xref: /dragonfly/contrib/gcc-4.7/gcc/jump.c (revision c37c9ab3)
1 /* Optimize jump instructions, for GNU compiler.
2    Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3    1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4    2011 Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23    of the compiler.  Now it contains basically a set of utility functions to
24    operate with jumps.
25 
26    Each CODE_LABEL has a count of the times it is used
27    stored in the LABEL_NUSES internal field, and each JUMP_INSN
28    has one label that it refers to stored in the
29    JUMP_LABEL internal field.  With this we can detect labels that
30    become unused because of the deletion of all the jumps that
31    formerly used them.  The JUMP_LABEL info is sometimes looked
32    at by later passes.  For return insns, it contains either a
33    RETURN or a SIMPLE_RETURN rtx.
34 
35    The subroutines redirect_jump and invert_jump are used
36    from other passes as well.  */
37 
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "rtl.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "insn-attr.h"
49 #include "recog.h"
50 #include "function.h"
51 #include "basic-block.h"
52 #include "expr.h"
53 #include "except.h"
54 #include "diagnostic-core.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "timevar.h"
58 #include "tree-pass.h"
59 #include "target.h"
60 
61 /* Optimize jump y; x: ... y: jumpif... x?
62    Don't know if it is worth bothering with.  */
63 /* Optimize two cases of conditional jump to conditional jump?
64    This can never delete any instruction or make anything dead,
65    or even change what is live at any point.
66    So perhaps let combiner do it.  */
67 
68 static void init_label_info (rtx);
69 static void mark_all_labels (rtx);
70 static void mark_jump_label_1 (rtx, rtx, bool, bool);
71 static void mark_jump_label_asm (rtx, rtx);
72 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
73 static int invert_exp_1 (rtx, rtx);
74 static int returnjump_p_1 (rtx *, void *);
75 
76 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain.  */
77 static void
78 rebuild_jump_labels_1 (rtx f, bool count_forced)
79 {
80   rtx insn;
81 
82   timevar_push (TV_REBUILD_JUMP);
83   init_label_info (f);
84   mark_all_labels (f);
85 
86   /* Keep track of labels used from static data; we don't track them
87      closely enough to delete them here, so make sure their reference
88      count doesn't drop to zero.  */
89 
90   if (count_forced)
91     for (insn = forced_labels; insn; insn = XEXP (insn, 1))
92       if (LABEL_P (XEXP (insn, 0)))
93 	LABEL_NUSES (XEXP (insn, 0))++;
94   timevar_pop (TV_REBUILD_JUMP);
95 }
96 
97 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
98    notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
99    instructions and jumping insns that have labels as operands
100    (e.g. cbranchsi4).  */
101 void
102 rebuild_jump_labels (rtx f)
103 {
104   rebuild_jump_labels_1 (f, true);
105 }
106 
107 /* This function is like rebuild_jump_labels, but doesn't run over
108    forced_labels.  It can be used on insn chains that aren't the
109    main function chain.  */
110 void
111 rebuild_jump_labels_chain (rtx chain)
112 {
113   rebuild_jump_labels_1 (chain, false);
114 }
115 
116 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
117    non-fallthru insn.  This is not generally true, as multiple barriers
118    may have crept in, or the BARRIER may be separated from the last
119    real insn by one or more NOTEs.
120 
121    This simple pass moves barriers and removes duplicates so that the
122    old code is happy.
123  */
124 unsigned int
125 cleanup_barriers (void)
126 {
127   rtx insn, next, prev;
128   for (insn = get_insns (); insn; insn = next)
129     {
130       next = NEXT_INSN (insn);
131       if (BARRIER_P (insn))
132 	{
133 	  prev = prev_nonnote_insn (insn);
134 	  if (!prev)
135 	    continue;
136 	  if (BARRIER_P (prev))
137 	    delete_insn (insn);
138 	  else if (prev != PREV_INSN (insn))
139 	    reorder_insns (insn, insn, prev);
140 	}
141     }
142   return 0;
143 }
144 
145 struct rtl_opt_pass pass_cleanup_barriers =
146 {
147  {
148   RTL_PASS,
149   "barriers",                           /* name */
150   NULL,                                 /* gate */
151   cleanup_barriers,                     /* execute */
152   NULL,                                 /* sub */
153   NULL,                                 /* next */
154   0,                                    /* static_pass_number */
155   TV_NONE,                              /* tv_id */
156   0,                                    /* properties_required */
157   0,                                    /* properties_provided */
158   0,                                    /* properties_destroyed */
159   0,                                    /* todo_flags_start */
160   0                                     /* todo_flags_finish */
161  }
162 };
163 
164 
165 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
166    for remaining targets for JUMP_P.  Delete any REG_LABEL_OPERAND
167    notes whose labels don't occur in the insn any more.  */
168 
169 static void
170 init_label_info (rtx f)
171 {
172   rtx insn;
173 
174   for (insn = f; insn; insn = NEXT_INSN (insn))
175     {
176       if (LABEL_P (insn))
177 	LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
178 
179       /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
180 	 sticky and not reset here; that way we won't lose association
181 	 with a label when e.g. the source for a target register
182 	 disappears out of reach for targets that may use jump-target
183 	 registers.  Jump transformations are supposed to transform
184 	 any REG_LABEL_TARGET notes.  The target label reference in a
185 	 branch may disappear from the branch (and from the
186 	 instruction before it) for other reasons, like register
187 	 allocation.  */
188 
189       if (INSN_P (insn))
190 	{
191 	  rtx note, next;
192 
193 	  for (note = REG_NOTES (insn); note; note = next)
194 	    {
195 	      next = XEXP (note, 1);
196 	      if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
197 		  && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
198 		remove_note (insn, note);
199 	    }
200 	}
201     }
202 }
203 
204 /* A subroutine of mark_all_labels.  Trivially propagate a simple label
205    load into a jump_insn that uses it.  */
206 
207 static void
208 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
209 {
210   rtx label_note, pc, pc_src;
211 
212   pc = pc_set (jump_insn);
213   pc_src = pc != NULL ? SET_SRC (pc) : NULL;
214   label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
215 
216   /* If the previous non-jump insn sets something to a label,
217      something that this jump insn uses, make that label the primary
218      target of this insn if we don't yet have any.  That previous
219      insn must be a single_set and not refer to more than one label.
220      The jump insn must not refer to other labels as jump targets
221      and must be a plain (set (pc) ...), maybe in a parallel, and
222      may refer to the item being set only directly or as one of the
223      arms in an IF_THEN_ELSE.  */
224 
225   if (label_note != NULL && pc_src != NULL)
226     {
227       rtx label_set = single_set (prev_nonjump_insn);
228       rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
229 
230       if (label_set != NULL
231 	  /* The source must be the direct LABEL_REF, not a
232 	     PLUS, UNSPEC, IF_THEN_ELSE etc.  */
233 	  && GET_CODE (SET_SRC (label_set)) == LABEL_REF
234 	  && (rtx_equal_p (label_dest, pc_src)
235 	      || (GET_CODE (pc_src) == IF_THEN_ELSE
236 		  && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
237 		      || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
238 	{
239 	  /* The CODE_LABEL referred to in the note must be the
240 	     CODE_LABEL in the LABEL_REF of the "set".  We can
241 	     conveniently use it for the marker function, which
242 	     requires a LABEL_REF wrapping.  */
243 	  gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
244 
245 	  mark_jump_label_1 (label_set, jump_insn, false, true);
246 
247 	  gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
248 	}
249     }
250 }
251 
252 /* Mark the label each jump jumps to.
253    Combine consecutive labels, and count uses of labels.  */
254 
255 static void
256 mark_all_labels (rtx f)
257 {
258   rtx insn;
259 
260   if (current_ir_type () == IR_RTL_CFGLAYOUT)
261     {
262       basic_block bb;
263       FOR_EACH_BB (bb)
264 	{
265 	  /* In cfglayout mode, we don't bother with trivial next-insn
266 	     propagation of LABEL_REFs into JUMP_LABEL.  This will be
267 	     handled by other optimizers using better algorithms.  */
268 	  FOR_BB_INSNS (bb, insn)
269 	    {
270 	      gcc_assert (! INSN_DELETED_P (insn));
271 	      if (NONDEBUG_INSN_P (insn))
272 	        mark_jump_label (PATTERN (insn), insn, 0);
273 	    }
274 
275 	  /* In cfglayout mode, there may be non-insns between the
276 	     basic blocks.  If those non-insns represent tablejump data,
277 	     they contain label references that we must record.  */
278 	  for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
279 	    if (INSN_P (insn))
280 	      {
281 		gcc_assert (JUMP_TABLE_DATA_P (insn));
282 		mark_jump_label (PATTERN (insn), insn, 0);
283 	      }
284 	  for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
285 	    if (INSN_P (insn))
286 	      {
287 		gcc_assert (JUMP_TABLE_DATA_P (insn));
288 		mark_jump_label (PATTERN (insn), insn, 0);
289 	      }
290 	}
291     }
292   else
293     {
294       rtx prev_nonjump_insn = NULL;
295       for (insn = f; insn; insn = NEXT_INSN (insn))
296 	{
297 	  if (INSN_DELETED_P (insn))
298 	    ;
299 	  else if (LABEL_P (insn))
300 	    prev_nonjump_insn = NULL;
301 	  else if (NONDEBUG_INSN_P (insn))
302 	    {
303 	      mark_jump_label (PATTERN (insn), insn, 0);
304 	      if (JUMP_P (insn))
305 		{
306 		  if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
307 		    maybe_propagate_label_ref (insn, prev_nonjump_insn);
308 		}
309 	      else
310 		prev_nonjump_insn = insn;
311 	    }
312 	}
313     }
314 }
315 
316 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
317    of reversed comparison if it is possible to do so.  Otherwise return UNKNOWN.
318    UNKNOWN may be returned in case we are having CC_MODE compare and we don't
319    know whether it's source is floating point or integer comparison.  Machine
320    description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
321    to help this function avoid overhead in these cases.  */
322 enum rtx_code
323 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
324 				const_rtx arg1, const_rtx insn)
325 {
326   enum machine_mode mode;
327 
328   /* If this is not actually a comparison, we can't reverse it.  */
329   if (GET_RTX_CLASS (code) != RTX_COMPARE
330       && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
331     return UNKNOWN;
332 
333   mode = GET_MODE (arg0);
334   if (mode == VOIDmode)
335     mode = GET_MODE (arg1);
336 
337   /* First see if machine description supplies us way to reverse the
338      comparison.  Give it priority over everything else to allow
339      machine description to do tricks.  */
340   if (GET_MODE_CLASS (mode) == MODE_CC
341       && REVERSIBLE_CC_MODE (mode))
342     {
343 #ifdef REVERSE_CONDITION
344       return REVERSE_CONDITION (code, mode);
345 #else
346       return reverse_condition (code);
347 #endif
348     }
349 
350   /* Try a few special cases based on the comparison code.  */
351   switch (code)
352     {
353     case GEU:
354     case GTU:
355     case LEU:
356     case LTU:
357     case NE:
358     case EQ:
359       /* It is always safe to reverse EQ and NE, even for the floating
360 	 point.  Similarly the unsigned comparisons are never used for
361 	 floating point so we can reverse them in the default way.  */
362       return reverse_condition (code);
363     case ORDERED:
364     case UNORDERED:
365     case LTGT:
366     case UNEQ:
367       /* In case we already see unordered comparison, we can be sure to
368 	 be dealing with floating point so we don't need any more tests.  */
369       return reverse_condition_maybe_unordered (code);
370     case UNLT:
371     case UNLE:
372     case UNGT:
373     case UNGE:
374       /* We don't have safe way to reverse these yet.  */
375       return UNKNOWN;
376     default:
377       break;
378     }
379 
380   if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
381     {
382       const_rtx prev;
383       /* Try to search for the comparison to determine the real mode.
384          This code is expensive, but with sane machine description it
385          will be never used, since REVERSIBLE_CC_MODE will return true
386          in all cases.  */
387       if (! insn)
388 	return UNKNOWN;
389 
390       /* These CONST_CAST's are okay because prev_nonnote_insn just
391 	 returns its argument and we assign it to a const_rtx
392 	 variable.  */
393       for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
394 	   prev != 0 && !LABEL_P (prev);
395 	   prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
396 	{
397 	  const_rtx set = set_of (arg0, prev);
398 	  if (set && GET_CODE (set) == SET
399 	      && rtx_equal_p (SET_DEST (set), arg0))
400 	    {
401 	      rtx src = SET_SRC (set);
402 
403 	      if (GET_CODE (src) == COMPARE)
404 		{
405 		  rtx comparison = src;
406 		  arg0 = XEXP (src, 0);
407 		  mode = GET_MODE (arg0);
408 		  if (mode == VOIDmode)
409 		    mode = GET_MODE (XEXP (comparison, 1));
410 		  break;
411 		}
412 	      /* We can get past reg-reg moves.  This may be useful for model
413 	         of i387 comparisons that first move flag registers around.  */
414 	      if (REG_P (src))
415 		{
416 		  arg0 = src;
417 		  continue;
418 		}
419 	    }
420 	  /* If register is clobbered in some ununderstandable way,
421 	     give up.  */
422 	  if (set)
423 	    return UNKNOWN;
424 	}
425     }
426 
427   /* Test for an integer condition, or a floating-point comparison
428      in which NaNs can be ignored.  */
429   if (CONST_INT_P (arg0)
430       || (GET_MODE (arg0) != VOIDmode
431 	  && GET_MODE_CLASS (mode) != MODE_CC
432 	  && !HONOR_NANS (mode)))
433     return reverse_condition (code);
434 
435   return UNKNOWN;
436 }
437 
438 /* A wrapper around the previous function to take COMPARISON as rtx
439    expression.  This simplifies many callers.  */
440 enum rtx_code
441 reversed_comparison_code (const_rtx comparison, const_rtx insn)
442 {
443   if (!COMPARISON_P (comparison))
444     return UNKNOWN;
445   return reversed_comparison_code_parts (GET_CODE (comparison),
446 					 XEXP (comparison, 0),
447 					 XEXP (comparison, 1), insn);
448 }
449 
450 /* Return comparison with reversed code of EXP.
451    Return NULL_RTX in case we fail to do the reversal.  */
452 rtx
453 reversed_comparison (const_rtx exp, enum machine_mode mode)
454 {
455   enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
456   if (reversed_code == UNKNOWN)
457     return NULL_RTX;
458   else
459     return simplify_gen_relational (reversed_code, mode, VOIDmode,
460                                     XEXP (exp, 0), XEXP (exp, 1));
461 }
462 
463 
464 /* Given an rtx-code for a comparison, return the code for the negated
465    comparison.  If no such code exists, return UNKNOWN.
466 
467    WATCH OUT!  reverse_condition is not safe to use on a jump that might
468    be acting on the results of an IEEE floating point comparison, because
469    of the special treatment of non-signaling nans in comparisons.
470    Use reversed_comparison_code instead.  */
471 
472 enum rtx_code
473 reverse_condition (enum rtx_code code)
474 {
475   switch (code)
476     {
477     case EQ:
478       return NE;
479     case NE:
480       return EQ;
481     case GT:
482       return LE;
483     case GE:
484       return LT;
485     case LT:
486       return GE;
487     case LE:
488       return GT;
489     case GTU:
490       return LEU;
491     case GEU:
492       return LTU;
493     case LTU:
494       return GEU;
495     case LEU:
496       return GTU;
497     case UNORDERED:
498       return ORDERED;
499     case ORDERED:
500       return UNORDERED;
501 
502     case UNLT:
503     case UNLE:
504     case UNGT:
505     case UNGE:
506     case UNEQ:
507     case LTGT:
508       return UNKNOWN;
509 
510     default:
511       gcc_unreachable ();
512     }
513 }
514 
515 /* Similar, but we're allowed to generate unordered comparisons, which
516    makes it safe for IEEE floating-point.  Of course, we have to recognize
517    that the target will support them too...  */
518 
519 enum rtx_code
520 reverse_condition_maybe_unordered (enum rtx_code code)
521 {
522   switch (code)
523     {
524     case EQ:
525       return NE;
526     case NE:
527       return EQ;
528     case GT:
529       return UNLE;
530     case GE:
531       return UNLT;
532     case LT:
533       return UNGE;
534     case LE:
535       return UNGT;
536     case LTGT:
537       return UNEQ;
538     case UNORDERED:
539       return ORDERED;
540     case ORDERED:
541       return UNORDERED;
542     case UNLT:
543       return GE;
544     case UNLE:
545       return GT;
546     case UNGT:
547       return LE;
548     case UNGE:
549       return LT;
550     case UNEQ:
551       return LTGT;
552 
553     default:
554       gcc_unreachable ();
555     }
556 }
557 
558 /* Similar, but return the code when two operands of a comparison are swapped.
559    This IS safe for IEEE floating-point.  */
560 
561 enum rtx_code
562 swap_condition (enum rtx_code code)
563 {
564   switch (code)
565     {
566     case EQ:
567     case NE:
568     case UNORDERED:
569     case ORDERED:
570     case UNEQ:
571     case LTGT:
572       return code;
573 
574     case GT:
575       return LT;
576     case GE:
577       return LE;
578     case LT:
579       return GT;
580     case LE:
581       return GE;
582     case GTU:
583       return LTU;
584     case GEU:
585       return LEU;
586     case LTU:
587       return GTU;
588     case LEU:
589       return GEU;
590     case UNLT:
591       return UNGT;
592     case UNLE:
593       return UNGE;
594     case UNGT:
595       return UNLT;
596     case UNGE:
597       return UNLE;
598 
599     default:
600       gcc_unreachable ();
601     }
602 }
603 
604 /* Given a comparison CODE, return the corresponding unsigned comparison.
605    If CODE is an equality comparison or already an unsigned comparison,
606    CODE is returned.  */
607 
608 enum rtx_code
609 unsigned_condition (enum rtx_code code)
610 {
611   switch (code)
612     {
613     case EQ:
614     case NE:
615     case GTU:
616     case GEU:
617     case LTU:
618     case LEU:
619       return code;
620 
621     case GT:
622       return GTU;
623     case GE:
624       return GEU;
625     case LT:
626       return LTU;
627     case LE:
628       return LEU;
629 
630     default:
631       gcc_unreachable ();
632     }
633 }
634 
635 /* Similarly, return the signed version of a comparison.  */
636 
637 enum rtx_code
638 signed_condition (enum rtx_code code)
639 {
640   switch (code)
641     {
642     case EQ:
643     case NE:
644     case GT:
645     case GE:
646     case LT:
647     case LE:
648       return code;
649 
650     case GTU:
651       return GT;
652     case GEU:
653       return GE;
654     case LTU:
655       return LT;
656     case LEU:
657       return LE;
658 
659     default:
660       gcc_unreachable ();
661     }
662 }
663 
664 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
665    truth of CODE1 implies the truth of CODE2.  */
666 
667 int
668 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
669 {
670   /* UNKNOWN comparison codes can happen as a result of trying to revert
671      comparison codes.
672      They can't match anything, so we have to reject them here.  */
673   if (code1 == UNKNOWN || code2 == UNKNOWN)
674     return 0;
675 
676   if (code1 == code2)
677     return 1;
678 
679   switch (code1)
680     {
681     case UNEQ:
682       if (code2 == UNLE || code2 == UNGE)
683 	return 1;
684       break;
685 
686     case EQ:
687       if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
688 	  || code2 == ORDERED)
689 	return 1;
690       break;
691 
692     case UNLT:
693       if (code2 == UNLE || code2 == NE)
694 	return 1;
695       break;
696 
697     case LT:
698       if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
699 	return 1;
700       break;
701 
702     case UNGT:
703       if (code2 == UNGE || code2 == NE)
704 	return 1;
705       break;
706 
707     case GT:
708       if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
709 	return 1;
710       break;
711 
712     case GE:
713     case LE:
714       if (code2 == ORDERED)
715 	return 1;
716       break;
717 
718     case LTGT:
719       if (code2 == NE || code2 == ORDERED)
720 	return 1;
721       break;
722 
723     case LTU:
724       if (code2 == LEU || code2 == NE)
725 	return 1;
726       break;
727 
728     case GTU:
729       if (code2 == GEU || code2 == NE)
730 	return 1;
731       break;
732 
733     case UNORDERED:
734       if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
735 	  || code2 == UNGE || code2 == UNGT)
736 	return 1;
737       break;
738 
739     default:
740       break;
741     }
742 
743   return 0;
744 }
745 
746 /* Return 1 if INSN is an unconditional jump and nothing else.  */
747 
748 int
749 simplejump_p (const_rtx insn)
750 {
751   return (JUMP_P (insn)
752 	  && GET_CODE (PATTERN (insn)) == SET
753 	  && GET_CODE (SET_DEST (PATTERN (insn))) == PC
754 	  && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
755 }
756 
757 /* Return nonzero if INSN is a (possibly) conditional jump
758    and nothing more.
759 
760    Use of this function is deprecated, since we need to support combined
761    branch and compare insns.  Use any_condjump_p instead whenever possible.  */
762 
763 int
764 condjump_p (const_rtx insn)
765 {
766   const_rtx x = PATTERN (insn);
767 
768   if (GET_CODE (x) != SET
769       || GET_CODE (SET_DEST (x)) != PC)
770     return 0;
771 
772   x = SET_SRC (x);
773   if (GET_CODE (x) == LABEL_REF)
774     return 1;
775   else
776     return (GET_CODE (x) == IF_THEN_ELSE
777 	    && ((GET_CODE (XEXP (x, 2)) == PC
778 		 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
779 		     || ANY_RETURN_P (XEXP (x, 1))))
780 		|| (GET_CODE (XEXP (x, 1)) == PC
781 		    && (GET_CODE (XEXP (x, 2)) == LABEL_REF
782 			|| ANY_RETURN_P (XEXP (x, 2))))));
783 }
784 
785 /* Return nonzero if INSN is a (possibly) conditional jump inside a
786    PARALLEL.
787 
788    Use this function is deprecated, since we need to support combined
789    branch and compare insns.  Use any_condjump_p instead whenever possible.  */
790 
791 int
792 condjump_in_parallel_p (const_rtx insn)
793 {
794   const_rtx x = PATTERN (insn);
795 
796   if (GET_CODE (x) != PARALLEL)
797     return 0;
798   else
799     x = XVECEXP (x, 0, 0);
800 
801   if (GET_CODE (x) != SET)
802     return 0;
803   if (GET_CODE (SET_DEST (x)) != PC)
804     return 0;
805   if (GET_CODE (SET_SRC (x)) == LABEL_REF)
806     return 1;
807   if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
808     return 0;
809   if (XEXP (SET_SRC (x), 2) == pc_rtx
810       && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
811 	  || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
812     return 1;
813   if (XEXP (SET_SRC (x), 1) == pc_rtx
814       && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
815 	  || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
816     return 1;
817   return 0;
818 }
819 
820 /* Return set of PC, otherwise NULL.  */
821 
822 rtx
823 pc_set (const_rtx insn)
824 {
825   rtx pat;
826   if (!JUMP_P (insn))
827     return NULL_RTX;
828   pat = PATTERN (insn);
829 
830   /* The set is allowed to appear either as the insn pattern or
831      the first set in a PARALLEL.  */
832   if (GET_CODE (pat) == PARALLEL)
833     pat = XVECEXP (pat, 0, 0);
834   if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
835     return pat;
836 
837   return NULL_RTX;
838 }
839 
840 /* Return true when insn is an unconditional direct jump,
841    possibly bundled inside a PARALLEL.  */
842 
843 int
844 any_uncondjump_p (const_rtx insn)
845 {
846   const_rtx x = pc_set (insn);
847   if (!x)
848     return 0;
849   if (GET_CODE (SET_SRC (x)) != LABEL_REF)
850     return 0;
851   if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
852     return 0;
853   return 1;
854 }
855 
856 /* Return true when insn is a conditional jump.  This function works for
857    instructions containing PC sets in PARALLELs.  The instruction may have
858    various other effects so before removing the jump you must verify
859    onlyjump_p.
860 
861    Note that unlike condjump_p it returns false for unconditional jumps.  */
862 
863 int
864 any_condjump_p (const_rtx insn)
865 {
866   const_rtx x = pc_set (insn);
867   enum rtx_code a, b;
868 
869   if (!x)
870     return 0;
871   if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
872     return 0;
873 
874   a = GET_CODE (XEXP (SET_SRC (x), 1));
875   b = GET_CODE (XEXP (SET_SRC (x), 2));
876 
877   return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
878 	  || (a == PC
879 	      && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
880 }
881 
882 /* Return the label of a conditional jump.  */
883 
884 rtx
885 condjump_label (const_rtx insn)
886 {
887   rtx x = pc_set (insn);
888 
889   if (!x)
890     return NULL_RTX;
891   x = SET_SRC (x);
892   if (GET_CODE (x) == LABEL_REF)
893     return x;
894   if (GET_CODE (x) != IF_THEN_ELSE)
895     return NULL_RTX;
896   if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
897     return XEXP (x, 1);
898   if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
899     return XEXP (x, 2);
900   return NULL_RTX;
901 }
902 
903 /* Return true if INSN is a (possibly conditional) return insn.  */
904 
905 static int
906 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
907 {
908   rtx x = *loc;
909 
910   if (x == NULL)
911     return false;
912 
913   switch (GET_CODE (x))
914     {
915     case RETURN:
916     case SIMPLE_RETURN:
917     case EH_RETURN:
918       return true;
919 
920     case SET:
921       return SET_IS_RETURN_P (x);
922 
923     default:
924       return false;
925     }
926 }
927 
928 /* Return TRUE if INSN is a return jump.  */
929 
930 int
931 returnjump_p (rtx insn)
932 {
933   if (!JUMP_P (insn))
934     return 0;
935   return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
936 }
937 
938 /* Return true if INSN is a (possibly conditional) return insn.  */
939 
940 static int
941 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
942 {
943   return *loc && GET_CODE (*loc) == EH_RETURN;
944 }
945 
946 int
947 eh_returnjump_p (rtx insn)
948 {
949   if (!JUMP_P (insn))
950     return 0;
951   return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
952 }
953 
954 /* Return true if INSN is a jump that only transfers control and
955    nothing more.  */
956 
957 int
958 onlyjump_p (const_rtx insn)
959 {
960   rtx set;
961 
962   if (!JUMP_P (insn))
963     return 0;
964 
965   set = single_set (insn);
966   if (set == NULL)
967     return 0;
968   if (GET_CODE (SET_DEST (set)) != PC)
969     return 0;
970   if (side_effects_p (SET_SRC (set)))
971     return 0;
972 
973   return 1;
974 }
975 
976 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
977    NULL or a return.  */
978 bool
979 jump_to_label_p (rtx insn)
980 {
981   return (JUMP_P (insn)
982 	  && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
983 }
984 
985 #ifdef HAVE_cc0
986 
987 /* Return nonzero if X is an RTX that only sets the condition codes
988    and has no side effects.  */
989 
990 int
991 only_sets_cc0_p (const_rtx x)
992 {
993   if (! x)
994     return 0;
995 
996   if (INSN_P (x))
997     x = PATTERN (x);
998 
999   return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1000 }
1001 
1002 /* Return 1 if X is an RTX that does nothing but set the condition codes
1003    and CLOBBER or USE registers.
1004    Return -1 if X does explicitly set the condition codes,
1005    but also does other things.  */
1006 
1007 int
1008 sets_cc0_p (const_rtx x)
1009 {
1010   if (! x)
1011     return 0;
1012 
1013   if (INSN_P (x))
1014     x = PATTERN (x);
1015 
1016   if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1017     return 1;
1018   if (GET_CODE (x) == PARALLEL)
1019     {
1020       int i;
1021       int sets_cc0 = 0;
1022       int other_things = 0;
1023       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1024 	{
1025 	  if (GET_CODE (XVECEXP (x, 0, i)) == SET
1026 	      && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1027 	    sets_cc0 = 1;
1028 	  else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1029 	    other_things = 1;
1030 	}
1031       return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1032     }
1033   return 0;
1034 }
1035 #endif
1036 
1037 /* Find all CODE_LABELs referred to in X, and increment their use
1038    counts.  If INSN is a JUMP_INSN and there is at least one
1039    CODE_LABEL referenced in INSN as a jump target, then store the last
1040    one in JUMP_LABEL (INSN).  For a tablejump, this must be the label
1041    for the ADDR_VEC.  Store any other jump targets as REG_LABEL_TARGET
1042    notes.  If INSN is an INSN or a CALL_INSN or non-target operands of
1043    a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1044    INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1045    For returnjumps, the JUMP_LABEL will also be set as appropriate.
1046 
1047    Note that two labels separated by a loop-beginning note
1048    must be kept distinct if we have not yet done loop-optimization,
1049    because the gap between them is where loop-optimize
1050    will want to move invariant code to.  CROSS_JUMP tells us
1051    that loop-optimization is done with.  */
1052 
1053 void
1054 mark_jump_label (rtx x, rtx insn, int in_mem)
1055 {
1056   rtx asmop = extract_asm_operands (x);
1057   if (asmop)
1058     mark_jump_label_asm (asmop, insn);
1059   else
1060     mark_jump_label_1 (x, insn, in_mem != 0,
1061 		       (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1062 }
1063 
1064 /* Worker function for mark_jump_label.  IN_MEM is TRUE when X occurs
1065    within a (MEM ...).  IS_TARGET is TRUE when X is to be treated as a
1066    jump-target; when the JUMP_LABEL field of INSN should be set or a
1067    REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1068    note.  */
1069 
1070 static void
1071 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1072 {
1073   RTX_CODE code = GET_CODE (x);
1074   int i;
1075   const char *fmt;
1076 
1077   switch (code)
1078     {
1079     case PC:
1080     case CC0:
1081     case REG:
1082     case CONST_INT:
1083     case CONST_DOUBLE:
1084     case CLOBBER:
1085     case CALL:
1086       return;
1087 
1088     case RETURN:
1089     case SIMPLE_RETURN:
1090       if (is_target)
1091 	{
1092 	  gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1093 	  JUMP_LABEL (insn) = x;
1094 	}
1095       return;
1096 
1097     case MEM:
1098       in_mem = true;
1099       break;
1100 
1101     case SEQUENCE:
1102       for (i = 0; i < XVECLEN (x, 0); i++)
1103 	mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1104 			 XVECEXP (x, 0, i), 0);
1105       return;
1106 
1107     case SYMBOL_REF:
1108       if (!in_mem)
1109 	return;
1110 
1111       /* If this is a constant-pool reference, see if it is a label.  */
1112       if (CONSTANT_POOL_ADDRESS_P (x))
1113 	mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1114       break;
1115 
1116       /* Handle operands in the condition of an if-then-else as for a
1117 	 non-jump insn.  */
1118     case IF_THEN_ELSE:
1119       if (!is_target)
1120 	break;
1121       mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1122       mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1123       mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1124       return;
1125 
1126     case LABEL_REF:
1127       {
1128 	rtx label = XEXP (x, 0);
1129 
1130 	/* Ignore remaining references to unreachable labels that
1131 	   have been deleted.  */
1132 	if (NOTE_P (label)
1133 	    && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1134 	  break;
1135 
1136 	gcc_assert (LABEL_P (label));
1137 
1138 	/* Ignore references to labels of containing functions.  */
1139 	if (LABEL_REF_NONLOCAL_P (x))
1140 	  break;
1141 
1142 	XEXP (x, 0) = label;
1143 	if (! insn || ! INSN_DELETED_P (insn))
1144 	  ++LABEL_NUSES (label);
1145 
1146 	if (insn)
1147 	  {
1148 	    if (is_target
1149 		/* Do not change a previous setting of JUMP_LABEL.  If the
1150 		   JUMP_LABEL slot is occupied by a different label,
1151 		   create a note for this label.  */
1152 		&& (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1153 	      JUMP_LABEL (insn) = label;
1154 	    else
1155 	      {
1156 		enum reg_note kind
1157 		  = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1158 
1159 		/* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1160 		   for LABEL unless there already is one.  All uses of
1161 		   a label, except for the primary target of a jump,
1162 		   must have such a note.  */
1163 		if (! find_reg_note (insn, kind, label))
1164 		  add_reg_note (insn, kind, label);
1165 	      }
1166 	  }
1167 	return;
1168       }
1169 
1170   /* Do walk the labels in a vector, but not the first operand of an
1171      ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
1172     case ADDR_VEC:
1173     case ADDR_DIFF_VEC:
1174       if (! INSN_DELETED_P (insn))
1175 	{
1176 	  int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1177 
1178 	  for (i = 0; i < XVECLEN (x, eltnum); i++)
1179 	    mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1180 			       is_target);
1181 	}
1182       return;
1183 
1184     default:
1185       break;
1186     }
1187 
1188   fmt = GET_RTX_FORMAT (code);
1189 
1190   /* The primary target of a tablejump is the label of the ADDR_VEC,
1191      which is canonically mentioned *last* in the insn.  To get it
1192      marked as JUMP_LABEL, we iterate over items in reverse order.  */
1193   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1194     {
1195       if (fmt[i] == 'e')
1196 	mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1197       else if (fmt[i] == 'E')
1198 	{
1199 	  int j;
1200 
1201 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1202 	    mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1203 			       is_target);
1204 	}
1205     }
1206 }
1207 
1208 /* Worker function for mark_jump_label.  Handle asm insns specially.
1209    In particular, output operands need not be considered so we can
1210    avoid re-scanning the replicated asm_operand.  Also, the asm_labels
1211    need to be considered targets.  */
1212 
1213 static void
1214 mark_jump_label_asm (rtx asmop, rtx insn)
1215 {
1216   int i;
1217 
1218   for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1219     mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1220 
1221   for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1222     mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1223 }
1224 
1225 /* Delete insn INSN from the chain of insns and update label ref counts
1226    and delete insns now unreachable.
1227 
1228    Returns the first insn after INSN that was not deleted.
1229 
1230    Usage of this instruction is deprecated.  Use delete_insn instead and
1231    subsequent cfg_cleanup pass to delete unreachable code if needed.  */
1232 
1233 rtx
1234 delete_related_insns (rtx insn)
1235 {
1236   int was_code_label = (LABEL_P (insn));
1237   rtx note;
1238   rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1239 
1240   while (next && INSN_DELETED_P (next))
1241     next = NEXT_INSN (next);
1242 
1243   /* This insn is already deleted => return first following nondeleted.  */
1244   if (INSN_DELETED_P (insn))
1245     return next;
1246 
1247   delete_insn (insn);
1248 
1249   /* If instruction is followed by a barrier,
1250      delete the barrier too.  */
1251 
1252   if (next != 0 && BARRIER_P (next))
1253     delete_insn (next);
1254 
1255   /* If this is a call, then we have to remove the var tracking note
1256      for the call arguments.  */
1257 
1258   if (CALL_P (insn)
1259       || (NONJUMP_INSN_P (insn)
1260 	  && GET_CODE (PATTERN (insn)) == SEQUENCE
1261 	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1262     {
1263       rtx p;
1264 
1265       for (p = next && INSN_DELETED_P (next) ? NEXT_INSN (next) : next;
1266 	   p && NOTE_P (p);
1267 	   p = NEXT_INSN (p))
1268 	if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1269 	  {
1270 	    remove_insn (p);
1271 	    break;
1272 	  }
1273     }
1274 
1275   /* If deleting a jump, decrement the count of the label,
1276      and delete the label if it is now unused.  */
1277 
1278   if (jump_to_label_p (insn))
1279     {
1280       rtx lab = JUMP_LABEL (insn), lab_next;
1281 
1282       if (LABEL_NUSES (lab) == 0)
1283 	/* This can delete NEXT or PREV,
1284 	   either directly if NEXT is JUMP_LABEL (INSN),
1285 	   or indirectly through more levels of jumps.  */
1286 	delete_related_insns (lab);
1287       else if (tablejump_p (insn, NULL, &lab_next))
1288 	{
1289 	  /* If we're deleting the tablejump, delete the dispatch table.
1290 	     We may not be able to kill the label immediately preceding
1291 	     just yet, as it might be referenced in code leading up to
1292 	     the tablejump.  */
1293 	  delete_related_insns (lab_next);
1294 	}
1295     }
1296 
1297   /* Likewise if we're deleting a dispatch table.  */
1298 
1299   if (JUMP_TABLE_DATA_P (insn))
1300     {
1301       rtx pat = PATTERN (insn);
1302       int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1303       int len = XVECLEN (pat, diff_vec_p);
1304 
1305       for (i = 0; i < len; i++)
1306 	if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1307 	  delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1308       while (next && INSN_DELETED_P (next))
1309 	next = NEXT_INSN (next);
1310       return next;
1311     }
1312 
1313   /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1314      REG_LABEL_OPERAND or REG_LABEL_TARGET note.  */
1315   if (INSN_P (insn))
1316     for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1317       if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1318 	   || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1319 	  /* This could also be a NOTE_INSN_DELETED_LABEL note.  */
1320 	  && LABEL_P (XEXP (note, 0)))
1321 	if (LABEL_NUSES (XEXP (note, 0)) == 0)
1322 	  delete_related_insns (XEXP (note, 0));
1323 
1324   while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1325     prev = PREV_INSN (prev);
1326 
1327   /* If INSN was a label and a dispatch table follows it,
1328      delete the dispatch table.  The tablejump must have gone already.
1329      It isn't useful to fall through into a table.  */
1330 
1331   if (was_code_label
1332       && NEXT_INSN (insn) != 0
1333       && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1334     next = delete_related_insns (NEXT_INSN (insn));
1335 
1336   /* If INSN was a label, delete insns following it if now unreachable.  */
1337 
1338   if (was_code_label && prev && BARRIER_P (prev))
1339     {
1340       enum rtx_code code;
1341       while (next)
1342 	{
1343 	  code = GET_CODE (next);
1344 	  if (code == NOTE)
1345 	    next = NEXT_INSN (next);
1346 	  /* Keep going past other deleted labels to delete what follows.  */
1347 	  else if (code == CODE_LABEL && INSN_DELETED_P (next))
1348 	    next = NEXT_INSN (next);
1349 	  else if (code == BARRIER || INSN_P (next))
1350 	    /* Note: if this deletes a jump, it can cause more
1351 	       deletion of unreachable code, after a different label.
1352 	       As long as the value from this recursive call is correct,
1353 	       this invocation functions correctly.  */
1354 	    next = delete_related_insns (next);
1355 	  else
1356 	    break;
1357 	}
1358     }
1359 
1360   /* I feel a little doubtful about this loop,
1361      but I see no clean and sure alternative way
1362      to find the first insn after INSN that is not now deleted.
1363      I hope this works.  */
1364   while (next && INSN_DELETED_P (next))
1365     next = NEXT_INSN (next);
1366   return next;
1367 }
1368 
1369 /* Delete a range of insns from FROM to TO, inclusive.
1370    This is for the sake of peephole optimization, so assume
1371    that whatever these insns do will still be done by a new
1372    peephole insn that will replace them.  */
1373 
1374 void
1375 delete_for_peephole (rtx from, rtx to)
1376 {
1377   rtx insn = from;
1378 
1379   while (1)
1380     {
1381       rtx next = NEXT_INSN (insn);
1382       rtx prev = PREV_INSN (insn);
1383 
1384       if (!NOTE_P (insn))
1385 	{
1386 	  INSN_DELETED_P (insn) = 1;
1387 
1388 	  /* Patch this insn out of the chain.  */
1389 	  /* We don't do this all at once, because we
1390 	     must preserve all NOTEs.  */
1391 	  if (prev)
1392 	    NEXT_INSN (prev) = next;
1393 
1394 	  if (next)
1395 	    PREV_INSN (next) = prev;
1396 	}
1397 
1398       if (insn == to)
1399 	break;
1400       insn = next;
1401     }
1402 
1403   /* Note that if TO is an unconditional jump
1404      we *do not* delete the BARRIER that follows,
1405      since the peephole that replaces this sequence
1406      is also an unconditional jump in that case.  */
1407 }
1408 
1409 /* A helper function for redirect_exp_1; examines its input X and returns
1410    either a LABEL_REF around a label, or a RETURN if X was NULL.  */
1411 static rtx
1412 redirect_target (rtx x)
1413 {
1414   if (x == NULL_RTX)
1415     return ret_rtx;
1416   if (!ANY_RETURN_P (x))
1417     return gen_rtx_LABEL_REF (Pmode, x);
1418   return x;
1419 }
1420 
1421 /* Throughout LOC, redirect OLABEL to NLABEL.  Treat null OLABEL or
1422    NLABEL as a return.  Accrue modifications into the change group.  */
1423 
1424 static void
1425 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1426 {
1427   rtx x = *loc;
1428   RTX_CODE code = GET_CODE (x);
1429   int i;
1430   const char *fmt;
1431 
1432   if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1433       || x == olabel)
1434     {
1435       x = redirect_target (nlabel);
1436       if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1437  	x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1438       validate_change (insn, loc, x, 1);
1439       return;
1440     }
1441 
1442   if (code == SET && SET_DEST (x) == pc_rtx
1443       && ANY_RETURN_P (nlabel)
1444       && GET_CODE (SET_SRC (x)) == LABEL_REF
1445       && XEXP (SET_SRC (x), 0) == olabel)
1446     {
1447       validate_change (insn, loc, nlabel, 1);
1448       return;
1449     }
1450 
1451   if (code == IF_THEN_ELSE)
1452     {
1453       /* Skip the condition of an IF_THEN_ELSE.  We only want to
1454          change jump destinations, not eventual label comparisons.  */
1455       redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1456       redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1457       return;
1458     }
1459 
1460   fmt = GET_RTX_FORMAT (code);
1461   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1462     {
1463       if (fmt[i] == 'e')
1464 	redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1465       else if (fmt[i] == 'E')
1466 	{
1467 	  int j;
1468 	  for (j = 0; j < XVECLEN (x, i); j++)
1469 	    redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1470 	}
1471     }
1472 }
1473 
1474 /* Make JUMP go to NLABEL instead of where it jumps now.  Accrue
1475    the modifications into the change group.  Return false if we did
1476    not see how to do that.  */
1477 
1478 int
1479 redirect_jump_1 (rtx jump, rtx nlabel)
1480 {
1481   int ochanges = num_validated_changes ();
1482   rtx *loc, asmop;
1483 
1484   gcc_assert (nlabel != NULL_RTX);
1485   asmop = extract_asm_operands (PATTERN (jump));
1486   if (asmop)
1487     {
1488       if (nlabel == NULL)
1489 	return 0;
1490       gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1491       loc = &ASM_OPERANDS_LABEL (asmop, 0);
1492     }
1493   else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1494     loc = &XVECEXP (PATTERN (jump), 0, 0);
1495   else
1496     loc = &PATTERN (jump);
1497 
1498   redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1499   return num_validated_changes () > ochanges;
1500 }
1501 
1502 /* Make JUMP go to NLABEL instead of where it jumps now.  If the old
1503    jump target label is unused as a result, it and the code following
1504    it may be deleted.
1505 
1506    Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1507    in that case we are to turn the jump into a (possibly conditional)
1508    return insn.
1509 
1510    The return value will be 1 if the change was made, 0 if it wasn't
1511    (this can only occur when trying to produce return insns).  */
1512 
1513 int
1514 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1515 {
1516   rtx olabel = JUMP_LABEL (jump);
1517 
1518   if (!nlabel)
1519     {
1520       /* If there is no label, we are asked to redirect to the EXIT block.
1521 	 When before the epilogue is emitted, return/simple_return cannot be
1522 	 created so we return 0 immediately.  After the epilogue is emitted,
1523 	 we always expect a label, either a non-null label, or a
1524 	 return/simple_return RTX.  */
1525 
1526       if (!epilogue_completed)
1527 	return 0;
1528       gcc_unreachable ();
1529     }
1530 
1531   if (nlabel == olabel)
1532     return 1;
1533 
1534   if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1535     return 0;
1536 
1537   redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1538   return 1;
1539 }
1540 
1541 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1542    NLABEL in JUMP.
1543    If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1544    count has dropped to zero.  */
1545 void
1546 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1547 		 int invert)
1548 {
1549   rtx note;
1550 
1551   gcc_assert (JUMP_LABEL (jump) == olabel);
1552 
1553   /* Negative DELETE_UNUSED used to be used to signalize behavior on
1554      moving FUNCTION_END note.  Just sanity check that no user still worry
1555      about this.  */
1556   gcc_assert (delete_unused >= 0);
1557   JUMP_LABEL (jump) = nlabel;
1558   if (!ANY_RETURN_P (nlabel))
1559     ++LABEL_NUSES (nlabel);
1560 
1561   /* Update labels in any REG_EQUAL note.  */
1562   if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1563     {
1564       if (ANY_RETURN_P (nlabel)
1565 	  || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1566 	remove_note (jump, note);
1567       else
1568 	{
1569 	  redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1570 	  confirm_change_group ();
1571 	}
1572     }
1573 
1574   if (!ANY_RETURN_P (olabel)
1575       && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1576       /* Undefined labels will remain outside the insn stream.  */
1577       && INSN_UID (olabel))
1578     delete_related_insns (olabel);
1579   if (invert)
1580     invert_br_probabilities (jump);
1581 }
1582 
1583 /* Invert the jump condition X contained in jump insn INSN.  Accrue the
1584    modifications into the change group.  Return nonzero for success.  */
1585 static int
1586 invert_exp_1 (rtx x, rtx insn)
1587 {
1588   RTX_CODE code = GET_CODE (x);
1589 
1590   if (code == IF_THEN_ELSE)
1591     {
1592       rtx comp = XEXP (x, 0);
1593       rtx tem;
1594       enum rtx_code reversed_code;
1595 
1596       /* We can do this in two ways:  The preferable way, which can only
1597 	 be done if this is not an integer comparison, is to reverse
1598 	 the comparison code.  Otherwise, swap the THEN-part and ELSE-part
1599 	 of the IF_THEN_ELSE.  If we can't do either, fail.  */
1600 
1601       reversed_code = reversed_comparison_code (comp, insn);
1602 
1603       if (reversed_code != UNKNOWN)
1604 	{
1605 	  validate_change (insn, &XEXP (x, 0),
1606 			   gen_rtx_fmt_ee (reversed_code,
1607 					   GET_MODE (comp), XEXP (comp, 0),
1608 					   XEXP (comp, 1)),
1609 			   1);
1610 	  return 1;
1611 	}
1612 
1613       tem = XEXP (x, 1);
1614       validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1615       validate_change (insn, &XEXP (x, 2), tem, 1);
1616       return 1;
1617     }
1618   else
1619     return 0;
1620 }
1621 
1622 /* Invert the condition of the jump JUMP, and make it jump to label
1623    NLABEL instead of where it jumps now.  Accrue changes into the
1624    change group.  Return false if we didn't see how to perform the
1625    inversion and redirection.  */
1626 
1627 int
1628 invert_jump_1 (rtx jump, rtx nlabel)
1629 {
1630   rtx x = pc_set (jump);
1631   int ochanges;
1632   int ok;
1633 
1634   ochanges = num_validated_changes ();
1635   if (x == NULL)
1636     return 0;
1637   ok = invert_exp_1 (SET_SRC (x), jump);
1638   gcc_assert (ok);
1639 
1640   if (num_validated_changes () == ochanges)
1641     return 0;
1642 
1643   /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1644      in Pmode, so checking this is not merely an optimization.  */
1645   return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1646 }
1647 
1648 /* Invert the condition of the jump JUMP, and make it jump to label
1649    NLABEL instead of where it jumps now.  Return true if successful.  */
1650 
1651 int
1652 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1653 {
1654   rtx olabel = JUMP_LABEL (jump);
1655 
1656   if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1657     {
1658       redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1659       return 1;
1660     }
1661   cancel_changes (0);
1662   return 0;
1663 }
1664 
1665 
1666 /* Like rtx_equal_p except that it considers two REGs as equal
1667    if they renumber to the same value and considers two commutative
1668    operations to be the same if the order of the operands has been
1669    reversed.  */
1670 
1671 int
1672 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1673 {
1674   int i;
1675   const enum rtx_code code = GET_CODE (x);
1676   const char *fmt;
1677 
1678   if (x == y)
1679     return 1;
1680 
1681   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1682       && (REG_P (y) || (GET_CODE (y) == SUBREG
1683 				  && REG_P (SUBREG_REG (y)))))
1684     {
1685       int reg_x = -1, reg_y = -1;
1686       int byte_x = 0, byte_y = 0;
1687       struct subreg_info info;
1688 
1689       if (GET_MODE (x) != GET_MODE (y))
1690 	return 0;
1691 
1692       /* If we haven't done any renumbering, don't
1693 	 make any assumptions.  */
1694       if (reg_renumber == 0)
1695 	return rtx_equal_p (x, y);
1696 
1697       if (code == SUBREG)
1698 	{
1699 	  reg_x = REGNO (SUBREG_REG (x));
1700 	  byte_x = SUBREG_BYTE (x);
1701 
1702 	  if (reg_renumber[reg_x] >= 0)
1703 	    {
1704 	      subreg_get_info (reg_renumber[reg_x],
1705 			       GET_MODE (SUBREG_REG (x)), byte_x,
1706 			       GET_MODE (x), &info);
1707 	      if (!info.representable_p)
1708 		return 0;
1709 	      reg_x = info.offset;
1710 	      byte_x = 0;
1711 	    }
1712 	}
1713       else
1714 	{
1715 	  reg_x = REGNO (x);
1716 	  if (reg_renumber[reg_x] >= 0)
1717 	    reg_x = reg_renumber[reg_x];
1718 	}
1719 
1720       if (GET_CODE (y) == SUBREG)
1721 	{
1722 	  reg_y = REGNO (SUBREG_REG (y));
1723 	  byte_y = SUBREG_BYTE (y);
1724 
1725 	  if (reg_renumber[reg_y] >= 0)
1726 	    {
1727 	      subreg_get_info (reg_renumber[reg_y],
1728 			       GET_MODE (SUBREG_REG (y)), byte_y,
1729 			       GET_MODE (y), &info);
1730 	      if (!info.representable_p)
1731 		return 0;
1732 	      reg_y = info.offset;
1733 	      byte_y = 0;
1734 	    }
1735 	}
1736       else
1737 	{
1738 	  reg_y = REGNO (y);
1739 	  if (reg_renumber[reg_y] >= 0)
1740 	    reg_y = reg_renumber[reg_y];
1741 	}
1742 
1743       return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1744     }
1745 
1746   /* Now we have disposed of all the cases
1747      in which different rtx codes can match.  */
1748   if (code != GET_CODE (y))
1749     return 0;
1750 
1751   switch (code)
1752     {
1753     case PC:
1754     case CC0:
1755     case ADDR_VEC:
1756     case ADDR_DIFF_VEC:
1757     case CONST_INT:
1758     case CONST_DOUBLE:
1759       return 0;
1760 
1761     case LABEL_REF:
1762       /* We can't assume nonlocal labels have their following insns yet.  */
1763       if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1764 	return XEXP (x, 0) == XEXP (y, 0);
1765 
1766       /* Two label-refs are equivalent if they point at labels
1767 	 in the same position in the instruction stream.  */
1768       return (next_real_insn (XEXP (x, 0))
1769 	      == next_real_insn (XEXP (y, 0)));
1770 
1771     case SYMBOL_REF:
1772       return XSTR (x, 0) == XSTR (y, 0);
1773 
1774     case CODE_LABEL:
1775       /* If we didn't match EQ equality above, they aren't the same.  */
1776       return 0;
1777 
1778     default:
1779       break;
1780     }
1781 
1782   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
1783 
1784   if (GET_MODE (x) != GET_MODE (y))
1785     return 0;
1786 
1787   /* MEMs refering to different address space are not equivalent.  */
1788   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1789     return 0;
1790 
1791   /* For commutative operations, the RTX match if the operand match in any
1792      order.  Also handle the simple binary and unary cases without a loop.  */
1793   if (targetm.commutative_p (x, UNKNOWN))
1794     return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1795 	     && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1796 	    || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1797 		&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1798   else if (NON_COMMUTATIVE_P (x))
1799     return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1800 	    && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1801   else if (UNARY_P (x))
1802     return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1803 
1804   /* Compare the elements.  If any pair of corresponding elements
1805      fail to match, return 0 for the whole things.  */
1806 
1807   fmt = GET_RTX_FORMAT (code);
1808   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1809     {
1810       int j;
1811       switch (fmt[i])
1812 	{
1813 	case 'w':
1814 	  if (XWINT (x, i) != XWINT (y, i))
1815 	    return 0;
1816 	  break;
1817 
1818 	case 'i':
1819 	  if (XINT (x, i) != XINT (y, i))
1820 	    {
1821 	      if (((code == ASM_OPERANDS && i == 6)
1822 		   || (code == ASM_INPUT && i == 1))
1823 		  && locator_eq (XINT (x, i), XINT (y, i)))
1824 		break;
1825 	      return 0;
1826 	    }
1827 	  break;
1828 
1829 	case 't':
1830 	  if (XTREE (x, i) != XTREE (y, i))
1831 	    return 0;
1832 	  break;
1833 
1834 	case 's':
1835 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1836 	    return 0;
1837 	  break;
1838 
1839 	case 'e':
1840 	  if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1841 	    return 0;
1842 	  break;
1843 
1844 	case 'u':
1845 	  if (XEXP (x, i) != XEXP (y, i))
1846 	    return 0;
1847 	  /* Fall through.  */
1848 	case '0':
1849 	  break;
1850 
1851 	case 'E':
1852 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1853 	    return 0;
1854 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1855 	    if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1856 	      return 0;
1857 	  break;
1858 
1859 	default:
1860 	  gcc_unreachable ();
1861 	}
1862     }
1863   return 1;
1864 }
1865 
1866 /* If X is a hard register or equivalent to one or a subregister of one,
1867    return the hard register number.  If X is a pseudo register that was not
1868    assigned a hard register, return the pseudo register number.  Otherwise,
1869    return -1.  Any rtx is valid for X.  */
1870 
1871 int
1872 true_regnum (const_rtx x)
1873 {
1874   if (REG_P (x))
1875     {
1876       if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1877 	return reg_renumber[REGNO (x)];
1878       return REGNO (x);
1879     }
1880   if (GET_CODE (x) == SUBREG)
1881     {
1882       int base = true_regnum (SUBREG_REG (x));
1883       if (base >= 0
1884 	  && base < FIRST_PSEUDO_REGISTER)
1885 	{
1886 	  struct subreg_info info;
1887 
1888 	  subreg_get_info (REGNO (SUBREG_REG (x)),
1889 			   GET_MODE (SUBREG_REG (x)),
1890 			   SUBREG_BYTE (x), GET_MODE (x), &info);
1891 
1892 	  if (info.representable_p)
1893 	    return base + info.offset;
1894 	}
1895     }
1896   return -1;
1897 }
1898 
1899 /* Return regno of the register REG and handle subregs too.  */
1900 unsigned int
1901 reg_or_subregno (const_rtx reg)
1902 {
1903   if (GET_CODE (reg) == SUBREG)
1904     reg = SUBREG_REG (reg);
1905   gcc_assert (REG_P (reg));
1906   return REGNO (reg);
1907 }
1908