xref: /dragonfly/contrib/gcc-4.7/gcc/ggc-page.c (revision 335b9e93)
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
3    2010, 2011 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "ggc-internal.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "tree-flow.h"
35 #include "cfgloop.h"
36 #include "plugin.h"
37 
38 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39    file open.  Prefer either to valloc.  */
40 #ifdef HAVE_MMAP_ANON
41 # undef HAVE_MMAP_DEV_ZERO
42 # define USING_MMAP
43 #endif
44 
45 #ifdef HAVE_MMAP_DEV_ZERO
46 # define USING_MMAP
47 #endif
48 
49 #ifndef USING_MMAP
50 #define USING_MALLOC_PAGE_GROUPS
51 #endif
52 
53 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
54     && defined(USING_MMAP)
55 # define USING_MADVISE
56 #endif
57 
58 /* Strategy:
59 
60    This garbage-collecting allocator allocates objects on one of a set
61    of pages.  Each page can allocate objects of a single size only;
62    available sizes are powers of two starting at four bytes.  The size
63    of an allocation request is rounded up to the next power of two
64    (`order'), and satisfied from the appropriate page.
65 
66    Each page is recorded in a page-entry, which also maintains an
67    in-use bitmap of object positions on the page.  This allows the
68    allocation state of a particular object to be flipped without
69    touching the page itself.
70 
71    Each page-entry also has a context depth, which is used to track
72    pushing and popping of allocation contexts.  Only objects allocated
73    in the current (highest-numbered) context may be collected.
74 
75    Page entries are arranged in an array of singly-linked lists.  The
76    array is indexed by the allocation size, in bits, of the pages on
77    it; i.e. all pages on a list allocate objects of the same size.
78    Pages are ordered on the list such that all non-full pages precede
79    all full pages, with non-full pages arranged in order of decreasing
80    context depth.
81 
82    Empty pages (of all orders) are kept on a single page cache list,
83    and are considered first when new pages are required; they are
84    deallocated at the start of the next collection if they haven't
85    been recycled by then.  */
86 
87 /* Define GGC_DEBUG_LEVEL to print debugging information.
88      0: No debugging output.
89      1: GC statistics only.
90      2: Page-entry allocations/deallocations as well.
91      3: Object allocations as well.
92      4: Object marks as well.  */
93 #define GGC_DEBUG_LEVEL (0)
94 
95 #ifndef HOST_BITS_PER_PTR
96 #define HOST_BITS_PER_PTR  HOST_BITS_PER_LONG
97 #endif
98 
99 
100 /* A two-level tree is used to look up the page-entry for a given
101    pointer.  Two chunks of the pointer's bits are extracted to index
102    the first and second levels of the tree, as follows:
103 
104 				   HOST_PAGE_SIZE_BITS
105 			   32		|      |
106        msb +----------------+----+------+------+ lsb
107 			    |    |      |
108 			 PAGE_L1_BITS   |
109 				 |      |
110 			       PAGE_L2_BITS
111 
112    The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
113    pages are aligned on system page boundaries.  The next most
114    significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
115    index values in the lookup table, respectively.
116 
117    For 32-bit architectures and the settings below, there are no
118    leftover bits.  For architectures with wider pointers, the lookup
119    tree points to a list of pages, which must be scanned to find the
120    correct one.  */
121 
122 #define PAGE_L1_BITS	(8)
123 #define PAGE_L2_BITS	(32 - PAGE_L1_BITS - G.lg_pagesize)
124 #define PAGE_L1_SIZE	((size_t) 1 << PAGE_L1_BITS)
125 #define PAGE_L2_SIZE	((size_t) 1 << PAGE_L2_BITS)
126 
127 #define LOOKUP_L1(p) \
128   (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
129 
130 #define LOOKUP_L2(p) \
131   (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
132 
133 /* The number of objects per allocation page, for objects on a page of
134    the indicated ORDER.  */
135 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
136 
137 /* The number of objects in P.  */
138 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
139 
140 /* The size of an object on a page of the indicated ORDER.  */
141 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
142 
143 /* For speed, we avoid doing a general integer divide to locate the
144    offset in the allocation bitmap, by precalculating numbers M, S
145    such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
146    within the page which is evenly divisible by the object size Z.  */
147 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
148 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
149 #define OFFSET_TO_BIT(OFFSET, ORDER) \
150   (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
151 
152 /* We use this structure to determine the alignment required for
153    allocations.  For power-of-two sized allocations, that's not a
154    problem, but it does matter for odd-sized allocations.
155    We do not care about alignment for floating-point types.  */
156 
157 struct max_alignment {
158   char c;
159   union {
160     HOST_WIDEST_INT i;
161     void *p;
162   } u;
163 };
164 
165 /* The biggest alignment required.  */
166 
167 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
168 
169 
170 /* The number of extra orders, not corresponding to power-of-two sized
171    objects.  */
172 
173 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
174 
175 #define RTL_SIZE(NSLOTS) \
176   (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
177 
178 #define TREE_EXP_SIZE(OPS) \
179   (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
180 
181 /* The Ith entry is the maximum size of an object to be stored in the
182    Ith extra order.  Adding a new entry to this array is the *only*
183    thing you need to do to add a new special allocation size.  */
184 
185 static const size_t extra_order_size_table[] = {
186   /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
187      There are a lot of structures with these sizes and explicitly
188      listing them risks orders being dropped because they changed size.  */
189   MAX_ALIGNMENT * 3,
190   MAX_ALIGNMENT * 5,
191   MAX_ALIGNMENT * 6,
192   MAX_ALIGNMENT * 7,
193   MAX_ALIGNMENT * 9,
194   MAX_ALIGNMENT * 10,
195   MAX_ALIGNMENT * 11,
196   MAX_ALIGNMENT * 12,
197   MAX_ALIGNMENT * 13,
198   MAX_ALIGNMENT * 14,
199   MAX_ALIGNMENT * 15,
200   sizeof (struct tree_decl_non_common),
201   sizeof (struct tree_field_decl),
202   sizeof (struct tree_parm_decl),
203   sizeof (struct tree_var_decl),
204   sizeof (struct tree_type_non_common),
205   sizeof (struct function),
206   sizeof (struct basic_block_def),
207   sizeof (struct cgraph_node),
208   sizeof (struct loop),
209 };
210 
211 /* The total number of orders.  */
212 
213 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
214 
215 /* Compute the smallest nonnegative number which when added to X gives
216    a multiple of F.  */
217 
218 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
219 
220 /* Compute the smallest multiple of F that is >= X.  */
221 
222 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
223 
224 /* Round X to next multiple of the page size */
225 
226 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
227 
228 /* The Ith entry is the number of objects on a page or order I.  */
229 
230 static unsigned objects_per_page_table[NUM_ORDERS];
231 
232 /* The Ith entry is the size of an object on a page of order I.  */
233 
234 static size_t object_size_table[NUM_ORDERS];
235 
236 /* The Ith entry is a pair of numbers (mult, shift) such that
237    ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
238    for all k evenly divisible by OBJECT_SIZE(I).  */
239 
240 static struct
241 {
242   size_t mult;
243   unsigned int shift;
244 }
245 inverse_table[NUM_ORDERS];
246 
247 /* A page_entry records the status of an allocation page.  This
248    structure is dynamically sized to fit the bitmap in_use_p.  */
249 typedef struct page_entry
250 {
251   /* The next page-entry with objects of the same size, or NULL if
252      this is the last page-entry.  */
253   struct page_entry *next;
254 
255   /* The previous page-entry with objects of the same size, or NULL if
256      this is the first page-entry.   The PREV pointer exists solely to
257      keep the cost of ggc_free manageable.  */
258   struct page_entry *prev;
259 
260   /* The number of bytes allocated.  (This will always be a multiple
261      of the host system page size.)  */
262   size_t bytes;
263 
264   /* The address at which the memory is allocated.  */
265   char *page;
266 
267 #ifdef USING_MALLOC_PAGE_GROUPS
268   /* Back pointer to the page group this page came from.  */
269   struct page_group *group;
270 #endif
271 
272   /* This is the index in the by_depth varray where this page table
273      can be found.  */
274   unsigned long index_by_depth;
275 
276   /* Context depth of this page.  */
277   unsigned short context_depth;
278 
279   /* The number of free objects remaining on this page.  */
280   unsigned short num_free_objects;
281 
282   /* A likely candidate for the bit position of a free object for the
283      next allocation from this page.  */
284   unsigned short next_bit_hint;
285 
286   /* The lg of size of objects allocated from this page.  */
287   unsigned char order;
288 
289   /* Discarded page? */
290   bool discarded;
291 
292   /* A bit vector indicating whether or not objects are in use.  The
293      Nth bit is one if the Nth object on this page is allocated.  This
294      array is dynamically sized.  */
295   unsigned long in_use_p[1];
296 } page_entry;
297 
298 #ifdef USING_MALLOC_PAGE_GROUPS
299 /* A page_group describes a large allocation from malloc, from which
300    we parcel out aligned pages.  */
301 typedef struct page_group
302 {
303   /* A linked list of all extant page groups.  */
304   struct page_group *next;
305 
306   /* The address we received from malloc.  */
307   char *allocation;
308 
309   /* The size of the block.  */
310   size_t alloc_size;
311 
312   /* A bitmask of pages in use.  */
313   unsigned int in_use;
314 } page_group;
315 #endif
316 
317 #if HOST_BITS_PER_PTR <= 32
318 
319 /* On 32-bit hosts, we use a two level page table, as pictured above.  */
320 typedef page_entry **page_table[PAGE_L1_SIZE];
321 
322 #else
323 
324 /* On 64-bit hosts, we use the same two level page tables plus a linked
325    list that disambiguates the top 32-bits.  There will almost always be
326    exactly one entry in the list.  */
327 typedef struct page_table_chain
328 {
329   struct page_table_chain *next;
330   size_t high_bits;
331   page_entry **table[PAGE_L1_SIZE];
332 } *page_table;
333 
334 #endif
335 
336 #ifdef ENABLE_GC_ALWAYS_COLLECT
337 /* List of free objects to be verified as actually free on the
338    next collection.  */
339 struct free_object
340 {
341   void *object;
342   struct free_object *next;
343 };
344 #endif
345 
346 /* The rest of the global variables.  */
347 static struct globals
348 {
349   /* The Nth element in this array is a page with objects of size 2^N.
350      If there are any pages with free objects, they will be at the
351      head of the list.  NULL if there are no page-entries for this
352      object size.  */
353   page_entry *pages[NUM_ORDERS];
354 
355   /* The Nth element in this array is the last page with objects of
356      size 2^N.  NULL if there are no page-entries for this object
357      size.  */
358   page_entry *page_tails[NUM_ORDERS];
359 
360   /* Lookup table for associating allocation pages with object addresses.  */
361   page_table lookup;
362 
363   /* The system's page size.  */
364   size_t pagesize;
365   size_t lg_pagesize;
366 
367   /* Bytes currently allocated.  */
368   size_t allocated;
369 
370   /* Bytes currently allocated at the end of the last collection.  */
371   size_t allocated_last_gc;
372 
373   /* Total amount of memory mapped.  */
374   size_t bytes_mapped;
375 
376   /* Bit N set if any allocations have been done at context depth N.  */
377   unsigned long context_depth_allocations;
378 
379   /* Bit N set if any collections have been done at context depth N.  */
380   unsigned long context_depth_collections;
381 
382   /* The current depth in the context stack.  */
383   unsigned short context_depth;
384 
385   /* A file descriptor open to /dev/zero for reading.  */
386 #if defined (HAVE_MMAP_DEV_ZERO)
387   int dev_zero_fd;
388 #endif
389 
390   /* A cache of free system pages.  */
391   page_entry *free_pages;
392 
393 #ifdef USING_MALLOC_PAGE_GROUPS
394   page_group *page_groups;
395 #endif
396 
397   /* The file descriptor for debugging output.  */
398   FILE *debug_file;
399 
400   /* Current number of elements in use in depth below.  */
401   unsigned int depth_in_use;
402 
403   /* Maximum number of elements that can be used before resizing.  */
404   unsigned int depth_max;
405 
406   /* Each element of this array is an index in by_depth where the given
407      depth starts.  This structure is indexed by that given depth we
408      are interested in.  */
409   unsigned int *depth;
410 
411   /* Current number of elements in use in by_depth below.  */
412   unsigned int by_depth_in_use;
413 
414   /* Maximum number of elements that can be used before resizing.  */
415   unsigned int by_depth_max;
416 
417   /* Each element of this array is a pointer to a page_entry, all
418      page_entries can be found in here by increasing depth.
419      index_by_depth in the page_entry is the index into this data
420      structure where that page_entry can be found.  This is used to
421      speed up finding all page_entries at a particular depth.  */
422   page_entry **by_depth;
423 
424   /* Each element is a pointer to the saved in_use_p bits, if any,
425      zero otherwise.  We allocate them all together, to enable a
426      better runtime data access pattern.  */
427   unsigned long **save_in_use;
428 
429 #ifdef ENABLE_GC_ALWAYS_COLLECT
430   /* List of free objects to be verified as actually free on the
431      next collection.  */
432   struct free_object *free_object_list;
433 #endif
434 
435 #ifdef GATHER_STATISTICS
436   struct
437   {
438     /* Total GC-allocated memory.  */
439     unsigned long long total_allocated;
440     /* Total overhead for GC-allocated memory.  */
441     unsigned long long total_overhead;
442 
443     /* Total allocations and overhead for sizes less than 32, 64 and 128.
444        These sizes are interesting because they are typical cache line
445        sizes.  */
446 
447     unsigned long long total_allocated_under32;
448     unsigned long long total_overhead_under32;
449 
450     unsigned long long total_allocated_under64;
451     unsigned long long total_overhead_under64;
452 
453     unsigned long long total_allocated_under128;
454     unsigned long long total_overhead_under128;
455 
456     /* The allocations for each of the allocation orders.  */
457     unsigned long long total_allocated_per_order[NUM_ORDERS];
458 
459     /* The overhead for each of the allocation orders.  */
460     unsigned long long total_overhead_per_order[NUM_ORDERS];
461   } stats;
462 #endif
463 } G;
464 
465 /* The size in bytes required to maintain a bitmap for the objects
466    on a page-entry.  */
467 #define BITMAP_SIZE(Num_objects) \
468   (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
469 
470 /* Allocate pages in chunks of this size, to throttle calls to memory
471    allocation routines.  The first page is used, the rest go onto the
472    free list.  This cannot be larger than HOST_BITS_PER_INT for the
473    in_use bitmask for page_group.  Hosts that need a different value
474    can override this by defining GGC_QUIRE_SIZE explicitly.  */
475 #ifndef GGC_QUIRE_SIZE
476 # ifdef USING_MMAP
477 #  define GGC_QUIRE_SIZE 512	/* 2MB for 4K pages */
478 # else
479 #  define GGC_QUIRE_SIZE 16
480 # endif
481 #endif
482 
483 /* Initial guess as to how many page table entries we might need.  */
484 #define INITIAL_PTE_COUNT 128
485 
486 static int ggc_allocated_p (const void *);
487 static page_entry *lookup_page_table_entry (const void *);
488 static void set_page_table_entry (void *, page_entry *);
489 #ifdef USING_MMAP
490 static char *alloc_anon (char *, size_t, bool check);
491 #endif
492 #ifdef USING_MALLOC_PAGE_GROUPS
493 static size_t page_group_index (char *, char *);
494 static void set_page_group_in_use (page_group *, char *);
495 static void clear_page_group_in_use (page_group *, char *);
496 #endif
497 static struct page_entry * alloc_page (unsigned);
498 static void free_page (struct page_entry *);
499 static void release_pages (void);
500 static void clear_marks (void);
501 static void sweep_pages (void);
502 static void ggc_recalculate_in_use_p (page_entry *);
503 static void compute_inverse (unsigned);
504 static inline void adjust_depth (void);
505 static void move_ptes_to_front (int, int);
506 
507 void debug_print_page_list (int);
508 static void push_depth (unsigned int);
509 static void push_by_depth (page_entry *, unsigned long *);
510 
511 /* Push an entry onto G.depth.  */
512 
513 inline static void
514 push_depth (unsigned int i)
515 {
516   if (G.depth_in_use >= G.depth_max)
517     {
518       G.depth_max *= 2;
519       G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
520     }
521   G.depth[G.depth_in_use++] = i;
522 }
523 
524 /* Push an entry onto G.by_depth and G.save_in_use.  */
525 
526 inline static void
527 push_by_depth (page_entry *p, unsigned long *s)
528 {
529   if (G.by_depth_in_use >= G.by_depth_max)
530     {
531       G.by_depth_max *= 2;
532       G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
533       G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
534 				  G.by_depth_max);
535     }
536   G.by_depth[G.by_depth_in_use] = p;
537   G.save_in_use[G.by_depth_in_use++] = s;
538 }
539 
540 #if (GCC_VERSION < 3001)
541 #define prefetch(X) ((void) X)
542 #else
543 #define prefetch(X) __builtin_prefetch (X)
544 #endif
545 
546 #define save_in_use_p_i(__i) \
547   (G.save_in_use[__i])
548 #define save_in_use_p(__p) \
549   (save_in_use_p_i (__p->index_by_depth))
550 
551 /* Returns nonzero if P was allocated in GC'able memory.  */
552 
553 static inline int
554 ggc_allocated_p (const void *p)
555 {
556   page_entry ***base;
557   size_t L1, L2;
558 
559 #if HOST_BITS_PER_PTR <= 32
560   base = &G.lookup[0];
561 #else
562   page_table table = G.lookup;
563   size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
564   while (1)
565     {
566       if (table == NULL)
567 	return 0;
568       if (table->high_bits == high_bits)
569 	break;
570       table = table->next;
571     }
572   base = &table->table[0];
573 #endif
574 
575   /* Extract the level 1 and 2 indices.  */
576   L1 = LOOKUP_L1 (p);
577   L2 = LOOKUP_L2 (p);
578 
579   return base[L1] && base[L1][L2];
580 }
581 
582 /* Traverse the page table and find the entry for a page.
583    Die (probably) if the object wasn't allocated via GC.  */
584 
585 static inline page_entry *
586 lookup_page_table_entry (const void *p)
587 {
588   page_entry ***base;
589   size_t L1, L2;
590 
591 #if HOST_BITS_PER_PTR <= 32
592   base = &G.lookup[0];
593 #else
594   page_table table = G.lookup;
595   size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
596   while (table->high_bits != high_bits)
597     table = table->next;
598   base = &table->table[0];
599 #endif
600 
601   /* Extract the level 1 and 2 indices.  */
602   L1 = LOOKUP_L1 (p);
603   L2 = LOOKUP_L2 (p);
604 
605   return base[L1][L2];
606 }
607 
608 /* Set the page table entry for a page.  */
609 
610 static void
611 set_page_table_entry (void *p, page_entry *entry)
612 {
613   page_entry ***base;
614   size_t L1, L2;
615 
616 #if HOST_BITS_PER_PTR <= 32
617   base = &G.lookup[0];
618 #else
619   page_table table;
620   size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
621   for (table = G.lookup; table; table = table->next)
622     if (table->high_bits == high_bits)
623       goto found;
624 
625   /* Not found -- allocate a new table.  */
626   table = XCNEW (struct page_table_chain);
627   table->next = G.lookup;
628   table->high_bits = high_bits;
629   G.lookup = table;
630 found:
631   base = &table->table[0];
632 #endif
633 
634   /* Extract the level 1 and 2 indices.  */
635   L1 = LOOKUP_L1 (p);
636   L2 = LOOKUP_L2 (p);
637 
638   if (base[L1] == NULL)
639     base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
640 
641   base[L1][L2] = entry;
642 }
643 
644 /* Prints the page-entry for object size ORDER, for debugging.  */
645 
646 DEBUG_FUNCTION void
647 debug_print_page_list (int order)
648 {
649   page_entry *p;
650   printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
651 	  (void *) G.page_tails[order]);
652   p = G.pages[order];
653   while (p != NULL)
654     {
655       printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
656 	      p->num_free_objects);
657       p = p->next;
658     }
659   printf ("NULL\n");
660   fflush (stdout);
661 }
662 
663 #ifdef USING_MMAP
664 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
665    (if non-null).  The ifdef structure here is intended to cause a
666    compile error unless exactly one of the HAVE_* is defined.  */
667 
668 static inline char *
669 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
670 {
671 #ifdef HAVE_MMAP_ANON
672   char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
673 			      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
674 #endif
675 #ifdef HAVE_MMAP_DEV_ZERO
676   char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
677 			      MAP_PRIVATE, G.dev_zero_fd, 0);
678 #endif
679 
680   if (page == (char *) MAP_FAILED)
681     {
682       if (!check)
683         return NULL;
684       perror ("virtual memory exhausted");
685       exit (FATAL_EXIT_CODE);
686     }
687 
688   /* Remember that we allocated this memory.  */
689   G.bytes_mapped += size;
690 
691   /* Pretend we don't have access to the allocated pages.  We'll enable
692      access to smaller pieces of the area in ggc_internal_alloc.  Discard the
693      handle to avoid handle leak.  */
694   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
695 
696   return page;
697 }
698 #endif
699 #ifdef USING_MALLOC_PAGE_GROUPS
700 /* Compute the index for this page into the page group.  */
701 
702 static inline size_t
703 page_group_index (char *allocation, char *page)
704 {
705   return (size_t) (page - allocation) >> G.lg_pagesize;
706 }
707 
708 /* Set and clear the in_use bit for this page in the page group.  */
709 
710 static inline void
711 set_page_group_in_use (page_group *group, char *page)
712 {
713   group->in_use |= 1 << page_group_index (group->allocation, page);
714 }
715 
716 static inline void
717 clear_page_group_in_use (page_group *group, char *page)
718 {
719   group->in_use &= ~(1 << page_group_index (group->allocation, page));
720 }
721 #endif
722 
723 /* Allocate a new page for allocating objects of size 2^ORDER,
724    and return an entry for it.  The entry is not added to the
725    appropriate page_table list.  */
726 
727 static inline struct page_entry *
728 alloc_page (unsigned order)
729 {
730   struct page_entry *entry, *p, **pp;
731   char *page;
732   size_t num_objects;
733   size_t bitmap_size;
734   size_t page_entry_size;
735   size_t entry_size;
736 #ifdef USING_MALLOC_PAGE_GROUPS
737   page_group *group;
738 #endif
739 
740   num_objects = OBJECTS_PER_PAGE (order);
741   bitmap_size = BITMAP_SIZE (num_objects + 1);
742   page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
743   entry_size = num_objects * OBJECT_SIZE (order);
744   if (entry_size < G.pagesize)
745     entry_size = G.pagesize;
746   entry_size = PAGE_ALIGN (entry_size);
747 
748   entry = NULL;
749   page = NULL;
750 
751   /* Check the list of free pages for one we can use.  */
752   for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
753     if (p->bytes == entry_size)
754       break;
755 
756   if (p != NULL)
757     {
758       if (p->discarded)
759         G.bytes_mapped += p->bytes;
760       p->discarded = false;
761 
762       /* Recycle the allocated memory from this page ...  */
763       *pp = p->next;
764       page = p->page;
765 
766 #ifdef USING_MALLOC_PAGE_GROUPS
767       group = p->group;
768 #endif
769 
770       /* ... and, if possible, the page entry itself.  */
771       if (p->order == order)
772 	{
773 	  entry = p;
774 	  memset (entry, 0, page_entry_size);
775 	}
776       else
777 	free (p);
778     }
779 #ifdef USING_MMAP
780   else if (entry_size == G.pagesize)
781     {
782       /* We want just one page.  Allocate a bunch of them and put the
783 	 extras on the freelist.  (Can only do this optimization with
784 	 mmap for backing store.)  */
785       struct page_entry *e, *f = G.free_pages;
786       int i, entries = GGC_QUIRE_SIZE;
787 
788       page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
789       if (page == NULL)
790      	{
791 	  page = alloc_anon(NULL, G.pagesize, true);
792           entries = 1;
793 	}
794 
795       /* This loop counts down so that the chain will be in ascending
796 	 memory order.  */
797       for (i = entries - 1; i >= 1; i--)
798 	{
799 	  e = XCNEWVAR (struct page_entry, page_entry_size);
800 	  e->order = order;
801 	  e->bytes = G.pagesize;
802 	  e->page = page + (i << G.lg_pagesize);
803 	  e->next = f;
804 	  f = e;
805 	}
806 
807       G.free_pages = f;
808     }
809   else
810     page = alloc_anon (NULL, entry_size, true);
811 #endif
812 #ifdef USING_MALLOC_PAGE_GROUPS
813   else
814     {
815       /* Allocate a large block of memory and serve out the aligned
816 	 pages therein.  This results in much less memory wastage
817 	 than the traditional implementation of valloc.  */
818 
819       char *allocation, *a, *enda;
820       size_t alloc_size, head_slop, tail_slop;
821       int multiple_pages = (entry_size == G.pagesize);
822 
823       if (multiple_pages)
824 	alloc_size = GGC_QUIRE_SIZE * G.pagesize;
825       else
826 	alloc_size = entry_size + G.pagesize - 1;
827       allocation = XNEWVEC (char, alloc_size);
828 
829       page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
830       head_slop = page - allocation;
831       if (multiple_pages)
832 	tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
833       else
834 	tail_slop = alloc_size - entry_size - head_slop;
835       enda = allocation + alloc_size - tail_slop;
836 
837       /* We allocated N pages, which are likely not aligned, leaving
838 	 us with N-1 usable pages.  We plan to place the page_group
839 	 structure somewhere in the slop.  */
840       if (head_slop >= sizeof (page_group))
841 	group = (page_group *)page - 1;
842       else
843 	{
844 	  /* We magically got an aligned allocation.  Too bad, we have
845 	     to waste a page anyway.  */
846 	  if (tail_slop == 0)
847 	    {
848 	      enda -= G.pagesize;
849 	      tail_slop += G.pagesize;
850 	    }
851 	  gcc_assert (tail_slop >= sizeof (page_group));
852 	  group = (page_group *)enda;
853 	  tail_slop -= sizeof (page_group);
854 	}
855 
856       /* Remember that we allocated this memory.  */
857       group->next = G.page_groups;
858       group->allocation = allocation;
859       group->alloc_size = alloc_size;
860       group->in_use = 0;
861       G.page_groups = group;
862       G.bytes_mapped += alloc_size;
863 
864       /* If we allocated multiple pages, put the rest on the free list.  */
865       if (multiple_pages)
866 	{
867 	  struct page_entry *e, *f = G.free_pages;
868 	  for (a = enda - G.pagesize; a != page; a -= G.pagesize)
869 	    {
870 	      e = XCNEWVAR (struct page_entry, page_entry_size);
871 	      e->order = order;
872 	      e->bytes = G.pagesize;
873 	      e->page = a;
874 	      e->group = group;
875 	      e->next = f;
876 	      f = e;
877 	    }
878 	  G.free_pages = f;
879 	}
880     }
881 #endif
882 
883   if (entry == NULL)
884     entry = XCNEWVAR (struct page_entry, page_entry_size);
885 
886   entry->bytes = entry_size;
887   entry->page = page;
888   entry->context_depth = G.context_depth;
889   entry->order = order;
890   entry->num_free_objects = num_objects;
891   entry->next_bit_hint = 1;
892 
893   G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
894 
895 #ifdef USING_MALLOC_PAGE_GROUPS
896   entry->group = group;
897   set_page_group_in_use (group, page);
898 #endif
899 
900   /* Set the one-past-the-end in-use bit.  This acts as a sentry as we
901      increment the hint.  */
902   entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
903     = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
904 
905   set_page_table_entry (page, entry);
906 
907   if (GGC_DEBUG_LEVEL >= 2)
908     fprintf (G.debug_file,
909 	     "Allocating page at %p, object size=%lu, data %p-%p\n",
910 	     (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
911 	     page + entry_size - 1);
912 
913   return entry;
914 }
915 
916 /* Adjust the size of G.depth so that no index greater than the one
917    used by the top of the G.by_depth is used.  */
918 
919 static inline void
920 adjust_depth (void)
921 {
922   page_entry *top;
923 
924   if (G.by_depth_in_use)
925     {
926       top = G.by_depth[G.by_depth_in_use-1];
927 
928       /* Peel back indices in depth that index into by_depth, so that
929 	 as new elements are added to by_depth, we note the indices
930 	 of those elements, if they are for new context depths.  */
931       while (G.depth_in_use > (size_t)top->context_depth+1)
932 	--G.depth_in_use;
933     }
934 }
935 
936 /* For a page that is no longer needed, put it on the free page list.  */
937 
938 static void
939 free_page (page_entry *entry)
940 {
941   if (GGC_DEBUG_LEVEL >= 2)
942     fprintf (G.debug_file,
943 	     "Deallocating page at %p, data %p-%p\n", (void *) entry,
944 	     entry->page, entry->page + entry->bytes - 1);
945 
946   /* Mark the page as inaccessible.  Discard the handle to avoid handle
947      leak.  */
948   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
949 
950   set_page_table_entry (entry->page, NULL);
951 
952 #ifdef USING_MALLOC_PAGE_GROUPS
953   clear_page_group_in_use (entry->group, entry->page);
954 #endif
955 
956   if (G.by_depth_in_use > 1)
957     {
958       page_entry *top = G.by_depth[G.by_depth_in_use-1];
959       int i = entry->index_by_depth;
960 
961       /* We cannot free a page from a context deeper than the current
962 	 one.  */
963       gcc_assert (entry->context_depth == top->context_depth);
964 
965       /* Put top element into freed slot.  */
966       G.by_depth[i] = top;
967       G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
968       top->index_by_depth = i;
969     }
970   --G.by_depth_in_use;
971 
972   adjust_depth ();
973 
974   entry->next = G.free_pages;
975   G.free_pages = entry;
976 }
977 
978 /* Release the free page cache to the system.  */
979 
980 static void
981 release_pages (void)
982 {
983 #ifdef USING_MADVISE
984   page_entry *p, *start_p;
985   char *start;
986   size_t len;
987   size_t mapped_len;
988   page_entry *next, *prev, *newprev;
989   size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
990 
991   /* First free larger continuous areas to the OS.
992      This allows other allocators to grab these areas if needed.
993      This is only done on larger chunks to avoid fragmentation.
994      This does not always work because the free_pages list is only
995      approximately sorted. */
996 
997   p = G.free_pages;
998   prev = NULL;
999   while (p)
1000     {
1001       start = p->page;
1002       start_p = p;
1003       len = 0;
1004       mapped_len = 0;
1005       newprev = prev;
1006       while (p && p->page == start + len)
1007         {
1008           len += p->bytes;
1009 	  if (!p->discarded)
1010 	      mapped_len += p->bytes;
1011 	  newprev = p;
1012           p = p->next;
1013         }
1014       if (len >= free_unit)
1015         {
1016           while (start_p != p)
1017             {
1018               next = start_p->next;
1019               free (start_p);
1020               start_p = next;
1021             }
1022           munmap (start, len);
1023 	  if (prev)
1024 	    prev->next = p;
1025           else
1026             G.free_pages = p;
1027           G.bytes_mapped -= mapped_len;
1028 	  continue;
1029         }
1030       prev = newprev;
1031    }
1032 
1033   /* Now give back the fragmented pages to the OS, but keep the address
1034      space to reuse it next time. */
1035 
1036   for (p = G.free_pages; p; )
1037     {
1038       if (p->discarded)
1039         {
1040           p = p->next;
1041           continue;
1042         }
1043       start = p->page;
1044       len = p->bytes;
1045       start_p = p;
1046       p = p->next;
1047       while (p && p->page == start + len)
1048         {
1049           len += p->bytes;
1050           p = p->next;
1051         }
1052       /* Give the page back to the kernel, but don't free the mapping.
1053          This avoids fragmentation in the virtual memory map of the
1054  	 process. Next time we can reuse it by just touching it. */
1055       madvise (start, len, MADV_DONTNEED);
1056       /* Don't count those pages as mapped to not touch the garbage collector
1057          unnecessarily. */
1058       G.bytes_mapped -= len;
1059       while (start_p != p)
1060         {
1061           start_p->discarded = true;
1062           start_p = start_p->next;
1063         }
1064     }
1065 #endif
1066 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1067   page_entry *p, *next;
1068   char *start;
1069   size_t len;
1070 
1071   /* Gather up adjacent pages so they are unmapped together.  */
1072   p = G.free_pages;
1073 
1074   while (p)
1075     {
1076       start = p->page;
1077       next = p->next;
1078       len = p->bytes;
1079       free (p);
1080       p = next;
1081 
1082       while (p && p->page == start + len)
1083 	{
1084 	  next = p->next;
1085 	  len += p->bytes;
1086 	  free (p);
1087 	  p = next;
1088 	}
1089 
1090       munmap (start, len);
1091       G.bytes_mapped -= len;
1092     }
1093 
1094   G.free_pages = NULL;
1095 #endif
1096 #ifdef USING_MALLOC_PAGE_GROUPS
1097   page_entry **pp, *p;
1098   page_group **gp, *g;
1099 
1100   /* Remove all pages from free page groups from the list.  */
1101   pp = &G.free_pages;
1102   while ((p = *pp) != NULL)
1103     if (p->group->in_use == 0)
1104       {
1105 	*pp = p->next;
1106 	free (p);
1107       }
1108     else
1109       pp = &p->next;
1110 
1111   /* Remove all free page groups, and release the storage.  */
1112   gp = &G.page_groups;
1113   while ((g = *gp) != NULL)
1114     if (g->in_use == 0)
1115       {
1116 	*gp = g->next;
1117 	G.bytes_mapped -= g->alloc_size;
1118 	free (g->allocation);
1119       }
1120     else
1121       gp = &g->next;
1122 #endif
1123 }
1124 
1125 /* This table provides a fast way to determine ceil(log_2(size)) for
1126    allocation requests.  The minimum allocation size is eight bytes.  */
1127 #define NUM_SIZE_LOOKUP 512
1128 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1129 {
1130   3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1131   4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1132   5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1133   6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1134   6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1135   7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1136   7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1137   7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1138   7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1139   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1140   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1141   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1142   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1143   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1144   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1145   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1146   8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1147   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1148   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1149   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1150   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1151   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1152   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1153   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1154   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1155   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1156   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1157   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1158   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1159   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1160   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1161   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1162 };
1163 
1164 /* For a given size of memory requested for allocation, return the
1165    actual size that is going to be allocated, as well as the size
1166    order.  */
1167 
1168 static void
1169 ggc_round_alloc_size_1 (size_t requested_size,
1170 			size_t *size_order,
1171 			size_t *alloced_size)
1172 {
1173   size_t order, object_size;
1174 
1175   if (requested_size < NUM_SIZE_LOOKUP)
1176     {
1177       order = size_lookup[requested_size];
1178       object_size = OBJECT_SIZE (order);
1179     }
1180   else
1181     {
1182       order = 10;
1183       while (requested_size > (object_size = OBJECT_SIZE (order)))
1184         order++;
1185     }
1186 
1187   if (size_order)
1188     *size_order = order;
1189   if (alloced_size)
1190     *alloced_size = object_size;
1191 }
1192 
1193 /* For a given size of memory requested for allocation, return the
1194    actual size that is going to be allocated.  */
1195 
1196 size_t
1197 ggc_round_alloc_size (size_t requested_size)
1198 {
1199   size_t size = 0;
1200 
1201   ggc_round_alloc_size_1 (requested_size, NULL, &size);
1202   return size;
1203 }
1204 
1205 /* Typed allocation function.  Does nothing special in this collector.  */
1206 
1207 void *
1208 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1209 		      MEM_STAT_DECL)
1210 {
1211   return ggc_internal_alloc_stat (size PASS_MEM_STAT);
1212 }
1213 
1214 /* Allocate a chunk of memory of SIZE bytes.  Its contents are undefined.  */
1215 
1216 void *
1217 ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
1218 {
1219   size_t order, word, bit, object_offset, object_size;
1220   struct page_entry *entry;
1221   void *result;
1222 
1223   ggc_round_alloc_size_1 (size, &order, &object_size);
1224 
1225   /* If there are non-full pages for this size allocation, they are at
1226      the head of the list.  */
1227   entry = G.pages[order];
1228 
1229   /* If there is no page for this object size, or all pages in this
1230      context are full, allocate a new page.  */
1231   if (entry == NULL || entry->num_free_objects == 0)
1232     {
1233       struct page_entry *new_entry;
1234       new_entry = alloc_page (order);
1235 
1236       new_entry->index_by_depth = G.by_depth_in_use;
1237       push_by_depth (new_entry, 0);
1238 
1239       /* We can skip context depths, if we do, make sure we go all the
1240 	 way to the new depth.  */
1241       while (new_entry->context_depth >= G.depth_in_use)
1242 	push_depth (G.by_depth_in_use-1);
1243 
1244       /* If this is the only entry, it's also the tail.  If it is not
1245 	 the only entry, then we must update the PREV pointer of the
1246 	 ENTRY (G.pages[order]) to point to our new page entry.  */
1247       if (entry == NULL)
1248 	G.page_tails[order] = new_entry;
1249       else
1250 	entry->prev = new_entry;
1251 
1252       /* Put new pages at the head of the page list.  By definition the
1253 	 entry at the head of the list always has a NULL pointer.  */
1254       new_entry->next = entry;
1255       new_entry->prev = NULL;
1256       entry = new_entry;
1257       G.pages[order] = new_entry;
1258 
1259       /* For a new page, we know the word and bit positions (in the
1260 	 in_use bitmap) of the first available object -- they're zero.  */
1261       new_entry->next_bit_hint = 1;
1262       word = 0;
1263       bit = 0;
1264       object_offset = 0;
1265     }
1266   else
1267     {
1268       /* First try to use the hint left from the previous allocation
1269 	 to locate a clear bit in the in-use bitmap.  We've made sure
1270 	 that the one-past-the-end bit is always set, so if the hint
1271 	 has run over, this test will fail.  */
1272       unsigned hint = entry->next_bit_hint;
1273       word = hint / HOST_BITS_PER_LONG;
1274       bit = hint % HOST_BITS_PER_LONG;
1275 
1276       /* If the hint didn't work, scan the bitmap from the beginning.  */
1277       if ((entry->in_use_p[word] >> bit) & 1)
1278 	{
1279 	  word = bit = 0;
1280 	  while (~entry->in_use_p[word] == 0)
1281 	    ++word;
1282 
1283 #if GCC_VERSION >= 3004
1284 	  bit = __builtin_ctzl (~entry->in_use_p[word]);
1285 #else
1286 	  while ((entry->in_use_p[word] >> bit) & 1)
1287 	    ++bit;
1288 #endif
1289 
1290 	  hint = word * HOST_BITS_PER_LONG + bit;
1291 	}
1292 
1293       /* Next time, try the next bit.  */
1294       entry->next_bit_hint = hint + 1;
1295 
1296       object_offset = hint * object_size;
1297     }
1298 
1299   /* Set the in-use bit.  */
1300   entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1301 
1302   /* Keep a running total of the number of free objects.  If this page
1303      fills up, we may have to move it to the end of the list if the
1304      next page isn't full.  If the next page is full, all subsequent
1305      pages are full, so there's no need to move it.  */
1306   if (--entry->num_free_objects == 0
1307       && entry->next != NULL
1308       && entry->next->num_free_objects > 0)
1309     {
1310       /* We have a new head for the list.  */
1311       G.pages[order] = entry->next;
1312 
1313       /* We are moving ENTRY to the end of the page table list.
1314 	 The new page at the head of the list will have NULL in
1315 	 its PREV field and ENTRY will have NULL in its NEXT field.  */
1316       entry->next->prev = NULL;
1317       entry->next = NULL;
1318 
1319       /* Append ENTRY to the tail of the list.  */
1320       entry->prev = G.page_tails[order];
1321       G.page_tails[order]->next = entry;
1322       G.page_tails[order] = entry;
1323     }
1324 
1325   /* Calculate the object's address.  */
1326   result = entry->page + object_offset;
1327 #ifdef GATHER_STATISTICS
1328   ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1329 		       result PASS_MEM_STAT);
1330 #endif
1331 
1332 #ifdef ENABLE_GC_CHECKING
1333   /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1334      exact same semantics in presence of memory bugs, regardless of
1335      ENABLE_VALGRIND_CHECKING.  We override this request below.  Drop the
1336      handle to avoid handle leak.  */
1337   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1338 
1339   /* `Poison' the entire allocated object, including any padding at
1340      the end.  */
1341   memset (result, 0xaf, object_size);
1342 
1343   /* Make the bytes after the end of the object unaccessible.  Discard the
1344      handle to avoid handle leak.  */
1345   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1346 						object_size - size));
1347 #endif
1348 
1349   /* Tell Valgrind that the memory is there, but its content isn't
1350      defined.  The bytes at the end of the object are still marked
1351      unaccessible.  */
1352   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1353 
1354   /* Keep track of how many bytes are being allocated.  This
1355      information is used in deciding when to collect.  */
1356   G.allocated += object_size;
1357 
1358   /* For timevar statistics.  */
1359   timevar_ggc_mem_total += object_size;
1360 
1361 #ifdef GATHER_STATISTICS
1362   {
1363     size_t overhead = object_size - size;
1364 
1365     G.stats.total_overhead += overhead;
1366     G.stats.total_allocated += object_size;
1367     G.stats.total_overhead_per_order[order] += overhead;
1368     G.stats.total_allocated_per_order[order] += object_size;
1369 
1370     if (size <= 32)
1371       {
1372 	G.stats.total_overhead_under32 += overhead;
1373 	G.stats.total_allocated_under32 += object_size;
1374       }
1375     if (size <= 64)
1376       {
1377 	G.stats.total_overhead_under64 += overhead;
1378 	G.stats.total_allocated_under64 += object_size;
1379       }
1380     if (size <= 128)
1381       {
1382 	G.stats.total_overhead_under128 += overhead;
1383 	G.stats.total_allocated_under128 += object_size;
1384       }
1385   }
1386 #endif
1387 
1388   if (GGC_DEBUG_LEVEL >= 3)
1389     fprintf (G.debug_file,
1390 	     "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1391 	     (unsigned long) size, (unsigned long) object_size, result,
1392 	     (void *) entry);
1393 
1394   return result;
1395 }
1396 
1397 /* Mark function for strings.  */
1398 
1399 void
1400 gt_ggc_m_S (const void *p)
1401 {
1402   page_entry *entry;
1403   unsigned bit, word;
1404   unsigned long mask;
1405   unsigned long offset;
1406 
1407   if (!p || !ggc_allocated_p (p))
1408     return;
1409 
1410   /* Look up the page on which the object is alloced.  .  */
1411   entry = lookup_page_table_entry (p);
1412   gcc_assert (entry);
1413 
1414   /* Calculate the index of the object on the page; this is its bit
1415      position in the in_use_p bitmap.  Note that because a char* might
1416      point to the middle of an object, we need special code here to
1417      make sure P points to the start of an object.  */
1418   offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1419   if (offset)
1420     {
1421       /* Here we've seen a char* which does not point to the beginning
1422 	 of an allocated object.  We assume it points to the middle of
1423 	 a STRING_CST.  */
1424       gcc_assert (offset == offsetof (struct tree_string, str));
1425       p = ((const char *) p) - offset;
1426       gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1427       return;
1428     }
1429 
1430   bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1431   word = bit / HOST_BITS_PER_LONG;
1432   mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1433 
1434   /* If the bit was previously set, skip it.  */
1435   if (entry->in_use_p[word] & mask)
1436     return;
1437 
1438   /* Otherwise set it, and decrement the free object count.  */
1439   entry->in_use_p[word] |= mask;
1440   entry->num_free_objects -= 1;
1441 
1442   if (GGC_DEBUG_LEVEL >= 4)
1443     fprintf (G.debug_file, "Marking %p\n", p);
1444 
1445   return;
1446 }
1447 
1448 /* If P is not marked, marks it and return false.  Otherwise return true.
1449    P must have been allocated by the GC allocator; it mustn't point to
1450    static objects, stack variables, or memory allocated with malloc.  */
1451 
1452 int
1453 ggc_set_mark (const void *p)
1454 {
1455   page_entry *entry;
1456   unsigned bit, word;
1457   unsigned long mask;
1458 
1459   /* Look up the page on which the object is alloced.  If the object
1460      wasn't allocated by the collector, we'll probably die.  */
1461   entry = lookup_page_table_entry (p);
1462   gcc_assert (entry);
1463 
1464   /* Calculate the index of the object on the page; this is its bit
1465      position in the in_use_p bitmap.  */
1466   bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1467   word = bit / HOST_BITS_PER_LONG;
1468   mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1469 
1470   /* If the bit was previously set, skip it.  */
1471   if (entry->in_use_p[word] & mask)
1472     return 1;
1473 
1474   /* Otherwise set it, and decrement the free object count.  */
1475   entry->in_use_p[word] |= mask;
1476   entry->num_free_objects -= 1;
1477 
1478   if (GGC_DEBUG_LEVEL >= 4)
1479     fprintf (G.debug_file, "Marking %p\n", p);
1480 
1481   return 0;
1482 }
1483 
1484 /* Return 1 if P has been marked, zero otherwise.
1485    P must have been allocated by the GC allocator; it mustn't point to
1486    static objects, stack variables, or memory allocated with malloc.  */
1487 
1488 int
1489 ggc_marked_p (const void *p)
1490 {
1491   page_entry *entry;
1492   unsigned bit, word;
1493   unsigned long mask;
1494 
1495   /* Look up the page on which the object is alloced.  If the object
1496      wasn't allocated by the collector, we'll probably die.  */
1497   entry = lookup_page_table_entry (p);
1498   gcc_assert (entry);
1499 
1500   /* Calculate the index of the object on the page; this is its bit
1501      position in the in_use_p bitmap.  */
1502   bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1503   word = bit / HOST_BITS_PER_LONG;
1504   mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1505 
1506   return (entry->in_use_p[word] & mask) != 0;
1507 }
1508 
1509 /* Return the size of the gc-able object P.  */
1510 
1511 size_t
1512 ggc_get_size (const void *p)
1513 {
1514   page_entry *pe = lookup_page_table_entry (p);
1515   return OBJECT_SIZE (pe->order);
1516 }
1517 
1518 /* Release the memory for object P.  */
1519 
1520 void
1521 ggc_free (void *p)
1522 {
1523   page_entry *pe = lookup_page_table_entry (p);
1524   size_t order = pe->order;
1525   size_t size = OBJECT_SIZE (order);
1526 
1527 #ifdef GATHER_STATISTICS
1528   ggc_free_overhead (p);
1529 #endif
1530 
1531   if (GGC_DEBUG_LEVEL >= 3)
1532     fprintf (G.debug_file,
1533 	     "Freeing object, actual size=%lu, at %p on %p\n",
1534 	     (unsigned long) size, p, (void *) pe);
1535 
1536 #ifdef ENABLE_GC_CHECKING
1537   /* Poison the data, to indicate the data is garbage.  */
1538   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1539   memset (p, 0xa5, size);
1540 #endif
1541   /* Let valgrind know the object is free.  */
1542   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1543 
1544 #ifdef ENABLE_GC_ALWAYS_COLLECT
1545   /* In the completely-anal-checking mode, we do *not* immediately free
1546      the data, but instead verify that the data is *actually* not
1547      reachable the next time we collect.  */
1548   {
1549     struct free_object *fo = XNEW (struct free_object);
1550     fo->object = p;
1551     fo->next = G.free_object_list;
1552     G.free_object_list = fo;
1553   }
1554 #else
1555   {
1556     unsigned int bit_offset, word, bit;
1557 
1558     G.allocated -= size;
1559 
1560     /* Mark the object not-in-use.  */
1561     bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1562     word = bit_offset / HOST_BITS_PER_LONG;
1563     bit = bit_offset % HOST_BITS_PER_LONG;
1564     pe->in_use_p[word] &= ~(1UL << bit);
1565 
1566     if (pe->num_free_objects++ == 0)
1567       {
1568 	page_entry *p, *q;
1569 
1570 	/* If the page is completely full, then it's supposed to
1571 	   be after all pages that aren't.  Since we've freed one
1572 	   object from a page that was full, we need to move the
1573 	   page to the head of the list.
1574 
1575 	   PE is the node we want to move.  Q is the previous node
1576 	   and P is the next node in the list.  */
1577 	q = pe->prev;
1578 	if (q && q->num_free_objects == 0)
1579 	  {
1580 	    p = pe->next;
1581 
1582 	    q->next = p;
1583 
1584 	    /* If PE was at the end of the list, then Q becomes the
1585 	       new end of the list.  If PE was not the end of the
1586 	       list, then we need to update the PREV field for P.  */
1587 	    if (!p)
1588 	      G.page_tails[order] = q;
1589 	    else
1590 	      p->prev = q;
1591 
1592 	    /* Move PE to the head of the list.  */
1593 	    pe->next = G.pages[order];
1594 	    pe->prev = NULL;
1595 	    G.pages[order]->prev = pe;
1596 	    G.pages[order] = pe;
1597 	  }
1598 
1599 	/* Reset the hint bit to point to the only free object.  */
1600 	pe->next_bit_hint = bit_offset;
1601       }
1602   }
1603 #endif
1604 }
1605 
1606 /* Subroutine of init_ggc which computes the pair of numbers used to
1607    perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1608 
1609    This algorithm is taken from Granlund and Montgomery's paper
1610    "Division by Invariant Integers using Multiplication"
1611    (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1612    constants).  */
1613 
1614 static void
1615 compute_inverse (unsigned order)
1616 {
1617   size_t size, inv;
1618   unsigned int e;
1619 
1620   size = OBJECT_SIZE (order);
1621   e = 0;
1622   while (size % 2 == 0)
1623     {
1624       e++;
1625       size >>= 1;
1626     }
1627 
1628   inv = size;
1629   while (inv * size != 1)
1630     inv = inv * (2 - inv*size);
1631 
1632   DIV_MULT (order) = inv;
1633   DIV_SHIFT (order) = e;
1634 }
1635 
1636 /* Initialize the ggc-mmap allocator.  */
1637 void
1638 init_ggc (void)
1639 {
1640   unsigned order;
1641 
1642   G.pagesize = getpagesize();
1643   G.lg_pagesize = exact_log2 (G.pagesize);
1644 
1645 #ifdef HAVE_MMAP_DEV_ZERO
1646   G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1647   if (G.dev_zero_fd == -1)
1648     internal_error ("open /dev/zero: %m");
1649 #endif
1650 
1651 #if 0
1652   G.debug_file = fopen ("ggc-mmap.debug", "w");
1653 #else
1654   G.debug_file = stdout;
1655 #endif
1656 
1657 #ifdef USING_MMAP
1658   /* StunOS has an amazing off-by-one error for the first mmap allocation
1659      after fiddling with RLIMIT_STACK.  The result, as hard as it is to
1660      believe, is an unaligned page allocation, which would cause us to
1661      hork badly if we tried to use it.  */
1662   {
1663     char *p = alloc_anon (NULL, G.pagesize, true);
1664     struct page_entry *e;
1665     if ((size_t)p & (G.pagesize - 1))
1666       {
1667 	/* How losing.  Discard this one and try another.  If we still
1668 	   can't get something useful, give up.  */
1669 
1670 	p = alloc_anon (NULL, G.pagesize, true);
1671 	gcc_assert (!((size_t)p & (G.pagesize - 1)));
1672       }
1673 
1674     /* We have a good page, might as well hold onto it...  */
1675     e = XCNEW (struct page_entry);
1676     e->bytes = G.pagesize;
1677     e->page = p;
1678     e->next = G.free_pages;
1679     G.free_pages = e;
1680   }
1681 #endif
1682 
1683   /* Initialize the object size table.  */
1684   for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1685     object_size_table[order] = (size_t) 1 << order;
1686   for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1687     {
1688       size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1689 
1690       /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1691 	 so that we're sure of getting aligned memory.  */
1692       s = ROUND_UP (s, MAX_ALIGNMENT);
1693       object_size_table[order] = s;
1694     }
1695 
1696   /* Initialize the objects-per-page and inverse tables.  */
1697   for (order = 0; order < NUM_ORDERS; ++order)
1698     {
1699       objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1700       if (objects_per_page_table[order] == 0)
1701 	objects_per_page_table[order] = 1;
1702       compute_inverse (order);
1703     }
1704 
1705   /* Reset the size_lookup array to put appropriately sized objects in
1706      the special orders.  All objects bigger than the previous power
1707      of two, but no greater than the special size, should go in the
1708      new order.  */
1709   for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1710     {
1711       int o;
1712       int i;
1713 
1714       i = OBJECT_SIZE (order);
1715       if (i >= NUM_SIZE_LOOKUP)
1716 	continue;
1717 
1718       for (o = size_lookup[i]; o == size_lookup [i]; --i)
1719 	size_lookup[i] = order;
1720     }
1721 
1722   G.depth_in_use = 0;
1723   G.depth_max = 10;
1724   G.depth = XNEWVEC (unsigned int, G.depth_max);
1725 
1726   G.by_depth_in_use = 0;
1727   G.by_depth_max = INITIAL_PTE_COUNT;
1728   G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1729   G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1730 }
1731 
1732 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1733    reflects reality.  Recalculate NUM_FREE_OBJECTS as well.  */
1734 
1735 static void
1736 ggc_recalculate_in_use_p (page_entry *p)
1737 {
1738   unsigned int i;
1739   size_t num_objects;
1740 
1741   /* Because the past-the-end bit in in_use_p is always set, we
1742      pretend there is one additional object.  */
1743   num_objects = OBJECTS_IN_PAGE (p) + 1;
1744 
1745   /* Reset the free object count.  */
1746   p->num_free_objects = num_objects;
1747 
1748   /* Combine the IN_USE_P and SAVE_IN_USE_P arrays.  */
1749   for (i = 0;
1750        i < CEIL (BITMAP_SIZE (num_objects),
1751 		 sizeof (*p->in_use_p));
1752        ++i)
1753     {
1754       unsigned long j;
1755 
1756       /* Something is in use if it is marked, or if it was in use in a
1757 	 context further down the context stack.  */
1758       p->in_use_p[i] |= save_in_use_p (p)[i];
1759 
1760       /* Decrement the free object count for every object allocated.  */
1761       for (j = p->in_use_p[i]; j; j >>= 1)
1762 	p->num_free_objects -= (j & 1);
1763     }
1764 
1765   gcc_assert (p->num_free_objects < num_objects);
1766 }
1767 
1768 /* Unmark all objects.  */
1769 
1770 static void
1771 clear_marks (void)
1772 {
1773   unsigned order;
1774 
1775   for (order = 2; order < NUM_ORDERS; order++)
1776     {
1777       page_entry *p;
1778 
1779       for (p = G.pages[order]; p != NULL; p = p->next)
1780 	{
1781 	  size_t num_objects = OBJECTS_IN_PAGE (p);
1782 	  size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1783 
1784 	  /* The data should be page-aligned.  */
1785 	  gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1786 
1787 	  /* Pages that aren't in the topmost context are not collected;
1788 	     nevertheless, we need their in-use bit vectors to store GC
1789 	     marks.  So, back them up first.  */
1790 	  if (p->context_depth < G.context_depth)
1791 	    {
1792 	      if (! save_in_use_p (p))
1793 		save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1794 	      memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1795 	    }
1796 
1797 	  /* Reset reset the number of free objects and clear the
1798              in-use bits.  These will be adjusted by mark_obj.  */
1799 	  p->num_free_objects = num_objects;
1800 	  memset (p->in_use_p, 0, bitmap_size);
1801 
1802 	  /* Make sure the one-past-the-end bit is always set.  */
1803 	  p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1804 	    = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1805 	}
1806     }
1807 }
1808 
1809 /* Free all empty pages.  Partially empty pages need no attention
1810    because the `mark' bit doubles as an `unused' bit.  */
1811 
1812 static void
1813 sweep_pages (void)
1814 {
1815   unsigned order;
1816 
1817   for (order = 2; order < NUM_ORDERS; order++)
1818     {
1819       /* The last page-entry to consider, regardless of entries
1820 	 placed at the end of the list.  */
1821       page_entry * const last = G.page_tails[order];
1822 
1823       size_t num_objects;
1824       size_t live_objects;
1825       page_entry *p, *previous;
1826       int done;
1827 
1828       p = G.pages[order];
1829       if (p == NULL)
1830 	continue;
1831 
1832       previous = NULL;
1833       do
1834 	{
1835 	  page_entry *next = p->next;
1836 
1837 	  /* Loop until all entries have been examined.  */
1838 	  done = (p == last);
1839 
1840 	  num_objects = OBJECTS_IN_PAGE (p);
1841 
1842 	  /* Add all live objects on this page to the count of
1843              allocated memory.  */
1844 	  live_objects = num_objects - p->num_free_objects;
1845 
1846 	  G.allocated += OBJECT_SIZE (order) * live_objects;
1847 
1848 	  /* Only objects on pages in the topmost context should get
1849 	     collected.  */
1850 	  if (p->context_depth < G.context_depth)
1851 	    ;
1852 
1853 	  /* Remove the page if it's empty.  */
1854 	  else if (live_objects == 0)
1855 	    {
1856 	      /* If P was the first page in the list, then NEXT
1857 		 becomes the new first page in the list, otherwise
1858 		 splice P out of the forward pointers.  */
1859 	      if (! previous)
1860 		G.pages[order] = next;
1861 	      else
1862 		previous->next = next;
1863 
1864 	      /* Splice P out of the back pointers too.  */
1865 	      if (next)
1866 		next->prev = previous;
1867 
1868 	      /* Are we removing the last element?  */
1869 	      if (p == G.page_tails[order])
1870 		G.page_tails[order] = previous;
1871 	      free_page (p);
1872 	      p = previous;
1873 	    }
1874 
1875 	  /* If the page is full, move it to the end.  */
1876 	  else if (p->num_free_objects == 0)
1877 	    {
1878 	      /* Don't move it if it's already at the end.  */
1879 	      if (p != G.page_tails[order])
1880 		{
1881 		  /* Move p to the end of the list.  */
1882 		  p->next = NULL;
1883 		  p->prev = G.page_tails[order];
1884 		  G.page_tails[order]->next = p;
1885 
1886 		  /* Update the tail pointer...  */
1887 		  G.page_tails[order] = p;
1888 
1889 		  /* ... and the head pointer, if necessary.  */
1890 		  if (! previous)
1891 		    G.pages[order] = next;
1892 		  else
1893 		    previous->next = next;
1894 
1895 		  /* And update the backpointer in NEXT if necessary.  */
1896 		  if (next)
1897 		    next->prev = previous;
1898 
1899 		  p = previous;
1900 		}
1901 	    }
1902 
1903 	  /* If we've fallen through to here, it's a page in the
1904 	     topmost context that is neither full nor empty.  Such a
1905 	     page must precede pages at lesser context depth in the
1906 	     list, so move it to the head.  */
1907 	  else if (p != G.pages[order])
1908 	    {
1909 	      previous->next = p->next;
1910 
1911 	      /* Update the backchain in the next node if it exists.  */
1912 	      if (p->next)
1913 		p->next->prev = previous;
1914 
1915 	      /* Move P to the head of the list.  */
1916 	      p->next = G.pages[order];
1917 	      p->prev = NULL;
1918 	      G.pages[order]->prev = p;
1919 
1920 	      /* Update the head pointer.  */
1921 	      G.pages[order] = p;
1922 
1923 	      /* Are we moving the last element?  */
1924 	      if (G.page_tails[order] == p)
1925 	        G.page_tails[order] = previous;
1926 	      p = previous;
1927 	    }
1928 
1929 	  previous = p;
1930 	  p = next;
1931 	}
1932       while (! done);
1933 
1934       /* Now, restore the in_use_p vectors for any pages from contexts
1935          other than the current one.  */
1936       for (p = G.pages[order]; p; p = p->next)
1937 	if (p->context_depth != G.context_depth)
1938 	  ggc_recalculate_in_use_p (p);
1939     }
1940 }
1941 
1942 #ifdef ENABLE_GC_CHECKING
1943 /* Clobber all free objects.  */
1944 
1945 static void
1946 poison_pages (void)
1947 {
1948   unsigned order;
1949 
1950   for (order = 2; order < NUM_ORDERS; order++)
1951     {
1952       size_t size = OBJECT_SIZE (order);
1953       page_entry *p;
1954 
1955       for (p = G.pages[order]; p != NULL; p = p->next)
1956 	{
1957 	  size_t num_objects;
1958 	  size_t i;
1959 
1960 	  if (p->context_depth != G.context_depth)
1961 	    /* Since we don't do any collection for pages in pushed
1962 	       contexts, there's no need to do any poisoning.  And
1963 	       besides, the IN_USE_P array isn't valid until we pop
1964 	       contexts.  */
1965 	    continue;
1966 
1967 	  num_objects = OBJECTS_IN_PAGE (p);
1968 	  for (i = 0; i < num_objects; i++)
1969 	    {
1970 	      size_t word, bit;
1971 	      word = i / HOST_BITS_PER_LONG;
1972 	      bit = i % HOST_BITS_PER_LONG;
1973 	      if (((p->in_use_p[word] >> bit) & 1) == 0)
1974 		{
1975 		  char *object = p->page + i * size;
1976 
1977 		  /* Keep poison-by-write when we expect to use Valgrind,
1978 		     so the exact same memory semantics is kept, in case
1979 		     there are memory errors.  We override this request
1980 		     below.  */
1981 		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1982 								 size));
1983 		  memset (object, 0xa5, size);
1984 
1985 		  /* Drop the handle to avoid handle leak.  */
1986 		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1987 		}
1988 	    }
1989 	}
1990     }
1991 }
1992 #else
1993 #define poison_pages()
1994 #endif
1995 
1996 #ifdef ENABLE_GC_ALWAYS_COLLECT
1997 /* Validate that the reportedly free objects actually are.  */
1998 
1999 static void
2000 validate_free_objects (void)
2001 {
2002   struct free_object *f, *next, *still_free = NULL;
2003 
2004   for (f = G.free_object_list; f ; f = next)
2005     {
2006       page_entry *pe = lookup_page_table_entry (f->object);
2007       size_t bit, word;
2008 
2009       bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2010       word = bit / HOST_BITS_PER_LONG;
2011       bit = bit % HOST_BITS_PER_LONG;
2012       next = f->next;
2013 
2014       /* Make certain it isn't visible from any root.  Notice that we
2015 	 do this check before sweep_pages merges save_in_use_p.  */
2016       gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2017 
2018       /* If the object comes from an outer context, then retain the
2019 	 free_object entry, so that we can verify that the address
2020 	 isn't live on the stack in some outer context.  */
2021       if (pe->context_depth != G.context_depth)
2022 	{
2023 	  f->next = still_free;
2024 	  still_free = f;
2025 	}
2026       else
2027 	free (f);
2028     }
2029 
2030   G.free_object_list = still_free;
2031 }
2032 #else
2033 #define validate_free_objects()
2034 #endif
2035 
2036 /* Top level mark-and-sweep routine.  */
2037 
2038 void
2039 ggc_collect (void)
2040 {
2041   /* Avoid frequent unnecessary work by skipping collection if the
2042      total allocations haven't expanded much since the last
2043      collection.  */
2044   float allocated_last_gc =
2045     MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2046 
2047   float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2048 
2049   if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2050     return;
2051 
2052   timevar_push (TV_GC);
2053   if (!quiet_flag)
2054     fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2055   if (GGC_DEBUG_LEVEL >= 2)
2056     fprintf (G.debug_file, "BEGIN COLLECTING\n");
2057 
2058   /* Zero the total allocated bytes.  This will be recalculated in the
2059      sweep phase.  */
2060   G.allocated = 0;
2061 
2062   /* Release the pages we freed the last time we collected, but didn't
2063      reuse in the interim.  */
2064   release_pages ();
2065 
2066   /* Indicate that we've seen collections at this context depth.  */
2067   G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2068 
2069   invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2070 
2071   clear_marks ();
2072   ggc_mark_roots ();
2073 #ifdef GATHER_STATISTICS
2074   ggc_prune_overhead_list ();
2075 #endif
2076   poison_pages ();
2077   validate_free_objects ();
2078   sweep_pages ();
2079 
2080   G.allocated_last_gc = G.allocated;
2081 
2082   invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2083 
2084   timevar_pop (TV_GC);
2085 
2086   if (!quiet_flag)
2087     fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2088   if (GGC_DEBUG_LEVEL >= 2)
2089     fprintf (G.debug_file, "END COLLECTING\n");
2090 }
2091 
2092 /* Print allocation statistics.  */
2093 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2094 		  ? (x) \
2095 		  : ((x) < 1024*1024*10 \
2096 		     ? (x) / 1024 \
2097 		     : (x) / (1024*1024))))
2098 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2099 
2100 void
2101 ggc_print_statistics (void)
2102 {
2103   struct ggc_statistics stats;
2104   unsigned int i;
2105   size_t total_overhead = 0;
2106 
2107   /* Clear the statistics.  */
2108   memset (&stats, 0, sizeof (stats));
2109 
2110   /* Make sure collection will really occur.  */
2111   G.allocated_last_gc = 0;
2112 
2113   /* Collect and print the statistics common across collectors.  */
2114   ggc_print_common_statistics (stderr, &stats);
2115 
2116   /* Release free pages so that we will not count the bytes allocated
2117      there as part of the total allocated memory.  */
2118   release_pages ();
2119 
2120   /* Collect some information about the various sizes of
2121      allocation.  */
2122   fprintf (stderr,
2123            "Memory still allocated at the end of the compilation process\n");
2124   fprintf (stderr, "%-5s %10s  %10s  %10s\n",
2125 	   "Size", "Allocated", "Used", "Overhead");
2126   for (i = 0; i < NUM_ORDERS; ++i)
2127     {
2128       page_entry *p;
2129       size_t allocated;
2130       size_t in_use;
2131       size_t overhead;
2132 
2133       /* Skip empty entries.  */
2134       if (!G.pages[i])
2135 	continue;
2136 
2137       overhead = allocated = in_use = 0;
2138 
2139       /* Figure out the total number of bytes allocated for objects of
2140 	 this size, and how many of them are actually in use.  Also figure
2141 	 out how much memory the page table is using.  */
2142       for (p = G.pages[i]; p; p = p->next)
2143 	{
2144 	  allocated += p->bytes;
2145 	  in_use +=
2146 	    (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2147 
2148 	  overhead += (sizeof (page_entry) - sizeof (long)
2149 		       + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2150 	}
2151       fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2152 	       (unsigned long) OBJECT_SIZE (i),
2153 	       SCALE (allocated), STAT_LABEL (allocated),
2154 	       SCALE (in_use), STAT_LABEL (in_use),
2155 	       SCALE (overhead), STAT_LABEL (overhead));
2156       total_overhead += overhead;
2157     }
2158   fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2159 	   SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2160 	   SCALE (G.allocated), STAT_LABEL(G.allocated),
2161 	   SCALE (total_overhead), STAT_LABEL (total_overhead));
2162 
2163 #ifdef GATHER_STATISTICS
2164   {
2165     fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2166 
2167     fprintf (stderr, "Total Overhead:                        %10" HOST_LONG_LONG_FORMAT "d\n",
2168              G.stats.total_overhead);
2169     fprintf (stderr, "Total Allocated:                       %10" HOST_LONG_LONG_FORMAT "d\n",
2170              G.stats.total_allocated);
2171 
2172     fprintf (stderr, "Total Overhead  under  32B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2173              G.stats.total_overhead_under32);
2174     fprintf (stderr, "Total Allocated under  32B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2175              G.stats.total_allocated_under32);
2176     fprintf (stderr, "Total Overhead  under  64B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2177              G.stats.total_overhead_under64);
2178     fprintf (stderr, "Total Allocated under  64B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2179              G.stats.total_allocated_under64);
2180     fprintf (stderr, "Total Overhead  under 128B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2181              G.stats.total_overhead_under128);
2182     fprintf (stderr, "Total Allocated under 128B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2183              G.stats.total_allocated_under128);
2184 
2185     for (i = 0; i < NUM_ORDERS; i++)
2186       if (G.stats.total_allocated_per_order[i])
2187         {
2188           fprintf (stderr, "Total Overhead  page size %7lu:     %10" HOST_LONG_LONG_FORMAT "d\n",
2189                    (unsigned long) OBJECT_SIZE (i),
2190 		   G.stats.total_overhead_per_order[i]);
2191           fprintf (stderr, "Total Allocated page size %7lu:     %10" HOST_LONG_LONG_FORMAT "d\n",
2192                    (unsigned long) OBJECT_SIZE (i),
2193 		   G.stats.total_allocated_per_order[i]);
2194         }
2195   }
2196 #endif
2197 }
2198 
2199 struct ggc_pch_ondisk
2200 {
2201   unsigned totals[NUM_ORDERS];
2202 };
2203 
2204 struct ggc_pch_data
2205 {
2206   struct ggc_pch_ondisk d;
2207   size_t base[NUM_ORDERS];
2208   size_t written[NUM_ORDERS];
2209 };
2210 
2211 struct ggc_pch_data *
2212 init_ggc_pch (void)
2213 {
2214   return XCNEW (struct ggc_pch_data);
2215 }
2216 
2217 void
2218 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2219 		      size_t size, bool is_string ATTRIBUTE_UNUSED,
2220 		      enum gt_types_enum type ATTRIBUTE_UNUSED)
2221 {
2222   unsigned order;
2223 
2224   if (size < NUM_SIZE_LOOKUP)
2225     order = size_lookup[size];
2226   else
2227     {
2228       order = 10;
2229       while (size > OBJECT_SIZE (order))
2230 	order++;
2231     }
2232 
2233   d->d.totals[order]++;
2234 }
2235 
2236 size_t
2237 ggc_pch_total_size (struct ggc_pch_data *d)
2238 {
2239   size_t a = 0;
2240   unsigned i;
2241 
2242   for (i = 0; i < NUM_ORDERS; i++)
2243     a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2244   return a;
2245 }
2246 
2247 void
2248 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2249 {
2250   size_t a = (size_t) base;
2251   unsigned i;
2252 
2253   for (i = 0; i < NUM_ORDERS; i++)
2254     {
2255       d->base[i] = a;
2256       a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2257     }
2258 }
2259 
2260 
2261 char *
2262 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2263 		      size_t size, bool is_string ATTRIBUTE_UNUSED,
2264 		      enum gt_types_enum type ATTRIBUTE_UNUSED)
2265 {
2266   unsigned order;
2267   char *result;
2268 
2269   if (size < NUM_SIZE_LOOKUP)
2270     order = size_lookup[size];
2271   else
2272     {
2273       order = 10;
2274       while (size > OBJECT_SIZE (order))
2275 	order++;
2276     }
2277 
2278   result = (char *) d->base[order];
2279   d->base[order] += OBJECT_SIZE (order);
2280   return result;
2281 }
2282 
2283 void
2284 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2285 		       FILE *f ATTRIBUTE_UNUSED)
2286 {
2287   /* Nothing to do.  */
2288 }
2289 
2290 void
2291 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2292 		      FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2293 		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2294 {
2295   unsigned order;
2296   static const char emptyBytes[256] = { 0 };
2297 
2298   if (size < NUM_SIZE_LOOKUP)
2299     order = size_lookup[size];
2300   else
2301     {
2302       order = 10;
2303       while (size > OBJECT_SIZE (order))
2304 	order++;
2305     }
2306 
2307   if (fwrite (x, size, 1, f) != 1)
2308     fatal_error ("can%'t write PCH file: %m");
2309 
2310   /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2311      object out to OBJECT_SIZE(order).  This happens for strings.  */
2312 
2313   if (size != OBJECT_SIZE (order))
2314     {
2315       unsigned padding = OBJECT_SIZE(order) - size;
2316 
2317       /* To speed small writes, we use a nulled-out array that's larger
2318          than most padding requests as the source for our null bytes.  This
2319          permits us to do the padding with fwrite() rather than fseek(), and
2320          limits the chance the OS may try to flush any outstanding writes.  */
2321       if (padding <= sizeof(emptyBytes))
2322         {
2323           if (fwrite (emptyBytes, 1, padding, f) != padding)
2324             fatal_error ("can%'t write PCH file");
2325         }
2326       else
2327         {
2328           /* Larger than our buffer?  Just default to fseek.  */
2329           if (fseek (f, padding, SEEK_CUR) != 0)
2330             fatal_error ("can%'t write PCH file");
2331         }
2332     }
2333 
2334   d->written[order]++;
2335   if (d->written[order] == d->d.totals[order]
2336       && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2337 				   G.pagesize),
2338 		SEEK_CUR) != 0)
2339     fatal_error ("can%'t write PCH file: %m");
2340 }
2341 
2342 void
2343 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2344 {
2345   if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2346     fatal_error ("can%'t write PCH file: %m");
2347   free (d);
2348 }
2349 
2350 /* Move the PCH PTE entries just added to the end of by_depth, to the
2351    front.  */
2352 
2353 static void
2354 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2355 {
2356   unsigned i;
2357 
2358   /* First, we swap the new entries to the front of the varrays.  */
2359   page_entry **new_by_depth;
2360   unsigned long **new_save_in_use;
2361 
2362   new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2363   new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2364 
2365   memcpy (&new_by_depth[0],
2366 	  &G.by_depth[count_old_page_tables],
2367 	  count_new_page_tables * sizeof (void *));
2368   memcpy (&new_by_depth[count_new_page_tables],
2369 	  &G.by_depth[0],
2370 	  count_old_page_tables * sizeof (void *));
2371   memcpy (&new_save_in_use[0],
2372 	  &G.save_in_use[count_old_page_tables],
2373 	  count_new_page_tables * sizeof (void *));
2374   memcpy (&new_save_in_use[count_new_page_tables],
2375 	  &G.save_in_use[0],
2376 	  count_old_page_tables * sizeof (void *));
2377 
2378   free (G.by_depth);
2379   free (G.save_in_use);
2380 
2381   G.by_depth = new_by_depth;
2382   G.save_in_use = new_save_in_use;
2383 
2384   /* Now update all the index_by_depth fields.  */
2385   for (i = G.by_depth_in_use; i > 0; --i)
2386     {
2387       page_entry *p = G.by_depth[i-1];
2388       p->index_by_depth = i-1;
2389     }
2390 
2391   /* And last, we update the depth pointers in G.depth.  The first
2392      entry is already 0, and context 0 entries always start at index
2393      0, so there is nothing to update in the first slot.  We need a
2394      second slot, only if we have old ptes, and if we do, they start
2395      at index count_new_page_tables.  */
2396   if (count_old_page_tables)
2397     push_depth (count_new_page_tables);
2398 }
2399 
2400 void
2401 ggc_pch_read (FILE *f, void *addr)
2402 {
2403   struct ggc_pch_ondisk d;
2404   unsigned i;
2405   char *offs = (char *) addr;
2406   unsigned long count_old_page_tables;
2407   unsigned long count_new_page_tables;
2408 
2409   count_old_page_tables = G.by_depth_in_use;
2410 
2411   /* We've just read in a PCH file.  So, every object that used to be
2412      allocated is now free.  */
2413   clear_marks ();
2414 #ifdef ENABLE_GC_CHECKING
2415   poison_pages ();
2416 #endif
2417   /* Since we free all the allocated objects, the free list becomes
2418      useless.  Validate it now, which will also clear it.  */
2419   validate_free_objects();
2420 
2421   /* No object read from a PCH file should ever be freed.  So, set the
2422      context depth to 1, and set the depth of all the currently-allocated
2423      pages to be 1 too.  PCH pages will have depth 0.  */
2424   gcc_assert (!G.context_depth);
2425   G.context_depth = 1;
2426   for (i = 0; i < NUM_ORDERS; i++)
2427     {
2428       page_entry *p;
2429       for (p = G.pages[i]; p != NULL; p = p->next)
2430 	p->context_depth = G.context_depth;
2431     }
2432 
2433   /* Allocate the appropriate page-table entries for the pages read from
2434      the PCH file.  */
2435   if (fread (&d, sizeof (d), 1, f) != 1)
2436     fatal_error ("can%'t read PCH file: %m");
2437 
2438   for (i = 0; i < NUM_ORDERS; i++)
2439     {
2440       struct page_entry *entry;
2441       char *pte;
2442       size_t bytes;
2443       size_t num_objs;
2444       size_t j;
2445 
2446       if (d.totals[i] == 0)
2447 	continue;
2448 
2449       bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2450       num_objs = bytes / OBJECT_SIZE (i);
2451       entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2452 					    - sizeof (long)
2453 					    + BITMAP_SIZE (num_objs + 1)));
2454       entry->bytes = bytes;
2455       entry->page = offs;
2456       entry->context_depth = 0;
2457       offs += bytes;
2458       entry->num_free_objects = 0;
2459       entry->order = i;
2460 
2461       for (j = 0;
2462 	   j + HOST_BITS_PER_LONG <= num_objs + 1;
2463 	   j += HOST_BITS_PER_LONG)
2464 	entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2465       for (; j < num_objs + 1; j++)
2466 	entry->in_use_p[j / HOST_BITS_PER_LONG]
2467 	  |= 1L << (j % HOST_BITS_PER_LONG);
2468 
2469       for (pte = entry->page;
2470 	   pte < entry->page + entry->bytes;
2471 	   pte += G.pagesize)
2472 	set_page_table_entry (pte, entry);
2473 
2474       if (G.page_tails[i] != NULL)
2475 	G.page_tails[i]->next = entry;
2476       else
2477 	G.pages[i] = entry;
2478       G.page_tails[i] = entry;
2479 
2480       /* We start off by just adding all the new information to the
2481 	 end of the varrays, later, we will move the new information
2482 	 to the front of the varrays, as the PCH page tables are at
2483 	 context 0.  */
2484       push_by_depth (entry, 0);
2485     }
2486 
2487   /* Now, we update the various data structures that speed page table
2488      handling.  */
2489   count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2490 
2491   move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2492 
2493   /* Update the statistics.  */
2494   G.allocated = G.allocated_last_gc = offs - (char *)addr;
2495 }
2496 
2497 struct alloc_zone
2498 {
2499   int dummy;
2500 };
2501 
2502 struct alloc_zone rtl_zone;
2503 struct alloc_zone tree_zone;
2504 struct alloc_zone tree_id_zone;
2505