xref: /dragonfly/contrib/gcc-4.7/gcc/dse.c (revision e7d467f4)
1 /* RTL dead store elimination.
2    Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4 
5    Contributed by Richard Sandiford <rsandifor@codesourcery.com>
6    and Kenneth Zadeck <zadeck@naturalbridge.com>
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14 
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23 
24 #undef BASELINE
25 
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "hashtab.h"
30 #include "tm.h"
31 #include "rtl.h"
32 #include "tree.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "regset.h"
37 #include "flags.h"
38 #include "df.h"
39 #include "cselib.h"
40 #include "timevar.h"
41 #include "tree-pass.h"
42 #include "alloc-pool.h"
43 #include "alias.h"
44 #include "insn-config.h"
45 #include "expr.h"
46 #include "recog.h"
47 #include "dse.h"
48 #include "optabs.h"
49 #include "dbgcnt.h"
50 #include "target.h"
51 #include "params.h"
52 #include "tree-flow.h"
53 
54 /* This file contains three techniques for performing Dead Store
55    Elimination (dse).
56 
57    * The first technique performs dse locally on any base address.  It
58    is based on the cselib which is a local value numbering technique.
59    This technique is local to a basic block but deals with a fairly
60    general addresses.
61 
62    * The second technique performs dse globally but is restricted to
63    base addresses that are either constant or are relative to the
64    frame_pointer.
65 
66    * The third technique, (which is only done after register allocation)
67    processes the spill spill slots.  This differs from the second
68    technique because it takes advantage of the fact that spilling is
69    completely free from the effects of aliasing.
70 
71    Logically, dse is a backwards dataflow problem.  A store can be
72    deleted if it if cannot be reached in the backward direction by any
73    use of the value being stored.  However, the local technique uses a
74    forwards scan of the basic block because cselib requires that the
75    block be processed in that order.
76 
77    The pass is logically broken into 7 steps:
78 
79    0) Initialization.
80 
81    1) The local algorithm, as well as scanning the insns for the two
82    global algorithms.
83 
84    2) Analysis to see if the global algs are necessary.  In the case
85    of stores base on a constant address, there must be at least two
86    stores to that address, to make it possible to delete some of the
87    stores.  In the case of stores off of the frame or spill related
88    stores, only one store to an address is necessary because those
89    stores die at the end of the function.
90 
91    3) Set up the global dataflow equations based on processing the
92    info parsed in the first step.
93 
94    4) Solve the dataflow equations.
95 
96    5) Delete the insns that the global analysis has indicated are
97    unnecessary.
98 
99    6) Delete insns that store the same value as preceeding store
100    where the earlier store couldn't be eliminated.
101 
102    7) Cleanup.
103 
104    This step uses cselib and canon_rtx to build the largest expression
105    possible for each address.  This pass is a forwards pass through
106    each basic block.  From the point of view of the global technique,
107    the first pass could examine a block in either direction.  The
108    forwards ordering is to accommodate cselib.
109 
110    We a simplifying assumption: addresses fall into four broad
111    categories:
112 
113    1) base has rtx_varies_p == false, offset is constant.
114    2) base has rtx_varies_p == false, offset variable.
115    3) base has rtx_varies_p == true, offset constant.
116    4) base has rtx_varies_p == true, offset variable.
117 
118    The local passes are able to process all 4 kinds of addresses.  The
119    global pass only handles (1).
120 
121    The global problem is formulated as follows:
122 
123      A store, S1, to address A, where A is not relative to the stack
124      frame, can be eliminated if all paths from S1 to the end of the
125      of the function contain another store to A before a read to A.
126 
127      If the address A is relative to the stack frame, a store S2 to A
128      can be eliminated if there are no paths from S1 that reach the
129      end of the function that read A before another store to A.  In
130      this case S2 can be deleted if there are paths to from S2 to the
131      end of the function that have no reads or writes to A.  This
132      second case allows stores to the stack frame to be deleted that
133      would otherwise die when the function returns.  This cannot be
134      done if stores_off_frame_dead_at_return is not true.  See the doc
135      for that variable for when this variable is false.
136 
137      The global problem is formulated as a backwards set union
138      dataflow problem where the stores are the gens and reads are the
139      kills.  Set union problems are rare and require some special
140      handling given our representation of bitmaps.  A straightforward
141      implementation of requires a lot of bitmaps filled with 1s.
142      These are expensive and cumbersome in our bitmap formulation so
143      care has been taken to avoid large vectors filled with 1s.  See
144      the comments in bb_info and in the dataflow confluence functions
145      for details.
146 
147    There are two places for further enhancements to this algorithm:
148 
149    1) The original dse which was embedded in a pass called flow also
150    did local address forwarding.  For example in
151 
152    A <- r100
153    ... <- A
154 
155    flow would replace the right hand side of the second insn with a
156    reference to r100.  Most of the information is available to add this
157    to this pass.  It has not done it because it is a lot of work in
158    the case that either r100 is assigned to between the first and
159    second insn and/or the second insn is a load of part of the value
160    stored by the first insn.
161 
162    insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163    insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164    insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165    insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166 
167    2) The cleaning up of spill code is quite profitable.  It currently
168    depends on reading tea leaves and chicken entrails left by reload.
169    This pass depends on reload creating a singleton alias set for each
170    spill slot and telling the next dse pass which of these alias sets
171    are the singletons.  Rather than analyze the addresses of the
172    spills, dse's spill processing just does analysis of the loads and
173    stores that use those alias sets.  There are three cases where this
174    falls short:
175 
176      a) Reload sometimes creates the slot for one mode of access, and
177      then inserts loads and/or stores for a smaller mode.  In this
178      case, the current code just punts on the slot.  The proper thing
179      to do is to back out and use one bit vector position for each
180      byte of the entity associated with the slot.  This depends on
181      KNOWING that reload always generates the accesses for each of the
182      bytes in some canonical (read that easy to understand several
183      passes after reload happens) way.
184 
185      b) Reload sometimes decides that spill slot it allocated was not
186      large enough for the mode and goes back and allocates more slots
187      with the same mode and alias set.  The backout in this case is a
188      little more graceful than (a).  In this case the slot is unmarked
189      as being a spill slot and if final address comes out to be based
190      off the frame pointer, the global algorithm handles this slot.
191 
192      c) For any pass that may prespill, there is currently no
193      mechanism to tell the dse pass that the slot being used has the
194      special properties that reload uses.  It may be that all that is
195      required is to have those passes make the same calls that reload
196      does, assuming that the alias sets can be manipulated in the same
197      way.  */
198 
199 /* There are limits to the size of constant offsets we model for the
200    global problem.  There are certainly test cases, that exceed this
201    limit, however, it is unlikely that there are important programs
202    that really have constant offsets this size.  */
203 #define MAX_OFFSET (64 * 1024)
204 
205 
206 static bitmap scratch = NULL;
207 struct insn_info;
208 
209 /* This structure holds information about a candidate store.  */
210 struct store_info
211 {
212 
213   /* False means this is a clobber.  */
214   bool is_set;
215 
216   /* False if a single HOST_WIDE_INT bitmap is used for positions_needed.  */
217   bool is_large;
218 
219   /* The id of the mem group of the base address.  If rtx_varies_p is
220      true, this is -1.  Otherwise, it is the index into the group
221      table.  */
222   int group_id;
223 
224   /* This is the cselib value.  */
225   cselib_val *cse_base;
226 
227   /* This canonized mem.  */
228   rtx mem;
229 
230   /* Canonized MEM address for use by canon_true_dependence.  */
231   rtx mem_addr;
232 
233   /* If this is non-zero, it is the alias set of a spill location.  */
234   alias_set_type alias_set;
235 
236   /* The offset of the first and byte before the last byte associated
237      with the operation.  */
238   HOST_WIDE_INT begin, end;
239 
240   union
241     {
242       /* A bitmask as wide as the number of bytes in the word that
243 	 contains a 1 if the byte may be needed.  The store is unused if
244 	 all of the bits are 0.  This is used if IS_LARGE is false.  */
245       unsigned HOST_WIDE_INT small_bitmask;
246 
247       struct
248 	{
249 	  /* A bitmap with one bit per byte.  Cleared bit means the position
250 	     is needed.  Used if IS_LARGE is false.  */
251 	  bitmap bmap;
252 
253 	  /* Number of set bits (i.e. unneeded bytes) in BITMAP.  If it is
254 	     equal to END - BEGIN, the whole store is unused.  */
255 	  int count;
256 	} large;
257     } positions_needed;
258 
259   /* The next store info for this insn.  */
260   struct store_info *next;
261 
262   /* The right hand side of the store.  This is used if there is a
263      subsequent reload of the mems address somewhere later in the
264      basic block.  */
265   rtx rhs;
266 
267   /* If rhs is or holds a constant, this contains that constant,
268      otherwise NULL.  */
269   rtx const_rhs;
270 
271   /* Set if this store stores the same constant value as REDUNDANT_REASON
272      insn stored.  These aren't eliminated early, because doing that
273      might prevent the earlier larger store to be eliminated.  */
274   struct insn_info *redundant_reason;
275 };
276 
277 /* Return a bitmask with the first N low bits set.  */
278 
279 static unsigned HOST_WIDE_INT
280 lowpart_bitmask (int n)
281 {
282   unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
283   return mask >> (HOST_BITS_PER_WIDE_INT - n);
284 }
285 
286 typedef struct store_info *store_info_t;
287 static alloc_pool cse_store_info_pool;
288 static alloc_pool rtx_store_info_pool;
289 
290 /* This structure holds information about a load.  These are only
291    built for rtx bases.  */
292 struct read_info
293 {
294   /* The id of the mem group of the base address.  */
295   int group_id;
296 
297   /* If this is non-zero, it is the alias set of a spill location.  */
298   alias_set_type alias_set;
299 
300   /* The offset of the first and byte after the last byte associated
301      with the operation.  If begin == end == 0, the read did not have
302      a constant offset.  */
303   int begin, end;
304 
305   /* The mem being read.  */
306   rtx mem;
307 
308   /* The next read_info for this insn.  */
309   struct read_info *next;
310 };
311 typedef struct read_info *read_info_t;
312 static alloc_pool read_info_pool;
313 
314 
315 /* One of these records is created for each insn.  */
316 
317 struct insn_info
318 {
319   /* Set true if the insn contains a store but the insn itself cannot
320      be deleted.  This is set if the insn is a parallel and there is
321      more than one non dead output or if the insn is in some way
322      volatile.  */
323   bool cannot_delete;
324 
325   /* This field is only used by the global algorithm.  It is set true
326      if the insn contains any read of mem except for a (1).  This is
327      also set if the insn is a call or has a clobber mem.  If the insn
328      contains a wild read, the use_rec will be null.  */
329   bool wild_read;
330 
331   /* This is true only for CALL instructions which could potentially read
332      any non-frame memory location. This field is used by the global
333      algorithm.  */
334   bool non_frame_wild_read;
335 
336   /* This field is only used for the processing of const functions.
337      These functions cannot read memory, but they can read the stack
338      because that is where they may get their parms.  We need to be
339      this conservative because, like the store motion pass, we don't
340      consider CALL_INSN_FUNCTION_USAGE when processing call insns.
341      Moreover, we need to distinguish two cases:
342      1. Before reload (register elimination), the stores related to
343 	outgoing arguments are stack pointer based and thus deemed
344 	of non-constant base in this pass.  This requires special
345 	handling but also means that the frame pointer based stores
346 	need not be killed upon encountering a const function call.
347      2. After reload, the stores related to outgoing arguments can be
348 	either stack pointer or hard frame pointer based.  This means
349 	that we have no other choice than also killing all the frame
350 	pointer based stores upon encountering a const function call.
351      This field is set after reload for const function calls.  Having
352      this set is less severe than a wild read, it just means that all
353      the frame related stores are killed rather than all the stores.  */
354   bool frame_read;
355 
356   /* This field is only used for the processing of const functions.
357      It is set if the insn may contain a stack pointer based store.  */
358   bool stack_pointer_based;
359 
360   /* This is true if any of the sets within the store contains a
361      cselib base.  Such stores can only be deleted by the local
362      algorithm.  */
363   bool contains_cselib_groups;
364 
365   /* The insn. */
366   rtx insn;
367 
368   /* The list of mem sets or mem clobbers that are contained in this
369      insn.  If the insn is deletable, it contains only one mem set.
370      But it could also contain clobbers.  Insns that contain more than
371      one mem set are not deletable, but each of those mems are here in
372      order to provide info to delete other insns.  */
373   store_info_t store_rec;
374 
375   /* The linked list of mem uses in this insn.  Only the reads from
376      rtx bases are listed here.  The reads to cselib bases are
377      completely processed during the first scan and so are never
378      created.  */
379   read_info_t read_rec;
380 
381   /* The live fixed registers.  We assume only fixed registers can
382      cause trouble by being clobbered from an expanded pattern;
383      storing only the live fixed registers (rather than all registers)
384      means less memory needs to be allocated / copied for the individual
385      stores.  */
386   regset fixed_regs_live;
387 
388   /* The prev insn in the basic block.  */
389   struct insn_info * prev_insn;
390 
391   /* The linked list of insns that are in consideration for removal in
392      the forwards pass thru the basic block.  This pointer may be
393      trash as it is not cleared when a wild read occurs.  The only
394      time it is guaranteed to be correct is when the traversal starts
395      at active_local_stores.  */
396   struct insn_info * next_local_store;
397 };
398 
399 typedef struct insn_info *insn_info_t;
400 static alloc_pool insn_info_pool;
401 
402 /* The linked list of stores that are under consideration in this
403    basic block.  */
404 static insn_info_t active_local_stores;
405 static int active_local_stores_len;
406 
407 struct bb_info
408 {
409 
410   /* Pointer to the insn info for the last insn in the block.  These
411      are linked so this is how all of the insns are reached.  During
412      scanning this is the current insn being scanned.  */
413   insn_info_t last_insn;
414 
415   /* The info for the global dataflow problem.  */
416 
417 
418   /* This is set if the transfer function should and in the wild_read
419      bitmap before applying the kill and gen sets.  That vector knocks
420      out most of the bits in the bitmap and thus speeds up the
421      operations.  */
422   bool apply_wild_read;
423 
424   /* The following 4 bitvectors hold information about which positions
425      of which stores are live or dead.  They are indexed by
426      get_bitmap_index.  */
427 
428   /* The set of store positions that exist in this block before a wild read.  */
429   bitmap gen;
430 
431   /* The set of load positions that exist in this block above the
432      same position of a store.  */
433   bitmap kill;
434 
435   /* The set of stores that reach the top of the block without being
436      killed by a read.
437 
438      Do not represent the in if it is all ones.  Note that this is
439      what the bitvector should logically be initialized to for a set
440      intersection problem.  However, like the kill set, this is too
441      expensive.  So initially, the in set will only be created for the
442      exit block and any block that contains a wild read.  */
443   bitmap in;
444 
445   /* The set of stores that reach the bottom of the block from it's
446      successors.
447 
448      Do not represent the in if it is all ones.  Note that this is
449      what the bitvector should logically be initialized to for a set
450      intersection problem.  However, like the kill and in set, this is
451      too expensive.  So what is done is that the confluence operator
452      just initializes the vector from one of the out sets of the
453      successors of the block.  */
454   bitmap out;
455 
456   /* The following bitvector is indexed by the reg number.  It
457      contains the set of regs that are live at the current instruction
458      being processed.  While it contains info for all of the
459      registers, only the hard registers are actually examined.  It is used
460      to assure that shift and/or add sequences that are inserted do not
461      accidently clobber live hard regs.  */
462   bitmap regs_live;
463 };
464 
465 typedef struct bb_info *bb_info_t;
466 static alloc_pool bb_info_pool;
467 
468 /* Table to hold all bb_infos.  */
469 static bb_info_t *bb_table;
470 
471 /* There is a group_info for each rtx base that is used to reference
472    memory.  There are also not many of the rtx bases because they are
473    very limited in scope.  */
474 
475 struct group_info
476 {
477   /* The actual base of the address.  */
478   rtx rtx_base;
479 
480   /* The sequential id of the base.  This allows us to have a
481      canonical ordering of these that is not based on addresses.  */
482   int id;
483 
484   /* True if there are any positions that are to be processed
485      globally.  */
486   bool process_globally;
487 
488   /* True if the base of this group is either the frame_pointer or
489      hard_frame_pointer.  */
490   bool frame_related;
491 
492   /* A mem wrapped around the base pointer for the group in order to do
493      read dependency.  It must be given BLKmode in order to encompass all
494      the possible offsets from the base.  */
495   rtx base_mem;
496 
497   /* Canonized version of base_mem's address.  */
498   rtx canon_base_addr;
499 
500   /* These two sets of two bitmaps are used to keep track of how many
501      stores are actually referencing that position from this base.  We
502      only do this for rtx bases as this will be used to assign
503      positions in the bitmaps for the global problem.  Bit N is set in
504      store1 on the first store for offset N.  Bit N is set in store2
505      for the second store to offset N.  This is all we need since we
506      only care about offsets that have two or more stores for them.
507 
508      The "_n" suffix is for offsets less than 0 and the "_p" suffix is
509      for 0 and greater offsets.
510 
511      There is one special case here, for stores into the stack frame,
512      we will or store1 into store2 before deciding which stores look
513      at globally.  This is because stores to the stack frame that have
514      no other reads before the end of the function can also be
515      deleted.  */
516   bitmap store1_n, store1_p, store2_n, store2_p;
517 
518   /* These bitmaps keep track of offsets in this group escape this function.
519      An offset escapes if it corresponds to a named variable whose
520      addressable flag is set.  */
521   bitmap escaped_n, escaped_p;
522 
523   /* The positions in this bitmap have the same assignments as the in,
524      out, gen and kill bitmaps.  This bitmap is all zeros except for
525      the positions that are occupied by stores for this group.  */
526   bitmap group_kill;
527 
528   /* The offset_map is used to map the offsets from this base into
529      positions in the global bitmaps.  It is only created after all of
530      the all of stores have been scanned and we know which ones we
531      care about.  */
532   int *offset_map_n, *offset_map_p;
533   int offset_map_size_n, offset_map_size_p;
534 };
535 typedef struct group_info *group_info_t;
536 typedef const struct group_info *const_group_info_t;
537 static alloc_pool rtx_group_info_pool;
538 
539 /* Tables of group_info structures, hashed by base value.  */
540 static htab_t rtx_group_table;
541 
542 /* Index into the rtx_group_vec.  */
543 static int rtx_group_next_id;
544 
545 DEF_VEC_P(group_info_t);
546 DEF_VEC_ALLOC_P(group_info_t,heap);
547 
548 static VEC(group_info_t,heap) *rtx_group_vec;
549 
550 
551 /* This structure holds the set of changes that are being deferred
552    when removing read operation.  See replace_read.  */
553 struct deferred_change
554 {
555 
556   /* The mem that is being replaced.  */
557   rtx *loc;
558 
559   /* The reg it is being replaced with.  */
560   rtx reg;
561 
562   struct deferred_change *next;
563 };
564 
565 typedef struct deferred_change *deferred_change_t;
566 static alloc_pool deferred_change_pool;
567 
568 static deferred_change_t deferred_change_list = NULL;
569 
570 /* This are used to hold the alias sets of spill variables.  Since
571    these are never aliased and there may be a lot of them, it makes
572    sense to treat them specially.  This bitvector is only allocated in
573    calls from dse_record_singleton_alias_set which currently is only
574    made during reload1.  So when dse is called before reload this
575    mechanism does nothing.  */
576 
577 static bitmap clear_alias_sets = NULL;
578 
579 /* The set of clear_alias_sets that have been disqualified because
580    there are loads or stores using a different mode than the alias set
581    was registered with.  */
582 static bitmap disqualified_clear_alias_sets = NULL;
583 
584 /* The group that holds all of the clear_alias_sets.  */
585 static group_info_t clear_alias_group;
586 
587 /* The modes of the clear_alias_sets.  */
588 static htab_t clear_alias_mode_table;
589 
590 /* Hash table element to look up the mode for an alias set.  */
591 struct clear_alias_mode_holder
592 {
593   alias_set_type alias_set;
594   enum machine_mode mode;
595 };
596 
597 static alloc_pool clear_alias_mode_pool;
598 
599 /* This is true except if cfun->stdarg -- i.e. we cannot do
600    this for vararg functions because they play games with the frame.  */
601 static bool stores_off_frame_dead_at_return;
602 
603 /* Counter for stats.  */
604 static int globally_deleted;
605 static int locally_deleted;
606 static int spill_deleted;
607 
608 static bitmap all_blocks;
609 
610 /* Locations that are killed by calls in the global phase.  */
611 static bitmap kill_on_calls;
612 
613 /* The number of bits used in the global bitmaps.  */
614 static unsigned int current_position;
615 
616 
617 static bool gate_dse (void);
618 static bool gate_dse1 (void);
619 static bool gate_dse2 (void);
620 
621 
622 /*----------------------------------------------------------------------------
623    Zeroth step.
624 
625    Initialization.
626 ----------------------------------------------------------------------------*/
627 
628 /* Hashtable callbacks for maintaining the "bases" field of
629    store_group_info, given that the addresses are function invariants.  */
630 
631 static int
632 clear_alias_mode_eq (const void *p1, const void *p2)
633 {
634   const struct clear_alias_mode_holder * h1
635     = (const struct clear_alias_mode_holder *) p1;
636   const struct clear_alias_mode_holder * h2
637     = (const struct clear_alias_mode_holder *) p2;
638   return h1->alias_set == h2->alias_set;
639 }
640 
641 
642 static hashval_t
643 clear_alias_mode_hash (const void *p)
644 {
645   const struct clear_alias_mode_holder *holder
646     = (const struct clear_alias_mode_holder *) p;
647   return holder->alias_set;
648 }
649 
650 
651 /* Find the entry associated with ALIAS_SET.  */
652 
653 static struct clear_alias_mode_holder *
654 clear_alias_set_lookup (alias_set_type alias_set)
655 {
656   struct clear_alias_mode_holder tmp_holder;
657   void **slot;
658 
659   tmp_holder.alias_set = alias_set;
660   slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
661   gcc_assert (*slot);
662 
663   return (struct clear_alias_mode_holder *) *slot;
664 }
665 
666 
667 /* Hashtable callbacks for maintaining the "bases" field of
668    store_group_info, given that the addresses are function invariants.  */
669 
670 static int
671 invariant_group_base_eq (const void *p1, const void *p2)
672 {
673   const_group_info_t gi1 = (const_group_info_t) p1;
674   const_group_info_t gi2 = (const_group_info_t) p2;
675   return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
676 }
677 
678 
679 static hashval_t
680 invariant_group_base_hash (const void *p)
681 {
682   const_group_info_t gi = (const_group_info_t) p;
683   int do_not_record;
684   return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
685 }
686 
687 
688 /* Get the GROUP for BASE.  Add a new group if it is not there.  */
689 
690 static group_info_t
691 get_group_info (rtx base)
692 {
693   struct group_info tmp_gi;
694   group_info_t gi;
695   void **slot;
696 
697   if (base)
698     {
699       /* Find the store_base_info structure for BASE, creating a new one
700 	 if necessary.  */
701       tmp_gi.rtx_base = base;
702       slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
703       gi = (group_info_t) *slot;
704     }
705   else
706     {
707       if (!clear_alias_group)
708 	{
709 	  clear_alias_group = gi =
710 	    (group_info_t) pool_alloc (rtx_group_info_pool);
711 	  memset (gi, 0, sizeof (struct group_info));
712 	  gi->id = rtx_group_next_id++;
713 	  gi->store1_n = BITMAP_ALLOC (NULL);
714 	  gi->store1_p = BITMAP_ALLOC (NULL);
715 	  gi->store2_n = BITMAP_ALLOC (NULL);
716 	  gi->store2_p = BITMAP_ALLOC (NULL);
717 	  gi->escaped_p = BITMAP_ALLOC (NULL);
718 	  gi->escaped_n = BITMAP_ALLOC (NULL);
719 	  gi->group_kill = BITMAP_ALLOC (NULL);
720 	  gi->process_globally = false;
721 	  gi->offset_map_size_n = 0;
722 	  gi->offset_map_size_p = 0;
723 	  gi->offset_map_n = NULL;
724 	  gi->offset_map_p = NULL;
725 	  VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
726 	}
727       return clear_alias_group;
728     }
729 
730   if (gi == NULL)
731     {
732       *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
733       gi->rtx_base = base;
734       gi->id = rtx_group_next_id++;
735       gi->base_mem = gen_rtx_MEM (BLKmode, base);
736       gi->canon_base_addr = canon_rtx (base);
737       gi->store1_n = BITMAP_ALLOC (NULL);
738       gi->store1_p = BITMAP_ALLOC (NULL);
739       gi->store2_n = BITMAP_ALLOC (NULL);
740       gi->store2_p = BITMAP_ALLOC (NULL);
741       gi->escaped_p = BITMAP_ALLOC (NULL);
742       gi->escaped_n = BITMAP_ALLOC (NULL);
743       gi->group_kill = BITMAP_ALLOC (NULL);
744       gi->process_globally = false;
745       gi->frame_related =
746 	(base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
747       gi->offset_map_size_n = 0;
748       gi->offset_map_size_p = 0;
749       gi->offset_map_n = NULL;
750       gi->offset_map_p = NULL;
751       VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
752     }
753 
754   return gi;
755 }
756 
757 
758 /* Initialization of data structures.  */
759 
760 static void
761 dse_step0 (void)
762 {
763   locally_deleted = 0;
764   globally_deleted = 0;
765   spill_deleted = 0;
766 
767   scratch = BITMAP_ALLOC (NULL);
768   kill_on_calls = BITMAP_ALLOC (NULL);
769 
770   rtx_store_info_pool
771     = create_alloc_pool ("rtx_store_info_pool",
772 			 sizeof (struct store_info), 100);
773   read_info_pool
774     = create_alloc_pool ("read_info_pool",
775 			 sizeof (struct read_info), 100);
776   insn_info_pool
777     = create_alloc_pool ("insn_info_pool",
778 			 sizeof (struct insn_info), 100);
779   bb_info_pool
780     = create_alloc_pool ("bb_info_pool",
781 			 sizeof (struct bb_info), 100);
782   rtx_group_info_pool
783     = create_alloc_pool ("rtx_group_info_pool",
784 			 sizeof (struct group_info), 100);
785   deferred_change_pool
786     = create_alloc_pool ("deferred_change_pool",
787 			 sizeof (struct deferred_change), 10);
788 
789   rtx_group_table = htab_create (11, invariant_group_base_hash,
790 				 invariant_group_base_eq, NULL);
791 
792   bb_table = XCNEWVEC (bb_info_t, last_basic_block);
793   rtx_group_next_id = 0;
794 
795   stores_off_frame_dead_at_return = !cfun->stdarg;
796 
797   init_alias_analysis ();
798 
799   if (clear_alias_sets)
800     clear_alias_group = get_group_info (NULL);
801   else
802     clear_alias_group = NULL;
803 }
804 
805 
806 
807 /*----------------------------------------------------------------------------
808    First step.
809 
810    Scan all of the insns.  Any random ordering of the blocks is fine.
811    Each block is scanned in forward order to accommodate cselib which
812    is used to remove stores with non-constant bases.
813 ----------------------------------------------------------------------------*/
814 
815 /* Delete all of the store_info recs from INSN_INFO.  */
816 
817 static void
818 free_store_info (insn_info_t insn_info)
819 {
820   store_info_t store_info = insn_info->store_rec;
821   while (store_info)
822     {
823       store_info_t next = store_info->next;
824       if (store_info->is_large)
825 	BITMAP_FREE (store_info->positions_needed.large.bmap);
826       if (store_info->cse_base)
827 	pool_free (cse_store_info_pool, store_info);
828       else
829 	pool_free (rtx_store_info_pool, store_info);
830       store_info = next;
831     }
832 
833   insn_info->cannot_delete = true;
834   insn_info->contains_cselib_groups = false;
835   insn_info->store_rec = NULL;
836 }
837 
838 typedef struct
839 {
840   rtx first, current;
841   regset fixed_regs_live;
842   bool failure;
843 } note_add_store_info;
844 
845 /* Callback for emit_inc_dec_insn_before via note_stores.
846    Check if a register is clobbered which is live afterwards.  */
847 
848 static void
849 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
850 {
851   rtx insn;
852   note_add_store_info *info = (note_add_store_info *) data;
853   int r, n;
854 
855   if (!REG_P (loc))
856     return;
857 
858   /* If this register is referenced by the current or an earlier insn,
859      that's OK.  E.g. this applies to the register that is being incremented
860      with this addition.  */
861   for (insn = info->first;
862        insn != NEXT_INSN (info->current);
863        insn = NEXT_INSN (insn))
864     if (reg_referenced_p (loc, PATTERN (insn)))
865       return;
866 
867   /* If we come here, we have a clobber of a register that's only OK
868      if that register is not live.  If we don't have liveness information
869      available, fail now.  */
870   if (!info->fixed_regs_live)
871     {
872       info->failure =  true;
873       return;
874     }
875   /* Now check if this is a live fixed register.  */
876   r = REGNO (loc);
877   n = hard_regno_nregs[r][GET_MODE (loc)];
878   while (--n >=  0)
879     if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
880       info->failure =  true;
881 }
882 
883 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
884    SRC + SRCOFF before insn ARG.  */
885 
886 static int
887 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
888 			  rtx op ATTRIBUTE_UNUSED,
889 			  rtx dest, rtx src, rtx srcoff, void *arg)
890 {
891   insn_info_t insn_info = (insn_info_t) arg;
892   rtx insn = insn_info->insn, new_insn, cur;
893   note_add_store_info info;
894 
895   /* We can reuse all operands without copying, because we are about
896      to delete the insn that contained it.  */
897   if (srcoff)
898     {
899       start_sequence ();
900       emit_insn (gen_add3_insn (dest, src, srcoff));
901       new_insn = get_insns ();
902       end_sequence ();
903     }
904   else
905     new_insn = gen_move_insn (dest, src);
906   info.first = new_insn;
907   info.fixed_regs_live = insn_info->fixed_regs_live;
908   info.failure = false;
909   for (cur = new_insn; cur; cur = NEXT_INSN (cur))
910     {
911       info.current = cur;
912       note_stores (PATTERN (cur), note_add_store, &info);
913     }
914 
915   /* If a failure was flagged above, return 1 so that for_each_inc_dec will
916      return it immediately, communicating the failure to its caller.  */
917   if (info.failure)
918     return 1;
919 
920   emit_insn_before (new_insn, insn);
921 
922   return -1;
923 }
924 
925 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
926    is there, is split into a separate insn.
927    Return true on success (or if there was nothing to do), false on failure.  */
928 
929 static bool
930 check_for_inc_dec_1 (insn_info_t insn_info)
931 {
932   rtx insn = insn_info->insn;
933   rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
934   if (note)
935     return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
936   return true;
937 }
938 
939 
940 /* Entry point for postreload.  If you work on reload_cse, or you need this
941    anywhere else, consider if you can provide register liveness information
942    and add a parameter to this function so that it can be passed down in
943    insn_info.fixed_regs_live.  */
944 bool
945 check_for_inc_dec (rtx insn)
946 {
947   struct insn_info insn_info;
948   rtx note;
949 
950   insn_info.insn = insn;
951   insn_info.fixed_regs_live = NULL;
952   note = find_reg_note (insn, REG_INC, NULL_RTX);
953   if (note)
954     return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
955   return true;
956 }
957 
958 /* Delete the insn and free all of the fields inside INSN_INFO.  */
959 
960 static void
961 delete_dead_store_insn (insn_info_t insn_info)
962 {
963   read_info_t read_info;
964 
965   if (!dbg_cnt (dse))
966     return;
967 
968   if (!check_for_inc_dec_1 (insn_info))
969     return;
970   if (dump_file)
971     {
972       fprintf (dump_file, "Locally deleting insn %d ",
973 	       INSN_UID (insn_info->insn));
974       if (insn_info->store_rec->alias_set)
975 	fprintf (dump_file, "alias set %d\n",
976 		 (int) insn_info->store_rec->alias_set);
977       else
978 	fprintf (dump_file, "\n");
979     }
980 
981   free_store_info (insn_info);
982   read_info = insn_info->read_rec;
983 
984   while (read_info)
985     {
986       read_info_t next = read_info->next;
987       pool_free (read_info_pool, read_info);
988       read_info = next;
989     }
990   insn_info->read_rec = NULL;
991 
992   delete_insn (insn_info->insn);
993   locally_deleted++;
994   insn_info->insn = NULL;
995 
996   insn_info->wild_read = false;
997 }
998 
999 /* Check if EXPR can possibly escape the current function scope.  */
1000 static bool
1001 can_escape (tree expr)
1002 {
1003   tree base;
1004   if (!expr)
1005     return true;
1006   base = get_base_address (expr);
1007   if (DECL_P (base)
1008       && !may_be_aliased (base))
1009     return false;
1010   return true;
1011 }
1012 
1013 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1014    OFFSET and WIDTH.  */
1015 
1016 static void
1017 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1018                 tree expr)
1019 {
1020   HOST_WIDE_INT i;
1021   bool expr_escapes = can_escape (expr);
1022   if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1023     for (i=offset; i<offset+width; i++)
1024       {
1025 	bitmap store1;
1026 	bitmap store2;
1027         bitmap escaped;
1028 	int ai;
1029 	if (i < 0)
1030 	  {
1031 	    store1 = group->store1_n;
1032 	    store2 = group->store2_n;
1033 	    escaped = group->escaped_n;
1034 	    ai = -i;
1035 	  }
1036 	else
1037 	  {
1038 	    store1 = group->store1_p;
1039 	    store2 = group->store2_p;
1040 	    escaped = group->escaped_p;
1041 	    ai = i;
1042 	  }
1043 
1044 	if (!bitmap_set_bit (store1, ai))
1045 	  bitmap_set_bit (store2, ai);
1046 	else
1047 	  {
1048 	    if (i < 0)
1049 	      {
1050 		if (group->offset_map_size_n < ai)
1051 		  group->offset_map_size_n = ai;
1052 	      }
1053 	    else
1054 	      {
1055 		if (group->offset_map_size_p < ai)
1056 		  group->offset_map_size_p = ai;
1057 	      }
1058 	  }
1059         if (expr_escapes)
1060           bitmap_set_bit (escaped, ai);
1061       }
1062 }
1063 
1064 static void
1065 reset_active_stores (void)
1066 {
1067   active_local_stores = NULL;
1068   active_local_stores_len = 0;
1069 }
1070 
1071 /* Free all READ_REC of the LAST_INSN of BB_INFO.  */
1072 
1073 static void
1074 free_read_records (bb_info_t bb_info)
1075 {
1076   insn_info_t insn_info = bb_info->last_insn;
1077   read_info_t *ptr = &insn_info->read_rec;
1078   while (*ptr)
1079     {
1080       read_info_t next = (*ptr)->next;
1081       if ((*ptr)->alias_set == 0)
1082         {
1083           pool_free (read_info_pool, *ptr);
1084           *ptr = next;
1085         }
1086       else
1087         ptr = &(*ptr)->next;
1088     }
1089 }
1090 
1091 /* Set the BB_INFO so that the last insn is marked as a wild read.  */
1092 
1093 static void
1094 add_wild_read (bb_info_t bb_info)
1095 {
1096   insn_info_t insn_info = bb_info->last_insn;
1097   insn_info->wild_read = true;
1098   free_read_records (bb_info);
1099   reset_active_stores ();
1100 }
1101 
1102 /* Set the BB_INFO so that the last insn is marked as a wild read of
1103    non-frame locations.  */
1104 
1105 static void
1106 add_non_frame_wild_read (bb_info_t bb_info)
1107 {
1108   insn_info_t insn_info = bb_info->last_insn;
1109   insn_info->non_frame_wild_read = true;
1110   free_read_records (bb_info);
1111   reset_active_stores ();
1112 }
1113 
1114 /* Return true if X is a constant or one of the registers that behave
1115    as a constant over the life of a function.  This is equivalent to
1116    !rtx_varies_p for memory addresses.  */
1117 
1118 static bool
1119 const_or_frame_p (rtx x)
1120 {
1121   switch (GET_CODE (x))
1122     {
1123     case CONST:
1124     case CONST_INT:
1125     case CONST_DOUBLE:
1126     case CONST_VECTOR:
1127     case SYMBOL_REF:
1128     case LABEL_REF:
1129       return true;
1130 
1131     case REG:
1132       /* Note that we have to test for the actual rtx used for the frame
1133 	 and arg pointers and not just the register number in case we have
1134 	 eliminated the frame and/or arg pointer and are using it
1135 	 for pseudos.  */
1136       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1137 	  /* The arg pointer varies if it is not a fixed register.  */
1138 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1139 	  || x == pic_offset_table_rtx)
1140 	return true;
1141       return false;
1142 
1143     default:
1144       return false;
1145     }
1146 }
1147 
1148 /* Take all reasonable action to put the address of MEM into the form
1149    that we can do analysis on.
1150 
1151    The gold standard is to get the address into the form: address +
1152    OFFSET where address is something that rtx_varies_p considers a
1153    constant.  When we can get the address in this form, we can do
1154    global analysis on it.  Note that for constant bases, address is
1155    not actually returned, only the group_id.  The address can be
1156    obtained from that.
1157 
1158    If that fails, we try cselib to get a value we can at least use
1159    locally.  If that fails we return false.
1160 
1161    The GROUP_ID is set to -1 for cselib bases and the index of the
1162    group for non_varying bases.
1163 
1164    FOR_READ is true if this is a mem read and false if not.  */
1165 
1166 static bool
1167 canon_address (rtx mem,
1168 	       alias_set_type *alias_set_out,
1169 	       int *group_id,
1170 	       HOST_WIDE_INT *offset,
1171 	       cselib_val **base)
1172 {
1173   enum machine_mode address_mode
1174     = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
1175   rtx mem_address = XEXP (mem, 0);
1176   rtx expanded_address, address;
1177   int expanded;
1178 
1179   /* Make sure that cselib is has initialized all of the operands of
1180      the address before asking it to do the subst.  */
1181 
1182   if (clear_alias_sets)
1183     {
1184       /* If this is a spill, do not do any further processing.  */
1185       alias_set_type alias_set = MEM_ALIAS_SET (mem);
1186       if (dump_file)
1187 	fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1188       if (bitmap_bit_p (clear_alias_sets, alias_set))
1189 	{
1190 	  struct clear_alias_mode_holder *entry
1191 	    = clear_alias_set_lookup (alias_set);
1192 
1193 	  /* If the modes do not match, we cannot process this set.  */
1194 	  if (entry->mode != GET_MODE (mem))
1195 	    {
1196 	      if (dump_file)
1197 		fprintf (dump_file,
1198 			 "disqualifying alias set %d, (%s) != (%s)\n",
1199 			 (int) alias_set, GET_MODE_NAME (entry->mode),
1200 			 GET_MODE_NAME (GET_MODE (mem)));
1201 
1202 	      bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1203 	      return false;
1204 	    }
1205 
1206 	  *alias_set_out = alias_set;
1207 	  *group_id = clear_alias_group->id;
1208 	  return true;
1209 	}
1210     }
1211 
1212   *alias_set_out = 0;
1213 
1214   cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1215 
1216   if (dump_file)
1217     {
1218       fprintf (dump_file, "  mem: ");
1219       print_inline_rtx (dump_file, mem_address, 0);
1220       fprintf (dump_file, "\n");
1221     }
1222 
1223   /* First see if just canon_rtx (mem_address) is const or frame,
1224      if not, try cselib_expand_value_rtx and call canon_rtx on that.  */
1225   address = NULL_RTX;
1226   for (expanded = 0; expanded < 2; expanded++)
1227     {
1228       if (expanded)
1229 	{
1230 	  /* Use cselib to replace all of the reg references with the full
1231 	     expression.  This will take care of the case where we have
1232 
1233 	     r_x = base + offset;
1234 	     val = *r_x;
1235 
1236 	     by making it into
1237 
1238 	     val = *(base + offset);  */
1239 
1240 	  expanded_address = cselib_expand_value_rtx (mem_address,
1241 						      scratch, 5);
1242 
1243 	  /* If this fails, just go with the address from first
1244 	     iteration.  */
1245 	  if (!expanded_address)
1246 	    break;
1247 	}
1248       else
1249 	expanded_address = mem_address;
1250 
1251       /* Split the address into canonical BASE + OFFSET terms.  */
1252       address = canon_rtx (expanded_address);
1253 
1254       *offset = 0;
1255 
1256       if (dump_file)
1257 	{
1258 	  if (expanded)
1259 	    {
1260 	      fprintf (dump_file, "\n   after cselib_expand address: ");
1261 	      print_inline_rtx (dump_file, expanded_address, 0);
1262 	      fprintf (dump_file, "\n");
1263 	    }
1264 
1265 	  fprintf (dump_file, "\n   after canon_rtx address: ");
1266 	  print_inline_rtx (dump_file, address, 0);
1267 	  fprintf (dump_file, "\n");
1268 	}
1269 
1270       if (GET_CODE (address) == CONST)
1271 	address = XEXP (address, 0);
1272 
1273       if (GET_CODE (address) == PLUS
1274 	  && CONST_INT_P (XEXP (address, 1)))
1275 	{
1276 	  *offset = INTVAL (XEXP (address, 1));
1277 	  address = XEXP (address, 0);
1278 	}
1279 
1280       if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1281 	  && const_or_frame_p (address))
1282 	{
1283 	  group_info_t group = get_group_info (address);
1284 
1285 	  if (dump_file)
1286 	    fprintf (dump_file, "  gid=%d offset=%d \n",
1287 		     group->id, (int)*offset);
1288 	  *base = NULL;
1289 	  *group_id = group->id;
1290 	  return true;
1291 	}
1292     }
1293 
1294   *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1295   *group_id = -1;
1296 
1297   if (*base == NULL)
1298     {
1299       if (dump_file)
1300 	fprintf (dump_file, " no cselib val - should be a wild read.\n");
1301       return false;
1302     }
1303   if (dump_file)
1304     fprintf (dump_file, "  varying cselib base=%u:%u offset = %d\n",
1305 	     (*base)->uid, (*base)->hash, (int)*offset);
1306   return true;
1307 }
1308 
1309 
1310 /* Clear the rhs field from the active_local_stores array.  */
1311 
1312 static void
1313 clear_rhs_from_active_local_stores (void)
1314 {
1315   insn_info_t ptr = active_local_stores;
1316 
1317   while (ptr)
1318     {
1319       store_info_t store_info = ptr->store_rec;
1320       /* Skip the clobbers.  */
1321       while (!store_info->is_set)
1322 	store_info = store_info->next;
1323 
1324       store_info->rhs = NULL;
1325       store_info->const_rhs = NULL;
1326 
1327       ptr = ptr->next_local_store;
1328     }
1329 }
1330 
1331 
1332 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded.  */
1333 
1334 static inline void
1335 set_position_unneeded (store_info_t s_info, int pos)
1336 {
1337   if (__builtin_expect (s_info->is_large, false))
1338     {
1339       if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1340 	s_info->positions_needed.large.count++;
1341     }
1342   else
1343     s_info->positions_needed.small_bitmask
1344       &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1345 }
1346 
1347 /* Mark the whole store S_INFO as unneeded.  */
1348 
1349 static inline void
1350 set_all_positions_unneeded (store_info_t s_info)
1351 {
1352   if (__builtin_expect (s_info->is_large, false))
1353     {
1354       int pos, end = s_info->end - s_info->begin;
1355       for (pos = 0; pos < end; pos++)
1356 	bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1357       s_info->positions_needed.large.count = end;
1358     }
1359   else
1360     s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1361 }
1362 
1363 /* Return TRUE if any bytes from S_INFO store are needed.  */
1364 
1365 static inline bool
1366 any_positions_needed_p (store_info_t s_info)
1367 {
1368   if (__builtin_expect (s_info->is_large, false))
1369     return (s_info->positions_needed.large.count
1370 	    < s_info->end - s_info->begin);
1371   else
1372     return (s_info->positions_needed.small_bitmask
1373 	    != (unsigned HOST_WIDE_INT) 0);
1374 }
1375 
1376 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1377    store are needed.  */
1378 
1379 static inline bool
1380 all_positions_needed_p (store_info_t s_info, int start, int width)
1381 {
1382   if (__builtin_expect (s_info->is_large, false))
1383     {
1384       int end = start + width;
1385       while (start < end)
1386 	if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1387 	  return false;
1388       return true;
1389     }
1390   else
1391     {
1392       unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1393       return (s_info->positions_needed.small_bitmask & mask) == mask;
1394     }
1395 }
1396 
1397 
1398 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1399 			   HOST_WIDE_INT, basic_block, bool);
1400 
1401 
1402 /* BODY is an instruction pattern that belongs to INSN.  Return 1 if
1403    there is a candidate store, after adding it to the appropriate
1404    local store group if so.  */
1405 
1406 static int
1407 record_store (rtx body, bb_info_t bb_info)
1408 {
1409   rtx mem, rhs, const_rhs, mem_addr;
1410   HOST_WIDE_INT offset = 0;
1411   HOST_WIDE_INT width = 0;
1412   alias_set_type spill_alias_set;
1413   insn_info_t insn_info = bb_info->last_insn;
1414   store_info_t store_info = NULL;
1415   int group_id;
1416   cselib_val *base = NULL;
1417   insn_info_t ptr, last, redundant_reason;
1418   bool store_is_unused;
1419 
1420   if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1421     return 0;
1422 
1423   mem = SET_DEST (body);
1424 
1425   /* If this is not used, then this cannot be used to keep the insn
1426      from being deleted.  On the other hand, it does provide something
1427      that can be used to prove that another store is dead.  */
1428   store_is_unused
1429     = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1430 
1431   /* Check whether that value is a suitable memory location.  */
1432   if (!MEM_P (mem))
1433     {
1434       /* If the set or clobber is unused, then it does not effect our
1435 	 ability to get rid of the entire insn.  */
1436       if (!store_is_unused)
1437 	insn_info->cannot_delete = true;
1438       return 0;
1439     }
1440 
1441   /* At this point we know mem is a mem. */
1442   if (GET_MODE (mem) == BLKmode)
1443     {
1444       if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1445 	{
1446 	  if (dump_file)
1447 	    fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1448 	  add_wild_read (bb_info);
1449 	  insn_info->cannot_delete = true;
1450 	  return 0;
1451 	}
1452       /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1453 	 as memset (addr, 0, 36);  */
1454       else if (!MEM_SIZE_KNOWN_P (mem)
1455 	       || MEM_SIZE (mem) <= 0
1456 	       || MEM_SIZE (mem) > MAX_OFFSET
1457 	       || GET_CODE (body) != SET
1458 	       || !CONST_INT_P (SET_SRC (body)))
1459 	{
1460 	  if (!store_is_unused)
1461 	    {
1462 	      /* If the set or clobber is unused, then it does not effect our
1463 		 ability to get rid of the entire insn.  */
1464 	      insn_info->cannot_delete = true;
1465 	      clear_rhs_from_active_local_stores ();
1466 	    }
1467 	  return 0;
1468 	}
1469     }
1470 
1471   /* We can still process a volatile mem, we just cannot delete it.  */
1472   if (MEM_VOLATILE_P (mem))
1473     insn_info->cannot_delete = true;
1474 
1475   if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1476     {
1477       clear_rhs_from_active_local_stores ();
1478       return 0;
1479     }
1480 
1481   if (GET_MODE (mem) == BLKmode)
1482     width = MEM_SIZE (mem);
1483   else
1484     {
1485       width = GET_MODE_SIZE (GET_MODE (mem));
1486       gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1487     }
1488 
1489   if (spill_alias_set)
1490     {
1491       bitmap store1 = clear_alias_group->store1_p;
1492       bitmap store2 = clear_alias_group->store2_p;
1493 
1494       gcc_assert (GET_MODE (mem) != BLKmode);
1495 
1496       if (!bitmap_set_bit (store1, spill_alias_set))
1497 	bitmap_set_bit (store2, spill_alias_set);
1498 
1499       if (clear_alias_group->offset_map_size_p < spill_alias_set)
1500 	clear_alias_group->offset_map_size_p = spill_alias_set;
1501 
1502       store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1503 
1504       if (dump_file)
1505 	fprintf (dump_file, " processing spill store %d(%s)\n",
1506 		 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1507     }
1508   else if (group_id >= 0)
1509     {
1510       /* In the restrictive case where the base is a constant or the
1511 	 frame pointer we can do global analysis.  */
1512 
1513       group_info_t group
1514 	= VEC_index (group_info_t, rtx_group_vec, group_id);
1515       tree expr = MEM_EXPR (mem);
1516 
1517       store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1518       set_usage_bits (group, offset, width, expr);
1519 
1520       if (dump_file)
1521 	fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1522 		 group_id, (int)offset, (int)(offset+width));
1523     }
1524   else
1525     {
1526       rtx base_term = find_base_term (XEXP (mem, 0));
1527       if (!base_term
1528 	  || (GET_CODE (base_term) == ADDRESS
1529 	      && GET_MODE (base_term) == Pmode
1530 	      && XEXP (base_term, 0) == stack_pointer_rtx))
1531 	insn_info->stack_pointer_based = true;
1532       insn_info->contains_cselib_groups = true;
1533 
1534       store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1535       group_id = -1;
1536 
1537       if (dump_file)
1538 	fprintf (dump_file, " processing cselib store [%d..%d)\n",
1539 		 (int)offset, (int)(offset+width));
1540     }
1541 
1542   const_rhs = rhs = NULL_RTX;
1543   if (GET_CODE (body) == SET
1544       /* No place to keep the value after ra.  */
1545       && !reload_completed
1546       && (REG_P (SET_SRC (body))
1547 	  || GET_CODE (SET_SRC (body)) == SUBREG
1548 	  || CONSTANT_P (SET_SRC (body)))
1549       && !MEM_VOLATILE_P (mem)
1550       /* Sometimes the store and reload is used for truncation and
1551 	 rounding.  */
1552       && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1553     {
1554       rhs = SET_SRC (body);
1555       if (CONSTANT_P (rhs))
1556 	const_rhs = rhs;
1557       else if (body == PATTERN (insn_info->insn))
1558 	{
1559 	  rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1560 	  if (tem && CONSTANT_P (XEXP (tem, 0)))
1561 	    const_rhs = XEXP (tem, 0);
1562 	}
1563       if (const_rhs == NULL_RTX && REG_P (rhs))
1564 	{
1565 	  rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1566 
1567 	  if (tem && CONSTANT_P (tem))
1568 	    const_rhs = tem;
1569 	}
1570     }
1571 
1572   /* Check to see if this stores causes some other stores to be
1573      dead.  */
1574   ptr = active_local_stores;
1575   last = NULL;
1576   redundant_reason = NULL;
1577   mem = canon_rtx (mem);
1578   /* For alias_set != 0 canon_true_dependence should be never called.  */
1579   if (spill_alias_set)
1580     mem_addr = NULL_RTX;
1581   else
1582     {
1583       if (group_id < 0)
1584 	mem_addr = base->val_rtx;
1585       else
1586 	{
1587 	  group_info_t group
1588 	    = VEC_index (group_info_t, rtx_group_vec, group_id);
1589 	  mem_addr = group->canon_base_addr;
1590 	}
1591       if (offset)
1592 	mem_addr = plus_constant (mem_addr, offset);
1593     }
1594 
1595   while (ptr)
1596     {
1597       insn_info_t next = ptr->next_local_store;
1598       store_info_t s_info = ptr->store_rec;
1599       bool del = true;
1600 
1601       /* Skip the clobbers. We delete the active insn if this insn
1602 	 shadows the set.  To have been put on the active list, it
1603 	 has exactly on set. */
1604       while (!s_info->is_set)
1605 	s_info = s_info->next;
1606 
1607       if (s_info->alias_set != spill_alias_set)
1608 	del = false;
1609       else if (s_info->alias_set)
1610 	{
1611 	  struct clear_alias_mode_holder *entry
1612 	    = clear_alias_set_lookup (s_info->alias_set);
1613 	  /* Generally, spills cannot be processed if and of the
1614 	     references to the slot have a different mode.  But if
1615 	     we are in the same block and mode is exactly the same
1616 	     between this store and one before in the same block,
1617 	     we can still delete it.  */
1618 	  if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1619 	      && (GET_MODE (mem) == entry->mode))
1620 	    {
1621 	      del = true;
1622 	      set_all_positions_unneeded (s_info);
1623 	    }
1624 	  if (dump_file)
1625 	    fprintf (dump_file, "    trying spill store in insn=%d alias_set=%d\n",
1626 		     INSN_UID (ptr->insn), (int) s_info->alias_set);
1627 	}
1628       else if ((s_info->group_id == group_id)
1629 	       && (s_info->cse_base == base))
1630 	{
1631 	  HOST_WIDE_INT i;
1632 	  if (dump_file)
1633 	    fprintf (dump_file, "    trying store in insn=%d gid=%d[%d..%d)\n",
1634 		     INSN_UID (ptr->insn), s_info->group_id,
1635 		     (int)s_info->begin, (int)s_info->end);
1636 
1637 	  /* Even if PTR won't be eliminated as unneeded, if both
1638 	     PTR and this insn store the same constant value, we might
1639 	     eliminate this insn instead.  */
1640 	  if (s_info->const_rhs
1641 	      && const_rhs
1642 	      && offset >= s_info->begin
1643 	      && offset + width <= s_info->end
1644 	      && all_positions_needed_p (s_info, offset - s_info->begin,
1645 					 width))
1646 	    {
1647 	      if (GET_MODE (mem) == BLKmode)
1648 		{
1649 		  if (GET_MODE (s_info->mem) == BLKmode
1650 		      && s_info->const_rhs == const_rhs)
1651 		    redundant_reason = ptr;
1652 		}
1653 	      else if (s_info->const_rhs == const0_rtx
1654 		       && const_rhs == const0_rtx)
1655 		redundant_reason = ptr;
1656 	      else
1657 		{
1658 		  rtx val;
1659 		  start_sequence ();
1660 		  val = get_stored_val (s_info, GET_MODE (mem),
1661 					offset, offset + width,
1662 					BLOCK_FOR_INSN (insn_info->insn),
1663 					true);
1664 		  if (get_insns () != NULL)
1665 		    val = NULL_RTX;
1666 		  end_sequence ();
1667 		  if (val && rtx_equal_p (val, const_rhs))
1668 		    redundant_reason = ptr;
1669 		}
1670 	    }
1671 
1672 	  for (i = MAX (offset, s_info->begin);
1673 	       i < offset + width && i < s_info->end;
1674 	       i++)
1675 	    set_position_unneeded (s_info, i - s_info->begin);
1676 	}
1677       else if (s_info->rhs)
1678 	/* Need to see if it is possible for this store to overwrite
1679 	   the value of store_info.  If it is, set the rhs to NULL to
1680 	   keep it from being used to remove a load.  */
1681 	{
1682 	  if (canon_true_dependence (s_info->mem,
1683 				     GET_MODE (s_info->mem),
1684 				     s_info->mem_addr,
1685 				     mem, mem_addr))
1686 	    {
1687 	      s_info->rhs = NULL;
1688 	      s_info->const_rhs = NULL;
1689 	    }
1690 	}
1691 
1692       /* An insn can be deleted if every position of every one of
1693 	 its s_infos is zero.  */
1694       if (any_positions_needed_p (s_info))
1695 	del = false;
1696 
1697       if (del)
1698 	{
1699 	  insn_info_t insn_to_delete = ptr;
1700 
1701 	  active_local_stores_len--;
1702 	  if (last)
1703 	    last->next_local_store = ptr->next_local_store;
1704 	  else
1705 	    active_local_stores = ptr->next_local_store;
1706 
1707 	  if (!insn_to_delete->cannot_delete)
1708 	    delete_dead_store_insn (insn_to_delete);
1709 	}
1710       else
1711 	last = ptr;
1712 
1713       ptr = next;
1714     }
1715 
1716   /* Finish filling in the store_info.  */
1717   store_info->next = insn_info->store_rec;
1718   insn_info->store_rec = store_info;
1719   store_info->mem = mem;
1720   store_info->alias_set = spill_alias_set;
1721   store_info->mem_addr = mem_addr;
1722   store_info->cse_base = base;
1723   if (width > HOST_BITS_PER_WIDE_INT)
1724     {
1725       store_info->is_large = true;
1726       store_info->positions_needed.large.count = 0;
1727       store_info->positions_needed.large.bmap = BITMAP_ALLOC (NULL);
1728     }
1729   else
1730     {
1731       store_info->is_large = false;
1732       store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1733     }
1734   store_info->group_id = group_id;
1735   store_info->begin = offset;
1736   store_info->end = offset + width;
1737   store_info->is_set = GET_CODE (body) == SET;
1738   store_info->rhs = rhs;
1739   store_info->const_rhs = const_rhs;
1740   store_info->redundant_reason = redundant_reason;
1741 
1742   /* If this is a clobber, we return 0.  We will only be able to
1743      delete this insn if there is only one store USED store, but we
1744      can use the clobber to delete other stores earlier.  */
1745   return store_info->is_set ? 1 : 0;
1746 }
1747 
1748 
1749 static void
1750 dump_insn_info (const char * start, insn_info_t insn_info)
1751 {
1752   fprintf (dump_file, "%s insn=%d %s\n", start,
1753 	   INSN_UID (insn_info->insn),
1754 	   insn_info->store_rec ? "has store" : "naked");
1755 }
1756 
1757 
1758 /* If the modes are different and the value's source and target do not
1759    line up, we need to extract the value from lower part of the rhs of
1760    the store, shift it, and then put it into a form that can be shoved
1761    into the read_insn.  This function generates a right SHIFT of a
1762    value that is at least ACCESS_SIZE bytes wide of READ_MODE.  The
1763    shift sequence is returned or NULL if we failed to find a
1764    shift.  */
1765 
1766 static rtx
1767 find_shift_sequence (int access_size,
1768 		     store_info_t store_info,
1769 		     enum machine_mode read_mode,
1770 		     int shift, bool speed, bool require_cst)
1771 {
1772   enum machine_mode store_mode = GET_MODE (store_info->mem);
1773   enum machine_mode new_mode;
1774   rtx read_reg = NULL;
1775 
1776   /* Some machines like the x86 have shift insns for each size of
1777      operand.  Other machines like the ppc or the ia-64 may only have
1778      shift insns that shift values within 32 or 64 bit registers.
1779      This loop tries to find the smallest shift insn that will right
1780      justify the value we want to read but is available in one insn on
1781      the machine.  */
1782 
1783   for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1784 					  MODE_INT);
1785        GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1786        new_mode = GET_MODE_WIDER_MODE (new_mode))
1787     {
1788       rtx target, new_reg, shift_seq, insn, new_lhs;
1789       int cost;
1790 
1791       /* If a constant was stored into memory, try to simplify it here,
1792 	 otherwise the cost of the shift might preclude this optimization
1793 	 e.g. at -Os, even when no actual shift will be needed.  */
1794       if (store_info->const_rhs)
1795 	{
1796 	  unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1797 	  rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1798 				     store_mode, byte);
1799 	  if (ret && CONSTANT_P (ret))
1800 	    {
1801 	      ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1802 						     ret, GEN_INT (shift));
1803 	      if (ret && CONSTANT_P (ret))
1804 		{
1805 		  byte = subreg_lowpart_offset (read_mode, new_mode);
1806 		  ret = simplify_subreg (read_mode, ret, new_mode, byte);
1807 		  if (ret && CONSTANT_P (ret)
1808 		      && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1809 		    return ret;
1810 		}
1811 	    }
1812 	}
1813 
1814       if (require_cst)
1815 	return NULL_RTX;
1816 
1817       /* Try a wider mode if truncating the store mode to NEW_MODE
1818 	 requires a real instruction.  */
1819       if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1820 	  && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1821 	continue;
1822 
1823       /* Also try a wider mode if the necessary punning is either not
1824 	 desirable or not possible.  */
1825       if (!CONSTANT_P (store_info->rhs)
1826 	  && !MODES_TIEABLE_P (new_mode, store_mode))
1827 	continue;
1828 
1829       new_reg = gen_reg_rtx (new_mode);
1830 
1831       start_sequence ();
1832 
1833       /* In theory we could also check for an ashr.  Ian Taylor knows
1834 	 of one dsp where the cost of these two was not the same.  But
1835 	 this really is a rare case anyway.  */
1836       target = expand_binop (new_mode, lshr_optab, new_reg,
1837 			     GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1838 
1839       shift_seq = get_insns ();
1840       end_sequence ();
1841 
1842       if (target != new_reg || shift_seq == NULL)
1843 	continue;
1844 
1845       cost = 0;
1846       for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1847 	if (INSN_P (insn))
1848 	  cost += insn_rtx_cost (PATTERN (insn), speed);
1849 
1850       /* The computation up to here is essentially independent
1851 	 of the arguments and could be precomputed.  It may
1852 	 not be worth doing so.  We could precompute if
1853 	 worthwhile or at least cache the results.  The result
1854 	 technically depends on both SHIFT and ACCESS_SIZE,
1855 	 but in practice the answer will depend only on ACCESS_SIZE.  */
1856 
1857       if (cost > COSTS_N_INSNS (1))
1858 	continue;
1859 
1860       new_lhs = extract_low_bits (new_mode, store_mode,
1861 				  copy_rtx (store_info->rhs));
1862       if (new_lhs == NULL_RTX)
1863 	continue;
1864 
1865       /* We found an acceptable shift.  Generate a move to
1866 	 take the value from the store and put it into the
1867 	 shift pseudo, then shift it, then generate another
1868 	 move to put in into the target of the read.  */
1869       emit_move_insn (new_reg, new_lhs);
1870       emit_insn (shift_seq);
1871       read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1872       break;
1873     }
1874 
1875   return read_reg;
1876 }
1877 
1878 
1879 /* Call back for note_stores to find the hard regs set or clobbered by
1880    insn.  Data is a bitmap of the hardregs set so far.  */
1881 
1882 static void
1883 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1884 {
1885   bitmap regs_set = (bitmap) data;
1886 
1887   if (REG_P (x)
1888       && HARD_REGISTER_P (x))
1889     {
1890       unsigned int regno = REGNO (x);
1891       bitmap_set_range (regs_set, regno,
1892 			hard_regno_nregs[regno][GET_MODE (x)]);
1893     }
1894 }
1895 
1896 /* Helper function for replace_read and record_store.
1897    Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1898    to one before READ_END bytes read in READ_MODE.  Return NULL
1899    if not successful.  If REQUIRE_CST is true, return always constant.  */
1900 
1901 static rtx
1902 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1903 		HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1904 		basic_block bb, bool require_cst)
1905 {
1906   enum machine_mode store_mode = GET_MODE (store_info->mem);
1907   int shift;
1908   int access_size; /* In bytes.  */
1909   rtx read_reg;
1910 
1911   /* To get here the read is within the boundaries of the write so
1912      shift will never be negative.  Start out with the shift being in
1913      bytes.  */
1914   if (store_mode == BLKmode)
1915     shift = 0;
1916   else if (BYTES_BIG_ENDIAN)
1917     shift = store_info->end - read_end;
1918   else
1919     shift = read_begin - store_info->begin;
1920 
1921   access_size = shift + GET_MODE_SIZE (read_mode);
1922 
1923   /* From now on it is bits.  */
1924   shift *= BITS_PER_UNIT;
1925 
1926   if (shift)
1927     read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1928     				    optimize_bb_for_speed_p (bb),
1929 				    require_cst);
1930   else if (store_mode == BLKmode)
1931     {
1932       /* The store is a memset (addr, const_val, const_size).  */
1933       gcc_assert (CONST_INT_P (store_info->rhs));
1934       store_mode = int_mode_for_mode (read_mode);
1935       if (store_mode == BLKmode)
1936 	read_reg = NULL_RTX;
1937       else if (store_info->rhs == const0_rtx)
1938 	read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1939       else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1940 	       || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1941 	read_reg = NULL_RTX;
1942       else
1943 	{
1944 	  unsigned HOST_WIDE_INT c
1945 	    = INTVAL (store_info->rhs)
1946 	      & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1947 	  int shift = BITS_PER_UNIT;
1948 	  while (shift < HOST_BITS_PER_WIDE_INT)
1949 	    {
1950 	      c |= (c << shift);
1951 	      shift <<= 1;
1952 	    }
1953 	  read_reg = gen_int_mode (c, store_mode);
1954 	  read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1955 	}
1956     }
1957   else if (store_info->const_rhs
1958 	   && (require_cst
1959 	       || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1960     read_reg = extract_low_bits (read_mode, store_mode,
1961 				 copy_rtx (store_info->const_rhs));
1962   else
1963     read_reg = extract_low_bits (read_mode, store_mode,
1964 				 copy_rtx (store_info->rhs));
1965   if (require_cst && read_reg && !CONSTANT_P (read_reg))
1966     read_reg = NULL_RTX;
1967   return read_reg;
1968 }
1969 
1970 /* Take a sequence of:
1971      A <- r1
1972      ...
1973      ... <- A
1974 
1975    and change it into
1976    r2 <- r1
1977    A <- r1
1978    ...
1979    ... <- r2
1980 
1981    or
1982 
1983    r3 <- extract (r1)
1984    r3 <- r3 >> shift
1985    r2 <- extract (r3)
1986    ... <- r2
1987 
1988    or
1989 
1990    r2 <- extract (r1)
1991    ... <- r2
1992 
1993    Depending on the alignment and the mode of the store and
1994    subsequent load.
1995 
1996 
1997    The STORE_INFO and STORE_INSN are for the store and READ_INFO
1998    and READ_INSN are for the read.  Return true if the replacement
1999    went ok.  */
2000 
2001 static bool
2002 replace_read (store_info_t store_info, insn_info_t store_insn,
2003 	      read_info_t read_info, insn_info_t read_insn, rtx *loc,
2004 	      bitmap regs_live)
2005 {
2006   enum machine_mode store_mode = GET_MODE (store_info->mem);
2007   enum machine_mode read_mode = GET_MODE (read_info->mem);
2008   rtx insns, this_insn, read_reg;
2009   basic_block bb;
2010 
2011   if (!dbg_cnt (dse))
2012     return false;
2013 
2014   /* Create a sequence of instructions to set up the read register.
2015      This sequence goes immediately before the store and its result
2016      is read by the load.
2017 
2018      We need to keep this in perspective.  We are replacing a read
2019      with a sequence of insns, but the read will almost certainly be
2020      in cache, so it is not going to be an expensive one.  Thus, we
2021      are not willing to do a multi insn shift or worse a subroutine
2022      call to get rid of the read.  */
2023   if (dump_file)
2024     fprintf (dump_file, "trying to replace %smode load in insn %d"
2025 	     " from %smode store in insn %d\n",
2026 	     GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2027 	     GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2028   start_sequence ();
2029   bb = BLOCK_FOR_INSN (read_insn->insn);
2030   read_reg = get_stored_val (store_info,
2031 			     read_mode, read_info->begin, read_info->end,
2032 			     bb, false);
2033   if (read_reg == NULL_RTX)
2034     {
2035       end_sequence ();
2036       if (dump_file)
2037 	fprintf (dump_file, " -- could not extract bits of stored value\n");
2038       return false;
2039     }
2040   /* Force the value into a new register so that it won't be clobbered
2041      between the store and the load.  */
2042   read_reg = copy_to_mode_reg (read_mode, read_reg);
2043   insns = get_insns ();
2044   end_sequence ();
2045 
2046   if (insns != NULL_RTX)
2047     {
2048       /* Now we have to scan the set of new instructions to see if the
2049 	 sequence contains and sets of hardregs that happened to be
2050 	 live at this point.  For instance, this can happen if one of
2051 	 the insns sets the CC and the CC happened to be live at that
2052 	 point.  This does occasionally happen, see PR 37922.  */
2053       bitmap regs_set = BITMAP_ALLOC (NULL);
2054 
2055       for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2056 	note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2057 
2058       bitmap_and_into (regs_set, regs_live);
2059       if (!bitmap_empty_p (regs_set))
2060 	{
2061 	  if (dump_file)
2062 	    {
2063 	      fprintf (dump_file,
2064 		       "abandoning replacement because sequence clobbers live hardregs:");
2065 	      df_print_regset (dump_file, regs_set);
2066 	    }
2067 
2068 	  BITMAP_FREE (regs_set);
2069 	  return false;
2070 	}
2071       BITMAP_FREE (regs_set);
2072     }
2073 
2074   if (validate_change (read_insn->insn, loc, read_reg, 0))
2075     {
2076       deferred_change_t deferred_change =
2077 	(deferred_change_t) pool_alloc (deferred_change_pool);
2078 
2079       /* Insert this right before the store insn where it will be safe
2080 	 from later insns that might change it before the read.  */
2081       emit_insn_before (insns, store_insn->insn);
2082 
2083       /* And now for the kludge part: cselib croaks if you just
2084 	 return at this point.  There are two reasons for this:
2085 
2086 	 1) Cselib has an idea of how many pseudos there are and
2087 	 that does not include the new ones we just added.
2088 
2089 	 2) Cselib does not know about the move insn we added
2090 	 above the store_info, and there is no way to tell it
2091 	 about it, because it has "moved on".
2092 
2093 	 Problem (1) is fixable with a certain amount of engineering.
2094 	 Problem (2) is requires starting the bb from scratch.  This
2095 	 could be expensive.
2096 
2097 	 So we are just going to have to lie.  The move/extraction
2098 	 insns are not really an issue, cselib did not see them.  But
2099 	 the use of the new pseudo read_insn is a real problem because
2100 	 cselib has not scanned this insn.  The way that we solve this
2101 	 problem is that we are just going to put the mem back for now
2102 	 and when we are finished with the block, we undo this.  We
2103 	 keep a table of mems to get rid of.  At the end of the basic
2104 	 block we can put them back.  */
2105 
2106       *loc = read_info->mem;
2107       deferred_change->next = deferred_change_list;
2108       deferred_change_list = deferred_change;
2109       deferred_change->loc = loc;
2110       deferred_change->reg = read_reg;
2111 
2112       /* Get rid of the read_info, from the point of view of the
2113 	 rest of dse, play like this read never happened.  */
2114       read_insn->read_rec = read_info->next;
2115       pool_free (read_info_pool, read_info);
2116       if (dump_file)
2117 	{
2118 	  fprintf (dump_file, " -- replaced the loaded MEM with ");
2119 	  print_simple_rtl (dump_file, read_reg);
2120 	  fprintf (dump_file, "\n");
2121 	}
2122       return true;
2123     }
2124   else
2125     {
2126       if (dump_file)
2127 	{
2128 	  fprintf (dump_file, " -- replacing the loaded MEM with ");
2129 	  print_simple_rtl (dump_file, read_reg);
2130 	  fprintf (dump_file, " led to an invalid instruction\n");
2131 	}
2132       return false;
2133     }
2134 }
2135 
2136 /* A for_each_rtx callback in which DATA is the bb_info.  Check to see
2137    if LOC is a mem and if it is look at the address and kill any
2138    appropriate stores that may be active.  */
2139 
2140 static int
2141 check_mem_read_rtx (rtx *loc, void *data)
2142 {
2143   rtx mem = *loc, mem_addr;
2144   bb_info_t bb_info;
2145   insn_info_t insn_info;
2146   HOST_WIDE_INT offset = 0;
2147   HOST_WIDE_INT width = 0;
2148   alias_set_type spill_alias_set = 0;
2149   cselib_val *base = NULL;
2150   int group_id;
2151   read_info_t read_info;
2152 
2153   if (!mem || !MEM_P (mem))
2154     return 0;
2155 
2156   bb_info = (bb_info_t) data;
2157   insn_info = bb_info->last_insn;
2158 
2159   if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2160       || (MEM_VOLATILE_P (mem)))
2161     {
2162       if (dump_file)
2163 	fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2164       add_wild_read (bb_info);
2165       insn_info->cannot_delete = true;
2166       return 0;
2167     }
2168 
2169   /* If it is reading readonly mem, then there can be no conflict with
2170      another write. */
2171   if (MEM_READONLY_P (mem))
2172     return 0;
2173 
2174   if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2175     {
2176       if (dump_file)
2177 	fprintf (dump_file, " adding wild read, canon_address failure.\n");
2178       add_wild_read (bb_info);
2179       return 0;
2180     }
2181 
2182   if (GET_MODE (mem) == BLKmode)
2183     width = -1;
2184   else
2185     width = GET_MODE_SIZE (GET_MODE (mem));
2186 
2187   read_info = (read_info_t) pool_alloc (read_info_pool);
2188   read_info->group_id = group_id;
2189   read_info->mem = mem;
2190   read_info->alias_set = spill_alias_set;
2191   read_info->begin = offset;
2192   read_info->end = offset + width;
2193   read_info->next = insn_info->read_rec;
2194   insn_info->read_rec = read_info;
2195   /* For alias_set != 0 canon_true_dependence should be never called.  */
2196   if (spill_alias_set)
2197     mem_addr = NULL_RTX;
2198   else
2199     {
2200       if (group_id < 0)
2201 	mem_addr = base->val_rtx;
2202       else
2203 	{
2204 	  group_info_t group
2205 	    = VEC_index (group_info_t, rtx_group_vec, group_id);
2206 	  mem_addr = group->canon_base_addr;
2207 	}
2208       if (offset)
2209 	mem_addr = plus_constant (mem_addr, offset);
2210     }
2211 
2212   /* We ignore the clobbers in store_info.  The is mildly aggressive,
2213      but there really should not be a clobber followed by a read.  */
2214 
2215   if (spill_alias_set)
2216     {
2217       insn_info_t i_ptr = active_local_stores;
2218       insn_info_t last = NULL;
2219 
2220       if (dump_file)
2221 	fprintf (dump_file, " processing spill load %d\n",
2222 		 (int) spill_alias_set);
2223 
2224       while (i_ptr)
2225 	{
2226 	  store_info_t store_info = i_ptr->store_rec;
2227 
2228 	  /* Skip the clobbers.  */
2229 	  while (!store_info->is_set)
2230 	    store_info = store_info->next;
2231 
2232 	  if (store_info->alias_set == spill_alias_set)
2233 	    {
2234 	      if (dump_file)
2235 		dump_insn_info ("removing from active", i_ptr);
2236 
2237 	      active_local_stores_len--;
2238 	      if (last)
2239 		last->next_local_store = i_ptr->next_local_store;
2240 	      else
2241 		active_local_stores = i_ptr->next_local_store;
2242 	    }
2243 	  else
2244 	    last = i_ptr;
2245 	  i_ptr = i_ptr->next_local_store;
2246 	}
2247     }
2248   else if (group_id >= 0)
2249     {
2250       /* This is the restricted case where the base is a constant or
2251 	 the frame pointer and offset is a constant.  */
2252       insn_info_t i_ptr = active_local_stores;
2253       insn_info_t last = NULL;
2254 
2255       if (dump_file)
2256 	{
2257 	  if (width == -1)
2258 	    fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2259 		     group_id);
2260 	  else
2261 	    fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2262 		     group_id, (int)offset, (int)(offset+width));
2263 	}
2264 
2265       while (i_ptr)
2266 	{
2267 	  bool remove = false;
2268 	  store_info_t store_info = i_ptr->store_rec;
2269 
2270 	  /* Skip the clobbers.  */
2271 	  while (!store_info->is_set)
2272 	    store_info = store_info->next;
2273 
2274 	  /* There are three cases here.  */
2275 	  if (store_info->group_id < 0)
2276 	    /* We have a cselib store followed by a read from a
2277 	       const base. */
2278 	    remove
2279 	      = canon_true_dependence (store_info->mem,
2280 				       GET_MODE (store_info->mem),
2281 				       store_info->mem_addr,
2282 				       mem, mem_addr);
2283 
2284 	  else if (group_id == store_info->group_id)
2285 	    {
2286 	      /* This is a block mode load.  We may get lucky and
2287 		 canon_true_dependence may save the day.  */
2288 	      if (width == -1)
2289 		remove
2290 		  = canon_true_dependence (store_info->mem,
2291 					   GET_MODE (store_info->mem),
2292 					   store_info->mem_addr,
2293 					   mem, mem_addr);
2294 
2295 	      /* If this read is just reading back something that we just
2296 		 stored, rewrite the read.  */
2297 	      else
2298 		{
2299 		  if (store_info->rhs
2300 		      && offset >= store_info->begin
2301 		      && offset + width <= store_info->end
2302 		      && all_positions_needed_p (store_info,
2303 						 offset - store_info->begin,
2304 						 width)
2305 		      && replace_read (store_info, i_ptr, read_info,
2306 				       insn_info, loc, bb_info->regs_live))
2307 		    return 0;
2308 
2309 		  /* The bases are the same, just see if the offsets
2310 		     overlap.  */
2311 		  if ((offset < store_info->end)
2312 		      && (offset + width > store_info->begin))
2313 		    remove = true;
2314 		}
2315 	    }
2316 
2317 	  /* else
2318 	     The else case that is missing here is that the
2319 	     bases are constant but different.  There is nothing
2320 	     to do here because there is no overlap.  */
2321 
2322 	  if (remove)
2323 	    {
2324 	      if (dump_file)
2325 		dump_insn_info ("removing from active", i_ptr);
2326 
2327 	      active_local_stores_len--;
2328 	      if (last)
2329 		last->next_local_store = i_ptr->next_local_store;
2330 	      else
2331 		active_local_stores = i_ptr->next_local_store;
2332 	    }
2333 	  else
2334 	    last = i_ptr;
2335 	  i_ptr = i_ptr->next_local_store;
2336 	}
2337     }
2338   else
2339     {
2340       insn_info_t i_ptr = active_local_stores;
2341       insn_info_t last = NULL;
2342       if (dump_file)
2343 	{
2344 	  fprintf (dump_file, " processing cselib load mem:");
2345 	  print_inline_rtx (dump_file, mem, 0);
2346 	  fprintf (dump_file, "\n");
2347 	}
2348 
2349       while (i_ptr)
2350 	{
2351 	  bool remove = false;
2352 	  store_info_t store_info = i_ptr->store_rec;
2353 
2354 	  if (dump_file)
2355 	    fprintf (dump_file, " processing cselib load against insn %d\n",
2356 		     INSN_UID (i_ptr->insn));
2357 
2358 	  /* Skip the clobbers.  */
2359 	  while (!store_info->is_set)
2360 	    store_info = store_info->next;
2361 
2362 	  /* If this read is just reading back something that we just
2363 	     stored, rewrite the read.  */
2364 	  if (store_info->rhs
2365 	      && store_info->group_id == -1
2366 	      && store_info->cse_base == base
2367 	      && width != -1
2368 	      && offset >= store_info->begin
2369 	      && offset + width <= store_info->end
2370 	      && all_positions_needed_p (store_info,
2371 					 offset - store_info->begin, width)
2372 	      && replace_read (store_info, i_ptr,  read_info, insn_info, loc,
2373 			       bb_info->regs_live))
2374 	    return 0;
2375 
2376 	  if (!store_info->alias_set)
2377 	    remove = canon_true_dependence (store_info->mem,
2378 					    GET_MODE (store_info->mem),
2379 					    store_info->mem_addr,
2380 					    mem, mem_addr);
2381 
2382 	  if (remove)
2383 	    {
2384 	      if (dump_file)
2385 		dump_insn_info ("removing from active", i_ptr);
2386 
2387 	      active_local_stores_len--;
2388 	      if (last)
2389 		last->next_local_store = i_ptr->next_local_store;
2390 	      else
2391 		active_local_stores = i_ptr->next_local_store;
2392 	    }
2393 	  else
2394 	    last = i_ptr;
2395 	  i_ptr = i_ptr->next_local_store;
2396 	}
2397     }
2398   return 0;
2399 }
2400 
2401 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2402    as check_mem_read_rtx.  Nullify the pointer if i_m_r_m_r returns
2403    true for any part of *LOC.  */
2404 
2405 static void
2406 check_mem_read_use (rtx *loc, void *data)
2407 {
2408   for_each_rtx (loc, check_mem_read_rtx, data);
2409 }
2410 
2411 
2412 /* Get arguments passed to CALL_INSN.  Return TRUE if successful.
2413    So far it only handles arguments passed in registers.  */
2414 
2415 static bool
2416 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2417 {
2418   CUMULATIVE_ARGS args_so_far_v;
2419   cumulative_args_t args_so_far;
2420   tree arg;
2421   int idx;
2422 
2423   INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2424   args_so_far = pack_cumulative_args (&args_so_far_v);
2425 
2426   arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2427   for (idx = 0;
2428        arg != void_list_node && idx < nargs;
2429        arg = TREE_CHAIN (arg), idx++)
2430     {
2431       enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2432       rtx reg, link, tmp;
2433       reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2434       if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2435 	  || GET_MODE_CLASS (mode) != MODE_INT)
2436 	return false;
2437 
2438       for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2439 	   link;
2440 	   link = XEXP (link, 1))
2441 	if (GET_CODE (XEXP (link, 0)) == USE)
2442 	  {
2443 	    args[idx] = XEXP (XEXP (link, 0), 0);
2444 	    if (REG_P (args[idx])
2445 		&& REGNO (args[idx]) == REGNO (reg)
2446 		&& (GET_MODE (args[idx]) == mode
2447 		    || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2448 			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
2449 			    <= UNITS_PER_WORD)
2450 			&& (GET_MODE_SIZE (GET_MODE (args[idx]))
2451 			    > GET_MODE_SIZE (mode)))))
2452 	      break;
2453 	  }
2454       if (!link)
2455 	return false;
2456 
2457       tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2458       if (GET_MODE (args[idx]) != mode)
2459 	{
2460 	  if (!tmp || !CONST_INT_P (tmp))
2461 	    return false;
2462 	  tmp = gen_int_mode (INTVAL (tmp), mode);
2463 	}
2464       if (tmp)
2465 	args[idx] = tmp;
2466 
2467       targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2468     }
2469   if (arg != void_list_node || idx != nargs)
2470     return false;
2471   return true;
2472 }
2473 
2474 /* Return a bitmap of the fixed registers contained in IN.  */
2475 
2476 static bitmap
2477 copy_fixed_regs (const_bitmap in)
2478 {
2479   bitmap ret;
2480 
2481   ret = ALLOC_REG_SET (NULL);
2482   bitmap_and (ret, in, fixed_reg_set_regset);
2483   return ret;
2484 }
2485 
2486 /* Apply record_store to all candidate stores in INSN.  Mark INSN
2487    if some part of it is not a candidate store and assigns to a
2488    non-register target.  */
2489 
2490 static void
2491 scan_insn (bb_info_t bb_info, rtx insn)
2492 {
2493   rtx body;
2494   insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2495   int mems_found = 0;
2496   memset (insn_info, 0, sizeof (struct insn_info));
2497 
2498   if (dump_file)
2499     fprintf (dump_file, "\n**scanning insn=%d\n",
2500 	     INSN_UID (insn));
2501 
2502   insn_info->prev_insn = bb_info->last_insn;
2503   insn_info->insn = insn;
2504   bb_info->last_insn = insn_info;
2505 
2506   if (DEBUG_INSN_P (insn))
2507     {
2508       insn_info->cannot_delete = true;
2509       return;
2510     }
2511 
2512   /* Cselib clears the table for this case, so we have to essentially
2513      do the same.  */
2514   if (NONJUMP_INSN_P (insn)
2515       && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2516       && MEM_VOLATILE_P (PATTERN (insn)))
2517     {
2518       add_wild_read (bb_info);
2519       insn_info->cannot_delete = true;
2520       return;
2521     }
2522 
2523   /* Look at all of the uses in the insn.  */
2524   note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2525 
2526   if (CALL_P (insn))
2527     {
2528       bool const_call;
2529       tree memset_call = NULL_TREE;
2530 
2531       insn_info->cannot_delete = true;
2532 
2533       /* Const functions cannot do anything bad i.e. read memory,
2534 	 however, they can read their parameters which may have
2535 	 been pushed onto the stack.
2536 	 memset and bzero don't read memory either.  */
2537       const_call = RTL_CONST_CALL_P (insn);
2538       if (!const_call)
2539 	{
2540 	  rtx call = PATTERN (insn);
2541 	  if (GET_CODE (call) == PARALLEL)
2542 	    call = XVECEXP (call, 0, 0);
2543 	  if (GET_CODE (call) == SET)
2544 	    call = SET_SRC (call);
2545 	  if (GET_CODE (call) == CALL
2546 	      && MEM_P (XEXP (call, 0))
2547 	      && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2548 	    {
2549 	      rtx symbol = XEXP (XEXP (call, 0), 0);
2550 	      if (SYMBOL_REF_DECL (symbol)
2551 		  && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2552 		{
2553 		  if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2554 		       == BUILT_IN_NORMAL
2555 		       && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2556 			   == BUILT_IN_MEMSET))
2557 		      || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2558 		    memset_call = SYMBOL_REF_DECL (symbol);
2559 		}
2560 	    }
2561 	}
2562       if (const_call || memset_call)
2563 	{
2564 	  insn_info_t i_ptr = active_local_stores;
2565 	  insn_info_t last = NULL;
2566 
2567 	  if (dump_file)
2568 	    fprintf (dump_file, "%s call %d\n",
2569 		     const_call ? "const" : "memset", INSN_UID (insn));
2570 
2571 	  /* See the head comment of the frame_read field.  */
2572 	  if (reload_completed)
2573 	    insn_info->frame_read = true;
2574 
2575 	  /* Loop over the active stores and remove those which are
2576 	     killed by the const function call.  */
2577 	  while (i_ptr)
2578 	    {
2579 	      bool remove_store = false;
2580 
2581 	      /* The stack pointer based stores are always killed.  */
2582 	      if (i_ptr->stack_pointer_based)
2583 	        remove_store = true;
2584 
2585 	      /* If the frame is read, the frame related stores are killed.  */
2586 	      else if (insn_info->frame_read)
2587 		{
2588 		  store_info_t store_info = i_ptr->store_rec;
2589 
2590 		  /* Skip the clobbers.  */
2591 		  while (!store_info->is_set)
2592 		    store_info = store_info->next;
2593 
2594 		  if (store_info->group_id >= 0
2595 		      && VEC_index (group_info_t, rtx_group_vec,
2596 				    store_info->group_id)->frame_related)
2597 		    remove_store = true;
2598 		}
2599 
2600 	      if (remove_store)
2601 		{
2602 		  if (dump_file)
2603 		    dump_insn_info ("removing from active", i_ptr);
2604 
2605 		  active_local_stores_len--;
2606 		  if (last)
2607 		    last->next_local_store = i_ptr->next_local_store;
2608 		  else
2609 		    active_local_stores = i_ptr->next_local_store;
2610 		}
2611 	      else
2612 		last = i_ptr;
2613 
2614 	      i_ptr = i_ptr->next_local_store;
2615 	    }
2616 
2617 	  if (memset_call)
2618 	    {
2619 	      rtx args[3];
2620 	      if (get_call_args (insn, memset_call, args, 3)
2621 		  && CONST_INT_P (args[1])
2622 		  && CONST_INT_P (args[2])
2623 		  && INTVAL (args[2]) > 0)
2624 		{
2625 		  rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2626 		  set_mem_size (mem, INTVAL (args[2]));
2627 		  body = gen_rtx_SET (VOIDmode, mem, args[1]);
2628 		  mems_found += record_store (body, bb_info);
2629 		  if (dump_file)
2630 		    fprintf (dump_file, "handling memset as BLKmode store\n");
2631 		  if (mems_found == 1)
2632 		    {
2633 		      if (active_local_stores_len++
2634 			  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2635 			{
2636 			  active_local_stores_len = 1;
2637 			  active_local_stores = NULL;
2638 			}
2639 		      insn_info->fixed_regs_live
2640 			= copy_fixed_regs (bb_info->regs_live);
2641 		      insn_info->next_local_store = active_local_stores;
2642 		      active_local_stores = insn_info;
2643 		    }
2644 		}
2645 	    }
2646 	}
2647 
2648       else
2649 	/* Every other call, including pure functions, may read any memory
2650            that is not relative to the frame.  */
2651         add_non_frame_wild_read (bb_info);
2652 
2653       return;
2654     }
2655 
2656   /* Assuming that there are sets in these insns, we cannot delete
2657      them.  */
2658   if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2659       || volatile_refs_p (PATTERN (insn))
2660       || insn_could_throw_p (insn)
2661       || (RTX_FRAME_RELATED_P (insn))
2662       || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2663     insn_info->cannot_delete = true;
2664 
2665   body = PATTERN (insn);
2666   if (GET_CODE (body) == PARALLEL)
2667     {
2668       int i;
2669       for (i = 0; i < XVECLEN (body, 0); i++)
2670 	mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2671     }
2672   else
2673     mems_found += record_store (body, bb_info);
2674 
2675   if (dump_file)
2676     fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2677 	     mems_found, insn_info->cannot_delete ? "true" : "false");
2678 
2679   /* If we found some sets of mems, add it into the active_local_stores so
2680      that it can be locally deleted if found dead or used for
2681      replace_read and redundant constant store elimination.  Otherwise mark
2682      it as cannot delete.  This simplifies the processing later.  */
2683   if (mems_found == 1)
2684     {
2685       if (active_local_stores_len++
2686 	  >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2687 	{
2688 	  active_local_stores_len = 1;
2689 	  active_local_stores = NULL;
2690 	}
2691       insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2692       insn_info->next_local_store = active_local_stores;
2693       active_local_stores = insn_info;
2694     }
2695   else
2696     insn_info->cannot_delete = true;
2697 }
2698 
2699 
2700 /* Remove BASE from the set of active_local_stores.  This is a
2701    callback from cselib that is used to get rid of the stores in
2702    active_local_stores.  */
2703 
2704 static void
2705 remove_useless_values (cselib_val *base)
2706 {
2707   insn_info_t insn_info = active_local_stores;
2708   insn_info_t last = NULL;
2709 
2710   while (insn_info)
2711     {
2712       store_info_t store_info = insn_info->store_rec;
2713       bool del = false;
2714 
2715       /* If ANY of the store_infos match the cselib group that is
2716 	 being deleted, then the insn can not be deleted.  */
2717       while (store_info)
2718 	{
2719 	  if ((store_info->group_id == -1)
2720 	      && (store_info->cse_base == base))
2721 	    {
2722 	      del = true;
2723 	      break;
2724 	    }
2725 	  store_info = store_info->next;
2726 	}
2727 
2728       if (del)
2729 	{
2730 	  active_local_stores_len--;
2731 	  if (last)
2732 	    last->next_local_store = insn_info->next_local_store;
2733 	  else
2734 	    active_local_stores = insn_info->next_local_store;
2735 	  free_store_info (insn_info);
2736 	}
2737       else
2738 	last = insn_info;
2739 
2740       insn_info = insn_info->next_local_store;
2741     }
2742 }
2743 
2744 
2745 /* Do all of step 1.  */
2746 
2747 static void
2748 dse_step1 (void)
2749 {
2750   basic_block bb;
2751   bitmap regs_live = BITMAP_ALLOC (NULL);
2752 
2753   cselib_init (0);
2754   all_blocks = BITMAP_ALLOC (NULL);
2755   bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2756   bitmap_set_bit (all_blocks, EXIT_BLOCK);
2757 
2758   FOR_ALL_BB (bb)
2759     {
2760       insn_info_t ptr;
2761       bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2762 
2763       memset (bb_info, 0, sizeof (struct bb_info));
2764       bitmap_set_bit (all_blocks, bb->index);
2765       bb_info->regs_live = regs_live;
2766 
2767       bitmap_copy (regs_live, DF_LR_IN (bb));
2768       df_simulate_initialize_forwards (bb, regs_live);
2769 
2770       bb_table[bb->index] = bb_info;
2771       cselib_discard_hook = remove_useless_values;
2772 
2773       if (bb->index >= NUM_FIXED_BLOCKS)
2774 	{
2775 	  rtx insn;
2776 
2777 	  cse_store_info_pool
2778 	    = create_alloc_pool ("cse_store_info_pool",
2779 				 sizeof (struct store_info), 100);
2780 	  active_local_stores = NULL;
2781 	  active_local_stores_len = 0;
2782 	  cselib_clear_table ();
2783 
2784 	  /* Scan the insns.  */
2785 	  FOR_BB_INSNS (bb, insn)
2786 	    {
2787 	      if (INSN_P (insn))
2788 		scan_insn (bb_info, insn);
2789 	      cselib_process_insn (insn);
2790 	      if (INSN_P (insn))
2791 		df_simulate_one_insn_forwards (bb, insn, regs_live);
2792 	    }
2793 
2794 	  /* This is something of a hack, because the global algorithm
2795 	     is supposed to take care of the case where stores go dead
2796 	     at the end of the function.  However, the global
2797 	     algorithm must take a more conservative view of block
2798 	     mode reads than the local alg does.  So to get the case
2799 	     where you have a store to the frame followed by a non
2800 	     overlapping block more read, we look at the active local
2801 	     stores at the end of the function and delete all of the
2802 	     frame and spill based ones.  */
2803 	  if (stores_off_frame_dead_at_return
2804 	      && (EDGE_COUNT (bb->succs) == 0
2805 		  || (single_succ_p (bb)
2806 		      && single_succ (bb) == EXIT_BLOCK_PTR
2807 		      && ! crtl->calls_eh_return)))
2808 	    {
2809 	      insn_info_t i_ptr = active_local_stores;
2810 	      while (i_ptr)
2811 		{
2812 		  store_info_t store_info = i_ptr->store_rec;
2813 
2814 		  /* Skip the clobbers.  */
2815 		  while (!store_info->is_set)
2816 		    store_info = store_info->next;
2817 		  if (store_info->alias_set && !i_ptr->cannot_delete)
2818 		    delete_dead_store_insn (i_ptr);
2819 		  else
2820 		    if (store_info->group_id >= 0)
2821 		      {
2822 			group_info_t group
2823 			  = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2824 			if (group->frame_related && !i_ptr->cannot_delete)
2825 			  delete_dead_store_insn (i_ptr);
2826 		      }
2827 
2828 		  i_ptr = i_ptr->next_local_store;
2829 		}
2830 	    }
2831 
2832 	  /* Get rid of the loads that were discovered in
2833 	     replace_read.  Cselib is finished with this block.  */
2834 	  while (deferred_change_list)
2835 	    {
2836 	      deferred_change_t next = deferred_change_list->next;
2837 
2838 	      /* There is no reason to validate this change.  That was
2839 		 done earlier.  */
2840 	      *deferred_change_list->loc = deferred_change_list->reg;
2841 	      pool_free (deferred_change_pool, deferred_change_list);
2842 	      deferred_change_list = next;
2843 	    }
2844 
2845 	  /* Get rid of all of the cselib based store_infos in this
2846 	     block and mark the containing insns as not being
2847 	     deletable.  */
2848 	  ptr = bb_info->last_insn;
2849 	  while (ptr)
2850 	    {
2851 	      if (ptr->contains_cselib_groups)
2852 		{
2853 		  store_info_t s_info = ptr->store_rec;
2854 		  while (s_info && !s_info->is_set)
2855 		    s_info = s_info->next;
2856 		  if (s_info
2857 		      && s_info->redundant_reason
2858 		      && s_info->redundant_reason->insn
2859 		      && !ptr->cannot_delete)
2860 		    {
2861 		      if (dump_file)
2862 			fprintf (dump_file, "Locally deleting insn %d "
2863 					    "because insn %d stores the "
2864 					    "same value and couldn't be "
2865 					    "eliminated\n",
2866 				 INSN_UID (ptr->insn),
2867 				 INSN_UID (s_info->redundant_reason->insn));
2868 		      delete_dead_store_insn (ptr);
2869 		    }
2870 		  if (s_info)
2871 		    s_info->redundant_reason = NULL;
2872 		  free_store_info (ptr);
2873 		}
2874 	      else
2875 		{
2876 		  store_info_t s_info;
2877 
2878 		  /* Free at least positions_needed bitmaps.  */
2879 		  for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2880 		    if (s_info->is_large)
2881 		      {
2882 			BITMAP_FREE (s_info->positions_needed.large.bmap);
2883 			s_info->is_large = false;
2884 		      }
2885 		}
2886 	      ptr = ptr->prev_insn;
2887 	    }
2888 
2889 	  free_alloc_pool (cse_store_info_pool);
2890 	}
2891       bb_info->regs_live = NULL;
2892     }
2893 
2894   BITMAP_FREE (regs_live);
2895   cselib_finish ();
2896   htab_empty (rtx_group_table);
2897 }
2898 
2899 
2900 /*----------------------------------------------------------------------------
2901    Second step.
2902 
2903    Assign each byte position in the stores that we are going to
2904    analyze globally to a position in the bitmaps.  Returns true if
2905    there are any bit positions assigned.
2906 ----------------------------------------------------------------------------*/
2907 
2908 static void
2909 dse_step2_init (void)
2910 {
2911   unsigned int i;
2912   group_info_t group;
2913 
2914   FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2915     {
2916       /* For all non stack related bases, we only consider a store to
2917 	 be deletable if there are two or more stores for that
2918 	 position.  This is because it takes one store to make the
2919 	 other store redundant.  However, for the stores that are
2920 	 stack related, we consider them if there is only one store
2921 	 for the position.  We do this because the stack related
2922 	 stores can be deleted if their is no read between them and
2923 	 the end of the function.
2924 
2925 	 To make this work in the current framework, we take the stack
2926 	 related bases add all of the bits from store1 into store2.
2927 	 This has the effect of making the eligible even if there is
2928 	 only one store.   */
2929 
2930       if (stores_off_frame_dead_at_return && group->frame_related)
2931 	{
2932 	  bitmap_ior_into (group->store2_n, group->store1_n);
2933 	  bitmap_ior_into (group->store2_p, group->store1_p);
2934 	  if (dump_file)
2935 	    fprintf (dump_file, "group %d is frame related ", i);
2936 	}
2937 
2938       group->offset_map_size_n++;
2939       group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2940       group->offset_map_size_p++;
2941       group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2942       group->process_globally = false;
2943       if (dump_file)
2944 	{
2945 	  fprintf (dump_file, "group %d(%d+%d): ", i,
2946 		   (int)bitmap_count_bits (group->store2_n),
2947 		   (int)bitmap_count_bits (group->store2_p));
2948 	  bitmap_print (dump_file, group->store2_n, "n ", " ");
2949 	  bitmap_print (dump_file, group->store2_p, "p ", "\n");
2950 	}
2951     }
2952 }
2953 
2954 
2955 /* Init the offset tables for the normal case.  */
2956 
2957 static bool
2958 dse_step2_nospill (void)
2959 {
2960   unsigned int i;
2961   group_info_t group;
2962   /* Position 0 is unused because 0 is used in the maps to mean
2963      unused.  */
2964   current_position = 1;
2965   FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
2966     {
2967       bitmap_iterator bi;
2968       unsigned int j;
2969 
2970       if (group == clear_alias_group)
2971 	continue;
2972 
2973       memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2974       memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2975       bitmap_clear (group->group_kill);
2976 
2977       EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2978 	{
2979 	  bitmap_set_bit (group->group_kill, current_position);
2980           if (bitmap_bit_p (group->escaped_n, j))
2981 	    bitmap_set_bit (kill_on_calls, current_position);
2982 	  group->offset_map_n[j] = current_position++;
2983 	  group->process_globally = true;
2984 	}
2985       EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2986 	{
2987 	  bitmap_set_bit (group->group_kill, current_position);
2988           if (bitmap_bit_p (group->escaped_p, j))
2989 	    bitmap_set_bit (kill_on_calls, current_position);
2990 	  group->offset_map_p[j] = current_position++;
2991 	  group->process_globally = true;
2992 	}
2993     }
2994   return current_position != 1;
2995 }
2996 
2997 
2998 /* Init the offset tables for the spill case.  */
2999 
3000 static bool
3001 dse_step2_spill (void)
3002 {
3003   unsigned int j;
3004   group_info_t group = clear_alias_group;
3005   bitmap_iterator bi;
3006 
3007   /* Position 0 is unused because 0 is used in the maps to mean
3008      unused.  */
3009   current_position = 1;
3010 
3011   if (dump_file)
3012     {
3013       bitmap_print (dump_file, clear_alias_sets,
3014 		    "clear alias sets              ", "\n");
3015       bitmap_print (dump_file, disqualified_clear_alias_sets,
3016 		    "disqualified clear alias sets ", "\n");
3017     }
3018 
3019   memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
3020   memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
3021   bitmap_clear (group->group_kill);
3022 
3023   /* Remove the disqualified positions from the store2_p set.  */
3024   bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
3025 
3026   /* We do not need to process the store2_n set because
3027      alias_sets are always positive.  */
3028   EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
3029     {
3030       bitmap_set_bit (group->group_kill, current_position);
3031       group->offset_map_p[j] = current_position++;
3032       group->process_globally = true;
3033     }
3034 
3035   return current_position != 1;
3036 }
3037 
3038 
3039 
3040 /*----------------------------------------------------------------------------
3041   Third step.
3042 
3043   Build the bit vectors for the transfer functions.
3044 ----------------------------------------------------------------------------*/
3045 
3046 
3047 /* Note that this is NOT a general purpose function.  Any mem that has
3048    an alias set registered here expected to be COMPLETELY unaliased:
3049    i.e it's addresses are not and need not be examined.
3050 
3051    It is known that all references to this address will have this
3052    alias set and there are NO other references to this address in the
3053    function.
3054 
3055    Currently the only place that is known to be clean enough to use
3056    this interface is the code that assigns the spill locations.
3057 
3058    All of the mems that have alias_sets registered are subjected to a
3059    very powerful form of dse where function calls, volatile reads and
3060    writes, and reads from random location are not taken into account.
3061 
3062    It is also assumed that these locations go dead when the function
3063    returns.  This assumption could be relaxed if there were found to
3064    be places that this assumption was not correct.
3065 
3066    The MODE is passed in and saved.  The mode of each load or store to
3067    a mem with ALIAS_SET is checked against MEM.  If the size of that
3068    load or store is different from MODE, processing is halted on this
3069    alias set.  For the vast majority of aliases sets, all of the loads
3070    and stores will use the same mode.  But vectors are treated
3071    differently: the alias set is established for the entire vector,
3072    but reload will insert loads and stores for individual elements and
3073    we do not necessarily have the information to track those separate
3074    elements.  So when we see a mode mismatch, we just bail.  */
3075 
3076 
3077 void
3078 dse_record_singleton_alias_set (alias_set_type alias_set,
3079 				enum machine_mode mode)
3080 {
3081   struct clear_alias_mode_holder tmp_holder;
3082   struct clear_alias_mode_holder *entry;
3083   void **slot;
3084 
3085   /* If we are not going to run dse, we need to return now or there
3086      will be problems with allocating the bitmaps.  */
3087   if ((!gate_dse()) || !alias_set)
3088     return;
3089 
3090   if (!clear_alias_sets)
3091     {
3092       clear_alias_sets = BITMAP_ALLOC (NULL);
3093       disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
3094       clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
3095 					    clear_alias_mode_eq, NULL);
3096       clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
3097 						 sizeof (struct clear_alias_mode_holder), 100);
3098     }
3099 
3100   bitmap_set_bit (clear_alias_sets, alias_set);
3101 
3102   tmp_holder.alias_set = alias_set;
3103 
3104   slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
3105   gcc_assert (*slot == NULL);
3106 
3107   *slot = entry =
3108     (struct clear_alias_mode_holder *) pool_alloc (clear_alias_mode_pool);
3109   entry->alias_set = alias_set;
3110   entry->mode = mode;
3111 }
3112 
3113 
3114 /* Remove ALIAS_SET from the sets of stack slots being considered.  */
3115 
3116 void
3117 dse_invalidate_singleton_alias_set (alias_set_type alias_set)
3118 {
3119   if ((!gate_dse()) || !alias_set)
3120     return;
3121 
3122   bitmap_clear_bit (clear_alias_sets, alias_set);
3123 }
3124 
3125 
3126 /* Look up the bitmap index for OFFSET in GROUP_INFO.  If it is not
3127    there, return 0.  */
3128 
3129 static int
3130 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
3131 {
3132   if (offset < 0)
3133     {
3134       HOST_WIDE_INT offset_p = -offset;
3135       if (offset_p >= group_info->offset_map_size_n)
3136 	return 0;
3137       return group_info->offset_map_n[offset_p];
3138     }
3139   else
3140     {
3141       if (offset >= group_info->offset_map_size_p)
3142 	return 0;
3143       return group_info->offset_map_p[offset];
3144     }
3145 }
3146 
3147 
3148 /* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
3149    may be NULL. */
3150 
3151 static void
3152 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3153 {
3154   while (store_info)
3155     {
3156       HOST_WIDE_INT i;
3157       group_info_t group_info
3158 	= VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3159       if (group_info->process_globally)
3160 	for (i = store_info->begin; i < store_info->end; i++)
3161 	  {
3162 	    int index = get_bitmap_index (group_info, i);
3163 	    if (index != 0)
3164 	      {
3165 		bitmap_set_bit (gen, index);
3166 		if (kill)
3167 		  bitmap_clear_bit (kill, index);
3168 	      }
3169 	  }
3170       store_info = store_info->next;
3171     }
3172 }
3173 
3174 
3175 /* Process the STORE_INFOs into the bitmaps into GEN and KILL.  KILL
3176    may be NULL. */
3177 
3178 static void
3179 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3180 {
3181   while (store_info)
3182     {
3183       if (store_info->alias_set)
3184 	{
3185 	  int index = get_bitmap_index (clear_alias_group,
3186 					store_info->alias_set);
3187 	  if (index != 0)
3188 	    {
3189 	      bitmap_set_bit (gen, index);
3190 	      if (kill)
3191 		bitmap_clear_bit (kill, index);
3192 	    }
3193 	}
3194       store_info = store_info->next;
3195     }
3196 }
3197 
3198 
3199 /* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
3200    may be NULL.  */
3201 
3202 static void
3203 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3204 {
3205   read_info_t read_info = insn_info->read_rec;
3206   int i;
3207   group_info_t group;
3208 
3209   /* If this insn reads the frame, kill all the frame related stores.  */
3210   if (insn_info->frame_read)
3211     {
3212       FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3213 	if (group->process_globally && group->frame_related)
3214 	  {
3215 	    if (kill)
3216 	      bitmap_ior_into (kill, group->group_kill);
3217 	    bitmap_and_compl_into (gen, group->group_kill);
3218 	  }
3219     }
3220   if (insn_info->non_frame_wild_read)
3221     {
3222       /* Kill all non-frame related stores.  Kill all stores of variables that
3223          escape.  */
3224       if (kill)
3225         bitmap_ior_into (kill, kill_on_calls);
3226       bitmap_and_compl_into (gen, kill_on_calls);
3227       FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3228 	if (group->process_globally && !group->frame_related)
3229 	  {
3230 	    if (kill)
3231 	      bitmap_ior_into (kill, group->group_kill);
3232 	    bitmap_and_compl_into (gen, group->group_kill);
3233 	  }
3234     }
3235   while (read_info)
3236     {
3237       FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3238 	{
3239 	  if (group->process_globally)
3240 	    {
3241 	      if (i == read_info->group_id)
3242 		{
3243 		  if (read_info->begin > read_info->end)
3244 		    {
3245 		      /* Begin > end for block mode reads.  */
3246 		      if (kill)
3247 			bitmap_ior_into (kill, group->group_kill);
3248 		      bitmap_and_compl_into (gen, group->group_kill);
3249 		    }
3250 		  else
3251 		    {
3252 		      /* The groups are the same, just process the
3253 			 offsets.  */
3254 		      HOST_WIDE_INT j;
3255 		      for (j = read_info->begin; j < read_info->end; j++)
3256 			{
3257 			  int index = get_bitmap_index (group, j);
3258 			  if (index != 0)
3259 			    {
3260 			      if (kill)
3261 				bitmap_set_bit (kill, index);
3262 			      bitmap_clear_bit (gen, index);
3263 			    }
3264 			}
3265 		    }
3266 		}
3267 	      else
3268 		{
3269 		  /* The groups are different, if the alias sets
3270 		     conflict, clear the entire group.  We only need
3271 		     to apply this test if the read_info is a cselib
3272 		     read.  Anything with a constant base cannot alias
3273 		     something else with a different constant
3274 		     base.  */
3275 		  if ((read_info->group_id < 0)
3276 		      && canon_true_dependence (group->base_mem,
3277 						GET_MODE (group->base_mem),
3278 						group->canon_base_addr,
3279 						read_info->mem, NULL_RTX))
3280 		    {
3281 		      if (kill)
3282 			bitmap_ior_into (kill, group->group_kill);
3283 		      bitmap_and_compl_into (gen, group->group_kill);
3284 		    }
3285 		}
3286 	    }
3287 	}
3288 
3289       read_info = read_info->next;
3290     }
3291 }
3292 
3293 /* Process the READ_INFOs into the bitmaps into GEN and KILL.  KILL
3294    may be NULL.  */
3295 
3296 static void
3297 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3298 {
3299   while (read_info)
3300     {
3301       if (read_info->alias_set)
3302 	{
3303 	  int index = get_bitmap_index (clear_alias_group,
3304 					read_info->alias_set);
3305 	  if (index != 0)
3306 	    {
3307 	      if (kill)
3308 		bitmap_set_bit (kill, index);
3309 	      bitmap_clear_bit (gen, index);
3310 	    }
3311 	}
3312 
3313       read_info = read_info->next;
3314     }
3315 }
3316 
3317 
3318 /* Return the insn in BB_INFO before the first wild read or if there
3319    are no wild reads in the block, return the last insn.  */
3320 
3321 static insn_info_t
3322 find_insn_before_first_wild_read (bb_info_t bb_info)
3323 {
3324   insn_info_t insn_info = bb_info->last_insn;
3325   insn_info_t last_wild_read = NULL;
3326 
3327   while (insn_info)
3328     {
3329       if (insn_info->wild_read)
3330 	{
3331 	  last_wild_read = insn_info->prev_insn;
3332 	  /* Block starts with wild read.  */
3333 	  if (!last_wild_read)
3334 	    return NULL;
3335 	}
3336 
3337       insn_info = insn_info->prev_insn;
3338     }
3339 
3340   if (last_wild_read)
3341     return last_wild_read;
3342   else
3343     return bb_info->last_insn;
3344 }
3345 
3346 
3347 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3348    the block in order to build the gen and kill sets for the block.
3349    We start at ptr which may be the last insn in the block or may be
3350    the first insn with a wild read.  In the latter case we are able to
3351    skip the rest of the block because it just does not matter:
3352    anything that happens is hidden by the wild read.  */
3353 
3354 static void
3355 dse_step3_scan (bool for_spills, basic_block bb)
3356 {
3357   bb_info_t bb_info = bb_table[bb->index];
3358   insn_info_t insn_info;
3359 
3360   if (for_spills)
3361     /* There are no wild reads in the spill case.  */
3362     insn_info = bb_info->last_insn;
3363   else
3364     insn_info = find_insn_before_first_wild_read (bb_info);
3365 
3366   /* In the spill case or in the no_spill case if there is no wild
3367      read in the block, we will need a kill set.  */
3368   if (insn_info == bb_info->last_insn)
3369     {
3370       if (bb_info->kill)
3371 	bitmap_clear (bb_info->kill);
3372       else
3373 	bb_info->kill = BITMAP_ALLOC (NULL);
3374     }
3375   else
3376     if (bb_info->kill)
3377       BITMAP_FREE (bb_info->kill);
3378 
3379   while (insn_info)
3380     {
3381       /* There may have been code deleted by the dce pass run before
3382 	 this phase.  */
3383       if (insn_info->insn && INSN_P (insn_info->insn))
3384 	{
3385 	  /* Process the read(s) last.  */
3386 	  if (for_spills)
3387 	    {
3388 	      scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3389 	      scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3390 	    }
3391 	  else
3392 	    {
3393 	      scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3394 	      scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3395 	    }
3396 	}
3397 
3398       insn_info = insn_info->prev_insn;
3399     }
3400 }
3401 
3402 
3403 /* Set the gen set of the exit block, and also any block with no
3404    successors that does not have a wild read.  */
3405 
3406 static void
3407 dse_step3_exit_block_scan (bb_info_t bb_info)
3408 {
3409   /* The gen set is all 0's for the exit block except for the
3410      frame_pointer_group.  */
3411 
3412   if (stores_off_frame_dead_at_return)
3413     {
3414       unsigned int i;
3415       group_info_t group;
3416 
3417       FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3418 	{
3419 	  if (group->process_globally && group->frame_related)
3420 	    bitmap_ior_into (bb_info->gen, group->group_kill);
3421 	}
3422     }
3423 }
3424 
3425 
3426 /* Find all of the blocks that are not backwards reachable from the
3427    exit block or any block with no successors (BB).  These are the
3428    infinite loops or infinite self loops.  These blocks will still
3429    have their bits set in UNREACHABLE_BLOCKS.  */
3430 
3431 static void
3432 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3433 {
3434   edge e;
3435   edge_iterator ei;
3436 
3437   if (TEST_BIT (unreachable_blocks, bb->index))
3438     {
3439       RESET_BIT (unreachable_blocks, bb->index);
3440       FOR_EACH_EDGE (e, ei, bb->preds)
3441 	{
3442 	  mark_reachable_blocks (unreachable_blocks, e->src);
3443 	}
3444     }
3445 }
3446 
3447 /* Build the transfer functions for the function.  */
3448 
3449 static void
3450 dse_step3 (bool for_spills)
3451 {
3452   basic_block bb;
3453   sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3454   sbitmap_iterator sbi;
3455   bitmap all_ones = NULL;
3456   unsigned int i;
3457 
3458   sbitmap_ones (unreachable_blocks);
3459 
3460   FOR_ALL_BB (bb)
3461     {
3462       bb_info_t bb_info = bb_table[bb->index];
3463       if (bb_info->gen)
3464 	bitmap_clear (bb_info->gen);
3465       else
3466 	bb_info->gen = BITMAP_ALLOC (NULL);
3467 
3468       if (bb->index == ENTRY_BLOCK)
3469 	;
3470       else if (bb->index == EXIT_BLOCK)
3471 	dse_step3_exit_block_scan (bb_info);
3472       else
3473 	dse_step3_scan (for_spills, bb);
3474       if (EDGE_COUNT (bb->succs) == 0)
3475 	mark_reachable_blocks (unreachable_blocks, bb);
3476 
3477       /* If this is the second time dataflow is run, delete the old
3478 	 sets.  */
3479       if (bb_info->in)
3480 	BITMAP_FREE (bb_info->in);
3481       if (bb_info->out)
3482 	BITMAP_FREE (bb_info->out);
3483     }
3484 
3485   /* For any block in an infinite loop, we must initialize the out set
3486      to all ones.  This could be expensive, but almost never occurs in
3487      practice. However, it is common in regression tests.  */
3488   EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
3489     {
3490       if (bitmap_bit_p (all_blocks, i))
3491 	{
3492 	  bb_info_t bb_info = bb_table[i];
3493 	  if (!all_ones)
3494 	    {
3495 	      unsigned int j;
3496 	      group_info_t group;
3497 
3498 	      all_ones = BITMAP_ALLOC (NULL);
3499 	      FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, j, group)
3500 		bitmap_ior_into (all_ones, group->group_kill);
3501 	    }
3502 	  if (!bb_info->out)
3503 	    {
3504 	      bb_info->out = BITMAP_ALLOC (NULL);
3505 	      bitmap_copy (bb_info->out, all_ones);
3506 	    }
3507 	}
3508     }
3509 
3510   if (all_ones)
3511     BITMAP_FREE (all_ones);
3512   sbitmap_free (unreachable_blocks);
3513 }
3514 
3515 
3516 
3517 /*----------------------------------------------------------------------------
3518    Fourth step.
3519 
3520    Solve the bitvector equations.
3521 ----------------------------------------------------------------------------*/
3522 
3523 
3524 /* Confluence function for blocks with no successors.  Create an out
3525    set from the gen set of the exit block.  This block logically has
3526    the exit block as a successor.  */
3527 
3528 
3529 
3530 static void
3531 dse_confluence_0 (basic_block bb)
3532 {
3533   bb_info_t bb_info = bb_table[bb->index];
3534 
3535   if (bb->index == EXIT_BLOCK)
3536     return;
3537 
3538   if (!bb_info->out)
3539     {
3540       bb_info->out = BITMAP_ALLOC (NULL);
3541       bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3542     }
3543 }
3544 
3545 /* Propagate the information from the in set of the dest of E to the
3546    out set of the src of E.  If the various in or out sets are not
3547    there, that means they are all ones.  */
3548 
3549 static bool
3550 dse_confluence_n (edge e)
3551 {
3552   bb_info_t src_info = bb_table[e->src->index];
3553   bb_info_t dest_info = bb_table[e->dest->index];
3554 
3555   if (dest_info->in)
3556     {
3557       if (src_info->out)
3558 	bitmap_and_into (src_info->out, dest_info->in);
3559       else
3560 	{
3561 	  src_info->out = BITMAP_ALLOC (NULL);
3562 	  bitmap_copy (src_info->out, dest_info->in);
3563 	}
3564     }
3565   return true;
3566 }
3567 
3568 
3569 /* Propagate the info from the out to the in set of BB_INDEX's basic
3570    block.  There are three cases:
3571 
3572    1) The block has no kill set.  In this case the kill set is all
3573    ones.  It does not matter what the out set of the block is, none of
3574    the info can reach the top.  The only thing that reaches the top is
3575    the gen set and we just copy the set.
3576 
3577    2) There is a kill set but no out set and bb has successors.  In
3578    this case we just return. Eventually an out set will be created and
3579    it is better to wait than to create a set of ones.
3580 
3581    3) There is both a kill and out set.  We apply the obvious transfer
3582    function.
3583 */
3584 
3585 static bool
3586 dse_transfer_function (int bb_index)
3587 {
3588   bb_info_t bb_info = bb_table[bb_index];
3589 
3590   if (bb_info->kill)
3591     {
3592       if (bb_info->out)
3593 	{
3594 	  /* Case 3 above.  */
3595 	  if (bb_info->in)
3596 	    return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3597 					 bb_info->out, bb_info->kill);
3598 	  else
3599 	    {
3600 	      bb_info->in = BITMAP_ALLOC (NULL);
3601 	      bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3602 				    bb_info->out, bb_info->kill);
3603 	      return true;
3604 	    }
3605 	}
3606       else
3607 	/* Case 2 above.  */
3608 	return false;
3609     }
3610   else
3611     {
3612       /* Case 1 above.  If there is already an in set, nothing
3613 	 happens.  */
3614       if (bb_info->in)
3615 	return false;
3616       else
3617 	{
3618 	  bb_info->in = BITMAP_ALLOC (NULL);
3619 	  bitmap_copy (bb_info->in, bb_info->gen);
3620 	  return true;
3621 	}
3622     }
3623 }
3624 
3625 /* Solve the dataflow equations.  */
3626 
3627 static void
3628 dse_step4 (void)
3629 {
3630   df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3631 		      dse_confluence_n, dse_transfer_function,
3632 	   	      all_blocks, df_get_postorder (DF_BACKWARD),
3633 		      df_get_n_blocks (DF_BACKWARD));
3634   if (dump_file)
3635     {
3636       basic_block bb;
3637 
3638       fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3639       FOR_ALL_BB (bb)
3640 	{
3641 	  bb_info_t bb_info = bb_table[bb->index];
3642 
3643 	  df_print_bb_index (bb, dump_file);
3644 	  if (bb_info->in)
3645 	    bitmap_print (dump_file, bb_info->in, "  in:   ", "\n");
3646 	  else
3647 	    fprintf (dump_file, "  in:   *MISSING*\n");
3648 	  if (bb_info->gen)
3649 	    bitmap_print (dump_file, bb_info->gen, "  gen:  ", "\n");
3650 	  else
3651 	    fprintf (dump_file, "  gen:  *MISSING*\n");
3652 	  if (bb_info->kill)
3653 	    bitmap_print (dump_file, bb_info->kill, "  kill: ", "\n");
3654 	  else
3655 	    fprintf (dump_file, "  kill: *MISSING*\n");
3656 	  if (bb_info->out)
3657 	    bitmap_print (dump_file, bb_info->out, "  out:  ", "\n");
3658 	  else
3659 	    fprintf (dump_file, "  out:  *MISSING*\n\n");
3660 	}
3661     }
3662 }
3663 
3664 
3665 
3666 /*----------------------------------------------------------------------------
3667    Fifth step.
3668 
3669    Delete the stores that can only be deleted using the global information.
3670 ----------------------------------------------------------------------------*/
3671 
3672 
3673 static void
3674 dse_step5_nospill (void)
3675 {
3676   basic_block bb;
3677   FOR_EACH_BB (bb)
3678     {
3679       bb_info_t bb_info = bb_table[bb->index];
3680       insn_info_t insn_info = bb_info->last_insn;
3681       bitmap v = bb_info->out;
3682 
3683       while (insn_info)
3684 	{
3685 	  bool deleted = false;
3686 	  if (dump_file && insn_info->insn)
3687 	    {
3688 	      fprintf (dump_file, "starting to process insn %d\n",
3689 		       INSN_UID (insn_info->insn));
3690 	      bitmap_print (dump_file, v, "  v:  ", "\n");
3691 	    }
3692 
3693 	  /* There may have been code deleted by the dce pass run before
3694 	     this phase.  */
3695 	  if (insn_info->insn
3696 	      && INSN_P (insn_info->insn)
3697 	      && (!insn_info->cannot_delete)
3698 	      && (!bitmap_empty_p (v)))
3699 	    {
3700 	      store_info_t store_info = insn_info->store_rec;
3701 
3702 	      /* Try to delete the current insn.  */
3703 	      deleted = true;
3704 
3705 	      /* Skip the clobbers.  */
3706 	      while (!store_info->is_set)
3707 		store_info = store_info->next;
3708 
3709 	      if (store_info->alias_set)
3710 		deleted = false;
3711 	      else
3712 		{
3713 		  HOST_WIDE_INT i;
3714 		  group_info_t group_info
3715 		    = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3716 
3717 		  for (i = store_info->begin; i < store_info->end; i++)
3718 		    {
3719 		      int index = get_bitmap_index (group_info, i);
3720 
3721 		      if (dump_file)
3722 			fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3723 		      if (index == 0 || !bitmap_bit_p (v, index))
3724 			{
3725 			  if (dump_file)
3726 			    fprintf (dump_file, "failing at i = %d\n", (int)i);
3727 			  deleted = false;
3728 			  break;
3729 			}
3730 		    }
3731 		}
3732 	      if (deleted)
3733 		{
3734 		  if (dbg_cnt (dse)
3735 		      && check_for_inc_dec_1 (insn_info))
3736 		    {
3737 		      delete_insn (insn_info->insn);
3738 		      insn_info->insn = NULL;
3739 		      globally_deleted++;
3740 		    }
3741 		}
3742 	    }
3743 	  /* We do want to process the local info if the insn was
3744 	     deleted.  For instance, if the insn did a wild read, we
3745 	     no longer need to trash the info.  */
3746 	  if (insn_info->insn
3747 	      && INSN_P (insn_info->insn)
3748 	      && (!deleted))
3749 	    {
3750 	      scan_stores_nospill (insn_info->store_rec, v, NULL);
3751 	      if (insn_info->wild_read)
3752 		{
3753 		  if (dump_file)
3754 		    fprintf (dump_file, "wild read\n");
3755 		  bitmap_clear (v);
3756 		}
3757 	      else if (insn_info->read_rec
3758                        || insn_info->non_frame_wild_read)
3759 		{
3760 		  if (dump_file && !insn_info->non_frame_wild_read)
3761 		    fprintf (dump_file, "regular read\n");
3762                   else if (dump_file)
3763 		    fprintf (dump_file, "non-frame wild read\n");
3764 		  scan_reads_nospill (insn_info, v, NULL);
3765 		}
3766 	    }
3767 
3768 	  insn_info = insn_info->prev_insn;
3769 	}
3770     }
3771 }
3772 
3773 
3774 static void
3775 dse_step5_spill (void)
3776 {
3777   basic_block bb;
3778   FOR_EACH_BB (bb)
3779     {
3780       bb_info_t bb_info = bb_table[bb->index];
3781       insn_info_t insn_info = bb_info->last_insn;
3782       bitmap v = bb_info->out;
3783 
3784       while (insn_info)
3785 	{
3786 	  bool deleted = false;
3787 	  /* There may have been code deleted by the dce pass run before
3788 	     this phase.  */
3789 	  if (insn_info->insn
3790 	      && INSN_P (insn_info->insn)
3791 	      && (!insn_info->cannot_delete)
3792 	      && (!bitmap_empty_p (v)))
3793 	    {
3794 	      /* Try to delete the current insn.  */
3795 	      store_info_t store_info = insn_info->store_rec;
3796 	      deleted = true;
3797 
3798 	      while (store_info)
3799 		{
3800 		  if (store_info->alias_set)
3801 		    {
3802 		      int index = get_bitmap_index (clear_alias_group,
3803 						    store_info->alias_set);
3804 		      if (index == 0 || !bitmap_bit_p (v, index))
3805 			{
3806 			  deleted = false;
3807 			  break;
3808 			}
3809 		    }
3810 		  else
3811 		    deleted = false;
3812 		  store_info = store_info->next;
3813 		}
3814 	      if (deleted && dbg_cnt (dse)
3815 		  && check_for_inc_dec_1 (insn_info))
3816 		{
3817 		  if (dump_file)
3818 		    fprintf (dump_file, "Spill deleting insn %d\n",
3819 			     INSN_UID (insn_info->insn));
3820 		  delete_insn (insn_info->insn);
3821 		  spill_deleted++;
3822 		  insn_info->insn = NULL;
3823 		}
3824 	    }
3825 
3826 	  if (insn_info->insn
3827 	      && INSN_P (insn_info->insn)
3828 	      && (!deleted))
3829 	    {
3830 	      scan_stores_spill (insn_info->store_rec, v, NULL);
3831 	      scan_reads_spill (insn_info->read_rec, v, NULL);
3832 	    }
3833 
3834 	  insn_info = insn_info->prev_insn;
3835 	}
3836     }
3837 }
3838 
3839 
3840 
3841 /*----------------------------------------------------------------------------
3842    Sixth step.
3843 
3844    Delete stores made redundant by earlier stores (which store the same
3845    value) that couldn't be eliminated.
3846 ----------------------------------------------------------------------------*/
3847 
3848 static void
3849 dse_step6 (void)
3850 {
3851   basic_block bb;
3852 
3853   FOR_ALL_BB (bb)
3854     {
3855       bb_info_t bb_info = bb_table[bb->index];
3856       insn_info_t insn_info = bb_info->last_insn;
3857 
3858       while (insn_info)
3859 	{
3860 	  /* There may have been code deleted by the dce pass run before
3861 	     this phase.  */
3862 	  if (insn_info->insn
3863 	      && INSN_P (insn_info->insn)
3864 	      && !insn_info->cannot_delete)
3865 	    {
3866 	      store_info_t s_info = insn_info->store_rec;
3867 
3868 	      while (s_info && !s_info->is_set)
3869 		s_info = s_info->next;
3870 	      if (s_info
3871 		  && s_info->redundant_reason
3872 		  && s_info->redundant_reason->insn
3873 		  && INSN_P (s_info->redundant_reason->insn))
3874 		{
3875 		  rtx rinsn = s_info->redundant_reason->insn;
3876 		  if (dump_file)
3877 		    fprintf (dump_file, "Locally deleting insn %d "
3878 					"because insn %d stores the "
3879 					"same value and couldn't be "
3880 					"eliminated\n",
3881 					INSN_UID (insn_info->insn),
3882 					INSN_UID (rinsn));
3883 		  delete_dead_store_insn (insn_info);
3884 		}
3885 	    }
3886 	  insn_info = insn_info->prev_insn;
3887 	}
3888     }
3889 }
3890 
3891 /*----------------------------------------------------------------------------
3892    Seventh step.
3893 
3894    Destroy everything left standing.
3895 ----------------------------------------------------------------------------*/
3896 
3897 static void
3898 dse_step7 (bool global_done)
3899 {
3900   unsigned int i;
3901   group_info_t group;
3902   basic_block bb;
3903 
3904   FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group)
3905     {
3906       free (group->offset_map_n);
3907       free (group->offset_map_p);
3908       BITMAP_FREE (group->store1_n);
3909       BITMAP_FREE (group->store1_p);
3910       BITMAP_FREE (group->store2_n);
3911       BITMAP_FREE (group->store2_p);
3912       BITMAP_FREE (group->escaped_n);
3913       BITMAP_FREE (group->escaped_p);
3914       BITMAP_FREE (group->group_kill);
3915     }
3916 
3917   if (global_done)
3918     FOR_ALL_BB (bb)
3919       {
3920 	bb_info_t bb_info = bb_table[bb->index];
3921 	BITMAP_FREE (bb_info->gen);
3922 	if (bb_info->kill)
3923 	  BITMAP_FREE (bb_info->kill);
3924 	if (bb_info->in)
3925 	  BITMAP_FREE (bb_info->in);
3926 	if (bb_info->out)
3927 	  BITMAP_FREE (bb_info->out);
3928       }
3929 
3930   if (clear_alias_sets)
3931     {
3932       BITMAP_FREE (clear_alias_sets);
3933       BITMAP_FREE (disqualified_clear_alias_sets);
3934       free_alloc_pool (clear_alias_mode_pool);
3935       htab_delete (clear_alias_mode_table);
3936     }
3937 
3938   end_alias_analysis ();
3939   free (bb_table);
3940   htab_delete (rtx_group_table);
3941   VEC_free (group_info_t, heap, rtx_group_vec);
3942   BITMAP_FREE (all_blocks);
3943   BITMAP_FREE (scratch);
3944   BITMAP_FREE (kill_on_calls);
3945 
3946   free_alloc_pool (rtx_store_info_pool);
3947   free_alloc_pool (read_info_pool);
3948   free_alloc_pool (insn_info_pool);
3949   free_alloc_pool (bb_info_pool);
3950   free_alloc_pool (rtx_group_info_pool);
3951   free_alloc_pool (deferred_change_pool);
3952 }
3953 
3954 
3955 /* -------------------------------------------------------------------------
3956    DSE
3957    ------------------------------------------------------------------------- */
3958 
3959 /* Callback for running pass_rtl_dse.  */
3960 
3961 static unsigned int
3962 rest_of_handle_dse (void)
3963 {
3964   bool did_global = false;
3965 
3966   df_set_flags (DF_DEFER_INSN_RESCAN);
3967 
3968   /* Need the notes since we must track live hardregs in the forwards
3969      direction.  */
3970   df_note_add_problem ();
3971   df_analyze ();
3972 
3973   dse_step0 ();
3974   dse_step1 ();
3975   dse_step2_init ();
3976   if (dse_step2_nospill ())
3977     {
3978       df_set_flags (DF_LR_RUN_DCE);
3979       df_analyze ();
3980       did_global = true;
3981       if (dump_file)
3982 	fprintf (dump_file, "doing global processing\n");
3983       dse_step3 (false);
3984       dse_step4 ();
3985       dse_step5_nospill ();
3986     }
3987 
3988   /* For the instance of dse that runs after reload, we make a special
3989      pass to process the spills.  These are special in that they are
3990      totally transparent, i.e, there is no aliasing issues that need
3991      to be considered.  This means that the wild reads that kill
3992      everything else do not apply here.  */
3993   if (clear_alias_sets && dse_step2_spill ())
3994     {
3995       if (!did_global)
3996 	{
3997 	  df_set_flags (DF_LR_RUN_DCE);
3998 	  df_analyze ();
3999 	}
4000       did_global = true;
4001       if (dump_file)
4002 	fprintf (dump_file, "doing global spill processing\n");
4003       dse_step3 (true);
4004       dse_step4 ();
4005       dse_step5_spill ();
4006     }
4007 
4008   dse_step6 ();
4009   dse_step7 (did_global);
4010 
4011   if (dump_file)
4012     fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
4013 	     locally_deleted, globally_deleted, spill_deleted);
4014   return 0;
4015 }
4016 
4017 static bool
4018 gate_dse (void)
4019 {
4020   return gate_dse1 () || gate_dse2 ();
4021 }
4022 
4023 static bool
4024 gate_dse1 (void)
4025 {
4026   return optimize > 0 && flag_dse
4027     && dbg_cnt (dse1);
4028 }
4029 
4030 static bool
4031 gate_dse2 (void)
4032 {
4033   return optimize > 0 && flag_dse
4034     && dbg_cnt (dse2);
4035 }
4036 
4037 struct rtl_opt_pass pass_rtl_dse1 =
4038 {
4039  {
4040   RTL_PASS,
4041   "dse1",                               /* name */
4042   gate_dse1,                            /* gate */
4043   rest_of_handle_dse,                   /* execute */
4044   NULL,                                 /* sub */
4045   NULL,                                 /* next */
4046   0,                                    /* static_pass_number */
4047   TV_DSE1,                              /* tv_id */
4048   0,                                    /* properties_required */
4049   0,                                    /* properties_provided */
4050   0,                                    /* properties_destroyed */
4051   0,                                    /* todo_flags_start */
4052   TODO_df_finish | TODO_verify_rtl_sharing |
4053   TODO_ggc_collect                      /* todo_flags_finish */
4054  }
4055 };
4056 
4057 struct rtl_opt_pass pass_rtl_dse2 =
4058 {
4059  {
4060   RTL_PASS,
4061   "dse2",                               /* name */
4062   gate_dse2,                            /* gate */
4063   rest_of_handle_dse,                   /* execute */
4064   NULL,                                 /* sub */
4065   NULL,                                 /* next */
4066   0,                                    /* static_pass_number */
4067   TV_DSE2,                              /* tv_id */
4068   0,                                    /* properties_required */
4069   0,                                    /* properties_provided */
4070   0,                                    /* properties_destroyed */
4071   0,                                    /* todo_flags_start */
4072   TODO_df_finish | TODO_verify_rtl_sharing |
4073   TODO_ggc_collect                      /* todo_flags_finish */
4074  }
4075 };
4076