1 /* Detection of Static Control Parts (SCoP) for Graphite.
2    Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4    Tobias Grosser <grosser@fim.uni-passau.de>.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree-flow.h"
26 #include "cfgloop.h"
27 #include "tree-chrec.h"
28 #include "tree-data-ref.h"
29 #include "tree-scalar-evolution.h"
30 #include "tree-pass.h"
31 #include "sese.h"
32 
33 #ifdef HAVE_cloog
34 #include "ppl_c.h"
35 #include "graphite-ppl.h"
36 #include "graphite-poly.h"
37 #include "graphite-scop-detection.h"
38 
39 /* Forward declarations.  */
40 static void make_close_phi_nodes_unique (basic_block);
41 
42 /* The type of the analyzed basic block.  */
43 
44 typedef enum gbb_type {
45   GBB_UNKNOWN,
46   GBB_LOOP_SING_EXIT_HEADER,
47   GBB_LOOP_MULT_EXIT_HEADER,
48   GBB_LOOP_EXIT,
49   GBB_COND_HEADER,
50   GBB_SIMPLE,
51   GBB_LAST
52 } gbb_type;
53 
54 /* Detect the type of BB.  Loop headers are only marked, if they are
55    new.  This means their loop_father is different to LAST_LOOP.
56    Otherwise they are treated like any other bb and their type can be
57    any other type.  */
58 
59 static gbb_type
60 get_bb_type (basic_block bb, struct loop *last_loop)
61 {
62   VEC (basic_block, heap) *dom;
63   int nb_dom, nb_suc;
64   struct loop *loop = bb->loop_father;
65 
66   /* Check, if we entry into a new loop. */
67   if (loop != last_loop)
68     {
69       if (single_exit (loop) != NULL)
70         return GBB_LOOP_SING_EXIT_HEADER;
71       else if (loop->num != 0)
72         return GBB_LOOP_MULT_EXIT_HEADER;
73       else
74 	return GBB_COND_HEADER;
75     }
76 
77   dom = get_dominated_by (CDI_DOMINATORS, bb);
78   nb_dom = VEC_length (basic_block, dom);
79   VEC_free (basic_block, heap, dom);
80 
81   if (nb_dom == 0)
82     return GBB_LAST;
83 
84   nb_suc = VEC_length (edge, bb->succs);
85 
86   if (nb_dom == 1 && nb_suc == 1)
87     return GBB_SIMPLE;
88 
89   return GBB_COND_HEADER;
90 }
91 
92 /* A SCoP detection region, defined using bbs as borders.
93 
94    All control flow touching this region, comes in passing basic_block
95    ENTRY and leaves passing basic_block EXIT.  By using bbs instead of
96    edges for the borders we are able to represent also regions that do
97    not have a single entry or exit edge.
98 
99    But as they have a single entry basic_block and a single exit
100    basic_block, we are able to generate for every sd_region a single
101    entry and exit edge.
102 
103    1   2
104     \ /
105      3	<- entry
106      |
107      4
108     / \			This region contains: {3, 4, 5, 6, 7, 8}
109    5   6
110    |   |
111    7   8
112     \ /
113      9	<- exit  */
114 
115 
116 typedef struct sd_region_p
117 {
118   /* The entry bb dominates all bbs in the sd_region.  It is part of
119      the region.  */
120   basic_block entry;
121 
122   /* The exit bb postdominates all bbs in the sd_region, but is not
123      part of the region.  */
124   basic_block exit;
125 } sd_region;
126 
127 DEF_VEC_O(sd_region);
128 DEF_VEC_ALLOC_O(sd_region, heap);
129 
130 
131 /* Moves the scops from SOURCE to TARGET and clean up SOURCE.  */
132 
133 static void
134 move_sd_regions (VEC (sd_region, heap) **source,
135 		 VEC (sd_region, heap) **target)
136 {
137   sd_region *s;
138   int i;
139 
140   FOR_EACH_VEC_ELT (sd_region, *source, i, s)
141     VEC_safe_push (sd_region, heap, *target, s);
142 
143   VEC_free (sd_region, heap, *source);
144 }
145 
146 /* Something like "n * m" is not allowed.  */
147 
148 static bool
149 graphite_can_represent_init (tree e)
150 {
151   switch (TREE_CODE (e))
152     {
153     case POLYNOMIAL_CHREC:
154       return graphite_can_represent_init (CHREC_LEFT (e))
155 	&& graphite_can_represent_init (CHREC_RIGHT (e));
156 
157     case MULT_EXPR:
158       if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
159 	return graphite_can_represent_init (TREE_OPERAND (e, 0))
160 	  && host_integerp (TREE_OPERAND (e, 1), 0);
161       else
162 	return graphite_can_represent_init (TREE_OPERAND (e, 1))
163 	  && host_integerp (TREE_OPERAND (e, 0), 0);
164 
165     case PLUS_EXPR:
166     case POINTER_PLUS_EXPR:
167     case MINUS_EXPR:
168       return graphite_can_represent_init (TREE_OPERAND (e, 0))
169 	&& graphite_can_represent_init (TREE_OPERAND (e, 1));
170 
171     case NEGATE_EXPR:
172     case BIT_NOT_EXPR:
173     CASE_CONVERT:
174     case NON_LVALUE_EXPR:
175       return graphite_can_represent_init (TREE_OPERAND (e, 0));
176 
177    default:
178      break;
179     }
180 
181   return true;
182 }
183 
184 /* Return true when SCEV can be represented in the polyhedral model.
185 
186    An expression can be represented, if it can be expressed as an
187    affine expression.  For loops (i, j) and parameters (m, n) all
188    affine expressions are of the form:
189 
190    x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
191 
192    1 i + 20 j + (-2) m + 25
193 
194    Something like "i * n" or "n * m" is not allowed.  */
195 
196 static bool
197 graphite_can_represent_scev (tree scev)
198 {
199   if (chrec_contains_undetermined (scev))
200     return false;
201 
202   switch (TREE_CODE (scev))
203     {
204     case PLUS_EXPR:
205     case MINUS_EXPR:
206       return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
207 	&& graphite_can_represent_scev (TREE_OPERAND (scev, 1));
208 
209     case MULT_EXPR:
210       return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
211 	&& !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
212 	&& !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
213 	     && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
214 	&& graphite_can_represent_init (scev)
215 	&& graphite_can_represent_scev (TREE_OPERAND (scev, 0))
216 	&& graphite_can_represent_scev (TREE_OPERAND (scev, 1));
217 
218     case POLYNOMIAL_CHREC:
219       /* Check for constant strides.  With a non constant stride of
220 	 'n' we would have a value of 'iv * n'.  Also check that the
221 	 initial value can represented: for example 'n * m' cannot be
222 	 represented.  */
223       if (!evolution_function_right_is_integer_cst (scev)
224 	  || !graphite_can_represent_init (scev))
225 	return false;
226 
227     default:
228       break;
229     }
230 
231   /* Only affine functions can be represented.  */
232   if (!scev_is_linear_expression (scev))
233     return false;
234 
235   return true;
236 }
237 
238 
239 /* Return true when EXPR can be represented in the polyhedral model.
240 
241    This means an expression can be represented, if it is linear with
242    respect to the loops and the strides are non parametric.
243    LOOP is the place where the expr will be evaluated.  SCOP_ENTRY defines the
244    entry of the region we analyse.  */
245 
246 static bool
247 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
248 			     tree expr)
249 {
250   tree scev = analyze_scalar_evolution (loop, expr);
251 
252   scev = instantiate_scev (scop_entry, loop, scev);
253 
254   return graphite_can_represent_scev (scev);
255 }
256 
257 /* Return true if the data references of STMT can be represented by
258    Graphite.  */
259 
260 static bool
261 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
262 			     gimple stmt)
263 {
264   data_reference_p dr;
265   unsigned i;
266   int j;
267   bool res = true;
268   VEC (data_reference_p, heap) *drs = NULL;
269   loop_p outer;
270 
271   for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
272     {
273       graphite_find_data_references_in_stmt (outer,
274 					     loop_containing_stmt (stmt),
275 					     stmt, &drs);
276 
277       FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
278 	for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
279 	  if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
280 	    {
281 	      res = false;
282 	      goto done;
283 	    }
284 
285       free_data_refs (drs);
286       drs = NULL;
287     }
288 
289  done:
290   free_data_refs (drs);
291   return res;
292 }
293 
294 /* Return true only when STMT is simple enough for being handled by
295    Graphite.  This depends on SCOP_ENTRY, as the parameters are
296    initialized relatively to this basic block, the linear functions
297    are initialized to OUTERMOST_LOOP and BB is the place where we try
298    to evaluate the STMT.  */
299 
300 static bool
301 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
302 			gimple stmt, basic_block bb)
303 {
304   loop_p loop = bb->loop_father;
305 
306   gcc_assert (scop_entry);
307 
308   /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
309      Calls have side-effects, except those to const or pure
310      functions.  */
311   if (gimple_has_volatile_ops (stmt)
312       || (gimple_code (stmt) == GIMPLE_CALL
313 	  && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
314       || (gimple_code (stmt) == GIMPLE_ASM))
315     return false;
316 
317   if (is_gimple_debug (stmt))
318     return true;
319 
320   if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
321     return false;
322 
323   switch (gimple_code (stmt))
324     {
325     case GIMPLE_RETURN:
326     case GIMPLE_LABEL:
327       return true;
328 
329     case GIMPLE_COND:
330       {
331 	tree op;
332 	ssa_op_iter op_iter;
333         enum tree_code code = gimple_cond_code (stmt);
334 
335 	/* We can handle all binary comparisons.  Inequalities are
336 	   also supported as they can be represented with union of
337 	   polyhedra.  */
338         if (!(code == LT_EXPR
339 	      || code == GT_EXPR
340 	      || code == LE_EXPR
341 	      || code == GE_EXPR
342 	      || code == EQ_EXPR
343 	      || code == NE_EXPR))
344           return false;
345 
346 	FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
347 	  if (!graphite_can_represent_expr (scop_entry, loop, op)
348 	      /* We can not handle REAL_TYPE. Failed for pr39260.  */
349 	      || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
350 	    return false;
351 
352 	return true;
353       }
354 
355     case GIMPLE_ASSIGN:
356     case GIMPLE_CALL:
357       return true;
358 
359     default:
360       /* These nodes cut a new scope.  */
361       return false;
362     }
363 
364   return false;
365 }
366 
367 /* Returns the statement of BB that contains a harmful operation: that
368    can be a function call with side effects, the induction variables
369    are not linear with respect to SCOP_ENTRY, etc.  The current open
370    scop should end before this statement.  The evaluation is limited using
371    OUTERMOST_LOOP as outermost loop that may change.  */
372 
373 static gimple
374 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
375 {
376   gimple_stmt_iterator gsi;
377 
378   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
379     if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
380       return gsi_stmt (gsi);
381 
382   return NULL;
383 }
384 
385 /* Return true if LOOP can be represented in the polyhedral
386    representation.  This is evaluated taking SCOP_ENTRY and
387    OUTERMOST_LOOP in mind.  */
388 
389 static bool
390 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
391 {
392   tree niter;
393   struct tree_niter_desc niter_desc;
394 
395   /* FIXME: For the moment, graphite cannot be used on loops that
396      iterate using induction variables that wrap.  */
397 
398   return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
399     && niter_desc.control.no_overflow
400     && (niter = number_of_latch_executions (loop))
401     && !chrec_contains_undetermined (niter)
402     && graphite_can_represent_expr (scop_entry, loop, niter);
403 }
404 
405 /* Store information needed by scopdet_* functions.  */
406 
407 struct scopdet_info
408 {
409   /* Exit of the open scop would stop if the current BB is harmful.  */
410   basic_block exit;
411 
412   /* Where the next scop would start if the current BB is harmful.  */
413   basic_block next;
414 
415   /* The bb or one of its children contains open loop exits.  That means
416      loop exit nodes that are not surrounded by a loop dominated by bb.  */
417   bool exits;
418 
419   /* The bb or one of its children contains only structures we can handle.  */
420   bool difficult;
421 };
422 
423 static struct scopdet_info build_scops_1 (basic_block, loop_p,
424 					  VEC (sd_region, heap) **, loop_p);
425 
426 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
427    to SCOPS.  TYPE is the gbb_type of BB.  */
428 
429 static struct scopdet_info
430 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
431 			  VEC (sd_region, heap) **scops, gbb_type type)
432 {
433   loop_p loop = bb->loop_father;
434   struct scopdet_info result;
435   gimple stmt;
436 
437   /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps.  */
438   basic_block entry_block = ENTRY_BLOCK_PTR;
439   stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
440   result.difficult = (stmt != NULL);
441   result.exit = NULL;
442 
443   switch (type)
444     {
445     case GBB_LAST:
446       result.next = NULL;
447       result.exits = false;
448 
449       /* Mark bbs terminating a SESE region difficult, if they start
450 	 a condition.  */
451       if (!single_succ_p (bb))
452 	result.difficult = true;
453       else
454 	result.exit = single_succ (bb);
455 
456       break;
457 
458     case GBB_SIMPLE:
459       result.next = single_succ (bb);
460       result.exits = false;
461       result.exit = single_succ (bb);
462       break;
463 
464     case GBB_LOOP_SING_EXIT_HEADER:
465       {
466 	VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
467 	struct scopdet_info sinfo;
468 	edge exit_e = single_exit (loop);
469 
470 	sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
471 
472 	if (!graphite_can_represent_loop (entry_block, loop))
473 	  result.difficult = true;
474 
475 	result.difficult |= sinfo.difficult;
476 
477 	/* Try again with another loop level.  */
478 	if (result.difficult
479 	    && loop_depth (outermost_loop) + 1 == loop_depth (loop))
480 	  {
481 	    outermost_loop = loop;
482 
483 	    VEC_free (sd_region, heap, regions);
484 	    regions = VEC_alloc (sd_region, heap, 3);
485 
486 	    sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
487 
488 	    result = sinfo;
489 	    result.difficult = true;
490 
491 	    if (sinfo.difficult)
492 	      move_sd_regions (&regions, scops);
493 	    else
494 	      {
495 		sd_region open_scop;
496 		open_scop.entry = bb;
497 		open_scop.exit = exit_e->dest;
498 		VEC_safe_push (sd_region, heap, *scops, &open_scop);
499 		VEC_free (sd_region, heap, regions);
500 	      }
501 	  }
502 	else
503 	  {
504 	    result.exit = exit_e->dest;
505 	    result.next = exit_e->dest;
506 
507 	    /* If we do not dominate result.next, remove it.  It's either
508 	       the EXIT_BLOCK_PTR, or another bb dominates it and will
509 	       call the scop detection for this bb.  */
510 	    if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
511 	      result.next = NULL;
512 
513 	    if (exit_e->src->loop_father != loop)
514 	      result.next = NULL;
515 
516 	    result.exits = false;
517 
518 	    if (result.difficult)
519 	      move_sd_regions (&regions, scops);
520 	    else
521 	      VEC_free (sd_region, heap, regions);
522 	  }
523 
524 	break;
525       }
526 
527     case GBB_LOOP_MULT_EXIT_HEADER:
528       {
529         /* XXX: For now we just do not join loops with multiple exits.  If the
530            exits lead to the same bb it may be possible to join the loop.  */
531         VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
532         VEC (edge, heap) *exits = get_loop_exit_edges (loop);
533         edge e;
534         int i;
535 	build_scops_1 (bb, loop, &regions, loop);
536 
537 	/* Scan the code dominated by this loop.  This means all bbs, that are
538 	   are dominated by a bb in this loop, but are not part of this loop.
539 
540 	   The easiest case:
541 	     - The loop exit destination is dominated by the exit sources.
542 
543 	   TODO: We miss here the more complex cases:
544 		  - The exit destinations are dominated by another bb inside
545 		    the loop.
546 		  - The loop dominates bbs, that are not exit destinations.  */
547         FOR_EACH_VEC_ELT (edge, exits, i, e)
548           if (e->src->loop_father == loop
549 	      && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
550 	    {
551 	      if (loop_outer (outermost_loop))
552 		outermost_loop = loop_outer (outermost_loop);
553 
554 	      /* Pass loop_outer to recognize e->dest as loop header in
555 		 build_scops_1.  */
556 	      if (e->dest->loop_father->header == e->dest)
557 		build_scops_1 (e->dest, outermost_loop, &regions,
558 			       loop_outer (e->dest->loop_father));
559 	      else
560 		build_scops_1 (e->dest, outermost_loop, &regions,
561 			       e->dest->loop_father);
562 	    }
563 
564         result.next = NULL;
565         result.exit = NULL;
566         result.difficult = true;
567         result.exits = false;
568         move_sd_regions (&regions, scops);
569         VEC_free (edge, heap, exits);
570         break;
571       }
572     case GBB_COND_HEADER:
573       {
574 	VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
575 	struct scopdet_info sinfo;
576 	VEC (basic_block, heap) *dominated;
577 	int i;
578 	basic_block dom_bb;
579 	basic_block last_exit = NULL;
580 	edge e;
581 	result.exits = false;
582 
583 	/* First check the successors of BB, and check if it is
584 	   possible to join the different branches.  */
585 	FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
586 	  {
587 	    /* Ignore loop exits.  They will be handled after the loop
588 	       body.  */
589 	    if (loop_exits_to_bb_p (loop, e->dest))
590 	      {
591 		result.exits = true;
592 		continue;
593 	      }
594 
595 	    /* Do not follow edges that lead to the end of the
596 	       conditions block.  For example, in
597 
598                |   0
599 	       |  /|\
600 	       | 1 2 |
601 	       | | | |
602 	       | 3 4 |
603 	       |  \|/
604                |   6
605 
606 	       the edge from 0 => 6.  Only check if all paths lead to
607 	       the same node 6.  */
608 
609 	    if (!single_pred_p (e->dest))
610 	      {
611 		/* Check, if edge leads directly to the end of this
612 		   condition.  */
613 		if (!last_exit)
614 		  last_exit = e->dest;
615 
616 		if (e->dest != last_exit)
617 		  result.difficult = true;
618 
619 		continue;
620 	      }
621 
622 	    if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
623 	      {
624 		result.difficult = true;
625 		continue;
626 	      }
627 
628 	    sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
629 
630 	    result.exits |= sinfo.exits;
631 	    result.difficult |= sinfo.difficult;
632 
633 	    /* Checks, if all branches end at the same point.
634 	       If that is true, the condition stays joinable.
635 	       Have a look at the example above.  */
636 	    if (sinfo.exit)
637 	      {
638 		if (!last_exit)
639 		  last_exit = sinfo.exit;
640 
641 		if (sinfo.exit != last_exit)
642 		  result.difficult = true;
643 	      }
644 	    else
645 	      result.difficult = true;
646 	  }
647 
648 	if (!last_exit)
649 	  result.difficult = true;
650 
651 	/* Join the branches of the condition if possible.  */
652 	if (!result.exits && !result.difficult)
653 	  {
654 	    /* Only return a next pointer if we dominate this pointer.
655 	       Otherwise it will be handled by the bb dominating it.  */
656 	    if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
657 		&& last_exit != bb)
658 	      result.next = last_exit;
659 	    else
660 	      result.next = NULL;
661 
662 	    result.exit = last_exit;
663 
664 	    VEC_free (sd_region, heap, regions);
665 	    break;
666 	  }
667 
668 	/* Scan remaining bbs dominated by BB.  */
669 	dominated = get_dominated_by (CDI_DOMINATORS, bb);
670 
671 	FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
672 	  {
673 	    /* Ignore loop exits: they will be handled after the loop body.  */
674 	    if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
675 		< loop_depth (loop))
676 	      {
677 		result.exits = true;
678 		continue;
679 	      }
680 
681 	    /* Ignore the bbs processed above.  */
682 	    if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
683 	      continue;
684 
685 	    if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
686 	      sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
687 				     loop_outer (loop));
688 	    else
689 	      sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
690 
691 	    result.exits |= sinfo.exits;
692 	    result.difficult = true;
693 	    result.exit = NULL;
694 	  }
695 
696 	VEC_free (basic_block, heap, dominated);
697 
698 	result.next = NULL;
699 	move_sd_regions (&regions, scops);
700 
701 	break;
702       }
703 
704     default:
705       gcc_unreachable ();
706     }
707 
708   return result;
709 }
710 
711 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
712    SCOPS. The analyse if a sd_region can be handled is based on the value
713    of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change.  LOOP
714    is the loop in which CURRENT is handled.
715 
716    TODO: These functions got a little bit big. They definitely should be cleaned
717 	 up.  */
718 
719 static struct scopdet_info
720 build_scops_1 (basic_block current, loop_p outermost_loop,
721 	       VEC (sd_region, heap) **scops, loop_p loop)
722 {
723   bool in_scop = false;
724   sd_region open_scop;
725   struct scopdet_info sinfo;
726 
727   /* Initialize result.  */
728   struct scopdet_info result;
729   result.exits = false;
730   result.difficult = false;
731   result.next = NULL;
732   result.exit = NULL;
733   open_scop.entry = NULL;
734   open_scop.exit = NULL;
735   sinfo.exit = NULL;
736 
737   /* Loop over the dominance tree.  If we meet a difficult bb, close
738      the current SCoP.  Loop and condition header start a new layer,
739      and can only be added if all bbs in deeper layers are simple.  */
740   while (current != NULL)
741     {
742       sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
743 					get_bb_type (current, loop));
744 
745       if (!in_scop && !(sinfo.exits || sinfo.difficult))
746         {
747 	  open_scop.entry = current;
748 	  open_scop.exit = NULL;
749           in_scop = true;
750         }
751       else if (in_scop && (sinfo.exits || sinfo.difficult))
752         {
753 	  open_scop.exit = current;
754           VEC_safe_push (sd_region, heap, *scops, &open_scop);
755           in_scop = false;
756         }
757 
758       result.difficult |= sinfo.difficult;
759       result.exits |= sinfo.exits;
760 
761       current = sinfo.next;
762     }
763 
764   /* Try to close open_scop, if we are still in an open SCoP.  */
765   if (in_scop)
766     {
767       open_scop.exit = sinfo.exit;
768       gcc_assert (open_scop.exit);
769       VEC_safe_push (sd_region, heap, *scops, &open_scop);
770     }
771 
772   result.exit = sinfo.exit;
773   return result;
774 }
775 
776 /* Checks if a bb is contained in REGION.  */
777 
778 static bool
779 bb_in_sd_region (basic_block bb, sd_region *region)
780 {
781   return bb_in_region (bb, region->entry, region->exit);
782 }
783 
784 /* Returns the single entry edge of REGION, if it does not exits NULL.  */
785 
786 static edge
787 find_single_entry_edge (sd_region *region)
788 {
789   edge e;
790   edge_iterator ei;
791   edge entry = NULL;
792 
793   FOR_EACH_EDGE (e, ei, region->entry->preds)
794     if (!bb_in_sd_region (e->src, region))
795       {
796 	if (entry)
797 	  {
798 	    entry = NULL;
799 	    break;
800 	  }
801 
802 	else
803 	  entry = e;
804       }
805 
806   return entry;
807 }
808 
809 /* Returns the single exit edge of REGION, if it does not exits NULL.  */
810 
811 static edge
812 find_single_exit_edge (sd_region *region)
813 {
814   edge e;
815   edge_iterator ei;
816   edge exit = NULL;
817 
818   FOR_EACH_EDGE (e, ei, region->exit->preds)
819     if (bb_in_sd_region (e->src, region))
820       {
821 	if (exit)
822 	  {
823 	    exit = NULL;
824 	    break;
825 	  }
826 
827 	else
828 	  exit = e;
829       }
830 
831   return exit;
832 }
833 
834 /* Create a single entry edge for REGION.  */
835 
836 static void
837 create_single_entry_edge (sd_region *region)
838 {
839   if (find_single_entry_edge (region))
840     return;
841 
842   /* There are multiple predecessors for bb_3
843 
844   |  1  2
845   |  | /
846   |  |/
847   |  3	<- entry
848   |  |\
849   |  | |
850   |  4 ^
851   |  | |
852   |  |/
853   |  5
854 
855   There are two edges (1->3, 2->3), that point from outside into the region,
856   and another one (5->3), a loop latch, lead to bb_3.
857 
858   We split bb_3.
859 
860   |  1  2
861   |  | /
862   |  |/
863   |3.0
864   |  |\     (3.0 -> 3.1) = single entry edge
865   |3.1 |  	<- entry
866   |  | |
867   |  | |
868   |  4 ^
869   |  | |
870   |  |/
871   |  5
872 
873   If the loop is part of the SCoP, we have to redirect the loop latches.
874 
875   |  1  2
876   |  | /
877   |  |/
878   |3.0
879   |  |      (3.0 -> 3.1) = entry edge
880   |3.1  	<- entry
881   |  |\
882   |  | |
883   |  4 ^
884   |  | |
885   |  |/
886   |  5  */
887 
888   if (region->entry->loop_father->header != region->entry
889       || dominated_by_p (CDI_DOMINATORS,
890 			 loop_latch_edge (region->entry->loop_father)->src,
891 			 region->exit))
892     {
893       edge forwarder = split_block_after_labels (region->entry);
894       region->entry = forwarder->dest;
895     }
896   else
897     /* This case is never executed, as the loop headers seem always to have a
898        single edge pointing from outside into the loop.  */
899     gcc_unreachable ();
900 
901   gcc_checking_assert (find_single_entry_edge (region));
902 }
903 
904 /* Check if the sd_region, mentioned in EDGE, has no exit bb.  */
905 
906 static bool
907 sd_region_without_exit (edge e)
908 {
909   sd_region *r = (sd_region *) e->aux;
910 
911   if (r)
912     return r->exit == NULL;
913   else
914     return false;
915 }
916 
917 /* Create a single exit edge for REGION.  */
918 
919 static void
920 create_single_exit_edge (sd_region *region)
921 {
922   edge e;
923   edge_iterator ei;
924   edge forwarder = NULL;
925   basic_block exit;
926 
927   /* We create a forwarder bb (5) for all edges leaving this region
928      (3->5, 4->5).  All other edges leading to the same bb, are moved
929      to a new bb (6).  If these edges where part of another region (2->5)
930      we update the region->exit pointer, of this region.
931 
932      To identify which edge belongs to which region we depend on the e->aux
933      pointer in every edge.  It points to the region of the edge or to NULL,
934      if the edge is not part of any region.
935 
936      1 2 3 4   	1->5 no region, 		2->5 region->exit = 5,
937       \| |/    	3->5 region->exit = NULL, 	4->5 region->exit = NULL
938         5	<- exit
939 
940      changes to
941 
942      1 2 3 4   	1->6 no region, 			2->6 region->exit = 6,
943      | | \/	3->5 no region,				4->5 no region,
944      | |  5
945       \| /	5->6 region->exit = 6
946 	6
947 
948      Now there is only a single exit edge (5->6).  */
949   exit = region->exit;
950   region->exit = NULL;
951   forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
952 
953   /* Unmark the edges, that are no longer exit edges.  */
954   FOR_EACH_EDGE (e, ei, forwarder->src->preds)
955     if (e->aux)
956       e->aux = NULL;
957 
958   /* Mark the new exit edge.  */
959   single_succ_edge (forwarder->src)->aux = region;
960 
961   /* Update the exit bb of all regions, where exit edges lead to
962      forwarder->dest.  */
963   FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
964     if (e->aux)
965       ((sd_region *) e->aux)->exit = forwarder->dest;
966 
967   gcc_checking_assert (find_single_exit_edge (region));
968 }
969 
970 /* Unmark the exit edges of all REGIONS.
971    See comment in "create_single_exit_edge". */
972 
973 static void
974 unmark_exit_edges (VEC (sd_region, heap) *regions)
975 {
976   int i;
977   sd_region *s;
978   edge e;
979   edge_iterator ei;
980 
981   FOR_EACH_VEC_ELT (sd_region, regions, i, s)
982     FOR_EACH_EDGE (e, ei, s->exit->preds)
983       e->aux = NULL;
984 }
985 
986 
987 /* Mark the exit edges of all REGIONS.
988    See comment in "create_single_exit_edge". */
989 
990 static void
991 mark_exit_edges (VEC (sd_region, heap) *regions)
992 {
993   int i;
994   sd_region *s;
995   edge e;
996   edge_iterator ei;
997 
998   FOR_EACH_VEC_ELT (sd_region, regions, i, s)
999     FOR_EACH_EDGE (e, ei, s->exit->preds)
1000       if (bb_in_sd_region (e->src, s))
1001 	e->aux = s;
1002 }
1003 
1004 /* Create for all scop regions a single entry and a single exit edge.  */
1005 
1006 static void
1007 create_sese_edges (VEC (sd_region, heap) *regions)
1008 {
1009   int i;
1010   sd_region *s;
1011 
1012   FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1013     create_single_entry_edge (s);
1014 
1015   mark_exit_edges (regions);
1016 
1017   FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1018     /* Don't handle multiple edges exiting the function.  */
1019     if (!find_single_exit_edge (s)
1020 	&& s->exit != EXIT_BLOCK_PTR)
1021       create_single_exit_edge (s);
1022 
1023   unmark_exit_edges (regions);
1024 
1025   fix_loop_structure (NULL);
1026 
1027 #ifdef ENABLE_CHECKING
1028   verify_loop_structure ();
1029   verify_dominators (CDI_DOMINATORS);
1030   verify_ssa (false);
1031 #endif
1032 }
1033 
1034 /* Create graphite SCoPs from an array of scop detection REGIONS.  */
1035 
1036 static void
1037 build_graphite_scops (VEC (sd_region, heap) *regions,
1038 		      VEC (scop_p, heap) **scops)
1039 {
1040   int i;
1041   sd_region *s;
1042 
1043   FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1044     {
1045       edge entry = find_single_entry_edge (s);
1046       edge exit = find_single_exit_edge (s);
1047       scop_p scop;
1048 
1049       if (!exit)
1050 	continue;
1051 
1052       scop = new_scop (new_sese (entry, exit));
1053       VEC_safe_push (scop_p, heap, *scops, scop);
1054 
1055       /* Are there overlapping SCoPs?  */
1056 #ifdef ENABLE_CHECKING
1057 	{
1058 	  int j;
1059 	  sd_region *s2;
1060 
1061 	  FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
1062 	    if (s != s2)
1063 	      gcc_assert (!bb_in_sd_region (s->entry, s2));
1064 	}
1065 #endif
1066     }
1067 }
1068 
1069 /* Returns true when BB contains only close phi nodes.  */
1070 
1071 static bool
1072 contains_only_close_phi_nodes (basic_block bb)
1073 {
1074   gimple_stmt_iterator gsi;
1075 
1076   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1077     if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1078       return false;
1079 
1080   return true;
1081 }
1082 
1083 /* Print statistics for SCOP to FILE.  */
1084 
1085 static void
1086 print_graphite_scop_statistics (FILE* file, scop_p scop)
1087 {
1088   long n_bbs = 0;
1089   long n_loops = 0;
1090   long n_stmts = 0;
1091   long n_conditions = 0;
1092   long n_p_bbs = 0;
1093   long n_p_loops = 0;
1094   long n_p_stmts = 0;
1095   long n_p_conditions = 0;
1096 
1097   basic_block bb;
1098 
1099   FOR_ALL_BB (bb)
1100     {
1101       gimple_stmt_iterator psi;
1102       loop_p loop = bb->loop_father;
1103 
1104       if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1105 	continue;
1106 
1107       n_bbs++;
1108       n_p_bbs += bb->count;
1109 
1110       if (VEC_length (edge, bb->succs) > 1)
1111 	{
1112 	  n_conditions++;
1113 	  n_p_conditions += bb->count;
1114 	}
1115 
1116       for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1117 	{
1118 	  n_stmts++;
1119 	  n_p_stmts += bb->count;
1120 	}
1121 
1122       if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1123 	{
1124 	  n_loops++;
1125 	  n_p_loops += bb->count;
1126 	}
1127 
1128     }
1129 
1130   fprintf (file, "\nBefore limit_scops SCoP statistics (");
1131   fprintf (file, "BBS:%ld, ", n_bbs);
1132   fprintf (file, "LOOPS:%ld, ", n_loops);
1133   fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1134   fprintf (file, "STMTS:%ld)\n", n_stmts);
1135   fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1136   fprintf (file, "BBS:%ld, ", n_p_bbs);
1137   fprintf (file, "LOOPS:%ld, ", n_p_loops);
1138   fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1139   fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1140 }
1141 
1142 /* Print statistics for SCOPS to FILE.  */
1143 
1144 static void
1145 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1146 {
1147   int i;
1148   scop_p scop;
1149 
1150   FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1151     print_graphite_scop_statistics (file, scop);
1152 }
1153 
1154 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1155 
1156    Example:
1157 
1158    for (i      |
1159      {         |
1160        for (j  |  SCoP 1
1161        for (k  |
1162      }         |
1163 
1164    * SCoP frontier, as this line is not surrounded by any loop. *
1165 
1166    for (l      |  SCoP 2
1167 
1168    This is necessary as scalar evolution and parameter detection need a
1169    outermost loop to initialize parameters correctly.
1170 
1171    TODO: FIX scalar evolution and parameter detection to allow more flexible
1172          SCoP frontiers.  */
1173 
1174 static void
1175 limit_scops (VEC (scop_p, heap) **scops)
1176 {
1177   VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1178 
1179   int i;
1180   scop_p scop;
1181 
1182   FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
1183     {
1184       int j;
1185       loop_p loop;
1186       sese region = SCOP_REGION (scop);
1187       build_sese_loop_nests (region);
1188 
1189       FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
1190         if (!loop_in_sese_p (loop_outer (loop), region)
1191 	    && single_exit (loop))
1192           {
1193 	    sd_region open_scop;
1194 	    open_scop.entry = loop->header;
1195 	    open_scop.exit = single_exit (loop)->dest;
1196 
1197 	    /* This is a hack on top of the limit_scops hack.  The
1198 	       limit_scops hack should disappear all together.  */
1199 	    if (single_succ_p (open_scop.exit)
1200 		&& contains_only_close_phi_nodes (open_scop.exit))
1201 	      open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1202 
1203 	    VEC_safe_push (sd_region, heap, regions, &open_scop);
1204 	  }
1205     }
1206 
1207   free_scops (*scops);
1208   *scops = VEC_alloc (scop_p, heap, 3);
1209 
1210   create_sese_edges (regions);
1211   build_graphite_scops (regions, scops);
1212   VEC_free (sd_region, heap, regions);
1213 }
1214 
1215 /* Returns true when P1 and P2 are close phis with the same
1216    argument.  */
1217 
1218 static inline bool
1219 same_close_phi_node (gimple p1, gimple p2)
1220 {
1221   return operand_equal_p (gimple_phi_arg_def (p1, 0),
1222 			  gimple_phi_arg_def (p2, 0), 0);
1223 }
1224 
1225 /* Remove the close phi node at GSI and replace its rhs with the rhs
1226    of PHI.  */
1227 
1228 static void
1229 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1230 {
1231   gimple use_stmt;
1232   use_operand_p use_p;
1233   imm_use_iterator imm_iter;
1234   tree res = gimple_phi_result (phi);
1235   tree def = gimple_phi_result (gsi_stmt (*gsi));
1236 
1237   gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1238 
1239   FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1240     {
1241       FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1242 	SET_USE (use_p, res);
1243 
1244       update_stmt (use_stmt);
1245 
1246       /* It is possible that we just created a duplicate close-phi
1247 	 for an already-processed containing loop.  Check for this
1248 	 case and clean it up.  */
1249       if (gimple_code (use_stmt) == GIMPLE_PHI
1250 	  && gimple_phi_num_args (use_stmt) == 1)
1251 	make_close_phi_nodes_unique (gimple_bb (use_stmt));
1252     }
1253 
1254   remove_phi_node (gsi, true);
1255 }
1256 
1257 /* Removes all the close phi duplicates from BB.  */
1258 
1259 static void
1260 make_close_phi_nodes_unique (basic_block bb)
1261 {
1262   gimple_stmt_iterator psi;
1263 
1264   for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1265     {
1266       gimple_stmt_iterator gsi = psi;
1267       gimple phi = gsi_stmt (psi);
1268 
1269       /* At this point, PHI should be a close phi in normal form.  */
1270       gcc_assert (gimple_phi_num_args (phi) == 1);
1271 
1272       /* Iterate over the next phis and remove duplicates.  */
1273       gsi_next (&gsi);
1274       while (!gsi_end_p (gsi))
1275 	if (same_close_phi_node (phi, gsi_stmt (gsi)))
1276 	  remove_duplicate_close_phi (phi, &gsi);
1277 	else
1278 	  gsi_next (&gsi);
1279     }
1280 }
1281 
1282 /* Transforms LOOP to the canonical loop closed SSA form.  */
1283 
1284 static void
1285 canonicalize_loop_closed_ssa (loop_p loop)
1286 {
1287   edge e = single_exit (loop);
1288   basic_block bb;
1289 
1290   if (!e || e->flags & EDGE_ABNORMAL)
1291     return;
1292 
1293   bb = e->dest;
1294 
1295   if (VEC_length (edge, bb->preds) == 1)
1296     {
1297       e = split_block_after_labels (bb);
1298       make_close_phi_nodes_unique (e->src);
1299     }
1300   else
1301     {
1302       gimple_stmt_iterator psi;
1303       basic_block close = split_edge (e);
1304 
1305       e = single_succ_edge (close);
1306 
1307       for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1308 	{
1309 	  gimple phi = gsi_stmt (psi);
1310 	  unsigned i;
1311 
1312 	  for (i = 0; i < gimple_phi_num_args (phi); i++)
1313 	    if (gimple_phi_arg_edge (phi, i) == e)
1314 	      {
1315 		tree res, arg = gimple_phi_arg_def (phi, i);
1316 		use_operand_p use_p;
1317 		gimple close_phi;
1318 
1319 		if (TREE_CODE (arg) != SSA_NAME)
1320 		  continue;
1321 
1322 		close_phi = create_phi_node (arg, close);
1323 		res = create_new_def_for (gimple_phi_result (close_phi),
1324 					  close_phi,
1325 					  gimple_phi_result_ptr (close_phi));
1326 		add_phi_arg (close_phi, arg,
1327 			     gimple_phi_arg_edge (close_phi, 0),
1328 			     UNKNOWN_LOCATION);
1329 		use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1330 		replace_exp (use_p, res);
1331 		update_stmt (phi);
1332 	      }
1333 	}
1334 
1335       make_close_phi_nodes_unique (close);
1336     }
1337 
1338   /* The code above does not properly handle changes in the post dominance
1339      information (yet).  */
1340   free_dominance_info (CDI_POST_DOMINATORS);
1341 }
1342 
1343 /* Converts the current loop closed SSA form to a canonical form
1344    expected by the Graphite code generation.
1345 
1346    The loop closed SSA form has the following invariant: a variable
1347    defined in a loop that is used outside the loop appears only in the
1348    phi nodes in the destination of the loop exit.  These phi nodes are
1349    called close phi nodes.
1350 
1351    The canonical loop closed SSA form contains the extra invariants:
1352 
1353    - when the loop contains only one exit, the close phi nodes contain
1354    only one argument.  That implies that the basic block that contains
1355    the close phi nodes has only one predecessor, that is a basic block
1356    in the loop.
1357 
1358    - the basic block containing the close phi nodes does not contain
1359    other statements.
1360 
1361    - there exist only one phi node per definition in the loop.
1362 */
1363 
1364 static void
1365 canonicalize_loop_closed_ssa_form (void)
1366 {
1367   loop_iterator li;
1368   loop_p loop;
1369 
1370 #ifdef ENABLE_CHECKING
1371   verify_loop_closed_ssa (true);
1372 #endif
1373 
1374   FOR_EACH_LOOP (li, loop, 0)
1375     canonicalize_loop_closed_ssa (loop);
1376 
1377   rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1378   update_ssa (TODO_update_ssa);
1379 
1380 #ifdef ENABLE_CHECKING
1381   verify_loop_closed_ssa (true);
1382 #endif
1383 }
1384 
1385 /* Find Static Control Parts (SCoP) in the current function and pushes
1386    them to SCOPS.  */
1387 
1388 void
1389 build_scops (VEC (scop_p, heap) **scops)
1390 {
1391   struct loop *loop = current_loops->tree_root;
1392   VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1393 
1394   canonicalize_loop_closed_ssa_form ();
1395   build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1396 		 &regions, loop);
1397   create_sese_edges (regions);
1398   build_graphite_scops (regions, scops);
1399 
1400   if (dump_file && (dump_flags & TDF_DETAILS))
1401     print_graphite_statistics (dump_file, *scops);
1402 
1403   limit_scops (scops);
1404   VEC_free (sd_region, heap, regions);
1405 
1406   if (dump_file && (dump_flags & TDF_DETAILS))
1407     fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1408 	     VEC_length (scop_p, *scops));
1409 }
1410 
1411 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1412    different colors.  If there are not enough colors, paint the
1413    remaining SCoPs in gray.
1414 
1415    Special nodes:
1416    - "*" after the node number denotes the entry of a SCoP,
1417    - "#" after the node number denotes the exit of a SCoP,
1418    - "()" around the node number denotes the entry or the
1419      exit nodes of the SCOP.  These are not part of SCoP.  */
1420 
1421 static void
1422 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1423 {
1424   basic_block bb;
1425   edge e;
1426   edge_iterator ei;
1427   scop_p scop;
1428   const char* color;
1429   int i;
1430 
1431   /* Disable debugging while printing graph.  */
1432   int tmp_dump_flags = dump_flags;
1433   dump_flags = 0;
1434 
1435   fprintf (file, "digraph all {\n");
1436 
1437   FOR_ALL_BB (bb)
1438     {
1439       int part_of_scop = false;
1440 
1441       /* Use HTML for every bb label.  So we are able to print bbs
1442          which are part of two different SCoPs, with two different
1443          background colors.  */
1444       fprintf (file, "%d [label=<\n  <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1445                      bb->index);
1446       fprintf (file, "CELLSPACING=\"0\">\n");
1447 
1448       /* Select color for SCoP.  */
1449       FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1450 	{
1451 	  sese region = SCOP_REGION (scop);
1452 	  if (bb_in_sese_p (bb, region)
1453 	      || (SESE_EXIT_BB (region) == bb)
1454 	      || (SESE_ENTRY_BB (region) == bb))
1455 	    {
1456 	      switch (i % 17)
1457 		{
1458 		case 0: /* red */
1459 		  color = "#e41a1c";
1460 		  break;
1461 		case 1: /* blue */
1462 		  color = "#377eb8";
1463 		  break;
1464 		case 2: /* green */
1465 		  color = "#4daf4a";
1466 		  break;
1467 		case 3: /* purple */
1468 		  color = "#984ea3";
1469 		  break;
1470 		case 4: /* orange */
1471 		  color = "#ff7f00";
1472 		  break;
1473 		case 5: /* yellow */
1474 		  color = "#ffff33";
1475 		  break;
1476 		case 6: /* brown */
1477 		  color = "#a65628";
1478 		  break;
1479 		case 7: /* rose */
1480 		  color = "#f781bf";
1481 		  break;
1482 		case 8:
1483 		  color = "#8dd3c7";
1484 		  break;
1485 		case 9:
1486 		  color = "#ffffb3";
1487 		  break;
1488 		case 10:
1489 		  color = "#bebada";
1490 		  break;
1491 		case 11:
1492 		  color = "#fb8072";
1493 		  break;
1494 		case 12:
1495 		  color = "#80b1d3";
1496 		  break;
1497 		case 13:
1498 		  color = "#fdb462";
1499 		  break;
1500 		case 14:
1501 		  color = "#b3de69";
1502 		  break;
1503 		case 15:
1504 		  color = "#fccde5";
1505 		  break;
1506 		case 16:
1507 		  color = "#bc80bd";
1508 		  break;
1509 		default: /* gray */
1510 		  color = "#999999";
1511 		}
1512 
1513 	      fprintf (file, "    <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1514 
1515 	      if (!bb_in_sese_p (bb, region))
1516 		fprintf (file, " (");
1517 
1518 	      if (bb == SESE_ENTRY_BB (region)
1519 		  && bb == SESE_EXIT_BB (region))
1520 		fprintf (file, " %d*# ", bb->index);
1521 	      else if (bb == SESE_ENTRY_BB (region))
1522 		fprintf (file, " %d* ", bb->index);
1523 	      else if (bb == SESE_EXIT_BB (region))
1524 		fprintf (file, " %d# ", bb->index);
1525 	      else
1526 		fprintf (file, " %d ", bb->index);
1527 
1528 	      if (!bb_in_sese_p (bb,region))
1529 		fprintf (file, ")");
1530 
1531 	      fprintf (file, "</TD></TR>\n");
1532 	      part_of_scop  = true;
1533 	    }
1534 	}
1535 
1536       if (!part_of_scop)
1537 	{
1538 	  fprintf (file, "    <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1539 	  fprintf (file, " %d </TD></TR>\n", bb->index);
1540 	}
1541       fprintf (file, "  </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1542     }
1543 
1544   FOR_ALL_BB (bb)
1545     {
1546       FOR_EACH_EDGE (e, ei, bb->succs)
1547 	      fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1548     }
1549 
1550   fputs ("}\n\n", file);
1551 
1552   /* Enable debugging again.  */
1553   dump_flags = tmp_dump_flags;
1554 }
1555 
1556 /* Display all SCoPs using dotty.  */
1557 
1558 DEBUG_FUNCTION void
1559 dot_all_scops (VEC (scop_p, heap) *scops)
1560 {
1561   /* When debugging, enable the following code.  This cannot be used
1562      in production compilers because it calls "system".  */
1563 #if 0
1564   int x;
1565   FILE *stream = fopen ("/tmp/allscops.dot", "w");
1566   gcc_assert (stream);
1567 
1568   dot_all_scops_1 (stream, scops);
1569   fclose (stream);
1570 
1571   x = system ("dotty /tmp/allscops.dot &");
1572 #else
1573   dot_all_scops_1 (stderr, scops);
1574 #endif
1575 }
1576 
1577 /* Display all SCoPs using dotty.  */
1578 
1579 DEBUG_FUNCTION void
1580 dot_scop (scop_p scop)
1581 {
1582   VEC (scop_p, heap) *scops = NULL;
1583 
1584   if (scop)
1585     VEC_safe_push (scop_p, heap, scops, scop);
1586 
1587   /* When debugging, enable the following code.  This cannot be used
1588      in production compilers because it calls "system".  */
1589 #if 0
1590   {
1591     int x;
1592     FILE *stream = fopen ("/tmp/allscops.dot", "w");
1593     gcc_assert (stream);
1594 
1595     dot_all_scops_1 (stream, scops);
1596     fclose (stream);
1597     x = system ("dotty /tmp/allscops.dot &");
1598   }
1599 #else
1600   dot_all_scops_1 (stderr, scops);
1601 #endif
1602 
1603   VEC_free (scop_p, heap, scops);
1604 }
1605 
1606 #endif
1607