asm}
6185does not in fact fall through.
6186
6187@smallexample
6188#define TRACE1(NUM)                         \
6189  do @{                                      \
6190    asm goto ("0: nop;"                     \
6191              ".pushsection trace_table;"   \
6192              ".long 0b, %l0;"              \
6193              ".popsection"                 \
6194              : : : : trace#NUM);           \
6195    if (0) @{ trace#NUM: trace(); @}          \
6196  @} while (0)
6197#define TRACE  TRACE1(__COUNTER__)
6198@end smallexample
6199
6200In this example (which in fact inspired the @code{asm goto} feature)
6201we want on rare occasions to call the @code{trace} function; on other
6202occasions we'd like to keep the overhead to the absolute minimum.
6203The normal code path consists of a single @code{nop} instruction.
6204However, we record the address of this @code{nop} together with the
6205address of a label that calls the @code{trace} function.  This allows
6206the @code{nop} instruction to be patched at runtime to be an
6207unconditional branch to the stored label.  It is assumed that an
6208optimizing compiler will move the labeled block out of line, to
6209optimize the fall through path from the @code{asm}.
6210
6211If you are writing a header file that should be includable in ISO C
6212programs, write @code{__asm__} instead of @code{asm}.  @xref{Alternate
6213Keywords}.
6214
6215@subsection Size of an @code{asm}
6216
6217Some targets require that GCC track the size of each instruction used in
6218order to generate correct code.  Because the final length of an
6219@code{asm} is only known by the assembler, GCC must make an estimate as
6220to how big it will be.  The estimate is formed by counting the number of
6221statements in the pattern of the @code{asm} and multiplying that by the
6222length of the longest instruction on that processor.  Statements in the
6223@code{asm} are identified by newline characters and whatever statement
6224separator characters are supported by the assembler; on most processors
6225this is the `@code{;}' character.
6226
6227Normally, GCC's estimate is perfectly adequate to ensure that correct
6228code is generated, but it is possible to confuse the compiler if you use
6229pseudo instructions or assembler macros that expand into multiple real
6230instructions or if you use assembler directives that expand to more
6231space in the object file than would be needed for a single instruction.
6232If this happens then the assembler will produce a diagnostic saying that
6233a label is unreachable.
6234
6235@subsection i386 floating point asm operands
6236
6237There are several rules on the usage of stack-like regs in
6238asm_operands insns.  These rules apply only to the operands that are
6239stack-like regs:
6240
6241@enumerate
6242@item
6243Given a set of input regs that die in an asm_operands, it is
6244necessary to know which are implicitly popped by the asm, and
6245which must be explicitly popped by gcc.
6246
6247An input reg that is implicitly popped by the asm must be
6248explicitly clobbered, unless it is constrained to match an
6249output operand.
6250
6251@item
6252For any input reg that is implicitly popped by an asm, it is
6253necessary to know how to adjust the stack to compensate for the pop.
6254If any non-popped input is closer to the top of the reg-stack than
6255the implicitly popped reg, it would not be possible to know what the
6256stack looked like---it's not clear how the rest of the stack ``slides
6257up''.
6258
6259All implicitly popped input regs must be closer to the top of
6260the reg-stack than any input that is not implicitly popped.
6261
6262It is possible that if an input dies in an insn, reload might
6263use the input reg for an output reload.  Consider this example:
6264
6265@smallexample
6266asm ("foo" : "=t" (a) : "f" (b));
6267@end smallexample
6268
6269This asm says that input B is not popped by the asm, and that
6270the asm pushes a result onto the reg-stack, i.e., the stack is one
6271deeper after the asm than it was before.  But, it is possible that
6272reload will think that it can use the same reg for both the input and
6273the output, if input B dies in this insn.
6274
6275If any input operand uses the @code{f} constraint, all output reg
6276constraints must use the @code{&} earlyclobber.
6277
6278The asm above would be written as
6279
6280@smallexample
6281asm ("foo" : "=&t" (a) : "f" (b));
6282@end smallexample
6283
6284@item
6285Some operands need to be in particular places on the stack.  All
6286output operands fall in this category---there is no other way to
6287know which regs the outputs appear in unless the user indicates
6288this in the constraints.
6289
6290Output operands must specifically indicate which reg an output
6291appears in after an asm.  @code{=f} is not allowed: the operand
6292constraints must select a class with a single reg.
6293
6294@item
6295Output operands may not be ``inserted'' between existing stack regs.
6296Since no 387 opcode uses a read/write operand, all output operands
6297are dead before the asm_operands, and are pushed by the asm_operands.
6298It makes no sense to push anywhere but the top of the reg-stack.
6299
6300Output operands must start at the top of the reg-stack: output
6301operands may not ``skip'' a reg.
6302
6303@item
6304Some asm statements may need extra stack space for internal
6305calculations.  This can be guaranteed by clobbering stack registers
6306unrelated to the inputs and outputs.
6307
6308@end enumerate
6309
6310Here are a couple of reasonable asms to want to write.  This asm
6311takes one input, which is internally popped, and produces two outputs.
6312
6313@smallexample
6314asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
6315@end smallexample
6316
6317This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
6318and replaces them with one output.  The user must code the @code{st(1)}
6319clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.
6320
6321@smallexample
6322asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
6323@end smallexample
6324
6325@include md.texi
6326
6327@node Asm Labels
6328@section Controlling Names Used in Assembler Code
6329@cindex assembler names for identifiers
6330@cindex names used in assembler code
6331@cindex identifiers, names in assembler code
6332
6333You can specify the name to be used in the assembler code for a C
6334function or variable by writing the @code{asm} (or @code{__asm__})
6335keyword after the declarator as follows:
6336
6337@smallexample
6338int foo asm ("myfoo") = 2;
6339@end smallexample
6340
6341@noindent
6342This specifies that the name to be used for the variable @code{foo} in
6343the assembler code should be @samp{myfoo} rather than the usual
6344@samp{_foo}.
6345
6346On systems where an underscore is normally prepended to the name of a C
6347function or variable, this feature allows you to define names for the
6348linker that do not start with an underscore.
6349
6350It does not make sense to use this feature with a non-static local
6351variable since such variables do not have assembler names.  If you are
6352trying to put the variable in a particular register, see @ref{Explicit
6353Reg Vars}.  GCC presently accepts such code with a warning, but will
6354probably be changed to issue an error, rather than a warning, in the
6355future.
6356
6357You cannot use @code{asm} in this way in a function @emph{definition}; but
6358you can get the same effect by writing a declaration for the function
6359before its definition and putting @code{asm} there, like this:
6360
6361@smallexample
6362extern func () asm ("FUNC");
6363
6364func (x, y)
6365     int x, y;
6366/* @r{@dots{}} */
6367@end smallexample
6368
6369It is up to you to make sure that the assembler names you choose do not
6370conflict with any other assembler symbols.  Also, you must not use a
6371register name; that would produce completely invalid assembler code.  GCC
6372does not as yet have the ability to store static variables in registers.
6373Perhaps that will be added.
6374
6375@node Explicit Reg Vars
6376@section Variables in Specified Registers
6377@cindex explicit register variables
6378@cindex variables in specified registers
6379@cindex specified registers
6380@cindex registers, global allocation
6381
6382GNU C allows you to put a few global variables into specified hardware
6383registers.  You can also specify the register in which an ordinary
6384register variable should be allocated.
6385
6386@itemize @bullet
6387@item
6388Global register variables reserve registers throughout the program.
6389This may be useful in programs such as programming language
6390interpreters which have a couple of global variables that are accessed
6391very often.
6392
6393@item
6394Local register variables in specific registers do not reserve the
6395registers, except at the point where they are used as input or output
6396operands in an @code{asm} statement and the @code{asm} statement itself is
6397not deleted.  The compiler's data flow analysis is capable of determining
6398where the specified registers contain live values, and where they are
6399available for other uses.  Stores into local register variables may be deleted
6400when they appear to be dead according to dataflow analysis.  References
6401to local register variables may be deleted or moved or simplified.
6402
6403These local variables are sometimes convenient for use with the extended
6404@code{asm} feature (@pxref{Extended Asm}), if you want to write one
6405output of the assembler instruction directly into a particular register.
6406(This will work provided the register you specify fits the constraints
6407specified for that operand in the @code{asm}.)
6408@end itemize
6409
6410@menu
6411* Global Reg Vars::
6412* Local Reg Vars::
6413@end menu
6414
6415@node Global Reg Vars
6416@subsection Defining Global Register Variables
6417@cindex global register variables
6418@cindex registers, global variables in
6419
6420You can define a global register variable in GNU C like this:
6421
6422@smallexample
6423register int *foo asm ("a5");
6424@end smallexample
6425
6426@noindent
6427Here @code{a5} is the name of the register which should be used.  Choose a
6428register which is normally saved and restored by function calls on your
6429machine, so that library routines will not clobber it.
6430
6431Naturally the register name is cpu-dependent, so you would need to
6432conditionalize your program according to cpu type.  The register
6433@code{a5} would be a good choice on a 68000 for a variable of pointer
6434type.  On machines with register windows, be sure to choose a ``global''
6435register that is not affected magically by the function call mechanism.
6436
6437In addition, operating systems on one type of cpu may differ in how they
6438name the registers; then you would need additional conditionals.  For
6439example, some 68000 operating systems call this register @code{%a5}.
6440
6441Eventually there may be a way of asking the compiler to choose a register
6442automatically, but first we need to figure out how it should choose and
6443how to enable you to guide the choice.  No solution is evident.
6444
6445Defining a global register variable in a certain register reserves that
6446register entirely for this use, at least within the current compilation.
6447The register will not be allocated for any other purpose in the functions
6448in the current compilation.  The register will not be saved and restored by
6449these functions.  Stores into this register are never deleted even if they
6450would appear to be dead, but references may be deleted or moved or
6451simplified.
6452
6453It is not safe to access the global register variables from signal
6454handlers, or from more than one thread of control, because the system
6455library routines may temporarily use the register for other things (unless
6456you recompile them specially for the task at hand).
6457
6458@cindex @code{qsort}, and global register variables
6459It is not safe for one function that uses a global register variable to
6460call another such function @code{foo} by way of a third function
6461@code{lose} that was compiled without knowledge of this variable (i.e.@: in a
6462different source file in which the variable wasn't declared).  This is
6463because @code{lose} might save the register and put some other value there.
6464For example, you can't expect a global register variable to be available in
6465the comparison-function that you pass to @code{qsort}, since @code{qsort}
6466might have put something else in that register.  (If you are prepared to
6467recompile @code{qsort} with the same global register variable, you can
6468solve this problem.)
6469
6470If you want to recompile @code{qsort} or other source files which do not
6471actually use your global register variable, so that they will not use that
6472register for any other purpose, then it suffices to specify the compiler
6473option @option{-ffixed-@var{reg}}.  You need not actually add a global
6474register declaration to their source code.
6475
6476A function which can alter the value of a global register variable cannot
6477safely be called from a function compiled without this variable, because it
6478could clobber the value the caller expects to find there on return.
6479Therefore, the function which is the entry point into the part of the
6480program that uses the global register variable must explicitly save and
6481restore the value which belongs to its caller.
6482
6483@cindex register variable after @code{longjmp}
6484@cindex global register after @code{longjmp}
6485@cindex value after @code{longjmp}
6486@findex longjmp
6487@findex setjmp
6488On most machines, @code{longjmp} will restore to each global register
6489variable the value it had at the time of the @code{setjmp}.  On some
6490machines, however, @code{longjmp} will not change the value of global
6491register variables.  To be portable, the function that called @code{setjmp}
6492should make other arrangements to save the values of the global register
6493variables, and to restore them in a @code{longjmp}.  This way, the same
6494thing will happen regardless of what @code{longjmp} does.
6495
6496All global register variable declarations must precede all function
6497definitions.  If such a declaration could appear after function
6498definitions, the declaration would be too late to prevent the register from
6499being used for other purposes in the preceding functions.
6500
6501Global register variables may not have initial values, because an
6502executable file has no means to supply initial contents for a register.
6503
6504On the SPARC, there are reports that g3 @dots{} g7 are suitable
6505registers, but certain library functions, such as @code{getwd}, as well
6506as the subroutines for division and remainder, modify g3 and g4.  g1 and
6507g2 are local temporaries.
6508
6509On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
6510Of course, it will not do to use more than a few of those.
6511
6512@node Local Reg Vars
6513@subsection Specifying Registers for Local Variables
6514@cindex local variables, specifying registers
6515@cindex specifying registers for local variables
6516@cindex registers for local variables
6517
6518You can define a local register variable with a specified register
6519like this:
6520
6521@smallexample
6522register int *foo asm ("a5");
6523@end smallexample
6524
6525@noindent
6526Here @code{a5} is the name of the register which should be used.  Note
6527that this is the same syntax used for defining global register
6528variables, but for a local variable it would appear within a function.
6529
6530Naturally the register name is cpu-dependent, but this is not a
6531problem, since specific registers are most often useful with explicit
6532assembler instructions (@pxref{Extended Asm}).  Both of these things
6533generally require that you conditionalize your program according to
6534cpu type.
6535
6536In addition, operating systems on one type of cpu may differ in how they
6537name the registers; then you would need additional conditionals.  For
6538example, some 68000 operating systems call this register @code{%a5}.
6539
6540Defining such a register variable does not reserve the register; it
6541remains available for other uses in places where flow control determines
6542the variable's value is not live.
6543
6544This option does not guarantee that GCC will generate code that has
6545this variable in the register you specify at all times.  You may not
6546code an explicit reference to this register in the @emph{assembler
6547instruction template} part of an @code{asm} statement and assume it will
6548always refer to this variable.  However, using the variable as an
6549@code{asm} @emph{operand} guarantees that the specified register is used
6550for the operand.
6551
6552Stores into local register variables may be deleted when they appear to be dead
6553according to dataflow analysis.  References to local register variables may
6554be deleted or moved or simplified.
6555
6556As for global register variables, it's recommended that you choose a
6557register which is normally saved and restored by function calls on
6558your machine, so that library routines will not clobber it.  A common
6559pitfall is to initialize multiple call-clobbered registers with
6560arbitrary expressions, where a function call or library call for an
6561arithmetic operator will overwrite a register value from a previous
6562assignment, for example @code{r0} below:
6563@smallexample
6564register int *p1 asm ("r0") = @dots{};
6565register int *p2 asm ("r1") = @dots{};
6566@end smallexample
6567In those cases, a solution is to use a temporary variable for
6568each arbitrary expression.   @xref{Example of asm with clobbered asm reg}.
6569
6570@node Alternate Keywords
6571@section Alternate Keywords
6572@cindex alternate keywords
6573@cindex keywords, alternate
6574
6575@option{-ansi} and the various @option{-std} options disable certain
6576keywords.  This causes trouble when you want to use GNU C extensions, or
6577a general-purpose header file that should be usable by all programs,
6578including ISO C programs.  The keywords @code{asm}, @code{typeof} and
6579@code{inline} are not available in programs compiled with
6580@option{-ansi} or @option{-std} (although @code{inline} can be used in a
6581program compiled with @option{-std=c99} or @option{-std=c11}).  The
6582ISO C99 keyword
6583@code{restrict} is only available when @option{-std=gnu99} (which will
6584eventually be the default) or @option{-std=c99} (or the equivalent
6585@option{-std=iso9899:1999}), or an option for a later standard
6586version, is used.
6587
6588The way to solve these problems is to put @samp{__} at the beginning and
6589end of each problematical keyword.  For example, use @code{__asm__}
6590instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
6591
6592Other C compilers won't accept these alternative keywords; if you want to
6593compile with another compiler, you can define the alternate keywords as
6594macros to replace them with the customary keywords.  It looks like this:
6595
6596@smallexample
6597#ifndef __GNUC__
6598#define __asm__ asm
6599#endif
6600@end smallexample
6601
6602@findex __extension__
6603@opindex pedantic
6604@option{-pedantic} and other options cause warnings for many GNU C extensions.
6605You can
6606prevent such warnings within one expression by writing
6607@code{__extension__} before the expression.  @code{__extension__} has no
6608effect aside from this.
6609
6610@node Incomplete Enums
6611@section Incomplete @code{enum} Types
6612
6613You can define an @code{enum} tag without specifying its possible values.
6614This results in an incomplete type, much like what you get if you write
6615@code{struct foo} without describing the elements.  A later declaration
6616which does specify the possible values completes the type.
6617
6618You can't allocate variables or storage using the type while it is
6619incomplete.  However, you can work with pointers to that type.
6620
6621This extension may not be very useful, but it makes the handling of
6622@code{enum} more consistent with the way @code{struct} and @code{union}
6623are handled.
6624
6625This extension is not supported by GNU C++.
6626
6627@node Function Names
6628@section Function Names as Strings
6629@cindex @code{__func__} identifier
6630@cindex @code{__FUNCTION__} identifier
6631@cindex @code{__PRETTY_FUNCTION__} identifier
6632
6633GCC provides three magic variables which hold the name of the current
6634function, as a string.  The first of these is @code{__func__}, which
6635is part of the C99 standard:
6636
6637The identifier @code{__func__} is implicitly declared by the translator
6638as if, immediately following the opening brace of each function
6639definition, the declaration
6640
6641@smallexample
6642static const char __func__[] = "function-name";
6643@end smallexample
6644
6645@noindent
6646appeared, where function-name is the name of the lexically-enclosing
6647function.  This name is the unadorned name of the function.
6648
6649@code{__FUNCTION__} is another name for @code{__func__}.  Older
6650versions of GCC recognize only this name.  However, it is not
6651standardized.  For maximum portability, we recommend you use
6652@code{__func__}, but provide a fallback definition with the
6653preprocessor:
6654
6655@smallexample
6656#if __STDC_VERSION__ < 199901L
6657# if __GNUC__ >= 2
6658#  define __func__ __FUNCTION__
6659# else
6660#  define __func__ "<unknown>"
6661# endif
6662#endif
6663@end smallexample
6664
6665In C, @code{__PRETTY_FUNCTION__} is yet another name for
6666@code{__func__}.  However, in C++, @code{__PRETTY_FUNCTION__} contains
6667the type signature of the function as well as its bare name.  For
6668example, this program:
6669
6670@smallexample
6671extern "C" @{
6672extern int printf (char *, ...);
6673@}
6674
6675class a @{
6676 public:
6677  void sub (int i)
6678    @{
6679      printf ("__FUNCTION__ = %s\n", __FUNCTION__);
6680      printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
6681    @}
6682@};
6683
6684int
6685main (void)
6686@{
6687  a ax;
6688  ax.sub (0);
6689  return 0;
6690@}
6691@end smallexample
6692
6693@noindent
6694gives this output:
6695
6696@smallexample
6697__FUNCTION__ = sub
6698__PRETTY_FUNCTION__ = void a::sub(int)
6699@end smallexample
6700
6701These identifiers are not preprocessor macros.  In GCC 3.3 and
6702earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
6703were treated as string literals; they could be used to initialize
6704@code{char} arrays, and they could be concatenated with other string
6705literals.  GCC 3.4 and later treat them as variables, like
6706@code{__func__}.  In C++, @code{__FUNCTION__} and
6707@code{__PRETTY_FUNCTION__} have always been variables.
6708
6709@node Return Address
6710@section Getting the Return or Frame Address of a Function
6711
6712These functions may be used to get information about the callers of a
6713function.
6714
6715@deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
6716This function returns the return address of the current function, or of
6717one of its callers.  The @var{level} argument is number of frames to
6718scan up the call stack.  A value of @code{0} yields the return address
6719of the current function, a value of @code{1} yields the return address
6720of the caller of the current function, and so forth.  When inlining
6721the expected behavior is that the function will return the address of
6722the function that will be returned to.  To work around this behavior use
6723the @code{noinline} function attribute.
6724
6725The @var{level} argument must be a constant integer.
6726
6727On some machines it may be impossible to determine the return address of
6728any function other than the current one; in such cases, or when the top
6729of the stack has been reached, this function will return @code{0} or a
6730random value.  In addition, @code{__builtin_frame_address} may be used
6731to determine if the top of the stack has been reached.
6732
6733Additional post-processing of the returned value may be needed, see
6734@code{__builtin_extract_return_address}.
6735
6736This function should only be used with a nonzero argument for debugging
6737purposes.
6738@end deftypefn
6739
6740@deftypefn {Built-in Function} {void *} __builtin_extract_return_address (void *@var{addr})
6741The address as returned by @code{__builtin_return_address} may have to be fed
6742through this function to get the actual encoded address.  For example, on the
674331-bit S/390 platform the highest bit has to be masked out, or on SPARC
6744platforms an offset has to be added for the true next instruction to be
6745executed.
6746
6747If no fixup is needed, this function simply passes through @var{addr}.
6748@end deftypefn
6749
6750@deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
6751This function does the reverse of @code{__builtin_extract_return_address}.
6752@end deftypefn
6753
6754@deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
6755This function is similar to @code{__builtin_return_address}, but it
6756returns the address of the function frame rather than the return address
6757of the function.  Calling @code{__builtin_frame_address} with a value of
6758@code{0} yields the frame address of the current function, a value of
6759@code{1} yields the frame address of the caller of the current function,
6760and so forth.
6761
6762The frame is the area on the stack which holds local variables and saved
6763registers.  The frame address is normally the address of the first word
6764pushed on to the stack by the function.  However, the exact definition
6765depends upon the processor and the calling convention.  If the processor
6766has a dedicated frame pointer register, and the function has a frame,
6767then @code{__builtin_frame_address} will return the value of the frame
6768pointer register.
6769
6770On some machines it may be impossible to determine the frame address of
6771any function other than the current one; in such cases, or when the top
6772of the stack has been reached, this function will return @code{0} if
6773the first frame pointer is properly initialized by the startup code.
6774
6775This function should only be used with a nonzero argument for debugging
6776purposes.
6777@end deftypefn
6778
6779@node Vector Extensions
6780@section Using vector instructions through built-in functions
6781
6782On some targets, the instruction set contains SIMD vector instructions that
6783operate on multiple values contained in one large register at the same time.
6784For example, on the i386 the MMX, 3DNow!@: and SSE extensions can be used
6785this way.
6786
6787The first step in using these extensions is to provide the necessary data
6788types.  This should be done using an appropriate @code{typedef}:
6789
6790@smallexample
6791typedef int v4si __attribute__ ((vector_size (16)));
6792@end smallexample
6793
6794The @code{int} type specifies the base type, while the attribute specifies
6795the vector size for the variable, measured in bytes.  For example, the
6796declaration above causes the compiler to set the mode for the @code{v4si}
6797type to be 16 bytes wide and divided into @code{int} sized units.  For
6798a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
6799corresponding mode of @code{foo} will be @acronym{V4SI}.
6800
6801The @code{vector_size} attribute is only applicable to integral and
6802float scalars, although arrays, pointers, and function return values
6803are allowed in conjunction with this construct.
6804
6805All the basic integer types can be used as base types, both as signed
6806and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
6807@code{long long}.  In addition, @code{float} and @code{double} can be
6808used to build floating-point vector types.
6809
6810Specifying a combination that is not valid for the current architecture
6811will cause GCC to synthesize the instructions using a narrower mode.
6812For example, if you specify a variable of type @code{V4SI} and your
6813architecture does not allow for this specific SIMD type, GCC will
6814produce code that uses 4 @code{SIs}.
6815
6816The types defined in this manner can be used with a subset of normal C
6817operations.  Currently, GCC will allow using the following operators
6818on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
6819
6820The operations behave like C++ @code{valarrays}.  Addition is defined as
6821the addition of the corresponding elements of the operands.  For
6822example, in the code below, each of the 4 elements in @var{a} will be
6823added to the corresponding 4 elements in @var{b} and the resulting
6824vector will be stored in @var{c}.
6825
6826@smallexample
6827typedef int v4si __attribute__ ((vector_size (16)));
6828
6829v4si a, b, c;
6830
6831c = a + b;
6832@end smallexample
6833
6834Subtraction, multiplication, division, and the logical operations
6835operate in a similar manner.  Likewise, the result of using the unary
6836minus or complement operators on a vector type is a vector whose
6837elements are the negative or complemented values of the corresponding
6838elements in the operand.
6839
6840In C it is possible to use shifting operators @code{<<}, @code{>>} on
6841integer-type vectors. The operation is defined as following: @code{@{a0,
6842a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
6843@dots{}, an >> bn@}}@. Vector operands must have the same number of
6844elements.
6845
6846For the convenience in C it is allowed to use a binary vector operation
6847where one operand is a scalar. In that case the compiler will transform
6848the scalar operand into a vector where each element is the scalar from
6849the operation. The transformation will happen only if the scalar could be
6850safely converted to the vector-element type.
6851Consider the following code.
6852
6853@smallexample
6854typedef int v4si __attribute__ ((vector_size (16)));
6855
6856v4si a, b, c;
6857long l;
6858
6859a = b + 1;    /* a = b + @{1,1,1,1@}; */
6860a = 2 * b;    /* a = @{2,2,2,2@} * b; */
6861
6862a = l + a;    /* Error, cannot convert long to int. */
6863@end smallexample
6864
6865In C vectors can be subscripted as if the vector were an array with
6866the same number of elements and base type.  Out of bound accesses
6867invoke undefined behavior at runtime.  Warnings for out of bound
6868accesses for vector subscription can be enabled with
6869@option{-Warray-bounds}.
6870
6871In GNU C vector comparison is supported within standard comparison
6872operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
6873vector expressions of integer-type or real-type. Comparison between
6874integer-type vectors and real-type vectors are not supported.  The
6875result of the comparison is a vector of the same width and number of
6876elements as the comparison operands with a signed integral element
6877type.
6878
6879Vectors are compared element-wise producing 0 when comparison is false
6880and -1 (constant of the appropriate type where all bits are set)
6881otherwise. Consider the following example.
6882
6883@smallexample
6884typedef int v4si __attribute__ ((vector_size (16)));
6885
6886v4si a = @{1,2,3,4@};
6887v4si b = @{3,2,1,4@};
6888v4si c;
6889
6890c = a >  b;     /* The result would be @{0, 0,-1, 0@}  */
6891c = a == b;     /* The result would be @{0,-1, 0,-1@}  */
6892@end smallexample
6893
6894Vector shuffling is available using functions
6895@code{__builtin_shuffle (vec, mask)} and
6896@code{__builtin_shuffle (vec0, vec1, mask)}.
6897Both functions construct a permutation of elements from one or two
6898vectors and return a vector of the same type as the input vector(s).
6899The @var{mask} is an integral vector with the same width (@var{W})
6900and element count (@var{N}) as the output vector.
6901
6902The elements of the input vectors are numbered in memory ordering of
6903@var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}.  The
6904elements of @var{mask} are considered modulo @var{N} in the single-operand
6905case and modulo @math{2*@var{N}} in the two-operand case.
6906
6907Consider the following example,
6908
6909@smallexample
6910typedef int v4si __attribute__ ((vector_size (16)));
6911
6912v4si a = @{1,2,3,4@};
6913v4si b = @{5,6,7,8@};
6914v4si mask1 = @{0,1,1,3@};
6915v4si mask2 = @{0,4,2,5@};
6916v4si res;
6917
6918res = __builtin_shuffle (a, mask1);       /* res is @{1,2,2,4@}  */
6919res = __builtin_shuffle (a, b, mask2);    /* res is @{1,5,3,6@}  */
6920@end smallexample
6921
6922Note that @code{__builtin_shuffle} is intentionally semantically
6923compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
6924
6925You can declare variables and use them in function calls and returns, as
6926well as in assignments and some casts.  You can specify a vector type as
6927a return type for a function.  Vector types can also be used as function
6928arguments.  It is possible to cast from one vector type to another,
6929provided they are of the same size (in fact, you can also cast vectors
6930to and from other datatypes of the same size).
6931
6932You cannot operate between vectors of different lengths or different
6933signedness without a cast.
6934
6935@node Offsetof
6936@section Offsetof
6937@findex __builtin_offsetof
6938
6939GCC implements for both C and C++ a syntactic extension to implement
6940the @code{offsetof} macro.
6941
6942@smallexample
6943primary:
6944        "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
6945
6946offsetof_member_designator:
6947          @code{identifier}
6948        | offsetof_member_designator "." @code{identifier}
6949        | offsetof_member_designator "[" @code{expr} "]"
6950@end smallexample
6951
6952This extension is sufficient such that
6953
6954@smallexample
6955#define offsetof(@var{type}, @var{member})  __builtin_offsetof (@var{type}, @var{member})
6956@end smallexample
6957
6958is a suitable definition of the @code{offsetof} macro.  In C++, @var{type}
6959may be dependent.  In either case, @var{member} may consist of a single
6960identifier, or a sequence of member accesses and array references.
6961
6962@node __sync Builtins
6963@section Legacy __sync built-in functions for atomic memory access
6964
6965The following builtins are intended to be compatible with those described
6966in the @cite{Intel Itanium Processor-specific Application Binary Interface},
6967section 7.4.  As such, they depart from the normal GCC practice of using
6968the ``__builtin_'' prefix, and further that they are overloaded such that
6969they work on multiple types.
6970
6971The definition given in the Intel documentation allows only for the use of
6972the types @code{int}, @code{long}, @code{long long} as well as their unsigned
6973counterparts.  GCC will allow any integral scalar or pointer type that is
69741, 2, 4 or 8 bytes in length.
6975
6976Not all operations are supported by all target processors.  If a particular
6977operation cannot be implemented on the target processor, a warning will be
6978generated and a call an external function will be generated.  The external
6979function will carry the same name as the builtin, with an additional suffix
6980@samp{_@var{n}} where @var{n} is the size of the data type.
6981
6982@c ??? Should we have a mechanism to suppress this warning?  This is almost
6983@c useful for implementing the operation under the control of an external
6984@c mutex.
6985
6986In most cases, these builtins are considered a @dfn{full barrier}.  That is,
6987no memory operand will be moved across the operation, either forward or
6988backward.  Further, instructions will be issued as necessary to prevent the
6989processor from speculating loads across the operation and from queuing stores
6990after the operation.
6991
6992All of the routines are described in the Intel documentation to take
6993``an optional list of variables protected by the memory barrier''.  It's
6994not clear what is meant by that; it could mean that @emph{only} the
6995following variables are protected, or it could mean that these variables
6996should in addition be protected.  At present GCC ignores this list and
6997protects all variables which are globally accessible.  If in the future
6998we make some use of this list, an empty list will continue to mean all
6999globally accessible variables.
7000
7001@table @code
7002@item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
7003@itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
7004@itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
7005@itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
7006@itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
7007@itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
7008@findex __sync_fetch_and_add
7009@findex __sync_fetch_and_sub
7010@findex __sync_fetch_and_or
7011@findex __sync_fetch_and_and
7012@findex __sync_fetch_and_xor
7013@findex __sync_fetch_and_nand
7014These builtins perform the operation suggested by the name, and
7015returns the value that had previously been in memory.  That is,
7016
7017@smallexample
7018@{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
7019@{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @}   // nand
7020@end smallexample
7021
7022@emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
7023builtin as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
7024
7025@item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
7026@itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
7027@itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
7028@itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
7029@itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
7030@itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
7031@findex __sync_add_and_fetch
7032@findex __sync_sub_and_fetch
7033@findex __sync_or_and_fetch
7034@findex __sync_and_and_fetch
7035@findex __sync_xor_and_fetch
7036@findex __sync_nand_and_fetch
7037These builtins perform the operation suggested by the name, and
7038return the new value.  That is,
7039
7040@smallexample
7041@{ *ptr @var{op}= value; return *ptr; @}
7042@{ *ptr = ~(*ptr & value); return *ptr; @}   // nand
7043@end smallexample
7044
7045@emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
7046builtin as @code{*ptr = ~(*ptr & value)} instead of
7047@code{*ptr = ~*ptr & value}.
7048
7049@item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
7050@itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
7051@findex __sync_bool_compare_and_swap
7052@findex __sync_val_compare_and_swap
7053These builtins perform an atomic compare and swap.  That is, if the current
7054value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
7055@code{*@var{ptr}}.
7056
7057The ``bool'' version returns true if the comparison is successful and
7058@var{newval} was written.  The ``val'' version returns the contents
7059of @code{*@var{ptr}} before the operation.
7060
7061@item __sync_synchronize (...)
7062@findex __sync_synchronize
7063This builtin issues a full memory barrier.
7064
7065@item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
7066@findex __sync_lock_test_and_set
7067This builtin, as described by Intel, is not a traditional test-and-set
7068operation, but rather an atomic exchange operation.  It writes @var{value}
7069into @code{*@var{ptr}}, and returns the previous contents of
7070@code{*@var{ptr}}.
7071
7072Many targets have only minimal support for such locks, and do not support
7073a full exchange operation.  In this case, a target may support reduced
7074functionality here by which the @emph{only} valid value to store is the
7075immediate constant 1.  The exact value actually stored in @code{*@var{ptr}}
7076is implementation defined.
7077
7078This builtin is not a full barrier, but rather an @dfn{acquire barrier}.
7079This means that references after the builtin cannot move to (or be
7080speculated to) before the builtin, but previous memory stores may not
7081be globally visible yet, and previous memory loads may not yet be
7082satisfied.
7083
7084@item void __sync_lock_release (@var{type} *ptr, ...)
7085@findex __sync_lock_release
7086This builtin releases the lock acquired by @code{__sync_lock_test_and_set}.
7087Normally this means writing the constant 0 to @code{*@var{ptr}}.
7088
7089This builtin is not a full barrier, but rather a @dfn{release barrier}.
7090This means that all previous memory stores are globally visible, and all
7091previous memory loads have been satisfied, but following memory reads
7092are not prevented from being speculated to before the barrier.
7093@end table
7094
7095@node __atomic Builtins
7096@section Built-in functions for memory model aware atomic operations
7097
7098The following built-in functions approximately match the requirements for
7099C++11 memory model. Many are similar to the @samp{__sync} prefixed built-in
7100functions, but all also have a memory model parameter.  These are all
7101identified by being prefixed with @samp{__atomic}, and most are overloaded
7102such that they work with multiple types.
7103
7104GCC will allow any integral scalar or pointer type that is 1, 2, 4, or 8
7105bytes in length. 16-byte integral types are also allowed if
7106@samp{__int128} (@pxref{__int128}) is supported by the architecture.
7107
7108Target architectures are encouraged to provide their own patterns for
7109each of these built-in functions.  If no target is provided, the original
7110non-memory model set of @samp{__sync} atomic built-in functions will be
7111utilized, along with any required synchronization fences surrounding it in
7112order to achieve the proper behaviour.  Execution in this case is subject
7113to the same restrictions as those built-in functions.
7114
7115If there is no pattern or mechanism to provide a lock free instruction
7116sequence, a call is made to an external routine with the same parameters
7117to be resolved at runtime.
7118
7119The four non-arithmetic functions (load, store, exchange, and
7120compare_exchange) all have a generic version as well.  This generic
7121version will work on any data type.  If the data type size maps to one
7122of the integral sizes which may have lock free support, the generic
7123version will utilize the lock free built-in function.  Otherwise an
7124external call is left to be resolved at runtime.  This external call will
7125be the same format with the addition of a @samp{size_t} parameter inserted
7126as the first parameter indicating the size of the object being pointed to.
7127All objects must be the same size.
7128
7129There are 6 different memory models which can be specified.  These map
7130to the same names in the C++11 standard.  Refer there or to the
7131@uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki on
7132atomic synchronization} for more detailed definitions.  These memory
7133models integrate both barriers to code motion as well as synchronization
7134requirements with other threads. These are listed in approximately
7135ascending order of strength.
7136
7137@table  @code
7138@item __ATOMIC_RELAXED
7139No barriers or synchronization.
7140@item __ATOMIC_CONSUME
7141Data dependency only for both barrier and synchronization with another
7142thread.
7143@item __ATOMIC_ACQUIRE
7144Barrier to hoisting of code and synchronizes with release (or stronger)
7145semantic stores from another thread.
7146@item __ATOMIC_RELEASE
7147Barrier to sinking of code and synchronizes with acquire (or stronger)
7148semantic loads from another thread.
7149@item __ATOMIC_ACQ_REL
7150Full barrier in both directions and synchronizes with acquire loads and
7151release stores in another thread.
7152@item __ATOMIC_SEQ_CST
7153Full barrier in both directions and synchronizes with acquire loads and
7154release stores in all threads.
7155@end table
7156
7157When implementing patterns for these built-in functions , the memory model
7158parameter can be ignored as long as the pattern implements the most
7159restrictive @code{__ATOMIC_SEQ_CST} model.  Any of the other memory models
7160will execute correctly with this memory model but they may not execute as
7161efficiently as they could with a more appropriate implemention of the
7162relaxed requirements.
7163
7164Note that the C++11 standard allows for the memory model parameter to be
7165determined at runtime rather than at compile time.  These built-in
7166functions will map any runtime value to @code{__ATOMIC_SEQ_CST} rather
7167than invoke a runtime library call or inline a switch statement.  This is
7168standard compliant, safe, and the simplest approach for now.
7169
7170The memory model parameter is a signed int, but only the lower 8 bits are
7171reserved for the memory model.  The remainder of the signed int is reserved
7172for future use and should be 0.  Use of the predefined atomic values will
7173ensure proper usage.
7174
7175@deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memmodel)
7176This built-in function implements an atomic load operation.  It returns the
7177contents of @code{*@var{ptr}}.
7178
7179The valid memory model variants are
7180@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7181and @code{__ATOMIC_CONSUME}.
7182
7183@end deftypefn
7184
7185@deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memmodel)
7186This is the generic version of an atomic load.  It will return the
7187contents of @code{*@var{ptr}} in @code{*@var{ret}}.
7188
7189@end deftypefn
7190
7191@deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memmodel)
7192This built-in function implements an atomic store operation.  It writes
7193@code{@var{val}} into @code{*@var{ptr}}.
7194
7195The valid memory model variants are
7196@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
7197
7198@end deftypefn
7199
7200@deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memmodel)
7201This is the generic version of an atomic store.  It will store the value
7202of @code{*@var{val}} into @code{*@var{ptr}}.
7203
7204@end deftypefn
7205
7206@deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memmodel)
7207This built-in function implements an atomic exchange operation.  It writes
7208@var{val} into @code{*@var{ptr}}, and returns the previous contents of
7209@code{*@var{ptr}}.
7210
7211The valid memory model variants are
7212@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7213@code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
7214
7215@end deftypefn
7216
7217@deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memmodel)
7218This is the generic version of an atomic exchange.  It will store the
7219contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
7220of @code{*@var{ptr}} will be copied into @code{*@var{ret}}.
7221
7222@end deftypefn
7223
7224@deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memmodel, int failure_memmodel)
7225This built-in function implements an atomic compare and exchange operation.
7226This compares the contents of @code{*@var{ptr}} with the contents of
7227@code{*@var{expected}} and if equal, writes @var{desired} into
7228@code{*@var{ptr}}.  If they are not equal, the current contents of
7229@code{*@var{ptr}} is written into @code{*@var{expected}}.  @var{weak} is true
7230for weak compare_exchange, and false for the strong variation.  Many targets
7231only offer the strong variation and ignore the parameter.  When in doubt, use
7232the strong variation.
7233
7234True is returned if @var{desired} is written into
7235@code{*@var{ptr}} and the execution is considered to conform to the
7236memory model specified by @var{success_memmodel}.  There are no
7237restrictions on what memory model can be used here.
7238
7239False is returned otherwise, and the execution is considered to conform
7240to @var{failure_memmodel}. This memory model cannot be
7241@code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}.  It also cannot be a
7242stronger model than that specified by @var{success_memmodel}.
7243
7244@end deftypefn
7245
7246@deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memmodel, int failure_memmodel)
7247This built-in function implements the generic version of
7248@code{__atomic_compare_exchange}.  The function is virtually identical to
7249@code{__atomic_compare_exchange_n}, except the desired value is also a
7250pointer.
7251
7252@end deftypefn
7253
7254@deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7255@deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7256@deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7257@deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7258@deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7259@deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7260These built-in functions perform the operation suggested by the name, and
7261return the result of the operation. That is,
7262
7263@smallexample
7264@{ *ptr @var{op}= val; return *ptr; @}
7265@end smallexample
7266
7267All memory models are valid.
7268
7269@end deftypefn
7270
7271@deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memmodel)
7272@deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memmodel)
7273@deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memmodel)
7274@deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memmodel)
7275@deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memmodel)
7276@deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memmodel)
7277These built-in functions perform the operation suggested by the name, and
7278return the value that had previously been in @code{*@var{ptr}}.  That is,
7279
7280@smallexample
7281@{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
7282@end smallexample
7283
7284All memory models are valid.
7285
7286@end deftypefn
7287
7288@deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memmodel)
7289
7290This built-in function performs an atomic test-and-set operation on
7291the byte at @code{*@var{ptr}}.  The byte is set to some implementation
7292defined non-zero "set" value and the return value is @code{true} if and only
7293if the previous contents were "set".
7294
7295All memory models are valid.
7296
7297@end deftypefn
7298
7299@deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memmodel)
7300
7301This built-in function performs an atomic clear operation on
7302@code{*@var{ptr}}.  After the operation, @code{*@var{ptr}} will contain 0.
7303
7304The valid memory model variants are
7305@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
7306@code{__ATOMIC_RELEASE}.
7307
7308@end deftypefn
7309
7310@deftypefn {Built-in Function} void __atomic_thread_fence (int memmodel)
7311
7312This built-in function acts as a synchronization fence between threads
7313based on the specified memory model.
7314
7315All memory orders are valid.
7316
7317@end deftypefn
7318
7319@deftypefn {Built-in Function} void __atomic_signal_fence (int memmodel)
7320
7321This built-in function acts as a synchronization fence between a thread
7322and signal handlers based in the same thread.
7323
7324All memory orders are valid.
7325
7326@end deftypefn
7327
7328@deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size,  void *ptr)
7329
7330This built-in function returns true if objects of @var{size} bytes will always
7331generate lock free atomic instructions for the target architecture.
7332@var{size} must resolve to a compile time constant and the result also resolves to compile time constant.
7333
7334@var{ptr} is an optional pointer to the object which may be used to determine
7335alignment.  A value of 0 indicates typical alignment should be used.  The
7336compiler may also ignore this parameter.
7337
7338@smallexample
7339if (_atomic_always_lock_free (sizeof (long long), 0))
7340@end smallexample
7341
7342@end deftypefn
7343
7344@deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
7345
7346This built-in function returns true if objects of @var{size} bytes will always
7347generate lock free atomic instructions for the target architecture.  If
7348it is not known to be lock free a call is made to a runtime routine named
7349@code{__atomic_is_lock_free}.
7350
7351@var{ptr} is an optional pointer to the object which may be used to determine
7352alignment.  A value of 0 indicates typical alignment should be used.  The
7353compiler may also ignore this parameter.
7354@end deftypefn
7355
7356@node Object Size Checking
7357@section Object Size Checking Builtins
7358@findex __builtin_object_size
7359@findex __builtin___memcpy_chk
7360@findex __builtin___mempcpy_chk
7361@findex __builtin___memmove_chk
7362@findex __builtin___memset_chk
7363@findex __builtin___strcpy_chk
7364@findex __builtin___stpcpy_chk
7365@findex __builtin___strncpy_chk
7366@findex __builtin___strcat_chk
7367@findex __builtin___strncat_chk
7368@findex __builtin___sprintf_chk
7369@findex __builtin___snprintf_chk
7370@findex __builtin___vsprintf_chk
7371@findex __builtin___vsnprintf_chk
7372@findex __builtin___printf_chk
7373@findex __builtin___vprintf_chk
7374@findex __builtin___fprintf_chk
7375@findex __builtin___vfprintf_chk
7376
7377GCC implements a limited buffer overflow protection mechanism
7378that can prevent some buffer overflow attacks.
7379
7380@deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
7381is a built-in construct that returns a constant number of bytes from
7382@var{ptr} to the end of the object @var{ptr} pointer points to
7383(if known at compile time).  @code{__builtin_object_size} never evaluates
7384its arguments for side-effects.  If there are any side-effects in them, it
7385returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7386for @var{type} 2 or 3.  If there are multiple objects @var{ptr} can
7387point to and all of them are known at compile time, the returned number
7388is the maximum of remaining byte counts in those objects if @var{type} & 2 is
73890 and minimum if nonzero.  If it is not possible to determine which objects
7390@var{ptr} points to at compile time, @code{__builtin_object_size} should
7391return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7392for @var{type} 2 or 3.
7393
7394@var{type} is an integer constant from 0 to 3.  If the least significant
7395bit is clear, objects are whole variables, if it is set, a closest
7396surrounding subobject is considered the object a pointer points to.
7397The second bit determines if maximum or minimum of remaining bytes
7398is computed.
7399
7400@smallexample
7401struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
7402char *p = &var.buf1[1], *q = &var.b;
7403
7404/* Here the object p points to is var.  */
7405assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
7406/* The subobject p points to is var.buf1.  */
7407assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
7408/* The object q points to is var.  */
7409assert (__builtin_object_size (q, 0)
7410        == (char *) (&var + 1) - (char *) &var.b);
7411/* The subobject q points to is var.b.  */
7412assert (__builtin_object_size (q, 1) == sizeof (var.b));
7413@end smallexample
7414@end deftypefn
7415
7416There are built-in functions added for many common string operation
7417functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
7418built-in is provided.  This built-in has an additional last argument,
7419which is the number of bytes remaining in object the @var{dest}
7420argument points to or @code{(size_t) -1} if the size is not known.
7421
7422The built-in functions are optimized into the normal string functions
7423like @code{memcpy} if the last argument is @code{(size_t) -1} or if
7424it is known at compile time that the destination object will not
7425be overflown.  If the compiler can determine at compile time the
7426object will be always overflown, it issues a warning.
7427
7428The intended use can be e.g.
7429
7430@smallexample
7431#undef memcpy
7432#define bos0(dest) __builtin_object_size (dest, 0)
7433#define memcpy(dest, src, n) \
7434  __builtin___memcpy_chk (dest, src, n, bos0 (dest))
7435
7436char *volatile p;
7437char buf[10];
7438/* It is unknown what object p points to, so this is optimized
7439   into plain memcpy - no checking is possible.  */
7440memcpy (p, "abcde", n);
7441/* Destination is known and length too.  It is known at compile
7442   time there will be no overflow.  */
7443memcpy (&buf[5], "abcde", 5);
7444/* Destination is known, but the length is not known at compile time.
7445   This will result in __memcpy_chk call that can check for overflow
7446   at runtime.  */
7447memcpy (&buf[5], "abcde", n);
7448/* Destination is known and it is known at compile time there will
7449   be overflow.  There will be a warning and __memcpy_chk call that
7450   will abort the program at runtime.  */
7451memcpy (&buf[6], "abcde", 5);
7452@end smallexample
7453
7454Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
7455@code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
7456@code{strcat} and @code{strncat}.
7457
7458There are also checking built-in functions for formatted output functions.
7459@smallexample
7460int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
7461int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
7462                              const char *fmt, ...);
7463int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
7464                              va_list ap);
7465int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
7466                               const char *fmt, va_list ap);
7467@end smallexample
7468
7469The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
7470etc.@: functions and can contain implementation specific flags on what
7471additional security measures the checking function might take, such as
7472handling @code{%n} differently.
7473
7474The @var{os} argument is the object size @var{s} points to, like in the
7475other built-in functions.  There is a small difference in the behavior
7476though, if @var{os} is @code{(size_t) -1}, the built-in functions are
7477optimized into the non-checking functions only if @var{flag} is 0, otherwise
7478the checking function is called with @var{os} argument set to
7479@code{(size_t) -1}.
7480
7481In addition to this, there are checking built-in functions
7482@code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
7483@code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
7484These have just one additional argument, @var{flag}, right before
7485format string @var{fmt}.  If the compiler is able to optimize them to
7486@code{fputc} etc.@: functions, it will, otherwise the checking function
7487should be called and the @var{flag} argument passed to it.
7488
7489@node Other Builtins
7490@section Other built-in functions provided by GCC
7491@cindex built-in functions
7492@findex __builtin_fpclassify
7493@findex __builtin_isfinite
7494@findex __builtin_isnormal
7495@findex __builtin_isgreater
7496@findex __builtin_isgreaterequal
7497@findex __builtin_isinf_sign
7498@findex __builtin_isless
7499@findex __builtin_islessequal
7500@findex __builtin_islessgreater
7501@findex __builtin_isunordered
7502@findex __builtin_powi
7503@findex __builtin_powif
7504@findex __builtin_powil
7505@findex _Exit
7506@findex _exit
7507@findex abort
7508@findex abs
7509@findex acos
7510@findex acosf
7511@findex acosh
7512@findex acoshf
7513@findex acoshl
7514@findex acosl
7515@findex alloca
7516@findex asin
7517@findex asinf
7518@findex asinh
7519@findex asinhf
7520@findex asinhl
7521@findex asinl
7522@findex atan
7523@findex atan2
7524@findex atan2f
7525@findex atan2l
7526@findex atanf
7527@findex atanh
7528@findex atanhf
7529@findex atanhl
7530@findex atanl
7531@findex bcmp
7532@findex bzero
7533@findex cabs
7534@findex cabsf
7535@findex cabsl
7536@findex cacos
7537@findex cacosf
7538@findex cacosh
7539@findex cacoshf
7540@findex cacoshl
7541@findex cacosl
7542@findex calloc
7543@findex carg
7544@findex cargf
7545@findex cargl
7546@findex casin
7547@findex casinf
7548@findex casinh
7549@findex casinhf
7550@findex casinhl
7551@findex casinl
7552@findex catan
7553@findex catanf
7554@findex catanh
7555@findex catanhf
7556@findex catanhl
7557@findex catanl
7558@findex cbrt
7559@findex cbrtf
7560@findex cbrtl
7561@findex ccos
7562@findex ccosf
7563@findex ccosh
7564@findex ccoshf
7565@findex ccoshl
7566@findex ccosl
7567@findex ceil
7568@findex ceilf
7569@findex ceill
7570@findex cexp
7571@findex cexpf
7572@findex cexpl
7573@findex cimag
7574@findex cimagf
7575@findex cimagl
7576@findex clog
7577@findex clogf
7578@findex clogl
7579@findex conj
7580@findex conjf
7581@findex conjl
7582@findex copysign
7583@findex copysignf
7584@findex copysignl
7585@findex cos
7586@findex cosf
7587@findex cosh
7588@findex coshf
7589@findex coshl
7590@findex cosl
7591@findex cpow
7592@findex cpowf
7593@findex cpowl
7594@findex cproj
7595@findex cprojf
7596@findex cprojl
7597@findex creal
7598@findex crealf
7599@findex creall
7600@findex csin
7601@findex csinf
7602@findex csinh
7603@findex csinhf
7604@findex csinhl
7605@findex csinl
7606@findex csqrt
7607@findex csqrtf
7608@findex csqrtl
7609@findex ctan
7610@findex ctanf
7611@findex ctanh
7612@findex ctanhf
7613@findex ctanhl
7614@findex ctanl
7615@findex dcgettext
7616@findex dgettext
7617@findex drem
7618@findex dremf
7619@findex dreml
7620@findex erf
7621@findex erfc
7622@findex erfcf
7623@findex erfcl
7624@findex erff
7625@findex erfl
7626@findex exit
7627@findex exp
7628@findex exp10
7629@findex exp10f
7630@findex exp10l
7631@findex exp2
7632@findex exp2f
7633@findex exp2l
7634@findex expf
7635@findex expl
7636@findex expm1
7637@findex expm1f
7638@findex expm1l
7639@findex fabs
7640@findex fabsf
7641@findex fabsl
7642@findex fdim
7643@findex fdimf
7644@findex fdiml
7645@findex ffs
7646@findex floor
7647@findex floorf
7648@findex floorl
7649@findex fma
7650@findex fmaf
7651@findex fmal
7652@findex fmax
7653@findex fmaxf
7654@findex fmaxl
7655@findex fmin
7656@findex fminf
7657@findex fminl
7658@findex fmod
7659@findex fmodf
7660@findex fmodl
7661@findex fprintf
7662@findex fprintf_unlocked
7663@findex fputs
7664@findex fputs_unlocked
7665@findex frexp
7666@findex frexpf
7667@findex frexpl
7668@findex fscanf
7669@findex gamma
7670@findex gammaf
7671@findex gammal
7672@findex gamma_r
7673@findex gammaf_r
7674@findex gammal_r
7675@findex gettext
7676@findex hypot
7677@findex hypotf
7678@findex hypotl
7679@findex ilogb
7680@findex ilogbf
7681@findex ilogbl
7682@findex imaxabs
7683@findex index
7684@findex isalnum
7685@findex isalpha
7686@findex isascii
7687@findex isblank
7688@findex iscntrl
7689@findex isdigit
7690@findex isgraph
7691@findex islower
7692@findex isprint
7693@findex ispunct
7694@findex isspace
7695@findex isupper
7696@findex iswalnum
7697@findex iswalpha
7698@findex iswblank
7699@findex iswcntrl
7700@findex iswdigit
7701@findex iswgraph
7702@findex iswlower
7703@findex iswprint
7704@findex iswpunct
7705@findex iswspace
7706@findex iswupper
7707@findex iswxdigit
7708@findex isxdigit
7709@findex j0
7710@findex j0f
7711@findex j0l
7712@findex j1
7713@findex j1f
7714@findex j1l
7715@findex jn
7716@findex jnf
7717@findex jnl
7718@findex labs
7719@findex ldexp
7720@findex ldexpf
7721@findex ldexpl
7722@findex lgamma
7723@findex lgammaf
7724@findex lgammal
7725@findex lgamma_r
7726@findex lgammaf_r
7727@findex lgammal_r
7728@findex llabs
7729@findex llrint
7730@findex llrintf
7731@findex llrintl
7732@findex llround
7733@findex llroundf
7734@findex llroundl
7735@findex log
7736@findex log10
7737@findex log10f
7738@findex log10l
7739@findex log1p
7740@findex log1pf
7741@findex log1pl
7742@findex log2
7743@findex log2f
7744@findex log2l
7745@findex logb
7746@findex logbf
7747@findex logbl
7748@findex logf
7749@findex logl
7750@findex lrint
7751@findex lrintf
7752@findex lrintl
7753@findex lround
7754@findex lroundf
7755@findex lroundl
7756@findex malloc
7757@findex memchr
7758@findex memcmp
7759@findex memcpy
7760@findex mempcpy
7761@findex memset
7762@findex modf
7763@findex modff
7764@findex modfl
7765@findex nearbyint
7766@findex nearbyintf
7767@findex nearbyintl
7768@findex nextafter
7769@findex nextafterf
7770@findex nextafterl
7771@findex nexttoward
7772@findex nexttowardf
7773@findex nexttowardl
7774@findex pow
7775@findex pow10
7776@findex pow10f
7777@findex pow10l
7778@findex powf
7779@findex powl
7780@findex printf
7781@findex printf_unlocked
7782@findex putchar
7783@findex puts
7784@findex remainder
7785@findex remainderf
7786@findex remainderl
7787@findex remquo
7788@findex remquof
7789@findex remquol
7790@findex rindex
7791@findex rint
7792@findex rintf
7793@findex rintl
7794@findex round
7795@findex roundf
7796@findex roundl
7797@findex scalb
7798@findex scalbf
7799@findex scalbl
7800@findex scalbln
7801@findex scalblnf
7802@findex scalblnf
7803@findex scalbn
7804@findex scalbnf
7805@findex scanfnl
7806@findex signbit
7807@findex signbitf
7808@findex signbitl
7809@findex signbitd32
7810@findex signbitd64
7811@findex signbitd128
7812@findex significand
7813@findex significandf
7814@findex significandl
7815@findex sin
7816@findex sincos
7817@findex sincosf
7818@findex sincosl
7819@findex sinf
7820@findex sinh
7821@findex sinhf
7822@findex sinhl
7823@findex sinl
7824@findex snprintf
7825@findex sprintf
7826@findex sqrt
7827@findex sqrtf
7828@findex sqrtl
7829@findex sscanf
7830@findex stpcpy
7831@findex stpncpy
7832@findex strcasecmp
7833@findex strcat
7834@findex strchr
7835@findex strcmp
7836@findex strcpy
7837@findex strcspn
7838@findex strdup
7839@findex strfmon
7840@findex strftime
7841@findex strlen
7842@findex strncasecmp
7843@findex strncat
7844@findex strncmp
7845@findex strncpy
7846@findex strndup
7847@findex strpbrk
7848@findex strrchr
7849@findex strspn
7850@findex strstr
7851@findex tan
7852@findex tanf
7853@findex tanh
7854@findex tanhf
7855@findex tanhl
7856@findex tanl
7857@findex tgamma
7858@findex tgammaf
7859@findex tgammal
7860@findex toascii
7861@findex tolower
7862@findex toupper
7863@findex towlower
7864@findex towupper
7865@findex trunc
7866@findex truncf
7867@findex truncl
7868@findex vfprintf
7869@findex vfscanf
7870@findex vprintf
7871@findex vscanf
7872@findex vsnprintf
7873@findex vsprintf
7874@findex vsscanf
7875@findex y0
7876@findex y0f
7877@findex y0l
7878@findex y1
7879@findex y1f
7880@findex y1l
7881@findex yn
7882@findex ynf
7883@findex ynl
7884
7885GCC provides a large number of built-in functions other than the ones
7886mentioned above.  Some of these are for internal use in the processing
7887of exceptions or variable-length argument lists and will not be
7888documented here because they may change from time to time; we do not
7889recommend general use of these functions.
7890
7891The remaining functions are provided for optimization purposes.
7892
7893@opindex fno-builtin
7894GCC includes built-in versions of many of the functions in the standard
7895C library.  The versions prefixed with @code{__builtin_} will always be
7896treated as having the same meaning as the C library function even if you
7897specify the @option{-fno-builtin} option.  (@pxref{C Dialect Options})
7898Many of these functions are only optimized in certain cases; if they are
7899not optimized in a particular case, a call to the library function will
7900be emitted.
7901
7902@opindex ansi
7903@opindex std
7904Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
7905@option{-std=c99} or @option{-std=c11}), the functions
7906@code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
7907@code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
7908@code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
7909@code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
7910@code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
7911@code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
7912@code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
7913@code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
7914@code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
7915@code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
7916@code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
7917@code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
7918@code{signbitd64}, @code{signbitd128}, @code{significandf},
7919@code{significandl}, @code{significand}, @code{sincosf},
7920@code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
7921@code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
7922@code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
7923@code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
7924@code{yn}
7925may be handled as built-in functions.
7926All these functions have corresponding versions
7927prefixed with @code{__builtin_}, which may be used even in strict C90
7928mode.
7929
7930The ISO C99 functions
7931@code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
7932@code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
7933@code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
7934@code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
7935@code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
7936@code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
7937@code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
7938@code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
7939@code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
7940@code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
7941@code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
7942@code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
7943@code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
7944@code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
7945@code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
7946@code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
7947@code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
7948@code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
7949@code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
7950@code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
7951@code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
7952@code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
7953@code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
7954@code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
7955@code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
7956@code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
7957@code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
7958@code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
7959@code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
7960@code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
7961@code{nextafterf}, @code{nextafterl}, @code{nextafter},
7962@code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
7963@code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
7964@code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
7965@code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
7966@code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
7967@code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
7968@code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
7969@code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
7970are handled as built-in functions
7971except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
7972
7973There are also built-in versions of the ISO C99 functions
7974@code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
7975@code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
7976@code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
7977@code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
7978@code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
7979@code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
7980@code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
7981@code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
7982@code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
7983that are recognized in any mode since ISO C90 reserves these names for
7984the purpose to which ISO C99 puts them.  All these functions have
7985corresponding versions prefixed with @code{__builtin_}.
7986
7987The ISO C94 functions
7988@code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
7989@code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
7990@code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
7991@code{towupper}
7992are handled as built-in functions
7993except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
7994
7995The ISO C90 functions
7996@code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
7997@code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
7998@code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
7999@code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
8000@code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
8001@code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
8002@code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
8003@code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
8004@code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
8005@code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
8006@code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
8007@code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
8008@code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
8009@code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
8010@code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
8011@code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
8012are all recognized as built-in functions unless
8013@option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
8014is specified for an individual function).  All of these functions have
8015corresponding versions prefixed with @code{__builtin_}.
8016
8017GCC provides built-in versions of the ISO C99 floating point comparison
8018macros that avoid raising exceptions for unordered operands.  They have
8019the same names as the standard macros ( @code{isgreater},
8020@code{isgreaterequal}, @code{isless}, @code{islessequal},
8021@code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
8022prefixed.  We intend for a library implementor to be able to simply
8023@code{#define} each standard macro to its built-in equivalent.
8024In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
8025@code{isinf_sign} and @code{isnormal} built-ins used with
8026@code{__builtin_} prefixed.  The @code{isinf} and @code{isnan}
8027builtins appear both with and without the @code{__builtin_} prefix.
8028
8029@deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
8030
8031You can use the built-in function @code{__builtin_types_compatible_p} to
8032determine whether two types are the same.
8033
8034This built-in function returns 1 if the unqualified versions of the
8035types @var{type1} and @var{type2} (which are types, not expressions) are
8036compatible, 0 otherwise.  The result of this built-in function can be
8037used in integer constant expressions.
8038
8039This built-in function ignores top level qualifiers (e.g., @code{const},
8040@code{volatile}).  For example, @code{int} is equivalent to @code{const
8041int}.
8042
8043The type @code{int[]} and @code{int[5]} are compatible.  On the other
8044hand, @code{int} and @code{char *} are not compatible, even if the size
8045of their types, on the particular architecture are the same.  Also, the
8046amount of pointer indirection is taken into account when determining
8047similarity.  Consequently, @code{short *} is not similar to
8048@code{short **}.  Furthermore, two types that are typedefed are
8049considered compatible if their underlying types are compatible.
8050
8051An @code{enum} type is not considered to be compatible with another
8052@code{enum} type even if both are compatible with the same integer
8053type; this is what the C standard specifies.
8054For example, @code{enum @{foo, bar@}} is not similar to
8055@code{enum @{hot, dog@}}.
8056
8057You would typically use this function in code whose execution varies
8058depending on the arguments' types.  For example:
8059
8060@smallexample
8061#define foo(x)                                                  \
8062  (@{                                                           \
8063    typeof (x) tmp = (x);                                       \
8064    if (__builtin_types_compatible_p (typeof (x), long double)) \
8065      tmp = foo_long_double (tmp);                              \
8066    else if (__builtin_types_compatible_p (typeof (x), double)) \
8067      tmp = foo_double (tmp);                                   \
8068    else if (__builtin_types_compatible_p (typeof (x), float))  \
8069      tmp = foo_float (tmp);                                    \
8070    else                                                        \
8071      abort ();                                                 \
8072    tmp;                                                        \
8073  @})
8074@end smallexample
8075
8076@emph{Note:} This construct is only available for C@.
8077
8078@end deftypefn
8079
8080@deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
8081
8082You can use the built-in function @code{__builtin_choose_expr} to
8083evaluate code depending on the value of a constant expression.  This
8084built-in function returns @var{exp1} if @var{const_exp}, which is an
8085integer constant expression, is nonzero.  Otherwise it returns @var{exp2}.
8086
8087This built-in function is analogous to the @samp{? :} operator in C,
8088except that the expression returned has its type unaltered by promotion
8089rules.  Also, the built-in function does not evaluate the expression
8090that was not chosen.  For example, if @var{const_exp} evaluates to true,
8091@var{exp2} is not evaluated even if it has side-effects.
8092
8093This built-in function can return an lvalue if the chosen argument is an
8094lvalue.
8095
8096If @var{exp1} is returned, the return type is the same as @var{exp1}'s
8097type.  Similarly, if @var{exp2} is returned, its return type is the same
8098as @var{exp2}.
8099
8100Example:
8101
8102@smallexample
8103#define foo(x)                                                    \
8104  __builtin_choose_expr (                                         \
8105    __builtin_types_compatible_p (typeof (x), double),            \
8106    foo_double (x),                                               \
8107    __builtin_choose_expr (                                       \
8108      __builtin_types_compatible_p (typeof (x), float),           \
8109      foo_float (x),                                              \
8110      /* @r{The void expression results in a compile-time error}  \
8111         @r{when assigning the result to something.}  */          \
8112      (void)0))
8113@end smallexample
8114
8115@emph{Note:} This construct is only available for C@.  Furthermore, the
8116unused expression (@var{exp1} or @var{exp2} depending on the value of
8117@var{const_exp}) may still generate syntax errors.  This may change in
8118future revisions.
8119
8120@end deftypefn
8121
8122@deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
8123
8124The built-in function @code{__builtin_complex} is provided for use in
8125implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
8126@code{CMPLXL}.  @var{real} and @var{imag} must have the same type, a
8127real binary floating-point type, and the result has the corresponding
8128complex type with real and imaginary parts @var{real} and @var{imag}.
8129Unlike @samp{@var{real} + I * @var{imag}}, this works even when
8130infinities, NaNs and negative zeros are involved.
8131
8132@end deftypefn
8133
8134@deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
8135You can use the built-in function @code{__builtin_constant_p} to
8136determine if a value is known to be constant at compile-time and hence
8137that GCC can perform constant-folding on expressions involving that
8138value.  The argument of the function is the value to test.  The function
8139returns the integer 1 if the argument is known to be a compile-time
8140constant and 0 if it is not known to be a compile-time constant.  A
8141return of 0 does not indicate that the value is @emph{not} a constant,
8142but merely that GCC cannot prove it is a constant with the specified
8143value of the @option{-O} option.
8144
8145You would typically use this function in an embedded application where
8146memory was a critical resource.  If you have some complex calculation,
8147you may want it to be folded if it involves constants, but need to call
8148a function if it does not.  For example:
8149
8150@smallexample
8151#define Scale_Value(X)      \
8152  (__builtin_constant_p (X) \
8153  ? ((X) * SCALE + OFFSET) : Scale (X))
8154@end smallexample
8155
8156You may use this built-in function in either a macro or an inline
8157function.  However, if you use it in an inlined function and pass an
8158argument of the function as the argument to the built-in, GCC will
8159never return 1 when you call the inline function with a string constant
8160or compound literal (@pxref{Compound Literals}) and will not return 1
8161when you pass a constant numeric value to the inline function unless you
8162specify the @option{-O} option.
8163
8164You may also use @code{__builtin_constant_p} in initializers for static
8165data.  For instance, you can write
8166
8167@smallexample
8168static const int table[] = @{
8169   __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
8170   /* @r{@dots{}} */
8171@};
8172@end smallexample
8173
8174@noindent
8175This is an acceptable initializer even if @var{EXPRESSION} is not a
8176constant expression, including the case where
8177@code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
8178folded to a constant but @var{EXPRESSION} contains operands that would
8179not otherwise be permitted in a static initializer (for example,
8180@code{0 && foo ()}).  GCC must be more conservative about evaluating the
8181built-in in this case, because it has no opportunity to perform
8182optimization.
8183
8184Previous versions of GCC did not accept this built-in in data
8185initializers.  The earliest version where it is completely safe is
81863.0.1.
8187@end deftypefn
8188
8189@deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
8190@opindex fprofile-arcs
8191You may use @code{__builtin_expect} to provide the compiler with
8192branch prediction information.  In general, you should prefer to
8193use actual profile feedback for this (@option{-fprofile-arcs}), as
8194programmers are notoriously bad at predicting how their programs
8195actually perform.  However, there are applications in which this
8196data is hard to collect.
8197
8198The return value is the value of @var{exp}, which should be an integral
8199expression.  The semantics of the built-in are that it is expected that
8200@var{exp} == @var{c}.  For example:
8201
8202@smallexample
8203if (__builtin_expect (x, 0))
8204  foo ();
8205@end smallexample
8206
8207@noindent
8208would indicate that we do not expect to call @code{foo}, since
8209we expect @code{x} to be zero.  Since you are limited to integral
8210expressions for @var{exp}, you should use constructions such as
8211
8212@smallexample
8213if (__builtin_expect (ptr != NULL, 1))
8214  foo (*ptr);
8215@end smallexample
8216
8217@noindent
8218when testing pointer or floating-point values.
8219@end deftypefn
8220
8221@deftypefn {Built-in Function} void __builtin_trap (void)
8222This function causes the program to exit abnormally.  GCC implements
8223this function by using a target-dependent mechanism (such as
8224intentionally executing an illegal instruction) or by calling
8225@code{abort}.  The mechanism used may vary from release to release so
8226you should not rely on any particular implementation.
8227@end deftypefn
8228
8229@deftypefn {Built-in Function} void __builtin_unreachable (void)
8230If control flow reaches the point of the @code{__builtin_unreachable},
8231the program is undefined.  It is useful in situations where the
8232compiler cannot deduce the unreachability of the code.
8233
8234One such case is immediately following an @code{asm} statement that
8235will either never terminate, or one that transfers control elsewhere
8236and never returns.  In this example, without the
8237@code{__builtin_unreachable}, GCC would issue a warning that control
8238reaches the end of a non-void function.  It would also generate code
8239to return after the @code{asm}.
8240
8241@smallexample
8242int f (int c, int v)
8243@{
8244  if (c)
8245    @{
8246      return v;
8247    @}
8248  else
8249    @{
8250      asm("jmp error_handler");
8251      __builtin_unreachable ();
8252    @}
8253@}
8254@end smallexample
8255
8256Because the @code{asm} statement unconditionally transfers control out
8257of the function, control will never reach the end of the function
8258body.  The @code{__builtin_unreachable} is in fact unreachable and
8259communicates this fact to the compiler.
8260
8261Another use for @code{__builtin_unreachable} is following a call a
8262function that never returns but that is not declared
8263@code{__attribute__((noreturn))}, as in this example:
8264
8265@smallexample
8266void function_that_never_returns (void);
8267
8268int g (int c)
8269@{
8270  if (c)
8271    @{
8272      return 1;
8273    @}
8274  else
8275    @{
8276      function_that_never_returns ();
8277      __builtin_unreachable ();
8278    @}
8279@}
8280@end smallexample
8281
8282@end deftypefn
8283
8284@deftypefn {Built-in Function} void *__builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
8285This function returns its first argument, and allows the compiler
8286to assume that the returned pointer is at least @var{align} bytes
8287aligned.  This built-in can have either two or three arguments,
8288if it has three, the third argument should have integer type, and
8289if it is non-zero means misalignment offset.  For example:
8290
8291@smallexample
8292void *x = __builtin_assume_aligned (arg, 16);
8293@end smallexample
8294
8295means that the compiler can assume x, set to arg, is at least
829616 byte aligned, while:
8297
8298@smallexample
8299void *x = __builtin_assume_aligned (arg, 32, 8);
8300@end smallexample
8301
8302means that the compiler can assume for x, set to arg, that
8303(char *) x - 8 is 32 byte aligned.
8304@end deftypefn
8305
8306@deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
8307This function is used to flush the processor's instruction cache for
8308the region of memory between @var{begin} inclusive and @var{end}
8309exclusive.  Some targets require that the instruction cache be
8310flushed, after modifying memory containing code, in order to obtain
8311deterministic behavior.
8312
8313If the target does not require instruction cache flushes,
8314@code{__builtin___clear_cache} has no effect.  Otherwise either
8315instructions are emitted in-line to clear the instruction cache or a
8316call to the @code{__clear_cache} function in libgcc is made.
8317@end deftypefn
8318
8319@deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
8320This function is used to minimize cache-miss latency by moving data into
8321a cache before it is accessed.
8322You can insert calls to @code{__builtin_prefetch} into code for which
8323you know addresses of data in memory that is likely to be accessed soon.
8324If the target supports them, data prefetch instructions will be generated.
8325If the prefetch is done early enough before the access then the data will
8326be in the cache by the time it is accessed.
8327
8328The value of @var{addr} is the address of the memory to prefetch.
8329There are two optional arguments, @var{rw} and @var{locality}.
8330The value of @var{rw} is a compile-time constant one or zero; one
8331means that the prefetch is preparing for a write to the memory address
8332and zero, the default, means that the prefetch is preparing for a read.
8333The value @var{locality} must be a compile-time constant integer between
8334zero and three.  A value of zero means that the data has no temporal
8335locality, so it need not be left in the cache after the access.  A value
8336of three means that the data has a high degree of temporal locality and
8337should be left in all levels of cache possible.  Values of one and two
8338mean, respectively, a low or moderate degree of temporal locality.  The
8339default is three.
8340
8341@smallexample
8342for (i = 0; i < n; i++)
8343  @{
8344    a[i] = a[i] + b[i];
8345    __builtin_prefetch (&a[i+j], 1, 1);
8346    __builtin_prefetch (&b[i+j], 0, 1);
8347    /* @r{@dots{}} */
8348  @}
8349@end smallexample
8350
8351Data prefetch does not generate faults if @var{addr} is invalid, but
8352the address expression itself must be valid.  For example, a prefetch
8353of @code{p->next} will not fault if @code{p->next} is not a valid
8354address, but evaluation will fault if @code{p} is not a valid address.
8355
8356If the target does not support data prefetch, the address expression
8357is evaluated if it includes side effects but no other code is generated
8358and GCC does not issue a warning.
8359@end deftypefn
8360
8361@deftypefn {Built-in Function} double __builtin_huge_val (void)
8362Returns a positive infinity, if supported by the floating-point format,
8363else @code{DBL_MAX}.  This function is suitable for implementing the
8364ISO C macro @code{HUGE_VAL}.
8365@end deftypefn
8366
8367@deftypefn {Built-in Function} float __builtin_huge_valf (void)
8368Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
8369@end deftypefn
8370
8371@deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
8372Similar to @code{__builtin_huge_val}, except the return
8373type is @code{long double}.
8374@end deftypefn
8375
8376@deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
8377This built-in implements the C99 fpclassify functionality.  The first
8378five int arguments should be the target library's notion of the
8379possible FP classes and are used for return values.  They must be
8380constant values and they must appear in this order: @code{FP_NAN},
8381@code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
8382@code{FP_ZERO}.  The ellipsis is for exactly one floating point value
8383to classify.  GCC treats the last argument as type-generic, which
8384means it does not do default promotion from float to double.
8385@end deftypefn
8386
8387@deftypefn {Built-in Function} double __builtin_inf (void)
8388Similar to @code{__builtin_huge_val}, except a warning is generated
8389if the target floating-point format does not support infinities.
8390@end deftypefn
8391
8392@deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
8393Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
8394@end deftypefn
8395
8396@deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
8397Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
8398@end deftypefn
8399
8400@deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
8401Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
8402@end deftypefn
8403
8404@deftypefn {Built-in Function} float __builtin_inff (void)
8405Similar to @code{__builtin_inf}, except the return type is @code{float}.
8406This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
8407@end deftypefn
8408
8409@deftypefn {Built-in Function} {long double} __builtin_infl (void)
8410Similar to @code{__builtin_inf}, except the return
8411type is @code{long double}.
8412@end deftypefn
8413
8414@deftypefn {Built-in Function} int __builtin_isinf_sign (...)
8415Similar to @code{isinf}, except the return value will be negative for
8416an argument of @code{-Inf}.  Note while the parameter list is an
8417ellipsis, this function only accepts exactly one floating point
8418argument.  GCC treats this parameter as type-generic, which means it
8419does not do default promotion from float to double.
8420@end deftypefn
8421
8422@deftypefn {Built-in Function} double __builtin_nan (const char *str)
8423This is an implementation of the ISO C99 function @code{nan}.
8424
8425Since ISO C99 defines this function in terms of @code{strtod}, which we
8426do not implement, a description of the parsing is in order.  The string
8427is parsed as by @code{strtol}; that is, the base is recognized by
8428leading @samp{0} or @samp{0x} prefixes.  The number parsed is placed
8429in the significand such that the least significant bit of the number
8430is at the least significant bit of the significand.  The number is
8431truncated to fit the significand field provided.  The significand is
8432forced to be a quiet NaN@.
8433
8434This function, if given a string literal all of which would have been
8435consumed by strtol, is evaluated early enough that it is considered a
8436compile-time constant.
8437@end deftypefn
8438
8439@deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
8440Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
8441@end deftypefn
8442
8443@deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
8444Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
8445@end deftypefn
8446
8447@deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
8448Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
8449@end deftypefn
8450
8451@deftypefn {Built-in Function} float __builtin_nanf (const char *str)
8452Similar to @code{__builtin_nan}, except the return type is @code{float}.
8453@end deftypefn
8454
8455@deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
8456Similar to @code{__builtin_nan}, except the return type is @code{long double}.
8457@end deftypefn
8458
8459@deftypefn {Built-in Function} double __builtin_nans (const char *str)
8460Similar to @code{__builtin_nan}, except the significand is forced
8461to be a signaling NaN@.  The @code{nans} function is proposed by
8462@uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
8463@end deftypefn
8464
8465@deftypefn {Built-in Function} float __builtin_nansf (const char *str)
8466Similar to @code{__builtin_nans}, except the return type is @code{float}.
8467@end deftypefn
8468
8469@deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
8470Similar to @code{__builtin_nans}, except the return type is @code{long double}.
8471@end deftypefn
8472
8473@deftypefn {Built-in Function} int __builtin_ffs (unsigned int x)
8474Returns one plus the index of the least significant 1-bit of @var{x}, or
8475if @var{x} is zero, returns zero.
8476@end deftypefn
8477
8478@deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
8479Returns the number of leading 0-bits in @var{x}, starting at the most
8480significant bit position.  If @var{x} is 0, the result is undefined.
8481@end deftypefn
8482
8483@deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
8484Returns the number of trailing 0-bits in @var{x}, starting at the least
8485significant bit position.  If @var{x} is 0, the result is undefined.
8486@end deftypefn
8487
8488@deftypefn {Built-in Function} int __builtin_clrsb (int x)
8489Returns the number of leading redundant sign bits in @var{x}, i.e. the
8490number of bits following the most significant bit which are identical
8491to it.  There are no special cases for 0 or other values.
8492@end deftypefn
8493
8494@deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
8495Returns the number of 1-bits in @var{x}.
8496@end deftypefn
8497
8498@deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
8499Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
8500modulo 2.
8501@end deftypefn
8502
8503@deftypefn {Built-in Function} int __builtin_ffsl (unsigned long)
8504Similar to @code{__builtin_ffs}, except the argument type is
8505@code{unsigned long}.
8506@end deftypefn
8507
8508@deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
8509Similar to @code{__builtin_clz}, except the argument type is
8510@code{unsigned long}.
8511@end deftypefn
8512
8513@deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
8514Similar to @code{__builtin_ctz}, except the argument type is
8515@code{unsigned long}.
8516@end deftypefn
8517
8518@deftypefn {Built-in Function} int __builtin_clrsbl (long)
8519Similar to @code{__builtin_clrsb}, except the argument type is
8520@code{long}.
8521@end deftypefn
8522
8523@deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
8524Similar to @code{__builtin_popcount}, except the argument type is
8525@code{unsigned long}.
8526@end deftypefn
8527
8528@deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
8529Similar to @code{__builtin_parity}, except the argument type is
8530@code{unsigned long}.
8531@end deftypefn
8532
8533@deftypefn {Built-in Function} int __builtin_ffsll (unsigned long long)
8534Similar to @code{__builtin_ffs}, except the argument type is
8535@code{unsigned long long}.
8536@end deftypefn
8537
8538@deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
8539Similar to @code{__builtin_clz}, except the argument type is
8540@code{unsigned long long}.
8541@end deftypefn
8542
8543@deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
8544Similar to @code{__builtin_ctz}, except the argument type is
8545@code{unsigned long long}.
8546@end deftypefn
8547
8548@deftypefn {Built-in Function} int __builtin_clrsbll (long long)
8549Similar to @code{__builtin_clrsb}, except the argument type is
8550@code{long long}.
8551@end deftypefn
8552
8553@deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
8554Similar to @code{__builtin_popcount}, except the argument type is
8555@code{unsigned long long}.
8556@end deftypefn
8557
8558@deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
8559Similar to @code{__builtin_parity}, except the argument type is
8560@code{unsigned long long}.
8561@end deftypefn
8562
8563@deftypefn {Built-in Function} double __builtin_powi (double, int)
8564Returns the first argument raised to the power of the second.  Unlike the
8565@code{pow} function no guarantees about precision and rounding are made.
8566@end deftypefn
8567
8568@deftypefn {Built-in Function} float __builtin_powif (float, int)
8569Similar to @code{__builtin_powi}, except the argument and return types
8570are @code{float}.
8571@end deftypefn
8572
8573@deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
8574Similar to @code{__builtin_powi}, except the argument and return types
8575are @code{long double}.
8576@end deftypefn
8577
8578@deftypefn {Built-in Function} int32_t __builtin_bswap32 (int32_t x)
8579Returns @var{x} with the order of the bytes reversed; for example,
8580@code{0xaabbccdd} becomes @code{0xddccbbaa}.  Byte here always means
8581exactly 8 bits.
8582@end deftypefn
8583
8584@deftypefn {Built-in Function} int64_t __builtin_bswap64 (int64_t x)
8585Similar to @code{__builtin_bswap32}, except the argument and return types
8586are 64-bit.
8587@end deftypefn
8588
8589@node Target Builtins
8590@section Built-in Functions Specific to Particular Target Machines
8591
8592On some target machines, GCC supports many built-in functions specific
8593to those machines.  Generally these generate calls to specific machine
8594instructions, but allow the compiler to schedule those calls.
8595
8596@menu
8597* Alpha Built-in Functions::
8598* ARM iWMMXt Built-in Functions::
8599* ARM NEON Intrinsics::
8600* AVR Built-in Functions::
8601* Blackfin Built-in Functions::
8602* FR-V Built-in Functions::
8603* X86 Built-in Functions::
8604* MIPS DSP Built-in Functions::
8605* MIPS Paired-Single Support::
8606* MIPS Loongson Built-in Functions::
8607* Other MIPS Built-in Functions::
8608* picoChip Built-in Functions::
8609* PowerPC AltiVec/VSX Built-in Functions::
8610* RX Built-in Functions::
8611* SPARC VIS Built-in Functions::
8612* SPU Built-in Functions::
8613* TI C6X Built-in Functions::
8614* TILE-Gx Built-in Functions::
8615* TILEPro Built-in Functions::
8616@end menu
8617
8618@node Alpha Built-in Functions
8619@subsection Alpha Built-in Functions
8620
8621These built-in functions are available for the Alpha family of
8622processors, depending on the command-line switches used.
8623
8624The following built-in functions are always available.  They
8625all generate the machine instruction that is part of the name.
8626
8627@smallexample
8628long __builtin_alpha_implver (void)
8629long __builtin_alpha_rpcc (void)
8630long __builtin_alpha_amask (long)
8631long __builtin_alpha_cmpbge (long, long)
8632long __builtin_alpha_extbl (long, long)
8633long __builtin_alpha_extwl (long, long)
8634long __builtin_alpha_extll (long, long)
8635long __builtin_alpha_extql (long, long)
8636long __builtin_alpha_extwh (long, long)
8637long __builtin_alpha_extlh (long, long)
8638long __builtin_alpha_extqh (long, long)
8639long __builtin_alpha_insbl (long, long)
8640long __builtin_alpha_inswl (long, long)
8641long __builtin_alpha_insll (long, long)
8642long __builtin_alpha_insql (long, long)
8643long __builtin_alpha_inswh (long, long)
8644long __builtin_alpha_inslh (long, long)
8645long __builtin_alpha_insqh (long, long)
8646long __builtin_alpha_mskbl (long, long)
8647long __builtin_alpha_mskwl (long, long)
8648long __builtin_alpha_mskll (long, long)
8649long __builtin_alpha_mskql (long, long)
8650long __builtin_alpha_mskwh (long, long)
8651long __builtin_alpha_msklh (long, long)
8652long __builtin_alpha_mskqh (long, long)
8653long __builtin_alpha_umulh (long, long)
8654long __builtin_alpha_zap (long, long)
8655long __builtin_alpha_zapnot (long, long)
8656@end smallexample
8657
8658The following built-in functions are always with @option{-mmax}
8659or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
8660later.  They all generate the machine instruction that is part
8661of the name.
8662
8663@smallexample
8664long __builtin_alpha_pklb (long)
8665long __builtin_alpha_pkwb (long)
8666long __builtin_alpha_unpkbl (long)
8667long __builtin_alpha_unpkbw (long)
8668long __builtin_alpha_minub8 (long, long)
8669long __builtin_alpha_minsb8 (long, long)
8670long __builtin_alpha_minuw4 (long, long)
8671long __builtin_alpha_minsw4 (long, long)
8672long __builtin_alpha_maxub8 (long, long)
8673long __builtin_alpha_maxsb8 (long, long)
8674long __builtin_alpha_maxuw4 (long, long)
8675long __builtin_alpha_maxsw4 (long, long)
8676long __builtin_alpha_perr (long, long)
8677@end smallexample
8678
8679The following built-in functions are always with @option{-mcix}
8680or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
8681later.  They all generate the machine instruction that is part
8682of the name.
8683
8684@smallexample
8685long __builtin_alpha_cttz (long)
8686long __builtin_alpha_ctlz (long)
8687long __builtin_alpha_ctpop (long)
8688@end smallexample
8689
8690The following builtins are available on systems that use the OSF/1
8691PALcode.  Normally they invoke the @code{rduniq} and @code{wruniq}
8692PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
8693@code{rdval} and @code{wrval}.
8694
8695@smallexample
8696void *__builtin_thread_pointer (void)
8697void __builtin_set_thread_pointer (void *)
8698@end smallexample
8699
8700@node ARM iWMMXt Built-in Functions
8701@subsection ARM iWMMXt Built-in Functions
8702
8703These built-in functions are available for the ARM family of
8704processors when the @option{-mcpu=iwmmxt} switch is used:
8705
8706@smallexample
8707typedef int v2si __attribute__ ((vector_size (8)));
8708typedef short v4hi __attribute__ ((vector_size (8)));
8709typedef char v8qi __attribute__ ((vector_size (8)));
8710
8711int __builtin_arm_getwcx (int)
8712void __builtin_arm_setwcx (int, int)
8713int __builtin_arm_textrmsb (v8qi, int)
8714int __builtin_arm_textrmsh (v4hi, int)
8715int __builtin_arm_textrmsw (v2si, int)
8716int __builtin_arm_textrmub (v8qi, int)
8717int __builtin_arm_textrmuh (v4hi, int)
8718int __builtin_arm_textrmuw (v2si, int)
8719v8qi __builtin_arm_tinsrb (v8qi, int)
8720v4hi __builtin_arm_tinsrh (v4hi, int)
8721v2si __builtin_arm_tinsrw (v2si, int)
8722long long __builtin_arm_tmia (long long, int, int)
8723long long __builtin_arm_tmiabb (long long, int, int)
8724long long __builtin_arm_tmiabt (long long, int, int)
8725long long __builtin_arm_tmiaph (long long, int, int)
8726long long __builtin_arm_tmiatb (long long, int, int)
8727long long __builtin_arm_tmiatt (long long, int, int)
8728int __builtin_arm_tmovmskb (v8qi)
8729int __builtin_arm_tmovmskh (v4hi)
8730int __builtin_arm_tmovmskw (v2si)
8731long long __builtin_arm_waccb (v8qi)
8732long long __builtin_arm_wacch (v4hi)
8733long long __builtin_arm_waccw (v2si)
8734v8qi __builtin_arm_waddb (v8qi, v8qi)
8735v8qi __builtin_arm_waddbss (v8qi, v8qi)
8736v8qi __builtin_arm_waddbus (v8qi, v8qi)
8737v4hi __builtin_arm_waddh (v4hi, v4hi)
8738v4hi __builtin_arm_waddhss (v4hi, v4hi)
8739v4hi __builtin_arm_waddhus (v4hi, v4hi)
8740v2si __builtin_arm_waddw (v2si, v2si)
8741v2si __builtin_arm_waddwss (v2si, v2si)
8742v2si __builtin_arm_waddwus (v2si, v2si)
8743v8qi __builtin_arm_walign (v8qi, v8qi, int)
8744long long __builtin_arm_wand(long long, long long)
8745long long __builtin_arm_wandn (long long, long long)
8746v8qi __builtin_arm_wavg2b (v8qi, v8qi)
8747v8qi __builtin_arm_wavg2br (v8qi, v8qi)
8748v4hi __builtin_arm_wavg2h (v4hi, v4hi)
8749v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
8750v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
8751v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
8752v2si __builtin_arm_wcmpeqw (v2si, v2si)
8753v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
8754v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
8755v2si __builtin_arm_wcmpgtsw (v2si, v2si)
8756v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
8757v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
8758v2si __builtin_arm_wcmpgtuw (v2si, v2si)
8759long long __builtin_arm_wmacs (long long, v4hi, v4hi)
8760long long __builtin_arm_wmacsz (v4hi, v4hi)
8761long long __builtin_arm_wmacu (long long, v4hi, v4hi)
8762long long __builtin_arm_wmacuz (v4hi, v4hi)
8763v4hi __builtin_arm_wmadds (v4hi, v4hi)
8764v4hi __builtin_arm_wmaddu (v4hi, v4hi)
8765v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
8766v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
8767v2si __builtin_arm_wmaxsw (v2si, v2si)
8768v8qi __builtin_arm_wmaxub (v8qi, v8qi)
8769v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
8770v2si __builtin_arm_wmaxuw (v2si, v2si)
8771v8qi __builtin_arm_wminsb (v8qi, v8qi)
8772v4hi __builtin_arm_wminsh (v4hi, v4hi)
8773v2si __builtin_arm_wminsw (v2si, v2si)
8774v8qi __builtin_arm_wminub (v8qi, v8qi)
8775v4hi __builtin_arm_wminuh (v4hi, v4hi)
8776v2si __builtin_arm_wminuw (v2si, v2si)
8777v4hi __builtin_arm_wmulsm (v4hi, v4hi)
8778v4hi __builtin_arm_wmulul (v4hi, v4hi)
8779v4hi __builtin_arm_wmulum (v4hi, v4hi)
8780long long __builtin_arm_wor (long long, long long)
8781v2si __builtin_arm_wpackdss (long long, long long)
8782v2si __builtin_arm_wpackdus (long long, long long)
8783v8qi __builtin_arm_wpackhss (v4hi, v4hi)
8784v8qi __builtin_arm_wpackhus (v4hi, v4hi)
8785v4hi __builtin_arm_wpackwss (v2si, v2si)
8786v4hi __builtin_arm_wpackwus (v2si, v2si)
8787long long __builtin_arm_wrord (long long, long long)
8788long long __builtin_arm_wrordi (long long, int)
8789v4hi __builtin_arm_wrorh (v4hi, long long)
8790v4hi __builtin_arm_wrorhi (v4hi, int)
8791v2si __builtin_arm_wrorw (v2si, long long)
8792v2si __builtin_arm_wrorwi (v2si, int)
8793v2si __builtin_arm_wsadb (v8qi, v8qi)
8794v2si __builtin_arm_wsadbz (v8qi, v8qi)
8795v2si __builtin_arm_wsadh (v4hi, v4hi)
8796v2si __builtin_arm_wsadhz (v4hi, v4hi)
8797v4hi __builtin_arm_wshufh (v4hi, int)
8798long long __builtin_arm_wslld (long long, long long)
8799long long __builtin_arm_wslldi (long long, int)
8800v4hi __builtin_arm_wsllh (v4hi, long long)
8801v4hi __builtin_arm_wsllhi (v4hi, int)
8802v2si __builtin_arm_wsllw (v2si, long long)
8803v2si __builtin_arm_wsllwi (v2si, int)
8804long long __builtin_arm_wsrad (long long, long long)
8805long long __builtin_arm_wsradi (long long, int)
8806v4hi __builtin_arm_wsrah (v4hi, long long)
8807v4hi __builtin_arm_wsrahi (v4hi, int)
8808v2si __builtin_arm_wsraw (v2si, long long)
8809v2si __builtin_arm_wsrawi (v2si, int)
8810long long __builtin_arm_wsrld (long long, long long)
8811long long __builtin_arm_wsrldi (long long, int)
8812v4hi __builtin_arm_wsrlh (v4hi, long long)
8813v4hi __builtin_arm_wsrlhi (v4hi, int)
8814v2si __builtin_arm_wsrlw (v2si, long long)
8815v2si __builtin_arm_wsrlwi (v2si, int)
8816v8qi __builtin_arm_wsubb (v8qi, v8qi)
8817v8qi __builtin_arm_wsubbss (v8qi, v8qi)
8818v8qi __builtin_arm_wsubbus (v8qi, v8qi)
8819v4hi __builtin_arm_wsubh (v4hi, v4hi)
8820v4hi __builtin_arm_wsubhss (v4hi, v4hi)
8821v4hi __builtin_arm_wsubhus (v4hi, v4hi)
8822v2si __builtin_arm_wsubw (v2si, v2si)
8823v2si __builtin_arm_wsubwss (v2si, v2si)
8824v2si __builtin_arm_wsubwus (v2si, v2si)
8825v4hi __builtin_arm_wunpckehsb (v8qi)
8826v2si __builtin_arm_wunpckehsh (v4hi)
8827long long __builtin_arm_wunpckehsw (v2si)
8828v4hi __builtin_arm_wunpckehub (v8qi)
8829v2si __builtin_arm_wunpckehuh (v4hi)
8830long long __builtin_arm_wunpckehuw (v2si)
8831v4hi __builtin_arm_wunpckelsb (v8qi)
8832v2si __builtin_arm_wunpckelsh (v4hi)
8833long long __builtin_arm_wunpckelsw (v2si)
8834v4hi __builtin_arm_wunpckelub (v8qi)
8835v2si __builtin_arm_wunpckeluh (v4hi)
8836long long __builtin_arm_wunpckeluw (v2si)
8837v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
8838v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
8839v2si __builtin_arm_wunpckihw (v2si, v2si)
8840v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
8841v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
8842v2si __builtin_arm_wunpckilw (v2si, v2si)
8843long long __builtin_arm_wxor (long long, long long)
8844long long __builtin_arm_wzero ()
8845@end smallexample
8846
8847@node ARM NEON Intrinsics
8848@subsection ARM NEON Intrinsics
8849
8850These built-in intrinsics for the ARM Advanced SIMD extension are available
8851when the @option{-mfpu=neon} switch is used:
8852
8853@include arm-neon-intrinsics.texi
8854
8855@node AVR Built-in Functions
8856@subsection AVR Built-in Functions
8857
8858For each built-in function for AVR, there is an equally named,
8859uppercase built-in macro defined. That way users can easily query if
8860or if not a specific built-in is implemented or not. For example, if
8861@code{__builtin_avr_nop} is available the macro
8862@code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
8863
8864The following built-in functions map to the respective machine
8865instruction, i.e. @code{nop}, @code{sei}, @code{cli}, @code{sleep},
8866@code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
8867resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
8868as library call if no hardware multiplier is available.
8869
8870@smallexample
8871void __builtin_avr_nop (void)
8872void __builtin_avr_sei (void)
8873void __builtin_avr_cli (void)
8874void __builtin_avr_sleep (void)
8875void __builtin_avr_wdr (void)
8876unsigned char __builtin_avr_swap (unsigned char)
8877unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
8878int __builtin_avr_fmuls (char, char)
8879int __builtin_avr_fmulsu (char, unsigned char)
8880@end smallexample
8881
8882In order to delay execution for a specific number of cycles, GCC
8883implements
8884@smallexample
8885void __builtin_avr_delay_cycles (unsigned long ticks)
8886@end smallexample
8887
8888@noindent
8889@code{ticks} is the number of ticks to delay execution. Note that this
8890built-in does not take into account the effect of interrupts which
8891might increase delay time. @code{ticks} must be a compile time
8892integer constant; delays with a variable number of cycles are not supported.
8893
8894@smallexample
8895char __builtin_avr_flash_segment (const __memx void*)
8896@end smallexample
8897
8898@noindent
8899This built-in takes a byte address to the 24-bit
8900@ref{AVR Named Address Spaces,address space} @code{__memx} and returns
8901the number of the flash segment (the 64 KiB chunk) where the address
8902points to.  Counting starts at @code{0}.
8903If the address does not point to flash memory, return @code{-1}.
8904
8905@smallexample
8906unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
8907@end smallexample
8908
8909@noindent
8910Insert bits from @var{bits} into @var{val} and return the resulting
8911value. The nibbles of @var{map} determine how the insertion is
8912performed: Let @var{X} be the @var{n}-th nibble of @var{map}
8913@enumerate
8914@item If @var{X} is @code{0xf},
8915then the @var{n}-th bit of @var{val} is returned unaltered.
8916
8917@item If X is in the range 0@dots{}7,
8918then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
8919
8920@item If X is in the range 8@dots{}@code{0xe},
8921then the @var{n}-th result bit is undefined.
8922@end enumerate
8923
8924@noindent
8925One typical use case for this built-in is adjusting input and
8926output values to non-contiguous port layouts. Some examples:
8927
8928@smallexample
8929// same as val, bits is unused
8930__builtin_avr_insert_bits (0xffffffff, bits, val)
8931@end smallexample
8932
8933@smallexample
8934// same as bits, val is unused
8935__builtin_avr_insert_bits (0x76543210, bits, val)
8936@end smallexample
8937
8938@smallexample
8939// same as rotating bits by 4
8940__builtin_avr_insert_bits (0x32107654, bits, 0)
8941@end smallexample
8942
8943@smallexample
8944// high-nibble of result is the high-nibble of val
8945// low-nibble of result is the low-nibble of bits
8946__builtin_avr_insert_bits (0xffff3210, bits, val)
8947@end smallexample
8948
8949@smallexample
8950// reverse the bit order of bits
8951__builtin_avr_insert_bits (0x01234567, bits, 0)
8952@end smallexample
8953
8954@node Blackfin Built-in Functions
8955@subsection Blackfin Built-in Functions
8956
8957Currently, there are two Blackfin-specific built-in functions.  These are
8958used for generating @code{CSYNC} and @code{SSYNC} machine insns without
8959using inline assembly; by using these built-in functions the compiler can
8960automatically add workarounds for hardware errata involving these
8961instructions.  These functions are named as follows:
8962
8963@smallexample
8964void __builtin_bfin_csync (void)
8965void __builtin_bfin_ssync (void)
8966@end smallexample
8967
8968@node FR-V Built-in Functions
8969@subsection FR-V Built-in Functions
8970
8971GCC provides many FR-V-specific built-in functions.  In general,
8972these functions are intended to be compatible with those described
8973by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
8974Semiconductor}.  The two exceptions are @code{__MDUNPACKH} and
8975@code{__MBTOHE}, the gcc forms of which pass 128-bit values by
8976pointer rather than by value.
8977
8978Most of the functions are named after specific FR-V instructions.
8979Such functions are said to be ``directly mapped'' and are summarized
8980here in tabular form.
8981
8982@menu
8983* Argument Types::
8984* Directly-mapped Integer Functions::
8985* Directly-mapped Media Functions::
8986* Raw read/write Functions::
8987* Other Built-in Functions::
8988@end menu
8989
8990@node Argument Types
8991@subsubsection Argument Types
8992
8993The arguments to the built-in functions can be divided into three groups:
8994register numbers, compile-time constants and run-time values.  In order
8995to make this classification clear at a glance, the arguments and return
8996values are given the following pseudo types:
8997
8998@multitable @columnfractions .20 .30 .15 .35
8999@item Pseudo type @tab Real C type @tab Constant? @tab Description
9000@item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
9001@item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
9002@item @code{sw1} @tab @code{int} @tab No @tab a signed word
9003@item @code{uw2} @tab @code{unsigned long long} @tab No
9004@tab an unsigned doubleword
9005@item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
9006@item @code{const} @tab @code{int} @tab Yes @tab an integer constant
9007@item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
9008@item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
9009@end multitable
9010
9011These pseudo types are not defined by GCC, they are simply a notational
9012convenience used in this manual.
9013
9014Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
9015and @code{sw2} are evaluated at run time.  They correspond to
9016register operands in the underlying FR-V instructions.
9017
9018@code{const} arguments represent immediate operands in the underlying
9019FR-V instructions.  They must be compile-time constants.
9020
9021@code{acc} arguments are evaluated at compile time and specify the number
9022of an accumulator register.  For example, an @code{acc} argument of 2
9023will select the ACC2 register.
9024
9025@code{iacc} arguments are similar to @code{acc} arguments but specify the
9026number of an IACC register.  See @pxref{Other Built-in Functions}
9027for more details.
9028
9029@node Directly-mapped Integer Functions
9030@subsubsection Directly-mapped Integer Functions
9031
9032The functions listed below map directly to FR-V I-type instructions.
9033
9034@multitable @columnfractions .45 .32 .23
9035@item Function prototype @tab Example usage @tab Assembly output
9036@item @code{sw1 __ADDSS (sw1, sw1)}
9037@tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
9038@tab @code{ADDSS @var{a},@var{b},@var{c}}
9039@item @code{sw1 __SCAN (sw1, sw1)}
9040@tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
9041@tab @code{SCAN @var{a},@var{b},@var{c}}
9042@item @code{sw1 __SCUTSS (sw1)}
9043@tab @code{@var{b} = __SCUTSS (@var{a})}
9044@tab @code{SCUTSS @var{a},@var{b}}
9045@item @code{sw1 __SLASS (sw1, sw1)}
9046@tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
9047@tab @code{SLASS @var{a},@var{b},@var{c}}
9048@item @code{void __SMASS (sw1, sw1)}
9049@tab @code{__SMASS (@var{a}, @var{b})}
9050@tab @code{SMASS @var{a},@var{b}}
9051@item @code{void __SMSSS (sw1, sw1)}
9052@tab @code{__SMSSS (@var{a}, @var{b})}
9053@tab @code{SMSSS @var{a},@var{b}}
9054@item @code{void __SMU (sw1, sw1)}
9055@tab @code{__SMU (@var{a}, @var{b})}
9056@tab @code{SMU @var{a},@var{b}}
9057@item @code{sw2 __SMUL (sw1, sw1)}
9058@tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
9059@tab @code{SMUL @var{a},@var{b},@var{c}}
9060@item @code{sw1 __SUBSS (sw1, sw1)}
9061@tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
9062@tab @code{SUBSS @var{a},@var{b},@var{c}}
9063@item @code{uw2 __UMUL (uw1, uw1)}
9064@tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
9065@tab @code{UMUL @var{a},@var{b},@var{c}}
9066@end multitable
9067
9068@node Directly-mapped Media Functions
9069@subsubsection Directly-mapped Media Functions
9070
9071The functions listed below map directly to FR-V M-type instructions.
9072
9073@multitable @columnfractions .45 .32 .23
9074@item Function prototype @tab Example usage @tab Assembly output
9075@item @code{uw1 __MABSHS (sw1)}
9076@tab @code{@var{b} = __MABSHS (@var{a})}
9077@tab @code{MABSHS @var{a},@var{b}}
9078@item @code{void __MADDACCS (acc, acc)}
9079@tab @code{__MADDACCS (@var{b}, @var{a})}
9080@tab @code{MADDACCS @var{a},@var{b}}
9081@item @code{sw1 __MADDHSS (sw1, sw1)}
9082@tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
9083@tab @code{MADDHSS @var{a},@var{b},@var{c}}
9084@item @code{uw1 __MADDHUS (uw1, uw1)}
9085@tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
9086@tab @code{MADDHUS @var{a},@var{b},@var{c}}
9087@item @code{uw1 __MAND (uw1, uw1)}
9088@tab @code{@var{c} = __MAND (@var{a}, @var{b})}
9089@tab @code{MAND @var{a},@var{b},@var{c}}
9090@item @code{void __MASACCS (acc, acc)}
9091@tab @code{__MASACCS (@var{b}, @var{a})}
9092@tab @code{MASACCS @var{a},@var{b}}
9093@item @code{uw1 __MAVEH (uw1, uw1)}
9094@tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
9095@tab @code{MAVEH @var{a},@var{b},@var{c}}
9096@item @code{uw2 __MBTOH (uw1)}
9097@tab @code{@var{b} = __MBTOH (@var{a})}
9098@tab @code{MBTOH @var{a},@var{b}}
9099@item @code{void __MBTOHE (uw1 *, uw1)}
9100@tab @code{__MBTOHE (&@var{b}, @var{a})}
9101@tab @code{MBTOHE @var{a},@var{b}}
9102@item @code{void __MCLRACC (acc)}
9103@tab @code{__MCLRACC (@var{a})}
9104@tab @code{MCLRACC @var{a}}
9105@item @code{void __MCLRACCA (void)}
9106@tab @code{__MCLRACCA ()}
9107@tab @code{MCLRACCA}
9108@item @code{uw1 __Mcop1 (uw1, uw1)}
9109@tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
9110@tab @code{Mcop1 @var{a},@var{b},@var{c}}
9111@item @code{uw1 __Mcop2 (uw1, uw1)}
9112@tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
9113@tab @code{Mcop2 @var{a},@var{b},@var{c}}
9114@item @code{uw1 __MCPLHI (uw2, const)}
9115@tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
9116@tab @code{MCPLHI @var{a},#@var{b},@var{c}}
9117@item @code{uw1 __MCPLI (uw2, const)}
9118@tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
9119@tab @code{MCPLI @var{a},#@var{b},@var{c}}
9120@item @code{void __MCPXIS (acc, sw1, sw1)}
9121@tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
9122@tab @code{MCPXIS @var{a},@var{b},@var{c}}
9123@item @code{void __MCPXIU (acc, uw1, uw1)}
9124@tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
9125@tab @code{MCPXIU @var{a},@var{b},@var{c}}
9126@item @code{void __MCPXRS (acc, sw1, sw1)}
9127@tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
9128@tab @code{MCPXRS @var{a},@var{b},@var{c}}
9129@item @code{void __MCPXRU (acc, uw1, uw1)}
9130@tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
9131@tab @code{MCPXRU @var{a},@var{b},@var{c}}
9132@item @code{uw1 __MCUT (acc, uw1)}
9133@tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
9134@tab @code{MCUT @var{a},@var{b},@var{c}}
9135@item @code{uw1 __MCUTSS (acc, sw1)}
9136@tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
9137@tab @code{MCUTSS @var{a},@var{b},@var{c}}
9138@item @code{void __MDADDACCS (acc, acc)}
9139@tab @code{__MDADDACCS (@var{b}, @var{a})}
9140@tab @code{MDADDACCS @var{a},@var{b}}
9141@item @code{void __MDASACCS (acc, acc)}
9142@tab @code{__MDASACCS (@var{b}, @var{a})}
9143@tab @code{MDASACCS @var{a},@var{b}}
9144@item @code{uw2 __MDCUTSSI (acc, const)}
9145@tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
9146@tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
9147@item @code{uw2 __MDPACKH (uw2, uw2)}
9148@tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
9149@tab @code{MDPACKH @var{a},@var{b},@var{c}}
9150@item @code{uw2 __MDROTLI (uw2, const)}
9151@tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
9152@tab @code{MDROTLI @var{a},#@var{b},@var{c}}
9153@item @code{void __MDSUBACCS (acc, acc)}
9154@tab @code{__MDSUBACCS (@var{b}, @var{a})}
9155@tab @code{MDSUBACCS @var{a},@var{b}}
9156@item @code{void __MDUNPACKH (uw1 *, uw2)}
9157@tab @code{__MDUNPACKH (&@var{b}, @var{a})}
9158@tab @code{MDUNPACKH @var{a},@var{b}}
9159@item @code{uw2 __MEXPDHD (uw1, const)}
9160@tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
9161@tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
9162@item @code{uw1 __MEXPDHW (uw1, const)}
9163@tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
9164@tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
9165@item @code{uw1 __MHDSETH (uw1, const)}
9166@tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
9167@tab @code{MHDSETH @var{a},#@var{b},@var{c}}
9168@item @code{sw1 __MHDSETS (const)}
9169@tab @code{@var{b} = __MHDSETS (@var{a})}
9170@tab @code{MHDSETS #@var{a},@var{b}}
9171@item @code{uw1 __MHSETHIH (uw1, const)}
9172@tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
9173@tab @code{MHSETHIH #@var{a},@var{b}}
9174@item @code{sw1 __MHSETHIS (sw1, const)}
9175@tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
9176@tab @code{MHSETHIS #@var{a},@var{b}}
9177@item @code{uw1 __MHSETLOH (uw1, const)}
9178@tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
9179@tab @code{MHSETLOH #@var{a},@var{b}}
9180@item @code{sw1 __MHSETLOS (sw1, const)}
9181@tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
9182@tab @code{MHSETLOS #@var{a},@var{b}}
9183@item @code{uw1 __MHTOB (uw2)}
9184@tab @code{@var{b} = __MHTOB (@var{a})}
9185@tab @code{MHTOB @var{a},@var{b}}
9186@item @code{void __MMACHS (acc, sw1, sw1)}
9187@tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
9188@tab @code{MMACHS @var{a},@var{b},@var{c}}
9189@item @code{void __MMACHU (acc, uw1, uw1)}
9190@tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
9191@tab @code{MMACHU @var{a},@var{b},@var{c}}
9192@item @code{void __MMRDHS (acc, sw1, sw1)}
9193@tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
9194@tab @code{MMRDHS @var{a},@var{b},@var{c}}
9195@item @code{void __MMRDHU (acc, uw1, uw1)}
9196@tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
9197@tab @code{MMRDHU @var{a},@var{b},@var{c}}
9198@item @code{void __MMULHS (acc, sw1, sw1)}
9199@tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
9200@tab @code{MMULHS @var{a},@var{b},@var{c}}
9201@item @code{void __MMULHU (acc, uw1, uw1)}
9202@tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
9203@tab @code{MMULHU @var{a},@var{b},@var{c}}
9204@item @code{void __MMULXHS (acc, sw1, sw1)}
9205@tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
9206@tab @code{MMULXHS @var{a},@var{b},@var{c}}
9207@item @code{void __MMULXHU (acc, uw1, uw1)}
9208@tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
9209@tab @code{MMULXHU @var{a},@var{b},@var{c}}
9210@item @code{uw1 __MNOT (uw1)}
9211@tab @code{@var{b} = __MNOT (@var{a})}
9212@tab @code{MNOT @var{a},@var{b}}
9213@item @code{uw1 __MOR (uw1, uw1)}
9214@tab @code{@var{c} = __MOR (@var{a}, @var{b})}
9215@tab @code{MOR @var{a},@var{b},@var{c}}
9216@item @code{uw1 __MPACKH (uh, uh)}
9217@tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
9218@tab @code{MPACKH @var{a},@var{b},@var{c}}
9219@item @code{sw2 __MQADDHSS (sw2, sw2)}
9220@tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
9221@tab @code{MQADDHSS @var{a},@var{b},@var{c}}
9222@item @code{uw2 __MQADDHUS (uw2, uw2)}
9223@tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
9224@tab @code{MQADDHUS @var{a},@var{b},@var{c}}
9225@item @code{void __MQCPXIS (acc, sw2, sw2)}
9226@tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
9227@tab @code{MQCPXIS @var{a},@var{b},@var{c}}
9228@item @code{void __MQCPXIU (acc, uw2, uw2)}
9229@tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
9230@tab @code{MQCPXIU @var{a},@var{b},@var{c}}
9231@item @code{void __MQCPXRS (acc, sw2, sw2)}
9232@tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
9233@tab @code{MQCPXRS @var{a},@var{b},@var{c}}
9234@item @code{void __MQCPXRU (acc, uw2, uw2)}
9235@tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
9236@tab @code{MQCPXRU @var{a},@var{b},@var{c}}
9237@item @code{sw2 __MQLCLRHS (sw2, sw2)}
9238@tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
9239@tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
9240@item @code{sw2 __MQLMTHS (sw2, sw2)}
9241@tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
9242@tab @code{MQLMTHS @var{a},@var{b},@var{c}}
9243@item @code{void __MQMACHS (acc, sw2, sw2)}
9244@tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
9245@tab @code{MQMACHS @var{a},@var{b},@var{c}}
9246@item @code{void __MQMACHU (acc, uw2, uw2)}
9247@tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
9248@tab @code{MQMACHU @var{a},@var{b},@var{c}}
9249@item @code{void __MQMACXHS (acc, sw2, sw2)}
9250@tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
9251@tab @code{MQMACXHS @var{a},@var{b},@var{c}}
9252@item @code{void __MQMULHS (acc, sw2, sw2)}
9253@tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
9254@tab @code{MQMULHS @var{a},@var{b},@var{c}}
9255@item @code{void __MQMULHU (acc, uw2, uw2)}
9256@tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
9257@tab @code{MQMULHU @var{a},@var{b},@var{c}}
9258@item @code{void __MQMULXHS (acc, sw2, sw2)}
9259@tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
9260@tab @code{MQMULXHS @var{a},@var{b},@var{c}}
9261@item @code{void __MQMULXHU (acc, uw2, uw2)}
9262@tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
9263@tab @code{MQMULXHU @var{a},@var{b},@var{c}}
9264@item @code{sw2 __MQSATHS (sw2, sw2)}
9265@tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
9266@tab @code{MQSATHS @var{a},@var{b},@var{c}}
9267@item @code{uw2 __MQSLLHI (uw2, int)}
9268@tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
9269@tab @code{MQSLLHI @var{a},@var{b},@var{c}}
9270@item @code{sw2 __MQSRAHI (sw2, int)}
9271@tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
9272@tab @code{MQSRAHI @var{a},@var{b},@var{c}}
9273@item @code{sw2 __MQSUBHSS (sw2, sw2)}
9274@tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
9275@tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
9276@item @code{uw2 __MQSUBHUS (uw2, uw2)}
9277@tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
9278@tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
9279@item @code{void __MQXMACHS (acc, sw2, sw2)}
9280@tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
9281@tab @code{MQXMACHS @var{a},@var{b},@var{c}}
9282@item @code{void __MQXMACXHS (acc, sw2, sw2)}
9283@tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
9284@tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
9285@item @code{uw1 __MRDACC (acc)}
9286@tab @code{@var{b} = __MRDACC (@var{a})}
9287@tab @code{MRDACC @var{a},@var{b}}
9288@item @code{uw1 __MRDACCG (acc)}
9289@tab @code{@var{b} = __MRDACCG (@var{a})}
9290@tab @code{MRDACCG @var{a},@var{b}}
9291@item @code{uw1 __MROTLI (uw1, const)}
9292@tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
9293@tab @code{MROTLI @var{a},#@var{b},@var{c}}
9294@item @code{uw1 __MROTRI (uw1, const)}
9295@tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
9296@tab @code{MROTRI @var{a},#@var{b},@var{c}}
9297@item @code{sw1 __MSATHS (sw1, sw1)}
9298@tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
9299@tab @code{MSATHS @var{a},@var{b},@var{c}}
9300@item @code{uw1 __MSATHU (uw1, uw1)}
9301@tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
9302@tab @code{MSATHU @var{a},@var{b},@var{c}}
9303@item @code{uw1 __MSLLHI (uw1, const)}
9304@tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
9305@tab @code{MSLLHI @var{a},#@var{b},@var{c}}
9306@item @code{sw1 __MSRAHI (sw1, const)}
9307@tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
9308@tab @code{MSRAHI @var{a},#@var{b},@var{c}}
9309@item @code{uw1 __MSRLHI (uw1, const)}
9310@tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
9311@tab @code{MSRLHI @var{a},#@var{b},@var{c}}
9312@item @code{void __MSUBACCS (acc, acc)}
9313@tab @code{__MSUBACCS (@var{b}, @var{a})}
9314@tab @code{MSUBACCS @var{a},@var{b}}
9315@item @code{sw1 __MSUBHSS (sw1, sw1)}
9316@tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
9317@tab @code{MSUBHSS @var{a},@var{b},@var{c}}
9318@item @code{uw1 __MSUBHUS (uw1, uw1)}
9319@tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
9320@tab @code{MSUBHUS @var{a},@var{b},@var{c}}
9321@item @code{void __MTRAP (void)}
9322@tab @code{__MTRAP ()}
9323@tab @code{MTRAP}
9324@item @code{uw2 __MUNPACKH (uw1)}
9325@tab @code{@var{b} = __MUNPACKH (@var{a})}
9326@tab @code{MUNPACKH @var{a},@var{b}}
9327@item @code{uw1 __MWCUT (uw2, uw1)}
9328@tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
9329@tab @code{MWCUT @var{a},@var{b},@var{c}}
9330@item @code{void __MWTACC (acc, uw1)}
9331@tab @code{__MWTACC (@var{b}, @var{a})}
9332@tab @code{MWTACC @var{a},@var{b}}
9333@item @code{void __MWTACCG (acc, uw1)}
9334@tab @code{__MWTACCG (@var{b}, @var{a})}
9335@tab @code{MWTACCG @var{a},@var{b}}
9336@item @code{uw1 __MXOR (uw1, uw1)}
9337@tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
9338@tab @code{MXOR @var{a},@var{b},@var{c}}
9339@end multitable
9340
9341@node Raw read/write Functions
9342@subsubsection Raw read/write Functions
9343
9344This sections describes built-in functions related to read and write
9345instructions to access memory.  These functions generate
9346@code{membar} instructions to flush the I/O load and stores where
9347appropriate, as described in Fujitsu's manual described above.
9348
9349@table @code
9350
9351@item unsigned char __builtin_read8 (void *@var{data})
9352@item unsigned short __builtin_read16 (void *@var{data})
9353@item unsigned long __builtin_read32 (void *@var{data})
9354@item unsigned long long __builtin_read64 (void *@var{data})
9355
9356@item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
9357@item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
9358@item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
9359@item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
9360@end table
9361
9362@node Other Built-in Functions
9363@subsubsection Other Built-in Functions
9364
9365This section describes built-in functions that are not named after
9366a specific FR-V instruction.
9367
9368@table @code
9369@item sw2 __IACCreadll (iacc @var{reg})
9370Return the full 64-bit value of IACC0@.  The @var{reg} argument is reserved
9371for future expansion and must be 0.
9372
9373@item sw1 __IACCreadl (iacc @var{reg})
9374Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
9375Other values of @var{reg} are rejected as invalid.
9376
9377@item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
9378Set the full 64-bit value of IACC0 to @var{x}.  The @var{reg} argument
9379is reserved for future expansion and must be 0.
9380
9381@item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
9382Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
9383is 1.  Other values of @var{reg} are rejected as invalid.
9384
9385@item void __data_prefetch0 (const void *@var{x})
9386Use the @code{dcpl} instruction to load the contents of address @var{x}
9387into the data cache.
9388
9389@item void __data_prefetch (const void *@var{x})
9390Use the @code{nldub} instruction to load the contents of address @var{x}
9391into the data cache.  The instruction will be issued in slot I1@.
9392@end table
9393
9394@node X86 Built-in Functions
9395@subsection X86 Built-in Functions
9396
9397These built-in functions are available for the i386 and x86-64 family
9398of computers, depending on the command-line switches used.
9399
9400Note that, if you specify command-line switches such as @option{-msse},
9401the compiler could use the extended instruction sets even if the built-ins
9402are not used explicitly in the program.  For this reason, applications
9403which perform runtime CPU detection must compile separate files for each
9404supported architecture, using the appropriate flags.  In particular,
9405the file containing the CPU detection code should be compiled without
9406these options.
9407
9408The following machine modes are available for use with MMX built-in functions
9409(@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
9410@code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
9411vector of eight 8-bit integers.  Some of the built-in functions operate on
9412MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
9413
9414If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
9415of two 32-bit floating point values.
9416
9417If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
9418floating point values.  Some instructions use a vector of four 32-bit
9419integers, these use @code{V4SI}.  Finally, some instructions operate on an
9420entire vector register, interpreting it as a 128-bit integer, these use mode
9421@code{TI}.
9422
9423In 64-bit mode, the x86-64 family of processors uses additional built-in
9424functions for efficient use of @code{TF} (@code{__float128}) 128-bit
9425floating point and @code{TC} 128-bit complex floating point values.
9426
9427The following floating point built-in functions are available in 64-bit
9428mode.  All of them implement the function that is part of the name.
9429
9430@smallexample
9431__float128 __builtin_fabsq (__float128)
9432__float128 __builtin_copysignq (__float128, __float128)
9433@end smallexample
9434
9435The following built-in function is always available.
9436
9437@table @code
9438@item void __builtin_ia32_pause (void)
9439Generates the @code{pause} machine instruction with a compiler memory
9440barrier.
9441@end table
9442
9443The following floating point built-in functions are made available in the
944464-bit mode.
9445
9446@table @code
9447@item __float128 __builtin_infq (void)
9448Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
9449@findex __builtin_infq
9450
9451@item __float128 __builtin_huge_valq (void)
9452Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
9453@findex __builtin_huge_valq
9454@end table
9455
9456The following built-in functions are made available by @option{-mmmx}.
9457All of them generate the machine instruction that is part of the name.
9458
9459@smallexample
9460v8qi __builtin_ia32_paddb (v8qi, v8qi)
9461v4hi __builtin_ia32_paddw (v4hi, v4hi)
9462v2si __builtin_ia32_paddd (v2si, v2si)
9463v8qi __builtin_ia32_psubb (v8qi, v8qi)
9464v4hi __builtin_ia32_psubw (v4hi, v4hi)
9465v2si __builtin_ia32_psubd (v2si, v2si)
9466v8qi __builtin_ia32_paddsb (v8qi, v8qi)
9467v4hi __builtin_ia32_paddsw (v4hi, v4hi)
9468v8qi __builtin_ia32_psubsb (v8qi, v8qi)
9469v4hi __builtin_ia32_psubsw (v4hi, v4hi)
9470v8qi __builtin_ia32_paddusb (v8qi, v8qi)
9471v4hi __builtin_ia32_paddusw (v4hi, v4hi)
9472v8qi __builtin_ia32_psubusb (v8qi, v8qi)
9473v4hi __builtin_ia32_psubusw (v4hi, v4hi)
9474v4hi __builtin_ia32_pmullw (v4hi, v4hi)
9475v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
9476di __builtin_ia32_pand (di, di)
9477di __builtin_ia32_pandn (di,di)
9478di __builtin_ia32_por (di, di)
9479di __builtin_ia32_pxor (di, di)
9480v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
9481v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
9482v2si __builtin_ia32_pcmpeqd (v2si, v2si)
9483v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
9484v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
9485v2si __builtin_ia32_pcmpgtd (v2si, v2si)
9486v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
9487v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
9488v2si __builtin_ia32_punpckhdq (v2si, v2si)
9489v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
9490v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
9491v2si __builtin_ia32_punpckldq (v2si, v2si)
9492v8qi __builtin_ia32_packsswb (v4hi, v4hi)
9493v4hi __builtin_ia32_packssdw (v2si, v2si)
9494v8qi __builtin_ia32_packuswb (v4hi, v4hi)
9495
9496v4hi __builtin_ia32_psllw (v4hi, v4hi)
9497v2si __builtin_ia32_pslld (v2si, v2si)
9498v1di __builtin_ia32_psllq (v1di, v1di)
9499v4hi __builtin_ia32_psrlw (v4hi, v4hi)
9500v2si __builtin_ia32_psrld (v2si, v2si)
9501v1di __builtin_ia32_psrlq (v1di, v1di)
9502v4hi __builtin_ia32_psraw (v4hi, v4hi)
9503v2si __builtin_ia32_psrad (v2si, v2si)
9504v4hi __builtin_ia32_psllwi (v4hi, int)
9505v2si __builtin_ia32_pslldi (v2si, int)
9506v1di __builtin_ia32_psllqi (v1di, int)
9507v4hi __builtin_ia32_psrlwi (v4hi, int)
9508v2si __builtin_ia32_psrldi (v2si, int)
9509v1di __builtin_ia32_psrlqi (v1di, int)
9510v4hi __builtin_ia32_psrawi (v4hi, int)
9511v2si __builtin_ia32_psradi (v2si, int)
9512
9513@end smallexample
9514
9515The following built-in functions are made available either with
9516@option{-msse}, or with a combination of @option{-m3dnow} and
9517@option{-march=athlon}.  All of them generate the machine
9518instruction that is part of the name.
9519
9520@smallexample
9521v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
9522v8qi __builtin_ia32_pavgb (v8qi, v8qi)
9523v4hi __builtin_ia32_pavgw (v4hi, v4hi)
9524v1di __builtin_ia32_psadbw (v8qi, v8qi)
9525v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
9526v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
9527v8qi __builtin_ia32_pminub (v8qi, v8qi)
9528v4hi __builtin_ia32_pminsw (v4hi, v4hi)
9529int __builtin_ia32_pextrw (v4hi, int)
9530v4hi __builtin_ia32_pinsrw (v4hi, int, int)
9531int __builtin_ia32_pmovmskb (v8qi)
9532void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
9533void __builtin_ia32_movntq (di *, di)
9534void __builtin_ia32_sfence (void)
9535@end smallexample
9536
9537The following built-in functions are available when @option{-msse} is used.
9538All of them generate the machine instruction that is part of the name.
9539
9540@smallexample
9541int __builtin_ia32_comieq (v4sf, v4sf)
9542int __builtin_ia32_comineq (v4sf, v4sf)
9543int __builtin_ia32_comilt (v4sf, v4sf)
9544int __builtin_ia32_comile (v4sf, v4sf)
9545int __builtin_ia32_comigt (v4sf, v4sf)
9546int __builtin_ia32_comige (v4sf, v4sf)
9547int __builtin_ia32_ucomieq (v4sf, v4sf)
9548int __builtin_ia32_ucomineq (v4sf, v4sf)
9549int __builtin_ia32_ucomilt (v4sf, v4sf)
9550int __builtin_ia32_ucomile (v4sf, v4sf)
9551int __builtin_ia32_ucomigt (v4sf, v4sf)
9552int __builtin_ia32_ucomige (v4sf, v4sf)
9553v4sf __builtin_ia32_addps (v4sf, v4sf)
9554v4sf __builtin_ia32_subps (v4sf, v4sf)
9555v4sf __builtin_ia32_mulps (v4sf, v4sf)
9556v4sf __builtin_ia32_divps (v4sf, v4sf)
9557v4sf __builtin_ia32_addss (v4sf, v4sf)
9558v4sf __builtin_ia32_subss (v4sf, v4sf)
9559v4sf __builtin_ia32_mulss (v4sf, v4sf)
9560v4sf __builtin_ia32_divss (v4sf, v4sf)
9561v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
9562v4si __builtin_ia32_cmpltps (v4sf, v4sf)
9563v4si __builtin_ia32_cmpleps (v4sf, v4sf)
9564v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
9565v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
9566v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
9567v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
9568v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
9569v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
9570v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
9571v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
9572v4si __builtin_ia32_cmpordps (v4sf, v4sf)
9573v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
9574v4si __builtin_ia32_cmpltss (v4sf, v4sf)
9575v4si __builtin_ia32_cmpless (v4sf, v4sf)
9576v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
9577v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
9578v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
9579v4si __builtin_ia32_cmpnless (v4sf, v4sf)
9580v4si __builtin_ia32_cmpordss (v4sf, v4sf)
9581v4sf __builtin_ia32_maxps (v4sf, v4sf)
9582v4sf __builtin_ia32_maxss (v4sf, v4sf)
9583v4sf __builtin_ia32_minps (v4sf, v4sf)
9584v4sf __builtin_ia32_minss (v4sf, v4sf)
9585v4sf __builtin_ia32_andps (v4sf, v4sf)
9586v4sf __builtin_ia32_andnps (v4sf, v4sf)
9587v4sf __builtin_ia32_orps (v4sf, v4sf)
9588v4sf __builtin_ia32_xorps (v4sf, v4sf)
9589v4sf __builtin_ia32_movss (v4sf, v4sf)
9590v4sf __builtin_ia32_movhlps (v4sf, v4sf)
9591v4sf __builtin_ia32_movlhps (v4sf, v4sf)
9592v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
9593v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
9594v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
9595v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
9596v2si __builtin_ia32_cvtps2pi (v4sf)
9597int __builtin_ia32_cvtss2si (v4sf)
9598v2si __builtin_ia32_cvttps2pi (v4sf)
9599int __builtin_ia32_cvttss2si (v4sf)
9600v4sf __builtin_ia32_rcpps (v4sf)
9601v4sf __builtin_ia32_rsqrtps (v4sf)
9602v4sf __builtin_ia32_sqrtps (v4sf)
9603v4sf __builtin_ia32_rcpss (v4sf)
9604v4sf __builtin_ia32_rsqrtss (v4sf)
9605v4sf __builtin_ia32_sqrtss (v4sf)
9606v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
9607void __builtin_ia32_movntps (float *, v4sf)
9608int __builtin_ia32_movmskps (v4sf)
9609@end smallexample
9610
9611The following built-in functions are available when @option{-msse} is used.
9612
9613@table @code
9614@item v4sf __builtin_ia32_loadaps (float *)
9615Generates the @code{movaps} machine instruction as a load from memory.
9616@item void __builtin_ia32_storeaps (float *, v4sf)
9617Generates the @code{movaps} machine instruction as a store to memory.
9618@item v4sf __builtin_ia32_loadups (float *)
9619Generates the @code{movups} machine instruction as a load from memory.
9620@item void __builtin_ia32_storeups (float *, v4sf)
9621Generates the @code{movups} machine instruction as a store to memory.
9622@item v4sf __builtin_ia32_loadsss (float *)
9623Generates the @code{movss} machine instruction as a load from memory.
9624@item void __builtin_ia32_storess (float *, v4sf)
9625Generates the @code{movss} machine instruction as a store to memory.
9626@item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
9627Generates the @code{movhps} machine instruction as a load from memory.
9628@item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
9629Generates the @code{movlps} machine instruction as a load from memory
9630@item void __builtin_ia32_storehps (v2sf *, v4sf)
9631Generates the @code{movhps} machine instruction as a store to memory.
9632@item void __builtin_ia32_storelps (v2sf *, v4sf)
9633Generates the @code{movlps} machine instruction as a store to memory.
9634@end table
9635
9636The following built-in functions are available when @option{-msse2} is used.
9637All of them generate the machine instruction that is part of the name.
9638
9639@smallexample
9640int __builtin_ia32_comisdeq (v2df, v2df)
9641int __builtin_ia32_comisdlt (v2df, v2df)
9642int __builtin_ia32_comisdle (v2df, v2df)
9643int __builtin_ia32_comisdgt (v2df, v2df)
9644int __builtin_ia32_comisdge (v2df, v2df)
9645int __builtin_ia32_comisdneq (v2df, v2df)
9646int __builtin_ia32_ucomisdeq (v2df, v2df)
9647int __builtin_ia32_ucomisdlt (v2df, v2df)
9648int __builtin_ia32_ucomisdle (v2df, v2df)
9649int __builtin_ia32_ucomisdgt (v2df, v2df)
9650int __builtin_ia32_ucomisdge (v2df, v2df)
9651int __builtin_ia32_ucomisdneq (v2df, v2df)
9652v2df __builtin_ia32_cmpeqpd (v2df, v2df)
9653v2df __builtin_ia32_cmpltpd (v2df, v2df)
9654v2df __builtin_ia32_cmplepd (v2df, v2df)
9655v2df __builtin_ia32_cmpgtpd (v2df, v2df)
9656v2df __builtin_ia32_cmpgepd (v2df, v2df)
9657v2df __builtin_ia32_cmpunordpd (v2df, v2df)
9658v2df __builtin_ia32_cmpneqpd (v2df, v2df)
9659v2df __builtin_ia32_cmpnltpd (v2df, v2df)
9660v2df __builtin_ia32_cmpnlepd (v2df, v2df)
9661v2df __builtin_ia32_cmpngtpd (v2df, v2df)
9662v2df __builtin_ia32_cmpngepd (v2df, v2df)
9663v2df __builtin_ia32_cmpordpd (v2df, v2df)
9664v2df __builtin_ia32_cmpeqsd (v2df, v2df)
9665v2df __builtin_ia32_cmpltsd (v2df, v2df)
9666v2df __builtin_ia32_cmplesd (v2df, v2df)
9667v2df __builtin_ia32_cmpunordsd (v2df, v2df)
9668v2df __builtin_ia32_cmpneqsd (v2df, v2df)
9669v2df __builtin_ia32_cmpnltsd (v2df, v2df)
9670v2df __builtin_ia32_cmpnlesd (v2df, v2df)
9671v2df __builtin_ia32_cmpordsd (v2df, v2df)
9672v2di __builtin_ia32_paddq (v2di, v2di)
9673v2di __builtin_ia32_psubq (v2di, v2di)
9674v2df __builtin_ia32_addpd (v2df, v2df)
9675v2df __builtin_ia32_subpd (v2df, v2df)
9676v2df __builtin_ia32_mulpd (v2df, v2df)
9677v2df __builtin_ia32_divpd (v2df, v2df)
9678v2df __builtin_ia32_addsd (v2df, v2df)
9679v2df __builtin_ia32_subsd (v2df, v2df)
9680v2df __builtin_ia32_mulsd (v2df, v2df)
9681v2df __builtin_ia32_divsd (v2df, v2df)
9682v2df __builtin_ia32_minpd (v2df, v2df)
9683v2df __builtin_ia32_maxpd (v2df, v2df)
9684v2df __builtin_ia32_minsd (v2df, v2df)
9685v2df __builtin_ia32_maxsd (v2df, v2df)
9686v2df __builtin_ia32_andpd (v2df, v2df)
9687v2df __builtin_ia32_andnpd (v2df, v2df)
9688v2df __builtin_ia32_orpd (v2df, v2df)
9689v2df __builtin_ia32_xorpd (v2df, v2df)
9690v2df __builtin_ia32_movsd (v2df, v2df)
9691v2df __builtin_ia32_unpckhpd (v2df, v2df)
9692v2df __builtin_ia32_unpcklpd (v2df, v2df)
9693v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
9694v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
9695v4si __builtin_ia32_paddd128 (v4si, v4si)
9696v2di __builtin_ia32_paddq128 (v2di, v2di)
9697v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
9698v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
9699v4si __builtin_ia32_psubd128 (v4si, v4si)
9700v2di __builtin_ia32_psubq128 (v2di, v2di)
9701v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
9702v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
9703v2di __builtin_ia32_pand128 (v2di, v2di)
9704v2di __builtin_ia32_pandn128 (v2di, v2di)
9705v2di __builtin_ia32_por128 (v2di, v2di)
9706v2di __builtin_ia32_pxor128 (v2di, v2di)
9707v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
9708v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
9709v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
9710v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
9711v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
9712v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
9713v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
9714v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
9715v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
9716v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
9717v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
9718v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
9719v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
9720v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
9721v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
9722v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
9723v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
9724v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
9725v4si __builtin_ia32_punpckldq128 (v4si, v4si)
9726v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
9727v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
9728v8hi __builtin_ia32_packssdw128 (v4si, v4si)
9729v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
9730v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
9731void __builtin_ia32_maskmovdqu (v16qi, v16qi)
9732v2df __builtin_ia32_loadupd (double *)
9733void __builtin_ia32_storeupd (double *, v2df)
9734v2df __builtin_ia32_loadhpd (v2df, double const *)
9735v2df __builtin_ia32_loadlpd (v2df, double const *)
9736int __builtin_ia32_movmskpd (v2df)
9737int __builtin_ia32_pmovmskb128 (v16qi)
9738void __builtin_ia32_movnti (int *, int)
9739void __builtin_ia32_movnti64 (long long int *, long long int)
9740void __builtin_ia32_movntpd (double *, v2df)
9741void __builtin_ia32_movntdq (v2df *, v2df)
9742v4si __builtin_ia32_pshufd (v4si, int)
9743v8hi __builtin_ia32_pshuflw (v8hi, int)
9744v8hi __builtin_ia32_pshufhw (v8hi, int)
9745v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
9746v2df __builtin_ia32_sqrtpd (v2df)
9747v2df __builtin_ia32_sqrtsd (v2df)
9748v2df __builtin_ia32_shufpd (v2df, v2df, int)
9749v2df __builtin_ia32_cvtdq2pd (v4si)
9750v4sf __builtin_ia32_cvtdq2ps (v4si)
9751v4si __builtin_ia32_cvtpd2dq (v2df)
9752v2si __builtin_ia32_cvtpd2pi (v2df)
9753v4sf __builtin_ia32_cvtpd2ps (v2df)
9754v4si __builtin_ia32_cvttpd2dq (v2df)
9755v2si __builtin_ia32_cvttpd2pi (v2df)
9756v2df __builtin_ia32_cvtpi2pd (v2si)
9757int __builtin_ia32_cvtsd2si (v2df)
9758int __builtin_ia32_cvttsd2si (v2df)
9759long long __builtin_ia32_cvtsd2si64 (v2df)
9760long long __builtin_ia32_cvttsd2si64 (v2df)
9761v4si __builtin_ia32_cvtps2dq (v4sf)
9762v2df __builtin_ia32_cvtps2pd (v4sf)
9763v4si __builtin_ia32_cvttps2dq (v4sf)
9764v2df __builtin_ia32_cvtsi2sd (v2df, int)
9765v2df __builtin_ia32_cvtsi642sd (v2df, long long)
9766v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
9767v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
9768void __builtin_ia32_clflush (const void *)
9769void __builtin_ia32_lfence (void)
9770void __builtin_ia32_mfence (void)
9771v16qi __builtin_ia32_loaddqu (const char *)
9772void __builtin_ia32_storedqu (char *, v16qi)
9773v1di __builtin_ia32_pmuludq (v2si, v2si)
9774v2di __builtin_ia32_pmuludq128 (v4si, v4si)
9775v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
9776v4si __builtin_ia32_pslld128 (v4si, v4si)
9777v2di __builtin_ia32_psllq128 (v2di, v2di)
9778v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
9779v4si __builtin_ia32_psrld128 (v4si, v4si)
9780v2di __builtin_ia32_psrlq128 (v2di, v2di)
9781v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
9782v4si __builtin_ia32_psrad128 (v4si, v4si)
9783v2di __builtin_ia32_pslldqi128 (v2di, int)
9784v8hi __builtin_ia32_psllwi128 (v8hi, int)
9785v4si __builtin_ia32_pslldi128 (v4si, int)
9786v2di __builtin_ia32_psllqi128 (v2di, int)
9787v2di __builtin_ia32_psrldqi128 (v2di, int)
9788v8hi __builtin_ia32_psrlwi128 (v8hi, int)
9789v4si __builtin_ia32_psrldi128 (v4si, int)
9790v2di __builtin_ia32_psrlqi128 (v2di, int)
9791v8hi __builtin_ia32_psrawi128 (v8hi, int)
9792v4si __builtin_ia32_psradi128 (v4si, int)
9793v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
9794v2di __builtin_ia32_movq128 (v2di)
9795@end smallexample
9796
9797The following built-in functions are available when @option{-msse3} is used.
9798All of them generate the machine instruction that is part of the name.
9799
9800@smallexample
9801v2df __builtin_ia32_addsubpd (v2df, v2df)
9802v4sf __builtin_ia32_addsubps (v4sf, v4sf)
9803v2df __builtin_ia32_haddpd (v2df, v2df)
9804v4sf __builtin_ia32_haddps (v4sf, v4sf)
9805v2df __builtin_ia32_hsubpd (v2df, v2df)
9806v4sf __builtin_ia32_hsubps (v4sf, v4sf)
9807v16qi __builtin_ia32_lddqu (char const *)
9808void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
9809v2df __builtin_ia32_movddup (v2df)
9810v4sf __builtin_ia32_movshdup (v4sf)
9811v4sf __builtin_ia32_movsldup (v4sf)
9812void __builtin_ia32_mwait (unsigned int, unsigned int)
9813@end smallexample
9814
9815The following built-in functions are available when @option{-msse3} is used.
9816
9817@table @code
9818@item v2df __builtin_ia32_loadddup (double const *)
9819Generates the @code{movddup} machine instruction as a load from memory.
9820@end table
9821
9822The following built-in functions are available when @option{-mssse3} is used.
9823All of them generate the machine instruction that is part of the name
9824with MMX registers.
9825
9826@smallexample
9827v2si __builtin_ia32_phaddd (v2si, v2si)
9828v4hi __builtin_ia32_phaddw (v4hi, v4hi)
9829v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
9830v2si __builtin_ia32_phsubd (v2si, v2si)
9831v4hi __builtin_ia32_phsubw (v4hi, v4hi)
9832v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
9833v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
9834v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
9835v8qi __builtin_ia32_pshufb (v8qi, v8qi)
9836v8qi __builtin_ia32_psignb (v8qi, v8qi)
9837v2si __builtin_ia32_psignd (v2si, v2si)
9838v4hi __builtin_ia32_psignw (v4hi, v4hi)
9839v1di __builtin_ia32_palignr (v1di, v1di, int)
9840v8qi __builtin_ia32_pabsb (v8qi)
9841v2si __builtin_ia32_pabsd (v2si)
9842v4hi __builtin_ia32_pabsw (v4hi)
9843@end smallexample
9844
9845The following built-in functions are available when @option{-mssse3} is used.
9846All of them generate the machine instruction that is part of the name
9847with SSE registers.
9848
9849@smallexample
9850v4si __builtin_ia32_phaddd128 (v4si, v4si)
9851v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
9852v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
9853v4si __builtin_ia32_phsubd128 (v4si, v4si)
9854v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
9855v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
9856v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
9857v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
9858v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
9859v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
9860v4si __builtin_ia32_psignd128 (v4si, v4si)
9861v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
9862v2di __builtin_ia32_palignr128 (v2di, v2di, int)
9863v16qi __builtin_ia32_pabsb128 (v16qi)
9864v4si __builtin_ia32_pabsd128 (v4si)
9865v8hi __builtin_ia32_pabsw128 (v8hi)
9866@end smallexample
9867
9868The following built-in functions are available when @option{-msse4.1} is
9869used.  All of them generate the machine instruction that is part of the
9870name.
9871
9872@smallexample
9873v2df __builtin_ia32_blendpd (v2df, v2df, const int)
9874v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
9875v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
9876v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
9877v2df __builtin_ia32_dppd (v2df, v2df, const int)
9878v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
9879v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
9880v2di __builtin_ia32_movntdqa (v2di *);
9881v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
9882v8hi __builtin_ia32_packusdw128 (v4si, v4si)
9883v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
9884v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
9885v2di __builtin_ia32_pcmpeqq (v2di, v2di)
9886v8hi __builtin_ia32_phminposuw128 (v8hi)
9887v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
9888v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
9889v4si __builtin_ia32_pmaxud128 (v4si, v4si)
9890v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
9891v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
9892v4si __builtin_ia32_pminsd128 (v4si, v4si)
9893v4si __builtin_ia32_pminud128 (v4si, v4si)
9894v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
9895v4si __builtin_ia32_pmovsxbd128 (v16qi)
9896v2di __builtin_ia32_pmovsxbq128 (v16qi)
9897v8hi __builtin_ia32_pmovsxbw128 (v16qi)
9898v2di __builtin_ia32_pmovsxdq128 (v4si)
9899v4si __builtin_ia32_pmovsxwd128 (v8hi)
9900v2di __builtin_ia32_pmovsxwq128 (v8hi)
9901v4si __builtin_ia32_pmovzxbd128 (v16qi)
9902v2di __builtin_ia32_pmovzxbq128 (v16qi)
9903v8hi __builtin_ia32_pmovzxbw128 (v16qi)
9904v2di __builtin_ia32_pmovzxdq128 (v4si)
9905v4si __builtin_ia32_pmovzxwd128 (v8hi)
9906v2di __builtin_ia32_pmovzxwq128 (v8hi)
9907v2di __builtin_ia32_pmuldq128 (v4si, v4si)
9908v4si __builtin_ia32_pmulld128 (v4si, v4si)
9909int __builtin_ia32_ptestc128 (v2di, v2di)
9910int __builtin_ia32_ptestnzc128 (v2di, v2di)
9911int __builtin_ia32_ptestz128 (v2di, v2di)
9912v2df __builtin_ia32_roundpd (v2df, const int)
9913v4sf __builtin_ia32_roundps (v4sf, const int)
9914v2df __builtin_ia32_roundsd (v2df, v2df, const int)
9915v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
9916@end smallexample
9917
9918The following built-in functions are available when @option{-msse4.1} is
9919used.
9920
9921@table @code
9922@item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
9923Generates the @code{insertps} machine instruction.
9924@item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
9925Generates the @code{pextrb} machine instruction.
9926@item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
9927Generates the @code{pinsrb} machine instruction.
9928@item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
9929Generates the @code{pinsrd} machine instruction.
9930@item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
9931Generates the @code{pinsrq} machine instruction in 64bit mode.
9932@end table
9933
9934The following built-in functions are changed to generate new SSE4.1
9935instructions when @option{-msse4.1} is used.
9936
9937@table @code
9938@item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
9939Generates the @code{extractps} machine instruction.
9940@item int __builtin_ia32_vec_ext_v4si (v4si, const int)
9941Generates the @code{pextrd} machine instruction.
9942@item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
9943Generates the @code{pextrq} machine instruction in 64bit mode.
9944@end table
9945
9946The following built-in functions are available when @option{-msse4.2} is
9947used.  All of them generate the machine instruction that is part of the
9948name.
9949
9950@smallexample
9951v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
9952int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
9953int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
9954int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
9955int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
9956int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
9957int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
9958v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
9959int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
9960int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
9961int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
9962int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
9963int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
9964int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
9965v2di __builtin_ia32_pcmpgtq (v2di, v2di)
9966@end smallexample
9967
9968The following built-in functions are available when @option{-msse4.2} is
9969used.
9970
9971@table @code
9972@item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
9973Generates the @code{crc32b} machine instruction.
9974@item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
9975Generates the @code{crc32w} machine instruction.
9976@item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
9977Generates the @code{crc32l} machine instruction.
9978@item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
9979Generates the @code{crc32q} machine instruction.
9980@end table
9981
9982The following built-in functions are changed to generate new SSE4.2
9983instructions when @option{-msse4.2} is used.
9984
9985@table @code
9986@item int __builtin_popcount (unsigned int)
9987Generates the @code{popcntl} machine instruction.
9988@item int __builtin_popcountl (unsigned long)
9989Generates the @code{popcntl} or @code{popcntq} machine instruction,
9990depending on the size of @code{unsigned long}.
9991@item int __builtin_popcountll (unsigned long long)
9992Generates the @code{popcntq} machine instruction.
9993@end table
9994
9995The following built-in functions are available when @option{-mavx} is
9996used. All of them generate the machine instruction that is part of the
9997name.
9998
9999@smallexample
10000v4df __builtin_ia32_addpd256 (v4df,v4df)
10001v8sf __builtin_ia32_addps256 (v8sf,v8sf)
10002v4df __builtin_ia32_addsubpd256 (v4df,v4df)
10003v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
10004v4df __builtin_ia32_andnpd256 (v4df,v4df)
10005v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
10006v4df __builtin_ia32_andpd256 (v4df,v4df)
10007v8sf __builtin_ia32_andps256 (v8sf,v8sf)
10008v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
10009v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
10010v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
10011v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
10012v2df __builtin_ia32_cmppd (v2df,v2df,int)
10013v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
10014v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
10015v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
10016v2df __builtin_ia32_cmpsd (v2df,v2df,int)
10017v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
10018v4df __builtin_ia32_cvtdq2pd256 (v4si)
10019v8sf __builtin_ia32_cvtdq2ps256 (v8si)
10020v4si __builtin_ia32_cvtpd2dq256 (v4df)
10021v4sf __builtin_ia32_cvtpd2ps256 (v4df)
10022v8si __builtin_ia32_cvtps2dq256 (v8sf)
10023v4df __builtin_ia32_cvtps2pd256 (v4sf)
10024v4si __builtin_ia32_cvttpd2dq256 (v4df)
10025v8si __builtin_ia32_cvttps2dq256 (v8sf)
10026v4df __builtin_ia32_divpd256 (v4df,v4df)
10027v8sf __builtin_ia32_divps256 (v8sf,v8sf)
10028v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
10029v4df __builtin_ia32_haddpd256 (v4df,v4df)
10030v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
10031v4df __builtin_ia32_hsubpd256 (v4df,v4df)
10032v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
10033v32qi __builtin_ia32_lddqu256 (pcchar)
10034v32qi __builtin_ia32_loaddqu256 (pcchar)
10035v4df __builtin_ia32_loadupd256 (pcdouble)
10036v8sf __builtin_ia32_loadups256 (pcfloat)
10037v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
10038v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
10039v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
10040v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
10041void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
10042void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
10043void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
10044void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
10045v4df __builtin_ia32_maxpd256 (v4df,v4df)
10046v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
10047v4df __builtin_ia32_minpd256 (v4df,v4df)
10048v8sf __builtin_ia32_minps256 (v8sf,v8sf)
10049v4df __builtin_ia32_movddup256 (v4df)
10050int __builtin_ia32_movmskpd256 (v4df)
10051int __builtin_ia32_movmskps256 (v8sf)
10052v8sf __builtin_ia32_movshdup256 (v8sf)
10053v8sf __builtin_ia32_movsldup256 (v8sf)
10054v4df __builtin_ia32_mulpd256 (v4df,v4df)
10055v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
10056v4df __builtin_ia32_orpd256 (v4df,v4df)
10057v8sf __builtin_ia32_orps256 (v8sf,v8sf)
10058v2df __builtin_ia32_pd_pd256 (v4df)
10059v4df __builtin_ia32_pd256_pd (v2df)
10060v4sf __builtin_ia32_ps_ps256 (v8sf)
10061v8sf __builtin_ia32_ps256_ps (v4sf)
10062int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
10063int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
10064int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
10065v8sf __builtin_ia32_rcpps256 (v8sf)
10066v4df __builtin_ia32_roundpd256 (v4df,int)
10067v8sf __builtin_ia32_roundps256 (v8sf,int)
10068v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
10069v8sf __builtin_ia32_rsqrtps256 (v8sf)
10070v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
10071v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
10072v4si __builtin_ia32_si_si256 (v8si)
10073v8si __builtin_ia32_si256_si (v4si)
10074v4df __builtin_ia32_sqrtpd256 (v4df)
10075v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
10076v8sf __builtin_ia32_sqrtps256 (v8sf)
10077void __builtin_ia32_storedqu256 (pchar,v32qi)
10078void __builtin_ia32_storeupd256 (pdouble,v4df)
10079void __builtin_ia32_storeups256 (pfloat,v8sf)
10080v4df __builtin_ia32_subpd256 (v4df,v4df)
10081v8sf __builtin_ia32_subps256 (v8sf,v8sf)
10082v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
10083v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
10084v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
10085v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
10086v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
10087v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
10088v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
10089v4sf __builtin_ia32_vbroadcastss (pcfloat)
10090v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
10091v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
10092v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
10093v4si __builtin_ia32_vextractf128_si256 (v8si,int)
10094v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
10095v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
10096v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
10097v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
10098v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
10099v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
10100v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
10101v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
10102v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
10103v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
10104v2df __builtin_ia32_vpermilpd (v2df,int)
10105v4df __builtin_ia32_vpermilpd256 (v4df,int)
10106v4sf __builtin_ia32_vpermilps (v4sf,int)
10107v8sf __builtin_ia32_vpermilps256 (v8sf,int)
10108v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
10109v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
10110v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
10111v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
10112int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
10113int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
10114int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
10115int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
10116int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
10117int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
10118int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
10119int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
10120int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
10121int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
10122int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
10123int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
10124void __builtin_ia32_vzeroall (void)
10125void __builtin_ia32_vzeroupper (void)
10126v4df __builtin_ia32_xorpd256 (v4df,v4df)
10127v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
10128@end smallexample
10129
10130The following built-in functions are available when @option{-mavx2} is
10131used. All of them generate the machine instruction that is part of the
10132name.
10133
10134@smallexample
10135v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)
10136v32qi __builtin_ia32_pabsb256 (v32qi)
10137v16hi __builtin_ia32_pabsw256 (v16hi)
10138v8si __builtin_ia32_pabsd256 (v8si)
10139v16hi builtin_ia32_packssdw256 (v8si,v8si)
10140v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
10141v16hi __builtin_ia32_packusdw256 (v8si,v8si)
10142v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
10143v32qi__builtin_ia32_paddb256 (v32qi,v32qi)
10144v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
10145v8si __builtin_ia32_paddd256 (v8si,v8si)
10146v4di __builtin_ia32_paddq256 (v4di,v4di)
10147v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
10148v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
10149v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
10150v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
10151v4di __builtin_ia32_palignr256 (v4di,v4di,int)
10152v4di __builtin_ia32_andsi256 (v4di,v4di)
10153v4di __builtin_ia32_andnotsi256 (v4di,v4di)
10154v32qi__builtin_ia32_pavgb256 (v32qi,v32qi)
10155v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
10156v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
10157v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
10158v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
10159v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
10160v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
10161v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
10162v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
10163v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
10164v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
10165v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
10166v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
10167v8si __builtin_ia32_phaddd256 (v8si,v8si)
10168v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
10169v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
10170v8si __builtin_ia32_phsubd256 (v8si,v8si)
10171v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
10172v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
10173v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
10174v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
10175v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
10176v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
10177v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
10178v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
10179v8si __builtin_ia32_pmaxud256 (v8si,v8si)
10180v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
10181v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
10182v8si __builtin_ia32_pminsd256 (v8si,v8si)
10183v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
10184v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
10185v8si __builtin_ia32_pminud256 (v8si,v8si)
10186int __builtin_ia32_pmovmskb256 (v32qi)
10187v16hi __builtin_ia32_pmovsxbw256 (v16qi)
10188v8si __builtin_ia32_pmovsxbd256 (v16qi)
10189v4di __builtin_ia32_pmovsxbq256 (v16qi)
10190v8si __builtin_ia32_pmovsxwd256 (v8hi)
10191v4di __builtin_ia32_pmovsxwq256 (v8hi)
10192v4di __builtin_ia32_pmovsxdq256 (v4si)
10193v16hi __builtin_ia32_pmovzxbw256 (v16qi)
10194v8si __builtin_ia32_pmovzxbd256 (v16qi)
10195v4di __builtin_ia32_pmovzxbq256 (v16qi)
10196v8si __builtin_ia32_pmovzxwd256 (v8hi)
10197v4di __builtin_ia32_pmovzxwq256 (v8hi)
10198v4di __builtin_ia32_pmovzxdq256 (v4si)
10199v4di __builtin_ia32_pmuldq256 (v8si,v8si)
10200v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
10201v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
10202v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
10203v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
10204v8si __builtin_ia32_pmulld256 (v8si,v8si)
10205v4di __builtin_ia32_pmuludq256 (v8si,v8si)
10206v4di __builtin_ia32_por256 (v4di,v4di)
10207v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
10208v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
10209v8si __builtin_ia32_pshufd256 (v8si,int)
10210v16hi __builtin_ia32_pshufhw256 (v16hi,int)
10211v16hi __builtin_ia32_pshuflw256 (v16hi,int)
10212v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
10213v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
10214v8si __builtin_ia32_psignd256 (v8si,v8si)
10215v4di __builtin_ia32_pslldqi256 (v4di,int)
10216v16hi __builtin_ia32_psllwi256 (16hi,int)
10217v16hi __builtin_ia32_psllw256(v16hi,v8hi)
10218v8si __builtin_ia32_pslldi256 (v8si,int)
10219v8si __builtin_ia32_pslld256(v8si,v4si)
10220v4di __builtin_ia32_psllqi256 (v4di,int)
10221v4di __builtin_ia32_psllq256(v4di,v2di)
10222v16hi __builtin_ia32_psrawi256 (v16hi,int)
10223v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
10224v8si __builtin_ia32_psradi256 (v8si,int)
10225v8si __builtin_ia32_psrad256 (v8si,v4si)
10226v4di __builtin_ia32_psrldqi256 (v4di, int)
10227v16hi __builtin_ia32_psrlwi256 (v16hi,int)
10228v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
10229v8si __builtin_ia32_psrldi256 (v8si,int)
10230v8si __builtin_ia32_psrld256 (v8si,v4si)
10231v4di __builtin_ia32_psrlqi256 (v4di,int)
10232v4di __builtin_ia32_psrlq256(v4di,v2di)
10233v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
10234v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
10235v8si __builtin_ia32_psubd256 (v8si,v8si)
10236v4di __builtin_ia32_psubq256 (v4di,v4di)
10237v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
10238v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
10239v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
10240v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
10241v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
10242v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
10243v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
10244v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
10245v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
10246v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
10247v8si __builtin_ia32_punpckldq256 (v8si,v8si)
10248v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
10249v4di __builtin_ia32_pxor256 (v4di,v4di)
10250v4di __builtin_ia32_movntdqa256 (pv4di)
10251v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
10252v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
10253v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
10254v4di __builtin_ia32_vbroadcastsi256 (v2di)
10255v4si __builtin_ia32_pblendd128 (v4si,v4si)
10256v8si __builtin_ia32_pblendd256 (v8si,v8si)
10257v32qi __builtin_ia32_pbroadcastb256 (v16qi)
10258v16hi __builtin_ia32_pbroadcastw256 (v8hi)
10259v8si __builtin_ia32_pbroadcastd256 (v4si)
10260v4di __builtin_ia32_pbroadcastq256 (v2di)
10261v16qi __builtin_ia32_pbroadcastb128 (v16qi)
10262v8hi __builtin_ia32_pbroadcastw128 (v8hi)
10263v4si __builtin_ia32_pbroadcastd128 (v4si)
10264v2di __builtin_ia32_pbroadcastq128 (v2di)
10265v8si __builtin_ia32_permvarsi256 (v8si,v8si)
10266v4df __builtin_ia32_permdf256 (v4df,int)
10267v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
10268v4di __builtin_ia32_permdi256 (v4di,int)
10269v4di __builtin_ia32_permti256 (v4di,v4di,int)
10270v4di __builtin_ia32_extract128i256 (v4di,int)
10271v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
10272v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
10273v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
10274v4si __builtin_ia32_maskloadd (pcv4si,v4si)
10275v2di __builtin_ia32_maskloadq (pcv2di,v2di)
10276void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
10277void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
10278void __builtin_ia32_maskstored (pv4si,v4si,v4si)
10279void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
10280v8si __builtin_ia32_psllv8si (v8si,v8si)
10281v4si __builtin_ia32_psllv4si (v4si,v4si)
10282v4di __builtin_ia32_psllv4di (v4di,v4di)
10283v2di __builtin_ia32_psllv2di (v2di,v2di)
10284v8si __builtin_ia32_psrav8si (v8si,v8si)
10285v4si __builtin_ia32_psrav4si (v4si,v4si)
10286v8si __builtin_ia32_psrlv8si (v8si,v8si)
10287v4si __builtin_ia32_psrlv4si (v4si,v4si)
10288v4di __builtin_ia32_psrlv4di (v4di,v4di)
10289v2di __builtin_ia32_psrlv2di (v2di,v2di)
10290v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
10291v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
10292v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
10293v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
10294v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
10295v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
10296v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
10297v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
10298v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
10299v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
10300v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
10301v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
10302v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
10303v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
10304v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
10305v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
10306@end smallexample
10307
10308The following built-in functions are available when @option{-maes} is
10309used.  All of them generate the machine instruction that is part of the
10310name.
10311
10312@smallexample
10313v2di __builtin_ia32_aesenc128 (v2di, v2di)
10314v2di __builtin_ia32_aesenclast128 (v2di, v2di)
10315v2di __builtin_ia32_aesdec128 (v2di, v2di)
10316v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
10317v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
10318v2di __builtin_ia32_aesimc128 (v2di)
10319@end smallexample
10320
10321The following built-in function is available when @option{-mpclmul} is
10322used.
10323
10324@table @code
10325@item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
10326Generates the @code{pclmulqdq} machine instruction.
10327@end table
10328
10329The following built-in function is available when @option{-mfsgsbase} is
10330used.  All of them generate the machine instruction that is part of the
10331name.
10332
10333@smallexample
10334unsigned int __builtin_ia32_rdfsbase32 (void)
10335unsigned long long __builtin_ia32_rdfsbase64 (void)
10336unsigned int __builtin_ia32_rdgsbase32 (void)
10337unsigned long long __builtin_ia32_rdgsbase64 (void)
10338void _writefsbase_u32 (unsigned int)
10339void _writefsbase_u64 (unsigned long long)
10340void _writegsbase_u32 (unsigned int)
10341void _writegsbase_u64 (unsigned long long)
10342@end smallexample
10343
10344The following built-in function is available when @option{-mrdrnd} is
10345used.  All of them generate the machine instruction that is part of the
10346name.
10347
10348@smallexample
10349unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
10350unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
10351unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
10352@end smallexample
10353
10354The following built-in functions are available when @option{-msse4a} is used.
10355All of them generate the machine instruction that is part of the name.
10356
10357@smallexample
10358void __builtin_ia32_movntsd (double *, v2df)
10359void __builtin_ia32_movntss (float *, v4sf)
10360v2di __builtin_ia32_extrq  (v2di, v16qi)
10361v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
10362v2di __builtin_ia32_insertq (v2di, v2di)
10363v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
10364@end smallexample
10365
10366The following built-in functions are available when @option{-mxop} is used.
10367@smallexample
10368v2df __builtin_ia32_vfrczpd (v2df)
10369v4sf __builtin_ia32_vfrczps (v4sf)
10370v2df __builtin_ia32_vfrczsd (v2df, v2df)
10371v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
10372v4df __builtin_ia32_vfrczpd256 (v4df)
10373v8sf __builtin_ia32_vfrczps256 (v8sf)
10374v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
10375v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
10376v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
10377v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
10378v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
10379v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
10380v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
10381v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
10382v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
10383v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
10384v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
10385v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
10386v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
10387v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
10388v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10389v4si __builtin_ia32_vpcomeqd (v4si, v4si)
10390v2di __builtin_ia32_vpcomeqq (v2di, v2di)
10391v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
10392v4si __builtin_ia32_vpcomequd (v4si, v4si)
10393v2di __builtin_ia32_vpcomequq (v2di, v2di)
10394v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
10395v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10396v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
10397v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
10398v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
10399v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
10400v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
10401v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
10402v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
10403v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
10404v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
10405v4si __builtin_ia32_vpcomged (v4si, v4si)
10406v2di __builtin_ia32_vpcomgeq (v2di, v2di)
10407v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
10408v4si __builtin_ia32_vpcomgeud (v4si, v4si)
10409v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
10410v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
10411v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
10412v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
10413v4si __builtin_ia32_vpcomgtd (v4si, v4si)
10414v2di __builtin_ia32_vpcomgtq (v2di, v2di)
10415v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
10416v4si __builtin_ia32_vpcomgtud (v4si, v4si)
10417v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
10418v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
10419v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
10420v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
10421v4si __builtin_ia32_vpcomled (v4si, v4si)
10422v2di __builtin_ia32_vpcomleq (v2di, v2di)
10423v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
10424v4si __builtin_ia32_vpcomleud (v4si, v4si)
10425v2di __builtin_ia32_vpcomleuq (v2di, v2di)
10426v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
10427v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
10428v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
10429v4si __builtin_ia32_vpcomltd (v4si, v4si)
10430v2di __builtin_ia32_vpcomltq (v2di, v2di)
10431v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
10432v4si __builtin_ia32_vpcomltud (v4si, v4si)
10433v2di __builtin_ia32_vpcomltuq (v2di, v2di)
10434v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
10435v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
10436v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
10437v4si __builtin_ia32_vpcomned (v4si, v4si)
10438v2di __builtin_ia32_vpcomneq (v2di, v2di)
10439v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
10440v4si __builtin_ia32_vpcomneud (v4si, v4si)
10441v2di __builtin_ia32_vpcomneuq (v2di, v2di)
10442v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
10443v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
10444v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
10445v4si __builtin_ia32_vpcomtrued (v4si, v4si)
10446v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
10447v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
10448v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
10449v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
10450v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
10451v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
10452v4si __builtin_ia32_vphaddbd (v16qi)
10453v2di __builtin_ia32_vphaddbq (v16qi)
10454v8hi __builtin_ia32_vphaddbw (v16qi)
10455v2di __builtin_ia32_vphadddq (v4si)
10456v4si __builtin_ia32_vphaddubd (v16qi)
10457v2di __builtin_ia32_vphaddubq (v16qi)
10458v8hi __builtin_ia32_vphaddubw (v16qi)
10459v2di __builtin_ia32_vphaddudq (v4si)
10460v4si __builtin_ia32_vphadduwd (v8hi)
10461v2di __builtin_ia32_vphadduwq (v8hi)
10462v4si __builtin_ia32_vphaddwd (v8hi)
10463v2di __builtin_ia32_vphaddwq (v8hi)
10464v8hi __builtin_ia32_vphsubbw (v16qi)
10465v2di __builtin_ia32_vphsubdq (v4si)
10466v4si __builtin_ia32_vphsubwd (v8hi)
10467v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
10468v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
10469v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
10470v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
10471v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
10472v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
10473v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
10474v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
10475v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
10476v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
10477v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
10478v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
10479v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
10480v16qi __builtin_ia32_vprotb (v16qi, v16qi)
10481v4si __builtin_ia32_vprotd (v4si, v4si)
10482v2di __builtin_ia32_vprotq (v2di, v2di)
10483v8hi __builtin_ia32_vprotw (v8hi, v8hi)
10484v16qi __builtin_ia32_vpshab (v16qi, v16qi)
10485v4si __builtin_ia32_vpshad (v4si, v4si)
10486v2di __builtin_ia32_vpshaq (v2di, v2di)
10487v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
10488v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
10489v4si __builtin_ia32_vpshld (v4si, v4si)
10490v2di __builtin_ia32_vpshlq (v2di, v2di)
10491v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
10492@end smallexample
10493
10494The following built-in functions are available when @option{-mfma4} is used.
10495All of them generate the machine instruction that is part of the name
10496with MMX registers.
10497
10498@smallexample
10499v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
10500v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
10501v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
10502v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
10503v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
10504v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
10505v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
10506v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
10507v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
10508v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
10509v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
10510v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
10511v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
10512v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
10513v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
10514v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
10515v2df __builtin_ia32_fmaddsubpd  (v2df, v2df, v2df)
10516v4sf __builtin_ia32_fmaddsubps  (v4sf, v4sf, v4sf)
10517v2df __builtin_ia32_fmsubaddpd  (v2df, v2df, v2df)
10518v4sf __builtin_ia32_fmsubaddps  (v4sf, v4sf, v4sf)
10519v4df __builtin_ia32_fmaddpd256 (v4df, v4df, v4df)
10520v8sf __builtin_ia32_fmaddps256 (v8sf, v8sf, v8sf)
10521v4df __builtin_ia32_fmsubpd256 (v4df, v4df, v4df)
10522v8sf __builtin_ia32_fmsubps256 (v8sf, v8sf, v8sf)
10523v4df __builtin_ia32_fnmaddpd256 (v4df, v4df, v4df)
10524v8sf __builtin_ia32_fnmaddps256 (v8sf, v8sf, v8sf)
10525v4df __builtin_ia32_fnmsubpd256 (v4df, v4df, v4df)
10526v8sf __builtin_ia32_fnmsubps256 (v8sf, v8sf, v8sf)
10527v4df __builtin_ia32_fmaddsubpd256 (v4df, v4df, v4df)
10528v8sf __builtin_ia32_fmaddsubps256 (v8sf, v8sf, v8sf)
10529v4df __builtin_ia32_fmsubaddpd256 (v4df, v4df, v4df)
10530v8sf __builtin_ia32_fmsubaddps256 (v8sf, v8sf, v8sf)
10531
10532@end smallexample
10533
10534The following built-in functions are available when @option{-mlwp} is used.
10535
10536@smallexample
10537void __builtin_ia32_llwpcb16 (void *);
10538void __builtin_ia32_llwpcb32 (void *);
10539void __builtin_ia32_llwpcb64 (void *);
10540void * __builtin_ia32_llwpcb16 (void);
10541void * __builtin_ia32_llwpcb32 (void);
10542void * __builtin_ia32_llwpcb64 (void);
10543void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
10544void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
10545void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
10546unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
10547unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
10548unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
10549@end smallexample
10550
10551The following built-in functions are available when @option{-mbmi} is used.
10552All of them generate the machine instruction that is part of the name.
10553@smallexample
10554unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
10555unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
10556@end smallexample
10557
10558The following built-in functions are available when @option{-mbmi2} is used.
10559All of them generate the machine instruction that is part of the name.
10560@smallexample
10561unsigned int _bzhi_u32 (unsigned int, unsigned int)
10562unsigned int _pdep_u32 (unsigned int, unsigned int)
10563unsigned int _pext_u32 (unsigned int, unsigned int)
10564unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
10565unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
10566unsigned long long _pext_u64 (unsigned long long, unsigned long long)
10567@end smallexample
10568
10569The following built-in functions are available when @option{-mlzcnt} is used.
10570All of them generate the machine instruction that is part of the name.
10571@smallexample
10572unsigned short __builtin_ia32_lzcnt_16(unsigned short);
10573unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
10574unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
10575@end smallexample
10576
10577The following built-in functions are available when @option{-mtbm} is used.
10578Both of them generate the immediate form of the bextr machine instruction.
10579@smallexample
10580unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
10581unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
10582@end smallexample
10583
10584
10585The following built-in functions are available when @option{-m3dnow} is used.
10586All of them generate the machine instruction that is part of the name.
10587
10588@smallexample
10589void __builtin_ia32_femms (void)
10590v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
10591v2si __builtin_ia32_pf2id (v2sf)
10592v2sf __builtin_ia32_pfacc (v2sf, v2sf)
10593v2sf __builtin_ia32_pfadd (v2sf, v2sf)
10594v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
10595v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
10596v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
10597v2sf __builtin_ia32_pfmax (v2sf, v2sf)
10598v2sf __builtin_ia32_pfmin (v2sf, v2sf)
10599v2sf __builtin_ia32_pfmul (v2sf, v2sf)
10600v2sf __builtin_ia32_pfrcp (v2sf)
10601v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
10602v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
10603v2sf __builtin_ia32_pfrsqrt (v2sf)
10604v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
10605v2sf __builtin_ia32_pfsub (v2sf, v2sf)
10606v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
10607v2sf __builtin_ia32_pi2fd (v2si)
10608v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
10609@end smallexample
10610
10611The following built-in functions are available when both @option{-m3dnow}
10612and @option{-march=athlon} are used.  All of them generate the machine
10613instruction that is part of the name.
10614
10615@smallexample
10616v2si __builtin_ia32_pf2iw (v2sf)
10617v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
10618v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
10619v2sf __builtin_ia32_pi2fw (v2si)
10620v2sf __builtin_ia32_pswapdsf (v2sf)
10621v2si __builtin_ia32_pswapdsi (v2si)
10622@end smallexample
10623
10624@node MIPS DSP Built-in Functions
10625@subsection MIPS DSP Built-in Functions
10626
10627The MIPS DSP Application-Specific Extension (ASE) includes new
10628instructions that are designed to improve the performance of DSP and
10629media applications.  It provides instructions that operate on packed
106308-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
10631
10632GCC supports MIPS DSP operations using both the generic
10633vector extensions (@pxref{Vector Extensions}) and a collection of
10634MIPS-specific built-in functions.  Both kinds of support are
10635enabled by the @option{-mdsp} command-line option.
10636
10637Revision 2 of the ASE was introduced in the second half of 2006.
10638This revision adds extra instructions to the original ASE, but is
10639otherwise backwards-compatible with it.  You can select revision 2
10640using the command-line option @option{-mdspr2}; this option implies
10641@option{-mdsp}.
10642
10643The SCOUNT and POS bits of the DSP control register are global.  The
10644WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
10645POS bits.  During optimization, the compiler will not delete these
10646instructions and it will not delete calls to functions containing
10647these instructions.
10648
10649At present, GCC only provides support for operations on 32-bit
10650vectors.  The vector type associated with 8-bit integer data is
10651usually called @code{v4i8}, the vector type associated with Q7
10652is usually called @code{v4q7}, the vector type associated with 16-bit
10653integer data is usually called @code{v2i16}, and the vector type
10654associated with Q15 is usually called @code{v2q15}.  They can be
10655defined in C as follows:
10656
10657@smallexample
10658typedef signed char v4i8 __attribute__ ((vector_size(4)));
10659typedef signed char v4q7 __attribute__ ((vector_size(4)));
10660typedef short v2i16 __attribute__ ((vector_size(4)));
10661typedef short v2q15 __attribute__ ((vector_size(4)));
10662@end smallexample
10663
10664@code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
10665initialized in the same way as aggregates.  For example:
10666
10667@smallexample
10668v4i8 a = @{1, 2, 3, 4@};
10669v4i8 b;
10670b = (v4i8) @{5, 6, 7, 8@};
10671
10672v2q15 c = @{0x0fcb, 0x3a75@};
10673v2q15 d;
10674d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
10675@end smallexample
10676
10677@emph{Note:} The CPU's endianness determines the order in which values
10678are packed.  On little-endian targets, the first value is the least
10679significant and the last value is the most significant.  The opposite
10680order applies to big-endian targets.  For example, the code above will
10681set the lowest byte of @code{a} to @code{1} on little-endian targets
10682and @code{4} on big-endian targets.
10683
10684@emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
10685representation.  As shown in this example, the integer representation
10686of a Q7 value can be obtained by multiplying the fractional value by
10687@code{0x1.0p7}.  The equivalent for Q15 values is to multiply by
10688@code{0x1.0p15}.  The equivalent for Q31 values is to multiply by
10689@code{0x1.0p31}.
10690
10691The table below lists the @code{v4i8} and @code{v2q15} operations for which
10692hardware support exists.  @code{a} and @code{b} are @code{v4i8} values,
10693and @code{c} and @code{d} are @code{v2q15} values.
10694
10695@multitable @columnfractions .50 .50
10696@item C code @tab MIPS instruction
10697@item @code{a + b} @tab @code{addu.qb}
10698@item @code{c + d} @tab @code{addq.ph}
10699@item @code{a - b} @tab @code{subu.qb}
10700@item @code{c - d} @tab @code{subq.ph}
10701@end multitable
10702
10703The table below lists the @code{v2i16} operation for which
10704hardware support exists for the DSP ASE REV 2.  @code{e} and @code{f} are
10705@code{v2i16} values.
10706
10707@multitable @columnfractions .50 .50
10708@item C code @tab MIPS instruction
10709@item @code{e * f} @tab @code{mul.ph}
10710@end multitable
10711
10712It is easier to describe the DSP built-in functions if we first define
10713the following types:
10714
10715@smallexample
10716typedef int q31;
10717typedef int i32;
10718typedef unsigned int ui32;
10719typedef long long a64;
10720@end smallexample
10721
10722@code{q31} and @code{i32} are actually the same as @code{int}, but we
10723use @code{q31} to indicate a Q31 fractional value and @code{i32} to
10724indicate a 32-bit integer value.  Similarly, @code{a64} is the same as
10725@code{long long}, but we use @code{a64} to indicate values that will
10726be placed in one of the four DSP accumulators (@code{$ac0},
10727@code{$ac1}, @code{$ac2} or @code{$ac3}).
10728
10729Also, some built-in functions prefer or require immediate numbers as
10730parameters, because the corresponding DSP instructions accept both immediate
10731numbers and register operands, or accept immediate numbers only.  The
10732immediate parameters are listed as follows.
10733
10734@smallexample
10735imm0_3: 0 to 3.
10736imm0_7: 0 to 7.
10737imm0_15: 0 to 15.
10738imm0_31: 0 to 31.
10739imm0_63: 0 to 63.
10740imm0_255: 0 to 255.
10741imm_n32_31: -32 to 31.
10742imm_n512_511: -512 to 511.
10743@end smallexample
10744
10745The following built-in functions map directly to a particular MIPS DSP
10746instruction.  Please refer to the architecture specification
10747for details on what each instruction does.
10748
10749@smallexample
10750v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
10751v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
10752q31 __builtin_mips_addq_s_w (q31, q31)
10753v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
10754v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
10755v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
10756v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
10757q31 __builtin_mips_subq_s_w (q31, q31)
10758v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
10759v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
10760i32 __builtin_mips_addsc (i32, i32)
10761i32 __builtin_mips_addwc (i32, i32)
10762i32 __builtin_mips_modsub (i32, i32)
10763i32 __builtin_mips_raddu_w_qb (v4i8)
10764v2q15 __builtin_mips_absq_s_ph (v2q15)
10765q31 __builtin_mips_absq_s_w (q31)
10766v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
10767v2q15 __builtin_mips_precrq_ph_w (q31, q31)
10768v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
10769v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
10770q31 __builtin_mips_preceq_w_phl (v2q15)
10771q31 __builtin_mips_preceq_w_phr (v2q15)
10772v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
10773v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
10774v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
10775v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
10776v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
10777v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
10778v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
10779v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
10780v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
10781v4i8 __builtin_mips_shll_qb (v4i8, i32)
10782v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
10783v2q15 __builtin_mips_shll_ph (v2q15, i32)
10784v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
10785v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
10786q31 __builtin_mips_shll_s_w (q31, imm0_31)
10787q31 __builtin_mips_shll_s_w (q31, i32)
10788v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
10789v4i8 __builtin_mips_shrl_qb (v4i8, i32)
10790v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
10791v2q15 __builtin_mips_shra_ph (v2q15, i32)
10792v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
10793v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
10794q31 __builtin_mips_shra_r_w (q31, imm0_31)
10795q31 __builtin_mips_shra_r_w (q31, i32)
10796v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
10797v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
10798v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
10799q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
10800q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
10801a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
10802a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
10803a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
10804a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
10805a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
10806a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
10807a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
10808a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
10809a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
10810a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
10811a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
10812a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
10813a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
10814i32 __builtin_mips_bitrev (i32)
10815i32 __builtin_mips_insv (i32, i32)
10816v4i8 __builtin_mips_repl_qb (imm0_255)
10817v4i8 __builtin_mips_repl_qb (i32)
10818v2q15 __builtin_mips_repl_ph (imm_n512_511)
10819v2q15 __builtin_mips_repl_ph (i32)
10820void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
10821void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
10822void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
10823i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
10824i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
10825i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
10826void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
10827void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
10828void __builtin_mips_cmp_le_ph (v2q15, v2q15)
10829v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
10830v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
10831v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
10832i32 __builtin_mips_extr_w (a64, imm0_31)
10833i32 __builtin_mips_extr_w (a64, i32)
10834i32 __builtin_mips_extr_r_w (a64, imm0_31)
10835i32 __builtin_mips_extr_s_h (a64, i32)
10836i32 __builtin_mips_extr_rs_w (a64, imm0_31)
10837i32 __builtin_mips_extr_rs_w (a64, i32)
10838i32 __builtin_mips_extr_s_h (a64, imm0_31)
10839i32 __builtin_mips_extr_r_w (a64, i32)
10840i32 __builtin_mips_extp (a64, imm0_31)
10841i32 __builtin_mips_extp (a64, i32)
10842i32 __builtin_mips_extpdp (a64, imm0_31)
10843i32 __builtin_mips_extpdp (a64, i32)
10844a64 __builtin_mips_shilo (a64, imm_n32_31)
10845a64 __builtin_mips_shilo (a64, i32)
10846a64 __builtin_mips_mthlip (a64, i32)
10847void __builtin_mips_wrdsp (i32, imm0_63)
10848i32 __builtin_mips_rddsp (imm0_63)
10849i32 __builtin_mips_lbux (void *, i32)
10850i32 __builtin_mips_lhx (void *, i32)
10851i32 __builtin_mips_lwx (void *, i32)
10852a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
10853i32 __builtin_mips_bposge32 (void)
10854a64 __builtin_mips_madd (a64, i32, i32);
10855a64 __builtin_mips_maddu (a64, ui32, ui32);
10856a64 __builtin_mips_msub (a64, i32, i32);
10857a64 __builtin_mips_msubu (a64, ui32, ui32);
10858a64 __builtin_mips_mult (i32, i32);
10859a64 __builtin_mips_multu (ui32, ui32);
10860@end smallexample
10861
10862The following built-in functions map directly to a particular MIPS DSP REV 2
10863instruction.  Please refer to the architecture specification
10864for details on what each instruction does.
10865
10866@smallexample
10867v4q7 __builtin_mips_absq_s_qb (v4q7);
10868v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
10869v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
10870v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
10871v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
10872i32 __builtin_mips_append (i32, i32, imm0_31);
10873i32 __builtin_mips_balign (i32, i32, imm0_3);
10874i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
10875i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
10876i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
10877a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
10878a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
10879v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
10880v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
10881q31 __builtin_mips_mulq_rs_w (q31, q31);
10882v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
10883q31 __builtin_mips_mulq_s_w (q31, q31);
10884a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
10885v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
10886v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
10887v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
10888i32 __builtin_mips_prepend (i32, i32, imm0_31);
10889v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
10890v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
10891v4i8 __builtin_mips_shra_qb (v4i8, i32);
10892v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
10893v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
10894v2i16 __builtin_mips_shrl_ph (v2i16, i32);
10895v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
10896v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
10897v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
10898v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
10899v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
10900v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
10901q31 __builtin_mips_addqh_w (q31, q31);
10902q31 __builtin_mips_addqh_r_w (q31, q31);
10903v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
10904v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
10905q31 __builtin_mips_subqh_w (q31, q31);
10906q31 __builtin_mips_subqh_r_w (q31, q31);
10907a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
10908a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
10909a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
10910a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
10911a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
10912a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
10913@end smallexample
10914
10915
10916@node MIPS Paired-Single Support
10917@subsection MIPS Paired-Single Support
10918
10919The MIPS64 architecture includes a number of instructions that
10920operate on pairs of single-precision floating-point values.
10921Each pair is packed into a 64-bit floating-point register,
10922with one element being designated the ``upper half'' and
10923the other being designated the ``lower half''.
10924
10925GCC supports paired-single operations using both the generic
10926vector extensions (@pxref{Vector Extensions}) and a collection of
10927MIPS-specific built-in functions.  Both kinds of support are
10928enabled by the @option{-mpaired-single} command-line option.
10929
10930The vector type associated with paired-single values is usually
10931called @code{v2sf}.  It can be defined in C as follows:
10932
10933@smallexample
10934typedef float v2sf __attribute__ ((vector_size (8)));
10935@end smallexample
10936
10937@code{v2sf} values are initialized in the same way as aggregates.
10938For example:
10939
10940@smallexample
10941v2sf a = @{1.5, 9.1@};
10942v2sf b;
10943float e, f;
10944b = (v2sf) @{e, f@};
10945@end smallexample
10946
10947@emph{Note:} The CPU's endianness determines which value is stored in
10948the upper half of a register and which value is stored in the lower half.
10949On little-endian targets, the first value is the lower one and the second
10950value is the upper one.  The opposite order applies to big-endian targets.
10951For example, the code above will set the lower half of @code{a} to
10952@code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
10953
10954@node MIPS Loongson Built-in Functions
10955@subsection MIPS Loongson Built-in Functions
10956
10957GCC provides intrinsics to access the SIMD instructions provided by the
10958ST Microelectronics Loongson-2E and -2F processors.  These intrinsics,
10959available after inclusion of the @code{loongson.h} header file,
10960operate on the following 64-bit vector types:
10961
10962@itemize
10963@item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
10964@item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
10965@item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
10966@item @code{int8x8_t}, a vector of eight signed 8-bit integers;
10967@item @code{int16x4_t}, a vector of four signed 16-bit integers;
10968@item @code{int32x2_t}, a vector of two signed 32-bit integers.
10969@end itemize
10970
10971The intrinsics provided are listed below; each is named after the
10972machine instruction to which it corresponds, with suffixes added as
10973appropriate to distinguish intrinsics that expand to the same machine
10974instruction yet have different argument types.  Refer to the architecture
10975documentation for a description of the functionality of each
10976instruction.
10977
10978@smallexample
10979int16x4_t packsswh (int32x2_t s, int32x2_t t);
10980int8x8_t packsshb (int16x4_t s, int16x4_t t);
10981uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
10982uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
10983uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
10984uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
10985int32x2_t paddw_s (int32x2_t s, int32x2_t t);
10986int16x4_t paddh_s (int16x4_t s, int16x4_t t);
10987int8x8_t paddb_s (int8x8_t s, int8x8_t t);
10988uint64_t paddd_u (uint64_t s, uint64_t t);
10989int64_t paddd_s (int64_t s, int64_t t);
10990int16x4_t paddsh (int16x4_t s, int16x4_t t);
10991int8x8_t paddsb (int8x8_t s, int8x8_t t);
10992uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
10993uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
10994uint64_t pandn_ud (uint64_t s, uint64_t t);
10995uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
10996uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
10997uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
10998int64_t pandn_sd (int64_t s, int64_t t);
10999int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
11000int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
11001int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
11002uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
11003uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
11004uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
11005uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
11006uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
11007int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
11008int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
11009int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
11010uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
11011uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
11012uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
11013int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
11014int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
11015int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
11016uint16x4_t pextrh_u (uint16x4_t s, int field);
11017int16x4_t pextrh_s (int16x4_t s, int field);
11018uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
11019uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
11020uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
11021uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
11022int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
11023int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
11024int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
11025int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
11026int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
11027int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
11028uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
11029int16x4_t pminsh (int16x4_t s, int16x4_t t);
11030uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
11031uint8x8_t pmovmskb_u (uint8x8_t s);
11032int8x8_t pmovmskb_s (int8x8_t s);
11033uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
11034int16x4_t pmulhh (int16x4_t s, int16x4_t t);
11035int16x4_t pmullh (int16x4_t s, int16x4_t t);
11036int64_t pmuluw (uint32x2_t s, uint32x2_t t);
11037uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
11038uint16x4_t biadd (uint8x8_t s);
11039uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
11040uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
11041int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
11042uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
11043int16x4_t psllh_s (int16x4_t s, uint8_t amount);
11044uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
11045int32x2_t psllw_s (int32x2_t s, uint8_t amount);
11046uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
11047int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
11048uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
11049int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
11050uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
11051int16x4_t psrah_s (int16x4_t s, uint8_t amount);
11052uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
11053int32x2_t psraw_s (int32x2_t s, uint8_t amount);
11054uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
11055uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
11056uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
11057int32x2_t psubw_s (int32x2_t s, int32x2_t t);
11058int16x4_t psubh_s (int16x4_t s, int16x4_t t);
11059int8x8_t psubb_s (int8x8_t s, int8x8_t t);
11060uint64_t psubd_u (uint64_t s, uint64_t t);
11061int64_t psubd_s (int64_t s, int64_t t);
11062int16x4_t psubsh (int16x4_t s, int16x4_t t);
11063int8x8_t psubsb (int8x8_t s, int8x8_t t);
11064uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
11065uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
11066uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
11067uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
11068uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
11069int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
11070int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
11071int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
11072uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
11073uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
11074uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
11075int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
11076int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
11077int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
11078@end smallexample
11079
11080@menu
11081* Paired-Single Arithmetic::
11082* Paired-Single Built-in Functions::
11083* MIPS-3D Built-in Functions::
11084@end menu
11085
11086@node Paired-Single Arithmetic
11087@subsubsection Paired-Single Arithmetic
11088
11089The table below lists the @code{v2sf} operations for which hardware
11090support exists.  @code{a}, @code{b} and @code{c} are @code{v2sf}
11091values and @code{x} is an integral value.
11092
11093@multitable @columnfractions .50 .50
11094@item C code @tab MIPS instruction
11095@item @code{a + b} @tab @code{add.ps}
11096@item @code{a - b} @tab @code{sub.ps}
11097@item @code{-a} @tab @code{neg.ps}
11098@item @code{a * b} @tab @code{mul.ps}
11099@item @code{a * b + c} @tab @code{madd.ps}
11100@item @code{a * b - c} @tab @code{msub.ps}
11101@item @code{-(a * b + c)} @tab @code{nmadd.ps}
11102@item @code{-(a * b - c)} @tab @code{nmsub.ps}
11103@item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
11104@end multitable
11105
11106Note that the multiply-accumulate instructions can be disabled
11107using the command-line option @code{-mno-fused-madd}.
11108
11109@node Paired-Single Built-in Functions
11110@subsubsection Paired-Single Built-in Functions
11111
11112The following paired-single functions map directly to a particular
11113MIPS instruction.  Please refer to the architecture specification
11114for details on what each instruction does.
11115
11116@table @code
11117@item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
11118Pair lower lower (@code{pll.ps}).
11119
11120@item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
11121Pair upper lower (@code{pul.ps}).
11122
11123@item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
11124Pair lower upper (@code{plu.ps}).
11125
11126@item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
11127Pair upper upper (@code{puu.ps}).
11128
11129@item v2sf __builtin_mips_cvt_ps_s (float, float)
11130Convert pair to paired single (@code{cvt.ps.s}).
11131
11132@item float __builtin_mips_cvt_s_pl (v2sf)
11133Convert pair lower to single (@code{cvt.s.pl}).
11134
11135@item float __builtin_mips_cvt_s_pu (v2sf)
11136Convert pair upper to single (@code{cvt.s.pu}).
11137
11138@item v2sf __builtin_mips_abs_ps (v2sf)
11139Absolute value (@code{abs.ps}).
11140
11141@item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
11142Align variable (@code{alnv.ps}).
11143
11144@emph{Note:} The value of the third parameter must be 0 or 4
11145modulo 8, otherwise the result will be unpredictable.  Please read the
11146instruction description for details.
11147@end table
11148
11149The following multi-instruction functions are also available.
11150In each case, @var{cond} can be any of the 16 floating-point conditions:
11151@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11152@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
11153@code{lt}, @code{nge}, @code{le} or @code{ngt}.
11154
11155@table @code
11156@item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11157@itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11158Conditional move based on floating point comparison (@code{c.@var{cond}.ps},
11159@code{movt.ps}/@code{movf.ps}).
11160
11161The @code{movt} functions return the value @var{x} computed by:
11162
11163@smallexample
11164c.@var{cond}.ps @var{cc},@var{a},@var{b}
11165mov.ps @var{x},@var{c}
11166movt.ps @var{x},@var{d},@var{cc}
11167@end smallexample
11168
11169The @code{movf} functions are similar but use @code{movf.ps} instead
11170of @code{movt.ps}.
11171
11172@item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11173@itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11174Comparison of two paired-single values (@code{c.@var{cond}.ps},
11175@code{bc1t}/@code{bc1f}).
11176
11177These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11178and return either the upper or lower half of the result.  For example:
11179
11180@smallexample
11181v2sf a, b;
11182if (__builtin_mips_upper_c_eq_ps (a, b))
11183  upper_halves_are_equal ();
11184else
11185  upper_halves_are_unequal ();
11186
11187if (__builtin_mips_lower_c_eq_ps (a, b))
11188  lower_halves_are_equal ();
11189else
11190  lower_halves_are_unequal ();
11191@end smallexample
11192@end table
11193
11194@node MIPS-3D Built-in Functions
11195@subsubsection MIPS-3D Built-in Functions
11196
11197The MIPS-3D Application-Specific Extension (ASE) includes additional
11198paired-single instructions that are designed to improve the performance
11199of 3D graphics operations.  Support for these instructions is controlled
11200by the @option{-mips3d} command-line option.
11201
11202The functions listed below map directly to a particular MIPS-3D
11203instruction.  Please refer to the architecture specification for
11204more details on what each instruction does.
11205
11206@table @code
11207@item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
11208Reduction add (@code{addr.ps}).
11209
11210@item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
11211Reduction multiply (@code{mulr.ps}).
11212
11213@item v2sf __builtin_mips_cvt_pw_ps (v2sf)
11214Convert paired single to paired word (@code{cvt.pw.ps}).
11215
11216@item v2sf __builtin_mips_cvt_ps_pw (v2sf)
11217Convert paired word to paired single (@code{cvt.ps.pw}).
11218
11219@item float __builtin_mips_recip1_s (float)
11220@itemx double __builtin_mips_recip1_d (double)
11221@itemx v2sf __builtin_mips_recip1_ps (v2sf)
11222Reduced precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
11223
11224@item float __builtin_mips_recip2_s (float, float)
11225@itemx double __builtin_mips_recip2_d (double, double)
11226@itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
11227Reduced precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
11228
11229@item float __builtin_mips_rsqrt1_s (float)
11230@itemx double __builtin_mips_rsqrt1_d (double)
11231@itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
11232Reduced precision reciprocal square root (sequence step 1)
11233(@code{rsqrt1.@var{fmt}}).
11234
11235@item float __builtin_mips_rsqrt2_s (float, float)
11236@itemx double __builtin_mips_rsqrt2_d (double, double)
11237@itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
11238Reduced precision reciprocal square root (sequence step 2)
11239(@code{rsqrt2.@var{fmt}}).
11240@end table
11241
11242The following multi-instruction functions are also available.
11243In each case, @var{cond} can be any of the 16 floating-point conditions:
11244@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11245@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
11246@code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
11247
11248@table @code
11249@item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
11250@itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
11251Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
11252@code{bc1t}/@code{bc1f}).
11253
11254These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
11255or @code{cabs.@var{cond}.d} and return the result as a boolean value.
11256For example:
11257
11258@smallexample
11259float a, b;
11260if (__builtin_mips_cabs_eq_s (a, b))
11261  true ();
11262else
11263  false ();
11264@end smallexample
11265
11266@item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11267@itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11268Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
11269@code{bc1t}/@code{bc1f}).
11270
11271These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
11272and return either the upper or lower half of the result.  For example:
11273
11274@smallexample
11275v2sf a, b;
11276if (__builtin_mips_upper_cabs_eq_ps (a, b))
11277  upper_halves_are_equal ();
11278else
11279  upper_halves_are_unequal ();
11280
11281if (__builtin_mips_lower_cabs_eq_ps (a, b))
11282  lower_halves_are_equal ();
11283else
11284  lower_halves_are_unequal ();
11285@end smallexample
11286
11287@item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11288@itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11289Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
11290@code{movt.ps}/@code{movf.ps}).
11291
11292The @code{movt} functions return the value @var{x} computed by:
11293
11294@smallexample
11295cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
11296mov.ps @var{x},@var{c}
11297movt.ps @var{x},@var{d},@var{cc}
11298@end smallexample
11299
11300The @code{movf} functions are similar but use @code{movf.ps} instead
11301of @code{movt.ps}.
11302
11303@item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11304@itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11305@itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11306@itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11307Comparison of two paired-single values
11308(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11309@code{bc1any2t}/@code{bc1any2f}).
11310
11311These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11312or @code{cabs.@var{cond}.ps}.  The @code{any} forms return true if either
11313result is true and the @code{all} forms return true if both results are true.
11314For example:
11315
11316@smallexample
11317v2sf a, b;
11318if (__builtin_mips_any_c_eq_ps (a, b))
11319  one_is_true ();
11320else
11321  both_are_false ();
11322
11323if (__builtin_mips_all_c_eq_ps (a, b))
11324  both_are_true ();
11325else
11326  one_is_false ();
11327@end smallexample
11328
11329@item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11330@itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11331@itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11332@itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11333Comparison of four paired-single values
11334(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11335@code{bc1any4t}/@code{bc1any4f}).
11336
11337These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
11338to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
11339The @code{any} forms return true if any of the four results are true
11340and the @code{all} forms return true if all four results are true.
11341For example:
11342
11343@smallexample
11344v2sf a, b, c, d;
11345if (__builtin_mips_any_c_eq_4s (a, b, c, d))
11346  some_are_true ();
11347else
11348  all_are_false ();
11349
11350if (__builtin_mips_all_c_eq_4s (a, b, c, d))
11351  all_are_true ();
11352else
11353  some_are_false ();
11354@end smallexample
11355@end table
11356
11357@node picoChip Built-in Functions
11358@subsection picoChip Built-in Functions
11359
11360GCC provides an interface to selected machine instructions from the
11361picoChip instruction set.
11362
11363@table @code
11364@item int __builtin_sbc (int @var{value})
11365Sign bit count.  Return the number of consecutive bits in @var{value}
11366which have the same value as the sign-bit.  The result is the number of
11367leading sign bits minus one, giving the number of redundant sign bits in
11368@var{value}.
11369
11370@item int __builtin_byteswap (int @var{value})
11371Byte swap.  Return the result of swapping the upper and lower bytes of
11372@var{value}.
11373
11374@item int __builtin_brev (int @var{value})
11375Bit reversal.  Return the result of reversing the bits in
11376@var{value}.  Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
11377and so on.
11378
11379@item int __builtin_adds (int @var{x}, int @var{y})
11380Saturating addition.  Return the result of adding @var{x} and @var{y},
11381storing the value 32767 if the result overflows.
11382
11383@item int __builtin_subs (int @var{x}, int @var{y})
11384Saturating subtraction.  Return the result of subtracting @var{y} from
11385@var{x}, storing the value @minus{}32768 if the result overflows.
11386
11387@item void __builtin_halt (void)
11388Halt.  The processor will stop execution.  This built-in is useful for
11389implementing assertions.
11390
11391@end table
11392
11393@node Other MIPS Built-in Functions
11394@subsection Other MIPS Built-in Functions
11395
11396GCC provides other MIPS-specific built-in functions:
11397
11398@table @code
11399@item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
11400Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
11401GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
11402when this function is available.
11403@end table
11404
11405@node PowerPC AltiVec/VSX Built-in Functions
11406@subsection PowerPC AltiVec Built-in Functions
11407
11408GCC provides an interface for the PowerPC family of processors to access
11409the AltiVec operations described in Motorola's AltiVec Programming
11410Interface Manual.  The interface is made available by including
11411@code{<altivec.h>} and using @option{-maltivec} and
11412@option{-mabi=altivec}.  The interface supports the following vector
11413types.
11414
11415@smallexample
11416vector unsigned char
11417vector signed char
11418vector bool char
11419
11420vector unsigned short
11421vector signed short
11422vector bool short
11423vector pixel
11424
11425vector unsigned int
11426vector signed int
11427vector bool int
11428vector float
11429@end smallexample
11430
11431If @option{-mvsx} is used the following additional vector types are
11432implemented.
11433
11434@smallexample
11435vector unsigned long
11436vector signed long
11437vector double
11438@end smallexample
11439
11440The long types are only implemented for 64-bit code generation, and
11441the long type is only used in the floating point/integer conversion
11442instructions.
11443
11444GCC's implementation of the high-level language interface available from
11445C and C++ code differs from Motorola's documentation in several ways.
11446
11447@itemize @bullet
11448
11449@item
11450A vector constant is a list of constant expressions within curly braces.
11451
11452@item
11453A vector initializer requires no cast if the vector constant is of the
11454same type as the variable it is initializing.
11455
11456@item
11457If @code{signed} or @code{unsigned} is omitted, the signedness of the
11458vector type is the default signedness of the base type.  The default
11459varies depending on the operating system, so a portable program should
11460always specify the signedness.
11461
11462@item
11463Compiling with @option{-maltivec} adds keywords @code{__vector},
11464@code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
11465@code{bool}.  When compiling ISO C, the context-sensitive substitution
11466of the keywords @code{vector}, @code{pixel} and @code{bool} is
11467disabled.  To use them, you must include @code{<altivec.h>} instead.
11468
11469@item
11470GCC allows using a @code{typedef} name as the type specifier for a
11471vector type.
11472
11473@item
11474For C, overloaded functions are implemented with macros so the following
11475does not work:
11476
11477@smallexample
11478  vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
11479@end smallexample
11480
11481Since @code{vec_add} is a macro, the vector constant in the example
11482is treated as four separate arguments.  Wrap the entire argument in
11483parentheses for this to work.
11484@end itemize
11485
11486@emph{Note:} Only the @code{<altivec.h>} interface is supported.
11487Internally, GCC uses built-in functions to achieve the functionality in
11488the aforementioned header file, but they are not supported and are
11489subject to change without notice.
11490
11491The following interfaces are supported for the generic and specific
11492AltiVec operations and the AltiVec predicates.  In cases where there
11493is a direct mapping between generic and specific operations, only the
11494generic names are shown here, although the specific operations can also
11495be used.
11496
11497Arguments that are documented as @code{const int} require literal
11498integral values within the range required for that operation.
11499
11500@smallexample
11501vector signed char vec_abs (vector signed char);
11502vector signed short vec_abs (vector signed short);
11503vector signed int vec_abs (vector signed int);
11504vector float vec_abs (vector float);
11505
11506vector signed char vec_abss (vector signed char);
11507vector signed short vec_abss (vector signed short);
11508vector signed int vec_abss (vector signed int);
11509
11510vector signed char vec_add (vector bool char, vector signed char);
11511vector signed char vec_add (vector signed char, vector bool char);
11512vector signed char vec_add (vector signed char, vector signed char);
11513vector unsigned char vec_add (vector bool char, vector unsigned char);
11514vector unsigned char vec_add (vector unsigned char, vector bool char);
11515vector unsigned char vec_add (vector unsigned char,
11516                              vector unsigned char);
11517vector signed short vec_add (vector bool short, vector signed short);
11518vector signed short vec_add (vector signed short, vector bool short);
11519vector signed short vec_add (vector signed short, vector signed short);
11520vector unsigned short vec_add (vector bool short,
11521                               vector unsigned short);
11522vector unsigned short vec_add (vector unsigned short,
11523                               vector bool short);
11524vector unsigned short vec_add (vector unsigned short,
11525                               vector unsigned short);
11526vector signed int vec_add (vector bool int, vector signed int);
11527vector signed int vec_add (vector signed int, vector bool int);
11528vector signed int vec_add (vector signed int, vector signed int);
11529vector unsigned int vec_add (vector bool int, vector unsigned int);
11530vector unsigned int vec_add (vector unsigned int, vector bool int);
11531vector unsigned int vec_add (vector unsigned int, vector unsigned int);
11532vector float vec_add (vector float, vector float);
11533
11534vector float vec_vaddfp (vector float, vector float);
11535
11536vector signed int vec_vadduwm (vector bool int, vector signed int);
11537vector signed int vec_vadduwm (vector signed int, vector bool int);
11538vector signed int vec_vadduwm (vector signed int, vector signed int);
11539vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
11540vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
11541vector unsigned int vec_vadduwm (vector unsigned int,
11542                                 vector unsigned int);
11543
11544vector signed short vec_vadduhm (vector bool short,
11545                                 vector signed short);
11546vector signed short vec_vadduhm (vector signed short,
11547                                 vector bool short);
11548vector signed short vec_vadduhm (vector signed short,
11549                                 vector signed short);
11550vector unsigned short vec_vadduhm (vector bool short,
11551                                   vector unsigned short);
11552vector unsigned short vec_vadduhm (vector unsigned short,
11553                                   vector bool short);
11554vector unsigned short vec_vadduhm (vector unsigned short,
11555                                   vector unsigned short);
11556
11557vector signed char vec_vaddubm (vector bool char, vector signed char);
11558vector signed char vec_vaddubm (vector signed char, vector bool char);
11559vector signed char vec_vaddubm (vector signed char, vector signed char);
11560vector unsigned char vec_vaddubm (vector bool char,
11561                                  vector unsigned char);
11562vector unsigned char vec_vaddubm (vector unsigned char,
11563                                  vector bool char);
11564vector unsigned char vec_vaddubm (vector unsigned char,
11565                                  vector unsigned char);
11566
11567vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
11568
11569vector unsigned char vec_adds (vector bool char, vector unsigned char);
11570vector unsigned char vec_adds (vector unsigned char, vector bool char);
11571vector unsigned char vec_adds (vector unsigned char,
11572                               vector unsigned char);
11573vector signed char vec_adds (vector bool char, vector signed char);
11574vector signed char vec_adds (vector signed char, vector bool char);
11575vector signed char vec_adds (vector signed char, vector signed char);
11576vector unsigned short vec_adds (vector bool short,
11577                                vector unsigned short);
11578vector unsigned short vec_adds (vector unsigned short,
11579                                vector bool short);
11580vector unsigned short vec_adds (vector unsigned short,
11581                                vector unsigned short);
11582vector signed short vec_adds (vector bool short, vector signed short);
11583vector signed short vec_adds (vector signed short, vector bool short);
11584vector signed short vec_adds (vector signed short, vector signed short);
11585vector unsigned int vec_adds (vector bool int, vector unsigned int);
11586vector unsigned int vec_adds (vector unsigned int, vector bool int);
11587vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
11588vector signed int vec_adds (vector bool int, vector signed int);
11589vector signed int vec_adds (vector signed int, vector bool int);
11590vector signed int vec_adds (vector signed int, vector signed int);
11591
11592vector signed int vec_vaddsws (vector bool int, vector signed int);
11593vector signed int vec_vaddsws (vector signed int, vector bool int);
11594vector signed int vec_vaddsws (vector signed int, vector signed int);
11595
11596vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
11597vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
11598vector unsigned int vec_vadduws (vector unsigned int,
11599                                 vector unsigned int);
11600
11601vector signed short vec_vaddshs (vector bool short,
11602                                 vector signed short);
11603vector signed short vec_vaddshs (vector signed short,
11604                                 vector bool short);
11605vector signed short vec_vaddshs (vector signed short,
11606                                 vector signed short);
11607
11608vector unsigned short vec_vadduhs (vector bool short,
11609                                   vector unsigned short);
11610vector unsigned short vec_vadduhs (vector unsigned short,
11611                                   vector bool short);
11612vector unsigned short vec_vadduhs (vector unsigned short,
11613                                   vector unsigned short);
11614
11615vector signed char vec_vaddsbs (vector bool char, vector signed char);
11616vector signed char vec_vaddsbs (vector signed char, vector bool char);
11617vector signed char vec_vaddsbs (vector signed char, vector signed char);
11618
11619vector unsigned char vec_vaddubs (vector bool char,
11620                                  vector unsigned char);
11621vector unsigned char vec_vaddubs (vector unsigned char,
11622                                  vector bool char);
11623vector unsigned char vec_vaddubs (vector unsigned char,
11624                                  vector unsigned char);
11625
11626vector float vec_and (vector float, vector float);
11627vector float vec_and (vector float, vector bool int);
11628vector float vec_and (vector bool int, vector float);
11629vector bool int vec_and (vector bool int, vector bool int);
11630vector signed int vec_and (vector bool int, vector signed int);
11631vector signed int vec_and (vector signed int, vector bool int);
11632vector signed int vec_and (vector signed int, vector signed int);
11633vector unsigned int vec_and (vector bool int, vector unsigned int);
11634vector unsigned int vec_and (vector unsigned int, vector bool int);
11635vector unsigned int vec_and (vector unsigned int, vector unsigned int);
11636vector bool short vec_and (vector bool short, vector bool short);
11637vector signed short vec_and (vector bool short, vector signed short);
11638vector signed short vec_and (vector signed short, vector bool short);
11639vector signed short vec_and (vector signed short, vector signed short);
11640vector unsigned short vec_and (vector bool short,
11641                               vector unsigned short);
11642vector unsigned short vec_and (vector unsigned short,
11643                               vector bool short);
11644vector unsigned short vec_and (vector unsigned short,
11645                               vector unsigned short);
11646vector signed char vec_and (vector bool char, vector signed char);
11647vector bool char vec_and (vector bool char, vector bool char);
11648vector signed char vec_and (vector signed char, vector bool char);
11649vector signed char vec_and (vector signed char, vector signed char);
11650vector unsigned char vec_and (vector bool char, vector unsigned char);
11651vector unsigned char vec_and (vector unsigned char, vector bool char);
11652vector unsigned char vec_and (vector unsigned char,
11653                              vector unsigned char);
11654
11655vector float vec_andc (vector float, vector float);
11656vector float vec_andc (vector float, vector bool int);
11657vector float vec_andc (vector bool int, vector float);
11658vector bool int vec_andc (vector bool int, vector bool int);
11659vector signed int vec_andc (vector bool int, vector signed int);
11660vector signed int vec_andc (vector signed int, vector bool int);
11661vector signed int vec_andc (vector signed int, vector signed int);
11662vector unsigned int vec_andc (vector bool int, vector unsigned int);
11663vector unsigned int vec_andc (vector unsigned int, vector bool int);
11664vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
11665vector bool short vec_andc (vector bool short, vector bool short);
11666vector signed short vec_andc (vector bool short, vector signed short);
11667vector signed short vec_andc (vector signed short, vector bool short);
11668vector signed short vec_andc (vector signed short, vector signed short);
11669vector unsigned short vec_andc (vector bool short,
11670                                vector unsigned short);
11671vector unsigned short vec_andc (vector unsigned short,
11672                                vector bool short);
11673vector unsigned short vec_andc (vector unsigned short,
11674                                vector unsigned short);
11675vector signed char vec_andc (vector bool char, vector signed char);
11676vector bool char vec_andc (vector bool char, vector bool char);
11677vector signed char vec_andc (vector signed char, vector bool char);
11678vector signed char vec_andc (vector signed char, vector signed char);
11679vector unsigned char vec_andc (vector bool char, vector unsigned char);
11680vector unsigned char vec_andc (vector unsigned char, vector bool char);
11681vector unsigned char vec_andc (vector unsigned char,
11682                               vector unsigned char);
11683
11684vector unsigned char vec_avg (vector unsigned char,
11685                              vector unsigned char);
11686vector signed char vec_avg (vector signed char, vector signed char);
11687vector unsigned short vec_avg (vector unsigned short,
11688                               vector unsigned short);
11689vector signed short vec_avg (vector signed short, vector signed short);
11690vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
11691vector signed int vec_avg (vector signed int, vector signed int);
11692
11693vector signed int vec_vavgsw (vector signed int, vector signed int);
11694
11695vector unsigned int vec_vavguw (vector unsigned int,
11696                                vector unsigned int);
11697
11698vector signed short vec_vavgsh (vector signed short,
11699                                vector signed short);
11700
11701vector unsigned short vec_vavguh (vector unsigned short,
11702                                  vector unsigned short);
11703
11704vector signed char vec_vavgsb (vector signed char, vector signed char);
11705
11706vector unsigned char vec_vavgub (vector unsigned char,
11707                                 vector unsigned char);
11708
11709vector float vec_copysign (vector float);
11710
11711vector float vec_ceil (vector float);
11712
11713vector signed int vec_cmpb (vector float, vector float);
11714
11715vector bool char vec_cmpeq (vector signed char, vector signed char);
11716vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
11717vector bool short vec_cmpeq (vector signed short, vector signed short);
11718vector bool short vec_cmpeq (vector unsigned short,
11719                             vector unsigned short);
11720vector bool int vec_cmpeq (vector signed int, vector signed int);
11721vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
11722vector bool int vec_cmpeq (vector float, vector float);
11723
11724vector bool int vec_vcmpeqfp (vector float, vector float);
11725
11726vector bool int vec_vcmpequw (vector signed int, vector signed int);
11727vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
11728
11729vector bool short vec_vcmpequh (vector signed short,
11730                                vector signed short);
11731vector bool short vec_vcmpequh (vector unsigned short,
11732                                vector unsigned short);
11733
11734vector bool char vec_vcmpequb (vector signed char, vector signed char);
11735vector bool char vec_vcmpequb (vector unsigned char,
11736                               vector unsigned char);
11737
11738vector bool int vec_cmpge (vector float, vector float);
11739
11740vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
11741vector bool char vec_cmpgt (vector signed char, vector signed char);
11742vector bool short vec_cmpgt (vector unsigned short,
11743                             vector unsigned short);
11744vector bool short vec_cmpgt (vector signed short, vector signed short);
11745vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
11746vector bool int vec_cmpgt (vector signed int, vector signed int);
11747vector bool int vec_cmpgt (vector float, vector float);
11748
11749vector bool int vec_vcmpgtfp (vector float, vector float);
11750
11751vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
11752
11753vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
11754
11755vector bool short vec_vcmpgtsh (vector signed short,
11756                                vector signed short);
11757
11758vector bool short vec_vcmpgtuh (vector unsigned short,
11759                                vector unsigned short);
11760
11761vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
11762
11763vector bool char vec_vcmpgtub (vector unsigned char,
11764                               vector unsigned char);
11765
11766vector bool int vec_cmple (vector float, vector float);
11767
11768vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
11769vector bool char vec_cmplt (vector signed char, vector signed char);
11770vector bool short vec_cmplt (vector unsigned short,
11771                             vector unsigned short);
11772vector bool short vec_cmplt (vector signed short, vector signed short);
11773vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
11774vector bool int vec_cmplt (vector signed int, vector signed int);
11775vector bool int vec_cmplt (vector float, vector float);
11776
11777vector float vec_ctf (vector unsigned int, const int);
11778vector float vec_ctf (vector signed int, const int);
11779
11780vector float vec_vcfsx (vector signed int, const int);
11781
11782vector float vec_vcfux (vector unsigned int, const int);
11783
11784vector signed int vec_cts (vector float, const int);
11785
11786vector unsigned int vec_ctu (vector float, const int);
11787
11788void vec_dss (const int);
11789
11790void vec_dssall (void);
11791
11792void vec_dst (const vector unsigned char *, int, const int);
11793void vec_dst (const vector signed char *, int, const int);
11794void vec_dst (const vector bool char *, int, const int);
11795void vec_dst (const vector unsigned short *, int, const int);
11796void vec_dst (const vector signed short *, int, const int);
11797void vec_dst (const vector bool short *, int, const int);
11798void vec_dst (const vector pixel *, int, const int);
11799void vec_dst (const vector unsigned int *, int, const int);
11800void vec_dst (const vector signed int *, int, const int);
11801void vec_dst (const vector bool int *, int, const int);
11802void vec_dst (const vector float *, int, const int);
11803void vec_dst (const unsigned char *, int, const int);
11804void vec_dst (const signed char *, int, const int);
11805void vec_dst (const unsigned short *, int, const int);
11806void vec_dst (const short *, int, const int);
11807void vec_dst (const unsigned int *, int, const int);
11808void vec_dst (const int *, int, const int);
11809void vec_dst (const unsigned long *, int, const int);
11810void vec_dst (const long *, int, const int);
11811void vec_dst (const float *, int, const int);
11812
11813void vec_dstst (const vector unsigned char *, int, const int);
11814void vec_dstst (const vector signed char *, int, const int);
11815void vec_dstst (const vector bool char *, int, const int);
11816void vec_dstst (const vector unsigned short *, int, const int);
11817void vec_dstst (const vector signed short *, int, const int);
11818void vec_dstst (const vector bool short *, int, const int);
11819void vec_dstst (const vector pixel *, int, const int);
11820void vec_dstst (const vector unsigned int *, int, const int);
11821void vec_dstst (const vector signed int *, int, const int);
11822void vec_dstst (const vector bool int *, int, const int);
11823void vec_dstst (const vector float *, int, const int);
11824void vec_dstst (const unsigned char *, int, const int);
11825void vec_dstst (const signed char *, int, const int);
11826void vec_dstst (const unsigned short *, int, const int);
11827void vec_dstst (const short *, int, const int);
11828void vec_dstst (const unsigned int *, int, const int);
11829void vec_dstst (const int *, int, const int);
11830void vec_dstst (const unsigned long *, int, const int);
11831void vec_dstst (const long *, int, const int);
11832void vec_dstst (const float *, int, const int);
11833
11834void vec_dststt (const vector unsigned char *, int, const int);
11835void vec_dststt (const vector signed char *, int, const int);
11836void vec_dststt (const vector bool char *, int, const int);
11837void vec_dststt (const vector unsigned short *, int, const int);
11838void vec_dststt (const vector signed short *, int, const int);
11839void vec_dststt (const vector bool short *, int, const int);
11840void vec_dststt (const vector pixel *, int, const int);
11841void vec_dststt (const vector unsigned int *, int, const int);
11842void vec_dststt (const vector signed int *, int, const int);
11843void vec_dststt (const vector bool int *, int, const int);
11844void vec_dststt (const vector float *, int, const int);
11845void vec_dststt (const unsigned char *, int, const int);
11846void vec_dststt (const signed char *, int, const int);
11847void vec_dststt (const unsigned short *, int, const int);
11848void vec_dststt (const short *, int, const int);
11849void vec_dststt (const unsigned int *, int, const int);
11850void vec_dststt (const int *, int, const int);
11851void vec_dststt (const unsigned long *, int, const int);
11852void vec_dststt (const long *, int, const int);
11853void vec_dststt (const float *, int, const int);
11854
11855void vec_dstt (const vector unsigned char *, int, const int);
11856void vec_dstt (const vector signed char *, int, const int);
11857void vec_dstt (const vector bool char *, int, const int);
11858void vec_dstt (const vector unsigned short *, int, const int);
11859void vec_dstt (const vector signed short *, int, const int);
11860void vec_dstt (const vector bool short *, int, const int);
11861void vec_dstt (const vector pixel *, int, const int);
11862void vec_dstt (const vector unsigned int *, int, const int);
11863void vec_dstt (const vector signed int *, int, const int);
11864void vec_dstt (const vector bool int *, int, const int);
11865void vec_dstt (const vector float *, int, const int);
11866void vec_dstt (const unsigned char *, int, const int);
11867void vec_dstt (const signed char *, int, const int);
11868void vec_dstt (const unsigned short *, int, const int);
11869void vec_dstt (const short *, int, const int);
11870void vec_dstt (const unsigned int *, int, const int);
11871void vec_dstt (const int *, int, const int);
11872void vec_dstt (const unsigned long *, int, const int);
11873void vec_dstt (const long *, int, const int);
11874void vec_dstt (const float *, int, const int);
11875
11876vector float vec_expte (vector float);
11877
11878vector float vec_floor (vector float);
11879
11880vector float vec_ld (int, const vector float *);
11881vector float vec_ld (int, const float *);
11882vector bool int vec_ld (int, const vector bool int *);
11883vector signed int vec_ld (int, const vector signed int *);
11884vector signed int vec_ld (int, const int *);
11885vector signed int vec_ld (int, const long *);
11886vector unsigned int vec_ld (int, const vector unsigned int *);
11887vector unsigned int vec_ld (int, const unsigned int *);
11888vector unsigned int vec_ld (int, const unsigned long *);
11889vector bool short vec_ld (int, const vector bool short *);
11890vector pixel vec_ld (int, const vector pixel *);
11891vector signed short vec_ld (int, const vector signed short *);
11892vector signed short vec_ld (int, const short *);
11893vector unsigned short vec_ld (int, const vector unsigned short *);
11894vector unsigned short vec_ld (int, const unsigned short *);
11895vector bool char vec_ld (int, const vector bool char *);
11896vector signed char vec_ld (int, const vector signed char *);
11897vector signed char vec_ld (int, const signed char *);
11898vector unsigned char vec_ld (int, const vector unsigned char *);
11899vector unsigned char vec_ld (int, const unsigned char *);
11900
11901vector signed char vec_lde (int, const signed char *);
11902vector unsigned char vec_lde (int, const unsigned char *);
11903vector signed short vec_lde (int, const short *);
11904vector unsigned short vec_lde (int, const unsigned short *);
11905vector float vec_lde (int, const float *);
11906vector signed int vec_lde (int, const int *);
11907vector unsigned int vec_lde (int, const unsigned int *);
11908vector signed int vec_lde (int, const long *);
11909vector unsigned int vec_lde (int, const unsigned long *);
11910
11911vector float vec_lvewx (int, float *);
11912vector signed int vec_lvewx (int, int *);
11913vector unsigned int vec_lvewx (int, unsigned int *);
11914vector signed int vec_lvewx (int, long *);
11915vector unsigned int vec_lvewx (int, unsigned long *);
11916
11917vector signed short vec_lvehx (int, short *);
11918vector unsigned short vec_lvehx (int, unsigned short *);
11919
11920vector signed char vec_lvebx (int, char *);
11921vector unsigned char vec_lvebx (int, unsigned char *);
11922
11923vector float vec_ldl (int, const vector float *);
11924vector float vec_ldl (int, const float *);
11925vector bool int vec_ldl (int, const vector bool int *);
11926vector signed int vec_ldl (int, const vector signed int *);
11927vector signed int vec_ldl (int, const int *);
11928vector signed int vec_ldl (int, const long *);
11929vector unsigned int vec_ldl (int, const vector unsigned int *);
11930vector unsigned int vec_ldl (int, const unsigned int *);
11931vector unsigned int vec_ldl (int, const unsigned long *);
11932vector bool short vec_ldl (int, const vector bool short *);
11933vector pixel vec_ldl (int, const vector pixel *);
11934vector signed short vec_ldl (int, const vector signed short *);
11935vector signed short vec_ldl (int, const short *);
11936vector unsigned short vec_ldl (int, const vector unsigned short *);
11937vector unsigned short vec_ldl (int, const unsigned short *);
11938vector bool char vec_ldl (int, const vector bool char *);
11939vector signed char vec_ldl (int, const vector signed char *);
11940vector signed char vec_ldl (int, const signed char *);
11941vector unsigned char vec_ldl (int, const vector unsigned char *);
11942vector unsigned char vec_ldl (int, const unsigned char *);
11943
11944vector float vec_loge (vector float);
11945
11946vector unsigned char vec_lvsl (int, const volatile unsigned char *);
11947vector unsigned char vec_lvsl (int, const volatile signed char *);
11948vector unsigned char vec_lvsl (int, const volatile unsigned short *);
11949vector unsigned char vec_lvsl (int, const volatile short *);
11950vector unsigned char vec_lvsl (int, const volatile unsigned int *);
11951vector unsigned char vec_lvsl (int, const volatile int *);
11952vector unsigned char vec_lvsl (int, const volatile unsigned long *);
11953vector unsigned char vec_lvsl (int, const volatile long *);
11954vector unsigned char vec_lvsl (int, const volatile float *);
11955
11956vector unsigned char vec_lvsr (int, const volatile unsigned char *);
11957vector unsigned char vec_lvsr (int, const volatile signed char *);
11958vector unsigned char vec_lvsr (int, const volatile unsigned short *);
11959vector unsigned char vec_lvsr (int, const volatile short *);
11960vector unsigned char vec_lvsr (int, const volatile unsigned int *);
11961vector unsigned char vec_lvsr (int, const volatile int *);
11962vector unsigned char vec_lvsr (int, const volatile unsigned long *);
11963vector unsigned char vec_lvsr (int, const volatile long *);
11964vector unsigned char vec_lvsr (int, const volatile float *);
11965
11966vector float vec_madd (vector float, vector float, vector float);
11967
11968vector signed short vec_madds (vector signed short,
11969                               vector signed short,
11970                               vector signed short);
11971
11972vector unsigned char vec_max (vector bool char, vector unsigned char);
11973vector unsigned char vec_max (vector unsigned char, vector bool char);
11974vector unsigned char vec_max (vector unsigned char,
11975                              vector unsigned char);
11976vector signed char vec_max (vector bool char, vector signed char);
11977vector signed char vec_max (vector signed char, vector bool char);
11978vector signed char vec_max (vector signed char, vector signed char);
11979vector unsigned short vec_max (vector bool short,
11980                               vector unsigned short);
11981vector unsigned short vec_max (vector unsigned short,
11982                               vector bool short);
11983vector unsigned short vec_max (vector unsigned short,
11984                               vector unsigned short);
11985vector signed short vec_max (vector bool short, vector signed short);
11986vector signed short vec_max (vector signed short, vector bool short);
11987vector signed short vec_max (vector signed short, vector signed short);
11988vector unsigned int vec_max (vector bool int, vector unsigned int);
11989vector unsigned int vec_max (vector unsigned int, vector bool int);
11990vector unsigned int vec_max (vector unsigned int, vector unsigned int);
11991vector signed int vec_max (vector bool int, vector signed int);
11992vector signed int vec_max (vector signed int, vector bool int);
11993vector signed int vec_max (vector signed int, vector signed int);
11994vector float vec_max (vector float, vector float);
11995
11996vector float vec_vmaxfp (vector float, vector float);
11997
11998vector signed int vec_vmaxsw (vector bool int, vector signed int);
11999vector signed int vec_vmaxsw (vector signed int, vector bool int);
12000vector signed int vec_vmaxsw (vector signed int, vector signed int);
12001
12002vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
12003vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
12004vector unsigned int vec_vmaxuw (vector unsigned int,
12005                                vector unsigned int);
12006
12007vector signed short vec_vmaxsh (vector bool short, vector signed short);
12008vector signed short vec_vmaxsh (vector signed short, vector bool short);
12009vector signed short vec_vmaxsh (vector signed short,
12010                                vector signed short);
12011
12012vector unsigned short vec_vmaxuh (vector bool short,
12013                                  vector unsigned short);
12014vector unsigned short vec_vmaxuh (vector unsigned short,
12015                                  vector bool short);
12016vector unsigned short vec_vmaxuh (vector unsigned short,
12017                                  vector unsigned short);
12018
12019vector signed char vec_vmaxsb (vector bool char, vector signed char);
12020vector signed char vec_vmaxsb (vector signed char, vector bool char);
12021vector signed char vec_vmaxsb (vector signed char, vector signed char);
12022
12023vector unsigned char vec_vmaxub (vector bool char,
12024                                 vector unsigned char);
12025vector unsigned char vec_vmaxub (vector unsigned char,
12026                                 vector bool char);
12027vector unsigned char vec_vmaxub (vector unsigned char,
12028                                 vector unsigned char);
12029
12030vector bool char vec_mergeh (vector bool char, vector bool char);
12031vector signed char vec_mergeh (vector signed char, vector signed char);
12032vector unsigned char vec_mergeh (vector unsigned char,
12033                                 vector unsigned char);
12034vector bool short vec_mergeh (vector bool short, vector bool short);
12035vector pixel vec_mergeh (vector pixel, vector pixel);
12036vector signed short vec_mergeh (vector signed short,
12037                                vector signed short);
12038vector unsigned short vec_mergeh (vector unsigned short,
12039                                  vector unsigned short);
12040vector float vec_mergeh (vector float, vector float);
12041vector bool int vec_mergeh (vector bool int, vector bool int);
12042vector signed int vec_mergeh (vector signed int, vector signed int);
12043vector unsigned int vec_mergeh (vector unsigned int,
12044                                vector unsigned int);
12045
12046vector float vec_vmrghw (vector float, vector float);
12047vector bool int vec_vmrghw (vector bool int, vector bool int);
12048vector signed int vec_vmrghw (vector signed int, vector signed int);
12049vector unsigned int vec_vmrghw (vector unsigned int,
12050                                vector unsigned int);
12051
12052vector bool short vec_vmrghh (vector bool short, vector bool short);
12053vector signed short vec_vmrghh (vector signed short,
12054                                vector signed short);
12055vector unsigned short vec_vmrghh (vector unsigned short,
12056                                  vector unsigned short);
12057vector pixel vec_vmrghh (vector pixel, vector pixel);
12058
12059vector bool char vec_vmrghb (vector bool char, vector bool char);
12060vector signed char vec_vmrghb (vector signed char, vector signed char);
12061vector unsigned char vec_vmrghb (vector unsigned char,
12062                                 vector unsigned char);
12063
12064vector bool char vec_mergel (vector bool char, vector bool char);
12065vector signed char vec_mergel (vector signed char, vector signed char);
12066vector unsigned char vec_mergel (vector unsigned char,
12067                                 vector unsigned char);
12068vector bool short vec_mergel (vector bool short, vector bool short);
12069vector pixel vec_mergel (vector pixel, vector pixel);
12070vector signed short vec_mergel (vector signed short,
12071                                vector signed short);
12072vector unsigned short vec_mergel (vector unsigned short,
12073                                  vector unsigned short);
12074vector float vec_mergel (vector float, vector float);
12075vector bool int vec_mergel (vector bool int, vector bool int);
12076vector signed int vec_mergel (vector signed int, vector signed int);
12077vector unsigned int vec_mergel (vector unsigned int,
12078                                vector unsigned int);
12079
12080vector float vec_vmrglw (vector float, vector float);
12081vector signed int vec_vmrglw (vector signed int, vector signed int);
12082vector unsigned int vec_vmrglw (vector unsigned int,
12083                                vector unsigned int);
12084vector bool int vec_vmrglw (vector bool int, vector bool int);
12085
12086vector bool short vec_vmrglh (vector bool short, vector bool short);
12087vector signed short vec_vmrglh (vector signed short,
12088                                vector signed short);
12089vector unsigned short vec_vmrglh (vector unsigned short,
12090                                  vector unsigned short);
12091vector pixel vec_vmrglh (vector pixel, vector pixel);
12092
12093vector bool char vec_vmrglb (vector bool char, vector bool char);
12094vector signed char vec_vmrglb (vector signed char, vector signed char);
12095vector unsigned char vec_vmrglb (vector unsigned char,
12096                                 vector unsigned char);
12097
12098vector unsigned short vec_mfvscr (void);
12099
12100vector unsigned char vec_min (vector bool char, vector unsigned char);
12101vector unsigned char vec_min (vector unsigned char, vector bool char);
12102vector unsigned char vec_min (vector unsigned char,
12103                              vector unsigned char);
12104vector signed char vec_min (vector bool char, vector signed char);
12105vector signed char vec_min (vector signed char, vector bool char);
12106vector signed char vec_min (vector signed char, vector signed char);
12107vector unsigned short vec_min (vector bool short,
12108                               vector unsigned short);
12109vector unsigned short vec_min (vector unsigned short,
12110                               vector bool short);
12111vector unsigned short vec_min (vector unsigned short,
12112                               vector unsigned short);
12113vector signed short vec_min (vector bool short, vector signed short);
12114vector signed short vec_min (vector signed short, vector bool short);
12115vector signed short vec_min (vector signed short, vector signed short);
12116vector unsigned int vec_min (vector bool int, vector unsigned int);
12117vector unsigned int vec_min (vector unsigned int, vector bool int);
12118vector unsigned int vec_min (vector unsigned int, vector unsigned int);
12119vector signed int vec_min (vector bool int, vector signed int);
12120vector signed int vec_min (vector signed int, vector bool int);
12121vector signed int vec_min (vector signed int, vector signed int);
12122vector float vec_min (vector float, vector float);
12123
12124vector float vec_vminfp (vector float, vector float);
12125
12126vector signed int vec_vminsw (vector bool int, vector signed int);
12127vector signed int vec_vminsw (vector signed int, vector bool int);
12128vector signed int vec_vminsw (vector signed int, vector signed int);
12129
12130vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
12131vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
12132vector unsigned int vec_vminuw (vector unsigned int,
12133                                vector unsigned int);
12134
12135vector signed short vec_vminsh (vector bool short, vector signed short);
12136vector signed short vec_vminsh (vector signed short, vector bool short);
12137vector signed short vec_vminsh (vector signed short,
12138                                vector signed short);
12139
12140vector unsigned short vec_vminuh (vector bool short,
12141                                  vector unsigned short);
12142vector unsigned short vec_vminuh (vector unsigned short,
12143                                  vector bool short);
12144vector unsigned short vec_vminuh (vector unsigned short,
12145                                  vector unsigned short);
12146
12147vector signed char vec_vminsb (vector bool char, vector signed char);
12148vector signed char vec_vminsb (vector signed char, vector bool char);
12149vector signed char vec_vminsb (vector signed char, vector signed char);
12150
12151vector unsigned char vec_vminub (vector bool char,
12152                                 vector unsigned char);
12153vector unsigned char vec_vminub (vector unsigned char,
12154                                 vector bool char);
12155vector unsigned char vec_vminub (vector unsigned char,
12156                                 vector unsigned char);
12157
12158vector signed short vec_mladd (vector signed short,
12159                               vector signed short,
12160                               vector signed short);
12161vector signed short vec_mladd (vector signed short,
12162                               vector unsigned short,
12163                               vector unsigned short);
12164vector signed short vec_mladd (vector unsigned short,
12165                               vector signed short,
12166                               vector signed short);
12167vector unsigned short vec_mladd (vector unsigned short,
12168                                 vector unsigned short,
12169                                 vector unsigned short);
12170
12171vector signed short vec_mradds (vector signed short,
12172                                vector signed short,
12173                                vector signed short);
12174
12175vector unsigned int vec_msum (vector unsigned char,
12176                              vector unsigned char,
12177                              vector unsigned int);
12178vector signed int vec_msum (vector signed char,
12179                            vector unsigned char,
12180                            vector signed int);
12181vector unsigned int vec_msum (vector unsigned short,
12182                              vector unsigned short,
12183                              vector unsigned int);
12184vector signed int vec_msum (vector signed short,
12185                            vector signed short,
12186                            vector signed int);
12187
12188vector signed int vec_vmsumshm (vector signed short,
12189                                vector signed short,
12190                                vector signed int);
12191
12192vector unsigned int vec_vmsumuhm (vector unsigned short,
12193                                  vector unsigned short,
12194                                  vector unsigned int);
12195
12196vector signed int vec_vmsummbm (vector signed char,
12197                                vector unsigned char,
12198                                vector signed int);
12199
12200vector unsigned int vec_vmsumubm (vector unsigned char,
12201                                  vector unsigned char,
12202                                  vector unsigned int);
12203
12204vector unsigned int vec_msums (vector unsigned short,
12205                               vector unsigned short,
12206                               vector unsigned int);
12207vector signed int vec_msums (vector signed short,
12208                             vector signed short,
12209                             vector signed int);
12210
12211vector signed int vec_vmsumshs (vector signed short,
12212                                vector signed short,
12213                                vector signed int);
12214
12215vector unsigned int vec_vmsumuhs (vector unsigned short,
12216                                  vector unsigned short,
12217                                  vector unsigned int);
12218
12219void vec_mtvscr (vector signed int);
12220void vec_mtvscr (vector unsigned int);
12221void vec_mtvscr (vector bool int);
12222void vec_mtvscr (vector signed short);
12223void vec_mtvscr (vector unsigned short);
12224void vec_mtvscr (vector bool short);
12225void vec_mtvscr (vector pixel);
12226void vec_mtvscr (vector signed char);
12227void vec_mtvscr (vector unsigned char);
12228void vec_mtvscr (vector bool char);
12229
12230vector unsigned short vec_mule (vector unsigned char,
12231                                vector unsigned char);
12232vector signed short vec_mule (vector signed char,
12233                              vector signed char);
12234vector unsigned int vec_mule (vector unsigned short,
12235                              vector unsigned short);
12236vector signed int vec_mule (vector signed short, vector signed short);
12237
12238vector signed int vec_vmulesh (vector signed short,
12239                               vector signed short);
12240
12241vector unsigned int vec_vmuleuh (vector unsigned short,
12242                                 vector unsigned short);
12243
12244vector signed short vec_vmulesb (vector signed char,
12245                                 vector signed char);
12246
12247vector unsigned short vec_vmuleub (vector unsigned char,
12248                                  vector unsigned char);
12249
12250vector unsigned short vec_mulo (vector unsigned char,
12251                                vector unsigned char);
12252vector signed short vec_mulo (vector signed char, vector signed char);
12253vector unsigned int vec_mulo (vector unsigned short,
12254                              vector unsigned short);
12255vector signed int vec_mulo (vector signed short, vector signed short);
12256
12257vector signed int vec_vmulosh (vector signed short,
12258                               vector signed short);
12259
12260vector unsigned int vec_vmulouh (vector unsigned short,
12261                                 vector unsigned short);
12262
12263vector signed short vec_vmulosb (vector signed char,
12264                                 vector signed char);
12265
12266vector unsigned short vec_vmuloub (vector unsigned char,
12267                                   vector unsigned char);
12268
12269vector float vec_nmsub (vector float, vector float, vector float);
12270
12271vector float vec_nor (vector float, vector float);
12272vector signed int vec_nor (vector signed int, vector signed int);
12273vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
12274vector bool int vec_nor (vector bool int, vector bool int);
12275vector signed short vec_nor (vector signed short, vector signed short);
12276vector unsigned short vec_nor (vector unsigned short,
12277                               vector unsigned short);
12278vector bool short vec_nor (vector bool short, vector bool short);
12279vector signed char vec_nor (vector signed char, vector signed char);
12280vector unsigned char vec_nor (vector unsigned char,
12281                              vector unsigned char);
12282vector bool char vec_nor (vector bool char, vector bool char);
12283
12284vector float vec_or (vector float, vector float);
12285vector float vec_or (vector float, vector bool int);
12286vector float vec_or (vector bool int, vector float);
12287vector bool int vec_or (vector bool int, vector bool int);
12288vector signed int vec_or (vector bool int, vector signed int);
12289vector signed int vec_or (vector signed int, vector bool int);
12290vector signed int vec_or (vector signed int, vector signed int);
12291vector unsigned int vec_or (vector bool int, vector unsigned int);
12292vector unsigned int vec_or (vector unsigned int, vector bool int);
12293vector unsigned int vec_or (vector unsigned int, vector unsigned int);
12294vector bool short vec_or (vector bool short, vector bool short);
12295vector signed short vec_or (vector bool short, vector signed short);
12296vector signed short vec_or (vector signed short, vector bool short);
12297vector signed short vec_or (vector signed short, vector signed short);
12298vector unsigned short vec_or (vector bool short, vector unsigned short);
12299vector unsigned short vec_or (vector unsigned short, vector bool short);
12300vector unsigned short vec_or (vector unsigned short,
12301                              vector unsigned short);
12302vector signed char vec_or (vector bool char, vector signed char);
12303vector bool char vec_or (vector bool char, vector bool char);
12304vector signed char vec_or (vector signed char, vector bool char);
12305vector signed char vec_or (vector signed char, vector signed char);
12306vector unsigned char vec_or (vector bool char, vector unsigned char);
12307vector unsigned char vec_or (vector unsigned char, vector bool char);
12308vector unsigned char vec_or (vector unsigned char,
12309                             vector unsigned char);
12310
12311vector signed char vec_pack (vector signed short, vector signed short);
12312vector unsigned char vec_pack (vector unsigned short,
12313                               vector unsigned short);
12314vector bool char vec_pack (vector bool short, vector bool short);
12315vector signed short vec_pack (vector signed int, vector signed int);
12316vector unsigned short vec_pack (vector unsigned int,
12317                                vector unsigned int);
12318vector bool short vec_pack (vector bool int, vector bool int);
12319
12320vector bool short vec_vpkuwum (vector bool int, vector bool int);
12321vector signed short vec_vpkuwum (vector signed int, vector signed int);
12322vector unsigned short vec_vpkuwum (vector unsigned int,
12323                                   vector unsigned int);
12324
12325vector bool char vec_vpkuhum (vector bool short, vector bool short);
12326vector signed char vec_vpkuhum (vector signed short,
12327                                vector signed short);
12328vector unsigned char vec_vpkuhum (vector unsigned short,
12329                                  vector unsigned short);
12330
12331vector pixel vec_packpx (vector unsigned int, vector unsigned int);
12332
12333vector unsigned char vec_packs (vector unsigned short,
12334                                vector unsigned short);
12335vector signed char vec_packs (vector signed short, vector signed short);
12336vector unsigned short vec_packs (vector unsigned int,
12337                                 vector unsigned int);
12338vector signed short vec_packs (vector signed int, vector signed int);
12339
12340vector signed short vec_vpkswss (vector signed int, vector signed int);
12341
12342vector unsigned short vec_vpkuwus (vector unsigned int,
12343                                   vector unsigned int);
12344
12345vector signed char vec_vpkshss (vector signed short,
12346                                vector signed short);
12347
12348vector unsigned char vec_vpkuhus (vector unsigned short,
12349                                  vector unsigned short);
12350
12351vector unsigned char vec_packsu (vector unsigned short,
12352                                 vector unsigned short);
12353vector unsigned char vec_packsu (vector signed short,
12354                                 vector signed short);
12355vector unsigned short vec_packsu (vector unsigned int,
12356                                  vector unsigned int);
12357vector unsigned short vec_packsu (vector signed int, vector signed int);
12358
12359vector unsigned short vec_vpkswus (vector signed int,
12360                                   vector signed int);
12361
12362vector unsigned char vec_vpkshus (vector signed short,
12363                                  vector signed short);
12364
12365vector float vec_perm (vector float,
12366                       vector float,
12367                       vector unsigned char);
12368vector signed int vec_perm (vector signed int,
12369                            vector signed int,
12370                            vector unsigned char);
12371vector unsigned int vec_perm (vector unsigned int,
12372                              vector unsigned int,
12373                              vector unsigned char);
12374vector bool int vec_perm (vector bool int,
12375                          vector bool int,
12376                          vector unsigned char);
12377vector signed short vec_perm (vector signed short,
12378                              vector signed short,
12379                              vector unsigned char);
12380vector unsigned short vec_perm (vector unsigned short,
12381                                vector unsigned short,
12382                                vector unsigned char);
12383vector bool short vec_perm (vector bool short,
12384                            vector bool short,
12385                            vector unsigned char);
12386vector pixel vec_perm (vector pixel,
12387                       vector pixel,
12388                       vector unsigned char);
12389vector signed char vec_perm (vector signed char,
12390                             vector signed char,
12391                             vector unsigned char);
12392vector unsigned char vec_perm (vector unsigned char,
12393                               vector unsigned char,
12394                               vector unsigned char);
12395vector bool char vec_perm (vector bool char,
12396                           vector bool char,
12397                           vector unsigned char);
12398
12399vector float vec_re (vector float);
12400
12401vector signed char vec_rl (vector signed char,
12402                           vector unsigned char);
12403vector unsigned char vec_rl (vector unsigned char,
12404                             vector unsigned char);
12405vector signed short vec_rl (vector signed short, vector unsigned short);
12406vector unsigned short vec_rl (vector unsigned short,
12407                              vector unsigned short);
12408vector signed int vec_rl (vector signed int, vector unsigned int);
12409vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
12410
12411vector signed int vec_vrlw (vector signed int, vector unsigned int);
12412vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
12413
12414vector signed short vec_vrlh (vector signed short,
12415                              vector unsigned short);
12416vector unsigned short vec_vrlh (vector unsigned short,
12417                                vector unsigned short);
12418
12419vector signed char vec_vrlb (vector signed char, vector unsigned char);
12420vector unsigned char vec_vrlb (vector unsigned char,
12421                               vector unsigned char);
12422
12423vector float vec_round (vector float);
12424
12425vector float vec_recip (vector float, vector float);
12426
12427vector float vec_rsqrt (vector float);
12428
12429vector float vec_rsqrte (vector float);
12430
12431vector float vec_sel (vector float, vector float, vector bool int);
12432vector float vec_sel (vector float, vector float, vector unsigned int);
12433vector signed int vec_sel (vector signed int,
12434                           vector signed int,
12435                           vector bool int);
12436vector signed int vec_sel (vector signed int,
12437                           vector signed int,
12438                           vector unsigned int);
12439vector unsigned int vec_sel (vector unsigned int,
12440                             vector unsigned int,
12441                             vector bool int);
12442vector unsigned int vec_sel (vector unsigned int,
12443                             vector unsigned int,
12444                             vector unsigned int);
12445vector bool int vec_sel (vector bool int,
12446                         vector bool int,
12447                         vector bool int);
12448vector bool int vec_sel (vector bool int,
12449                         vector bool int,
12450                         vector unsigned int);
12451vector signed short vec_sel (vector signed short,
12452                             vector signed short,
12453                             vector bool short);
12454vector signed short vec_sel (vector signed short,
12455                             vector signed short,
12456                             vector unsigned short);
12457vector unsigned short vec_sel (vector unsigned short,
12458                               vector unsigned short,
12459                               vector bool short);
12460vector unsigned short vec_sel (vector unsigned short,
12461                               vector unsigned short,
12462                               vector unsigned short);
12463vector bool short vec_sel (vector bool short,
12464                           vector bool short,
12465                           vector bool short);
12466vector bool short vec_sel (vector bool short,
12467                           vector bool short,
12468                           vector unsigned short);
12469vector signed char vec_sel (vector signed char,
12470                            vector signed char,
12471                            vector bool char);
12472vector signed char vec_sel (vector signed char,
12473                            vector signed char,
12474                            vector unsigned char);
12475vector unsigned char vec_sel (vector unsigned char,
12476                              vector unsigned char,
12477                              vector bool char);
12478vector unsigned char vec_sel (vector unsigned char,
12479                              vector unsigned char,
12480                              vector unsigned char);
12481vector bool char vec_sel (vector bool char,
12482                          vector bool char,
12483                          vector bool char);
12484vector bool char vec_sel (vector bool char,
12485                          vector bool char,
12486                          vector unsigned char);
12487
12488vector signed char vec_sl (vector signed char,
12489                           vector unsigned char);
12490vector unsigned char vec_sl (vector unsigned char,
12491                             vector unsigned char);
12492vector signed short vec_sl (vector signed short, vector unsigned short);
12493vector unsigned short vec_sl (vector unsigned short,
12494                              vector unsigned short);
12495vector signed int vec_sl (vector signed int, vector unsigned int);
12496vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
12497
12498vector signed int vec_vslw (vector signed int, vector unsigned int);
12499vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
12500
12501vector signed short vec_vslh (vector signed short,
12502                              vector unsigned short);
12503vector unsigned short vec_vslh (vector unsigned short,
12504                                vector unsigned short);
12505
12506vector signed char vec_vslb (vector signed char, vector unsigned char);
12507vector unsigned char vec_vslb (vector unsigned char,
12508                               vector unsigned char);
12509
12510vector float vec_sld (vector float, vector float, const int);
12511vector signed int vec_sld (vector signed int,
12512                           vector signed int,
12513                           const int);
12514vector unsigned int vec_sld (vector unsigned int,
12515                             vector unsigned int,
12516                             const int);
12517vector bool int vec_sld (vector bool int,
12518                         vector bool int,
12519                         const int);
12520vector signed short vec_sld (vector signed short,
12521                             vector signed short,
12522                             const int);
12523vector unsigned short vec_sld (vector unsigned short,
12524                               vector unsigned short,
12525                               const int);
12526vector bool short vec_sld (vector bool short,
12527                           vector bool short,
12528                           const int);
12529vector pixel vec_sld (vector pixel,
12530                      vector pixel,
12531                      const int);
12532vector signed char vec_sld (vector signed char,
12533                            vector signed char,
12534                            const int);
12535vector unsigned char vec_sld (vector unsigned char,
12536                              vector unsigned char,
12537                              const int);
12538vector bool char vec_sld (vector bool char,
12539                          vector bool char,
12540                          const int);
12541
12542vector signed int vec_sll (vector signed int,
12543                           vector unsigned int);
12544vector signed int vec_sll (vector signed int,
12545                           vector unsigned short);
12546vector signed int vec_sll (vector signed int,
12547                           vector unsigned char);
12548vector unsigned int vec_sll (vector unsigned int,
12549                             vector unsigned int);
12550vector unsigned int vec_sll (vector unsigned int,
12551                             vector unsigned short);
12552vector unsigned int vec_sll (vector unsigned int,
12553                             vector unsigned char);
12554vector bool int vec_sll (vector bool int,
12555                         vector unsigned int);
12556vector bool int vec_sll (vector bool int,
12557                         vector unsigned short);
12558vector bool int vec_sll (vector bool int,
12559                         vector unsigned char);
12560vector signed short vec_sll (vector signed short,
12561                             vector unsigned int);
12562vector signed short vec_sll (vector signed short,
12563                             vector unsigned short);
12564vector signed short vec_sll (vector signed short,
12565                             vector unsigned char);
12566vector unsigned short vec_sll (vector unsigned short,
12567                               vector unsigned int);
12568vector unsigned short vec_sll (vector unsigned short,
12569                               vector unsigned short);
12570vector unsigned short vec_sll (vector unsigned short,
12571                               vector unsigned char);
12572vector bool short vec_sll (vector bool short, vector unsigned int);
12573vector bool short vec_sll (vector bool short, vector unsigned short);
12574vector bool short vec_sll (vector bool short, vector unsigned char);
12575vector pixel vec_sll (vector pixel, vector unsigned int);
12576vector pixel vec_sll (vector pixel, vector unsigned short);
12577vector pixel vec_sll (vector pixel, vector unsigned char);
12578vector signed char vec_sll (vector signed char, vector unsigned int);
12579vector signed char vec_sll (vector signed char, vector unsigned short);
12580vector signed char vec_sll (vector signed char, vector unsigned char);
12581vector unsigned char vec_sll (vector unsigned char,
12582                              vector unsigned int);
12583vector unsigned char vec_sll (vector unsigned char,
12584                              vector unsigned short);
12585vector unsigned char vec_sll (vector unsigned char,
12586                              vector unsigned char);
12587vector bool char vec_sll (vector bool char, vector unsigned int);
12588vector bool char vec_sll (vector bool char, vector unsigned short);
12589vector bool char vec_sll (vector bool char, vector unsigned char);
12590
12591vector float vec_slo (vector float, vector signed char);
12592vector float vec_slo (vector float, vector unsigned char);
12593vector signed int vec_slo (vector signed int, vector signed char);
12594vector signed int vec_slo (vector signed int, vector unsigned char);
12595vector unsigned int vec_slo (vector unsigned int, vector signed char);
12596vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
12597vector signed short vec_slo (vector signed short, vector signed char);
12598vector signed short vec_slo (vector signed short, vector unsigned char);
12599vector unsigned short vec_slo (vector unsigned short,
12600                               vector signed char);
12601vector unsigned short vec_slo (vector unsigned short,
12602                               vector unsigned char);
12603vector pixel vec_slo (vector pixel, vector signed char);
12604vector pixel vec_slo (vector pixel, vector unsigned char);
12605vector signed char vec_slo (vector signed char, vector signed char);
12606vector signed char vec_slo (vector signed char, vector unsigned char);
12607vector unsigned char vec_slo (vector unsigned char, vector signed char);
12608vector unsigned char vec_slo (vector unsigned char,
12609                              vector unsigned char);
12610
12611vector signed char vec_splat (vector signed char, const int);
12612vector unsigned char vec_splat (vector unsigned char, const int);
12613vector bool char vec_splat (vector bool char, const int);
12614vector signed short vec_splat (vector signed short, const int);
12615vector unsigned short vec_splat (vector unsigned short, const int);
12616vector bool short vec_splat (vector bool short, const int);
12617vector pixel vec_splat (vector pixel, const int);
12618vector float vec_splat (vector float, const int);
12619vector signed int vec_splat (vector signed int, const int);
12620vector unsigned int vec_splat (vector unsigned int, const int);
12621vector bool int vec_splat (vector bool int, const int);
12622
12623vector float vec_vspltw (vector float, const int);
12624vector signed int vec_vspltw (vector signed int, const int);
12625vector unsigned int vec_vspltw (vector unsigned int, const int);
12626vector bool int vec_vspltw (vector bool int, const int);
12627
12628vector bool short vec_vsplth (vector bool short, const int);
12629vector signed short vec_vsplth (vector signed short, const int);
12630vector unsigned short vec_vsplth (vector unsigned short, const int);
12631vector pixel vec_vsplth (vector pixel, const int);
12632
12633vector signed char vec_vspltb (vector signed char, const int);
12634vector unsigned char vec_vspltb (vector unsigned char, const int);
12635vector bool char vec_vspltb (vector bool char, const int);
12636
12637vector signed char vec_splat_s8 (const int);
12638
12639vector signed short vec_splat_s16 (const int);
12640
12641vector signed int vec_splat_s32 (const int);
12642
12643vector unsigned char vec_splat_u8 (const int);
12644
12645vector unsigned short vec_splat_u16 (const int);
12646
12647vector unsigned int vec_splat_u32 (const int);
12648
12649vector signed char vec_sr (vector signed char, vector unsigned char);
12650vector unsigned char vec_sr (vector unsigned char,
12651                             vector unsigned char);
12652vector signed short vec_sr (vector signed short,
12653                            vector unsigned short);
12654vector unsigned short vec_sr (vector unsigned short,
12655                              vector unsigned short);
12656vector signed int vec_sr (vector signed int, vector unsigned int);
12657vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
12658
12659vector signed int vec_vsrw (vector signed int, vector unsigned int);
12660vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
12661
12662vector signed short vec_vsrh (vector signed short,
12663                              vector unsigned short);
12664vector unsigned short vec_vsrh (vector unsigned short,
12665                                vector unsigned short);
12666
12667vector signed char vec_vsrb (vector signed char, vector unsigned char);
12668vector unsigned char vec_vsrb (vector unsigned char,
12669                               vector unsigned char);
12670
12671vector signed char vec_sra (vector signed char, vector unsigned char);
12672vector unsigned char vec_sra (vector unsigned char,
12673                              vector unsigned char);
12674vector signed short vec_sra (vector signed short,
12675                             vector unsigned short);
12676vector unsigned short vec_sra (vector unsigned short,
12677                               vector unsigned short);
12678vector signed int vec_sra (vector signed int, vector unsigned int);
12679vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
12680
12681vector signed int vec_vsraw (vector signed int, vector unsigned int);
12682vector unsigned int vec_vsraw (vector unsigned int,
12683                               vector unsigned int);
12684
12685vector signed short vec_vsrah (vector signed short,
12686                               vector unsigned short);
12687vector unsigned short vec_vsrah (vector unsigned short,
12688                                 vector unsigned short);
12689
12690vector signed char vec_vsrab (vector signed char, vector unsigned char);
12691vector unsigned char vec_vsrab (vector unsigned char,
12692                                vector unsigned char);
12693
12694vector signed int vec_srl (vector signed int, vector unsigned int);
12695vector signed int vec_srl (vector signed int, vector unsigned short);
12696vector signed int vec_srl (vector signed int, vector unsigned char);
12697vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
12698vector unsigned int vec_srl (vector unsigned int,
12699                             vector unsigned short);
12700vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
12701vector bool int vec_srl (vector bool int, vector unsigned int);
12702vector bool int vec_srl (vector bool int, vector unsigned short);
12703vector bool int vec_srl (vector bool int, vector unsigned char);
12704vector signed short vec_srl (vector signed short, vector unsigned int);
12705vector signed short vec_srl (vector signed short,
12706                             vector unsigned short);
12707vector signed short vec_srl (vector signed short, vector unsigned char);
12708vector unsigned short vec_srl (vector unsigned short,
12709                               vector unsigned int);
12710vector unsigned short vec_srl (vector unsigned short,
12711                               vector unsigned short);
12712vector unsigned short vec_srl (vector unsigned short,
12713                               vector unsigned char);
12714vector bool short vec_srl (vector bool short, vector unsigned int);
12715vector bool short vec_srl (vector bool short, vector unsigned short);
12716vector bool short vec_srl (vector bool short, vector unsigned char);
12717vector pixel vec_srl (vector pixel, vector unsigned int);
12718vector pixel vec_srl (vector pixel, vector unsigned short);
12719vector pixel vec_srl (vector pixel, vector unsigned char);
12720vector signed char vec_srl (vector signed char, vector unsigned int);
12721vector signed char vec_srl (vector signed char, vector unsigned short);
12722vector signed char vec_srl (vector signed char, vector unsigned char);
12723vector unsigned char vec_srl (vector unsigned char,
12724                              vector unsigned int);
12725vector unsigned char vec_srl (vector unsigned char,
12726                              vector unsigned short);
12727vector unsigned char vec_srl (vector unsigned char,
12728                              vector unsigned char);
12729vector bool char vec_srl (vector bool char, vector unsigned int);
12730vector bool char vec_srl (vector bool char, vector unsigned short);
12731vector bool char vec_srl (vector bool char, vector unsigned char);
12732
12733vector float vec_sro (vector float, vector signed char);
12734vector float vec_sro (vector float, vector unsigned char);
12735vector signed int vec_sro (vector signed int, vector signed char);
12736vector signed int vec_sro (vector signed int, vector unsigned char);
12737vector unsigned int vec_sro (vector unsigned int, vector signed char);
12738vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
12739vector signed short vec_sro (vector signed short, vector signed char);
12740vector signed short vec_sro (vector signed short, vector unsigned char);
12741vector unsigned short vec_sro (vector unsigned short,
12742                               vector signed char);
12743vector unsigned short vec_sro (vector unsigned short,
12744                               vector unsigned char);
12745vector pixel vec_sro (vector pixel, vector signed char);
12746vector pixel vec_sro (vector pixel, vector unsigned char);
12747vector signed char vec_sro (vector signed char, vector signed char);
12748vector signed char vec_sro (vector signed char, vector unsigned char);
12749vector unsigned char vec_sro (vector unsigned char, vector signed char);
12750vector unsigned char vec_sro (vector unsigned char,
12751                              vector unsigned char);
12752
12753void vec_st (vector float, int, vector float *);
12754void vec_st (vector float, int, float *);
12755void vec_st (vector signed int, int, vector signed int *);
12756void vec_st (vector signed int, int, int *);
12757void vec_st (vector unsigned int, int, vector unsigned int *);
12758void vec_st (vector unsigned int, int, unsigned int *);
12759void vec_st (vector bool int, int, vector bool int *);
12760void vec_st (vector bool int, int, unsigned int *);
12761void vec_st (vector bool int, int, int *);
12762void vec_st (vector signed short, int, vector signed short *);
12763void vec_st (vector signed short, int, short *);
12764void vec_st (vector unsigned short, int, vector unsigned short *);
12765void vec_st (vector unsigned short, int, unsigned short *);
12766void vec_st (vector bool short, int, vector bool short *);
12767void vec_st (vector bool short, int, unsigned short *);
12768void vec_st (vector pixel, int, vector pixel *);
12769void vec_st (vector pixel, int, unsigned short *);
12770void vec_st (vector pixel, int, short *);
12771void vec_st (vector bool short, int, short *);
12772void vec_st (vector signed char, int, vector signed char *);
12773void vec_st (vector signed char, int, signed char *);
12774void vec_st (vector unsigned char, int, vector unsigned char *);
12775void vec_st (vector unsigned char, int, unsigned char *);
12776void vec_st (vector bool char, int, vector bool char *);
12777void vec_st (vector bool char, int, unsigned char *);
12778void vec_st (vector bool char, int, signed char *);
12779
12780void vec_ste (vector signed char, int, signed char *);
12781void vec_ste (vector unsigned char, int, unsigned char *);
12782void vec_ste (vector bool char, int, signed char *);
12783void vec_ste (vector bool char, int, unsigned char *);
12784void vec_ste (vector signed short, int, short *);
12785void vec_ste (vector unsigned short, int, unsigned short *);
12786void vec_ste (vector bool short, int, short *);
12787void vec_ste (vector bool short, int, unsigned short *);
12788void vec_ste (vector pixel, int, short *);
12789void vec_ste (vector pixel, int, unsigned short *);
12790void vec_ste (vector float, int, float *);
12791void vec_ste (vector signed int, int, int *);
12792void vec_ste (vector unsigned int, int, unsigned int *);
12793void vec_ste (vector bool int, int, int *);
12794void vec_ste (vector bool int, int, unsigned int *);
12795
12796void vec_stvewx (vector float, int, float *);
12797void vec_stvewx (vector signed int, int, int *);
12798void vec_stvewx (vector unsigned int, int, unsigned int *);
12799void vec_stvewx (vector bool int, int, int *);
12800void vec_stvewx (vector bool int, int, unsigned int *);
12801
12802void vec_stvehx (vector signed short, int, short *);
12803void vec_stvehx (vector unsigned short, int, unsigned short *);
12804void vec_stvehx (vector bool short, int, short *);
12805void vec_stvehx (vector bool short, int, unsigned short *);
12806void vec_stvehx (vector pixel, int, short *);
12807void vec_stvehx (vector pixel, int, unsigned short *);
12808
12809void vec_stvebx (vector signed char, int, signed char *);
12810void vec_stvebx (vector unsigned char, int, unsigned char *);
12811void vec_stvebx (vector bool char, int, signed char *);
12812void vec_stvebx (vector bool char, int, unsigned char *);
12813
12814void vec_stl (vector float, int, vector float *);
12815void vec_stl (vector float, int, float *);
12816void vec_stl (vector signed int, int, vector signed int *);
12817void vec_stl (vector signed int, int, int *);
12818void vec_stl (vector unsigned int, int, vector unsigned int *);
12819void vec_stl (vector unsigned int, int, unsigned int *);
12820void vec_stl (vector bool int, int, vector bool int *);
12821void vec_stl (vector bool int, int, unsigned int *);
12822void vec_stl (vector bool int, int, int *);
12823void vec_stl (vector signed short, int, vector signed short *);
12824void vec_stl (vector signed short, int, short *);
12825void vec_stl (vector unsigned short, int, vector unsigned short *);
12826void vec_stl (vector unsigned short, int, unsigned short *);
12827void vec_stl (vector bool short, int, vector bool short *);
12828void vec_stl (vector bool short, int, unsigned short *);
12829void vec_stl (vector bool short, int, short *);
12830void vec_stl (vector pixel, int, vector pixel *);
12831void vec_stl (vector pixel, int, unsigned short *);
12832void vec_stl (vector pixel, int, short *);
12833void vec_stl (vector signed char, int, vector signed char *);
12834void vec_stl (vector signed char, int, signed char *);
12835void vec_stl (vector unsigned char, int, vector unsigned char *);
12836void vec_stl (vector unsigned char, int, unsigned char *);
12837void vec_stl (vector bool char, int, vector bool char *);
12838void vec_stl (vector bool char, int, unsigned char *);
12839void vec_stl (vector bool char, int, signed char *);
12840
12841vector signed char vec_sub (vector bool char, vector signed char);
12842vector signed char vec_sub (vector signed char, vector bool char);
12843vector signed char vec_sub (vector signed char, vector signed char);
12844vector unsigned char vec_sub (vector bool char, vector unsigned char);
12845vector unsigned char vec_sub (vector unsigned char, vector bool char);
12846vector unsigned char vec_sub (vector unsigned char,
12847                              vector unsigned char);
12848vector signed short vec_sub (vector bool short, vector signed short);
12849vector signed short vec_sub (vector signed short, vector bool short);
12850vector signed short vec_sub (vector signed short, vector signed short);
12851vector unsigned short vec_sub (vector bool short,
12852                               vector unsigned short);
12853vector unsigned short vec_sub (vector unsigned short,
12854                               vector bool short);
12855vector unsigned short vec_sub (vector unsigned short,
12856                               vector unsigned short);
12857vector signed int vec_sub (vector bool int, vector signed int);
12858vector signed int vec_sub (vector signed int, vector bool int);
12859vector signed int vec_sub (vector signed int, vector signed int);
12860vector unsigned int vec_sub (vector bool int, vector unsigned int);
12861vector unsigned int vec_sub (vector unsigned int, vector bool int);
12862vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
12863vector float vec_sub (vector float, vector float);
12864
12865vector float vec_vsubfp (vector float, vector float);
12866
12867vector signed int vec_vsubuwm (vector bool int, vector signed int);
12868vector signed int vec_vsubuwm (vector signed int, vector bool int);
12869vector signed int vec_vsubuwm (vector signed int, vector signed int);
12870vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
12871vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
12872vector unsigned int vec_vsubuwm (vector unsigned int,
12873                                 vector unsigned int);
12874
12875vector signed short vec_vsubuhm (vector bool short,
12876                                 vector signed short);
12877vector signed short vec_vsubuhm (vector signed short,
12878                                 vector bool short);
12879vector signed short vec_vsubuhm (vector signed short,
12880                                 vector signed short);
12881vector unsigned short vec_vsubuhm (vector bool short,
12882                                   vector unsigned short);
12883vector unsigned short vec_vsubuhm (vector unsigned short,
12884                                   vector bool short);
12885vector unsigned short vec_vsubuhm (vector unsigned short,
12886                                   vector unsigned short);
12887
12888vector signed char vec_vsububm (vector bool char, vector signed char);
12889vector signed char vec_vsububm (vector signed char, vector bool char);
12890vector signed char vec_vsububm (vector signed char, vector signed char);
12891vector unsigned char vec_vsububm (vector bool char,
12892                                  vector unsigned char);
12893vector unsigned char vec_vsububm (vector unsigned char,
12894                                  vector bool char);
12895vector unsigned char vec_vsububm (vector unsigned char,
12896                                  vector unsigned char);
12897
12898vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
12899
12900vector unsigned char vec_subs (vector bool char, vector unsigned char);
12901vector unsigned char vec_subs (vector unsigned char, vector bool char);
12902vector unsigned char vec_subs (vector unsigned char,
12903                               vector unsigned char);
12904vector signed char vec_subs (vector bool char, vector signed char);
12905vector signed char vec_subs (vector signed char, vector bool char);
12906vector signed char vec_subs (vector signed char, vector signed char);
12907vector unsigned short vec_subs (vector bool short,
12908                                vector unsigned short);
12909vector unsigned short vec_subs (vector unsigned short,
12910                                vector bool short);
12911vector unsigned short vec_subs (vector unsigned short,
12912                                vector unsigned short);
12913vector signed short vec_subs (vector bool short, vector signed short);
12914vector signed short vec_subs (vector signed short, vector bool short);
12915vector signed short vec_subs (vector signed short, vector signed short);
12916vector unsigned int vec_subs (vector bool int, vector unsigned int);
12917vector unsigned int vec_subs (vector unsigned int, vector bool int);
12918vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
12919vector signed int vec_subs (vector bool int, vector signed int);
12920vector signed int vec_subs (vector signed int, vector bool int);
12921vector signed int vec_subs (vector signed int, vector signed int);
12922
12923vector signed int vec_vsubsws (vector bool int, vector signed int);
12924vector signed int vec_vsubsws (vector signed int, vector bool int);
12925vector signed int vec_vsubsws (vector signed int, vector signed int);
12926
12927vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
12928vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
12929vector unsigned int vec_vsubuws (vector unsigned int,
12930                                 vector unsigned int);
12931
12932vector signed short vec_vsubshs (vector bool short,
12933                                 vector signed short);
12934vector signed short vec_vsubshs (vector signed short,
12935                                 vector bool short);
12936vector signed short vec_vsubshs (vector signed short,
12937                                 vector signed short);
12938
12939vector unsigned short vec_vsubuhs (vector bool short,
12940                                   vector unsigned short);
12941vector unsigned short vec_vsubuhs (vector unsigned short,
12942                                   vector bool short);
12943vector unsigned short vec_vsubuhs (vector unsigned short,
12944                                   vector unsigned short);
12945
12946vector signed char vec_vsubsbs (vector bool char, vector signed char);
12947vector signed char vec_vsubsbs (vector signed char, vector bool char);
12948vector signed char vec_vsubsbs (vector signed char, vector signed char);
12949
12950vector unsigned char vec_vsububs (vector bool char,
12951                                  vector unsigned char);
12952vector unsigned char vec_vsububs (vector unsigned char,
12953                                  vector bool char);
12954vector unsigned char vec_vsububs (vector unsigned char,
12955                                  vector unsigned char);
12956
12957vector unsigned int vec_sum4s (vector unsigned char,
12958                               vector unsigned int);
12959vector signed int vec_sum4s (vector signed char, vector signed int);
12960vector signed int vec_sum4s (vector signed short, vector signed int);
12961
12962vector signed int vec_vsum4shs (vector signed short, vector signed int);
12963
12964vector signed int vec_vsum4sbs (vector signed char, vector signed int);
12965
12966vector unsigned int vec_vsum4ubs (vector unsigned char,
12967                                  vector unsigned int);
12968
12969vector signed int vec_sum2s (vector signed int, vector signed int);
12970
12971vector signed int vec_sums (vector signed int, vector signed int);
12972
12973vector float vec_trunc (vector float);
12974
12975vector signed short vec_unpackh (vector signed char);
12976vector bool short vec_unpackh (vector bool char);
12977vector signed int vec_unpackh (vector signed short);
12978vector bool int vec_unpackh (vector bool short);
12979vector unsigned int vec_unpackh (vector pixel);
12980
12981vector bool int vec_vupkhsh (vector bool short);
12982vector signed int vec_vupkhsh (vector signed short);
12983
12984vector unsigned int vec_vupkhpx (vector pixel);
12985
12986vector bool short vec_vupkhsb (vector bool char);
12987vector signed short vec_vupkhsb (vector signed char);
12988
12989vector signed short vec_unpackl (vector signed char);
12990vector bool short vec_unpackl (vector bool char);
12991vector unsigned int vec_unpackl (vector pixel);
12992vector signed int vec_unpackl (vector signed short);
12993vector bool int vec_unpackl (vector bool short);
12994
12995vector unsigned int vec_vupklpx (vector pixel);
12996
12997vector bool int vec_vupklsh (vector bool short);
12998vector signed int vec_vupklsh (vector signed short);
12999
13000vector bool short vec_vupklsb (vector bool char);
13001vector signed short vec_vupklsb (vector signed char);
13002
13003vector float vec_xor (vector float, vector float);
13004vector float vec_xor (vector float, vector bool int);
13005vector float vec_xor (vector bool int, vector float);
13006vector bool int vec_xor (vector bool int, vector bool int);
13007vector signed int vec_xor (vector bool int, vector signed int);
13008vector signed int vec_xor (vector signed int, vector bool int);
13009vector signed int vec_xor (vector signed int, vector signed int);
13010vector unsigned int vec_xor (vector bool int, vector unsigned int);
13011vector unsigned int vec_xor (vector unsigned int, vector bool int);
13012vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
13013vector bool short vec_xor (vector bool short, vector bool short);
13014vector signed short vec_xor (vector bool short, vector signed short);
13015vector signed short vec_xor (vector signed short, vector bool short);
13016vector signed short vec_xor (vector signed short, vector signed short);
13017vector unsigned short vec_xor (vector bool short,
13018                               vector unsigned short);
13019vector unsigned short vec_xor (vector unsigned short,
13020                               vector bool short);
13021vector unsigned short vec_xor (vector unsigned short,
13022                               vector unsigned short);
13023vector signed char vec_xor (vector bool char, vector signed char);
13024vector bool char vec_xor (vector bool char, vector bool char);
13025vector signed char vec_xor (vector signed char, vector bool char);
13026vector signed char vec_xor (vector signed char, vector signed char);
13027vector unsigned char vec_xor (vector bool char, vector unsigned char);
13028vector unsigned char vec_xor (vector unsigned char, vector bool char);
13029vector unsigned char vec_xor (vector unsigned char,
13030                              vector unsigned char);
13031
13032int vec_all_eq (vector signed char, vector bool char);
13033int vec_all_eq (vector signed char, vector signed char);
13034int vec_all_eq (vector unsigned char, vector bool char);
13035int vec_all_eq (vector unsigned char, vector unsigned char);
13036int vec_all_eq (vector bool char, vector bool char);
13037int vec_all_eq (vector bool char, vector unsigned char);
13038int vec_all_eq (vector bool char, vector signed char);
13039int vec_all_eq (vector signed short, vector bool short);
13040int vec_all_eq (vector signed short, vector signed short);
13041int vec_all_eq (vector unsigned short, vector bool short);
13042int vec_all_eq (vector unsigned short, vector unsigned short);
13043int vec_all_eq (vector bool short, vector bool short);
13044int vec_all_eq (vector bool short, vector unsigned short);
13045int vec_all_eq (vector bool short, vector signed short);
13046int vec_all_eq (vector pixel, vector pixel);
13047int vec_all_eq (vector signed int, vector bool int);
13048int vec_all_eq (vector signed int, vector signed int);
13049int vec_all_eq (vector unsigned int, vector bool int);
13050int vec_all_eq (vector unsigned int, vector unsigned int);
13051int vec_all_eq (vector bool int, vector bool int);
13052int vec_all_eq (vector bool int, vector unsigned int);
13053int vec_all_eq (vector bool int, vector signed int);
13054int vec_all_eq (vector float, vector float);
13055
13056int vec_all_ge (vector bool char, vector unsigned char);
13057int vec_all_ge (vector unsigned char, vector bool char);
13058int vec_all_ge (vector unsigned char, vector unsigned char);
13059int vec_all_ge (vector bool char, vector signed char);
13060int vec_all_ge (vector signed char, vector bool char);
13061int vec_all_ge (vector signed char, vector signed char);
13062int vec_all_ge (vector bool short, vector unsigned short);
13063int vec_all_ge (vector unsigned short, vector bool short);
13064int vec_all_ge (vector unsigned short, vector unsigned short);
13065int vec_all_ge (vector signed short, vector signed short);
13066int vec_all_ge (vector bool short, vector signed short);
13067int vec_all_ge (vector signed short, vector bool short);
13068int vec_all_ge (vector bool int, vector unsigned int);
13069int vec_all_ge (vector unsigned int, vector bool int);
13070int vec_all_ge (vector unsigned int, vector unsigned int);
13071int vec_all_ge (vector bool int, vector signed int);
13072int vec_all_ge (vector signed int, vector bool int);
13073int vec_all_ge (vector signed int, vector signed int);
13074int vec_all_ge (vector float, vector float);
13075
13076int vec_all_gt (vector bool char, vector unsigned char);
13077int vec_all_gt (vector unsigned char, vector bool char);
13078int vec_all_gt (vector unsigned char, vector unsigned char);
13079int vec_all_gt (vector bool char, vector signed char);
13080int vec_all_gt (vector signed char, vector bool char);
13081int vec_all_gt (vector signed char, vector signed char);
13082int vec_all_gt (vector bool short, vector unsigned short);
13083int vec_all_gt (vector unsigned short, vector bool short);
13084int vec_all_gt (vector unsigned short, vector unsigned short);
13085int vec_all_gt (vector bool short, vector signed short);
13086int vec_all_gt (vector signed short, vector bool short);
13087int vec_all_gt (vector signed short, vector signed short);
13088int vec_all_gt (vector bool int, vector unsigned int);
13089int vec_all_gt (vector unsigned int, vector bool int);
13090int vec_all_gt (vector unsigned int, vector unsigned int);
13091int vec_all_gt (vector bool int, vector signed int);
13092int vec_all_gt (vector signed int, vector bool int);
13093int vec_all_gt (vector signed int, vector signed int);
13094int vec_all_gt (vector float, vector float);
13095
13096int vec_all_in (vector float, vector float);
13097
13098int vec_all_le (vector bool char, vector unsigned char);
13099int vec_all_le (vector unsigned char, vector bool char);
13100int vec_all_le (vector unsigned char, vector unsigned char);
13101int vec_all_le (vector bool char, vector signed char);
13102int vec_all_le (vector signed char, vector bool char);
13103int vec_all_le (vector signed char, vector signed char);
13104int vec_all_le (vector bool short, vector unsigned short);
13105int vec_all_le (vector unsigned short, vector bool short);
13106int vec_all_le (vector unsigned short, vector unsigned short);
13107int vec_all_le (vector bool short, vector signed short);
13108int vec_all_le (vector signed short, vector bool short);
13109int vec_all_le (vector signed short, vector signed short);
13110int vec_all_le (vector bool int, vector unsigned int);
13111int vec_all_le (vector unsigned int, vector bool int);
13112int vec_all_le (vector unsigned int, vector unsigned int);
13113int vec_all_le (vector bool int, vector signed int);
13114int vec_all_le (vector signed int, vector bool int);
13115int vec_all_le (vector signed int, vector signed int);
13116int vec_all_le (vector float, vector float);
13117
13118int vec_all_lt (vector bool char, vector unsigned char);
13119int vec_all_lt (vector unsigned char, vector bool char);
13120int vec_all_lt (vector unsigned char, vector unsigned char);
13121int vec_all_lt (vector bool char, vector signed char);
13122int vec_all_lt (vector signed char, vector bool char);
13123int vec_all_lt (vector signed char, vector signed char);
13124int vec_all_lt (vector bool short, vector unsigned short);
13125int vec_all_lt (vector unsigned short, vector bool short);
13126int vec_all_lt (vector unsigned short, vector unsigned short);
13127int vec_all_lt (vector bool short, vector signed short);
13128int vec_all_lt (vector signed short, vector bool short);
13129int vec_all_lt (vector signed short, vector signed short);
13130int vec_all_lt (vector bool int, vector unsigned int);
13131int vec_all_lt (vector unsigned int, vector bool int);
13132int vec_all_lt (vector unsigned int, vector unsigned int);
13133int vec_all_lt (vector bool int, vector signed int);
13134int vec_all_lt (vector signed int, vector bool int);
13135int vec_all_lt (vector signed int, vector signed int);
13136int vec_all_lt (vector float, vector float);
13137
13138int vec_all_nan (vector float);
13139
13140int vec_all_ne (vector signed char, vector bool char);
13141int vec_all_ne (vector signed char, vector signed char);
13142int vec_all_ne (vector unsigned char, vector bool char);
13143int vec_all_ne (vector unsigned char, vector unsigned char);
13144int vec_all_ne (vector bool char, vector bool char);
13145int vec_all_ne (vector bool char, vector unsigned char);
13146int vec_all_ne (vector bool char, vector signed char);
13147int vec_all_ne (vector signed short, vector bool short);
13148int vec_all_ne (vector signed short, vector signed short);
13149int vec_all_ne (vector unsigned short, vector bool short);
13150int vec_all_ne (vector unsigned short, vector unsigned short);
13151int vec_all_ne (vector bool short, vector bool short);
13152int vec_all_ne (vector bool short, vector unsigned short);
13153int vec_all_ne (vector bool short, vector signed short);
13154int vec_all_ne (vector pixel, vector pixel);
13155int vec_all_ne (vector signed int, vector bool int);
13156int vec_all_ne (vector signed int, vector signed int);
13157int vec_all_ne (vector unsigned int, vector bool int);
13158int vec_all_ne (vector unsigned int, vector unsigned int);
13159int vec_all_ne (vector bool int, vector bool int);
13160int vec_all_ne (vector bool int, vector unsigned int);
13161int vec_all_ne (vector bool int, vector signed int);
13162int vec_all_ne (vector float, vector float);
13163
13164int vec_all_nge (vector float, vector float);
13165
13166int vec_all_ngt (vector float, vector float);
13167
13168int vec_all_nle (vector float, vector float);
13169
13170int vec_all_nlt (vector float, vector float);
13171
13172int vec_all_numeric (vector float);
13173
13174int vec_any_eq (vector signed char, vector bool char);
13175int vec_any_eq (vector signed char, vector signed char);
13176int vec_any_eq (vector unsigned char, vector bool char);
13177int vec_any_eq (vector unsigned char, vector unsigned char);
13178int vec_any_eq (vector bool char, vector bool char);
13179int vec_any_eq (vector bool char, vector unsigned char);
13180int vec_any_eq (vector bool char, vector signed char);
13181int vec_any_eq (vector signed short, vector bool short);
13182int vec_any_eq (vector signed short, vector signed short);
13183int vec_any_eq (vector unsigned short, vector bool short);
13184int vec_any_eq (vector unsigned short, vector unsigned short);
13185int vec_any_eq (vector bool short, vector bool short);
13186int vec_any_eq (vector bool short, vector unsigned short);
13187int vec_any_eq (vector bool short, vector signed short);
13188int vec_any_eq (vector pixel, vector pixel);
13189int vec_any_eq (vector signed int, vector bool int);
13190int vec_any_eq (vector signed int, vector signed int);
13191int vec_any_eq (vector unsigned int, vector bool int);
13192int vec_any_eq (vector unsigned int, vector unsigned int);
13193int vec_any_eq (vector bool int, vector bool int);
13194int vec_any_eq (vector bool int, vector unsigned int);
13195int vec_any_eq (vector bool int, vector signed int);
13196int vec_any_eq (vector float, vector float);
13197
13198int vec_any_ge (vector signed char, vector bool char);
13199int vec_any_ge (vector unsigned char, vector bool char);
13200int vec_any_ge (vector unsigned char, vector unsigned char);
13201int vec_any_ge (vector signed char, vector signed char);
13202int vec_any_ge (vector bool char, vector unsigned char);
13203int vec_any_ge (vector bool char, vector signed char);
13204int vec_any_ge (vector unsigned short, vector bool short);
13205int vec_any_ge (vector unsigned short, vector unsigned short);
13206int vec_any_ge (vector signed short, vector signed short);
13207int vec_any_ge (vector signed short, vector bool short);
13208int vec_any_ge (vector bool short, vector unsigned short);
13209int vec_any_ge (vector bool short, vector signed short);
13210int vec_any_ge (vector signed int, vector bool int);
13211int vec_any_ge (vector unsigned int, vector bool int);
13212int vec_any_ge (vector unsigned int, vector unsigned int);
13213int vec_any_ge (vector signed int, vector signed int);
13214int vec_any_ge (vector bool int, vector unsigned int);
13215int vec_any_ge (vector bool int, vector signed int);
13216int vec_any_ge (vector float, vector float);
13217
13218int vec_any_gt (vector bool char, vector unsigned char);
13219int vec_any_gt (vector unsigned char, vector bool char);
13220int vec_any_gt (vector unsigned char, vector unsigned char);
13221int vec_any_gt (vector bool char, vector signed char);
13222int vec_any_gt (vector signed char, vector bool char);
13223int vec_any_gt (vector signed char, vector signed char);
13224int vec_any_gt (vector bool short, vector unsigned short);
13225int vec_any_gt (vector unsigned short, vector bool short);
13226int vec_any_gt (vector unsigned short, vector unsigned short);
13227int vec_any_gt (vector bool short, vector signed short);
13228int vec_any_gt (vector signed short, vector bool short);
13229int vec_any_gt (vector signed short, vector signed short);
13230int vec_any_gt (vector bool int, vector unsigned int);
13231int vec_any_gt (vector unsigned int, vector bool int);
13232int vec_any_gt (vector unsigned int, vector unsigned int);
13233int vec_any_gt (vector bool int, vector signed int);
13234int vec_any_gt (vector signed int, vector bool int);
13235int vec_any_gt (vector signed int, vector signed int);
13236int vec_any_gt (vector float, vector float);
13237
13238int vec_any_le (vector bool char, vector unsigned char);
13239int vec_any_le (vector unsigned char, vector bool char);
13240int vec_any_le (vector unsigned char, vector unsigned char);
13241int vec_any_le (vector bool char, vector signed char);
13242int vec_any_le (vector signed char, vector bool char);
13243int vec_any_le (vector signed char, vector signed char);
13244int vec_any_le (vector bool short, vector unsigned short);
13245int vec_any_le (vector unsigned short, vector bool short);
13246int vec_any_le (vector unsigned short, vector unsigned short);
13247int vec_any_le (vector bool short, vector signed short);
13248int vec_any_le (vector signed short, vector bool short);
13249int vec_any_le (vector signed short, vector signed short);
13250int vec_any_le (vector bool int, vector unsigned int);
13251int vec_any_le (vector unsigned int, vector bool int);
13252int vec_any_le (vector unsigned int, vector unsigned int);
13253int vec_any_le (vector bool int, vector signed int);
13254int vec_any_le (vector signed int, vector bool int);
13255int vec_any_le (vector signed int, vector signed int);
13256int vec_any_le (vector float, vector float);
13257
13258int vec_any_lt (vector bool char, vector unsigned char);
13259int vec_any_lt (vector unsigned char, vector bool char);
13260int vec_any_lt (vector unsigned char, vector unsigned char);
13261int vec_any_lt (vector bool char, vector signed char);
13262int vec_any_lt (vector signed char, vector bool char);
13263int vec_any_lt (vector signed char, vector signed char);
13264int vec_any_lt (vector bool short, vector unsigned short);
13265int vec_any_lt (vector unsigned short, vector bool short);
13266int vec_any_lt (vector unsigned short, vector unsigned short);
13267int vec_any_lt (vector bool short, vector signed short);
13268int vec_any_lt (vector signed short, vector bool short);
13269int vec_any_lt (vector signed short, vector signed short);
13270int vec_any_lt (vector bool int, vector unsigned int);
13271int vec_any_lt (vector unsigned int, vector bool int);
13272int vec_any_lt (vector unsigned int, vector unsigned int);
13273int vec_any_lt (vector bool int, vector signed int);
13274int vec_any_lt (vector signed int, vector bool int);
13275int vec_any_lt (vector signed int, vector signed int);
13276int vec_any_lt (vector float, vector float);
13277
13278int vec_any_nan (vector float);
13279
13280int vec_any_ne (vector signed char, vector bool char);
13281int vec_any_ne (vector signed char, vector signed char);
13282int vec_any_ne (vector unsigned char, vector bool char);
13283int vec_any_ne (vector unsigned char, vector unsigned char);
13284int vec_any_ne (vector bool char, vector bool char);
13285int vec_any_ne (vector bool char, vector unsigned char);
13286int vec_any_ne (vector bool char, vector signed char);
13287int vec_any_ne (vector signed short, vector bool short);
13288int vec_any_ne (vector signed short, vector signed short);
13289int vec_any_ne (vector unsigned short, vector bool short);
13290int vec_any_ne (vector unsigned short, vector unsigned short);
13291int vec_any_ne (vector bool short, vector bool short);
13292int vec_any_ne (vector bool short, vector unsigned short);
13293int vec_any_ne (vector bool short, vector signed short);
13294int vec_any_ne (vector pixel, vector pixel);
13295int vec_any_ne (vector signed int, vector bool int);
13296int vec_any_ne (vector signed int, vector signed int);
13297int vec_any_ne (vector unsigned int, vector bool int);
13298int vec_any_ne (vector unsigned int, vector unsigned int);
13299int vec_any_ne (vector bool int, vector bool int);
13300int vec_any_ne (vector bool int, vector unsigned int);
13301int vec_any_ne (vector bool int, vector signed int);
13302int vec_any_ne (vector float, vector float);
13303
13304int vec_any_nge (vector float, vector float);
13305
13306int vec_any_ngt (vector float, vector float);
13307
13308int vec_any_nle (vector float, vector float);
13309
13310int vec_any_nlt (vector float, vector float);
13311
13312int vec_any_numeric (vector float);
13313
13314int vec_any_out (vector float, vector float);
13315@end smallexample
13316
13317If the vector/scalar (VSX) instruction set is available, the following
13318additional functions are available:
13319
13320@smallexample
13321vector double vec_abs (vector double);
13322vector double vec_add (vector double, vector double);
13323vector double vec_and (vector double, vector double);
13324vector double vec_and (vector double, vector bool long);
13325vector double vec_and (vector bool long, vector double);
13326vector double vec_andc (vector double, vector double);
13327vector double vec_andc (vector double, vector bool long);
13328vector double vec_andc (vector bool long, vector double);
13329vector double vec_ceil (vector double);
13330vector bool long vec_cmpeq (vector double, vector double);
13331vector bool long vec_cmpge (vector double, vector double);
13332vector bool long vec_cmpgt (vector double, vector double);
13333vector bool long vec_cmple (vector double, vector double);
13334vector bool long vec_cmplt (vector double, vector double);
13335vector float vec_div (vector float, vector float);
13336vector double vec_div (vector double, vector double);
13337vector double vec_floor (vector double);
13338vector double vec_ld (int, const vector double *);
13339vector double vec_ld (int, const double *);
13340vector double vec_ldl (int, const vector double *);
13341vector double vec_ldl (int, const double *);
13342vector unsigned char vec_lvsl (int, const volatile double *);
13343vector unsigned char vec_lvsr (int, const volatile double *);
13344vector double vec_madd (vector double, vector double, vector double);
13345vector double vec_max (vector double, vector double);
13346vector double vec_min (vector double, vector double);
13347vector float vec_msub (vector float, vector float, vector float);
13348vector double vec_msub (vector double, vector double, vector double);
13349vector float vec_mul (vector float, vector float);
13350vector double vec_mul (vector double, vector double);
13351vector float vec_nearbyint (vector float);
13352vector double vec_nearbyint (vector double);
13353vector float vec_nmadd (vector float, vector float, vector float);
13354vector double vec_nmadd (vector double, vector double, vector double);
13355vector double vec_nmsub (vector double, vector double, vector double);
13356vector double vec_nor (vector double, vector double);
13357vector double vec_or (vector double, vector double);
13358vector double vec_or (vector double, vector bool long);
13359vector double vec_or (vector bool long, vector double);
13360vector double vec_perm (vector double,
13361                        vector double,
13362                        vector unsigned char);
13363vector double vec_rint (vector double);
13364vector double vec_recip (vector double, vector double);
13365vector double vec_rsqrt (vector double);
13366vector double vec_rsqrte (vector double);
13367vector double vec_sel (vector double, vector double, vector bool long);
13368vector double vec_sel (vector double, vector double, vector unsigned long);
13369vector double vec_sub (vector double, vector double);
13370vector float vec_sqrt (vector float);
13371vector double vec_sqrt (vector double);
13372void vec_st (vector double, int, vector double *);
13373void vec_st (vector double, int, double *);
13374vector double vec_trunc (vector double);
13375vector double vec_xor (vector double, vector double);
13376vector double vec_xor (vector double, vector bool long);
13377vector double vec_xor (vector bool long, vector double);
13378int vec_all_eq (vector double, vector double);
13379int vec_all_ge (vector double, vector double);
13380int vec_all_gt (vector double, vector double);
13381int vec_all_le (vector double, vector double);
13382int vec_all_lt (vector double, vector double);
13383int vec_all_nan (vector double);
13384int vec_all_ne (vector double, vector double);
13385int vec_all_nge (vector double, vector double);
13386int vec_all_ngt (vector double, vector double);
13387int vec_all_nle (vector double, vector double);
13388int vec_all_nlt (vector double, vector double);
13389int vec_all_numeric (vector double);
13390int vec_any_eq (vector double, vector double);
13391int vec_any_ge (vector double, vector double);
13392int vec_any_gt (vector double, vector double);
13393int vec_any_le (vector double, vector double);
13394int vec_any_lt (vector double, vector double);
13395int vec_any_nan (vector double);
13396int vec_any_ne (vector double, vector double);
13397int vec_any_nge (vector double, vector double);
13398int vec_any_ngt (vector double, vector double);
13399int vec_any_nle (vector double, vector double);
13400int vec_any_nlt (vector double, vector double);
13401int vec_any_numeric (vector double);
13402
13403vector double vec_vsx_ld (int, const vector double *);
13404vector double vec_vsx_ld (int, const double *);
13405vector float vec_vsx_ld (int, const vector float *);
13406vector float vec_vsx_ld (int, const float *);
13407vector bool int vec_vsx_ld (int, const vector bool int *);
13408vector signed int vec_vsx_ld (int, const vector signed int *);
13409vector signed int vec_vsx_ld (int, const int *);
13410vector signed int vec_vsx_ld (int, const long *);
13411vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
13412vector unsigned int vec_vsx_ld (int, const unsigned int *);
13413vector unsigned int vec_vsx_ld (int, const unsigned long *);
13414vector bool short vec_vsx_ld (int, const vector bool short *);
13415vector pixel vec_vsx_ld (int, const vector pixel *);
13416vector signed short vec_vsx_ld (int, const vector signed short *);
13417vector signed short vec_vsx_ld (int, const short *);
13418vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
13419vector unsigned short vec_vsx_ld (int, const unsigned short *);
13420vector bool char vec_vsx_ld (int, const vector bool char *);
13421vector signed char vec_vsx_ld (int, const vector signed char *);
13422vector signed char vec_vsx_ld (int, const signed char *);
13423vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
13424vector unsigned char vec_vsx_ld (int, const unsigned char *);
13425
13426void vec_vsx_st (vector double, int, vector double *);
13427void vec_vsx_st (vector double, int, double *);
13428void vec_vsx_st (vector float, int, vector float *);
13429void vec_vsx_st (vector float, int, float *);
13430void vec_vsx_st (vector signed int, int, vector signed int *);
13431void vec_vsx_st (vector signed int, int, int *);
13432void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
13433void vec_vsx_st (vector unsigned int, int, unsigned int *);
13434void vec_vsx_st (vector bool int, int, vector bool int *);
13435void vec_vsx_st (vector bool int, int, unsigned int *);
13436void vec_vsx_st (vector bool int, int, int *);
13437void vec_vsx_st (vector signed short, int, vector signed short *);
13438void vec_vsx_st (vector signed short, int, short *);
13439void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
13440void vec_vsx_st (vector unsigned short, int, unsigned short *);
13441void vec_vsx_st (vector bool short, int, vector bool short *);
13442void vec_vsx_st (vector bool short, int, unsigned short *);
13443void vec_vsx_st (vector pixel, int, vector pixel *);
13444void vec_vsx_st (vector pixel, int, unsigned short *);
13445void vec_vsx_st (vector pixel, int, short *);
13446void vec_vsx_st (vector bool short, int, short *);
13447void vec_vsx_st (vector signed char, int, vector signed char *);
13448void vec_vsx_st (vector signed char, int, signed char *);
13449void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
13450void vec_vsx_st (vector unsigned char, int, unsigned char *);
13451void vec_vsx_st (vector bool char, int, vector bool char *);
13452void vec_vsx_st (vector bool char, int, unsigned char *);
13453void vec_vsx_st (vector bool char, int, signed char *);
13454@end smallexample
13455
13456Note that the @samp{vec_ld} and @samp{vec_st} builtins will always
13457generate the Altivec @samp{LVX} and @samp{STVX} instructions even
13458if the VSX instruction set is available.  The @samp{vec_vsx_ld} and
13459@samp{vec_vsx_st} builtins will always generate the VSX @samp{LXVD2X},
13460@samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
13461
13462GCC provides a few other builtins on Powerpc to access certain instructions:
13463@smallexample
13464float __builtin_recipdivf (float, float);
13465float __builtin_rsqrtf (float);
13466double __builtin_recipdiv (double, double);
13467double __builtin_rsqrt (double);
13468long __builtin_bpermd (long, long);
13469int __builtin_bswap16 (int);
13470@end smallexample
13471
13472The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
13473@code{__builtin_rsqrtf} functions generate multiple instructions to
13474implement the reciprocal sqrt functionality using reciprocal sqrt
13475estimate instructions.
13476
13477The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
13478functions generate multiple instructions to implement division using
13479the reciprocal estimate instructions.
13480
13481@node RX Built-in Functions
13482@subsection RX Built-in Functions
13483GCC supports some of the RX instructions which cannot be expressed in
13484the C programming language via the use of built-in functions.  The
13485following functions are supported:
13486
13487@deftypefn {Built-in Function}  void __builtin_rx_brk (void)
13488Generates the @code{brk} machine instruction.
13489@end deftypefn
13490
13491@deftypefn {Built-in Function}  void __builtin_rx_clrpsw (int)
13492Generates the @code{clrpsw} machine instruction to clear the specified
13493bit in the processor status word.
13494@end deftypefn
13495
13496@deftypefn {Built-in Function}  void __builtin_rx_int (int)
13497Generates the @code{int} machine instruction to generate an interrupt
13498with the specified value.
13499@end deftypefn
13500
13501@deftypefn {Built-in Function}  void __builtin_rx_machi (int, int)
13502Generates the @code{machi} machine instruction to add the result of
13503multiplying the top 16-bits of the two arguments into the
13504accumulator.
13505@end deftypefn
13506
13507@deftypefn {Built-in Function}  void __builtin_rx_maclo (int, int)
13508Generates the @code{maclo} machine instruction to add the result of
13509multiplying the bottom 16-bits of the two arguments into the
13510accumulator.
13511@end deftypefn
13512
13513@deftypefn {Built-in Function}  void __builtin_rx_mulhi (int, int)
13514Generates the @code{mulhi} machine instruction to place the result of
13515multiplying the top 16-bits of the two arguments into the
13516accumulator.
13517@end deftypefn
13518
13519@deftypefn {Built-in Function}  void __builtin_rx_mullo (int, int)
13520Generates the @code{mullo} machine instruction to place the result of
13521multiplying the bottom 16-bits of the two arguments into the
13522accumulator.
13523@end deftypefn
13524
13525@deftypefn {Built-in Function}  int  __builtin_rx_mvfachi (void)
13526Generates the @code{mvfachi} machine instruction to read the top
1352732-bits of the accumulator.
13528@end deftypefn
13529
13530@deftypefn {Built-in Function}  int  __builtin_rx_mvfacmi (void)
13531Generates the @code{mvfacmi} machine instruction to read the middle
1353232-bits of the accumulator.
13533@end deftypefn
13534
13535@deftypefn {Built-in Function}  int __builtin_rx_mvfc (int)
13536Generates the @code{mvfc} machine instruction which reads the control
13537register specified in its argument and returns its value.
13538@end deftypefn
13539
13540@deftypefn {Built-in Function}  void __builtin_rx_mvtachi (int)
13541Generates the @code{mvtachi} machine instruction to set the top
1354232-bits of the accumulator.
13543@end deftypefn
13544
13545@deftypefn {Built-in Function}  void __builtin_rx_mvtaclo (int)
13546Generates the @code{mvtaclo} machine instruction to set the bottom
1354732-bits of the accumulator.
13548@end deftypefn
13549
13550@deftypefn {Built-in Function}  void __builtin_rx_mvtc (int reg, int val)
13551Generates the @code{mvtc} machine instruction which sets control
13552register number @code{reg} to @code{val}.
13553@end deftypefn
13554
13555@deftypefn {Built-in Function}  void __builtin_rx_mvtipl (int)
13556Generates the @code{mvtipl} machine instruction set the interrupt
13557priority level.
13558@end deftypefn
13559
13560@deftypefn {Built-in Function}  void __builtin_rx_racw (int)
13561Generates the @code{racw} machine instruction to round the accumulator
13562according to the specified mode.
13563@end deftypefn
13564
13565@deftypefn {Built-in Function}  int __builtin_rx_revw (int)
13566Generates the @code{revw} machine instruction which swaps the bytes in
13567the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
13568and also bits 16--23 occupy bits 24--31 and vice versa.
13569@end deftypefn
13570
13571@deftypefn {Built-in Function}  void __builtin_rx_rmpa (void)
13572Generates the @code{rmpa} machine instruction which initiates a
13573repeated multiply and accumulate sequence.
13574@end deftypefn
13575
13576@deftypefn {Built-in Function}  void __builtin_rx_round (float)
13577Generates the @code{round} machine instruction which returns the
13578floating point argument rounded according to the current rounding mode
13579set in the floating point status word register.
13580@end deftypefn
13581
13582@deftypefn {Built-in Function}  int __builtin_rx_sat (int)
13583Generates the @code{sat} machine instruction which returns the
13584saturated value of the argument.
13585@end deftypefn
13586
13587@deftypefn {Built-in Function}  void __builtin_rx_setpsw (int)
13588Generates the @code{setpsw} machine instruction to set the specified
13589bit in the processor status word.
13590@end deftypefn
13591
13592@deftypefn {Built-in Function}  void __builtin_rx_wait (void)
13593Generates the @code{wait} machine instruction.
13594@end deftypefn
13595
13596@node SPARC VIS Built-in Functions
13597@subsection SPARC VIS Built-in Functions
13598
13599GCC supports SIMD operations on the SPARC using both the generic vector
13600extensions (@pxref{Vector Extensions}) as well as built-in functions for
13601the SPARC Visual Instruction Set (VIS).  When you use the @option{-mvis}
13602switch, the VIS extension is exposed as the following built-in functions:
13603
13604@smallexample
13605typedef int v1si __attribute__ ((vector_size (4)));
13606typedef int v2si __attribute__ ((vector_size (8)));
13607typedef short v4hi __attribute__ ((vector_size (8)));
13608typedef short v2hi __attribute__ ((vector_size (4)));
13609typedef unsigned char v8qi __attribute__ ((vector_size (8)));
13610typedef unsigned char v4qi __attribute__ ((vector_size (4)));
13611
13612void __builtin_vis_write_gsr (int64_t);
13613int64_t __builtin_vis_read_gsr (void);
13614
13615void * __builtin_vis_alignaddr (void *, long);
13616void * __builtin_vis_alignaddrl (void *, long);
13617int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
13618v2si __builtin_vis_faligndatav2si (v2si, v2si);
13619v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
13620v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
13621
13622v4hi __builtin_vis_fexpand (v4qi);
13623
13624v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
13625v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
13626v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
13627v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
13628v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
13629v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
13630v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
13631
13632v4qi __builtin_vis_fpack16 (v4hi);
13633v8qi __builtin_vis_fpack32 (v2si, v8qi);
13634v2hi __builtin_vis_fpackfix (v2si);
13635v8qi __builtin_vis_fpmerge (v4qi, v4qi);
13636
13637int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
13638
13639long __builtin_vis_edge8 (void *, void *);
13640long __builtin_vis_edge8l (void *, void *);
13641long __builtin_vis_edge16 (void *, void *);
13642long __builtin_vis_edge16l (void *, void *);
13643long __builtin_vis_edge32 (void *, void *);
13644long __builtin_vis_edge32l (void *, void *);
13645
13646long __builtin_vis_fcmple16 (v4hi, v4hi);
13647long __builtin_vis_fcmple32 (v2si, v2si);
13648long __builtin_vis_fcmpne16 (v4hi, v4hi);
13649long __builtin_vis_fcmpne32 (v2si, v2si);
13650long __builtin_vis_fcmpgt16 (v4hi, v4hi);
13651long __builtin_vis_fcmpgt32 (v2si, v2si);
13652long __builtin_vis_fcmpeq16 (v4hi, v4hi);
13653long __builtin_vis_fcmpeq32 (v2si, v2si);
13654
13655v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
13656v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
13657v2si __builtin_vis_fpadd32 (v2si, v2si);
13658v1si __builtin_vis_fpadd32s (v1si, v1si);
13659v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
13660v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
13661v2si __builtin_vis_fpsub32 (v2si, v2si);
13662v1si __builtin_vis_fpsub32s (v1si, v1si);
13663
13664long __builtin_vis_array8 (long, long);
13665long __builtin_vis_array16 (long, long);
13666long __builtin_vis_array32 (long, long);
13667@end smallexample
13668
13669When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
13670functions also become available:
13671
13672@smallexample
13673long __builtin_vis_bmask (long, long);
13674int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
13675v2si __builtin_vis_bshufflev2si (v2si, v2si);
13676v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
13677v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
13678
13679long __builtin_vis_edge8n (void *, void *);
13680long __builtin_vis_edge8ln (void *, void *);
13681long __builtin_vis_edge16n (void *, void *);
13682long __builtin_vis_edge16ln (void *, void *);
13683long __builtin_vis_edge32n (void *, void *);
13684long __builtin_vis_edge32ln (void *, void *);
13685@end smallexample
13686
13687When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
13688functions also become available:
13689
13690@smallexample
13691void __builtin_vis_cmask8 (long);
13692void __builtin_vis_cmask16 (long);
13693void __builtin_vis_cmask32 (long);
13694
13695v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
13696
13697v4hi __builtin_vis_fsll16 (v4hi, v4hi);
13698v4hi __builtin_vis_fslas16 (v4hi, v4hi);
13699v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
13700v4hi __builtin_vis_fsra16 (v4hi, v4hi);
13701v2si __builtin_vis_fsll16 (v2si, v2si);
13702v2si __builtin_vis_fslas16 (v2si, v2si);
13703v2si __builtin_vis_fsrl16 (v2si, v2si);
13704v2si __builtin_vis_fsra16 (v2si, v2si);
13705
13706long __builtin_vis_pdistn (v8qi, v8qi);
13707
13708v4hi __builtin_vis_fmean16 (v4hi, v4hi);
13709
13710int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
13711int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
13712
13713v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
13714v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
13715v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
13716v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
13717v2si __builtin_vis_fpadds32 (v2si, v2si);
13718v1si __builtin_vis_fpadds32s (v1si, v1si);
13719v2si __builtin_vis_fpsubs32 (v2si, v2si);
13720v1si __builtin_vis_fpsubs32s (v1si, v1si);
13721
13722long __builtin_vis_fucmple8 (v8qi, v8qi);
13723long __builtin_vis_fucmpne8 (v8qi, v8qi);
13724long __builtin_vis_fucmpgt8 (v8qi, v8qi);
13725long __builtin_vis_fucmpeq8 (v8qi, v8qi);
13726
13727float __builtin_vis_fhadds (float, float);
13728double __builtin_vis_fhaddd (double, double);
13729float __builtin_vis_fhsubs (float, float);
13730double __builtin_vis_fhsubd (double, double);
13731float __builtin_vis_fnhadds (float, float);
13732double __builtin_vis_fnhaddd (double, double);
13733
13734int64_t __builtin_vis_umulxhi (int64_t, int64_t);
13735int64_t __builtin_vis_xmulx (int64_t, int64_t);
13736int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
13737@end smallexample
13738
13739@node SPU Built-in Functions
13740@subsection SPU Built-in Functions
13741
13742GCC provides extensions for the SPU processor as described in the
13743Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
13744found at @uref{http://cell.scei.co.jp/} or
13745@uref{http://www.ibm.com/developerworks/power/cell/}.  GCC's
13746implementation differs in several ways.
13747
13748@itemize @bullet
13749
13750@item
13751The optional extension of specifying vector constants in parentheses is
13752not supported.
13753
13754@item
13755A vector initializer requires no cast if the vector constant is of the
13756same type as the variable it is initializing.
13757
13758@item
13759If @code{signed} or @code{unsigned} is omitted, the signedness of the
13760vector type is the default signedness of the base type.  The default
13761varies depending on the operating system, so a portable program should
13762always specify the signedness.
13763
13764@item
13765By default, the keyword @code{__vector} is added. The macro
13766@code{vector} is defined in @code{<spu_intrinsics.h>} and can be
13767undefined.
13768
13769@item
13770GCC allows using a @code{typedef} name as the type specifier for a
13771vector type.
13772
13773@item
13774For C, overloaded functions are implemented with macros so the following
13775does not work:
13776
13777@smallexample
13778  spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
13779@end smallexample
13780
13781Since @code{spu_add} is a macro, the vector constant in the example
13782is treated as four separate arguments.  Wrap the entire argument in
13783parentheses for this to work.
13784
13785@item
13786The extended version of @code{__builtin_expect} is not supported.
13787
13788@end itemize
13789
13790@emph{Note:} Only the interface described in the aforementioned
13791specification is supported. Internally, GCC uses built-in functions to
13792implement the required functionality, but these are not supported and
13793are subject to change without notice.
13794
13795@node TI C6X Built-in Functions
13796@subsection TI C6X Built-in Functions
13797
13798GCC provides intrinsics to access certain instructions of the TI C6X
13799processors.  These intrinsics, listed below, are available after
13800inclusion of the @code{c6x_intrinsics.h} header file.  They map directly
13801to C6X instructions.
13802
13803@smallexample
13804
13805int _sadd (int, int)
13806int _ssub (int, int)
13807int _sadd2 (int, int)
13808int _ssub2 (int, int)
13809long long _mpy2 (int, int)
13810long long _smpy2 (int, int)
13811int _add4 (int, int)
13812int _sub4 (int, int)
13813int _saddu4 (int, int)
13814
13815int _smpy (int, int)
13816int _smpyh (int, int)
13817int _smpyhl (int, int)
13818int _smpylh (int, int)
13819
13820int _sshl (int, int)
13821int _subc (int, int)
13822
13823int _avg2 (int, int)
13824int _avgu4 (int, int)
13825
13826int _clrr (int, int)
13827int _extr (int, int)
13828int _extru (int, int)
13829int _abs (int)
13830int _abs2 (int)
13831
13832@end smallexample
13833
13834@node TILE-Gx Built-in Functions
13835@subsection TILE-Gx Built-in Functions
13836
13837GCC provides intrinsics to access every instruction of the TILE-Gx
13838processor.  The intrinsics are of the form:
13839
13840@smallexample
13841
13842unsigned long long __insn_@var{op} (...)
13843
13844@end smallexample
13845
13846Where @var{op} is the name of the instruction.  Refer to the ISA manual
13847for the complete list of instructions.
13848
13849GCC also provides intrinsics to directly access the network registers.
13850The intrinsics are:
13851
13852@smallexample
13853
13854unsigned long long __tile_idn0_receive (void)
13855unsigned long long __tile_idn1_receive (void)
13856unsigned long long __tile_udn0_receive (void)
13857unsigned long long __tile_udn1_receive (void)
13858unsigned long long __tile_udn2_receive (void)
13859unsigned long long __tile_udn3_receive (void)
13860void __tile_idn_send (unsigned long long)
13861void __tile_udn_send (unsigned long long)
13862
13863@end smallexample
13864
13865The intrinsic @code{void __tile_network_barrier (void)} is used to
13866guarantee that no network operatons before it will be reordered with
13867those after it.
13868
13869@node TILEPro Built-in Functions
13870@subsection TILEPro Built-in Functions
13871
13872GCC provides intrinsics to access every instruction of the TILEPro
13873processor.  The intrinsics are of the form:
13874
13875@smallexample
13876
13877unsigned __insn_@var{op} (...)
13878
13879@end smallexample
13880
13881Where @var{op} is the name of the instruction.  Refer to the ISA manual
13882for the complete list of instructions.
13883
13884GCC also provides intrinsics to directly access the network registers.
13885The intrinsics are:
13886
13887@smallexample
13888
13889unsigned __tile_idn0_receive (void)
13890unsigned __tile_idn1_receive (void)
13891unsigned __tile_sn_receive (void)
13892unsigned __tile_udn0_receive (void)
13893unsigned __tile_udn1_receive (void)
13894unsigned __tile_udn2_receive (void)
13895unsigned __tile_udn3_receive (void)
13896void __tile_idn_send (unsigned)
13897void __tile_sn_send (unsigned)
13898void __tile_udn_send (unsigned)
13899
13900@end smallexample
13901
13902The intrinsic @code{void __tile_network_barrier (void)} is used to
13903guarantee that no network operatons before it will be reordered with
13904those after it.
13905
13906@node Target Format Checks
13907@section Format Checks Specific to Particular Target Machines
13908
13909For some target machines, GCC supports additional options to the
13910format attribute
13911(@pxref{Function Attributes,,Declaring Attributes of Functions}).
13912
13913@menu
13914* Solaris Format Checks::
13915* Darwin Format Checks::
13916@end menu
13917
13918@node Solaris Format Checks
13919@subsection Solaris Format Checks
13920
13921Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
13922check.  @code{cmn_err} accepts a subset of the standard @code{printf}
13923conversions, and the two-argument @code{%b} conversion for displaying
13924bit-fields.  See the Solaris man page for @code{cmn_err} for more information.
13925
13926@node Darwin Format Checks
13927@subsection Darwin Format Checks
13928
13929Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
13930attribute context.  Declarations made with such attribution will be parsed for correct syntax
13931and format argument types.  However, parsing of the format string itself is currently undefined
13932and will not be carried out by this version of the compiler.
13933
13934Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
13935also be used as format arguments.  Note that the relevant headers are only likely to be
13936available on Darwin (OSX) installations.  On such installations, the XCode and system
13937documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
13938associated functions.
13939
13940@node Pragmas
13941@section Pragmas Accepted by GCC
13942@cindex pragmas
13943@cindex @code{#pragma}
13944
13945GCC supports several types of pragmas, primarily in order to compile
13946code originally written for other compilers.  Note that in general
13947we do not recommend the use of pragmas; @xref{Function Attributes},
13948for further explanation.
13949
13950@menu
13951* ARM Pragmas::
13952* M32C Pragmas::
13953* MeP Pragmas::
13954* RS/6000 and PowerPC Pragmas::
13955* Darwin Pragmas::
13956* Solaris Pragmas::
13957* Symbol-Renaming Pragmas::
13958* Structure-Packing Pragmas::
13959* Weak Pragmas::
13960* Diagnostic Pragmas::
13961* Visibility Pragmas::
13962* Push/Pop Macro Pragmas::
13963* Function Specific Option Pragmas::
13964@end menu
13965
13966@node ARM Pragmas
13967@subsection ARM Pragmas
13968
13969The ARM target defines pragmas for controlling the default addition of
13970@code{long_call} and @code{short_call} attributes to functions.
13971@xref{Function Attributes}, for information about the effects of these
13972attributes.
13973
13974@table @code
13975@item long_calls
13976@cindex pragma, long_calls
13977Set all subsequent functions to have the @code{long_call} attribute.
13978
13979@item no_long_calls
13980@cindex pragma, no_long_calls
13981Set all subsequent functions to have the @code{short_call} attribute.
13982
13983@item long_calls_off
13984@cindex pragma, long_calls_off
13985Do not affect the @code{long_call} or @code{short_call} attributes of
13986subsequent functions.
13987@end table
13988
13989@node M32C Pragmas
13990@subsection M32C Pragmas
13991
13992@table @code
13993@item GCC memregs @var{number}
13994@cindex pragma, memregs
13995Overrides the command-line option @code{-memregs=} for the current
13996file.  Use with care!  This pragma must be before any function in the
13997file, and mixing different memregs values in different objects may
13998make them incompatible.  This pragma is useful when a
13999performance-critical function uses a memreg for temporary values,
14000as it may allow you to reduce the number of memregs used.
14001
14002@item ADDRESS @var{name} @var{address}
14003@cindex pragma, address
14004For any declared symbols matching @var{name}, this does three things
14005to that symbol: it forces the symbol to be located at the given
14006address (a number), it forces the symbol to be volatile, and it
14007changes the symbol's scope to be static.  This pragma exists for
14008compatibility with other compilers, but note that the common
14009@code{1234H} numeric syntax is not supported (use @code{0x1234}
14010instead).  Example:
14011
14012@example
14013#pragma ADDRESS port3 0x103
14014char port3;
14015@end example
14016
14017@end table
14018
14019@node MeP Pragmas
14020@subsection MeP Pragmas
14021
14022@table @code
14023
14024@item custom io_volatile (on|off)
14025@cindex pragma, custom io_volatile
14026Overrides the command line option @code{-mio-volatile} for the current
14027file.  Note that for compatibility with future GCC releases, this
14028option should only be used once before any @code{io} variables in each
14029file.
14030
14031@item GCC coprocessor available @var{registers}
14032@cindex pragma, coprocessor available
14033Specifies which coprocessor registers are available to the register
14034allocator.  @var{registers} may be a single register, register range
14035separated by ellipses, or comma-separated list of those.  Example:
14036
14037@example
14038#pragma GCC coprocessor available $c0...$c10, $c28
14039@end example
14040
14041@item GCC coprocessor call_saved @var{registers}
14042@cindex pragma, coprocessor call_saved
14043Specifies which coprocessor registers are to be saved and restored by
14044any function using them.  @var{registers} may be a single register,
14045register range separated by ellipses, or comma-separated list of
14046those.  Example:
14047
14048@example
14049#pragma GCC coprocessor call_saved $c4...$c6, $c31
14050@end example
14051
14052@item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
14053@cindex pragma, coprocessor subclass
14054Creates and defines a register class.  These register classes can be
14055used by inline @code{asm} constructs.  @var{registers} may be a single
14056register, register range separated by ellipses, or comma-separated
14057list of those.  Example:
14058
14059@example
14060#pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
14061
14062asm ("cpfoo %0" : "=B" (x));
14063@end example
14064
14065@item GCC disinterrupt @var{name} , @var{name} @dots{}
14066@cindex pragma, disinterrupt
14067For the named functions, the compiler adds code to disable interrupts
14068for the duration of those functions.  Any functions so named, which
14069are not encountered in the source, cause a warning that the pragma was
14070not used.  Examples:
14071
14072@example
14073#pragma disinterrupt foo
14074#pragma disinterrupt bar, grill
14075int foo () @{ @dots{} @}
14076@end example
14077
14078@item GCC call @var{name} , @var{name} @dots{}
14079@cindex pragma, call
14080For the named functions, the compiler always uses a register-indirect
14081call model when calling the named functions.  Examples:
14082
14083@example
14084extern int foo ();
14085#pragma call foo
14086@end example
14087
14088@end table
14089
14090@node RS/6000 and PowerPC Pragmas
14091@subsection RS/6000 and PowerPC Pragmas
14092
14093The RS/6000 and PowerPC targets define one pragma for controlling
14094whether or not the @code{longcall} attribute is added to function
14095declarations by default.  This pragma overrides the @option{-mlongcall}
14096option, but not the @code{longcall} and @code{shortcall} attributes.
14097@xref{RS/6000 and PowerPC Options}, for more information about when long
14098calls are and are not necessary.
14099
14100@table @code
14101@item longcall (1)
14102@cindex pragma, longcall
14103Apply the @code{longcall} attribute to all subsequent function
14104declarations.
14105
14106@item longcall (0)
14107Do not apply the @code{longcall} attribute to subsequent function
14108declarations.
14109@end table
14110
14111@c Describe h8300 pragmas here.
14112@c Describe sh pragmas here.
14113@c Describe v850 pragmas here.
14114
14115@node Darwin Pragmas
14116@subsection Darwin Pragmas
14117
14118The following pragmas are available for all architectures running the
14119Darwin operating system.  These are useful for compatibility with other
14120Mac OS compilers.
14121
14122@table @code
14123@item mark @var{tokens}@dots{}
14124@cindex pragma, mark
14125This pragma is accepted, but has no effect.
14126
14127@item options align=@var{alignment}
14128@cindex pragma, options align
14129This pragma sets the alignment of fields in structures.  The values of
14130@var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
14131@code{power}, to emulate PowerPC alignment.  Uses of this pragma nest
14132properly; to restore the previous setting, use @code{reset} for the
14133@var{alignment}.
14134
14135@item segment @var{tokens}@dots{}
14136@cindex pragma, segment
14137This pragma is accepted, but has no effect.
14138
14139@item unused (@var{var} [, @var{var}]@dots{})
14140@cindex pragma, unused
14141This pragma declares variables to be possibly unused.  GCC will not
14142produce warnings for the listed variables.  The effect is similar to
14143that of the @code{unused} attribute, except that this pragma may appear
14144anywhere within the variables' scopes.
14145@end table
14146
14147@node Solaris Pragmas
14148@subsection Solaris Pragmas
14149
14150The Solaris target supports @code{#pragma redefine_extname}
14151(@pxref{Symbol-Renaming Pragmas}).  It also supports additional
14152@code{#pragma} directives for compatibility with the system compiler.
14153
14154@table @code
14155@item align @var{alignment} (@var{variable} [, @var{variable}]...)
14156@cindex pragma, align
14157
14158Increase the minimum alignment of each @var{variable} to @var{alignment}.
14159This is the same as GCC's @code{aligned} attribute @pxref{Variable
14160Attributes}).  Macro expansion occurs on the arguments to this pragma
14161when compiling C and Objective-C@.  It does not currently occur when
14162compiling C++, but this is a bug which may be fixed in a future
14163release.
14164
14165@item fini (@var{function} [, @var{function}]...)
14166@cindex pragma, fini
14167
14168This pragma causes each listed @var{function} to be called after
14169main, or during shared module unloading, by adding a call to the
14170@code{.fini} section.
14171
14172@item init (@var{function} [, @var{function}]...)
14173@cindex pragma, init
14174
14175This pragma causes each listed @var{function} to be called during
14176initialization (before @code{main}) or during shared module loading, by
14177adding a call to the @code{.init} section.
14178
14179@end table
14180
14181@node Symbol-Renaming Pragmas
14182@subsection Symbol-Renaming Pragmas
14183
14184For compatibility with the Solaris and Tru64 UNIX system headers, GCC
14185supports two @code{#pragma} directives which change the name used in
14186assembly for a given declaration.  @code{#pragma extern_prefix} is only
14187available on platforms whose system headers need it. To get this effect
14188on all platforms supported by GCC, use the asm labels extension (@pxref{Asm
14189Labels}).
14190
14191@table @code
14192@item redefine_extname @var{oldname} @var{newname}
14193@cindex pragma, redefine_extname
14194
14195This pragma gives the C function @var{oldname} the assembly symbol
14196@var{newname}.  The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
14197will be defined if this pragma is available (currently on all platforms).
14198
14199@item extern_prefix @var{string}
14200@cindex pragma, extern_prefix
14201
14202This pragma causes all subsequent external function and variable
14203declarations to have @var{string} prepended to their assembly symbols.
14204This effect may be terminated with another @code{extern_prefix} pragma
14205whose argument is an empty string.  The preprocessor macro
14206@code{__PRAGMA_EXTERN_PREFIX} will be defined if this pragma is
14207available (currently only on Tru64 UNIX)@.
14208@end table
14209
14210These pragmas and the asm labels extension interact in a complicated
14211manner.  Here are some corner cases you may want to be aware of.
14212
14213@enumerate
14214@item Both pragmas silently apply only to declarations with external
14215linkage.  Asm labels do not have this restriction.
14216
14217@item In C++, both pragmas silently apply only to declarations with
14218``C'' linkage.  Again, asm labels do not have this restriction.
14219
14220@item If any of the three ways of changing the assembly name of a
14221declaration is applied to a declaration whose assembly name has
14222already been determined (either by a previous use of one of these
14223features, or because the compiler needed the assembly name in order to
14224generate code), and the new name is different, a warning issues and
14225the name does not change.
14226
14227@item The @var{oldname} used by @code{#pragma redefine_extname} is
14228always the C-language name.
14229
14230@item If @code{#pragma extern_prefix} is in effect, and a declaration
14231occurs with an asm label attached, the prefix is silently ignored for
14232that declaration.
14233
14234@item If @code{#pragma extern_prefix} and @code{#pragma redefine_extname}
14235apply to the same declaration, whichever triggered first wins, and a
14236warning issues if they contradict each other.  (We would like to have
14237@code{#pragma redefine_extname} always win, for consistency with asm
14238labels, but if @code{#pragma extern_prefix} triggers first we have no
14239way of knowing that that happened.)
14240@end enumerate
14241
14242@node Structure-Packing Pragmas
14243@subsection Structure-Packing Pragmas
14244
14245For compatibility with Microsoft Windows compilers, GCC supports a
14246set of @code{#pragma} directives which change the maximum alignment of
14247members of structures (other than zero-width bitfields), unions, and
14248classes subsequently defined. The @var{n} value below always is required
14249to be a small power of two and specifies the new alignment in bytes.
14250
14251@enumerate
14252@item @code{#pragma pack(@var{n})} simply sets the new alignment.
14253@item @code{#pragma pack()} sets the alignment to the one that was in
14254effect when compilation started (see also command-line option
14255@option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
14256@item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
14257setting on an internal stack and then optionally sets the new alignment.
14258@item @code{#pragma pack(pop)} restores the alignment setting to the one
14259saved at the top of the internal stack (and removes that stack entry).
14260Note that @code{#pragma pack([@var{n}])} does not influence this internal
14261stack; thus it is possible to have @code{#pragma pack(push)} followed by
14262multiple @code{#pragma pack(@var{n})} instances and finalized by a single
14263@code{#pragma pack(pop)}.
14264@end enumerate
14265
14266Some targets, e.g.@: i386 and powerpc, support the @code{ms_struct}
14267@code{#pragma} which lays out a structure as the documented
14268@code{__attribute__ ((ms_struct))}.
14269@enumerate
14270@item @code{#pragma ms_struct on} turns on the layout for structures
14271declared.
14272@item @code{#pragma ms_struct off} turns off the layout for structures
14273declared.
14274@item @code{#pragma ms_struct reset} goes back to the default layout.
14275@end enumerate
14276
14277@node Weak Pragmas
14278@subsection Weak Pragmas
14279
14280For compatibility with SVR4, GCC supports a set of @code{#pragma}
14281directives for declaring symbols to be weak, and defining weak
14282aliases.
14283
14284@table @code
14285@item #pragma weak @var{symbol}
14286@cindex pragma, weak
14287This pragma declares @var{symbol} to be weak, as if the declaration
14288had the attribute of the same name.  The pragma may appear before
14289or after the declaration of @var{symbol}.  It is not an error for
14290@var{symbol} to never be defined at all.
14291
14292@item #pragma weak @var{symbol1} = @var{symbol2}
14293This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
14294It is an error if @var{symbol2} is not defined in the current
14295translation unit.
14296@end table
14297
14298@node Diagnostic Pragmas
14299@subsection Diagnostic Pragmas
14300
14301GCC allows the user to selectively enable or disable certain types of
14302diagnostics, and change the kind of the diagnostic.  For example, a
14303project's policy might require that all sources compile with
14304@option{-Werror} but certain files might have exceptions allowing
14305specific types of warnings.  Or, a project might selectively enable
14306diagnostics and treat them as errors depending on which preprocessor
14307macros are defined.
14308
14309@table @code
14310@item #pragma GCC diagnostic @var{kind} @var{option}
14311@cindex pragma, diagnostic
14312
14313Modifies the disposition of a diagnostic.  Note that not all
14314diagnostics are modifiable; at the moment only warnings (normally
14315controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
14316Use @option{-fdiagnostics-show-option} to determine which diagnostics
14317are controllable and which option controls them.
14318
14319@var{kind} is @samp{error} to treat this diagnostic as an error,
14320@samp{warning} to treat it like a warning (even if @option{-Werror} is
14321in effect), or @samp{ignored} if the diagnostic is to be ignored.
14322@var{option} is a double quoted string which matches the command-line
14323option.
14324
14325@example
14326#pragma GCC diagnostic warning "-Wformat"
14327#pragma GCC diagnostic error "-Wformat"
14328#pragma GCC diagnostic ignored "-Wformat"
14329@end example
14330
14331Note that these pragmas override any command-line options.  GCC keeps
14332track of the location of each pragma, and issues diagnostics according
14333to the state as of that point in the source file.  Thus, pragmas occurring
14334after a line do not affect diagnostics caused by that line.
14335
14336@item #pragma GCC diagnostic push
14337@itemx #pragma GCC diagnostic pop
14338
14339Causes GCC to remember the state of the diagnostics as of each
14340@code{push}, and restore to that point at each @code{pop}.  If a
14341@code{pop} has no matching @code{push}, the command line options are
14342restored.
14343
14344@example
14345#pragma GCC diagnostic error "-Wuninitialized"
14346  foo(a);			/* error is given for this one */
14347#pragma GCC diagnostic push
14348#pragma GCC diagnostic ignored "-Wuninitialized"
14349  foo(b);			/* no diagnostic for this one */
14350#pragma GCC diagnostic pop
14351  foo(c);			/* error is given for this one */
14352#pragma GCC diagnostic pop
14353  foo(d);			/* depends on command line options */
14354@end example
14355
14356@end table
14357
14358GCC also offers a simple mechanism for printing messages during
14359compilation.
14360
14361@table @code
14362@item #pragma message @var{string}
14363@cindex pragma, diagnostic
14364
14365Prints @var{string} as a compiler message on compilation.  The message
14366is informational only, and is neither a compilation warning nor an error.
14367
14368@smallexample
14369#pragma message "Compiling " __FILE__ "..."
14370@end smallexample
14371
14372@var{string} may be parenthesized, and is printed with location
14373information.  For example,
14374
14375@smallexample
14376#define DO_PRAGMA(x) _Pragma (#x)
14377#define TODO(x) DO_PRAGMA(message ("TODO - " #x))
14378
14379TODO(Remember to fix this)
14380@end smallexample
14381
14382prints @samp{/tmp/file.c:4: note: #pragma message:
14383TODO - Remember to fix this}.
14384
14385@end table
14386
14387@node Visibility Pragmas
14388@subsection Visibility Pragmas
14389
14390@table @code
14391@item #pragma GCC visibility push(@var{visibility})
14392@itemx #pragma GCC visibility pop
14393@cindex pragma, visibility
14394
14395This pragma allows the user to set the visibility for multiple
14396declarations without having to give each a visibility attribute
14397@xref{Function Attributes}, for more information about visibility and
14398the attribute syntax.
14399
14400In C++, @samp{#pragma GCC visibility} affects only namespace-scope
14401declarations.  Class members and template specializations are not
14402affected; if you want to override the visibility for a particular
14403member or instantiation, you must use an attribute.
14404
14405@end table
14406
14407
14408@node Push/Pop Macro Pragmas
14409@subsection Push/Pop Macro Pragmas
14410
14411For compatibility with Microsoft Windows compilers, GCC supports
14412@samp{#pragma push_macro(@var{"macro_name"})}
14413and @samp{#pragma pop_macro(@var{"macro_name"})}.
14414
14415@table @code
14416@item #pragma push_macro(@var{"macro_name"})
14417@cindex pragma, push_macro
14418This pragma saves the value of the macro named as @var{macro_name} to
14419the top of the stack for this macro.
14420
14421@item #pragma pop_macro(@var{"macro_name"})
14422@cindex pragma, pop_macro
14423This pragma sets the value of the macro named as @var{macro_name} to
14424the value on top of the stack for this macro. If the stack for
14425@var{macro_name} is empty, the value of the macro remains unchanged.
14426@end table
14427
14428For example:
14429
14430@smallexample
14431#define X  1
14432#pragma push_macro("X")
14433#undef X
14434#define X -1
14435#pragma pop_macro("X")
14436int x [X];
14437@end smallexample
14438
14439In this example, the definition of X as 1 is saved by @code{#pragma
14440push_macro} and restored by @code{#pragma pop_macro}.
14441
14442@node Function Specific Option Pragmas
14443@subsection Function Specific Option Pragmas
14444
14445@table @code
14446@item #pragma GCC target (@var{"string"}...)
14447@cindex pragma GCC target
14448
14449This pragma allows you to set target specific options for functions
14450defined later in the source file.  One or more strings can be
14451specified.  Each function that is defined after this point will be as
14452if @code{attribute((target("STRING")))} was specified for that
14453function.  The parenthesis around the options is optional.
14454@xref{Function Attributes}, for more information about the
14455@code{target} attribute and the attribute syntax.
14456
14457The @code{#pragma GCC target} attribute is not implemented in GCC versions earlier
14458than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends.  At
14459present, it is not implemented for other backends.
14460@end table
14461
14462@table @code
14463@item #pragma GCC optimize (@var{"string"}...)
14464@cindex pragma GCC optimize
14465
14466This pragma allows you to set global optimization options for functions
14467defined later in the source file.  One or more strings can be
14468specified.  Each function that is defined after this point will be as
14469if @code{attribute((optimize("STRING")))} was specified for that
14470function.  The parenthesis around the options is optional.
14471@xref{Function Attributes}, for more information about the
14472@code{optimize} attribute and the attribute syntax.
14473
14474The @samp{#pragma GCC optimize} pragma is not implemented in GCC
14475versions earlier than 4.4.
14476@end table
14477
14478@table @code
14479@item #pragma GCC push_options
14480@itemx #pragma GCC pop_options
14481@cindex pragma GCC push_options
14482@cindex pragma GCC pop_options
14483
14484These pragmas maintain a stack of the current target and optimization
14485options.  It is intended for include files where you temporarily want
14486to switch to using a different @samp{#pragma GCC target} or
14487@samp{#pragma GCC optimize} and then to pop back to the previous
14488options.
14489
14490The @samp{#pragma GCC push_options} and @samp{#pragma GCC pop_options}
14491pragmas are not implemented in GCC versions earlier than 4.4.
14492@end table
14493
14494@table @code
14495@item #pragma GCC reset_options
14496@cindex pragma GCC reset_options
14497
14498This pragma clears the current @code{#pragma GCC target} and
14499@code{#pragma GCC optimize} to use the default switches as specified
14500on the command line.
14501
14502The @samp{#pragma GCC reset_options} pragma is not implemented in GCC
14503versions earlier than 4.4.
14504@end table
14505
14506@node Unnamed Fields
14507@section Unnamed struct/union fields within structs/unions
14508@cindex @code{struct}
14509@cindex @code{union}
14510
14511As permitted by ISO C11 and for compatibility with other compilers,
14512GCC allows you to define
14513a structure or union that contains, as fields, structures and unions
14514without names.  For example:
14515
14516@smallexample
14517struct @{
14518  int a;
14519  union @{
14520    int b;
14521    float c;
14522  @};
14523  int d;
14524@} foo;
14525@end smallexample
14526
14527In this example, the user would be able to access members of the unnamed
14528union with code like @samp{foo.b}.  Note that only unnamed structs and
14529unions are allowed, you may not have, for example, an unnamed
14530@code{int}.
14531
14532You must never create such structures that cause ambiguous field definitions.
14533For example, this structure:
14534
14535@smallexample
14536struct @{
14537  int a;
14538  struct @{
14539    int a;
14540  @};
14541@} foo;
14542@end smallexample
14543
14544It is ambiguous which @code{a} is being referred to with @samp{foo.a}.
14545The compiler gives errors for such constructs.
14546
14547@opindex fms-extensions
14548Unless @option{-fms-extensions} is used, the unnamed field must be a
14549structure or union definition without a tag (for example, @samp{struct
14550@{ int a; @};}).  If @option{-fms-extensions} is used, the field may
14551also be a definition with a tag such as @samp{struct foo @{ int a;
14552@};}, a reference to a previously defined structure or union such as
14553@samp{struct foo;}, or a reference to a @code{typedef} name for a
14554previously defined structure or union type.
14555
14556@opindex fplan9-extensions
14557The option @option{-fplan9-extensions} enables
14558@option{-fms-extensions} as well as two other extensions.  First, a
14559pointer to a structure is automatically converted to a pointer to an
14560anonymous field for assignments and function calls.  For example:
14561
14562@smallexample
14563struct s1 @{ int a; @};
14564struct s2 @{ struct s1; @};
14565extern void f1 (struct s1 *);
14566void f2 (struct s2 *p) @{ f1 (p); @}
14567@end smallexample
14568
14569In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
14570converted into a pointer to the anonymous field.
14571
14572Second, when the type of an anonymous field is a @code{typedef} for a
14573@code{struct} or @code{union}, code may refer to the field using the
14574name of the @code{typedef}.
14575
14576@smallexample
14577typedef struct @{ int a; @} s1;
14578struct s2 @{ s1; @};
14579s1 f1 (struct s2 *p) @{ return p->s1; @}
14580@end smallexample
14581
14582These usages are only permitted when they are not ambiguous.
14583
14584@node Thread-Local
14585@section Thread-Local Storage
14586@cindex Thread-Local Storage
14587@cindex @acronym{TLS}
14588@cindex @code{__thread}
14589
14590Thread-local storage (@acronym{TLS}) is a mechanism by which variables
14591are allocated such that there is one instance of the variable per extant
14592thread.  The run-time model GCC uses to implement this originates
14593in the IA-64 processor-specific ABI, but has since been migrated
14594to other processors as well.  It requires significant support from
14595the linker (@command{ld}), dynamic linker (@command{ld.so}), and
14596system libraries (@file{libc.so} and @file{libpthread.so}), so it
14597is not available everywhere.
14598
14599At the user level, the extension is visible with a new storage
14600class keyword: @code{__thread}.  For example:
14601
14602@smallexample
14603__thread int i;
14604extern __thread struct state s;
14605static __thread char *p;
14606@end smallexample
14607
14608The @code{__thread} specifier may be used alone, with the @code{extern}
14609or @code{static} specifiers, but with no other storage class specifier.
14610When used with @code{extern} or @code{static}, @code{__thread} must appear
14611immediately after the other storage class specifier.
14612
14613The @code{__thread} specifier may be applied to any global, file-scoped
14614static, function-scoped static, or static data member of a class.  It may
14615not be applied to block-scoped automatic or non-static data member.
14616
14617When the address-of operator is applied to a thread-local variable, it is
14618evaluated at run-time and returns the address of the current thread's
14619instance of that variable.  An address so obtained may be used by any
14620thread.  When a thread terminates, any pointers to thread-local variables
14621in that thread become invalid.
14622
14623No static initialization may refer to the address of a thread-local variable.
14624
14625In C++, if an initializer is present for a thread-local variable, it must
14626be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
14627standard.
14628
14629See @uref{http://www.akkadia.org/drepper/tls.pdf,
14630ELF Handling For Thread-Local Storage} for a detailed explanation of
14631the four thread-local storage addressing models, and how the run-time
14632is expected to function.
14633
14634@menu
14635* C99 Thread-Local Edits::
14636* C++98 Thread-Local Edits::
14637@end menu
14638
14639@node C99 Thread-Local Edits
14640@subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
14641
14642The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
14643that document the exact semantics of the language extension.
14644
14645@itemize @bullet
14646@item
14647@cite{5.1.2  Execution environments}
14648
14649Add new text after paragraph 1
14650
14651@quotation
14652Within either execution environment, a @dfn{thread} is a flow of
14653control within a program.  It is implementation defined whether
14654or not there may be more than one thread associated with a program.
14655It is implementation defined how threads beyond the first are
14656created, the name and type of the function called at thread
14657startup, and how threads may be terminated.  However, objects
14658with thread storage duration shall be initialized before thread
14659startup.
14660@end quotation
14661
14662@item
14663@cite{6.2.4  Storage durations of objects}
14664
14665Add new text before paragraph 3
14666
14667@quotation
14668An object whose identifier is declared with the storage-class
14669specifier @w{@code{__thread}} has @dfn{thread storage duration}.
14670Its lifetime is the entire execution of the thread, and its
14671stored value is initialized only once, prior to thread startup.
14672@end quotation
14673
14674@item
14675@cite{6.4.1  Keywords}
14676
14677Add @code{__thread}.
14678
14679@item
14680@cite{6.7.1  Storage-class specifiers}
14681
14682Add @code{__thread} to the list of storage class specifiers in
14683paragraph 1.
14684
14685Change paragraph 2 to
14686
14687@quotation
14688With the exception of @code{__thread}, at most one storage-class
14689specifier may be given [@dots{}].  The @code{__thread} specifier may
14690be used alone, or immediately following @code{extern} or
14691@code{static}.
14692@end quotation
14693
14694Add new text after paragraph 6
14695
14696@quotation
14697The declaration of an identifier for a variable that has
14698block scope that specifies @code{__thread} shall also
14699specify either @code{extern} or @code{static}.
14700
14701The @code{__thread} specifier shall be used only with
14702variables.
14703@end quotation
14704@end itemize
14705
14706@node C++98 Thread-Local Edits
14707@subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
14708
14709The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
14710that document the exact semantics of the language extension.
14711
14712@itemize @bullet
14713@item
14714@b{[intro.execution]}
14715
14716New text after paragraph 4
14717
14718@quotation
14719A @dfn{thread} is a flow of control within the abstract machine.
14720It is implementation defined whether or not there may be more than
14721one thread.
14722@end quotation
14723
14724New text after paragraph 7
14725
14726@quotation
14727It is unspecified whether additional action must be taken to
14728ensure when and whether side effects are visible to other threads.
14729@end quotation
14730
14731@item
14732@b{[lex.key]}
14733
14734Add @code{__thread}.
14735
14736@item
14737@b{[basic.start.main]}
14738
14739Add after paragraph 5
14740
14741@quotation
14742The thread that begins execution at the @code{main} function is called
14743the @dfn{main thread}.  It is implementation defined how functions
14744beginning threads other than the main thread are designated or typed.
14745A function so designated, as well as the @code{main} function, is called
14746a @dfn{thread startup function}.  It is implementation defined what
14747happens if a thread startup function returns.  It is implementation
14748defined what happens to other threads when any thread calls @code{exit}.
14749@end quotation
14750
14751@item
14752@b{[basic.start.init]}
14753
14754Add after paragraph 4
14755
14756@quotation
14757The storage for an object of thread storage duration shall be
14758statically initialized before the first statement of the thread startup
14759function.  An object of thread storage duration shall not require
14760dynamic initialization.
14761@end quotation
14762
14763@item
14764@b{[basic.start.term]}
14765
14766Add after paragraph 3
14767
14768@quotation
14769The type of an object with thread storage duration shall not have a
14770non-trivial destructor, nor shall it be an array type whose elements
14771(directly or indirectly) have non-trivial destructors.
14772@end quotation
14773
14774@item
14775@b{[basic.stc]}
14776
14777Add ``thread storage duration'' to the list in paragraph 1.
14778
14779Change paragraph 2
14780
14781@quotation
14782Thread, static, and automatic storage durations are associated with
14783objects introduced by declarations [@dots{}].
14784@end quotation
14785
14786Add @code{__thread} to the list of specifiers in paragraph 3.
14787
14788@item
14789@b{[basic.stc.thread]}
14790
14791New section before @b{[basic.stc.static]}
14792
14793@quotation
14794The keyword @code{__thread} applied to a non-local object gives the
14795object thread storage duration.
14796
14797A local variable or class data member declared both @code{static}
14798and @code{__thread} gives the variable or member thread storage
14799duration.
14800@end quotation
14801
14802@item
14803@b{[basic.stc.static]}
14804
14805Change paragraph 1
14806
14807@quotation
14808All objects which have neither thread storage duration, dynamic
14809storage duration nor are local [@dots{}].
14810@end quotation
14811
14812@item
14813@b{[dcl.stc]}
14814
14815Add @code{__thread} to the list in paragraph 1.
14816
14817Change paragraph 1
14818
14819@quotation
14820With the exception of @code{__thread}, at most one
14821@var{storage-class-specifier} shall appear in a given
14822@var{decl-specifier-seq}.  The @code{__thread} specifier may
14823be used alone, or immediately following the @code{extern} or
14824@code{static} specifiers.  [@dots{}]
14825@end quotation
14826
14827Add after paragraph 5
14828
14829@quotation
14830The @code{__thread} specifier can be applied only to the names of objects
14831and to anonymous unions.
14832@end quotation
14833
14834@item
14835@b{[class.mem]}
14836
14837Add after paragraph 6
14838
14839@quotation
14840Non-@code{static} members shall not be @code{__thread}.
14841@end quotation
14842@end itemize
14843
14844@node Binary constants
14845@section Binary constants using the @samp{0b} prefix
14846@cindex Binary constants using the @samp{0b} prefix
14847
14848Integer constants can be written as binary constants, consisting of a
14849sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
14850@samp{0B}.  This is particularly useful in environments that operate a
14851lot on the bit-level (like microcontrollers).
14852
14853The following statements are identical:
14854
14855@smallexample
14856i =       42;
14857i =     0x2a;
14858i =      052;
14859i = 0b101010;
14860@end smallexample
14861
14862The type of these constants follows the same rules as for octal or
14863hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
14864can be applied.
14865
14866@node C++ Extensions
14867@chapter Extensions to the C++ Language
14868@cindex extensions, C++ language
14869@cindex C++ language extensions
14870
14871The GNU compiler provides these extensions to the C++ language (and you
14872can also use most of the C language extensions in your C++ programs).  If you
14873want to write code that checks whether these features are available, you can
14874test for the GNU compiler the same way as for C programs: check for a
14875predefined macro @code{__GNUC__}.  You can also use @code{__GNUG__} to
14876test specifically for GNU C++ (@pxref{Common Predefined Macros,,
14877Predefined Macros,cpp,The GNU C Preprocessor}).
14878
14879@menu
14880* C++ Volatiles::       What constitutes an access to a volatile object.
14881* Restricted Pointers:: C99 restricted pointers and references.
14882* Vague Linkage::       Where G++ puts inlines, vtables and such.
14883* C++ Interface::       You can use a single C++ header file for both
14884                        declarations and definitions.
14885* Template Instantiation:: Methods for ensuring that exactly one copy of
14886                        each needed template instantiation is emitted.
14887* Bound member functions:: You can extract a function pointer to the
14888                        method denoted by a @samp{->*} or @samp{.*} expression.
14889* C++ Attributes::      Variable, function, and type attributes for C++ only.
14890* Namespace Association:: Strong using-directives for namespace association.
14891* Type Traits::         Compiler support for type traits
14892* Java Exceptions::     Tweaking exception handling to work with Java.
14893* Deprecated Features:: Things will disappear from g++.
14894* Backwards Compatibility:: Compatibilities with earlier definitions of C++.
14895@end menu
14896
14897@node C++ Volatiles
14898@section When is a Volatile C++ Object Accessed?
14899@cindex accessing volatiles
14900@cindex volatile read
14901@cindex volatile write
14902@cindex volatile access
14903
14904The C++ standard differs from the C standard in its treatment of
14905volatile objects.  It fails to specify what constitutes a volatile
14906access, except to say that C++ should behave in a similar manner to C
14907with respect to volatiles, where possible.  However, the different
14908lvalueness of expressions between C and C++ complicate the behavior.
14909G++ behaves the same as GCC for volatile access, @xref{C
14910Extensions,,Volatiles}, for a description of GCC's behavior.
14911
14912The C and C++ language specifications differ when an object is
14913accessed in a void context:
14914
14915@smallexample
14916volatile int *src = @var{somevalue};
14917*src;
14918@end smallexample
14919
14920The C++ standard specifies that such expressions do not undergo lvalue
14921to rvalue conversion, and that the type of the dereferenced object may
14922be incomplete.  The C++ standard does not specify explicitly that it
14923is lvalue to rvalue conversion which is responsible for causing an
14924access.  There is reason to believe that it is, because otherwise
14925certain simple expressions become undefined.  However, because it
14926would surprise most programmers, G++ treats dereferencing a pointer to
14927volatile object of complete type as GCC would do for an equivalent
14928type in C@.  When the object has incomplete type, G++ issues a
14929warning; if you wish to force an error, you must force a conversion to
14930rvalue with, for instance, a static cast.
14931
14932When using a reference to volatile, G++ does not treat equivalent
14933expressions as accesses to volatiles, but instead issues a warning that
14934no volatile is accessed.  The rationale for this is that otherwise it
14935becomes difficult to determine where volatile access occur, and not
14936possible to ignore the return value from functions returning volatile
14937references.  Again, if you wish to force a read, cast the reference to
14938an rvalue.
14939
14940G++ implements the same behavior as GCC does when assigning to a
14941volatile object -- there is no reread of the assigned-to object, the
14942assigned rvalue is reused.  Note that in C++ assignment expressions
14943are lvalues, and if used as an lvalue, the volatile object will be
14944referred to.  For instance, @var{vref} will refer to @var{vobj}, as
14945expected, in the following example:
14946
14947@smallexample
14948volatile int vobj;
14949volatile int &vref = vobj = @var{something};
14950@end smallexample
14951
14952@node Restricted Pointers
14953@section Restricting Pointer Aliasing
14954@cindex restricted pointers
14955@cindex restricted references
14956@cindex restricted this pointer
14957
14958As with the C front end, G++ understands the C99 feature of restricted pointers,
14959specified with the @code{__restrict__}, or @code{__restrict} type
14960qualifier.  Because you cannot compile C++ by specifying the @option{-std=c99}
14961language flag, @code{restrict} is not a keyword in C++.
14962
14963In addition to allowing restricted pointers, you can specify restricted
14964references, which indicate that the reference is not aliased in the local
14965context.
14966
14967@smallexample
14968void fn (int *__restrict__ rptr, int &__restrict__ rref)
14969@{
14970  /* @r{@dots{}} */
14971@}
14972@end smallexample
14973
14974@noindent
14975In the body of @code{fn}, @var{rptr} points to an unaliased integer and
14976@var{rref} refers to a (different) unaliased integer.
14977
14978You may also specify whether a member function's @var{this} pointer is
14979unaliased by using @code{__restrict__} as a member function qualifier.
14980
14981@smallexample
14982void T::fn () __restrict__
14983@{
14984  /* @r{@dots{}} */
14985@}
14986@end smallexample
14987
14988@noindent
14989Within the body of @code{T::fn}, @var{this} will have the effective
14990definition @code{T *__restrict__ const this}.  Notice that the
14991interpretation of a @code{__restrict__} member function qualifier is
14992different to that of @code{const} or @code{volatile} qualifier, in that it
14993is applied to the pointer rather than the object.  This is consistent with
14994other compilers which implement restricted pointers.
14995
14996As with all outermost parameter qualifiers, @code{__restrict__} is
14997ignored in function definition matching.  This means you only need to
14998specify @code{__restrict__} in a function definition, rather than
14999in a function prototype as well.
15000
15001@node Vague Linkage
15002@section Vague Linkage
15003@cindex vague linkage
15004
15005There are several constructs in C++ which require space in the object
15006file but are not clearly tied to a single translation unit.  We say that
15007these constructs have ``vague linkage''.  Typically such constructs are
15008emitted wherever they are needed, though sometimes we can be more
15009clever.
15010
15011@table @asis
15012@item Inline Functions
15013Inline functions are typically defined in a header file which can be
15014included in many different compilations.  Hopefully they can usually be
15015inlined, but sometimes an out-of-line copy is necessary, if the address
15016of the function is taken or if inlining fails.  In general, we emit an
15017out-of-line copy in all translation units where one is needed.  As an
15018exception, we only emit inline virtual functions with the vtable, since
15019it will always require a copy.
15020
15021Local static variables and string constants used in an inline function
15022are also considered to have vague linkage, since they must be shared
15023between all inlined and out-of-line instances of the function.
15024
15025@item VTables
15026@cindex vtable
15027C++ virtual functions are implemented in most compilers using a lookup
15028table, known as a vtable.  The vtable contains pointers to the virtual
15029functions provided by a class, and each object of the class contains a
15030pointer to its vtable (or vtables, in some multiple-inheritance
15031situations).  If the class declares any non-inline, non-pure virtual
15032functions, the first one is chosen as the ``key method'' for the class,
15033and the vtable is only emitted in the translation unit where the key
15034method is defined.
15035
15036@emph{Note:} If the chosen key method is later defined as inline, the
15037vtable will still be emitted in every translation unit which defines it.
15038Make sure that any inline virtuals are declared inline in the class
15039body, even if they are not defined there.
15040
15041@item @code{type_info} objects
15042@cindex @code{type_info}
15043@cindex RTTI
15044C++ requires information about types to be written out in order to
15045implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
15046For polymorphic classes (classes with virtual functions), the @samp{type_info}
15047object is written out along with the vtable so that @samp{dynamic_cast}
15048can determine the dynamic type of a class object at runtime.  For all
15049other types, we write out the @samp{type_info} object when it is used: when
15050applying @samp{typeid} to an expression, throwing an object, or
15051referring to a type in a catch clause or exception specification.
15052
15053@item Template Instantiations
15054Most everything in this section also applies to template instantiations,
15055but there are other options as well.
15056@xref{Template Instantiation,,Where's the Template?}.
15057
15058@end table
15059
15060When used with GNU ld version 2.8 or later on an ELF system such as
15061GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
15062these constructs will be discarded at link time.  This is known as
15063COMDAT support.
15064
15065On targets that don't support COMDAT, but do support weak symbols, GCC
15066will use them.  This way one copy will override all the others, but
15067the unused copies will still take up space in the executable.
15068
15069For targets which do not support either COMDAT or weak symbols,
15070most entities with vague linkage will be emitted as local symbols to
15071avoid duplicate definition errors from the linker.  This will not happen
15072for local statics in inlines, however, as having multiple copies will
15073almost certainly break things.
15074
15075@xref{C++ Interface,,Declarations and Definitions in One Header}, for
15076another way to control placement of these constructs.
15077
15078@node C++ Interface
15079@section #pragma interface and implementation
15080
15081@cindex interface and implementation headers, C++
15082@cindex C++ interface and implementation headers
15083@cindex pragmas, interface and implementation
15084
15085@code{#pragma interface} and @code{#pragma implementation} provide the
15086user with a way of explicitly directing the compiler to emit entities
15087with vague linkage (and debugging information) in a particular
15088translation unit.
15089
15090@emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
15091most cases, because of COMDAT support and the ``key method'' heuristic
15092mentioned in @ref{Vague Linkage}.  Using them can actually cause your
15093program to grow due to unnecessary out-of-line copies of inline
15094functions.  Currently (3.4) the only benefit of these
15095@code{#pragma}s is reduced duplication of debugging information, and
15096that should be addressed soon on DWARF 2 targets with the use of
15097COMDAT groups.
15098
15099@table @code
15100@item #pragma interface
15101@itemx #pragma interface "@var{subdir}/@var{objects}.h"
15102@kindex #pragma interface
15103Use this directive in @emph{header files} that define object classes, to save
15104space in most of the object files that use those classes.  Normally,
15105local copies of certain information (backup copies of inline member
15106functions, debugging information, and the internal tables that implement
15107virtual functions) must be kept in each object file that includes class
15108definitions.  You can use this pragma to avoid such duplication.  When a
15109header file containing @samp{#pragma interface} is included in a
15110compilation, this auxiliary information will not be generated (unless
15111the main input source file itself uses @samp{#pragma implementation}).
15112Instead, the object files will contain references to be resolved at link
15113time.
15114
15115The second form of this directive is useful for the case where you have
15116multiple headers with the same name in different directories.  If you
15117use this form, you must specify the same string to @samp{#pragma
15118implementation}.
15119
15120@item #pragma implementation
15121@itemx #pragma implementation "@var{objects}.h"
15122@kindex #pragma implementation
15123Use this pragma in a @emph{main input file}, when you want full output from
15124included header files to be generated (and made globally visible).  The
15125included header file, in turn, should use @samp{#pragma interface}.
15126Backup copies of inline member functions, debugging information, and the
15127internal tables used to implement virtual functions are all generated in
15128implementation files.
15129
15130@cindex implied @code{#pragma implementation}
15131@cindex @code{#pragma implementation}, implied
15132@cindex naming convention, implementation headers
15133If you use @samp{#pragma implementation} with no argument, it applies to
15134an include file with the same basename@footnote{A file's @dfn{basename}
15135was the name stripped of all leading path information and of trailing
15136suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
15137file.  For example, in @file{allclass.cc}, giving just
15138@samp{#pragma implementation}
15139by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
15140
15141In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
15142an implementation file whenever you would include it from
15143@file{allclass.cc} even if you never specified @samp{#pragma
15144implementation}.  This was deemed to be more trouble than it was worth,
15145however, and disabled.
15146
15147Use the string argument if you want a single implementation file to
15148include code from multiple header files.  (You must also use
15149@samp{#include} to include the header file; @samp{#pragma
15150implementation} only specifies how to use the file---it doesn't actually
15151include it.)
15152
15153There is no way to split up the contents of a single header file into
15154multiple implementation files.
15155@end table
15156
15157@cindex inlining and C++ pragmas
15158@cindex C++ pragmas, effect on inlining
15159@cindex pragmas in C++, effect on inlining
15160@samp{#pragma implementation} and @samp{#pragma interface} also have an
15161effect on function inlining.
15162
15163If you define a class in a header file marked with @samp{#pragma
15164interface}, the effect on an inline function defined in that class is
15165similar to an explicit @code{extern} declaration---the compiler emits
15166no code at all to define an independent version of the function.  Its
15167definition is used only for inlining with its callers.
15168
15169@opindex fno-implement-inlines
15170Conversely, when you include the same header file in a main source file
15171that declares it as @samp{#pragma implementation}, the compiler emits
15172code for the function itself; this defines a version of the function
15173that can be found via pointers (or by callers compiled without
15174inlining).  If all calls to the function can be inlined, you can avoid
15175emitting the function by compiling with @option{-fno-implement-inlines}.
15176If any calls were not inlined, you will get linker errors.
15177
15178@node Template Instantiation
15179@section Where's the Template?
15180@cindex template instantiation
15181
15182C++ templates are the first language feature to require more
15183intelligence from the environment than one usually finds on a UNIX
15184system.  Somehow the compiler and linker have to make sure that each
15185template instance occurs exactly once in the executable if it is needed,
15186and not at all otherwise.  There are two basic approaches to this
15187problem, which are referred to as the Borland model and the Cfront model.
15188
15189@table @asis
15190@item Borland model
15191Borland C++ solved the template instantiation problem by adding the code
15192equivalent of common blocks to their linker; the compiler emits template
15193instances in each translation unit that uses them, and the linker
15194collapses them together.  The advantage of this model is that the linker
15195only has to consider the object files themselves; there is no external
15196complexity to worry about.  This disadvantage is that compilation time
15197is increased because the template code is being compiled repeatedly.
15198Code written for this model tends to include definitions of all
15199templates in the header file, since they must be seen to be
15200instantiated.
15201
15202@item Cfront model
15203The AT&T C++ translator, Cfront, solved the template instantiation
15204problem by creating the notion of a template repository, an
15205automatically maintained place where template instances are stored.  A
15206more modern version of the repository works as follows: As individual
15207object files are built, the compiler places any template definitions and
15208instantiations encountered in the repository.  At link time, the link
15209wrapper adds in the objects in the repository and compiles any needed
15210instances that were not previously emitted.  The advantages of this
15211model are more optimal compilation speed and the ability to use the
15212system linker; to implement the Borland model a compiler vendor also
15213needs to replace the linker.  The disadvantages are vastly increased
15214complexity, and thus potential for error; for some code this can be
15215just as transparent, but in practice it can been very difficult to build
15216multiple programs in one directory and one program in multiple
15217directories.  Code written for this model tends to separate definitions
15218of non-inline member templates into a separate file, which should be
15219compiled separately.
15220@end table
15221
15222When used with GNU ld version 2.8 or later on an ELF system such as
15223GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
15224Borland model.  On other systems, G++ implements neither automatic
15225model.
15226
15227A future version of G++ will support a hybrid model whereby the compiler
15228will emit any instantiations for which the template definition is
15229included in the compile, and store template definitions and
15230instantiation context information into the object file for the rest.
15231The link wrapper will extract that information as necessary and invoke
15232the compiler to produce the remaining instantiations.  The linker will
15233then combine duplicate instantiations.
15234
15235In the mean time, you have the following options for dealing with
15236template instantiations:
15237
15238@enumerate
15239@item
15240@opindex frepo
15241Compile your template-using code with @option{-frepo}.  The compiler will
15242generate files with the extension @samp{.rpo} listing all of the
15243template instantiations used in the corresponding object files which
15244could be instantiated there; the link wrapper, @samp{collect2}, will
15245then update the @samp{.rpo} files to tell the compiler where to place
15246those instantiations and rebuild any affected object files.  The
15247link-time overhead is negligible after the first pass, as the compiler
15248will continue to place the instantiations in the same files.
15249
15250This is your best option for application code written for the Borland
15251model, as it will just work.  Code written for the Cfront model will
15252need to be modified so that the template definitions are available at
15253one or more points of instantiation; usually this is as simple as adding
15254@code{#include <tmethods.cc>} to the end of each template header.
15255
15256For library code, if you want the library to provide all of the template
15257instantiations it needs, just try to link all of its object files
15258together; the link will fail, but cause the instantiations to be
15259generated as a side effect.  Be warned, however, that this may cause
15260conflicts if multiple libraries try to provide the same instantiations.
15261For greater control, use explicit instantiation as described in the next
15262option.
15263
15264@item
15265@opindex fno-implicit-templates
15266Compile your code with @option{-fno-implicit-templates} to disable the
15267implicit generation of template instances, and explicitly instantiate
15268all the ones you use.  This approach requires more knowledge of exactly
15269which instances you need than do the others, but it's less
15270mysterious and allows greater control.  You can scatter the explicit
15271instantiations throughout your program, perhaps putting them in the
15272translation units where the instances are used or the translation units
15273that define the templates themselves; you can put all of the explicit
15274instantiations you need into one big file; or you can create small files
15275like
15276
15277@smallexample
15278#include "Foo.h"
15279#include "Foo.cc"
15280
15281template class Foo<int>;
15282template ostream& operator <<
15283                (ostream&, const Foo<int>&);
15284@end smallexample
15285
15286for each of the instances you need, and create a template instantiation
15287library from those.
15288
15289If you are using Cfront-model code, you can probably get away with not
15290using @option{-fno-implicit-templates} when compiling files that don't
15291@samp{#include} the member template definitions.
15292
15293If you use one big file to do the instantiations, you may want to
15294compile it without @option{-fno-implicit-templates} so you get all of the
15295instances required by your explicit instantiations (but not by any
15296other files) without having to specify them as well.
15297
15298G++ has extended the template instantiation syntax given in the ISO
15299standard to allow forward declaration of explicit instantiations
15300(with @code{extern}), instantiation of the compiler support data for a
15301template class (i.e.@: the vtable) without instantiating any of its
15302members (with @code{inline}), and instantiation of only the static data
15303members of a template class, without the support data or member
15304functions (with (@code{static}):
15305
15306@smallexample
15307extern template int max (int, int);
15308inline template class Foo<int>;
15309static template class Foo<int>;
15310@end smallexample
15311
15312@item
15313Do nothing.  Pretend G++ does implement automatic instantiation
15314management.  Code written for the Borland model will work fine, but
15315each translation unit will contain instances of each of the templates it
15316uses.  In a large program, this can lead to an unacceptable amount of code
15317duplication.
15318@end enumerate
15319
15320@node Bound member functions
15321@section Extracting the function pointer from a bound pointer to member function
15322@cindex pmf
15323@cindex pointer to member function
15324@cindex bound pointer to member function
15325
15326In C++, pointer to member functions (PMFs) are implemented using a wide
15327pointer of sorts to handle all the possible call mechanisms; the PMF
15328needs to store information about how to adjust the @samp{this} pointer,
15329and if the function pointed to is virtual, where to find the vtable, and
15330where in the vtable to look for the member function.  If you are using
15331PMFs in an inner loop, you should really reconsider that decision.  If
15332that is not an option, you can extract the pointer to the function that
15333would be called for a given object/PMF pair and call it directly inside
15334the inner loop, to save a bit of time.
15335
15336Note that you will still be paying the penalty for the call through a
15337function pointer; on most modern architectures, such a call defeats the
15338branch prediction features of the CPU@.  This is also true of normal
15339virtual function calls.
15340
15341The syntax for this extension is
15342
15343@smallexample
15344extern A a;
15345extern int (A::*fp)();
15346typedef int (*fptr)(A *);
15347
15348fptr p = (fptr)(a.*fp);
15349@end smallexample
15350
15351For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
15352no object is needed to obtain the address of the function.  They can be
15353converted to function pointers directly:
15354
15355@smallexample
15356fptr p1 = (fptr)(&A::foo);
15357@end smallexample
15358
15359@opindex Wno-pmf-conversions
15360You must specify @option{-Wno-pmf-conversions} to use this extension.
15361
15362@node C++ Attributes
15363@section C++-Specific Variable, Function, and Type Attributes
15364
15365Some attributes only make sense for C++ programs.
15366
15367@table @code
15368@item init_priority (@var{priority})
15369@cindex @code{init_priority} attribute
15370
15371
15372In Standard C++, objects defined at namespace scope are guaranteed to be
15373initialized in an order in strict accordance with that of their definitions
15374@emph{in a given translation unit}.  No guarantee is made for initializations
15375across translation units.  However, GNU C++ allows users to control the
15376order of initialization of objects defined at namespace scope with the
15377@code{init_priority} attribute by specifying a relative @var{priority},
15378a constant integral expression currently bounded between 101 and 65535
15379inclusive.  Lower numbers indicate a higher priority.
15380
15381In the following example, @code{A} would normally be created before
15382@code{B}, but the @code{init_priority} attribute has reversed that order:
15383
15384@smallexample
15385Some_Class  A  __attribute__ ((init_priority (2000)));
15386Some_Class  B  __attribute__ ((init_priority (543)));
15387@end smallexample
15388
15389@noindent
15390Note that the particular values of @var{priority} do not matter; only their
15391relative ordering.
15392
15393@item java_interface
15394@cindex @code{java_interface} attribute
15395
15396This type attribute informs C++ that the class is a Java interface.  It may
15397only be applied to classes declared within an @code{extern "Java"} block.
15398Calls to methods declared in this interface will be dispatched using GCJ's
15399interface table mechanism, instead of regular virtual table dispatch.
15400
15401@end table
15402
15403See also @ref{Namespace Association}.
15404
15405@node Namespace Association
15406@section Namespace Association
15407
15408@strong{Caution:} The semantics of this extension are not fully
15409defined.  Users should refrain from using this extension as its
15410semantics may change subtly over time.  It is possible that this
15411extension will be removed in future versions of G++.
15412
15413A using-directive with @code{__attribute ((strong))} is stronger
15414than a normal using-directive in two ways:
15415
15416@itemize @bullet
15417@item
15418Templates from the used namespace can be specialized and explicitly
15419instantiated as though they were members of the using namespace.
15420
15421@item
15422The using namespace is considered an associated namespace of all
15423templates in the used namespace for purposes of argument-dependent
15424name lookup.
15425@end itemize
15426
15427The used namespace must be nested within the using namespace so that
15428normal unqualified lookup works properly.
15429
15430This is useful for composing a namespace transparently from
15431implementation namespaces.  For example:
15432
15433@smallexample
15434namespace std @{
15435  namespace debug @{
15436    template <class T> struct A @{ @};
15437  @}
15438  using namespace debug __attribute ((__strong__));
15439  template <> struct A<int> @{ @};   // @r{ok to specialize}
15440
15441  template <class T> void f (A<T>);
15442@}
15443
15444int main()
15445@{
15446  f (std::A<float>());             // @r{lookup finds} std::f
15447  f (std::A<int>());
15448@}
15449@end smallexample
15450
15451@node Type Traits
15452@section Type Traits
15453
15454The C++ front-end implements syntactic extensions that allow to
15455determine at compile time various characteristics of a type (or of a
15456pair of types).
15457
15458@table @code
15459@item __has_nothrow_assign (type)
15460If @code{type} is const qualified or is a reference type then the trait is
15461false.  Otherwise if @code{__has_trivial_assign (type)} is true then the trait
15462is true, else if @code{type} is a cv class or union type with copy assignment
15463operators that are known not to throw an exception then the trait is true,
15464else it is false.  Requires: @code{type} shall be a complete type,
15465(possibly cv-qualified) @code{void}, or an array of unknown bound.
15466
15467@item __has_nothrow_copy (type)
15468If @code{__has_trivial_copy (type)} is true then the trait is true, else if
15469@code{type} is a cv class or union type with copy constructors that
15470are known not to throw an exception then the trait is true, else it is false.
15471Requires: @code{type} shall be a complete type, (possibly cv-qualified)
15472@code{void}, or an array of unknown bound.
15473
15474@item __has_nothrow_constructor (type)
15475If @code{__has_trivial_constructor (type)} is true then the trait is
15476true, else if @code{type} is a cv class or union type (or array
15477thereof) with a default constructor that is known not to throw an
15478exception then the trait is true, else it is false.  Requires:
15479@code{type} shall be a complete type, (possibly cv-qualified)
15480@code{void}, or an array of unknown bound.
15481
15482@item __has_trivial_assign (type)
15483If @code{type} is const qualified or is a reference type then the trait is
15484false.  Otherwise if @code{__is_pod (type)} is true then the trait is
15485true, else if @code{type} is a cv class or union type with a trivial
15486copy assignment ([class.copy]) then the trait is true, else it is
15487false.  Requires: @code{type} shall be a complete type, (possibly
15488cv-qualified) @code{void}, or an array of unknown bound.
15489
15490@item __has_trivial_copy (type)
15491If @code{__is_pod (type)} is true or @code{type} is a reference type
15492then the trait is true, else if @code{type} is a cv class or union type
15493with a trivial copy constructor ([class.copy]) then the trait
15494is true, else it is false.  Requires: @code{type} shall be a complete
15495type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15496
15497@item __has_trivial_constructor (type)
15498If @code{__is_pod (type)} is true then the trait is true, else if
15499@code{type} is a cv class or union type (or array thereof) with a
15500trivial default constructor ([class.ctor]) then the trait is true,
15501else it is false.  Requires: @code{type} shall be a complete
15502type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15503
15504@item __has_trivial_destructor (type)
15505If @code{__is_pod (type)} is true or @code{type} is a reference type then
15506the trait is true, else if @code{type} is a cv class or union type (or
15507array thereof) with a trivial destructor ([class.dtor]) then the trait
15508is true, else it is false.  Requires: @code{type} shall be a complete
15509type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15510
15511@item __has_virtual_destructor (type)
15512If @code{type} is a class type with a virtual destructor
15513([class.dtor]) then the trait is true, else it is false.  Requires:
15514@code{type} shall be a complete type, (possibly cv-qualified)
15515@code{void}, or an array of unknown bound.
15516
15517@item __is_abstract (type)
15518If @code{type} is an abstract class ([class.abstract]) then the trait
15519is true, else it is false.  Requires: @code{type} shall be a complete
15520type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15521
15522@item __is_base_of (base_type, derived_type)
15523If @code{base_type} is a base class of @code{derived_type}
15524([class.derived]) then the trait is true, otherwise it is false.
15525Top-level cv qualifications of @code{base_type} and
15526@code{derived_type} are ignored.  For the purposes of this trait, a
15527class type is considered is own base.  Requires: if @code{__is_class
15528(base_type)} and @code{__is_class (derived_type)} are true and
15529@code{base_type} and @code{derived_type} are not the same type
15530(disregarding cv-qualifiers), @code{derived_type} shall be a complete
15531type.  Diagnostic is produced if this requirement is not met.
15532
15533@item __is_class (type)
15534If @code{type} is a cv class type, and not a union type
15535([basic.compound]) the trait is true, else it is false.
15536
15537@item __is_empty (type)
15538If @code{__is_class (type)} is false then the trait is false.
15539Otherwise @code{type} is considered empty if and only if: @code{type}
15540has no non-static data members, or all non-static data members, if
15541any, are bit-fields of length 0, and @code{type} has no virtual
15542members, and @code{type} has no virtual base classes, and @code{type}
15543has no base classes @code{base_type} for which
15544@code{__is_empty (base_type)} is false.  Requires: @code{type} shall
15545be a complete type, (possibly cv-qualified) @code{void}, or an array
15546of unknown bound.
15547
15548@item __is_enum (type)
15549If @code{type} is a cv enumeration type ([basic.compound]) the trait is
15550true, else it is false.
15551
15552@item __is_literal_type (type)
15553If @code{type} is a literal type ([basic.types]) the trait is
15554true, else it is false.  Requires: @code{type} shall be a complete type,
15555(possibly cv-qualified) @code{void}, or an array of unknown bound.
15556
15557@item __is_pod (type)
15558If @code{type} is a cv POD type ([basic.types]) then the trait is true,
15559else it is false.  Requires: @code{type} shall be a complete type,
15560(possibly cv-qualified) @code{void}, or an array of unknown bound.
15561
15562@item __is_polymorphic (type)
15563If @code{type} is a polymorphic class ([class.virtual]) then the trait
15564is true, else it is false.  Requires: @code{type} shall be a complete
15565type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15566
15567@item __is_standard_layout (type)
15568If @code{type} is a standard-layout type ([basic.types]) the trait is
15569true, else it is false.  Requires: @code{type} shall be a complete
15570type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15571
15572@item __is_trivial (type)
15573If @code{type} is a trivial type ([basic.types]) the trait is
15574true, else it is false.  Requires: @code{type} shall be a complete
15575type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15576
15577@item __is_union (type)
15578If @code{type} is a cv union type ([basic.compound]) the trait is
15579true, else it is false.
15580
15581@item __underlying_type (type)
15582The underlying type of @code{type}.  Requires: @code{type} shall be
15583an enumeration type ([dcl.enum]).
15584
15585@end table
15586
15587@node Java Exceptions
15588@section Java Exceptions
15589
15590The Java language uses a slightly different exception handling model
15591from C++.  Normally, GNU C++ will automatically detect when you are
15592writing C++ code that uses Java exceptions, and handle them
15593appropriately.  However, if C++ code only needs to execute destructors
15594when Java exceptions are thrown through it, GCC will guess incorrectly.
15595Sample problematic code is:
15596
15597@smallexample
15598  struct S @{ ~S(); @};
15599  extern void bar();    // @r{is written in Java, and may throw exceptions}
15600  void foo()
15601  @{
15602    S s;
15603    bar();
15604  @}
15605@end smallexample
15606
15607@noindent
15608The usual effect of an incorrect guess is a link failure, complaining of
15609a missing routine called @samp{__gxx_personality_v0}.
15610
15611You can inform the compiler that Java exceptions are to be used in a
15612translation unit, irrespective of what it might think, by writing
15613@samp{@w{#pragma GCC java_exceptions}} at the head of the file.  This
15614@samp{#pragma} must appear before any functions that throw or catch
15615exceptions, or run destructors when exceptions are thrown through them.
15616
15617You cannot mix Java and C++ exceptions in the same translation unit.  It
15618is believed to be safe to throw a C++ exception from one file through
15619another file compiled for the Java exception model, or vice versa, but
15620there may be bugs in this area.
15621
15622@node Deprecated Features
15623@section Deprecated Features
15624
15625In the past, the GNU C++ compiler was extended to experiment with new
15626features, at a time when the C++ language was still evolving.  Now that
15627the C++ standard is complete, some of those features are superseded by
15628superior alternatives.  Using the old features might cause a warning in
15629some cases that the feature will be dropped in the future.  In other
15630cases, the feature might be gone already.
15631
15632While the list below is not exhaustive, it documents some of the options
15633that are now deprecated:
15634
15635@table @code
15636@item -fexternal-templates
15637@itemx -falt-external-templates
15638These are two of the many ways for G++ to implement template
15639instantiation.  @xref{Template Instantiation}.  The C++ standard clearly
15640defines how template definitions have to be organized across
15641implementation units.  G++ has an implicit instantiation mechanism that
15642should work just fine for standard-conforming code.
15643
15644@item -fstrict-prototype
15645@itemx -fno-strict-prototype
15646Previously it was possible to use an empty prototype parameter list to
15647indicate an unspecified number of parameters (like C), rather than no
15648parameters, as C++ demands.  This feature has been removed, except where
15649it is required for backwards compatibility.   @xref{Backwards Compatibility}.
15650@end table
15651
15652G++ allows a virtual function returning @samp{void *} to be overridden
15653by one returning a different pointer type.  This extension to the
15654covariant return type rules is now deprecated and will be removed from a
15655future version.
15656
15657The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
15658their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
15659and are now removed from G++.  Code using these operators should be
15660modified to use @code{std::min} and @code{std::max} instead.
15661
15662The named return value extension has been deprecated, and is now
15663removed from G++.
15664
15665The use of initializer lists with new expressions has been deprecated,
15666and is now removed from G++.
15667
15668Floating and complex non-type template parameters have been deprecated,
15669and are now removed from G++.
15670
15671The implicit typename extension has been deprecated and is now
15672removed from G++.
15673
15674The use of default arguments in function pointers, function typedefs
15675and other places where they are not permitted by the standard is
15676deprecated and will be removed from a future version of G++.
15677
15678G++ allows floating-point literals to appear in integral constant expressions,
15679e.g. @samp{ enum E @{ e = int(2.2 * 3.7) @} }
15680This extension is deprecated and will be removed from a future version.
15681
15682G++ allows static data members of const floating-point type to be declared
15683with an initializer in a class definition. The standard only allows
15684initializers for static members of const integral types and const
15685enumeration types so this extension has been deprecated and will be removed
15686from a future version.
15687
15688@node Backwards Compatibility
15689@section Backwards Compatibility
15690@cindex Backwards Compatibility
15691@cindex ARM [Annotated C++ Reference Manual]
15692
15693Now that there is a definitive ISO standard C++, G++ has a specification
15694to adhere to.  The C++ language evolved over time, and features that
15695used to be acceptable in previous drafts of the standard, such as the ARM
15696[Annotated C++ Reference Manual], are no longer accepted.  In order to allow
15697compilation of C++ written to such drafts, G++ contains some backwards
15698compatibilities.  @emph{All such backwards compatibility features are
15699liable to disappear in future versions of G++.} They should be considered
15700deprecated.   @xref{Deprecated Features}.
15701
15702@table @code
15703@item For scope
15704If a variable is declared at for scope, it used to remain in scope until
15705the end of the scope which contained the for statement (rather than just
15706within the for scope).  G++ retains this, but issues a warning, if such a
15707variable is accessed outside the for scope.
15708
15709@item Implicit C language
15710Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
15711scope to set the language.  On such systems, all header files are
15712implicitly scoped inside a C language scope.  Also, an empty prototype
15713@code{()} will be treated as an unspecified number of arguments, rather
15714than no arguments, as C++ demands.
15715@end table
15716