xref: /dragonfly/contrib/gcc-4.7/gcc/dominance.c (revision 37de577a)
1 /* Calculate (post)dominators in slightly super-linear time.
2    Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4    Contributed by Michael Matz (matz@ifh.de).
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it
9    under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3, or (at your option)
11    any later version.
12 
13    GCC is distributed in the hope that it will be useful, but WITHOUT
14    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16    License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23    to compute the dominators in a control flow graph.  A basic block D is said
24    to dominate another block X, when all paths from the entry node of the CFG
25    to X go also over D.  The dominance relation is a transitive reflexive
26    relation and its minimal transitive reduction is a tree, called the
27    dominator tree.  So for each block X besides the entry block exists a
28    block I(X), called the immediate dominator of X, which is the parent of X
29    in the dominator tree.
30 
31    The algorithm computes this dominator tree implicitly by computing for
32    each block its immediate dominator.  We use tree balancing and path
33    compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34    slowly growing functional inverse of the Ackerman function.  */
35 
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "diagnostic-core.h"
45 #include "et-forest.h"
46 #include "timevar.h"
47 #include "vecprim.h"
48 #include "pointer-set.h"
49 #include "graphds.h"
50 #include "bitmap.h"
51 
52 /* We name our nodes with integers, beginning with 1.  Zero is reserved for
53    'undefined' or 'end of list'.  The name of each node is given by the dfs
54    number of the corresponding basic block.  Please note, that we include the
55    artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
56    support multiple entry points.  Its dfs number is of course 1.  */
57 
58 /* Type of Basic Block aka. TBB */
59 typedef unsigned int TBB;
60 
61 /* We work in a poor-mans object oriented fashion, and carry an instance of
62    this structure through all our 'methods'.  It holds various arrays
63    reflecting the (sub)structure of the flowgraph.  Most of them are of type
64    TBB and are also indexed by TBB.  */
65 
66 struct dom_info
67 {
68   /* The parent of a node in the DFS tree.  */
69   TBB *dfs_parent;
70   /* For a node x key[x] is roughly the node nearest to the root from which
71      exists a way to x only over nodes behind x.  Such a node is also called
72      semidominator.  */
73   TBB *key;
74   /* The value in path_min[x] is the node y on the path from x to the root of
75      the tree x is in with the smallest key[y].  */
76   TBB *path_min;
77   /* bucket[x] points to the first node of the set of nodes having x as key.  */
78   TBB *bucket;
79   /* And next_bucket[x] points to the next node.  */
80   TBB *next_bucket;
81   /* After the algorithm is done, dom[x] contains the immediate dominator
82      of x.  */
83   TBB *dom;
84 
85   /* The following few fields implement the structures needed for disjoint
86      sets.  */
87   /* set_chain[x] is the next node on the path from x to the representative
88      of the set containing x.  If set_chain[x]==0 then x is a root.  */
89   TBB *set_chain;
90   /* set_size[x] is the number of elements in the set named by x.  */
91   unsigned int *set_size;
92   /* set_child[x] is used for balancing the tree representing a set.  It can
93      be understood as the next sibling of x.  */
94   TBB *set_child;
95 
96   /* If b is the number of a basic block (BB->index), dfs_order[b] is the
97      number of that node in DFS order counted from 1.  This is an index
98      into most of the other arrays in this structure.  */
99   TBB *dfs_order;
100   /* If x is the DFS-index of a node which corresponds with a basic block,
101      dfs_to_bb[x] is that basic block.  Note, that in our structure there are
102      more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
103      is true for every basic block bb, but not the opposite.  */
104   basic_block *dfs_to_bb;
105 
106   /* This is the next free DFS number when creating the DFS tree.  */
107   unsigned int dfsnum;
108   /* The number of nodes in the DFS tree (==dfsnum-1).  */
109   unsigned int nodes;
110 
111   /* Blocks with bits set here have a fake edge to EXIT.  These are used
112      to turn a DFS forest into a proper tree.  */
113   bitmap fake_exit_edge;
114 };
115 
116 static void init_dom_info (struct dom_info *, enum cdi_direction);
117 static void free_dom_info (struct dom_info *);
118 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
119 static void calc_dfs_tree (struct dom_info *, bool);
120 static void compress (struct dom_info *, TBB);
121 static TBB eval (struct dom_info *, TBB);
122 static void link_roots (struct dom_info *, TBB, TBB);
123 static void calc_idoms (struct dom_info *, bool);
124 void debug_dominance_info (enum cdi_direction);
125 void debug_dominance_tree (enum cdi_direction, basic_block);
126 
127 /* Helper macro for allocating and initializing an array,
128    for aesthetic reasons.  */
129 #define init_ar(var, type, num, content)			\
130   do								\
131     {								\
132       unsigned int i = 1;    /* Catch content == i.  */		\
133       if (! (content))						\
134 	(var) = XCNEWVEC (type, num);				\
135       else							\
136 	{							\
137 	  (var) = XNEWVEC (type, (num));			\
138 	  for (i = 0; i < num; i++)				\
139 	    (var)[i] = (content);				\
140 	}							\
141     }								\
142   while (0)
143 
144 /* Allocate all needed memory in a pessimistic fashion (so we round up).
145    This initializes the contents of DI, which already must be allocated.  */
146 
147 static void
148 init_dom_info (struct dom_info *di, enum cdi_direction dir)
149 {
150   /* We need memory for n_basic_blocks nodes.  */
151   unsigned int num = n_basic_blocks;
152   init_ar (di->dfs_parent, TBB, num, 0);
153   init_ar (di->path_min, TBB, num, i);
154   init_ar (di->key, TBB, num, i);
155   init_ar (di->dom, TBB, num, 0);
156 
157   init_ar (di->bucket, TBB, num, 0);
158   init_ar (di->next_bucket, TBB, num, 0);
159 
160   init_ar (di->set_chain, TBB, num, 0);
161   init_ar (di->set_size, unsigned int, num, 1);
162   init_ar (di->set_child, TBB, num, 0);
163 
164   init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
165   init_ar (di->dfs_to_bb, basic_block, num, 0);
166 
167   di->dfsnum = 1;
168   di->nodes = 0;
169 
170   switch (dir)
171     {
172       case CDI_DOMINATORS:
173 	di->fake_exit_edge = NULL;
174 	break;
175       case CDI_POST_DOMINATORS:
176 	di->fake_exit_edge = BITMAP_ALLOC (NULL);
177 	break;
178       default:
179 	gcc_unreachable ();
180 	break;
181     }
182 }
183 
184 #undef init_ar
185 
186 /* Map dominance calculation type to array index used for various
187    dominance information arrays.  This version is simple -- it will need
188    to be modified, obviously, if additional values are added to
189    cdi_direction.  */
190 
191 static unsigned int
192 dom_convert_dir_to_idx (enum cdi_direction dir)
193 {
194   gcc_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
195   return dir - 1;
196 }
197 
198 /* Free all allocated memory in DI, but not DI itself.  */
199 
200 static void
201 free_dom_info (struct dom_info *di)
202 {
203   free (di->dfs_parent);
204   free (di->path_min);
205   free (di->key);
206   free (di->dom);
207   free (di->bucket);
208   free (di->next_bucket);
209   free (di->set_chain);
210   free (di->set_size);
211   free (di->set_child);
212   free (di->dfs_order);
213   free (di->dfs_to_bb);
214   BITMAP_FREE (di->fake_exit_edge);
215 }
216 
217 /* The nonrecursive variant of creating a DFS tree.  DI is our working
218    structure, BB the starting basic block for this tree and REVERSE
219    is true, if predecessors should be visited instead of successors of a
220    node.  After this is done all nodes reachable from BB were visited, have
221    assigned their dfs number and are linked together to form a tree.  */
222 
223 static void
224 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
225 {
226   /* We call this _only_ if bb is not already visited.  */
227   edge e;
228   TBB child_i, my_i = 0;
229   edge_iterator *stack;
230   edge_iterator ei, einext;
231   int sp;
232   /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
233      problem).  */
234   basic_block en_block;
235   /* Ending block.  */
236   basic_block ex_block;
237 
238   stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
239   sp = 0;
240 
241   /* Initialize our border blocks, and the first edge.  */
242   if (reverse)
243     {
244       ei = ei_start (bb->preds);
245       en_block = EXIT_BLOCK_PTR;
246       ex_block = ENTRY_BLOCK_PTR;
247     }
248   else
249     {
250       ei = ei_start (bb->succs);
251       en_block = ENTRY_BLOCK_PTR;
252       ex_block = EXIT_BLOCK_PTR;
253     }
254 
255   /* When the stack is empty we break out of this loop.  */
256   while (1)
257     {
258       basic_block bn;
259 
260       /* This loop traverses edges e in depth first manner, and fills the
261          stack.  */
262       while (!ei_end_p (ei))
263 	{
264 	  e = ei_edge (ei);
265 
266 	  /* Deduce from E the current and the next block (BB and BN), and the
267 	     next edge.  */
268 	  if (reverse)
269 	    {
270 	      bn = e->src;
271 
272 	      /* If the next node BN is either already visited or a border
273 	         block the current edge is useless, and simply overwritten
274 	         with the next edge out of the current node.  */
275 	      if (bn == ex_block || di->dfs_order[bn->index])
276 		{
277 		  ei_next (&ei);
278 		  continue;
279 		}
280 	      bb = e->dest;
281 	      einext = ei_start (bn->preds);
282 	    }
283 	  else
284 	    {
285 	      bn = e->dest;
286 	      if (bn == ex_block || di->dfs_order[bn->index])
287 		{
288 		  ei_next (&ei);
289 		  continue;
290 		}
291 	      bb = e->src;
292 	      einext = ei_start (bn->succs);
293 	    }
294 
295 	  gcc_assert (bn != en_block);
296 
297 	  /* Fill the DFS tree info calculatable _before_ recursing.  */
298 	  if (bb != en_block)
299 	    my_i = di->dfs_order[bb->index];
300 	  else
301 	    my_i = di->dfs_order[last_basic_block];
302 	  child_i = di->dfs_order[bn->index] = di->dfsnum++;
303 	  di->dfs_to_bb[child_i] = bn;
304 	  di->dfs_parent[child_i] = my_i;
305 
306 	  /* Save the current point in the CFG on the stack, and recurse.  */
307 	  stack[sp++] = ei;
308 	  ei = einext;
309 	}
310 
311       if (!sp)
312 	break;
313       ei = stack[--sp];
314 
315       /* OK.  The edge-list was exhausted, meaning normally we would
316          end the recursion.  After returning from the recursive call,
317          there were (may be) other statements which were run after a
318          child node was completely considered by DFS.  Here is the
319          point to do it in the non-recursive variant.
320          E.g. The block just completed is in e->dest for forward DFS,
321          the block not yet completed (the parent of the one above)
322          in e->src.  This could be used e.g. for computing the number of
323          descendants or the tree depth.  */
324       ei_next (&ei);
325     }
326   free (stack);
327 }
328 
329 /* The main entry for calculating the DFS tree or forest.  DI is our working
330    structure and REVERSE is true, if we are interested in the reverse flow
331    graph.  In that case the result is not necessarily a tree but a forest,
332    because there may be nodes from which the EXIT_BLOCK is unreachable.  */
333 
334 static void
335 calc_dfs_tree (struct dom_info *di, bool reverse)
336 {
337   /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE).  */
338   basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
339   di->dfs_order[last_basic_block] = di->dfsnum;
340   di->dfs_to_bb[di->dfsnum] = begin;
341   di->dfsnum++;
342 
343   calc_dfs_tree_nonrec (di, begin, reverse);
344 
345   if (reverse)
346     {
347       /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
348          They are reverse-unreachable.  In the dom-case we disallow such
349          nodes, but in post-dom we have to deal with them.
350 
351 	 There are two situations in which this occurs.  First, noreturn
352 	 functions.  Second, infinite loops.  In the first case we need to
353 	 pretend that there is an edge to the exit block.  In the second
354 	 case, we wind up with a forest.  We need to process all noreturn
355 	 blocks before we know if we've got any infinite loops.  */
356 
357       basic_block b;
358       bool saw_unconnected = false;
359 
360       FOR_EACH_BB_REVERSE (b)
361 	{
362 	  if (EDGE_COUNT (b->succs) > 0)
363 	    {
364 	      if (di->dfs_order[b->index] == 0)
365 		saw_unconnected = true;
366 	      continue;
367 	    }
368 	  bitmap_set_bit (di->fake_exit_edge, b->index);
369 	  di->dfs_order[b->index] = di->dfsnum;
370 	  di->dfs_to_bb[di->dfsnum] = b;
371 	  di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
372 	  di->dfsnum++;
373 	  calc_dfs_tree_nonrec (di, b, reverse);
374 	}
375 
376       if (saw_unconnected)
377 	{
378 	  FOR_EACH_BB_REVERSE (b)
379 	    {
380 	      if (di->dfs_order[b->index])
381 		continue;
382 	      bitmap_set_bit (di->fake_exit_edge, b->index);
383 	      di->dfs_order[b->index] = di->dfsnum;
384 	      di->dfs_to_bb[di->dfsnum] = b;
385 	      di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
386 	      di->dfsnum++;
387 	      calc_dfs_tree_nonrec (di, b, reverse);
388 	    }
389 	}
390     }
391 
392   di->nodes = di->dfsnum - 1;
393 
394   /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all.  */
395   gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
396 }
397 
398 /* Compress the path from V to the root of its set and update path_min at the
399    same time.  After compress(di, V) set_chain[V] is the root of the set V is
400    in and path_min[V] is the node with the smallest key[] value on the path
401    from V to that root.  */
402 
403 static void
404 compress (struct dom_info *di, TBB v)
405 {
406   /* Btw. It's not worth to unrecurse compress() as the depth is usually not
407      greater than 5 even for huge graphs (I've not seen call depth > 4).
408      Also performance wise compress() ranges _far_ behind eval().  */
409   TBB parent = di->set_chain[v];
410   if (di->set_chain[parent])
411     {
412       compress (di, parent);
413       if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
414 	di->path_min[v] = di->path_min[parent];
415       di->set_chain[v] = di->set_chain[parent];
416     }
417 }
418 
419 /* Compress the path from V to the set root of V if needed (when the root has
420    changed since the last call).  Returns the node with the smallest key[]
421    value on the path from V to the root.  */
422 
423 static inline TBB
424 eval (struct dom_info *di, TBB v)
425 {
426   /* The representative of the set V is in, also called root (as the set
427      representation is a tree).  */
428   TBB rep = di->set_chain[v];
429 
430   /* V itself is the root.  */
431   if (!rep)
432     return di->path_min[v];
433 
434   /* Compress only if necessary.  */
435   if (di->set_chain[rep])
436     {
437       compress (di, v);
438       rep = di->set_chain[v];
439     }
440 
441   if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
442     return di->path_min[v];
443   else
444     return di->path_min[rep];
445 }
446 
447 /* This essentially merges the two sets of V and W, giving a single set with
448    the new root V.  The internal representation of these disjoint sets is a
449    balanced tree.  Currently link(V,W) is only used with V being the parent
450    of W.  */
451 
452 static void
453 link_roots (struct dom_info *di, TBB v, TBB w)
454 {
455   TBB s = w;
456 
457   /* Rebalance the tree.  */
458   while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
459     {
460       if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
461 	  >= 2 * di->set_size[di->set_child[s]])
462 	{
463 	  di->set_chain[di->set_child[s]] = s;
464 	  di->set_child[s] = di->set_child[di->set_child[s]];
465 	}
466       else
467 	{
468 	  di->set_size[di->set_child[s]] = di->set_size[s];
469 	  s = di->set_chain[s] = di->set_child[s];
470 	}
471     }
472 
473   di->path_min[s] = di->path_min[w];
474   di->set_size[v] += di->set_size[w];
475   if (di->set_size[v] < 2 * di->set_size[w])
476     {
477       TBB tmp = s;
478       s = di->set_child[v];
479       di->set_child[v] = tmp;
480     }
481 
482   /* Merge all subtrees.  */
483   while (s)
484     {
485       di->set_chain[s] = v;
486       s = di->set_child[s];
487     }
488 }
489 
490 /* This calculates the immediate dominators (or post-dominators if REVERSE is
491    true).  DI is our working structure and should hold the DFS forest.
492    On return the immediate dominator to node V is in di->dom[V].  */
493 
494 static void
495 calc_idoms (struct dom_info *di, bool reverse)
496 {
497   TBB v, w, k, par;
498   basic_block en_block;
499   edge_iterator ei, einext;
500 
501   if (reverse)
502     en_block = EXIT_BLOCK_PTR;
503   else
504     en_block = ENTRY_BLOCK_PTR;
505 
506   /* Go backwards in DFS order, to first look at the leafs.  */
507   v = di->nodes;
508   while (v > 1)
509     {
510       basic_block bb = di->dfs_to_bb[v];
511       edge e;
512 
513       par = di->dfs_parent[v];
514       k = v;
515 
516       ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
517 
518       if (reverse)
519 	{
520 	  /* If this block has a fake edge to exit, process that first.  */
521 	  if (bitmap_bit_p (di->fake_exit_edge, bb->index))
522 	    {
523 	      einext = ei;
524 	      einext.index = 0;
525 	      goto do_fake_exit_edge;
526 	    }
527 	}
528 
529       /* Search all direct predecessors for the smallest node with a path
530          to them.  That way we have the smallest node with also a path to
531          us only over nodes behind us.  In effect we search for our
532          semidominator.  */
533       while (!ei_end_p (ei))
534 	{
535 	  TBB k1;
536 	  basic_block b;
537 
538 	  e = ei_edge (ei);
539 	  b = (reverse) ? e->dest : e->src;
540 	  einext = ei;
541 	  ei_next (&einext);
542 
543 	  if (b == en_block)
544 	    {
545 	    do_fake_exit_edge:
546 	      k1 = di->dfs_order[last_basic_block];
547 	    }
548 	  else
549 	    k1 = di->dfs_order[b->index];
550 
551 	  /* Call eval() only if really needed.  If k1 is above V in DFS tree,
552 	     then we know, that eval(k1) == k1 and key[k1] == k1.  */
553 	  if (k1 > v)
554 	    k1 = di->key[eval (di, k1)];
555 	  if (k1 < k)
556 	    k = k1;
557 
558 	  ei = einext;
559 	}
560 
561       di->key[v] = k;
562       link_roots (di, par, v);
563       di->next_bucket[v] = di->bucket[k];
564       di->bucket[k] = v;
565 
566       /* Transform semidominators into dominators.  */
567       for (w = di->bucket[par]; w; w = di->next_bucket[w])
568 	{
569 	  k = eval (di, w);
570 	  if (di->key[k] < di->key[w])
571 	    di->dom[w] = k;
572 	  else
573 	    di->dom[w] = par;
574 	}
575       /* We don't need to cleanup next_bucket[].  */
576       di->bucket[par] = 0;
577       v--;
578     }
579 
580   /* Explicitly define the dominators.  */
581   di->dom[1] = 0;
582   for (v = 2; v <= di->nodes; v++)
583     if (di->dom[v] != di->key[v])
584       di->dom[v] = di->dom[di->dom[v]];
585 }
586 
587 /* Assign dfs numbers starting from NUM to NODE and its sons.  */
588 
589 static void
590 assign_dfs_numbers (struct et_node *node, int *num)
591 {
592   struct et_node *son;
593 
594   node->dfs_num_in = (*num)++;
595 
596   if (node->son)
597     {
598       assign_dfs_numbers (node->son, num);
599       for (son = node->son->right; son != node->son; son = son->right)
600 	assign_dfs_numbers (son, num);
601     }
602 
603   node->dfs_num_out = (*num)++;
604 }
605 
606 /* Compute the data necessary for fast resolving of dominator queries in a
607    static dominator tree.  */
608 
609 static void
610 compute_dom_fast_query (enum cdi_direction dir)
611 {
612   int num = 0;
613   basic_block bb;
614   unsigned int dir_index = dom_convert_dir_to_idx (dir);
615 
616   gcc_assert (dom_info_available_p (dir));
617 
618   if (dom_computed[dir_index] == DOM_OK)
619     return;
620 
621   FOR_ALL_BB (bb)
622     {
623       if (!bb->dom[dir_index]->father)
624 	assign_dfs_numbers (bb->dom[dir_index], &num);
625     }
626 
627   dom_computed[dir_index] = DOM_OK;
628 }
629 
630 /* The main entry point into this module.  DIR is set depending on whether
631    we want to compute dominators or postdominators.  */
632 
633 void
634 calculate_dominance_info (enum cdi_direction dir)
635 {
636   struct dom_info di;
637   basic_block b;
638   unsigned int dir_index = dom_convert_dir_to_idx (dir);
639   bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
640 
641   if (dom_computed[dir_index] == DOM_OK)
642     return;
643 
644   timevar_push (TV_DOMINANCE);
645   if (!dom_info_available_p (dir))
646     {
647       gcc_assert (!n_bbs_in_dom_tree[dir_index]);
648 
649       FOR_ALL_BB (b)
650 	{
651 	  b->dom[dir_index] = et_new_tree (b);
652 	}
653       n_bbs_in_dom_tree[dir_index] = n_basic_blocks;
654 
655       init_dom_info (&di, dir);
656       calc_dfs_tree (&di, reverse);
657       calc_idoms (&di, reverse);
658 
659       FOR_EACH_BB (b)
660 	{
661 	  TBB d = di.dom[di.dfs_order[b->index]];
662 
663 	  if (di.dfs_to_bb[d])
664 	    et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
665 	}
666 
667       free_dom_info (&di);
668       dom_computed[dir_index] = DOM_NO_FAST_QUERY;
669     }
670 
671   compute_dom_fast_query (dir);
672 
673   timevar_pop (TV_DOMINANCE);
674 }
675 
676 /* Free dominance information for direction DIR.  */
677 void
678 free_dominance_info (enum cdi_direction dir)
679 {
680   basic_block bb;
681   unsigned int dir_index = dom_convert_dir_to_idx (dir);
682 
683   if (!dom_info_available_p (dir))
684     return;
685 
686   FOR_ALL_BB (bb)
687     {
688       et_free_tree_force (bb->dom[dir_index]);
689       bb->dom[dir_index] = NULL;
690     }
691   et_free_pools ();
692 
693   n_bbs_in_dom_tree[dir_index] = 0;
694 
695   dom_computed[dir_index] = DOM_NONE;
696 }
697 
698 /* Return the immediate dominator of basic block BB.  */
699 basic_block
700 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
701 {
702   unsigned int dir_index = dom_convert_dir_to_idx (dir);
703   struct et_node *node = bb->dom[dir_index];
704 
705   gcc_assert (dom_computed[dir_index]);
706 
707   if (!node->father)
708     return NULL;
709 
710   return (basic_block) node->father->data;
711 }
712 
713 /* Set the immediate dominator of the block possibly removing
714    existing edge.  NULL can be used to remove any edge.  */
715 void
716 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
717 			 basic_block dominated_by)
718 {
719   unsigned int dir_index = dom_convert_dir_to_idx (dir);
720   struct et_node *node = bb->dom[dir_index];
721 
722   gcc_assert (dom_computed[dir_index]);
723 
724   if (node->father)
725     {
726       if (node->father->data == dominated_by)
727 	return;
728       et_split (node);
729     }
730 
731   if (dominated_by)
732     et_set_father (node, dominated_by->dom[dir_index]);
733 
734   if (dom_computed[dir_index] == DOM_OK)
735     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
736 }
737 
738 /* Returns the list of basic blocks immediately dominated by BB, in the
739    direction DIR.  */
740 VEC (basic_block, heap) *
741 get_dominated_by (enum cdi_direction dir, basic_block bb)
742 {
743   unsigned int dir_index = dom_convert_dir_to_idx (dir);
744   struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
745   VEC (basic_block, heap) *bbs = NULL;
746 
747   gcc_assert (dom_computed[dir_index]);
748 
749   if (!son)
750     return NULL;
751 
752   VEC_safe_push (basic_block, heap, bbs, (basic_block) son->data);
753   for (ason = son->right; ason != son; ason = ason->right)
754     VEC_safe_push (basic_block, heap, bbs, (basic_block) ason->data);
755 
756   return bbs;
757 }
758 
759 /* Returns the list of basic blocks that are immediately dominated (in
760    direction DIR) by some block between N_REGION ones stored in REGION,
761    except for blocks in the REGION itself.  */
762 
763 VEC (basic_block, heap) *
764 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
765 			 unsigned n_region)
766 {
767   unsigned i;
768   basic_block dom;
769   VEC (basic_block, heap) *doms = NULL;
770 
771   for (i = 0; i < n_region; i++)
772     region[i]->flags |= BB_DUPLICATED;
773   for (i = 0; i < n_region; i++)
774     for (dom = first_dom_son (dir, region[i]);
775 	 dom;
776 	 dom = next_dom_son (dir, dom))
777       if (!(dom->flags & BB_DUPLICATED))
778 	VEC_safe_push (basic_block, heap, doms, dom);
779   for (i = 0; i < n_region; i++)
780     region[i]->flags &= ~BB_DUPLICATED;
781 
782   return doms;
783 }
784 
785 /* Returns the list of basic blocks including BB dominated by BB, in the
786    direction DIR up to DEPTH in the dominator tree.  The DEPTH of zero will
787    produce a vector containing all dominated blocks.  The vector will be sorted
788    in preorder.  */
789 
790 VEC (basic_block, heap) *
791 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
792 {
793   VEC(basic_block, heap) *bbs = NULL;
794   unsigned i;
795   unsigned next_level_start;
796 
797   i = 0;
798   VEC_safe_push (basic_block, heap, bbs, bb);
799   next_level_start = 1; /* = VEC_length (basic_block, bbs); */
800 
801   do
802     {
803       basic_block son;
804 
805       bb = VEC_index (basic_block, bbs, i++);
806       for (son = first_dom_son (dir, bb);
807 	   son;
808 	   son = next_dom_son (dir, son))
809 	VEC_safe_push (basic_block, heap, bbs, son);
810 
811       if (i == next_level_start && --depth)
812 	next_level_start = VEC_length (basic_block, bbs);
813     }
814   while (i < next_level_start);
815 
816   return bbs;
817 }
818 
819 /* Returns the list of basic blocks including BB dominated by BB, in the
820    direction DIR.  The vector will be sorted in preorder.  */
821 
822 VEC (basic_block, heap) *
823 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
824 {
825   return get_dominated_to_depth (dir, bb, 0);
826 }
827 
828 /* Redirect all edges pointing to BB to TO.  */
829 void
830 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
831 			       basic_block to)
832 {
833   unsigned int dir_index = dom_convert_dir_to_idx (dir);
834   struct et_node *bb_node, *to_node, *son;
835 
836   bb_node = bb->dom[dir_index];
837   to_node = to->dom[dir_index];
838 
839   gcc_assert (dom_computed[dir_index]);
840 
841   if (!bb_node->son)
842     return;
843 
844   while (bb_node->son)
845     {
846       son = bb_node->son;
847 
848       et_split (son);
849       et_set_father (son, to_node);
850     }
851 
852   if (dom_computed[dir_index] == DOM_OK)
853     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
854 }
855 
856 /* Find first basic block in the tree dominating both BB1 and BB2.  */
857 basic_block
858 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
859 {
860   unsigned int dir_index = dom_convert_dir_to_idx (dir);
861 
862   gcc_assert (dom_computed[dir_index]);
863 
864   if (!bb1)
865     return bb2;
866   if (!bb2)
867     return bb1;
868 
869   return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
870 }
871 
872 
873 /* Find the nearest common dominator for the basic blocks in BLOCKS,
874    using dominance direction DIR.  */
875 
876 basic_block
877 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
878 {
879   unsigned i, first;
880   bitmap_iterator bi;
881   basic_block dom;
882 
883   first = bitmap_first_set_bit (blocks);
884   dom = BASIC_BLOCK (first);
885   EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
886     if (dom != BASIC_BLOCK (i))
887       dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
888 
889   return dom;
890 }
891 
892 /*  Given a dominator tree, we can determine whether one thing
893     dominates another in constant time by using two DFS numbers:
894 
895     1. The number for when we visit a node on the way down the tree
896     2. The number for when we visit a node on the way back up the tree
897 
898     You can view these as bounds for the range of dfs numbers the
899     nodes in the subtree of the dominator tree rooted at that node
900     will contain.
901 
902     The dominator tree is always a simple acyclic tree, so there are
903     only three possible relations two nodes in the dominator tree have
904     to each other:
905 
906     1. Node A is above Node B (and thus, Node A dominates node B)
907 
908      A
909      |
910      C
911     / \
912    B   D
913 
914 
915    In the above case, DFS_Number_In of A will be <= DFS_Number_In of
916    B, and DFS_Number_Out of A will be >= DFS_Number_Out of B.  This is
917    because we must hit A in the dominator tree *before* B on the walk
918    down, and we will hit A *after* B on the walk back up
919 
920    2. Node A is below node B (and thus, node B dominates node A)
921 
922 
923      B
924      |
925      A
926     / \
927    C   D
928 
929    In the above case, DFS_Number_In of A will be >= DFS_Number_In of
930    B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
931 
932    This is because we must hit A in the dominator tree *after* B on
933    the walk down, and we will hit A *before* B on the walk back up
934 
935    3. Node A and B are siblings (and thus, neither dominates the other)
936 
937      C
938      |
939      D
940     / \
941    A   B
942 
943    In the above case, DFS_Number_In of A will *always* be <=
944    DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
945    DFS_Number_Out of B.  This is because we will always finish the dfs
946    walk of one of the subtrees before the other, and thus, the dfs
947    numbers for one subtree can't intersect with the range of dfs
948    numbers for the other subtree.  If you swap A and B's position in
949    the dominator tree, the comparison changes direction, but the point
950    is that both comparisons will always go the same way if there is no
951    dominance relationship.
952 
953    Thus, it is sufficient to write
954 
955    A_Dominates_B (node A, node B)
956    {
957      return DFS_Number_In(A) <= DFS_Number_In(B)
958             && DFS_Number_Out (A) >= DFS_Number_Out(B);
959    }
960 
961    A_Dominated_by_B (node A, node B)
962    {
963      return DFS_Number_In(A) >= DFS_Number_In(A)
964             && DFS_Number_Out (A) <= DFS_Number_Out(B);
965    }  */
966 
967 /* Return TRUE in case BB1 is dominated by BB2.  */
968 bool
969 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
970 {
971   unsigned int dir_index = dom_convert_dir_to_idx (dir);
972   struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
973 
974   gcc_assert (dom_computed[dir_index]);
975 
976   if (dom_computed[dir_index] == DOM_OK)
977     return (n1->dfs_num_in >= n2->dfs_num_in
978   	    && n1->dfs_num_out <= n2->dfs_num_out);
979 
980   return et_below (n1, n2);
981 }
982 
983 /* Returns the entry dfs number for basic block BB, in the direction DIR.  */
984 
985 unsigned
986 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
987 {
988   unsigned int dir_index = dom_convert_dir_to_idx (dir);
989   struct et_node *n = bb->dom[dir_index];
990 
991   gcc_assert (dom_computed[dir_index] == DOM_OK);
992   return n->dfs_num_in;
993 }
994 
995 /* Returns the exit dfs number for basic block BB, in the direction DIR.  */
996 
997 unsigned
998 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
999 {
1000   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1001   struct et_node *n = bb->dom[dir_index];
1002 
1003   gcc_assert (dom_computed[dir_index] == DOM_OK);
1004   return n->dfs_num_out;
1005 }
1006 
1007 /* Verify invariants of dominator structure.  */
1008 DEBUG_FUNCTION void
1009 verify_dominators (enum cdi_direction dir)
1010 {
1011   int err = 0;
1012   basic_block bb, imm_bb, imm_bb_correct;
1013   struct dom_info di;
1014   bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
1015 
1016   gcc_assert (dom_info_available_p (dir));
1017 
1018   init_dom_info (&di, dir);
1019   calc_dfs_tree (&di, reverse);
1020   calc_idoms (&di, reverse);
1021 
1022   FOR_EACH_BB (bb)
1023     {
1024       imm_bb = get_immediate_dominator (dir, bb);
1025       if (!imm_bb)
1026 	{
1027 	  error ("dominator of %d status unknown", bb->index);
1028 	  err = 1;
1029 	}
1030 
1031       imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
1032       if (imm_bb != imm_bb_correct)
1033 	{
1034 	  error ("dominator of %d should be %d, not %d",
1035 		 bb->index, imm_bb_correct->index, imm_bb->index);
1036 	  err = 1;
1037 	}
1038     }
1039 
1040   free_dom_info (&di);
1041   gcc_assert (!err);
1042 }
1043 
1044 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1045    assuming that dominators of other blocks are correct.  We also use it to
1046    recompute the dominators in a restricted area, by iterating it until it
1047    reaches a fixed point.  */
1048 
1049 basic_block
1050 recompute_dominator (enum cdi_direction dir, basic_block bb)
1051 {
1052   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1053   basic_block dom_bb = NULL;
1054   edge e;
1055   edge_iterator ei;
1056 
1057   gcc_assert (dom_computed[dir_index]);
1058 
1059   if (dir == CDI_DOMINATORS)
1060     {
1061       FOR_EACH_EDGE (e, ei, bb->preds)
1062 	{
1063 	  if (!dominated_by_p (dir, e->src, bb))
1064 	    dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1065 	}
1066     }
1067   else
1068     {
1069       FOR_EACH_EDGE (e, ei, bb->succs)
1070 	{
1071 	  if (!dominated_by_p (dir, e->dest, bb))
1072 	    dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1073 	}
1074     }
1075 
1076   return dom_bb;
1077 }
1078 
1079 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1080    of BBS.  We assume that all the immediate dominators except for those of the
1081    blocks in BBS are correct.  If CONSERVATIVE is true, we also assume that the
1082    currently recorded immediate dominators of blocks in BBS really dominate the
1083    blocks.  The basic blocks for that we determine the dominator are removed
1084    from BBS.  */
1085 
1086 static void
1087 prune_bbs_to_update_dominators (VEC (basic_block, heap) *bbs,
1088 				bool conservative)
1089 {
1090   unsigned i;
1091   bool single;
1092   basic_block bb, dom = NULL;
1093   edge_iterator ei;
1094   edge e;
1095 
1096   for (i = 0; VEC_iterate (basic_block, bbs, i, bb);)
1097     {
1098       if (bb == ENTRY_BLOCK_PTR)
1099 	goto succeed;
1100 
1101       if (single_pred_p (bb))
1102 	{
1103 	  set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1104 	  goto succeed;
1105 	}
1106 
1107       if (!conservative)
1108 	goto fail;
1109 
1110       single = true;
1111       dom = NULL;
1112       FOR_EACH_EDGE (e, ei, bb->preds)
1113 	{
1114 	  if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1115 	    continue;
1116 
1117 	  if (!dom)
1118 	    dom = e->src;
1119 	  else
1120 	    {
1121 	      single = false;
1122 	      dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1123 	    }
1124 	}
1125 
1126       gcc_assert (dom != NULL);
1127       if (single
1128 	  || find_edge (dom, bb))
1129 	{
1130 	  set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1131 	  goto succeed;
1132 	}
1133 
1134 fail:
1135       i++;
1136       continue;
1137 
1138 succeed:
1139       VEC_unordered_remove (basic_block, bbs, i);
1140     }
1141 }
1142 
1143 /* Returns root of the dominance tree in the direction DIR that contains
1144    BB.  */
1145 
1146 static basic_block
1147 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1148 {
1149   return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1150 }
1151 
1152 /* See the comment in iterate_fix_dominators.  Finds the immediate dominators
1153    for the sons of Y, found using the SON and BROTHER arrays representing
1154    the dominance tree of graph G.  BBS maps the vertices of G to the basic
1155    blocks.  */
1156 
1157 static void
1158 determine_dominators_for_sons (struct graph *g, VEC (basic_block, heap) *bbs,
1159 			       int y, int *son, int *brother)
1160 {
1161   bitmap gprime;
1162   int i, a, nc;
1163   VEC (int, heap) **sccs;
1164   basic_block bb, dom, ybb;
1165   unsigned si;
1166   edge e;
1167   edge_iterator ei;
1168 
1169   if (son[y] == -1)
1170     return;
1171   if (y == (int) VEC_length (basic_block, bbs))
1172     ybb = ENTRY_BLOCK_PTR;
1173   else
1174     ybb = VEC_index (basic_block, bbs, y);
1175 
1176   if (brother[son[y]] == -1)
1177     {
1178       /* Handle the common case Y has just one son specially.  */
1179       bb = VEC_index (basic_block, bbs, son[y]);
1180       set_immediate_dominator (CDI_DOMINATORS, bb,
1181 			       recompute_dominator (CDI_DOMINATORS, bb));
1182       identify_vertices (g, y, son[y]);
1183       return;
1184     }
1185 
1186   gprime = BITMAP_ALLOC (NULL);
1187   for (a = son[y]; a != -1; a = brother[a])
1188     bitmap_set_bit (gprime, a);
1189 
1190   nc = graphds_scc (g, gprime);
1191   BITMAP_FREE (gprime);
1192 
1193   sccs = XCNEWVEC (VEC (int, heap) *, nc);
1194   for (a = son[y]; a != -1; a = brother[a])
1195     VEC_safe_push (int, heap, sccs[g->vertices[a].component], a);
1196 
1197   for (i = nc - 1; i >= 0; i--)
1198     {
1199       dom = NULL;
1200       FOR_EACH_VEC_ELT (int, sccs[i], si, a)
1201 	{
1202 	  bb = VEC_index (basic_block, bbs, a);
1203 	  FOR_EACH_EDGE (e, ei, bb->preds)
1204 	    {
1205 	      if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1206 		continue;
1207 
1208 	      dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1209 	    }
1210 	}
1211 
1212       gcc_assert (dom != NULL);
1213       FOR_EACH_VEC_ELT (int, sccs[i], si, a)
1214 	{
1215 	  bb = VEC_index (basic_block, bbs, a);
1216 	  set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1217 	}
1218     }
1219 
1220   for (i = 0; i < nc; i++)
1221     VEC_free (int, heap, sccs[i]);
1222   free (sccs);
1223 
1224   for (a = son[y]; a != -1; a = brother[a])
1225     identify_vertices (g, y, a);
1226 }
1227 
1228 /* Recompute dominance information for basic blocks in the set BBS.  The
1229    function assumes that the immediate dominators of all the other blocks
1230    in CFG are correct, and that there are no unreachable blocks.
1231 
1232    If CONSERVATIVE is true, we additionally assume that all the ancestors of
1233    a block of BBS in the current dominance tree dominate it.  */
1234 
1235 void
1236 iterate_fix_dominators (enum cdi_direction dir, VEC (basic_block, heap) *bbs,
1237 			bool conservative)
1238 {
1239   unsigned i;
1240   basic_block bb, dom;
1241   struct graph *g;
1242   int n, y;
1243   size_t dom_i;
1244   edge e;
1245   edge_iterator ei;
1246   struct pointer_map_t *map;
1247   int *parent, *son, *brother;
1248   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1249 
1250   /* We only support updating dominators.  There are some problems with
1251      updating postdominators (need to add fake edges from infinite loops
1252      and noreturn functions), and since we do not currently use
1253      iterate_fix_dominators for postdominators, any attempt to handle these
1254      problems would be unused, untested, and almost surely buggy.  We keep
1255      the DIR argument for consistency with the rest of the dominator analysis
1256      interface.  */
1257   gcc_assert (dir == CDI_DOMINATORS);
1258   gcc_assert (dom_computed[dir_index]);
1259 
1260   /* The algorithm we use takes inspiration from the following papers, although
1261      the details are quite different from any of them:
1262 
1263      [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1264 	 Dominator Tree of a Reducible Flowgraph
1265      [2]  V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1266 	  dominator trees
1267      [3]  K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1268 	  Algorithm
1269 
1270      First, we use the following heuristics to decrease the size of the BBS
1271      set:
1272        a) if BB has a single predecessor, then its immediate dominator is this
1273 	  predecessor
1274        additionally, if CONSERVATIVE is true:
1275        b) if all the predecessors of BB except for one (X) are dominated by BB,
1276 	  then X is the immediate dominator of BB
1277        c) if the nearest common ancestor of the predecessors of BB is X and
1278 	  X -> BB is an edge in CFG, then X is the immediate dominator of BB
1279 
1280      Then, we need to establish the dominance relation among the basic blocks
1281      in BBS.  We split the dominance tree by removing the immediate dominator
1282      edges from BBS, creating a forest F.  We form a graph G whose vertices
1283      are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1284      X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1285      whose root is X.  We then determine dominance tree of G.  Note that
1286      for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1287      In this step, we can use arbitrary algorithm to determine dominators.
1288      We decided to prefer the algorithm [3] to the algorithm of
1289      Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1290      10 during gcc bootstrap), and [3] should perform better in this case.
1291 
1292      Finally, we need to determine the immediate dominators for the basic
1293      blocks of BBS.  If the immediate dominator of X in G is Y, then
1294      the immediate dominator of X in CFG belongs to the tree of F rooted in
1295      Y.  We process the dominator tree T of G recursively, starting from leaves.
1296      Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1297      subtrees of the dominance tree of CFG rooted in X_i are already correct.
1298      Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}.  We make
1299      the following observations:
1300        (i) the immediate dominator of all blocks in a strongly connected
1301 	   component of G' is the same
1302        (ii) if X has no predecessors in G', then the immediate dominator of X
1303 	    is the nearest common ancestor of the predecessors of X in the
1304 	    subtree of F rooted in Y
1305      Therefore, it suffices to find the topological ordering of G', and
1306      process the nodes X_i in this order using the rules (i) and (ii).
1307      Then, we contract all the nodes X_i with Y in G, so that the further
1308      steps work correctly.  */
1309 
1310   if (!conservative)
1311     {
1312       /* Split the tree now.  If the idoms of blocks in BBS are not
1313 	 conservatively correct, setting the dominators using the
1314 	 heuristics in prune_bbs_to_update_dominators could
1315 	 create cycles in the dominance "tree", and cause ICE.  */
1316       FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
1317 	set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1318     }
1319 
1320   prune_bbs_to_update_dominators (bbs, conservative);
1321   n = VEC_length (basic_block, bbs);
1322 
1323   if (n == 0)
1324     return;
1325 
1326   if (n == 1)
1327     {
1328       bb = VEC_index (basic_block, bbs, 0);
1329       set_immediate_dominator (CDI_DOMINATORS, bb,
1330 			       recompute_dominator (CDI_DOMINATORS, bb));
1331       return;
1332     }
1333 
1334   /* Construct the graph G.  */
1335   map = pointer_map_create ();
1336   FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
1337     {
1338       /* If the dominance tree is conservatively correct, split it now.  */
1339       if (conservative)
1340 	set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1341       *pointer_map_insert (map, bb) = (void *) (size_t) i;
1342     }
1343   *pointer_map_insert (map, ENTRY_BLOCK_PTR) = (void *) (size_t) n;
1344 
1345   g = new_graph (n + 1);
1346   for (y = 0; y < g->n_vertices; y++)
1347     g->vertices[y].data = BITMAP_ALLOC (NULL);
1348   FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
1349     {
1350       FOR_EACH_EDGE (e, ei, bb->preds)
1351 	{
1352 	  dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1353 	  if (dom == bb)
1354 	    continue;
1355 
1356 	  dom_i = (size_t) *pointer_map_contains (map, dom);
1357 
1358 	  /* Do not include parallel edges to G.  */
1359 	  if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1360 	    continue;
1361 
1362 	  add_edge (g, dom_i, i);
1363 	}
1364     }
1365   for (y = 0; y < g->n_vertices; y++)
1366     BITMAP_FREE (g->vertices[y].data);
1367   pointer_map_destroy (map);
1368 
1369   /* Find the dominator tree of G.  */
1370   son = XNEWVEC (int, n + 1);
1371   brother = XNEWVEC (int, n + 1);
1372   parent = XNEWVEC (int, n + 1);
1373   graphds_domtree (g, n, parent, son, brother);
1374 
1375   /* Finally, traverse the tree and find the immediate dominators.  */
1376   for (y = n; son[y] != -1; y = son[y])
1377     continue;
1378   while (y != -1)
1379     {
1380       determine_dominators_for_sons (g, bbs, y, son, brother);
1381 
1382       if (brother[y] != -1)
1383 	{
1384 	  y = brother[y];
1385 	  while (son[y] != -1)
1386 	    y = son[y];
1387 	}
1388       else
1389 	y = parent[y];
1390     }
1391 
1392   free (son);
1393   free (brother);
1394   free (parent);
1395 
1396   free_graph (g);
1397 }
1398 
1399 void
1400 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1401 {
1402   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1403 
1404   gcc_assert (dom_computed[dir_index]);
1405   gcc_assert (!bb->dom[dir_index]);
1406 
1407   n_bbs_in_dom_tree[dir_index]++;
1408 
1409   bb->dom[dir_index] = et_new_tree (bb);
1410 
1411   if (dom_computed[dir_index] == DOM_OK)
1412     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1413 }
1414 
1415 void
1416 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1417 {
1418   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1419 
1420   gcc_assert (dom_computed[dir_index]);
1421 
1422   et_free_tree (bb->dom[dir_index]);
1423   bb->dom[dir_index] = NULL;
1424   n_bbs_in_dom_tree[dir_index]--;
1425 
1426   if (dom_computed[dir_index] == DOM_OK)
1427     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1428 }
1429 
1430 /* Returns the first son of BB in the dominator or postdominator tree
1431    as determined by DIR.  */
1432 
1433 basic_block
1434 first_dom_son (enum cdi_direction dir, basic_block bb)
1435 {
1436   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1437   struct et_node *son = bb->dom[dir_index]->son;
1438 
1439   return (basic_block) (son ? son->data : NULL);
1440 }
1441 
1442 /* Returns the next dominance son after BB in the dominator or postdominator
1443    tree as determined by DIR, or NULL if it was the last one.  */
1444 
1445 basic_block
1446 next_dom_son (enum cdi_direction dir, basic_block bb)
1447 {
1448   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1449   struct et_node *next = bb->dom[dir_index]->right;
1450 
1451   return (basic_block) (next->father->son == next ? NULL : next->data);
1452 }
1453 
1454 /* Return dominance availability for dominance info DIR.  */
1455 
1456 enum dom_state
1457 dom_info_state (enum cdi_direction dir)
1458 {
1459   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1460 
1461   return dom_computed[dir_index];
1462 }
1463 
1464 /* Set the dominance availability for dominance info DIR to NEW_STATE.  */
1465 
1466 void
1467 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1468 {
1469   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1470 
1471   dom_computed[dir_index] = new_state;
1472 }
1473 
1474 /* Returns true if dominance information for direction DIR is available.  */
1475 
1476 bool
1477 dom_info_available_p (enum cdi_direction dir)
1478 {
1479   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1480 
1481   return dom_computed[dir_index] != DOM_NONE;
1482 }
1483 
1484 DEBUG_FUNCTION void
1485 debug_dominance_info (enum cdi_direction dir)
1486 {
1487   basic_block bb, bb2;
1488   FOR_EACH_BB (bb)
1489     if ((bb2 = get_immediate_dominator (dir, bb)))
1490       fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1491 }
1492 
1493 /* Prints to stderr representation of the dominance tree (for direction DIR)
1494    rooted in ROOT, indented by INDENT tabulators.  If INDENT_FIRST is false,
1495    the first line of the output is not indented.  */
1496 
1497 static void
1498 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1499 			unsigned indent, bool indent_first)
1500 {
1501   basic_block son;
1502   unsigned i;
1503   bool first = true;
1504 
1505   if (indent_first)
1506     for (i = 0; i < indent; i++)
1507       fprintf (stderr, "\t");
1508   fprintf (stderr, "%d\t", root->index);
1509 
1510   for (son = first_dom_son (dir, root);
1511        son;
1512        son = next_dom_son (dir, son))
1513     {
1514       debug_dominance_tree_1 (dir, son, indent + 1, !first);
1515       first = false;
1516     }
1517 
1518   if (first)
1519     fprintf (stderr, "\n");
1520 }
1521 
1522 /* Prints to stderr representation of the dominance tree (for direction DIR)
1523    rooted in ROOT.  */
1524 
1525 DEBUG_FUNCTION void
1526 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1527 {
1528   debug_dominance_tree_1 (dir, root, 0, false);
1529 }
1530