xref: /dragonfly/contrib/gcc-4.7/gcc/et-forest.c (revision e5a92d33)
1 /* ET-trees data structure implementation.
2    Contributed by Pavel Nejedly
3    Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2010 Free Software
4    Foundation, Inc.
5 
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11 
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 Library General Public License for more details.
16 
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.
20 
21   The ET-forest structure is described in:
22     D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
23     J.  G'omput. System Sci., 26(3):362 381, 1983.
24 */
25 
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "et-forest.h"
30 #include "alloc-pool.h"
31 
32 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow.  */
33 #undef DEBUG_ET
34 
35 #ifdef DEBUG_ET
36 #include "basic-block.h"
37 #endif
38 
39 /* The occurrence of a node in the et tree.  */
40 struct et_occ
41 {
42   struct et_node *of;		/* The node.  */
43 
44   struct et_occ *parent;	/* Parent in the splay-tree.  */
45   struct et_occ *prev;		/* Left son in the splay-tree.  */
46   struct et_occ *next;		/* Right son in the splay-tree.  */
47 
48   int depth;			/* The depth of the node is the sum of depth
49 				   fields on the path to the root.  */
50   int min;			/* The minimum value of the depth in the subtree
51 				   is obtained by adding sum of depth fields
52 				   on the path to the root.  */
53   struct et_occ *min_occ;	/* The occurrence in the subtree with the minimal
54 				   depth.  */
55 };
56 
57 static alloc_pool et_nodes;
58 static alloc_pool et_occurrences;
59 
60 /* Changes depth of OCC to D.  */
61 
62 static inline void
63 set_depth (struct et_occ *occ, int d)
64 {
65   if (!occ)
66     return;
67 
68   occ->min += d - occ->depth;
69   occ->depth = d;
70 }
71 
72 /* Adds D to the depth of OCC.  */
73 
74 static inline void
75 set_depth_add (struct et_occ *occ, int d)
76 {
77   if (!occ)
78     return;
79 
80   occ->min += d;
81   occ->depth += d;
82 }
83 
84 /* Sets prev field of OCC to P.  */
85 
86 static inline void
87 set_prev (struct et_occ *occ, struct et_occ *t)
88 {
89 #ifdef DEBUG_ET
90   gcc_assert (occ != t);
91 #endif
92 
93   occ->prev = t;
94   if (t)
95     t->parent = occ;
96 }
97 
98 /* Sets next field of OCC to P.  */
99 
100 static inline void
101 set_next (struct et_occ *occ, struct et_occ *t)
102 {
103 #ifdef DEBUG_ET
104   gcc_assert (occ != t);
105 #endif
106 
107   occ->next = t;
108   if (t)
109     t->parent = occ;
110 }
111 
112 /* Recompute minimum for occurrence OCC.  */
113 
114 static inline void
115 et_recomp_min (struct et_occ *occ)
116 {
117   struct et_occ *mson = occ->prev;
118 
119   if (!mson
120       || (occ->next
121 	  && mson->min > occ->next->min))
122       mson = occ->next;
123 
124   if (mson && mson->min < 0)
125     {
126       occ->min = mson->min + occ->depth;
127       occ->min_occ = mson->min_occ;
128     }
129   else
130     {
131       occ->min = occ->depth;
132       occ->min_occ = occ;
133     }
134 }
135 
136 #ifdef DEBUG_ET
137 /* Checks whether neighborhood of OCC seems sane.  */
138 
139 static void
140 et_check_occ_sanity (struct et_occ *occ)
141 {
142   if (!occ)
143     return;
144 
145   gcc_assert (occ->parent != occ);
146   gcc_assert (occ->prev != occ);
147   gcc_assert (occ->next != occ);
148   gcc_assert (!occ->next || occ->next != occ->prev);
149 
150   if (occ->next)
151     {
152       gcc_assert (occ->next != occ->parent);
153       gcc_assert (occ->next->parent == occ);
154     }
155 
156   if (occ->prev)
157     {
158       gcc_assert (occ->prev != occ->parent);
159       gcc_assert (occ->prev->parent == occ);
160     }
161 
162   gcc_assert (!occ->parent
163 	      || occ->parent->prev == occ
164 	      || occ->parent->next == occ);
165 }
166 
167 /* Checks whether tree rooted at OCC is sane.  */
168 
169 static void
170 et_check_sanity (struct et_occ *occ)
171 {
172   et_check_occ_sanity (occ);
173   if (occ->prev)
174     et_check_sanity (occ->prev);
175   if (occ->next)
176     et_check_sanity (occ->next);
177 }
178 
179 /* Checks whether tree containing OCC is sane.  */
180 
181 static void
182 et_check_tree_sanity (struct et_occ *occ)
183 {
184   while (occ->parent)
185     occ = occ->parent;
186 
187   et_check_sanity (occ);
188 }
189 
190 /* For recording the paths.  */
191 
192 /* An ad-hoc constant; if the function has more blocks, this won't work,
193    but since it is used for debugging only, it does not matter.  */
194 #define MAX_NODES 100000
195 
196 static int len;
197 static void *datas[MAX_NODES];
198 static int depths[MAX_NODES];
199 
200 /* Records the path represented by OCC, with depth incremented by DEPTH.  */
201 
202 static int
203 record_path_before_1 (struct et_occ *occ, int depth)
204 {
205   int mn, m;
206 
207   depth += occ->depth;
208   mn = depth;
209 
210   if (occ->prev)
211     {
212       m = record_path_before_1 (occ->prev, depth);
213       if (m < mn)
214 	mn = m;
215     }
216 
217   fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
218 
219   gcc_assert (len < MAX_NODES);
220 
221   depths[len] = depth;
222   datas[len] = occ->of;
223   len++;
224 
225   if (occ->next)
226     {
227       m = record_path_before_1 (occ->next, depth);
228       if (m < mn)
229 	mn = m;
230     }
231 
232   gcc_assert (mn == occ->min + depth - occ->depth);
233 
234   return mn;
235 }
236 
237 /* Records the path represented by a tree containing OCC.  */
238 
239 static void
240 record_path_before (struct et_occ *occ)
241 {
242   while (occ->parent)
243     occ = occ->parent;
244 
245   len = 0;
246   record_path_before_1 (occ, 0);
247   fprintf (stderr, "\n");
248 }
249 
250 /* Checks whether the path represented by OCC, with depth incremented by DEPTH,
251    was not changed since the last recording.  */
252 
253 static int
254 check_path_after_1 (struct et_occ *occ, int depth)
255 {
256   int mn, m;
257 
258   depth += occ->depth;
259   mn = depth;
260 
261   if (occ->next)
262     {
263       m = check_path_after_1 (occ->next, depth);
264       if (m < mn)
265 	mn =  m;
266     }
267 
268   len--;
269   gcc_assert (depths[len] == depth && datas[len] == occ->of);
270 
271   if (occ->prev)
272     {
273       m = check_path_after_1 (occ->prev, depth);
274       if (m < mn)
275 	mn =  m;
276     }
277 
278   gcc_assert (mn == occ->min + depth - occ->depth);
279 
280   return mn;
281 }
282 
283 /* Checks whether the path represented by a tree containing OCC was
284    not changed since the last recording.  */
285 
286 static void
287 check_path_after (struct et_occ *occ)
288 {
289   while (occ->parent)
290     occ = occ->parent;
291 
292   check_path_after_1 (occ, 0);
293   gcc_assert (!len);
294 }
295 
296 #endif
297 
298 /* Splay the occurrence OCC to the root of the tree.  */
299 
300 static void
301 et_splay (struct et_occ *occ)
302 {
303   struct et_occ *f, *gf, *ggf;
304   int occ_depth, f_depth, gf_depth;
305 
306 #ifdef DEBUG_ET
307   record_path_before (occ);
308   et_check_tree_sanity (occ);
309 #endif
310 
311   while (occ->parent)
312     {
313       occ_depth = occ->depth;
314 
315       f = occ->parent;
316       f_depth = f->depth;
317 
318       gf = f->parent;
319 
320       if (!gf)
321 	{
322 	  set_depth_add (occ, f_depth);
323 	  occ->min_occ = f->min_occ;
324 	  occ->min = f->min;
325 
326 	  if (f->prev == occ)
327 	    {
328 	      /* zig */
329 	      set_prev (f, occ->next);
330 	      set_next (occ, f);
331 	      set_depth_add (f->prev, occ_depth);
332 	    }
333 	  else
334 	    {
335 	      /* zag */
336 	      set_next (f, occ->prev);
337 	      set_prev (occ, f);
338 	      set_depth_add (f->next, occ_depth);
339 	    }
340 	  set_depth (f, -occ_depth);
341 	  occ->parent = NULL;
342 
343 	  et_recomp_min (f);
344 #ifdef DEBUG_ET
345 	  et_check_tree_sanity (occ);
346 	  check_path_after (occ);
347 #endif
348 	  return;
349 	}
350 
351       gf_depth = gf->depth;
352 
353       set_depth_add (occ, f_depth + gf_depth);
354       occ->min_occ = gf->min_occ;
355       occ->min = gf->min;
356 
357       ggf = gf->parent;
358 
359       if (gf->prev == f)
360 	{
361 	  if (f->prev == occ)
362 	    {
363 	      /* zig zig */
364 	      set_prev (gf, f->next);
365 	      set_prev (f, occ->next);
366 	      set_next (occ, f);
367 	      set_next (f, gf);
368 
369 	      set_depth (f, -occ_depth);
370 	      set_depth_add (f->prev, occ_depth);
371 	      set_depth (gf, -f_depth);
372 	      set_depth_add (gf->prev, f_depth);
373 	    }
374 	  else
375 	    {
376 	      /* zag zig */
377 	      set_prev (gf, occ->next);
378 	      set_next (f, occ->prev);
379 	      set_prev (occ, f);
380 	      set_next (occ, gf);
381 
382 	      set_depth (f, -occ_depth);
383 	      set_depth_add (f->next, occ_depth);
384 	      set_depth (gf, -occ_depth - f_depth);
385 	      set_depth_add (gf->prev, occ_depth + f_depth);
386 	    }
387 	}
388       else
389 	{
390 	  if (f->prev == occ)
391 	    {
392 	      /* zig zag */
393 	      set_next (gf, occ->prev);
394 	      set_prev (f, occ->next);
395 	      set_prev (occ, gf);
396 	      set_next (occ, f);
397 
398 	      set_depth (f, -occ_depth);
399 	      set_depth_add (f->prev, occ_depth);
400 	      set_depth (gf, -occ_depth - f_depth);
401 	      set_depth_add (gf->next, occ_depth + f_depth);
402 	    }
403 	  else
404 	    {
405 	      /* zag zag */
406 	      set_next (gf, f->prev);
407 	      set_next (f, occ->prev);
408 	      set_prev (occ, f);
409 	      set_prev (f, gf);
410 
411 	      set_depth (f, -occ_depth);
412 	      set_depth_add (f->next, occ_depth);
413 	      set_depth (gf, -f_depth);
414 	      set_depth_add (gf->next, f_depth);
415 	    }
416 	}
417 
418       occ->parent = ggf;
419       if (ggf)
420 	{
421 	  if (ggf->prev == gf)
422 	    ggf->prev = occ;
423 	  else
424 	    ggf->next = occ;
425 	}
426 
427       et_recomp_min (gf);
428       et_recomp_min (f);
429 #ifdef DEBUG_ET
430       et_check_tree_sanity (occ);
431 #endif
432     }
433 
434 #ifdef DEBUG_ET
435   et_check_sanity (occ);
436   check_path_after (occ);
437 #endif
438 }
439 
440 /* Create a new et tree occurrence of NODE.  */
441 
442 static struct et_occ *
443 et_new_occ (struct et_node *node)
444 {
445   struct et_occ *nw;
446 
447   if (!et_occurrences)
448     et_occurrences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300);
449   nw = (struct et_occ *) pool_alloc (et_occurrences);
450 
451   nw->of = node;
452   nw->parent = NULL;
453   nw->prev = NULL;
454   nw->next = NULL;
455 
456   nw->depth = 0;
457   nw->min_occ = nw;
458   nw->min = 0;
459 
460   return nw;
461 }
462 
463 /* Create a new et tree containing DATA.  */
464 
465 struct et_node *
466 et_new_tree (void *data)
467 {
468   struct et_node *nw;
469 
470   if (!et_nodes)
471     et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300);
472   nw = (struct et_node *) pool_alloc (et_nodes);
473 
474   nw->data = data;
475   nw->father = NULL;
476   nw->left = NULL;
477   nw->right = NULL;
478   nw->son = NULL;
479 
480   nw->rightmost_occ = et_new_occ (nw);
481   nw->parent_occ = NULL;
482 
483   return nw;
484 }
485 
486 /* Releases et tree T.  */
487 
488 void
489 et_free_tree (struct et_node *t)
490 {
491   while (t->son)
492     et_split (t->son);
493 
494   if (t->father)
495     et_split (t);
496 
497   pool_free (et_occurrences, t->rightmost_occ);
498   pool_free (et_nodes, t);
499 }
500 
501 /* Releases et tree T without maintaining other nodes.  */
502 
503 void
504 et_free_tree_force (struct et_node *t)
505 {
506   pool_free (et_occurrences, t->rightmost_occ);
507   if (t->parent_occ)
508     pool_free (et_occurrences, t->parent_occ);
509   pool_free (et_nodes, t);
510 }
511 
512 /* Release the alloc pools, if they are empty.  */
513 
514 void
515 et_free_pools (void)
516 {
517   free_alloc_pool_if_empty (&et_occurrences);
518   free_alloc_pool_if_empty (&et_nodes);
519 }
520 
521 /* Sets father of et tree T to FATHER.  */
522 
523 void
524 et_set_father (struct et_node *t, struct et_node *father)
525 {
526   struct et_node *left, *right;
527   struct et_occ *rmost, *left_part, *new_f_occ, *p;
528 
529   /* Update the path represented in the splay tree.  */
530   new_f_occ = et_new_occ (father);
531 
532   rmost = father->rightmost_occ;
533   et_splay (rmost);
534 
535   left_part = rmost->prev;
536 
537   p = t->rightmost_occ;
538   et_splay (p);
539 
540   set_prev (new_f_occ, left_part);
541   set_next (new_f_occ, p);
542 
543   p->depth++;
544   p->min++;
545   et_recomp_min (new_f_occ);
546 
547   set_prev (rmost, new_f_occ);
548 
549   if (new_f_occ->min + rmost->depth < rmost->min)
550     {
551       rmost->min = new_f_occ->min + rmost->depth;
552       rmost->min_occ = new_f_occ->min_occ;
553     }
554 
555   t->parent_occ = new_f_occ;
556 
557   /* Update the tree.  */
558   t->father = father;
559   right = father->son;
560   if (right)
561     left = right->left;
562   else
563     left = right = t;
564 
565   left->right = t;
566   right->left = t;
567   t->left = left;
568   t->right = right;
569 
570   father->son = t;
571 
572 #ifdef DEBUG_ET
573   et_check_tree_sanity (rmost);
574   record_path_before (rmost);
575 #endif
576 }
577 
578 /* Splits the edge from T to its father.  */
579 
580 void
581 et_split (struct et_node *t)
582 {
583   struct et_node *father = t->father;
584   struct et_occ *r, *l, *rmost, *p_occ;
585 
586   /* Update the path represented by the splay tree.  */
587   rmost = t->rightmost_occ;
588   et_splay (rmost);
589 
590   for (r = rmost->next; r->prev; r = r->prev)
591     continue;
592   et_splay (r);
593 
594   r->prev->parent = NULL;
595   p_occ = t->parent_occ;
596   et_splay (p_occ);
597   t->parent_occ = NULL;
598 
599   l = p_occ->prev;
600   p_occ->next->parent = NULL;
601 
602   set_prev (r, l);
603 
604   et_recomp_min (r);
605 
606   et_splay (rmost);
607   rmost->depth = 0;
608   rmost->min = 0;
609 
610   pool_free (et_occurrences, p_occ);
611 
612   /* Update the tree.  */
613   if (father->son == t)
614     father->son = t->right;
615   if (father->son == t)
616     father->son = NULL;
617   else
618     {
619       t->left->right = t->right;
620       t->right->left = t->left;
621     }
622   t->left = t->right = NULL;
623   t->father = NULL;
624 
625 #ifdef DEBUG_ET
626   et_check_tree_sanity (rmost);
627   record_path_before (rmost);
628 
629   et_check_tree_sanity (r);
630   record_path_before (r);
631 #endif
632 }
633 
634 /* Finds the nearest common ancestor of the nodes N1 and N2.  */
635 
636 struct et_node *
637 et_nca (struct et_node *n1, struct et_node *n2)
638 {
639   struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
640   struct et_occ *l, *r, *ret;
641   int mn;
642 
643   if (n1 == n2)
644     return n1;
645 
646   et_splay (o1);
647   l = o1->prev;
648   r = o1->next;
649   if (l)
650     l->parent = NULL;
651   if (r)
652     r->parent = NULL;
653   et_splay (o2);
654 
655   if (l == o2 || (l && l->parent != NULL))
656     {
657       ret = o2->next;
658 
659       set_prev (o1, o2);
660       if (r)
661 	r->parent = o1;
662     }
663   else if (r == o2 || (r && r->parent != NULL))
664     {
665       ret = o2->prev;
666 
667       set_next (o1, o2);
668       if (l)
669 	l->parent = o1;
670     }
671   else
672     {
673       /* O1 and O2 are in different components of the forest.  */
674       if (l)
675 	l->parent = o1;
676       if (r)
677 	r->parent = o1;
678       return NULL;
679     }
680 
681   if (0 < o2->depth)
682     {
683       om = o1;
684       mn = o1->depth;
685     }
686   else
687     {
688       om = o2;
689       mn = o2->depth + o1->depth;
690     }
691 
692 #ifdef DEBUG_ET
693   et_check_tree_sanity (o2);
694 #endif
695 
696   if (ret && ret->min + o1->depth + o2->depth < mn)
697     return ret->min_occ->of;
698   else
699     return om->of;
700 }
701 
702 /* Checks whether the node UP is an ancestor of the node DOWN.  */
703 
704 bool
705 et_below (struct et_node *down, struct et_node *up)
706 {
707   struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
708   struct et_occ *l, *r;
709 
710   if (up == down)
711     return true;
712 
713   et_splay (u);
714   l = u->prev;
715   r = u->next;
716 
717   if (!l)
718     return false;
719 
720   l->parent = NULL;
721 
722   if (r)
723     r->parent = NULL;
724 
725   et_splay (d);
726 
727   if (l == d || l->parent != NULL)
728     {
729       if (r)
730 	r->parent = u;
731       set_prev (u, d);
732 #ifdef DEBUG_ET
733       et_check_tree_sanity (u);
734 #endif
735     }
736   else
737     {
738       l->parent = u;
739 
740       /* In case O1 and O2 are in two different trees, we must just restore the
741 	 original state.  */
742       if (r && r->parent != NULL)
743 	set_next (u, d);
744       else
745 	set_next (u, r);
746 
747 #ifdef DEBUG_ET
748       et_check_tree_sanity (u);
749 #endif
750       return false;
751     }
752 
753   if (0 >= d->depth)
754     return false;
755 
756   return !d->next || d->next->min + d->depth >= 0;
757 }
758 
759 /* Returns the root of the tree that contains NODE.  */
760 
761 struct et_node *
762 et_root (struct et_node *node)
763 {
764   struct et_occ *occ = node->rightmost_occ, *r;
765 
766   /* The root of the tree corresponds to the rightmost occurrence in the
767      represented path.  */
768   et_splay (occ);
769   for (r = occ; r->next; r = r->next)
770     continue;
771   et_splay (r);
772 
773   return r->of;
774 }
775