xref: /dragonfly/contrib/gcc-4.7/gcc/gcse.c (revision 19380330)
1 /* Partial redundancy elimination / Hoisting for RTL.
2    Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3    2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* TODO
22    - reordering of memory allocation and freeing to be more space efficient
23    - do rough calc of how many regs are needed in each block, and a rough
24      calc of how many regs are available in each class and use that to
25      throttle back the code in cases where RTX_COST is minimal.
26 */
27 
28 /* References searched while implementing this.
29 
30    Compilers Principles, Techniques and Tools
31    Aho, Sethi, Ullman
32    Addison-Wesley, 1988
33 
34    Global Optimization by Suppression of Partial Redundancies
35    E. Morel, C. Renvoise
36    communications of the acm, Vol. 22, Num. 2, Feb. 1979
37 
38    A Portable Machine-Independent Global Optimizer - Design and Measurements
39    Frederick Chow
40    Stanford Ph.D. thesis, Dec. 1983
41 
42    A Fast Algorithm for Code Movement Optimization
43    D.M. Dhamdhere
44    SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
45 
46    A Solution to a Problem with Morel and Renvoise's
47    Global Optimization by Suppression of Partial Redundancies
48    K-H Drechsler, M.P. Stadel
49    ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
50 
51    Practical Adaptation of the Global Optimization
52    Algorithm of Morel and Renvoise
53    D.M. Dhamdhere
54    ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
55 
56    Efficiently Computing Static Single Assignment Form and the Control
57    Dependence Graph
58    R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
59    ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
60 
61    Lazy Code Motion
62    J. Knoop, O. Ruthing, B. Steffen
63    ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
64 
65    What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
66    Time for Reducible Flow Control
67    Thomas Ball
68    ACM Letters on Programming Languages and Systems,
69    Vol. 2, Num. 1-4, Mar-Dec 1993
70 
71    An Efficient Representation for Sparse Sets
72    Preston Briggs, Linda Torczon
73    ACM Letters on Programming Languages and Systems,
74    Vol. 2, Num. 1-4, Mar-Dec 1993
75 
76    A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
77    K-H Drechsler, M.P. Stadel
78    ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
79 
80    Partial Dead Code Elimination
81    J. Knoop, O. Ruthing, B. Steffen
82    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
83 
84    Effective Partial Redundancy Elimination
85    P. Briggs, K.D. Cooper
86    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
87 
88    The Program Structure Tree: Computing Control Regions in Linear Time
89    R. Johnson, D. Pearson, K. Pingali
90    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
91 
92    Optimal Code Motion: Theory and Practice
93    J. Knoop, O. Ruthing, B. Steffen
94    ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
95 
96    The power of assignment motion
97    J. Knoop, O. Ruthing, B. Steffen
98    ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
99 
100    Global code motion / global value numbering
101    C. Click
102    ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
103 
104    Value Driven Redundancy Elimination
105    L.T. Simpson
106    Rice University Ph.D. thesis, Apr. 1996
107 
108    Value Numbering
109    L.T. Simpson
110    Massively Scalar Compiler Project, Rice University, Sep. 1996
111 
112    High Performance Compilers for Parallel Computing
113    Michael Wolfe
114    Addison-Wesley, 1996
115 
116    Advanced Compiler Design and Implementation
117    Steven Muchnick
118    Morgan Kaufmann, 1997
119 
120    Building an Optimizing Compiler
121    Robert Morgan
122    Digital Press, 1998
123 
124    People wishing to speed up the code here should read:
125      Elimination Algorithms for Data Flow Analysis
126      B.G. Ryder, M.C. Paull
127      ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
128 
129      How to Analyze Large Programs Efficiently and Informatively
130      D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
131      ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
132 
133    People wishing to do something different can find various possibilities
134    in the above papers and elsewhere.
135 */
136 
137 #include "config.h"
138 #include "system.h"
139 #include "coretypes.h"
140 #include "tm.h"
141 #include "diagnostic-core.h"
142 #include "toplev.h"
143 
144 #include "rtl.h"
145 #include "tree.h"
146 #include "tm_p.h"
147 #include "regs.h"
148 #include "hard-reg-set.h"
149 #include "flags.h"
150 #include "insn-config.h"
151 #include "recog.h"
152 #include "basic-block.h"
153 #include "output.h"
154 #include "function.h"
155 #include "expr.h"
156 #include "except.h"
157 #include "ggc.h"
158 #include "params.h"
159 #include "cselib.h"
160 #include "intl.h"
161 #include "obstack.h"
162 #include "timevar.h"
163 #include "tree-pass.h"
164 #include "hashtab.h"
165 #include "df.h"
166 #include "dbgcnt.h"
167 #include "target.h"
168 #include "gcse.h"
169 
170 /* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
171    are a superset of those done by classic GCSE.
172 
173    Two passes of copy/constant propagation are done around PRE or hoisting
174    because the first one enables more GCSE and the second one helps to clean
175    up the copies that PRE and HOIST create.  This is needed more for PRE than
176    for HOIST because code hoisting will try to use an existing register
177    containing the common subexpression rather than create a new one.  This is
178    harder to do for PRE because of the code motion (which HOIST doesn't do).
179 
180    Expressions we are interested in GCSE-ing are of the form
181    (set (pseudo-reg) (expression)).
182    Function want_to_gcse_p says what these are.
183 
184    In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
185    This allows PRE to hoist expressions that are expressed in multiple insns,
186    such as complex address calculations (e.g. for PIC code, or loads with a
187    high part and a low part).
188 
189    PRE handles moving invariant expressions out of loops (by treating them as
190    partially redundant).
191 
192    **********************
193 
194    We used to support multiple passes but there are diminishing returns in
195    doing so.  The first pass usually makes 90% of the changes that are doable.
196    A second pass can make a few more changes made possible by the first pass.
197    Experiments show any further passes don't make enough changes to justify
198    the expense.
199 
200    A study of spec92 using an unlimited number of passes:
201    [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
202    [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
203    [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
204 
205    It was found doing copy propagation between each pass enables further
206    substitutions.
207 
208    This study was done before expressions in REG_EQUAL notes were added as
209    candidate expressions for optimization, and before the GIMPLE optimizers
210    were added.  Probably, multiple passes is even less efficient now than
211    at the time when the study was conducted.
212 
213    PRE is quite expensive in complicated functions because the DFA can take
214    a while to converge.  Hence we only perform one pass.
215 
216    **********************
217 
218    The steps for PRE are:
219 
220    1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
221 
222    2) Perform the data flow analysis for PRE.
223 
224    3) Delete the redundant instructions
225 
226    4) Insert the required copies [if any] that make the partially
227       redundant instructions fully redundant.
228 
229    5) For other reaching expressions, insert an instruction to copy the value
230       to a newly created pseudo that will reach the redundant instruction.
231 
232    The deletion is done first so that when we do insertions we
233    know which pseudo reg to use.
234 
235    Various papers have argued that PRE DFA is expensive (O(n^2)) and others
236    argue it is not.  The number of iterations for the algorithm to converge
237    is typically 2-4 so I don't view it as that expensive (relatively speaking).
238 
239    PRE GCSE depends heavily on the second CPROP pass to clean up the copies
240    we create.  To make an expression reach the place where it's redundant,
241    the result of the expression is copied to a new register, and the redundant
242    expression is deleted by replacing it with this new register.  Classic GCSE
243    doesn't have this problem as much as it computes the reaching defs of
244    each register in each block and thus can try to use an existing
245    register.  */
246 
247 /* GCSE global vars.  */
248 
249 struct target_gcse default_target_gcse;
250 #if SWITCHABLE_TARGET
251 struct target_gcse *this_target_gcse = &default_target_gcse;
252 #endif
253 
254 /* Set to non-zero if CSE should run after all GCSE optimizations are done.  */
255 int flag_rerun_cse_after_global_opts;
256 
257 /* An obstack for our working variables.  */
258 static struct obstack gcse_obstack;
259 
260 struct reg_use {rtx reg_rtx; };
261 
262 /* Hash table of expressions.  */
263 
264 struct expr
265 {
266   /* The expression.  */
267   rtx expr;
268   /* Index in the available expression bitmaps.  */
269   int bitmap_index;
270   /* Next entry with the same hash.  */
271   struct expr *next_same_hash;
272   /* List of anticipatable occurrences in basic blocks in the function.
273      An "anticipatable occurrence" is one that is the first occurrence in the
274      basic block, the operands are not modified in the basic block prior
275      to the occurrence and the output is not used between the start of
276      the block and the occurrence.  */
277   struct occr *antic_occr;
278   /* List of available occurrence in basic blocks in the function.
279      An "available occurrence" is one that is the last occurrence in the
280      basic block and the operands are not modified by following statements in
281      the basic block [including this insn].  */
282   struct occr *avail_occr;
283   /* Non-null if the computation is PRE redundant.
284      The value is the newly created pseudo-reg to record a copy of the
285      expression in all the places that reach the redundant copy.  */
286   rtx reaching_reg;
287   /* Maximum distance in instructions this expression can travel.
288      We avoid moving simple expressions for more than a few instructions
289      to keep register pressure under control.
290      A value of "0" removes restrictions on how far the expression can
291      travel.  */
292   int max_distance;
293 };
294 
295 /* Occurrence of an expression.
296    There is one per basic block.  If a pattern appears more than once the
297    last appearance is used [or first for anticipatable expressions].  */
298 
299 struct occr
300 {
301   /* Next occurrence of this expression.  */
302   struct occr *next;
303   /* The insn that computes the expression.  */
304   rtx insn;
305   /* Nonzero if this [anticipatable] occurrence has been deleted.  */
306   char deleted_p;
307   /* Nonzero if this [available] occurrence has been copied to
308      reaching_reg.  */
309   /* ??? This is mutually exclusive with deleted_p, so they could share
310      the same byte.  */
311   char copied_p;
312 };
313 
314 typedef struct occr *occr_t;
315 DEF_VEC_P (occr_t);
316 DEF_VEC_ALLOC_P (occr_t, heap);
317 
318 /* Expression hash tables.
319    Each hash table is an array of buckets.
320    ??? It is known that if it were an array of entries, structure elements
321    `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
322    not clear whether in the final analysis a sufficient amount of memory would
323    be saved as the size of the available expression bitmaps would be larger
324    [one could build a mapping table without holes afterwards though].
325    Someday I'll perform the computation and figure it out.  */
326 
327 struct hash_table_d
328 {
329   /* The table itself.
330      This is an array of `expr_hash_table_size' elements.  */
331   struct expr **table;
332 
333   /* Size of the hash table, in elements.  */
334   unsigned int size;
335 
336   /* Number of hash table elements.  */
337   unsigned int n_elems;
338 };
339 
340 /* Expression hash table.  */
341 static struct hash_table_d expr_hash_table;
342 
343 /* This is a list of expressions which are MEMs and will be used by load
344    or store motion.
345    Load motion tracks MEMs which aren't killed by anything except itself,
346    i.e. loads and stores to a single location.
347    We can then allow movement of these MEM refs with a little special
348    allowance. (all stores copy the same value to the reaching reg used
349    for the loads).  This means all values used to store into memory must have
350    no side effects so we can re-issue the setter value.  */
351 
352 struct ls_expr
353 {
354   struct expr * expr;		/* Gcse expression reference for LM.  */
355   rtx pattern;			/* Pattern of this mem.  */
356   rtx pattern_regs;		/* List of registers mentioned by the mem.  */
357   rtx loads;			/* INSN list of loads seen.  */
358   rtx stores;			/* INSN list of stores seen.  */
359   struct ls_expr * next;	/* Next in the list.  */
360   int invalid;			/* Invalid for some reason.  */
361   int index;			/* If it maps to a bitmap index.  */
362   unsigned int hash_index;	/* Index when in a hash table.  */
363   rtx reaching_reg;		/* Register to use when re-writing.  */
364 };
365 
366 /* Head of the list of load/store memory refs.  */
367 static struct ls_expr * pre_ldst_mems = NULL;
368 
369 /* Hashtable for the load/store memory refs.  */
370 static htab_t pre_ldst_table = NULL;
371 
372 /* Bitmap containing one bit for each register in the program.
373    Used when performing GCSE to track which registers have been set since
374    the start of the basic block.  */
375 static regset reg_set_bitmap;
376 
377 /* Array, indexed by basic block number for a list of insns which modify
378    memory within that block.  */
379 static VEC (rtx,heap) **modify_mem_list;
380 static bitmap modify_mem_list_set;
381 
382 typedef struct modify_pair_s
383 {
384   rtx dest;			/* A MEM.  */
385   rtx dest_addr;		/* The canonical address of `dest'.  */
386 } modify_pair;
387 
388 DEF_VEC_O(modify_pair);
389 DEF_VEC_ALLOC_O(modify_pair,heap);
390 
391 /* This array parallels modify_mem_list, except that it stores MEMs
392    being set and their canonicalized memory addresses.  */
393 static VEC (modify_pair,heap) **canon_modify_mem_list;
394 
395 /* Bitmap indexed by block numbers to record which blocks contain
396    function calls.  */
397 static bitmap blocks_with_calls;
398 
399 /* Various variables for statistics gathering.  */
400 
401 /* Memory used in a pass.
402    This isn't intended to be absolutely precise.  Its intent is only
403    to keep an eye on memory usage.  */
404 static int bytes_used;
405 
406 /* GCSE substitutions made.  */
407 static int gcse_subst_count;
408 /* Number of copy instructions created.  */
409 static int gcse_create_count;
410 
411 /* Doing code hoisting.  */
412 static bool doing_code_hoisting_p = false;
413 
414 /* For available exprs */
415 static sbitmap *ae_kill;
416 
417 static void compute_can_copy (void);
418 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
419 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
420 static void *gcse_alloc (unsigned long);
421 static void alloc_gcse_mem (void);
422 static void free_gcse_mem (void);
423 static void hash_scan_insn (rtx, struct hash_table_d *);
424 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
425 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
426 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
427 static int want_to_gcse_p (rtx, int *);
428 static int oprs_unchanged_p (const_rtx, const_rtx, int);
429 static int oprs_anticipatable_p (const_rtx, const_rtx);
430 static int oprs_available_p (const_rtx, const_rtx);
431 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
432 				  struct hash_table_d *);
433 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
434 static int expr_equiv_p (const_rtx, const_rtx);
435 static void record_last_reg_set_info (rtx, int);
436 static void record_last_mem_set_info (rtx);
437 static void record_last_set_info (rtx, const_rtx, void *);
438 static void compute_hash_table (struct hash_table_d *);
439 static void alloc_hash_table (struct hash_table_d *);
440 static void free_hash_table (struct hash_table_d *);
441 static void compute_hash_table_work (struct hash_table_d *);
442 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
443 static void compute_transp (const_rtx, int, sbitmap *);
444 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
445 				      struct hash_table_d *);
446 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
447 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
448 static void canon_list_insert (rtx, const_rtx, void *);
449 static void alloc_pre_mem (int, int);
450 static void free_pre_mem (void);
451 static struct edge_list *compute_pre_data (void);
452 static int pre_expr_reaches_here_p (basic_block, struct expr *,
453 				    basic_block);
454 static void insert_insn_end_basic_block (struct expr *, basic_block);
455 static void pre_insert_copy_insn (struct expr *, rtx);
456 static void pre_insert_copies (void);
457 static int pre_delete (void);
458 static int pre_gcse (struct edge_list *);
459 static int one_pre_gcse_pass (void);
460 static void add_label_notes (rtx, rtx);
461 static void alloc_code_hoist_mem (int, int);
462 static void free_code_hoist_mem (void);
463 static void compute_code_hoist_vbeinout (void);
464 static void compute_code_hoist_data (void);
465 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *,
466 				      int, int *);
467 static int hoist_code (void);
468 static int one_code_hoisting_pass (void);
469 static rtx process_insert_insn (struct expr *);
470 static int pre_edge_insert (struct edge_list *, struct expr **);
471 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
472 					 basic_block, char *);
473 static struct ls_expr * ldst_entry (rtx);
474 static void free_ldst_entry (struct ls_expr *);
475 static void free_ld_motion_mems (void);
476 static void print_ldst_list (FILE *);
477 static struct ls_expr * find_rtx_in_ldst (rtx);
478 static int simple_mem (const_rtx);
479 static void invalidate_any_buried_refs (rtx);
480 static void compute_ld_motion_mems (void);
481 static void trim_ld_motion_mems (void);
482 static void update_ld_motion_stores (struct expr *);
483 static void clear_modify_mem_tables (void);
484 static void free_modify_mem_tables (void);
485 static rtx gcse_emit_move_after (rtx, rtx, rtx);
486 static bool is_too_expensive (const char *);
487 
488 #define GNEW(T)			((T *) gmalloc (sizeof (T)))
489 #define GCNEW(T)		((T *) gcalloc (1, sizeof (T)))
490 
491 #define GNEWVEC(T, N)		((T *) gmalloc (sizeof (T) * (N)))
492 #define GCNEWVEC(T, N)		((T *) gcalloc ((N), sizeof (T)))
493 
494 #define GNEWVAR(T, S)		((T *) gmalloc ((S)))
495 #define GCNEWVAR(T, S)		((T *) gcalloc (1, (S)))
496 
497 #define GOBNEW(T)		((T *) gcse_alloc (sizeof (T)))
498 #define GOBNEWVAR(T, S)		((T *) gcse_alloc ((S)))
499 
500 /* Misc. utilities.  */
501 
502 #define can_copy \
503   (this_target_gcse->x_can_copy)
504 #define can_copy_init_p \
505   (this_target_gcse->x_can_copy_init_p)
506 
507 /* Compute which modes support reg/reg copy operations.  */
508 
509 static void
510 compute_can_copy (void)
511 {
512   int i;
513 #ifndef AVOID_CCMODE_COPIES
514   rtx reg, insn;
515 #endif
516   memset (can_copy, 0, NUM_MACHINE_MODES);
517 
518   start_sequence ();
519   for (i = 0; i < NUM_MACHINE_MODES; i++)
520     if (GET_MODE_CLASS (i) == MODE_CC)
521       {
522 #ifdef AVOID_CCMODE_COPIES
523 	can_copy[i] = 0;
524 #else
525 	reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
526 	insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
527 	if (recog (PATTERN (insn), insn, NULL) >= 0)
528 	  can_copy[i] = 1;
529 #endif
530       }
531     else
532       can_copy[i] = 1;
533 
534   end_sequence ();
535 }
536 
537 /* Returns whether the mode supports reg/reg copy operations.  */
538 
539 bool
540 can_copy_p (enum machine_mode mode)
541 {
542   if (! can_copy_init_p)
543     {
544       compute_can_copy ();
545       can_copy_init_p = true;
546     }
547 
548   return can_copy[mode] != 0;
549 }
550 
551 /* Cover function to xmalloc to record bytes allocated.  */
552 
553 static void *
554 gmalloc (size_t size)
555 {
556   bytes_used += size;
557   return xmalloc (size);
558 }
559 
560 /* Cover function to xcalloc to record bytes allocated.  */
561 
562 static void *
563 gcalloc (size_t nelem, size_t elsize)
564 {
565   bytes_used += nelem * elsize;
566   return xcalloc (nelem, elsize);
567 }
568 
569 /* Cover function to obstack_alloc.  */
570 
571 static void *
572 gcse_alloc (unsigned long size)
573 {
574   bytes_used += size;
575   return obstack_alloc (&gcse_obstack, size);
576 }
577 
578 /* Allocate memory for the reg/memory set tracking tables.
579    This is called at the start of each pass.  */
580 
581 static void
582 alloc_gcse_mem (void)
583 {
584   /* Allocate vars to track sets of regs.  */
585   reg_set_bitmap = ALLOC_REG_SET (NULL);
586 
587   /* Allocate array to keep a list of insns which modify memory in each
588      basic block.  */
589   modify_mem_list = GCNEWVEC (VEC (rtx,heap) *, last_basic_block);
590   canon_modify_mem_list = GCNEWVEC (VEC (modify_pair,heap) *,
591 				    last_basic_block);
592   modify_mem_list_set = BITMAP_ALLOC (NULL);
593   blocks_with_calls = BITMAP_ALLOC (NULL);
594 }
595 
596 /* Free memory allocated by alloc_gcse_mem.  */
597 
598 static void
599 free_gcse_mem (void)
600 {
601   FREE_REG_SET (reg_set_bitmap);
602 
603   free_modify_mem_tables ();
604   BITMAP_FREE (modify_mem_list_set);
605   BITMAP_FREE (blocks_with_calls);
606 }
607 
608 /* Compute the local properties of each recorded expression.
609 
610    Local properties are those that are defined by the block, irrespective of
611    other blocks.
612 
613    An expression is transparent in a block if its operands are not modified
614    in the block.
615 
616    An expression is computed (locally available) in a block if it is computed
617    at least once and expression would contain the same value if the
618    computation was moved to the end of the block.
619 
620    An expression is locally anticipatable in a block if it is computed at
621    least once and expression would contain the same value if the computation
622    was moved to the beginning of the block.
623 
624    We call this routine for pre and code hoisting.  They all compute
625    basically the same information and thus can easily share this code.
626 
627    TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
628    properties.  If NULL, then it is not necessary to compute or record that
629    particular property.
630 
631    TABLE controls which hash table to look at.  */
632 
633 static void
634 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
635 			  struct hash_table_d *table)
636 {
637   unsigned int i;
638 
639   /* Initialize any bitmaps that were passed in.  */
640   if (transp)
641     {
642       sbitmap_vector_ones (transp, last_basic_block);
643     }
644 
645   if (comp)
646     sbitmap_vector_zero (comp, last_basic_block);
647   if (antloc)
648     sbitmap_vector_zero (antloc, last_basic_block);
649 
650   for (i = 0; i < table->size; i++)
651     {
652       struct expr *expr;
653 
654       for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
655 	{
656 	  int indx = expr->bitmap_index;
657 	  struct occr *occr;
658 
659 	  /* The expression is transparent in this block if it is not killed.
660 	     We start by assuming all are transparent [none are killed], and
661 	     then reset the bits for those that are.  */
662 	  if (transp)
663 	    compute_transp (expr->expr, indx, transp);
664 
665 	  /* The occurrences recorded in antic_occr are exactly those that
666 	     we want to set to nonzero in ANTLOC.  */
667 	  if (antloc)
668 	    for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
669 	      {
670 		SET_BIT (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
671 
672 		/* While we're scanning the table, this is a good place to
673 		   initialize this.  */
674 		occr->deleted_p = 0;
675 	      }
676 
677 	  /* The occurrences recorded in avail_occr are exactly those that
678 	     we want to set to nonzero in COMP.  */
679 	  if (comp)
680 	    for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
681 	      {
682 		SET_BIT (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
683 
684 		/* While we're scanning the table, this is a good place to
685 		   initialize this.  */
686 		occr->copied_p = 0;
687 	      }
688 
689 	  /* While we're scanning the table, this is a good place to
690 	     initialize this.  */
691 	  expr->reaching_reg = 0;
692 	}
693     }
694 }
695 
696 /* Hash table support.  */
697 
698 struct reg_avail_info
699 {
700   basic_block last_bb;
701   int first_set;
702   int last_set;
703 };
704 
705 static struct reg_avail_info *reg_avail_info;
706 static basic_block current_bb;
707 
708 /* See whether X, the source of a set, is something we want to consider for
709    GCSE.  */
710 
711 static int
712 want_to_gcse_p (rtx x, int *max_distance_ptr)
713 {
714 #ifdef STACK_REGS
715   /* On register stack architectures, don't GCSE constants from the
716      constant pool, as the benefits are often swamped by the overhead
717      of shuffling the register stack between basic blocks.  */
718   if (IS_STACK_MODE (GET_MODE (x)))
719     x = avoid_constant_pool_reference (x);
720 #endif
721 
722   /* GCSE'ing constants:
723 
724      We do not specifically distinguish between constant and non-constant
725      expressions in PRE and Hoist.  We use set_src_cost below to limit
726      the maximum distance simple expressions can travel.
727 
728      Nevertheless, constants are much easier to GCSE, and, hence,
729      it is easy to overdo the optimizations.  Usually, excessive PRE and
730      Hoisting of constant leads to increased register pressure.
731 
732      RA can deal with this by rematerialing some of the constants.
733      Therefore, it is important that the back-end generates sets of constants
734      in a way that allows reload rematerialize them under high register
735      pressure, i.e., a pseudo register with REG_EQUAL to constant
736      is set only once.  Failing to do so will result in IRA/reload
737      spilling such constants under high register pressure instead of
738      rematerializing them.  */
739 
740   switch (GET_CODE (x))
741     {
742     case REG:
743     case SUBREG:
744     case CALL:
745       return 0;
746 
747     case CONST_INT:
748     case CONST_DOUBLE:
749     case CONST_FIXED:
750     case CONST_VECTOR:
751       if (!doing_code_hoisting_p)
752 	/* Do not PRE constants.  */
753 	return 0;
754 
755       /* FALLTHRU */
756 
757     default:
758       if (doing_code_hoisting_p)
759 	/* PRE doesn't implement max_distance restriction.  */
760 	{
761 	  int cost;
762 	  int max_distance;
763 
764 	  gcc_assert (!optimize_function_for_speed_p (cfun)
765 		      && optimize_function_for_size_p (cfun));
766 	  cost = set_src_cost (x, 0);
767 
768 	  if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
769 	    {
770 	      max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
771 	      if (max_distance == 0)
772 		return 0;
773 
774 	      gcc_assert (max_distance > 0);
775 	    }
776 	  else
777 	    max_distance = 0;
778 
779 	  if (max_distance_ptr)
780 	    *max_distance_ptr = max_distance;
781 	}
782 
783       return can_assign_to_reg_without_clobbers_p (x);
784     }
785 }
786 
787 /* Used internally by can_assign_to_reg_without_clobbers_p.  */
788 
789 static GTY(()) rtx test_insn;
790 
791 /* Return true if we can assign X to a pseudo register such that the
792    resulting insn does not result in clobbering a hard register as a
793    side-effect.
794 
795    Additionally, if the target requires it, check that the resulting insn
796    can be copied.  If it cannot, this means that X is special and probably
797    has hidden side-effects we don't want to mess with.
798 
799    This function is typically used by code motion passes, to verify
800    that it is safe to insert an insn without worrying about clobbering
801    maybe live hard regs.  */
802 
803 bool
804 can_assign_to_reg_without_clobbers_p (rtx x)
805 {
806   int num_clobbers = 0;
807   int icode;
808 
809   /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
810   if (general_operand (x, GET_MODE (x)))
811     return 1;
812   else if (GET_MODE (x) == VOIDmode)
813     return 0;
814 
815   /* Otherwise, check if we can make a valid insn from it.  First initialize
816      our test insn if we haven't already.  */
817   if (test_insn == 0)
818     {
819       test_insn
820 	= make_insn_raw (gen_rtx_SET (VOIDmode,
821 				      gen_rtx_REG (word_mode,
822 						   FIRST_PSEUDO_REGISTER * 2),
823 				      const0_rtx));
824       NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
825     }
826 
827   /* Now make an insn like the one we would make when GCSE'ing and see if
828      valid.  */
829   PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
830   SET_SRC (PATTERN (test_insn)) = x;
831 
832   icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
833   if (icode < 0)
834     return false;
835 
836   if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
837     return false;
838 
839   if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
840     return false;
841 
842   return true;
843 }
844 
845 /* Return nonzero if the operands of expression X are unchanged from the
846    start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
847    or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */
848 
849 static int
850 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
851 {
852   int i, j;
853   enum rtx_code code;
854   const char *fmt;
855 
856   if (x == 0)
857     return 1;
858 
859   code = GET_CODE (x);
860   switch (code)
861     {
862     case REG:
863       {
864 	struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
865 
866 	if (info->last_bb != current_bb)
867 	  return 1;
868 	if (avail_p)
869 	  return info->last_set < DF_INSN_LUID (insn);
870 	else
871 	  return info->first_set >= DF_INSN_LUID (insn);
872       }
873 
874     case MEM:
875       if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
876 				  x, avail_p))
877 	return 0;
878       else
879 	return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
880 
881     case PRE_DEC:
882     case PRE_INC:
883     case POST_DEC:
884     case POST_INC:
885     case PRE_MODIFY:
886     case POST_MODIFY:
887       return 0;
888 
889     case PC:
890     case CC0: /*FIXME*/
891     case CONST:
892     case CONST_INT:
893     case CONST_DOUBLE:
894     case CONST_FIXED:
895     case CONST_VECTOR:
896     case SYMBOL_REF:
897     case LABEL_REF:
898     case ADDR_VEC:
899     case ADDR_DIFF_VEC:
900       return 1;
901 
902     default:
903       break;
904     }
905 
906   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
907     {
908       if (fmt[i] == 'e')
909 	{
910 	  /* If we are about to do the last recursive call needed at this
911 	     level, change it into iteration.  This function is called enough
912 	     to be worth it.  */
913 	  if (i == 0)
914 	    return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
915 
916 	  else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
917 	    return 0;
918 	}
919       else if (fmt[i] == 'E')
920 	for (j = 0; j < XVECLEN (x, i); j++)
921 	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
922 	    return 0;
923     }
924 
925   return 1;
926 }
927 
928 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p.  */
929 
930 struct mem_conflict_info
931 {
932   /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
933      see if a memory store conflicts with this memory load.  */
934   const_rtx mem;
935 
936   /* True if mems_conflict_for_gcse_p finds a conflict between two memory
937      references.  */
938   bool conflict;
939 };
940 
941 /* DEST is the output of an instruction.  If it is a memory reference and
942    possibly conflicts with the load found in DATA, then communicate this
943    information back through DATA.  */
944 
945 static void
946 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
947 			  void *data)
948 {
949   struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
950 
951   while (GET_CODE (dest) == SUBREG
952 	 || GET_CODE (dest) == ZERO_EXTRACT
953 	 || GET_CODE (dest) == STRICT_LOW_PART)
954     dest = XEXP (dest, 0);
955 
956   /* If DEST is not a MEM, then it will not conflict with the load.  Note
957      that function calls are assumed to clobber memory, but are handled
958      elsewhere.  */
959   if (! MEM_P (dest))
960     return;
961 
962   /* If we are setting a MEM in our list of specially recognized MEMs,
963      don't mark as killed this time.  */
964   if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
965     {
966       if (!find_rtx_in_ldst (dest))
967 	mci->conflict = true;
968       return;
969     }
970 
971   if (true_dependence (dest, GET_MODE (dest), mci->mem))
972     mci->conflict = true;
973 }
974 
975 /* Return nonzero if the expression in X (a memory reference) is killed
976    in block BB before or after the insn with the LUID in UID_LIMIT.
977    AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
978    before UID_LIMIT.
979 
980    To check the entire block, set UID_LIMIT to max_uid + 1 and
981    AVAIL_P to 0.  */
982 
983 static int
984 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
985 			int avail_p)
986 {
987   VEC (rtx,heap) *list = modify_mem_list[bb->index];
988   rtx setter;
989   unsigned ix;
990 
991   /* If this is a readonly then we aren't going to be changing it.  */
992   if (MEM_READONLY_P (x))
993     return 0;
994 
995   FOR_EACH_VEC_ELT_REVERSE (rtx, list, ix, setter)
996     {
997       struct mem_conflict_info mci;
998 
999       /* Ignore entries in the list that do not apply.  */
1000       if ((avail_p
1001 	   && DF_INSN_LUID (setter) < uid_limit)
1002 	  || (! avail_p
1003 	      && DF_INSN_LUID (setter) > uid_limit))
1004 	continue;
1005 
1006       /* If SETTER is a call everything is clobbered.  Note that calls
1007 	 to pure functions are never put on the list, so we need not
1008 	 worry about them.  */
1009       if (CALL_P (setter))
1010 	return 1;
1011 
1012       /* SETTER must be an INSN of some kind that sets memory.  Call
1013 	 note_stores to examine each hunk of memory that is modified.  */
1014       mci.mem = x;
1015       mci.conflict = false;
1016       note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1017       if (mci.conflict)
1018 	return 1;
1019     }
1020   return 0;
1021 }
1022 
1023 /* Return nonzero if the operands of expression X are unchanged from
1024    the start of INSN's basic block up to but not including INSN.  */
1025 
1026 static int
1027 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1028 {
1029   return oprs_unchanged_p (x, insn, 0);
1030 }
1031 
1032 /* Return nonzero if the operands of expression X are unchanged from
1033    INSN to the end of INSN's basic block.  */
1034 
1035 static int
1036 oprs_available_p (const_rtx x, const_rtx insn)
1037 {
1038   return oprs_unchanged_p (x, insn, 1);
1039 }
1040 
1041 /* Hash expression X.
1042 
1043    MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
1044    indicating if a volatile operand is found or if the expression contains
1045    something we don't want to insert in the table.  HASH_TABLE_SIZE is
1046    the current size of the hash table to be probed.  */
1047 
1048 static unsigned int
1049 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1050 	   int hash_table_size)
1051 {
1052   unsigned int hash;
1053 
1054   *do_not_record_p = 0;
1055 
1056   hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1057   return hash % hash_table_size;
1058 }
1059 
1060 /* Return nonzero if exp1 is equivalent to exp2.  */
1061 
1062 static int
1063 expr_equiv_p (const_rtx x, const_rtx y)
1064 {
1065   return exp_equiv_p (x, y, 0, true);
1066 }
1067 
1068 /* Insert expression X in INSN in the hash TABLE.
1069    If it is already present, record it as the last occurrence in INSN's
1070    basic block.
1071 
1072    MODE is the mode of the value X is being stored into.
1073    It is only used if X is a CONST_INT.
1074 
1075    ANTIC_P is nonzero if X is an anticipatable expression.
1076    AVAIL_P is nonzero if X is an available expression.
1077 
1078    MAX_DISTANCE is the maximum distance in instructions this expression can
1079    be moved.  */
1080 
1081 static void
1082 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1083 		      int avail_p, int max_distance, struct hash_table_d *table)
1084 {
1085   int found, do_not_record_p;
1086   unsigned int hash;
1087   struct expr *cur_expr, *last_expr = NULL;
1088   struct occr *antic_occr, *avail_occr;
1089 
1090   hash = hash_expr (x, mode, &do_not_record_p, table->size);
1091 
1092   /* Do not insert expression in table if it contains volatile operands,
1093      or if hash_expr determines the expression is something we don't want
1094      to or can't handle.  */
1095   if (do_not_record_p)
1096     return;
1097 
1098   cur_expr = table->table[hash];
1099   found = 0;
1100 
1101   while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1102     {
1103       /* If the expression isn't found, save a pointer to the end of
1104 	 the list.  */
1105       last_expr = cur_expr;
1106       cur_expr = cur_expr->next_same_hash;
1107     }
1108 
1109   if (! found)
1110     {
1111       cur_expr = GOBNEW (struct expr);
1112       bytes_used += sizeof (struct expr);
1113       if (table->table[hash] == NULL)
1114 	/* This is the first pattern that hashed to this index.  */
1115 	table->table[hash] = cur_expr;
1116       else
1117 	/* Add EXPR to end of this hash chain.  */
1118 	last_expr->next_same_hash = cur_expr;
1119 
1120       /* Set the fields of the expr element.  */
1121       cur_expr->expr = x;
1122       cur_expr->bitmap_index = table->n_elems++;
1123       cur_expr->next_same_hash = NULL;
1124       cur_expr->antic_occr = NULL;
1125       cur_expr->avail_occr = NULL;
1126       gcc_assert (max_distance >= 0);
1127       cur_expr->max_distance = max_distance;
1128     }
1129   else
1130     gcc_assert (cur_expr->max_distance == max_distance);
1131 
1132   /* Now record the occurrence(s).  */
1133   if (antic_p)
1134     {
1135       antic_occr = cur_expr->antic_occr;
1136 
1137       if (antic_occr
1138 	  && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1139 	antic_occr = NULL;
1140 
1141       if (antic_occr)
1142 	/* Found another instance of the expression in the same basic block.
1143 	   Prefer the currently recorded one.  We want the first one in the
1144 	   block and the block is scanned from start to end.  */
1145 	; /* nothing to do */
1146       else
1147 	{
1148 	  /* First occurrence of this expression in this basic block.  */
1149 	  antic_occr = GOBNEW (struct occr);
1150 	  bytes_used += sizeof (struct occr);
1151 	  antic_occr->insn = insn;
1152 	  antic_occr->next = cur_expr->antic_occr;
1153 	  antic_occr->deleted_p = 0;
1154 	  cur_expr->antic_occr = antic_occr;
1155 	}
1156     }
1157 
1158   if (avail_p)
1159     {
1160       avail_occr = cur_expr->avail_occr;
1161 
1162       if (avail_occr
1163 	  && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1164 	{
1165 	  /* Found another instance of the expression in the same basic block.
1166 	     Prefer this occurrence to the currently recorded one.  We want
1167 	     the last one in the block and the block is scanned from start
1168 	     to end.  */
1169 	  avail_occr->insn = insn;
1170 	}
1171       else
1172 	{
1173 	  /* First occurrence of this expression in this basic block.  */
1174 	  avail_occr = GOBNEW (struct occr);
1175 	  bytes_used += sizeof (struct occr);
1176 	  avail_occr->insn = insn;
1177 	  avail_occr->next = cur_expr->avail_occr;
1178 	  avail_occr->deleted_p = 0;
1179 	  cur_expr->avail_occr = avail_occr;
1180 	}
1181     }
1182 }
1183 
1184 /* Scan SET present in INSN and add an entry to the hash TABLE.  */
1185 
1186 static void
1187 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
1188 {
1189   rtx src = SET_SRC (set);
1190   rtx dest = SET_DEST (set);
1191   rtx note;
1192 
1193   if (GET_CODE (src) == CALL)
1194     hash_scan_call (src, insn, table);
1195 
1196   else if (REG_P (dest))
1197     {
1198       unsigned int regno = REGNO (dest);
1199       int max_distance = 0;
1200 
1201       /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1202 
1203 	 This allows us to do a single GCSE pass and still eliminate
1204 	 redundant constants, addresses or other expressions that are
1205 	 constructed with multiple instructions.
1206 
1207 	 However, keep the original SRC if INSN is a simple reg-reg move.
1208 	 In this case, there will almost always be a REG_EQUAL note on the
1209 	 insn that sets SRC.  By recording the REG_EQUAL value here as SRC
1210 	 for INSN, we miss copy propagation opportunities and we perform the
1211 	 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1212 	 do more than one PRE GCSE pass.
1213 
1214 	 Note that this does not impede profitable constant propagations.  We
1215 	 "look through" reg-reg sets in lookup_avail_set.  */
1216       note = find_reg_equal_equiv_note (insn);
1217       if (note != 0
1218 	  && REG_NOTE_KIND (note) == REG_EQUAL
1219 	  && !REG_P (src)
1220 	  && want_to_gcse_p (XEXP (note, 0), NULL))
1221 	src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1222 
1223       /* Only record sets of pseudo-regs in the hash table.  */
1224       if (regno >= FIRST_PSEUDO_REGISTER
1225 	  /* Don't GCSE something if we can't do a reg/reg copy.  */
1226 	  && can_copy_p (GET_MODE (dest))
1227 	  /* GCSE commonly inserts instruction after the insn.  We can't
1228 	     do that easily for EH edges so disable GCSE on these for now.  */
1229 	  /* ??? We can now easily create new EH landing pads at the
1230 	     gimple level, for splitting edges; there's no reason we
1231 	     can't do the same thing at the rtl level.  */
1232 	  && !can_throw_internal (insn)
1233 	  /* Is SET_SRC something we want to gcse?  */
1234 	  && want_to_gcse_p (src, &max_distance)
1235 	  /* Don't CSE a nop.  */
1236 	  && ! set_noop_p (set)
1237 	  /* Don't GCSE if it has attached REG_EQUIV note.
1238 	     At this point this only function parameters should have
1239 	     REG_EQUIV notes and if the argument slot is used somewhere
1240 	     explicitly, it means address of parameter has been taken,
1241 	     so we should not extend the lifetime of the pseudo.  */
1242 	  && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1243 	{
1244 	  /* An expression is not anticipatable if its operands are
1245 	     modified before this insn or if this is not the only SET in
1246 	     this insn.  The latter condition does not have to mean that
1247 	     SRC itself is not anticipatable, but we just will not be
1248 	     able to handle code motion of insns with multiple sets.  */
1249 	  int antic_p = oprs_anticipatable_p (src, insn)
1250 			&& !multiple_sets (insn);
1251 	  /* An expression is not available if its operands are
1252 	     subsequently modified, including this insn.  It's also not
1253 	     available if this is a branch, because we can't insert
1254 	     a set after the branch.  */
1255 	  int avail_p = (oprs_available_p (src, insn)
1256 			 && ! JUMP_P (insn));
1257 
1258 	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1259 				max_distance, table);
1260 	}
1261     }
1262   /* In case of store we want to consider the memory value as available in
1263      the REG stored in that memory. This makes it possible to remove
1264      redundant loads from due to stores to the same location.  */
1265   else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1266       {
1267         unsigned int regno = REGNO (src);
1268 	int max_distance = 0;
1269 
1270 	/* Only record sets of pseudo-regs in the hash table.  */
1271         if (regno >= FIRST_PSEUDO_REGISTER
1272 	   /* Don't GCSE something if we can't do a reg/reg copy.  */
1273 	   && can_copy_p (GET_MODE (src))
1274 	   /* GCSE commonly inserts instruction after the insn.  We can't
1275 	      do that easily for EH edges so disable GCSE on these for now.  */
1276 	   && !can_throw_internal (insn)
1277 	   /* Is SET_DEST something we want to gcse?  */
1278 	   && want_to_gcse_p (dest, &max_distance)
1279 	   /* Don't CSE a nop.  */
1280 	   && ! set_noop_p (set)
1281 	   /* Don't GCSE if it has attached REG_EQUIV note.
1282 	      At this point this only function parameters should have
1283 	      REG_EQUIV notes and if the argument slot is used somewhere
1284 	      explicitly, it means address of parameter has been taken,
1285 	      so we should not extend the lifetime of the pseudo.  */
1286 	   && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1287 	       || ! MEM_P (XEXP (note, 0))))
1288              {
1289                /* Stores are never anticipatable.  */
1290                int antic_p = 0;
1291 	       /* An expression is not available if its operands are
1292 	          subsequently modified, including this insn.  It's also not
1293 	          available if this is a branch, because we can't insert
1294 	          a set after the branch.  */
1295                int avail_p = oprs_available_p (dest, insn)
1296 			     && ! JUMP_P (insn);
1297 
1298 	       /* Record the memory expression (DEST) in the hash table.  */
1299 	       insert_expr_in_table (dest, GET_MODE (dest), insn,
1300 				     antic_p, avail_p, max_distance, table);
1301              }
1302       }
1303 }
1304 
1305 static void
1306 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1307 		   struct hash_table_d *table ATTRIBUTE_UNUSED)
1308 {
1309   /* Currently nothing to do.  */
1310 }
1311 
1312 static void
1313 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1314 		struct hash_table_d *table ATTRIBUTE_UNUSED)
1315 {
1316   /* Currently nothing to do.  */
1317 }
1318 
1319 /* Process INSN and add hash table entries as appropriate.  */
1320 
1321 static void
1322 hash_scan_insn (rtx insn, struct hash_table_d *table)
1323 {
1324   rtx pat = PATTERN (insn);
1325   int i;
1326 
1327   /* Pick out the sets of INSN and for other forms of instructions record
1328      what's been modified.  */
1329 
1330   if (GET_CODE (pat) == SET)
1331     hash_scan_set (pat, insn, table);
1332 
1333   else if (GET_CODE (pat) == CLOBBER)
1334     hash_scan_clobber (pat, insn, table);
1335 
1336   else if (GET_CODE (pat) == CALL)
1337     hash_scan_call (pat, insn, table);
1338 
1339   else if (GET_CODE (pat) == PARALLEL)
1340     for (i = 0; i < XVECLEN (pat, 0); i++)
1341       {
1342 	rtx x = XVECEXP (pat, 0, i);
1343 
1344 	if (GET_CODE (x) == SET)
1345 	  hash_scan_set (x, insn, table);
1346 	else if (GET_CODE (x) == CLOBBER)
1347 	  hash_scan_clobber (x, insn, table);
1348 	else if (GET_CODE (x) == CALL)
1349 	  hash_scan_call (x, insn, table);
1350       }
1351 }
1352 
1353 /* Dump the hash table TABLE to file FILE under the name NAME.  */
1354 
1355 static void
1356 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1357 {
1358   int i;
1359   /* Flattened out table, so it's printed in proper order.  */
1360   struct expr **flat_table;
1361   unsigned int *hash_val;
1362   struct expr *expr;
1363 
1364   flat_table = XCNEWVEC (struct expr *, table->n_elems);
1365   hash_val = XNEWVEC (unsigned int, table->n_elems);
1366 
1367   for (i = 0; i < (int) table->size; i++)
1368     for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1369       {
1370 	flat_table[expr->bitmap_index] = expr;
1371 	hash_val[expr->bitmap_index] = i;
1372       }
1373 
1374   fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1375 	   name, table->size, table->n_elems);
1376 
1377   for (i = 0; i < (int) table->n_elems; i++)
1378     if (flat_table[i] != 0)
1379       {
1380 	expr = flat_table[i];
1381 	fprintf (file, "Index %d (hash value %d; max distance %d)\n  ",
1382 		 expr->bitmap_index, hash_val[i], expr->max_distance);
1383 	print_rtl (file, expr->expr);
1384 	fprintf (file, "\n");
1385       }
1386 
1387   fprintf (file, "\n");
1388 
1389   free (flat_table);
1390   free (hash_val);
1391 }
1392 
1393 /* Record register first/last/block set information for REGNO in INSN.
1394 
1395    first_set records the first place in the block where the register
1396    is set and is used to compute "anticipatability".
1397 
1398    last_set records the last place in the block where the register
1399    is set and is used to compute "availability".
1400 
1401    last_bb records the block for which first_set and last_set are
1402    valid, as a quick test to invalidate them.  */
1403 
1404 static void
1405 record_last_reg_set_info (rtx insn, int regno)
1406 {
1407   struct reg_avail_info *info = &reg_avail_info[regno];
1408   int luid = DF_INSN_LUID (insn);
1409 
1410   info->last_set = luid;
1411   if (info->last_bb != current_bb)
1412     {
1413       info->last_bb = current_bb;
1414       info->first_set = luid;
1415     }
1416 }
1417 
1418 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1419    Note we store a pair of elements in the list, so they have to be
1420    taken off pairwise.  */
1421 
1422 static void
1423 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1424 		   void * v_insn)
1425 {
1426   rtx dest_addr, insn;
1427   int bb;
1428   modify_pair *pair;
1429 
1430   while (GET_CODE (dest) == SUBREG
1431       || GET_CODE (dest) == ZERO_EXTRACT
1432       || GET_CODE (dest) == STRICT_LOW_PART)
1433     dest = XEXP (dest, 0);
1434 
1435   /* If DEST is not a MEM, then it will not conflict with a load.  Note
1436      that function calls are assumed to clobber memory, but are handled
1437      elsewhere.  */
1438 
1439   if (! MEM_P (dest))
1440     return;
1441 
1442   dest_addr = get_addr (XEXP (dest, 0));
1443   dest_addr = canon_rtx (dest_addr);
1444   insn = (rtx) v_insn;
1445   bb = BLOCK_FOR_INSN (insn)->index;
1446 
1447   pair = VEC_safe_push (modify_pair, heap, canon_modify_mem_list[bb], NULL);
1448   pair->dest = dest;
1449   pair->dest_addr = dest_addr;
1450 }
1451 
1452 /* Record memory modification information for INSN.  We do not actually care
1453    about the memory location(s) that are set, or even how they are set (consider
1454    a CALL_INSN).  We merely need to record which insns modify memory.  */
1455 
1456 static void
1457 record_last_mem_set_info (rtx insn)
1458 {
1459   int bb = BLOCK_FOR_INSN (insn)->index;
1460 
1461   /* load_killed_in_block_p will handle the case of calls clobbering
1462      everything.  */
1463   VEC_safe_push (rtx, heap, modify_mem_list[bb], insn);
1464   bitmap_set_bit (modify_mem_list_set, bb);
1465 
1466   if (CALL_P (insn))
1467     bitmap_set_bit (blocks_with_calls, bb);
1468   else
1469     note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1470 }
1471 
1472 /* Called from compute_hash_table via note_stores to handle one
1473    SET or CLOBBER in an insn.  DATA is really the instruction in which
1474    the SET is taking place.  */
1475 
1476 static void
1477 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1478 {
1479   rtx last_set_insn = (rtx) data;
1480 
1481   if (GET_CODE (dest) == SUBREG)
1482     dest = SUBREG_REG (dest);
1483 
1484   if (REG_P (dest))
1485     record_last_reg_set_info (last_set_insn, REGNO (dest));
1486   else if (MEM_P (dest)
1487 	   /* Ignore pushes, they clobber nothing.  */
1488 	   && ! push_operand (dest, GET_MODE (dest)))
1489     record_last_mem_set_info (last_set_insn);
1490 }
1491 
1492 /* Top level function to create an expression hash table.
1493 
1494    Expression entries are placed in the hash table if
1495    - they are of the form (set (pseudo-reg) src),
1496    - src is something we want to perform GCSE on,
1497    - none of the operands are subsequently modified in the block
1498 
1499    Currently src must be a pseudo-reg or a const_int.
1500 
1501    TABLE is the table computed.  */
1502 
1503 static void
1504 compute_hash_table_work (struct hash_table_d *table)
1505 {
1506   int i;
1507 
1508   /* re-Cache any INSN_LIST nodes we have allocated.  */
1509   clear_modify_mem_tables ();
1510   /* Some working arrays used to track first and last set in each block.  */
1511   reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1512 
1513   for (i = 0; i < max_reg_num (); ++i)
1514     reg_avail_info[i].last_bb = NULL;
1515 
1516   FOR_EACH_BB (current_bb)
1517     {
1518       rtx insn;
1519       unsigned int regno;
1520 
1521       /* First pass over the instructions records information used to
1522 	 determine when registers and memory are first and last set.  */
1523       FOR_BB_INSNS (current_bb, insn)
1524 	{
1525 	  if (!NONDEBUG_INSN_P (insn))
1526 	    continue;
1527 
1528 	  if (CALL_P (insn))
1529 	    {
1530 	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1531 		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1532 		  record_last_reg_set_info (insn, regno);
1533 
1534 	      if (! RTL_CONST_OR_PURE_CALL_P (insn))
1535 		record_last_mem_set_info (insn);
1536 	    }
1537 
1538 	  note_stores (PATTERN (insn), record_last_set_info, insn);
1539 	}
1540 
1541       /* The next pass builds the hash table.  */
1542       FOR_BB_INSNS (current_bb, insn)
1543 	if (NONDEBUG_INSN_P (insn))
1544 	  hash_scan_insn (insn, table);
1545     }
1546 
1547   free (reg_avail_info);
1548   reg_avail_info = NULL;
1549 }
1550 
1551 /* Allocate space for the set/expr hash TABLE.
1552    It is used to determine the number of buckets to use.  */
1553 
1554 static void
1555 alloc_hash_table (struct hash_table_d *table)
1556 {
1557   int n;
1558 
1559   n = get_max_insn_count ();
1560 
1561   table->size = n / 4;
1562   if (table->size < 11)
1563     table->size = 11;
1564 
1565   /* Attempt to maintain efficient use of hash table.
1566      Making it an odd number is simplest for now.
1567      ??? Later take some measurements.  */
1568   table->size |= 1;
1569   n = table->size * sizeof (struct expr *);
1570   table->table = GNEWVAR (struct expr *, n);
1571 }
1572 
1573 /* Free things allocated by alloc_hash_table.  */
1574 
1575 static void
1576 free_hash_table (struct hash_table_d *table)
1577 {
1578   free (table->table);
1579 }
1580 
1581 /* Compute the expression hash table TABLE.  */
1582 
1583 static void
1584 compute_hash_table (struct hash_table_d *table)
1585 {
1586   /* Initialize count of number of entries in hash table.  */
1587   table->n_elems = 0;
1588   memset (table->table, 0, table->size * sizeof (struct expr *));
1589 
1590   compute_hash_table_work (table);
1591 }
1592 
1593 /* Expression tracking support.  */
1594 
1595 /* Clear canon_modify_mem_list and modify_mem_list tables.  */
1596 static void
1597 clear_modify_mem_tables (void)
1598 {
1599   unsigned i;
1600   bitmap_iterator bi;
1601 
1602   EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1603     {
1604       VEC_free (rtx, heap, modify_mem_list[i]);
1605       VEC_free (modify_pair, heap, canon_modify_mem_list[i]);
1606     }
1607   bitmap_clear (modify_mem_list_set);
1608   bitmap_clear (blocks_with_calls);
1609 }
1610 
1611 /* Release memory used by modify_mem_list_set.  */
1612 
1613 static void
1614 free_modify_mem_tables (void)
1615 {
1616   clear_modify_mem_tables ();
1617   free (modify_mem_list);
1618   free (canon_modify_mem_list);
1619   modify_mem_list = 0;
1620   canon_modify_mem_list = 0;
1621 }
1622 
1623 /* For each block, compute whether X is transparent.  X is either an
1624    expression or an assignment [though we don't care which, for this context
1625    an assignment is treated as an expression].  For each block where an
1626    element of X is modified, reset the INDX bit in BMAP.  */
1627 
1628 static void
1629 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1630 {
1631   int i, j;
1632   enum rtx_code code;
1633   const char *fmt;
1634 
1635   /* repeat is used to turn tail-recursion into iteration since GCC
1636      can't do it when there's no return value.  */
1637  repeat:
1638 
1639   if (x == 0)
1640     return;
1641 
1642   code = GET_CODE (x);
1643   switch (code)
1644     {
1645     case REG:
1646 	{
1647 	  df_ref def;
1648 	  for (def = DF_REG_DEF_CHAIN (REGNO (x));
1649 	       def;
1650 	       def = DF_REF_NEXT_REG (def))
1651 	    RESET_BIT (bmap[DF_REF_BB (def)->index], indx);
1652 	}
1653 
1654       return;
1655 
1656     case MEM:
1657       if (! MEM_READONLY_P (x))
1658 	{
1659 	  bitmap_iterator bi;
1660 	  unsigned bb_index;
1661 
1662 	  /* First handle all the blocks with calls.  We don't need to
1663 	     do any list walking for them.  */
1664 	  EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1665 	    {
1666 	      RESET_BIT (bmap[bb_index], indx);
1667 	    }
1668 
1669 	    /* Now iterate over the blocks which have memory modifications
1670 	       but which do not have any calls.  */
1671 	    EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1672 					    blocks_with_calls,
1673 					    0, bb_index, bi)
1674 	      {
1675 		VEC (modify_pair,heap) *list
1676 		  = canon_modify_mem_list[bb_index];
1677 		modify_pair *pair;
1678 		unsigned ix;
1679 
1680 		FOR_EACH_VEC_ELT_REVERSE (modify_pair, list, ix, pair)
1681 		  {
1682 		    rtx dest = pair->dest;
1683 		    rtx dest_addr = pair->dest_addr;
1684 
1685 		    if (canon_true_dependence (dest, GET_MODE (dest),
1686 					       dest_addr, x, NULL_RTX))
1687 		      RESET_BIT (bmap[bb_index], indx);
1688 	          }
1689 	      }
1690 	}
1691 
1692       x = XEXP (x, 0);
1693       goto repeat;
1694 
1695     case PC:
1696     case CC0: /*FIXME*/
1697     case CONST:
1698     case CONST_INT:
1699     case CONST_DOUBLE:
1700     case CONST_FIXED:
1701     case CONST_VECTOR:
1702     case SYMBOL_REF:
1703     case LABEL_REF:
1704     case ADDR_VEC:
1705     case ADDR_DIFF_VEC:
1706       return;
1707 
1708     default:
1709       break;
1710     }
1711 
1712   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1713     {
1714       if (fmt[i] == 'e')
1715 	{
1716 	  /* If we are about to do the last recursive call
1717 	     needed at this level, change it into iteration.
1718 	     This function is called enough to be worth it.  */
1719 	  if (i == 0)
1720 	    {
1721 	      x = XEXP (x, i);
1722 	      goto repeat;
1723 	    }
1724 
1725 	  compute_transp (XEXP (x, i), indx, bmap);
1726 	}
1727       else if (fmt[i] == 'E')
1728 	for (j = 0; j < XVECLEN (x, i); j++)
1729 	  compute_transp (XVECEXP (x, i, j), indx, bmap);
1730     }
1731 }
1732 
1733 /* Compute PRE+LCM working variables.  */
1734 
1735 /* Local properties of expressions.  */
1736 
1737 /* Nonzero for expressions that are transparent in the block.  */
1738 static sbitmap *transp;
1739 
1740 /* Nonzero for expressions that are computed (available) in the block.  */
1741 static sbitmap *comp;
1742 
1743 /* Nonzero for expressions that are locally anticipatable in the block.  */
1744 static sbitmap *antloc;
1745 
1746 /* Nonzero for expressions where this block is an optimal computation
1747    point.  */
1748 static sbitmap *pre_optimal;
1749 
1750 /* Nonzero for expressions which are redundant in a particular block.  */
1751 static sbitmap *pre_redundant;
1752 
1753 /* Nonzero for expressions which should be inserted on a specific edge.  */
1754 static sbitmap *pre_insert_map;
1755 
1756 /* Nonzero for expressions which should be deleted in a specific block.  */
1757 static sbitmap *pre_delete_map;
1758 
1759 /* Allocate vars used for PRE analysis.  */
1760 
1761 static void
1762 alloc_pre_mem (int n_blocks, int n_exprs)
1763 {
1764   transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1765   comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1766   antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1767 
1768   pre_optimal = NULL;
1769   pre_redundant = NULL;
1770   pre_insert_map = NULL;
1771   pre_delete_map = NULL;
1772   ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1773 
1774   /* pre_insert and pre_delete are allocated later.  */
1775 }
1776 
1777 /* Free vars used for PRE analysis.  */
1778 
1779 static void
1780 free_pre_mem (void)
1781 {
1782   sbitmap_vector_free (transp);
1783   sbitmap_vector_free (comp);
1784 
1785   /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */
1786 
1787   if (pre_optimal)
1788     sbitmap_vector_free (pre_optimal);
1789   if (pre_redundant)
1790     sbitmap_vector_free (pre_redundant);
1791   if (pre_insert_map)
1792     sbitmap_vector_free (pre_insert_map);
1793   if (pre_delete_map)
1794     sbitmap_vector_free (pre_delete_map);
1795 
1796   transp = comp = NULL;
1797   pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1798 }
1799 
1800 /* Remove certain expressions from anticipatable and transparent
1801    sets of basic blocks that have incoming abnormal edge.
1802    For PRE remove potentially trapping expressions to avoid placing
1803    them on abnormal edges.  For hoisting remove memory references that
1804    can be clobbered by calls.  */
1805 
1806 static void
1807 prune_expressions (bool pre_p)
1808 {
1809   sbitmap prune_exprs;
1810   struct expr *expr;
1811   unsigned int ui;
1812   basic_block bb;
1813 
1814   prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1815   sbitmap_zero (prune_exprs);
1816   for (ui = 0; ui < expr_hash_table.size; ui++)
1817     {
1818       for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1819 	{
1820 	  /* Note potentially trapping expressions.  */
1821 	  if (may_trap_p (expr->expr))
1822 	    {
1823 	      SET_BIT (prune_exprs, expr->bitmap_index);
1824 	      continue;
1825 	    }
1826 
1827 	  if (!pre_p && MEM_P (expr->expr))
1828 	    /* Note memory references that can be clobbered by a call.
1829 	       We do not split abnormal edges in hoisting, so would
1830 	       a memory reference get hoisted along an abnormal edge,
1831 	       it would be placed /before/ the call.  Therefore, only
1832 	       constant memory references can be hoisted along abnormal
1833 	       edges.  */
1834 	    {
1835 	      if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1836 		  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1837 		continue;
1838 
1839 	      if (MEM_READONLY_P (expr->expr)
1840 		  && !MEM_VOLATILE_P (expr->expr)
1841 		  && MEM_NOTRAP_P (expr->expr))
1842 		/* Constant memory reference, e.g., a PIC address.  */
1843 		continue;
1844 
1845 	      /* ??? Optimally, we would use interprocedural alias
1846 		 analysis to determine if this mem is actually killed
1847 		 by this call.  */
1848 
1849 	      SET_BIT (prune_exprs, expr->bitmap_index);
1850 	    }
1851 	}
1852     }
1853 
1854   FOR_EACH_BB (bb)
1855     {
1856       edge e;
1857       edge_iterator ei;
1858 
1859       /* If the current block is the destination of an abnormal edge, we
1860 	 kill all trapping (for PRE) and memory (for hoist) expressions
1861 	 because we won't be able to properly place the instruction on
1862 	 the edge.  So make them neither anticipatable nor transparent.
1863 	 This is fairly conservative.
1864 
1865 	 ??? For hoisting it may be necessary to check for set-and-jump
1866 	 instructions here, not just for abnormal edges.  The general problem
1867 	 is that when an expression cannot not be placed right at the end of
1868 	 a basic block we should account for any side-effects of a subsequent
1869 	 jump instructions that could clobber the expression.  It would
1870 	 be best to implement this check along the lines of
1871 	 hoist_expr_reaches_here_p where the target block is already known
1872 	 and, hence, there's no need to conservatively prune expressions on
1873 	 "intermediate" set-and-jump instructions.  */
1874       FOR_EACH_EDGE (e, ei, bb->preds)
1875 	if ((e->flags & EDGE_ABNORMAL)
1876 	    && (pre_p || CALL_P (BB_END (e->src))))
1877 	  {
1878 	    sbitmap_difference (antloc[bb->index],
1879 				antloc[bb->index], prune_exprs);
1880 	    sbitmap_difference (transp[bb->index],
1881 				transp[bb->index], prune_exprs);
1882 	    break;
1883 	  }
1884     }
1885 
1886   sbitmap_free (prune_exprs);
1887 }
1888 
1889 /* It may be necessary to insert a large number of insns on edges to
1890    make the existing occurrences of expressions fully redundant.  This
1891    routine examines the set of insertions and deletions and if the ratio
1892    of insertions to deletions is too high for a particular expression, then
1893    the expression is removed from the insertion/deletion sets.
1894 
1895    N_ELEMS is the number of elements in the hash table.  */
1896 
1897 static void
1898 prune_insertions_deletions (int n_elems)
1899 {
1900   sbitmap_iterator sbi;
1901   sbitmap prune_exprs;
1902 
1903   /* We always use I to iterate over blocks/edges and J to iterate over
1904      expressions.  */
1905   unsigned int i, j;
1906 
1907   /* Counts for the number of times an expression needs to be inserted and
1908      number of times an expression can be removed as a result.  */
1909   int *insertions = GCNEWVEC (int, n_elems);
1910   int *deletions = GCNEWVEC (int, n_elems);
1911 
1912   /* Set of expressions which require too many insertions relative to
1913      the number of deletions achieved.  We will prune these out of the
1914      insertion/deletion sets.  */
1915   prune_exprs = sbitmap_alloc (n_elems);
1916   sbitmap_zero (prune_exprs);
1917 
1918   /* Iterate over the edges counting the number of times each expression
1919      needs to be inserted.  */
1920   for (i = 0; i < (unsigned) n_edges; i++)
1921     {
1922       EXECUTE_IF_SET_IN_SBITMAP (pre_insert_map[i], 0, j, sbi)
1923 	insertions[j]++;
1924     }
1925 
1926   /* Similarly for deletions, but those occur in blocks rather than on
1927      edges.  */
1928   for (i = 0; i < (unsigned) last_basic_block; i++)
1929     {
1930       EXECUTE_IF_SET_IN_SBITMAP (pre_delete_map[i], 0, j, sbi)
1931 	deletions[j]++;
1932     }
1933 
1934   /* Now that we have accurate counts, iterate over the elements in the
1935      hash table and see if any need too many insertions relative to the
1936      number of evaluations that can be removed.  If so, mark them in
1937      PRUNE_EXPRS.  */
1938   for (j = 0; j < (unsigned) n_elems; j++)
1939     if (deletions[j]
1940 	&& ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1941       SET_BIT (prune_exprs, j);
1942 
1943   /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS.  */
1944   EXECUTE_IF_SET_IN_SBITMAP (prune_exprs, 0, j, sbi)
1945     {
1946       for (i = 0; i < (unsigned) n_edges; i++)
1947 	RESET_BIT (pre_insert_map[i], j);
1948 
1949       for (i = 0; i < (unsigned) last_basic_block; i++)
1950 	RESET_BIT (pre_delete_map[i], j);
1951     }
1952 
1953   sbitmap_free (prune_exprs);
1954   free (insertions);
1955   free (deletions);
1956 }
1957 
1958 /* Top level routine to do the dataflow analysis needed by PRE.  */
1959 
1960 static struct edge_list *
1961 compute_pre_data (void)
1962 {
1963   struct edge_list *edge_list;
1964   basic_block bb;
1965 
1966   compute_local_properties (transp, comp, antloc, &expr_hash_table);
1967   prune_expressions (true);
1968   sbitmap_vector_zero (ae_kill, last_basic_block);
1969 
1970   /* Compute ae_kill for each basic block using:
1971 
1972      ~(TRANSP | COMP)
1973   */
1974 
1975   FOR_EACH_BB (bb)
1976     {
1977       sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1978       sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1979     }
1980 
1981   edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1982 			    ae_kill, &pre_insert_map, &pre_delete_map);
1983   sbitmap_vector_free (antloc);
1984   antloc = NULL;
1985   sbitmap_vector_free (ae_kill);
1986   ae_kill = NULL;
1987 
1988   prune_insertions_deletions (expr_hash_table.n_elems);
1989 
1990   return edge_list;
1991 }
1992 
1993 /* PRE utilities */
1994 
1995 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1996    block BB.
1997 
1998    VISITED is a pointer to a working buffer for tracking which BB's have
1999    been visited.  It is NULL for the top-level call.
2000 
2001    We treat reaching expressions that go through blocks containing the same
2002    reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
2003    2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2004    2 as not reaching.  The intent is to improve the probability of finding
2005    only one reaching expression and to reduce register lifetimes by picking
2006    the closest such expression.  */
2007 
2008 static int
2009 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2010 			      basic_block bb, char *visited)
2011 {
2012   edge pred;
2013   edge_iterator ei;
2014 
2015   FOR_EACH_EDGE (pred, ei, bb->preds)
2016     {
2017       basic_block pred_bb = pred->src;
2018 
2019       if (pred->src == ENTRY_BLOCK_PTR
2020 	  /* Has predecessor has already been visited?  */
2021 	  || visited[pred_bb->index])
2022 	;/* Nothing to do.  */
2023 
2024       /* Does this predecessor generate this expression?  */
2025       else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
2026 	{
2027 	  /* Is this the occurrence we're looking for?
2028 	     Note that there's only one generating occurrence per block
2029 	     so we just need to check the block number.  */
2030 	  if (occr_bb == pred_bb)
2031 	    return 1;
2032 
2033 	  visited[pred_bb->index] = 1;
2034 	}
2035       /* Ignore this predecessor if it kills the expression.  */
2036       else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
2037 	visited[pred_bb->index] = 1;
2038 
2039       /* Neither gen nor kill.  */
2040       else
2041 	{
2042 	  visited[pred_bb->index] = 1;
2043 	  if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2044 	    return 1;
2045 	}
2046     }
2047 
2048   /* All paths have been checked.  */
2049   return 0;
2050 }
2051 
2052 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2053    memory allocated for that function is returned.  */
2054 
2055 static int
2056 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2057 {
2058   int rval;
2059   char *visited = XCNEWVEC (char, last_basic_block);
2060 
2061   rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2062 
2063   free (visited);
2064   return rval;
2065 }
2066 
2067 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it.  */
2068 
2069 static rtx
2070 process_insert_insn (struct expr *expr)
2071 {
2072   rtx reg = expr->reaching_reg;
2073   /* Copy the expression to make sure we don't have any sharing issues.  */
2074   rtx exp = copy_rtx (expr->expr);
2075   rtx pat;
2076 
2077   start_sequence ();
2078 
2079   /* If the expression is something that's an operand, like a constant,
2080      just copy it to a register.  */
2081   if (general_operand (exp, GET_MODE (reg)))
2082     emit_move_insn (reg, exp);
2083 
2084   /* Otherwise, make a new insn to compute this expression and make sure the
2085      insn will be recognized (this also adds any needed CLOBBERs).  */
2086   else
2087     {
2088       rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2089 
2090       if (insn_invalid_p (insn))
2091 	gcc_unreachable ();
2092     }
2093 
2094   pat = get_insns ();
2095   end_sequence ();
2096 
2097   return pat;
2098 }
2099 
2100 /* Add EXPR to the end of basic block BB.
2101 
2102    This is used by both the PRE and code hoisting.  */
2103 
2104 static void
2105 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2106 {
2107   rtx insn = BB_END (bb);
2108   rtx new_insn;
2109   rtx reg = expr->reaching_reg;
2110   int regno = REGNO (reg);
2111   rtx pat, pat_end;
2112 
2113   pat = process_insert_insn (expr);
2114   gcc_assert (pat && INSN_P (pat));
2115 
2116   pat_end = pat;
2117   while (NEXT_INSN (pat_end) != NULL_RTX)
2118     pat_end = NEXT_INSN (pat_end);
2119 
2120   /* If the last insn is a jump, insert EXPR in front [taking care to
2121      handle cc0, etc. properly].  Similarly we need to care trapping
2122      instructions in presence of non-call exceptions.  */
2123 
2124   if (JUMP_P (insn)
2125       || (NONJUMP_INSN_P (insn)
2126 	  && (!single_succ_p (bb)
2127 	      || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2128     {
2129 #ifdef HAVE_cc0
2130       rtx note;
2131 #endif
2132 
2133       /* If this is a jump table, then we can't insert stuff here.  Since
2134 	 we know the previous real insn must be the tablejump, we insert
2135 	 the new instruction just before the tablejump.  */
2136       if (GET_CODE (PATTERN (insn)) == ADDR_VEC
2137 	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
2138 	insn = prev_active_insn (insn);
2139 
2140 #ifdef HAVE_cc0
2141       /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2142 	 if cc0 isn't set.  */
2143       note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2144       if (note)
2145 	insn = XEXP (note, 0);
2146       else
2147 	{
2148 	  rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2149 	  if (maybe_cc0_setter
2150 	      && INSN_P (maybe_cc0_setter)
2151 	      && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2152 	    insn = maybe_cc0_setter;
2153 	}
2154 #endif
2155       /* FIXME: What if something in cc0/jump uses value set in new insn?  */
2156       new_insn = emit_insn_before_noloc (pat, insn, bb);
2157     }
2158 
2159   /* Likewise if the last insn is a call, as will happen in the presence
2160      of exception handling.  */
2161   else if (CALL_P (insn)
2162 	   && (!single_succ_p (bb)
2163 	       || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2164     {
2165       /* Keeping in mind targets with small register classes and parameters
2166          in registers, we search backward and place the instructions before
2167 	 the first parameter is loaded.  Do this for everyone for consistency
2168 	 and a presumption that we'll get better code elsewhere as well.  */
2169 
2170       /* Since different machines initialize their parameter registers
2171 	 in different orders, assume nothing.  Collect the set of all
2172 	 parameter registers.  */
2173       insn = find_first_parameter_load (insn, BB_HEAD (bb));
2174 
2175       /* If we found all the parameter loads, then we want to insert
2176 	 before the first parameter load.
2177 
2178 	 If we did not find all the parameter loads, then we might have
2179 	 stopped on the head of the block, which could be a CODE_LABEL.
2180 	 If we inserted before the CODE_LABEL, then we would be putting
2181 	 the insn in the wrong basic block.  In that case, put the insn
2182 	 after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
2183       while (LABEL_P (insn)
2184 	     || NOTE_INSN_BASIC_BLOCK_P (insn))
2185 	insn = NEXT_INSN (insn);
2186 
2187       new_insn = emit_insn_before_noloc (pat, insn, bb);
2188     }
2189   else
2190     new_insn = emit_insn_after_noloc (pat, insn, bb);
2191 
2192   while (1)
2193     {
2194       if (INSN_P (pat))
2195 	add_label_notes (PATTERN (pat), new_insn);
2196       if (pat == pat_end)
2197 	break;
2198       pat = NEXT_INSN (pat);
2199     }
2200 
2201   gcse_create_count++;
2202 
2203   if (dump_file)
2204     {
2205       fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2206 	       bb->index, INSN_UID (new_insn));
2207       fprintf (dump_file, "copying expression %d to reg %d\n",
2208 	       expr->bitmap_index, regno);
2209     }
2210 }
2211 
2212 /* Insert partially redundant expressions on edges in the CFG to make
2213    the expressions fully redundant.  */
2214 
2215 static int
2216 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2217 {
2218   int e, i, j, num_edges, set_size, did_insert = 0;
2219   sbitmap *inserted;
2220 
2221   /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2222      if it reaches any of the deleted expressions.  */
2223 
2224   set_size = pre_insert_map[0]->size;
2225   num_edges = NUM_EDGES (edge_list);
2226   inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2227   sbitmap_vector_zero (inserted, num_edges);
2228 
2229   for (e = 0; e < num_edges; e++)
2230     {
2231       int indx;
2232       basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2233 
2234       for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2235 	{
2236 	  SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2237 
2238 	  for (j = indx;
2239 	       insert && j < (int) expr_hash_table.n_elems;
2240 	       j++, insert >>= 1)
2241 	    if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2242 	      {
2243 		struct expr *expr = index_map[j];
2244 		struct occr *occr;
2245 
2246 		/* Now look at each deleted occurrence of this expression.  */
2247 		for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2248 		  {
2249 		    if (! occr->deleted_p)
2250 		      continue;
2251 
2252 		    /* Insert this expression on this edge if it would
2253 		       reach the deleted occurrence in BB.  */
2254 		    if (!TEST_BIT (inserted[e], j))
2255 		      {
2256 			rtx insn;
2257 			edge eg = INDEX_EDGE (edge_list, e);
2258 
2259 			/* We can't insert anything on an abnormal and
2260 			   critical edge, so we insert the insn at the end of
2261 			   the previous block. There are several alternatives
2262 			   detailed in Morgans book P277 (sec 10.5) for
2263 			   handling this situation.  This one is easiest for
2264 			   now.  */
2265 
2266 			if (eg->flags & EDGE_ABNORMAL)
2267 			  insert_insn_end_basic_block (index_map[j], bb);
2268 			else
2269 			  {
2270 			    insn = process_insert_insn (index_map[j]);
2271 			    insert_insn_on_edge (insn, eg);
2272 			  }
2273 
2274 			if (dump_file)
2275 			  {
2276 			    fprintf (dump_file, "PRE: edge (%d,%d), ",
2277 				     bb->index,
2278 				     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2279 			    fprintf (dump_file, "copy expression %d\n",
2280 				     expr->bitmap_index);
2281 			  }
2282 
2283 			update_ld_motion_stores (expr);
2284 			SET_BIT (inserted[e], j);
2285 			did_insert = 1;
2286 			gcse_create_count++;
2287 		      }
2288 		  }
2289 	      }
2290 	}
2291     }
2292 
2293   sbitmap_vector_free (inserted);
2294   return did_insert;
2295 }
2296 
2297 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2298    Given "old_reg <- expr" (INSN), instead of adding after it
2299      reaching_reg <- old_reg
2300    it's better to do the following:
2301      reaching_reg <- expr
2302      old_reg      <- reaching_reg
2303    because this way copy propagation can discover additional PRE
2304    opportunities.  But if this fails, we try the old way.
2305    When "expr" is a store, i.e.
2306    given "MEM <- old_reg", instead of adding after it
2307      reaching_reg <- old_reg
2308    it's better to add it before as follows:
2309      reaching_reg <- old_reg
2310      MEM          <- reaching_reg.  */
2311 
2312 static void
2313 pre_insert_copy_insn (struct expr *expr, rtx insn)
2314 {
2315   rtx reg = expr->reaching_reg;
2316   int regno = REGNO (reg);
2317   int indx = expr->bitmap_index;
2318   rtx pat = PATTERN (insn);
2319   rtx set, first_set, new_insn;
2320   rtx old_reg;
2321   int i;
2322 
2323   /* This block matches the logic in hash_scan_insn.  */
2324   switch (GET_CODE (pat))
2325     {
2326     case SET:
2327       set = pat;
2328       break;
2329 
2330     case PARALLEL:
2331       /* Search through the parallel looking for the set whose
2332 	 source was the expression that we're interested in.  */
2333       first_set = NULL_RTX;
2334       set = NULL_RTX;
2335       for (i = 0; i < XVECLEN (pat, 0); i++)
2336 	{
2337 	  rtx x = XVECEXP (pat, 0, i);
2338 	  if (GET_CODE (x) == SET)
2339 	    {
2340 	      /* If the source was a REG_EQUAL or REG_EQUIV note, we
2341 		 may not find an equivalent expression, but in this
2342 		 case the PARALLEL will have a single set.  */
2343 	      if (first_set == NULL_RTX)
2344 		first_set = x;
2345 	      if (expr_equiv_p (SET_SRC (x), expr->expr))
2346 	        {
2347 	          set = x;
2348 	          break;
2349 	        }
2350 	    }
2351 	}
2352 
2353       gcc_assert (first_set);
2354       if (set == NULL_RTX)
2355         set = first_set;
2356       break;
2357 
2358     default:
2359       gcc_unreachable ();
2360     }
2361 
2362   if (REG_P (SET_DEST (set)))
2363     {
2364       old_reg = SET_DEST (set);
2365       /* Check if we can modify the set destination in the original insn.  */
2366       if (validate_change (insn, &SET_DEST (set), reg, 0))
2367         {
2368           new_insn = gen_move_insn (old_reg, reg);
2369           new_insn = emit_insn_after (new_insn, insn);
2370         }
2371       else
2372         {
2373           new_insn = gen_move_insn (reg, old_reg);
2374           new_insn = emit_insn_after (new_insn, insn);
2375         }
2376     }
2377   else /* This is possible only in case of a store to memory.  */
2378     {
2379       old_reg = SET_SRC (set);
2380       new_insn = gen_move_insn (reg, old_reg);
2381 
2382       /* Check if we can modify the set source in the original insn.  */
2383       if (validate_change (insn, &SET_SRC (set), reg, 0))
2384         new_insn = emit_insn_before (new_insn, insn);
2385       else
2386         new_insn = emit_insn_after (new_insn, insn);
2387     }
2388 
2389   gcse_create_count++;
2390 
2391   if (dump_file)
2392     fprintf (dump_file,
2393 	     "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2394 	      BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2395 	      INSN_UID (insn), regno);
2396 }
2397 
2398 /* Copy available expressions that reach the redundant expression
2399    to `reaching_reg'.  */
2400 
2401 static void
2402 pre_insert_copies (void)
2403 {
2404   unsigned int i, added_copy;
2405   struct expr *expr;
2406   struct occr *occr;
2407   struct occr *avail;
2408 
2409   /* For each available expression in the table, copy the result to
2410      `reaching_reg' if the expression reaches a deleted one.
2411 
2412      ??? The current algorithm is rather brute force.
2413      Need to do some profiling.  */
2414 
2415   for (i = 0; i < expr_hash_table.size; i++)
2416     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2417       {
2418 	/* If the basic block isn't reachable, PPOUT will be TRUE.  However,
2419 	   we don't want to insert a copy here because the expression may not
2420 	   really be redundant.  So only insert an insn if the expression was
2421 	   deleted.  This test also avoids further processing if the
2422 	   expression wasn't deleted anywhere.  */
2423 	if (expr->reaching_reg == NULL)
2424 	  continue;
2425 
2426 	/* Set when we add a copy for that expression.  */
2427 	added_copy = 0;
2428 
2429 	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2430 	  {
2431 	    if (! occr->deleted_p)
2432 	      continue;
2433 
2434 	    for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2435 	      {
2436 		rtx insn = avail->insn;
2437 
2438 		/* No need to handle this one if handled already.  */
2439 		if (avail->copied_p)
2440 		  continue;
2441 
2442 		/* Don't handle this one if it's a redundant one.  */
2443 		if (INSN_DELETED_P (insn))
2444 		  continue;
2445 
2446 		/* Or if the expression doesn't reach the deleted one.  */
2447 		if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2448 					       expr,
2449 					       BLOCK_FOR_INSN (occr->insn)))
2450 		  continue;
2451 
2452                 added_copy = 1;
2453 
2454 		/* Copy the result of avail to reaching_reg.  */
2455 		pre_insert_copy_insn (expr, insn);
2456 		avail->copied_p = 1;
2457 	      }
2458 	  }
2459 
2460 	  if (added_copy)
2461             update_ld_motion_stores (expr);
2462       }
2463 }
2464 
2465 /* Emit move from SRC to DEST noting the equivalence with expression computed
2466    in INSN.  */
2467 
2468 static rtx
2469 gcse_emit_move_after (rtx dest, rtx src, rtx insn)
2470 {
2471   rtx new_rtx;
2472   rtx set = single_set (insn), set2;
2473   rtx note;
2474   rtx eqv;
2475 
2476   /* This should never fail since we're creating a reg->reg copy
2477      we've verified to be valid.  */
2478 
2479   new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2480 
2481   /* Note the equivalence for local CSE pass.  */
2482   set2 = single_set (new_rtx);
2483   if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2484     return new_rtx;
2485   if ((note = find_reg_equal_equiv_note (insn)))
2486     eqv = XEXP (note, 0);
2487   else
2488     eqv = SET_SRC (set);
2489 
2490   set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2491 
2492   return new_rtx;
2493 }
2494 
2495 /* Delete redundant computations.
2496    Deletion is done by changing the insn to copy the `reaching_reg' of
2497    the expression into the result of the SET.  It is left to later passes
2498    (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
2499 
2500    Return nonzero if a change is made.  */
2501 
2502 static int
2503 pre_delete (void)
2504 {
2505   unsigned int i;
2506   int changed;
2507   struct expr *expr;
2508   struct occr *occr;
2509 
2510   changed = 0;
2511   for (i = 0; i < expr_hash_table.size; i++)
2512     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2513       {
2514 	int indx = expr->bitmap_index;
2515 
2516 	/* We only need to search antic_occr since we require ANTLOC != 0.  */
2517 	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2518 	  {
2519 	    rtx insn = occr->insn;
2520 	    rtx set;
2521 	    basic_block bb = BLOCK_FOR_INSN (insn);
2522 
2523 	    /* We only delete insns that have a single_set.  */
2524 	    if (TEST_BIT (pre_delete_map[bb->index], indx)
2525 		&& (set = single_set (insn)) != 0
2526                 && dbg_cnt (pre_insn))
2527 	      {
2528 		/* Create a pseudo-reg to store the result of reaching
2529 		   expressions into.  Get the mode for the new pseudo from
2530 		   the mode of the original destination pseudo.  */
2531 		if (expr->reaching_reg == NULL)
2532 		  expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2533 
2534 		gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2535 		delete_insn (insn);
2536 		occr->deleted_p = 1;
2537 		changed = 1;
2538 		gcse_subst_count++;
2539 
2540 		if (dump_file)
2541 		  {
2542 		    fprintf (dump_file,
2543 			     "PRE: redundant insn %d (expression %d) in ",
2544 			       INSN_UID (insn), indx);
2545 		    fprintf (dump_file, "bb %d, reaching reg is %d\n",
2546 			     bb->index, REGNO (expr->reaching_reg));
2547 		  }
2548 	      }
2549 	  }
2550       }
2551 
2552   return changed;
2553 }
2554 
2555 /* Perform GCSE optimizations using PRE.
2556    This is called by one_pre_gcse_pass after all the dataflow analysis
2557    has been done.
2558 
2559    This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2560    lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2561    Compiler Design and Implementation.
2562 
2563    ??? A new pseudo reg is created to hold the reaching expression.  The nice
2564    thing about the classical approach is that it would try to use an existing
2565    reg.  If the register can't be adequately optimized [i.e. we introduce
2566    reload problems], one could add a pass here to propagate the new register
2567    through the block.
2568 
2569    ??? We don't handle single sets in PARALLELs because we're [currently] not
2570    able to copy the rest of the parallel when we insert copies to create full
2571    redundancies from partial redundancies.  However, there's no reason why we
2572    can't handle PARALLELs in the cases where there are no partial
2573    redundancies.  */
2574 
2575 static int
2576 pre_gcse (struct edge_list *edge_list)
2577 {
2578   unsigned int i;
2579   int did_insert, changed;
2580   struct expr **index_map;
2581   struct expr *expr;
2582 
2583   /* Compute a mapping from expression number (`bitmap_index') to
2584      hash table entry.  */
2585 
2586   index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2587   for (i = 0; i < expr_hash_table.size; i++)
2588     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2589       index_map[expr->bitmap_index] = expr;
2590 
2591   /* Delete the redundant insns first so that
2592      - we know what register to use for the new insns and for the other
2593        ones with reaching expressions
2594      - we know which insns are redundant when we go to create copies  */
2595 
2596   changed = pre_delete ();
2597   did_insert = pre_edge_insert (edge_list, index_map);
2598 
2599   /* In other places with reaching expressions, copy the expression to the
2600      specially allocated pseudo-reg that reaches the redundant expr.  */
2601   pre_insert_copies ();
2602   if (did_insert)
2603     {
2604       commit_edge_insertions ();
2605       changed = 1;
2606     }
2607 
2608   free (index_map);
2609   return changed;
2610 }
2611 
2612 /* Top level routine to perform one PRE GCSE pass.
2613 
2614    Return nonzero if a change was made.  */
2615 
2616 static int
2617 one_pre_gcse_pass (void)
2618 {
2619   int changed = 0;
2620 
2621   gcse_subst_count = 0;
2622   gcse_create_count = 0;
2623 
2624   /* Return if there's nothing to do, or it is too expensive.  */
2625   if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
2626       || is_too_expensive (_("PRE disabled")))
2627     return 0;
2628 
2629   /* We need alias.  */
2630   init_alias_analysis ();
2631 
2632   bytes_used = 0;
2633   gcc_obstack_init (&gcse_obstack);
2634   alloc_gcse_mem ();
2635 
2636   alloc_hash_table (&expr_hash_table);
2637   add_noreturn_fake_exit_edges ();
2638   if (flag_gcse_lm)
2639     compute_ld_motion_mems ();
2640 
2641   compute_hash_table (&expr_hash_table);
2642   if (flag_gcse_lm)
2643     trim_ld_motion_mems ();
2644   if (dump_file)
2645     dump_hash_table (dump_file, "Expression", &expr_hash_table);
2646 
2647   if (expr_hash_table.n_elems > 0)
2648     {
2649       struct edge_list *edge_list;
2650       alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
2651       edge_list = compute_pre_data ();
2652       changed |= pre_gcse (edge_list);
2653       free_edge_list (edge_list);
2654       free_pre_mem ();
2655     }
2656 
2657   if (flag_gcse_lm)
2658     free_ld_motion_mems ();
2659   remove_fake_exit_edges ();
2660   free_hash_table (&expr_hash_table);
2661 
2662   free_gcse_mem ();
2663   obstack_free (&gcse_obstack, NULL);
2664 
2665   /* We are finished with alias.  */
2666   end_alias_analysis ();
2667 
2668   if (dump_file)
2669     {
2670       fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2671 	       current_function_name (), n_basic_blocks, bytes_used);
2672       fprintf (dump_file, "%d substs, %d insns created\n",
2673 	       gcse_subst_count, gcse_create_count);
2674     }
2675 
2676   return changed;
2677 }
2678 
2679 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2680    to INSN.  If such notes are added to an insn which references a
2681    CODE_LABEL, the LABEL_NUSES count is incremented.  We have to add
2682    that note, because the following loop optimization pass requires
2683    them.  */
2684 
2685 /* ??? If there was a jump optimization pass after gcse and before loop,
2686    then we would not need to do this here, because jump would add the
2687    necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes.  */
2688 
2689 static void
2690 add_label_notes (rtx x, rtx insn)
2691 {
2692   enum rtx_code code = GET_CODE (x);
2693   int i, j;
2694   const char *fmt;
2695 
2696   if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2697     {
2698       /* This code used to ignore labels that referred to dispatch tables to
2699 	 avoid flow generating (slightly) worse code.
2700 
2701 	 We no longer ignore such label references (see LABEL_REF handling in
2702 	 mark_jump_label for additional information).  */
2703 
2704       /* There's no reason for current users to emit jump-insns with
2705 	 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2706 	 notes.  */
2707       gcc_assert (!JUMP_P (insn));
2708       add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2709 
2710       if (LABEL_P (XEXP (x, 0)))
2711 	LABEL_NUSES (XEXP (x, 0))++;
2712 
2713       return;
2714     }
2715 
2716   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2717     {
2718       if (fmt[i] == 'e')
2719 	add_label_notes (XEXP (x, i), insn);
2720       else if (fmt[i] == 'E')
2721 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2722 	  add_label_notes (XVECEXP (x, i, j), insn);
2723     }
2724 }
2725 
2726 /* Code Hoisting variables and subroutines.  */
2727 
2728 /* Very busy expressions.  */
2729 static sbitmap *hoist_vbein;
2730 static sbitmap *hoist_vbeout;
2731 
2732 /* ??? We could compute post dominators and run this algorithm in
2733    reverse to perform tail merging, doing so would probably be
2734    more effective than the tail merging code in jump.c.
2735 
2736    It's unclear if tail merging could be run in parallel with
2737    code hoisting.  It would be nice.  */
2738 
2739 /* Allocate vars used for code hoisting analysis.  */
2740 
2741 static void
2742 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2743 {
2744   antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2745   transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2746   comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2747 
2748   hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2749   hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2750 }
2751 
2752 /* Free vars used for code hoisting analysis.  */
2753 
2754 static void
2755 free_code_hoist_mem (void)
2756 {
2757   sbitmap_vector_free (antloc);
2758   sbitmap_vector_free (transp);
2759   sbitmap_vector_free (comp);
2760 
2761   sbitmap_vector_free (hoist_vbein);
2762   sbitmap_vector_free (hoist_vbeout);
2763 
2764   free_dominance_info (CDI_DOMINATORS);
2765 }
2766 
2767 /* Compute the very busy expressions at entry/exit from each block.
2768 
2769    An expression is very busy if all paths from a given point
2770    compute the expression.  */
2771 
2772 static void
2773 compute_code_hoist_vbeinout (void)
2774 {
2775   int changed, passes;
2776   basic_block bb;
2777 
2778   sbitmap_vector_zero (hoist_vbeout, last_basic_block);
2779   sbitmap_vector_zero (hoist_vbein, last_basic_block);
2780 
2781   passes = 0;
2782   changed = 1;
2783 
2784   while (changed)
2785     {
2786       changed = 0;
2787 
2788       /* We scan the blocks in the reverse order to speed up
2789 	 the convergence.  */
2790       FOR_EACH_BB_REVERSE (bb)
2791 	{
2792 	  if (bb->next_bb != EXIT_BLOCK_PTR)
2793 	    {
2794 	      sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
2795 					     hoist_vbein, bb->index);
2796 
2797 	      /* Include expressions in VBEout that are calculated
2798 		 in BB and available at its end.  */
2799 	      sbitmap_a_or_b (hoist_vbeout[bb->index],
2800 			      hoist_vbeout[bb->index], comp[bb->index]);
2801 	    }
2802 
2803 	  changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
2804 					      antloc[bb->index],
2805 					      hoist_vbeout[bb->index],
2806 					      transp[bb->index]);
2807 	}
2808 
2809       passes++;
2810     }
2811 
2812   if (dump_file)
2813     {
2814       fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2815 
2816       FOR_EACH_BB (bb)
2817         {
2818 	  fprintf (dump_file, "vbein (%d): ", bb->index);
2819 	  dump_sbitmap_file (dump_file, hoist_vbein[bb->index]);
2820 	  fprintf (dump_file, "vbeout(%d): ", bb->index);
2821 	  dump_sbitmap_file (dump_file, hoist_vbeout[bb->index]);
2822 	}
2823     }
2824 }
2825 
2826 /* Top level routine to do the dataflow analysis needed by code hoisting.  */
2827 
2828 static void
2829 compute_code_hoist_data (void)
2830 {
2831   compute_local_properties (transp, comp, antloc, &expr_hash_table);
2832   prune_expressions (false);
2833   compute_code_hoist_vbeinout ();
2834   calculate_dominance_info (CDI_DOMINATORS);
2835   if (dump_file)
2836     fprintf (dump_file, "\n");
2837 }
2838 
2839 /* Determine if the expression identified by EXPR_INDEX would
2840    reach BB unimpared if it was placed at the end of EXPR_BB.
2841    Stop the search if the expression would need to be moved more
2842    than DISTANCE instructions.
2843 
2844    It's unclear exactly what Muchnick meant by "unimpared".  It seems
2845    to me that the expression must either be computed or transparent in
2846    *every* block in the path(s) from EXPR_BB to BB.  Any other definition
2847    would allow the expression to be hoisted out of loops, even if
2848    the expression wasn't a loop invariant.
2849 
2850    Contrast this to reachability for PRE where an expression is
2851    considered reachable if *any* path reaches instead of *all*
2852    paths.  */
2853 
2854 static int
2855 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb,
2856 			   char *visited, int distance, int *bb_size)
2857 {
2858   edge pred;
2859   edge_iterator ei;
2860   int visited_allocated_locally = 0;
2861 
2862   /* Terminate the search if distance, for which EXPR is allowed to move,
2863      is exhausted.  */
2864   if (distance > 0)
2865     {
2866       distance -= bb_size[bb->index];
2867 
2868       if (distance <= 0)
2869 	return 0;
2870     }
2871   else
2872     gcc_assert (distance == 0);
2873 
2874   if (visited == NULL)
2875     {
2876       visited_allocated_locally = 1;
2877       visited = XCNEWVEC (char, last_basic_block);
2878     }
2879 
2880   FOR_EACH_EDGE (pred, ei, bb->preds)
2881     {
2882       basic_block pred_bb = pred->src;
2883 
2884       if (pred->src == ENTRY_BLOCK_PTR)
2885 	break;
2886       else if (pred_bb == expr_bb)
2887 	continue;
2888       else if (visited[pred_bb->index])
2889 	continue;
2890 
2891       else if (! TEST_BIT (transp[pred_bb->index], expr_index))
2892 	break;
2893 
2894       /* Not killed.  */
2895       else
2896 	{
2897 	  visited[pred_bb->index] = 1;
2898 	  if (! hoist_expr_reaches_here_p (expr_bb, expr_index, pred_bb,
2899 					   visited, distance, bb_size))
2900 	    break;
2901 	}
2902     }
2903   if (visited_allocated_locally)
2904     free (visited);
2905 
2906   return (pred == NULL);
2907 }
2908 
2909 /* Find occurence in BB.  */
2910 
2911 static struct occr *
2912 find_occr_in_bb (struct occr *occr, basic_block bb)
2913 {
2914   /* Find the right occurrence of this expression.  */
2915   while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
2916     occr = occr->next;
2917 
2918   return occr;
2919 }
2920 
2921 /* Actually perform code hoisting.  */
2922 
2923 static int
2924 hoist_code (void)
2925 {
2926   basic_block bb, dominated;
2927   VEC (basic_block, heap) *dom_tree_walk;
2928   unsigned int dom_tree_walk_index;
2929   VEC (basic_block, heap) *domby;
2930   unsigned int i,j;
2931   struct expr **index_map;
2932   struct expr *expr;
2933   int *to_bb_head;
2934   int *bb_size;
2935   int changed = 0;
2936 
2937   /* Compute a mapping from expression number (`bitmap_index') to
2938      hash table entry.  */
2939 
2940   index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2941   for (i = 0; i < expr_hash_table.size; i++)
2942     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2943       index_map[expr->bitmap_index] = expr;
2944 
2945   /* Calculate sizes of basic blocks and note how far
2946      each instruction is from the start of its block.  We then use this
2947      data to restrict distance an expression can travel.  */
2948 
2949   to_bb_head = XCNEWVEC (int, get_max_uid ());
2950   bb_size = XCNEWVEC (int, last_basic_block);
2951 
2952   FOR_EACH_BB (bb)
2953     {
2954       rtx insn;
2955       int to_head;
2956 
2957       to_head = 0;
2958       FOR_BB_INSNS (bb, insn)
2959 	{
2960 	  /* Don't count debug instructions to avoid them affecting
2961 	     decision choices.  */
2962 	  if (NONDEBUG_INSN_P (insn))
2963 	    to_bb_head[INSN_UID (insn)] = to_head++;
2964 	}
2965 
2966       bb_size[bb->index] = to_head;
2967     }
2968 
2969   gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
2970 	      && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
2971 		  == ENTRY_BLOCK_PTR->next_bb));
2972 
2973   dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
2974 					    ENTRY_BLOCK_PTR->next_bb);
2975 
2976   /* Walk over each basic block looking for potentially hoistable
2977      expressions, nothing gets hoisted from the entry block.  */
2978   FOR_EACH_VEC_ELT (basic_block, dom_tree_walk, dom_tree_walk_index, bb)
2979     {
2980       domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
2981 
2982       if (VEC_length (basic_block, domby) == 0)
2983 	continue;
2984 
2985       /* Examine each expression that is very busy at the exit of this
2986 	 block.  These are the potentially hoistable expressions.  */
2987       for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
2988 	{
2989 	  if (TEST_BIT (hoist_vbeout[bb->index], i))
2990 	    {
2991 	      /* Current expression.  */
2992 	      struct expr *expr = index_map[i];
2993 	      /* Number of occurences of EXPR that can be hoisted to BB.  */
2994 	      int hoistable = 0;
2995 	      /* Basic blocks that have occurences reachable from BB.  */
2996 	      bitmap_head _from_bbs, *from_bbs = &_from_bbs;
2997 	      /* Occurences reachable from BB.  */
2998 	      VEC (occr_t, heap) *occrs_to_hoist = NULL;
2999 	      /* We want to insert the expression into BB only once, so
3000 		 note when we've inserted it.  */
3001 	      int insn_inserted_p;
3002 	      occr_t occr;
3003 
3004 	      bitmap_initialize (from_bbs, 0);
3005 
3006 	      /* If an expression is computed in BB and is available at end of
3007 		 BB, hoist all occurences dominated by BB to BB.  */
3008 	      if (TEST_BIT (comp[bb->index], i))
3009 		{
3010 		  occr = find_occr_in_bb (expr->antic_occr, bb);
3011 
3012 		  if (occr)
3013 		    {
3014 		      /* An occurence might've been already deleted
3015 			 while processing a dominator of BB.  */
3016 		      if (!occr->deleted_p)
3017 			{
3018 			  gcc_assert (NONDEBUG_INSN_P (occr->insn));
3019 			  hoistable++;
3020 			}
3021 		    }
3022 		  else
3023 		    hoistable++;
3024 		}
3025 
3026 	      /* We've found a potentially hoistable expression, now
3027 		 we look at every block BB dominates to see if it
3028 		 computes the expression.  */
3029 	      FOR_EACH_VEC_ELT (basic_block, domby, j, dominated)
3030 		{
3031 		  int max_distance;
3032 
3033 		  /* Ignore self dominance.  */
3034 		  if (bb == dominated)
3035 		    continue;
3036 		  /* We've found a dominated block, now see if it computes
3037 		     the busy expression and whether or not moving that
3038 		     expression to the "beginning" of that block is safe.  */
3039 		  if (!TEST_BIT (antloc[dominated->index], i))
3040 		    continue;
3041 
3042 		  occr = find_occr_in_bb (expr->antic_occr, dominated);
3043 		  gcc_assert (occr);
3044 
3045 		  /* An occurence might've been already deleted
3046 		     while processing a dominator of BB.  */
3047 		  if (occr->deleted_p)
3048 		    continue;
3049 		  gcc_assert (NONDEBUG_INSN_P (occr->insn));
3050 
3051 		  max_distance = expr->max_distance;
3052 		  if (max_distance > 0)
3053 		    /* Adjust MAX_DISTANCE to account for the fact that
3054 		       OCCR won't have to travel all of DOMINATED, but
3055 		       only part of it.  */
3056 		    max_distance += (bb_size[dominated->index]
3057 				     - to_bb_head[INSN_UID (occr->insn)]);
3058 
3059 		  /* Note if the expression would reach the dominated block
3060 		     unimpared if it was placed at the end of BB.
3061 
3062 		     Keep track of how many times this expression is hoistable
3063 		     from a dominated block into BB.  */
3064 		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL,
3065 						 max_distance, bb_size))
3066 		    {
3067 		      hoistable++;
3068 		      VEC_safe_push (occr_t, heap,
3069 				     occrs_to_hoist, occr);
3070 		      bitmap_set_bit (from_bbs, dominated->index);
3071 		    }
3072 		}
3073 
3074 	      /* If we found more than one hoistable occurrence of this
3075 		 expression, then note it in the vector of expressions to
3076 		 hoist.  It makes no sense to hoist things which are computed
3077 		 in only one BB, and doing so tends to pessimize register
3078 		 allocation.  One could increase this value to try harder
3079 		 to avoid any possible code expansion due to register
3080 		 allocation issues; however experiments have shown that
3081 		 the vast majority of hoistable expressions are only movable
3082 		 from two successors, so raising this threshold is likely
3083 		 to nullify any benefit we get from code hoisting.  */
3084 	      if (hoistable > 1 && dbg_cnt (hoist_insn))
3085 		{
3086 		  /* If (hoistable != VEC_length), then there is
3087 		     an occurence of EXPR in BB itself.  Don't waste
3088 		     time looking for LCA in this case.  */
3089 		  if ((unsigned) hoistable
3090 		      == VEC_length (occr_t, occrs_to_hoist))
3091 		    {
3092 		      basic_block lca;
3093 
3094 		      lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3095 							      from_bbs);
3096 		      if (lca != bb)
3097 			/* Punt, it's better to hoist these occurences to
3098 			   LCA.  */
3099 			VEC_free (occr_t, heap, occrs_to_hoist);
3100 		    }
3101 		}
3102 	      else
3103 		/* Punt, no point hoisting a single occurence.  */
3104 		VEC_free (occr_t, heap, occrs_to_hoist);
3105 
3106 	      insn_inserted_p = 0;
3107 
3108 	      /* Walk through occurences of I'th expressions we want
3109 		 to hoist to BB and make the transformations.  */
3110 	      FOR_EACH_VEC_ELT (occr_t, occrs_to_hoist, j, occr)
3111 		{
3112 		  rtx insn;
3113 		  rtx set;
3114 
3115 		  gcc_assert (!occr->deleted_p);
3116 
3117 		  insn = occr->insn;
3118 		  set = single_set (insn);
3119 		  gcc_assert (set);
3120 
3121 		  /* Create a pseudo-reg to store the result of reaching
3122 		     expressions into.  Get the mode for the new pseudo
3123 		     from the mode of the original destination pseudo.
3124 
3125 		     It is important to use new pseudos whenever we
3126 		     emit a set.  This will allow reload to use
3127 		     rematerialization for such registers.  */
3128 		  if (!insn_inserted_p)
3129 		    expr->reaching_reg
3130 		      = gen_reg_rtx_and_attrs (SET_DEST (set));
3131 
3132 		  gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3133 					insn);
3134 		  delete_insn (insn);
3135 		  occr->deleted_p = 1;
3136 		  changed = 1;
3137 		  gcse_subst_count++;
3138 
3139 		  if (!insn_inserted_p)
3140 		    {
3141 		      insert_insn_end_basic_block (expr, bb);
3142 		      insn_inserted_p = 1;
3143 		    }
3144 		}
3145 
3146 	      VEC_free (occr_t, heap, occrs_to_hoist);
3147 	      bitmap_clear (from_bbs);
3148 	    }
3149 	}
3150       VEC_free (basic_block, heap, domby);
3151     }
3152 
3153   VEC_free (basic_block, heap, dom_tree_walk);
3154   free (bb_size);
3155   free (to_bb_head);
3156   free (index_map);
3157 
3158   return changed;
3159 }
3160 
3161 /* Top level routine to perform one code hoisting (aka unification) pass
3162 
3163    Return nonzero if a change was made.  */
3164 
3165 static int
3166 one_code_hoisting_pass (void)
3167 {
3168   int changed = 0;
3169 
3170   gcse_subst_count = 0;
3171   gcse_create_count = 0;
3172 
3173   /* Return if there's nothing to do, or it is too expensive.  */
3174   if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
3175       || is_too_expensive (_("GCSE disabled")))
3176     return 0;
3177 
3178   doing_code_hoisting_p = true;
3179 
3180   /* We need alias.  */
3181   init_alias_analysis ();
3182 
3183   bytes_used = 0;
3184   gcc_obstack_init (&gcse_obstack);
3185   alloc_gcse_mem ();
3186 
3187   alloc_hash_table (&expr_hash_table);
3188   compute_hash_table (&expr_hash_table);
3189   if (dump_file)
3190     dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3191 
3192   if (expr_hash_table.n_elems > 0)
3193     {
3194       alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
3195       compute_code_hoist_data ();
3196       changed = hoist_code ();
3197       free_code_hoist_mem ();
3198     }
3199 
3200   free_hash_table (&expr_hash_table);
3201   free_gcse_mem ();
3202   obstack_free (&gcse_obstack, NULL);
3203 
3204   /* We are finished with alias.  */
3205   end_alias_analysis ();
3206 
3207   if (dump_file)
3208     {
3209       fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3210 	       current_function_name (), n_basic_blocks, bytes_used);
3211       fprintf (dump_file, "%d substs, %d insns created\n",
3212 	       gcse_subst_count, gcse_create_count);
3213     }
3214 
3215   doing_code_hoisting_p = false;
3216 
3217   return changed;
3218 }
3219 
3220 /*  Here we provide the things required to do store motion towards the exit.
3221     In order for this to be effective, gcse also needed to be taught how to
3222     move a load when it is killed only by a store to itself.
3223 
3224 	    int i;
3225 	    float a[10];
3226 
3227 	    void foo(float scale)
3228 	    {
3229 	      for (i=0; i<10; i++)
3230 		a[i] *= scale;
3231 	    }
3232 
3233     'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3234     the load out since its live around the loop, and stored at the bottom
3235     of the loop.
3236 
3237       The 'Load Motion' referred to and implemented in this file is
3238     an enhancement to gcse which when using edge based LCM, recognizes
3239     this situation and allows gcse to move the load out of the loop.
3240 
3241       Once gcse has hoisted the load, store motion can then push this
3242     load towards the exit, and we end up with no loads or stores of 'i'
3243     in the loop.  */
3244 
3245 static hashval_t
3246 pre_ldst_expr_hash (const void *p)
3247 {
3248   int do_not_record_p = 0;
3249   const struct ls_expr *const x = (const struct ls_expr *) p;
3250   return
3251     hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
3252 }
3253 
3254 static int
3255 pre_ldst_expr_eq (const void *p1, const void *p2)
3256 {
3257   const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
3258     *const ptr2 = (const struct ls_expr *) p2;
3259   return expr_equiv_p (ptr1->pattern, ptr2->pattern);
3260 }
3261 
3262 /* This will search the ldst list for a matching expression. If it
3263    doesn't find one, we create one and initialize it.  */
3264 
3265 static struct ls_expr *
3266 ldst_entry (rtx x)
3267 {
3268   int do_not_record_p = 0;
3269   struct ls_expr * ptr;
3270   unsigned int hash;
3271   void **slot;
3272   struct ls_expr e;
3273 
3274   hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3275 		   NULL,  /*have_reg_qty=*/false);
3276 
3277   e.pattern = x;
3278   slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
3279   if (*slot)
3280     return (struct ls_expr *)*slot;
3281 
3282   ptr = XNEW (struct ls_expr);
3283 
3284   ptr->next         = pre_ldst_mems;
3285   ptr->expr         = NULL;
3286   ptr->pattern      = x;
3287   ptr->pattern_regs = NULL_RTX;
3288   ptr->loads        = NULL_RTX;
3289   ptr->stores       = NULL_RTX;
3290   ptr->reaching_reg = NULL_RTX;
3291   ptr->invalid      = 0;
3292   ptr->index        = 0;
3293   ptr->hash_index   = hash;
3294   pre_ldst_mems     = ptr;
3295   *slot = ptr;
3296 
3297   return ptr;
3298 }
3299 
3300 /* Free up an individual ldst entry.  */
3301 
3302 static void
3303 free_ldst_entry (struct ls_expr * ptr)
3304 {
3305   free_INSN_LIST_list (& ptr->loads);
3306   free_INSN_LIST_list (& ptr->stores);
3307 
3308   free (ptr);
3309 }
3310 
3311 /* Free up all memory associated with the ldst list.  */
3312 
3313 static void
3314 free_ld_motion_mems (void)
3315 {
3316   if (pre_ldst_table)
3317     htab_delete (pre_ldst_table);
3318   pre_ldst_table = NULL;
3319 
3320   while (pre_ldst_mems)
3321     {
3322       struct ls_expr * tmp = pre_ldst_mems;
3323 
3324       pre_ldst_mems = pre_ldst_mems->next;
3325 
3326       free_ldst_entry (tmp);
3327     }
3328 
3329   pre_ldst_mems = NULL;
3330 }
3331 
3332 /* Dump debugging info about the ldst list.  */
3333 
3334 static void
3335 print_ldst_list (FILE * file)
3336 {
3337   struct ls_expr * ptr;
3338 
3339   fprintf (file, "LDST list: \n");
3340 
3341   for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3342     {
3343       fprintf (file, "  Pattern (%3d): ", ptr->index);
3344 
3345       print_rtl (file, ptr->pattern);
3346 
3347       fprintf (file, "\n	 Loads : ");
3348 
3349       if (ptr->loads)
3350 	print_rtl (file, ptr->loads);
3351       else
3352 	fprintf (file, "(nil)");
3353 
3354       fprintf (file, "\n	Stores : ");
3355 
3356       if (ptr->stores)
3357 	print_rtl (file, ptr->stores);
3358       else
3359 	fprintf (file, "(nil)");
3360 
3361       fprintf (file, "\n\n");
3362     }
3363 
3364   fprintf (file, "\n");
3365 }
3366 
3367 /* Returns 1 if X is in the list of ldst only expressions.  */
3368 
3369 static struct ls_expr *
3370 find_rtx_in_ldst (rtx x)
3371 {
3372   struct ls_expr e;
3373   void **slot;
3374   if (!pre_ldst_table)
3375     return NULL;
3376   e.pattern = x;
3377   slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
3378   if (!slot || ((struct ls_expr *)*slot)->invalid)
3379     return NULL;
3380   return (struct ls_expr *) *slot;
3381 }
3382 
3383 /* Load Motion for loads which only kill themselves.  */
3384 
3385 /* Return true if x, a MEM, is a simple access with no side effects.
3386    These are the types of loads we consider for the ld_motion list,
3387    otherwise we let the usual aliasing take care of it.  */
3388 
3389 static int
3390 simple_mem (const_rtx x)
3391 {
3392   if (MEM_VOLATILE_P (x))
3393     return 0;
3394 
3395   if (GET_MODE (x) == BLKmode)
3396     return 0;
3397 
3398   /* If we are handling exceptions, we must be careful with memory references
3399      that may trap.  If we are not, the behavior is undefined, so we may just
3400      continue.  */
3401   if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3402     return 0;
3403 
3404   if (side_effects_p (x))
3405     return 0;
3406 
3407   /* Do not consider function arguments passed on stack.  */
3408   if (reg_mentioned_p (stack_pointer_rtx, x))
3409     return 0;
3410 
3411   if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3412     return 0;
3413 
3414   return 1;
3415 }
3416 
3417 /* Make sure there isn't a buried reference in this pattern anywhere.
3418    If there is, invalidate the entry for it since we're not capable
3419    of fixing it up just yet.. We have to be sure we know about ALL
3420    loads since the aliasing code will allow all entries in the
3421    ld_motion list to not-alias itself.  If we miss a load, we will get
3422    the wrong value since gcse might common it and we won't know to
3423    fix it up.  */
3424 
3425 static void
3426 invalidate_any_buried_refs (rtx x)
3427 {
3428   const char * fmt;
3429   int i, j;
3430   struct ls_expr * ptr;
3431 
3432   /* Invalidate it in the list.  */
3433   if (MEM_P (x) && simple_mem (x))
3434     {
3435       ptr = ldst_entry (x);
3436       ptr->invalid = 1;
3437     }
3438 
3439   /* Recursively process the insn.  */
3440   fmt = GET_RTX_FORMAT (GET_CODE (x));
3441 
3442   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3443     {
3444       if (fmt[i] == 'e')
3445 	invalidate_any_buried_refs (XEXP (x, i));
3446       else if (fmt[i] == 'E')
3447 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3448 	  invalidate_any_buried_refs (XVECEXP (x, i, j));
3449     }
3450 }
3451 
3452 /* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
3453    being defined as MEM loads and stores to symbols, with no side effects
3454    and no registers in the expression.  For a MEM destination, we also
3455    check that the insn is still valid if we replace the destination with a
3456    REG, as is done in update_ld_motion_stores.  If there are any uses/defs
3457    which don't match this criteria, they are invalidated and trimmed out
3458    later.  */
3459 
3460 static void
3461 compute_ld_motion_mems (void)
3462 {
3463   struct ls_expr * ptr;
3464   basic_block bb;
3465   rtx insn;
3466 
3467   pre_ldst_mems = NULL;
3468   pre_ldst_table
3469     = htab_create (13, pre_ldst_expr_hash, pre_ldst_expr_eq, NULL);
3470 
3471   FOR_EACH_BB (bb)
3472     {
3473       FOR_BB_INSNS (bb, insn)
3474 	{
3475 	  if (NONDEBUG_INSN_P (insn))
3476 	    {
3477 	      if (GET_CODE (PATTERN (insn)) == SET)
3478 		{
3479 		  rtx src = SET_SRC (PATTERN (insn));
3480 		  rtx dest = SET_DEST (PATTERN (insn));
3481 
3482 		  /* Check for a simple LOAD...  */
3483 		  if (MEM_P (src) && simple_mem (src))
3484 		    {
3485 		      ptr = ldst_entry (src);
3486 		      if (REG_P (dest))
3487 			ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3488 		      else
3489 			ptr->invalid = 1;
3490 		    }
3491 		  else
3492 		    {
3493 		      /* Make sure there isn't a buried load somewhere.  */
3494 		      invalidate_any_buried_refs (src);
3495 		    }
3496 
3497 		  /* Check for stores. Don't worry about aliased ones, they
3498 		     will block any movement we might do later. We only care
3499 		     about this exact pattern since those are the only
3500 		     circumstance that we will ignore the aliasing info.  */
3501 		  if (MEM_P (dest) && simple_mem (dest))
3502 		    {
3503 		      ptr = ldst_entry (dest);
3504 
3505 		      if (! MEM_P (src)
3506 			  && GET_CODE (src) != ASM_OPERANDS
3507 			  /* Check for REG manually since want_to_gcse_p
3508 			     returns 0 for all REGs.  */
3509 			  && can_assign_to_reg_without_clobbers_p (src))
3510 			ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3511 		      else
3512 			ptr->invalid = 1;
3513 		    }
3514 		}
3515 	      else
3516 		invalidate_any_buried_refs (PATTERN (insn));
3517 	    }
3518 	}
3519     }
3520 }
3521 
3522 /* Remove any references that have been either invalidated or are not in the
3523    expression list for pre gcse.  */
3524 
3525 static void
3526 trim_ld_motion_mems (void)
3527 {
3528   struct ls_expr * * last = & pre_ldst_mems;
3529   struct ls_expr * ptr = pre_ldst_mems;
3530 
3531   while (ptr != NULL)
3532     {
3533       struct expr * expr;
3534 
3535       /* Delete if entry has been made invalid.  */
3536       if (! ptr->invalid)
3537 	{
3538 	  /* Delete if we cannot find this mem in the expression list.  */
3539 	  unsigned int hash = ptr->hash_index % expr_hash_table.size;
3540 
3541 	  for (expr = expr_hash_table.table[hash];
3542 	       expr != NULL;
3543 	       expr = expr->next_same_hash)
3544 	    if (expr_equiv_p (expr->expr, ptr->pattern))
3545 	      break;
3546 	}
3547       else
3548 	expr = (struct expr *) 0;
3549 
3550       if (expr)
3551 	{
3552 	  /* Set the expression field if we are keeping it.  */
3553 	  ptr->expr = expr;
3554 	  last = & ptr->next;
3555 	  ptr = ptr->next;
3556 	}
3557       else
3558 	{
3559 	  *last = ptr->next;
3560 	  htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
3561 	  free_ldst_entry (ptr);
3562 	  ptr = * last;
3563 	}
3564     }
3565 
3566   /* Show the world what we've found.  */
3567   if (dump_file && pre_ldst_mems != NULL)
3568     print_ldst_list (dump_file);
3569 }
3570 
3571 /* This routine will take an expression which we are replacing with
3572    a reaching register, and update any stores that are needed if
3573    that expression is in the ld_motion list.  Stores are updated by
3574    copying their SRC to the reaching register, and then storing
3575    the reaching register into the store location. These keeps the
3576    correct value in the reaching register for the loads.  */
3577 
3578 static void
3579 update_ld_motion_stores (struct expr * expr)
3580 {
3581   struct ls_expr * mem_ptr;
3582 
3583   if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3584     {
3585       /* We can try to find just the REACHED stores, but is shouldn't
3586 	 matter to set the reaching reg everywhere...  some might be
3587 	 dead and should be eliminated later.  */
3588 
3589       /* We replace (set mem expr) with (set reg expr) (set mem reg)
3590 	 where reg is the reaching reg used in the load.  We checked in
3591 	 compute_ld_motion_mems that we can replace (set mem expr) with
3592 	 (set reg expr) in that insn.  */
3593       rtx list = mem_ptr->stores;
3594 
3595       for ( ; list != NULL_RTX; list = XEXP (list, 1))
3596 	{
3597 	  rtx insn = XEXP (list, 0);
3598 	  rtx pat = PATTERN (insn);
3599 	  rtx src = SET_SRC (pat);
3600 	  rtx reg = expr->reaching_reg;
3601 	  rtx copy;
3602 
3603 	  /* If we've already copied it, continue.  */
3604 	  if (expr->reaching_reg == src)
3605 	    continue;
3606 
3607 	  if (dump_file)
3608 	    {
3609 	      fprintf (dump_file, "PRE:  store updated with reaching reg ");
3610 	      print_rtl (dump_file, reg);
3611 	      fprintf (dump_file, ":\n	");
3612 	      print_inline_rtx (dump_file, insn, 8);
3613 	      fprintf (dump_file, "\n");
3614 	    }
3615 
3616 	  copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3617 	  emit_insn_before (copy, insn);
3618 	  SET_SRC (pat) = reg;
3619 	  df_insn_rescan (insn);
3620 
3621 	  /* un-recognize this pattern since it's probably different now.  */
3622 	  INSN_CODE (insn) = -1;
3623 	  gcse_create_count++;
3624 	}
3625     }
3626 }
3627 
3628 /* Return true if the graph is too expensive to optimize. PASS is the
3629    optimization about to be performed.  */
3630 
3631 static bool
3632 is_too_expensive (const char *pass)
3633 {
3634   /* Trying to perform global optimizations on flow graphs which have
3635      a high connectivity will take a long time and is unlikely to be
3636      particularly useful.
3637 
3638      In normal circumstances a cfg should have about twice as many
3639      edges as blocks.  But we do not want to punish small functions
3640      which have a couple switch statements.  Rather than simply
3641      threshold the number of blocks, uses something with a more
3642      graceful degradation.  */
3643   if (n_edges > 20000 + n_basic_blocks * 4)
3644     {
3645       warning (OPT_Wdisabled_optimization,
3646 	       "%s: %d basic blocks and %d edges/basic block",
3647 	       pass, n_basic_blocks, n_edges / n_basic_blocks);
3648 
3649       return true;
3650     }
3651 
3652   /* If allocating memory for the dataflow bitmaps would take up too much
3653      storage it's better just to disable the optimization.  */
3654   if ((n_basic_blocks
3655        * SBITMAP_SET_SIZE (max_reg_num ())
3656        * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
3657     {
3658       warning (OPT_Wdisabled_optimization,
3659 	       "%s: %d basic blocks and %d registers",
3660 	       pass, n_basic_blocks, max_reg_num ());
3661 
3662       return true;
3663     }
3664 
3665   return false;
3666 }
3667 
3668 /* All the passes implemented in this file.  Each pass has its
3669    own gate and execute function, and at the end of the file a
3670    pass definition for passes.c.
3671 
3672    We do not construct an accurate cfg in functions which call
3673    setjmp, so none of these passes runs if the function calls
3674    setjmp.
3675    FIXME: Should just handle setjmp via REG_SETJMP notes.  */
3676 
3677 static bool
3678 gate_rtl_pre (void)
3679 {
3680   return optimize > 0 && flag_gcse
3681     && !cfun->calls_setjmp
3682     && optimize_function_for_speed_p (cfun)
3683     && dbg_cnt (pre);
3684 }
3685 
3686 static unsigned int
3687 execute_rtl_pre (void)
3688 {
3689   int changed;
3690   delete_unreachable_blocks ();
3691   df_analyze ();
3692   changed = one_pre_gcse_pass ();
3693   flag_rerun_cse_after_global_opts |= changed;
3694   if (changed)
3695     cleanup_cfg (0);
3696   return 0;
3697 }
3698 
3699 static bool
3700 gate_rtl_hoist (void)
3701 {
3702   return optimize > 0 && flag_gcse
3703     && !cfun->calls_setjmp
3704     /* It does not make sense to run code hoisting unless we are optimizing
3705        for code size -- it rarely makes programs faster, and can make then
3706        bigger if we did PRE (when optimizing for space, we don't run PRE).  */
3707     && optimize_function_for_size_p (cfun)
3708     && dbg_cnt (hoist);
3709 }
3710 
3711 static unsigned int
3712 execute_rtl_hoist (void)
3713 {
3714   int changed;
3715   delete_unreachable_blocks ();
3716   df_analyze ();
3717   changed = one_code_hoisting_pass ();
3718   flag_rerun_cse_after_global_opts |= changed;
3719   if (changed)
3720     cleanup_cfg (0);
3721   return 0;
3722 }
3723 
3724 struct rtl_opt_pass pass_rtl_pre =
3725 {
3726  {
3727   RTL_PASS,
3728   "rtl pre",                            /* name */
3729   gate_rtl_pre,                         /* gate */
3730   execute_rtl_pre,    			/* execute */
3731   NULL,                                 /* sub */
3732   NULL,                                 /* next */
3733   0,                                    /* static_pass_number */
3734   TV_PRE,                               /* tv_id */
3735   PROP_cfglayout,                       /* properties_required */
3736   0,                                    /* properties_provided */
3737   0,                                    /* properties_destroyed */
3738   0,                                    /* todo_flags_start */
3739   TODO_df_finish | TODO_verify_rtl_sharing |
3740   TODO_verify_flow | TODO_ggc_collect   /* todo_flags_finish */
3741  }
3742 };
3743 
3744 struct rtl_opt_pass pass_rtl_hoist =
3745 {
3746  {
3747   RTL_PASS,
3748   "hoist",                              /* name */
3749   gate_rtl_hoist,                       /* gate */
3750   execute_rtl_hoist,  			/* execute */
3751   NULL,                                 /* sub */
3752   NULL,                                 /* next */
3753   0,                                    /* static_pass_number */
3754   TV_HOIST,                             /* tv_id */
3755   PROP_cfglayout,                       /* properties_required */
3756   0,                                    /* properties_provided */
3757   0,                                    /* properties_destroyed */
3758   0,                                    /* todo_flags_start */
3759   TODO_df_finish | TODO_verify_rtl_sharing |
3760   TODO_verify_flow | TODO_ggc_collect   /* todo_flags_finish */
3761  }
3762 };
3763 
3764 #include "gt-gcse.h"
3765