xref: /dragonfly/contrib/gcc-4.7/gcc/predict.c (revision 0dace59e)
1 /* Branch prediction routines for the GNU compiler.
2    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* References:
22 
23    [1] "Branch Prediction for Free"
24        Ball and Larus; PLDI '93.
25    [2] "Static Branch Frequency and Program Profile Analysis"
26        Wu and Larus; MICRO-27.
27    [3] "Corpus-based Static Branch Prediction"
28        Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95.  */
29 
30 
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "diagnostic-core.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63 
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 		   1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX.  */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 	     real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68 
69 /* Random guesstimation given names.
70    PROV_VERY_UNLIKELY should be small enough so basic block predicted
71    by it gets bellow HOT_BB_FREQUENCY_FRANCTION.  */
72 #define PROB_VERY_UNLIKELY	(REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN		(REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY	(REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS		(REG_BR_PROB_BASE)
76 
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const_rtx);
82 
83 /* Information we hold about each branch predictor.
84    Filled using information from predict.def.  */
85 
86 struct predictor_info
87 {
88   const char *const name;	/* Name used in the debugging dumps.  */
89   const int hitrate;		/* Expected hitrate used by
90 				   predict_insn_def call.  */
91   const int flags;
92 };
93 
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95    using first_match heuristics.  */
96 #define PRED_FLAG_FIRST_MATCH 1
97 
98 /* Recompute hitrate in percent to our representation.  */
99 
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
101 
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
105 
106   /* Upper bound on predictors.  */
107   {NULL, 0, 0}
108 };
109 #undef DEF_PREDICTOR
110 
111 /* Return TRUE if frequency FREQ is considered to be hot.  */
112 
113 static inline bool
114 maybe_hot_frequency_p (int freq)
115 {
116   struct cgraph_node *node = cgraph_get_node (current_function_decl);
117   if (!profile_info || !flag_branch_probabilities)
118     {
119       if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120         return false;
121       if (node->frequency == NODE_FREQUENCY_HOT)
122         return true;
123     }
124   if (profile_status == PROFILE_ABSENT)
125     return true;
126   if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127       && freq < (ENTRY_BLOCK_PTR->frequency * 2 / 3))
128     return false;
129   if (freq < ENTRY_BLOCK_PTR->frequency / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
130     return false;
131   return true;
132 }
133 
134 /* Return TRUE if frequency FREQ is considered to be hot.  */
135 
136 static inline bool
137 maybe_hot_count_p (gcov_type count)
138 {
139   if (profile_status != PROFILE_READ)
140     return true;
141   /* Code executed at most once is not hot.  */
142   if (profile_info->runs >= count)
143     return false;
144   return (count
145 	  > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
146 }
147 
148 /* Return true in case BB can be CPU intensive and should be optimized
149    for maximal performance.  */
150 
151 bool
152 maybe_hot_bb_p (const_basic_block bb)
153 {
154   if (profile_status == PROFILE_READ)
155     return maybe_hot_count_p (bb->count);
156   return maybe_hot_frequency_p (bb->frequency);
157 }
158 
159 /* Return true if the call can be hot.  */
160 
161 bool
162 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
163 {
164   if (profile_info && flag_branch_probabilities
165       && (edge->count
166 	  <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
167     return false;
168   if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
169       || edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
170     return false;
171   if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
172       && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE)
173     return false;
174   if (optimize_size)
175     return false;
176   if (edge->caller->frequency == NODE_FREQUENCY_HOT)
177     return true;
178   if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
179       && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
180     return false;
181   if (flag_guess_branch_prob
182       && edge->frequency <= (CGRAPH_FREQ_BASE
183       			     / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
184     return false;
185   return true;
186 }
187 
188 /* Return true in case BB can be CPU intensive and should be optimized
189    for maximal performance.  */
190 
191 bool
192 maybe_hot_edge_p (edge e)
193 {
194   if (profile_status == PROFILE_READ)
195     return maybe_hot_count_p (e->count);
196   return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
197 }
198 
199 
200 /* Return true in case BB is probably never executed.  */
201 
202 bool
203 probably_never_executed_bb_p (const_basic_block bb)
204 {
205   if (profile_info && flag_branch_probabilities)
206     return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
207   if ((!profile_info || !flag_branch_probabilities)
208       && (cgraph_get_node (current_function_decl)->frequency
209 	  == NODE_FREQUENCY_UNLIKELY_EXECUTED))
210     return true;
211   return false;
212 }
213 
214 /* Return true if NODE should be optimized for size.  */
215 
216 bool
217 cgraph_optimize_for_size_p (struct cgraph_node *node)
218 {
219   if (optimize_size)
220     return true;
221   if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
222     return true;
223   else
224     return false;
225 }
226 
227 /* Return true when current function should always be optimized for size.  */
228 
229 bool
230 optimize_function_for_size_p (struct function *fun)
231 {
232   if (optimize_size)
233     return true;
234   if (!fun || !fun->decl)
235     return false;
236   return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
237 }
238 
239 /* Return true when current function should always be optimized for speed.  */
240 
241 bool
242 optimize_function_for_speed_p (struct function *fun)
243 {
244   return !optimize_function_for_size_p (fun);
245 }
246 
247 /* Return TRUE when BB should be optimized for size.  */
248 
249 bool
250 optimize_bb_for_size_p (const_basic_block bb)
251 {
252   return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
253 }
254 
255 /* Return TRUE when BB should be optimized for speed.  */
256 
257 bool
258 optimize_bb_for_speed_p (const_basic_block bb)
259 {
260   return !optimize_bb_for_size_p (bb);
261 }
262 
263 /* Return TRUE when BB should be optimized for size.  */
264 
265 bool
266 optimize_edge_for_size_p (edge e)
267 {
268   return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
269 }
270 
271 /* Return TRUE when BB should be optimized for speed.  */
272 
273 bool
274 optimize_edge_for_speed_p (edge e)
275 {
276   return !optimize_edge_for_size_p (e);
277 }
278 
279 /* Return TRUE when BB should be optimized for size.  */
280 
281 bool
282 optimize_insn_for_size_p (void)
283 {
284   return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
285 }
286 
287 /* Return TRUE when BB should be optimized for speed.  */
288 
289 bool
290 optimize_insn_for_speed_p (void)
291 {
292   return !optimize_insn_for_size_p ();
293 }
294 
295 /* Return TRUE when LOOP should be optimized for size.  */
296 
297 bool
298 optimize_loop_for_size_p (struct loop *loop)
299 {
300   return optimize_bb_for_size_p (loop->header);
301 }
302 
303 /* Return TRUE when LOOP should be optimized for speed.  */
304 
305 bool
306 optimize_loop_for_speed_p (struct loop *loop)
307 {
308   return optimize_bb_for_speed_p (loop->header);
309 }
310 
311 /* Return TRUE when LOOP nest should be optimized for speed.  */
312 
313 bool
314 optimize_loop_nest_for_speed_p (struct loop *loop)
315 {
316   struct loop *l = loop;
317   if (optimize_loop_for_speed_p (loop))
318     return true;
319   l = loop->inner;
320   while (l && l != loop)
321     {
322       if (optimize_loop_for_speed_p (l))
323         return true;
324       if (l->inner)
325         l = l->inner;
326       else if (l->next)
327         l = l->next;
328       else
329         {
330 	  while (l != loop && !l->next)
331 	    l = loop_outer (l);
332 	  if (l != loop)
333 	    l = l->next;
334 	}
335     }
336   return false;
337 }
338 
339 /* Return TRUE when LOOP nest should be optimized for size.  */
340 
341 bool
342 optimize_loop_nest_for_size_p (struct loop *loop)
343 {
344   return !optimize_loop_nest_for_speed_p (loop);
345 }
346 
347 /* Return true when edge E is likely to be well predictable by branch
348    predictor.  */
349 
350 bool
351 predictable_edge_p (edge e)
352 {
353   if (profile_status == PROFILE_ABSENT)
354     return false;
355   if ((e->probability
356        <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
357       || (REG_BR_PROB_BASE - e->probability
358           <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
359     return true;
360   return false;
361 }
362 
363 
364 /* Set RTL expansion for BB profile.  */
365 
366 void
367 rtl_profile_for_bb (basic_block bb)
368 {
369   crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
370 }
371 
372 /* Set RTL expansion for edge profile.  */
373 
374 void
375 rtl_profile_for_edge (edge e)
376 {
377   crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
378 }
379 
380 /* Set RTL expansion to default mode (i.e. when profile info is not known).  */
381 void
382 default_rtl_profile (void)
383 {
384   crtl->maybe_hot_insn_p = true;
385 }
386 
387 /* Return true if the one of outgoing edges is already predicted by
388    PREDICTOR.  */
389 
390 bool
391 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
392 {
393   rtx note;
394   if (!INSN_P (BB_END (bb)))
395     return false;
396   for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
397     if (REG_NOTE_KIND (note) == REG_BR_PRED
398 	&& INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
399       return true;
400   return false;
401 }
402 
403 /* This map contains for a basic block the list of predictions for the
404    outgoing edges.  */
405 
406 static struct pointer_map_t *bb_predictions;
407 
408 /*  Structure representing predictions in tree level. */
409 
410 struct edge_prediction {
411     struct edge_prediction *ep_next;
412     edge ep_edge;
413     enum br_predictor ep_predictor;
414     int ep_probability;
415 };
416 
417 /* Return true if the one of outgoing edges is already predicted by
418    PREDICTOR.  */
419 
420 bool
421 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
422 {
423   struct edge_prediction *i;
424   void **preds = pointer_map_contains (bb_predictions, bb);
425 
426   if (!preds)
427     return false;
428 
429   for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
430     if (i->ep_predictor == predictor)
431       return true;
432   return false;
433 }
434 
435 /* Return true when the probability of edge is reliable.
436 
437    The profile guessing code is good at predicting branch outcome (ie.
438    taken/not taken), that is predicted right slightly over 75% of time.
439    It is however notoriously poor on predicting the probability itself.
440    In general the profile appear a lot flatter (with probabilities closer
441    to 50%) than the reality so it is bad idea to use it to drive optimization
442    such as those disabling dynamic branch prediction for well predictable
443    branches.
444 
445    There are two exceptions - edges leading to noreturn edges and edges
446    predicted by number of iterations heuristics are predicted well.  This macro
447    should be able to distinguish those, but at the moment it simply check for
448    noreturn heuristic that is only one giving probability over 99% or bellow
449    1%.  In future we might want to propagate reliability information across the
450    CFG if we find this information useful on multiple places.   */
451 static bool
452 probability_reliable_p (int prob)
453 {
454   return (profile_status == PROFILE_READ
455 	  || (profile_status == PROFILE_GUESSED
456 	      && (prob <= HITRATE (1) || prob >= HITRATE (99))));
457 }
458 
459 /* Same predicate as above, working on edges.  */
460 bool
461 edge_probability_reliable_p (const_edge e)
462 {
463   return probability_reliable_p (e->probability);
464 }
465 
466 /* Same predicate as edge_probability_reliable_p, working on notes.  */
467 bool
468 br_prob_note_reliable_p (const_rtx note)
469 {
470   gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
471   return probability_reliable_p (INTVAL (XEXP (note, 0)));
472 }
473 
474 static void
475 predict_insn (rtx insn, enum br_predictor predictor, int probability)
476 {
477   gcc_assert (any_condjump_p (insn));
478   if (!flag_guess_branch_prob)
479     return;
480 
481   add_reg_note (insn, REG_BR_PRED,
482 		gen_rtx_CONCAT (VOIDmode,
483 				GEN_INT ((int) predictor),
484 				GEN_INT ((int) probability)));
485 }
486 
487 /* Predict insn by given predictor.  */
488 
489 void
490 predict_insn_def (rtx insn, enum br_predictor predictor,
491 		  enum prediction taken)
492 {
493    int probability = predictor_info[(int) predictor].hitrate;
494 
495    if (taken != TAKEN)
496      probability = REG_BR_PROB_BASE - probability;
497 
498    predict_insn (insn, predictor, probability);
499 }
500 
501 /* Predict edge E with given probability if possible.  */
502 
503 void
504 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
505 {
506   rtx last_insn;
507   last_insn = BB_END (e->src);
508 
509   /* We can store the branch prediction information only about
510      conditional jumps.  */
511   if (!any_condjump_p (last_insn))
512     return;
513 
514   /* We always store probability of branching.  */
515   if (e->flags & EDGE_FALLTHRU)
516     probability = REG_BR_PROB_BASE - probability;
517 
518   predict_insn (last_insn, predictor, probability);
519 }
520 
521 /* Predict edge E with the given PROBABILITY.  */
522 void
523 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
524 {
525   gcc_assert (profile_status != PROFILE_GUESSED);
526   if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
527       && flag_guess_branch_prob && optimize)
528     {
529       struct edge_prediction *i = XNEW (struct edge_prediction);
530       void **preds = pointer_map_insert (bb_predictions, e->src);
531 
532       i->ep_next = (struct edge_prediction *) *preds;
533       *preds = i;
534       i->ep_probability = probability;
535       i->ep_predictor = predictor;
536       i->ep_edge = e;
537     }
538 }
539 
540 /* Remove all predictions on given basic block that are attached
541    to edge E.  */
542 void
543 remove_predictions_associated_with_edge (edge e)
544 {
545   void **preds;
546 
547   if (!bb_predictions)
548     return;
549 
550   preds = pointer_map_contains (bb_predictions, e->src);
551 
552   if (preds)
553     {
554       struct edge_prediction **prediction = (struct edge_prediction **) preds;
555       struct edge_prediction *next;
556 
557       while (*prediction)
558 	{
559 	  if ((*prediction)->ep_edge == e)
560 	    {
561 	      next = (*prediction)->ep_next;
562 	      free (*prediction);
563 	      *prediction = next;
564 	    }
565 	  else
566 	    prediction = &((*prediction)->ep_next);
567 	}
568     }
569 }
570 
571 /* Clears the list of predictions stored for BB.  */
572 
573 static void
574 clear_bb_predictions (basic_block bb)
575 {
576   void **preds = pointer_map_contains (bb_predictions, bb);
577   struct edge_prediction *pred, *next;
578 
579   if (!preds)
580     return;
581 
582   for (pred = (struct edge_prediction *) *preds; pred; pred = next)
583     {
584       next = pred->ep_next;
585       free (pred);
586     }
587   *preds = NULL;
588 }
589 
590 /* Return true when we can store prediction on insn INSN.
591    At the moment we represent predictions only on conditional
592    jumps, not at computed jump or other complicated cases.  */
593 static bool
594 can_predict_insn_p (const_rtx insn)
595 {
596   return (JUMP_P (insn)
597 	  && any_condjump_p (insn)
598 	  && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
599 }
600 
601 /* Predict edge E by given predictor if possible.  */
602 
603 void
604 predict_edge_def (edge e, enum br_predictor predictor,
605 		  enum prediction taken)
606 {
607    int probability = predictor_info[(int) predictor].hitrate;
608 
609    if (taken != TAKEN)
610      probability = REG_BR_PROB_BASE - probability;
611 
612    predict_edge (e, predictor, probability);
613 }
614 
615 /* Invert all branch predictions or probability notes in the INSN.  This needs
616    to be done each time we invert the condition used by the jump.  */
617 
618 void
619 invert_br_probabilities (rtx insn)
620 {
621   rtx note;
622 
623   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
624     if (REG_NOTE_KIND (note) == REG_BR_PROB)
625       XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
626     else if (REG_NOTE_KIND (note) == REG_BR_PRED)
627       XEXP (XEXP (note, 0), 1)
628 	= GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
629 }
630 
631 /* Dump information about the branch prediction to the output file.  */
632 
633 static void
634 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
635 		 basic_block bb, int used)
636 {
637   edge e;
638   edge_iterator ei;
639 
640   if (!file)
641     return;
642 
643   FOR_EACH_EDGE (e, ei, bb->succs)
644     if (! (e->flags & EDGE_FALLTHRU))
645       break;
646 
647   fprintf (file, "  %s heuristics%s: %.1f%%",
648 	   predictor_info[predictor].name,
649 	   used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
650 
651   if (bb->count)
652     {
653       fprintf (file, "  exec ");
654       fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
655       if (e)
656 	{
657 	  fprintf (file, " hit ");
658 	  fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
659 	  fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
660 	}
661     }
662 
663   fprintf (file, "\n");
664 }
665 
666 /* We can not predict the probabilities of outgoing edges of bb.  Set them
667    evenly and hope for the best.  */
668 static void
669 set_even_probabilities (basic_block bb)
670 {
671   int nedges = 0;
672   edge e;
673   edge_iterator ei;
674 
675   FOR_EACH_EDGE (e, ei, bb->succs)
676     if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
677       nedges ++;
678   FOR_EACH_EDGE (e, ei, bb->succs)
679     if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
680       e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
681     else
682       e->probability = 0;
683 }
684 
685 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
686    note if not already present.  Remove now useless REG_BR_PRED notes.  */
687 
688 static void
689 combine_predictions_for_insn (rtx insn, basic_block bb)
690 {
691   rtx prob_note;
692   rtx *pnote;
693   rtx note;
694   int best_probability = PROB_EVEN;
695   enum br_predictor best_predictor = END_PREDICTORS;
696   int combined_probability = REG_BR_PROB_BASE / 2;
697   int d;
698   bool first_match = false;
699   bool found = false;
700 
701   if (!can_predict_insn_p (insn))
702     {
703       set_even_probabilities (bb);
704       return;
705     }
706 
707   prob_note = find_reg_note (insn, REG_BR_PROB, 0);
708   pnote = &REG_NOTES (insn);
709   if (dump_file)
710     fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
711 	     bb->index);
712 
713   /* We implement "first match" heuristics and use probability guessed
714      by predictor with smallest index.  */
715   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
716     if (REG_NOTE_KIND (note) == REG_BR_PRED)
717       {
718 	enum br_predictor predictor = ((enum br_predictor)
719 				       INTVAL (XEXP (XEXP (note, 0), 0)));
720 	int probability = INTVAL (XEXP (XEXP (note, 0), 1));
721 
722 	found = true;
723 	if (best_predictor > predictor)
724 	  best_probability = probability, best_predictor = predictor;
725 
726 	d = (combined_probability * probability
727 	     + (REG_BR_PROB_BASE - combined_probability)
728 	     * (REG_BR_PROB_BASE - probability));
729 
730 	/* Use FP math to avoid overflows of 32bit integers.  */
731 	if (d == 0)
732 	  /* If one probability is 0% and one 100%, avoid division by zero.  */
733 	  combined_probability = REG_BR_PROB_BASE / 2;
734 	else
735 	  combined_probability = (((double) combined_probability) * probability
736 				  * REG_BR_PROB_BASE / d + 0.5);
737       }
738 
739   /* Decide which heuristic to use.  In case we didn't match anything,
740      use no_prediction heuristic, in case we did match, use either
741      first match or Dempster-Shaffer theory depending on the flags.  */
742 
743   if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
744     first_match = true;
745 
746   if (!found)
747     dump_prediction (dump_file, PRED_NO_PREDICTION,
748 		     combined_probability, bb, true);
749   else
750     {
751       dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
752 		       bb, !first_match);
753       dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
754 		       bb, first_match);
755     }
756 
757   if (first_match)
758     combined_probability = best_probability;
759   dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
760 
761   while (*pnote)
762     {
763       if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
764 	{
765 	  enum br_predictor predictor = ((enum br_predictor)
766 					 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
767 	  int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
768 
769 	  dump_prediction (dump_file, predictor, probability, bb,
770 			   !first_match || best_predictor == predictor);
771 	  *pnote = XEXP (*pnote, 1);
772 	}
773       else
774 	pnote = &XEXP (*pnote, 1);
775     }
776 
777   if (!prob_note)
778     {
779       add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
780 
781       /* Save the prediction into CFG in case we are seeing non-degenerated
782 	 conditional jump.  */
783       if (!single_succ_p (bb))
784 	{
785 	  BRANCH_EDGE (bb)->probability = combined_probability;
786 	  FALLTHRU_EDGE (bb)->probability
787 	    = REG_BR_PROB_BASE - combined_probability;
788 	}
789     }
790   else if (!single_succ_p (bb))
791     {
792       int prob = INTVAL (XEXP (prob_note, 0));
793 
794       BRANCH_EDGE (bb)->probability = prob;
795       FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
796     }
797   else
798     single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
799 }
800 
801 /* Combine predictions into single probability and store them into CFG.
802    Remove now useless prediction entries.  */
803 
804 static void
805 combine_predictions_for_bb (basic_block bb)
806 {
807   int best_probability = PROB_EVEN;
808   enum br_predictor best_predictor = END_PREDICTORS;
809   int combined_probability = REG_BR_PROB_BASE / 2;
810   int d;
811   bool first_match = false;
812   bool found = false;
813   struct edge_prediction *pred;
814   int nedges = 0;
815   edge e, first = NULL, second = NULL;
816   edge_iterator ei;
817   void **preds;
818 
819   FOR_EACH_EDGE (e, ei, bb->succs)
820     if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
821       {
822 	nedges ++;
823 	if (first && !second)
824 	  second = e;
825 	if (!first)
826 	  first = e;
827       }
828 
829   /* When there is no successor or only one choice, prediction is easy.
830 
831      We are lazy for now and predict only basic blocks with two outgoing
832      edges.  It is possible to predict generic case too, but we have to
833      ignore first match heuristics and do more involved combining.  Implement
834      this later.  */
835   if (nedges != 2)
836     {
837       if (!bb->count)
838 	set_even_probabilities (bb);
839       clear_bb_predictions (bb);
840       if (dump_file)
841 	fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
842 		 nedges, bb->index);
843       return;
844     }
845 
846   if (dump_file)
847     fprintf (dump_file, "Predictions for bb %i\n", bb->index);
848 
849   preds = pointer_map_contains (bb_predictions, bb);
850   if (preds)
851     {
852       /* We implement "first match" heuristics and use probability guessed
853 	 by predictor with smallest index.  */
854       for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
855 	{
856 	  enum br_predictor predictor = pred->ep_predictor;
857 	  int probability = pred->ep_probability;
858 
859 	  if (pred->ep_edge != first)
860 	    probability = REG_BR_PROB_BASE - probability;
861 
862 	  found = true;
863 	  /* First match heuristics would be widly confused if we predicted
864 	     both directions.  */
865 	  if (best_predictor > predictor)
866 	    {
867               struct edge_prediction *pred2;
868 	      int prob = probability;
869 
870               for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
871 	       if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
872 	         {
873 	           int probability2 = pred->ep_probability;
874 
875 		   if (pred2->ep_edge != first)
876 		     probability2 = REG_BR_PROB_BASE - probability2;
877 
878 		   if ((probability < REG_BR_PROB_BASE / 2) !=
879 		       (probability2 < REG_BR_PROB_BASE / 2))
880 		     break;
881 
882 		   /* If the same predictor later gave better result, go for it! */
883 		   if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
884 		       || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
885 		     prob = probability2;
886 		 }
887 	      if (!pred2)
888 	        best_probability = prob, best_predictor = predictor;
889 	    }
890 
891 	  d = (combined_probability * probability
892 	       + (REG_BR_PROB_BASE - combined_probability)
893 	       * (REG_BR_PROB_BASE - probability));
894 
895 	  /* Use FP math to avoid overflows of 32bit integers.  */
896 	  if (d == 0)
897 	    /* If one probability is 0% and one 100%, avoid division by zero.  */
898 	    combined_probability = REG_BR_PROB_BASE / 2;
899 	  else
900 	    combined_probability = (((double) combined_probability)
901 				    * probability
902 		    		    * REG_BR_PROB_BASE / d + 0.5);
903 	}
904     }
905 
906   /* Decide which heuristic to use.  In case we didn't match anything,
907      use no_prediction heuristic, in case we did match, use either
908      first match or Dempster-Shaffer theory depending on the flags.  */
909 
910   if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
911     first_match = true;
912 
913   if (!found)
914     dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
915   else
916     {
917       dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
918 		       !first_match);
919       dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
920 		       first_match);
921     }
922 
923   if (first_match)
924     combined_probability = best_probability;
925   dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
926 
927   if (preds)
928     {
929       for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
930 	{
931 	  enum br_predictor predictor = pred->ep_predictor;
932 	  int probability = pred->ep_probability;
933 
934 	  if (pred->ep_edge != EDGE_SUCC (bb, 0))
935 	    probability = REG_BR_PROB_BASE - probability;
936 	  dump_prediction (dump_file, predictor, probability, bb,
937 			   !first_match || best_predictor == predictor);
938 	}
939     }
940   clear_bb_predictions (bb);
941 
942   if (!bb->count)
943     {
944       first->probability = combined_probability;
945       second->probability = REG_BR_PROB_BASE - combined_probability;
946     }
947 }
948 
949 /* Predict edge probabilities by exploiting loop structure.  */
950 
951 static void
952 predict_loops (void)
953 {
954   loop_iterator li;
955   struct loop *loop;
956 
957   /* Try to predict out blocks in a loop that are not part of a
958      natural loop.  */
959   FOR_EACH_LOOP (li, loop, 0)
960     {
961       basic_block bb, *bbs;
962       unsigned j, n_exits;
963       VEC (edge, heap) *exits;
964       struct tree_niter_desc niter_desc;
965       edge ex;
966 
967       exits = get_loop_exit_edges (loop);
968       n_exits = VEC_length (edge, exits);
969 
970       FOR_EACH_VEC_ELT (edge, exits, j, ex)
971 	{
972 	  tree niter = NULL;
973 	  HOST_WIDE_INT nitercst;
974 	  int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
975 	  int probability;
976 	  enum br_predictor predictor;
977 
978 	  if (number_of_iterations_exit (loop, ex, &niter_desc, false))
979 	    niter = niter_desc.niter;
980 	  if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
981 	    niter = loop_niter_by_eval (loop, ex);
982 
983 	  if (TREE_CODE (niter) == INTEGER_CST)
984 	    {
985 	      if (host_integerp (niter, 1)
986 		  && compare_tree_int (niter, max-1) == -1)
987 		nitercst = tree_low_cst (niter, 1) + 1;
988 	      else
989 		nitercst = max;
990 	      predictor = PRED_LOOP_ITERATIONS;
991 	    }
992 	  /* If we have just one exit and we can derive some information about
993 	     the number of iterations of the loop from the statements inside
994 	     the loop, use it to predict this exit.  */
995 	  else if (n_exits == 1)
996 	    {
997 	      nitercst = max_stmt_executions_int (loop, false);
998 	      if (nitercst < 0)
999 		continue;
1000 	      if (nitercst > max)
1001 		nitercst = max;
1002 
1003 	      predictor = PRED_LOOP_ITERATIONS_GUESSED;
1004 	    }
1005 	  else
1006 	    continue;
1007 
1008 	  probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1009 	  predict_edge (ex, predictor, probability);
1010 	}
1011       VEC_free (edge, heap, exits);
1012 
1013       bbs = get_loop_body (loop);
1014 
1015       for (j = 0; j < loop->num_nodes; j++)
1016 	{
1017 	  int header_found = 0;
1018 	  edge e;
1019 	  edge_iterator ei;
1020 
1021 	  bb = bbs[j];
1022 
1023 	  /* Bypass loop heuristics on continue statement.  These
1024 	     statements construct loops via "non-loop" constructs
1025 	     in the source language and are better to be handled
1026 	     separately.  */
1027 	  if (predicted_by_p (bb, PRED_CONTINUE))
1028 	    continue;
1029 
1030 	  /* Loop branch heuristics - predict an edge back to a
1031 	     loop's head as taken.  */
1032 	  if (bb == loop->latch)
1033 	    {
1034 	      e = find_edge (loop->latch, loop->header);
1035 	      if (e)
1036 		{
1037 		  header_found = 1;
1038 		  predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1039 		}
1040 	    }
1041 
1042 	  /* Loop exit heuristics - predict an edge exiting the loop if the
1043 	     conditional has no loop header successors as not taken.  */
1044 	  if (!header_found
1045 	      /* If we already used more reliable loop exit predictors, do not
1046 		 bother with PRED_LOOP_EXIT.  */
1047 	      && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1048 	      && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1049 	    {
1050 	      /* For loop with many exits we don't want to predict all exits
1051 	         with the pretty large probability, because if all exits are
1052 		 considered in row, the loop would be predicted to iterate
1053 		 almost never.  The code to divide probability by number of
1054 		 exits is very rough.  It should compute the number of exits
1055 		 taken in each patch through function (not the overall number
1056 		 of exits that might be a lot higher for loops with wide switch
1057 		 statements in them) and compute n-th square root.
1058 
1059 		 We limit the minimal probability by 2% to avoid
1060 		 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1061 		 as this was causing regression in perl benchmark containing such
1062 		 a wide loop.  */
1063 
1064 	      int probability = ((REG_BR_PROB_BASE
1065 		                  - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1066 				 / n_exits);
1067 	      if (probability < HITRATE (2))
1068 		probability = HITRATE (2);
1069 	      FOR_EACH_EDGE (e, ei, bb->succs)
1070 		if (e->dest->index < NUM_FIXED_BLOCKS
1071 		    || !flow_bb_inside_loop_p (loop, e->dest))
1072 		  predict_edge (e, PRED_LOOP_EXIT, probability);
1073 	    }
1074 	}
1075 
1076       /* Free basic blocks from get_loop_body.  */
1077       free (bbs);
1078     }
1079 }
1080 
1081 /* Attempt to predict probabilities of BB outgoing edges using local
1082    properties.  */
1083 static void
1084 bb_estimate_probability_locally (basic_block bb)
1085 {
1086   rtx last_insn = BB_END (bb);
1087   rtx cond;
1088 
1089   if (! can_predict_insn_p (last_insn))
1090     return;
1091   cond = get_condition (last_insn, NULL, false, false);
1092   if (! cond)
1093     return;
1094 
1095   /* Try "pointer heuristic."
1096      A comparison ptr == 0 is predicted as false.
1097      Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
1098   if (COMPARISON_P (cond)
1099       && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1100 	  || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1101     {
1102       if (GET_CODE (cond) == EQ)
1103 	predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1104       else if (GET_CODE (cond) == NE)
1105 	predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1106     }
1107   else
1108 
1109   /* Try "opcode heuristic."
1110      EQ tests are usually false and NE tests are usually true. Also,
1111      most quantities are positive, so we can make the appropriate guesses
1112      about signed comparisons against zero.  */
1113     switch (GET_CODE (cond))
1114       {
1115       case CONST_INT:
1116 	/* Unconditional branch.  */
1117 	predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1118 			  cond == const0_rtx ? NOT_TAKEN : TAKEN);
1119 	break;
1120 
1121       case EQ:
1122       case UNEQ:
1123 	/* Floating point comparisons appears to behave in a very
1124 	   unpredictable way because of special role of = tests in
1125 	   FP code.  */
1126 	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1127 	  ;
1128 	/* Comparisons with 0 are often used for booleans and there is
1129 	   nothing useful to predict about them.  */
1130 	else if (XEXP (cond, 1) == const0_rtx
1131 		 || XEXP (cond, 0) == const0_rtx)
1132 	  ;
1133 	else
1134 	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1135 	break;
1136 
1137       case NE:
1138       case LTGT:
1139 	/* Floating point comparisons appears to behave in a very
1140 	   unpredictable way because of special role of = tests in
1141 	   FP code.  */
1142 	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1143 	  ;
1144 	/* Comparisons with 0 are often used for booleans and there is
1145 	   nothing useful to predict about them.  */
1146 	else if (XEXP (cond, 1) == const0_rtx
1147 		 || XEXP (cond, 0) == const0_rtx)
1148 	  ;
1149 	else
1150 	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1151 	break;
1152 
1153       case ORDERED:
1154 	predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1155 	break;
1156 
1157       case UNORDERED:
1158 	predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1159 	break;
1160 
1161       case LE:
1162       case LT:
1163 	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1164 	    || XEXP (cond, 1) == constm1_rtx)
1165 	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1166 	break;
1167 
1168       case GE:
1169       case GT:
1170 	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1171 	    || XEXP (cond, 1) == constm1_rtx)
1172 	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1173 	break;
1174 
1175       default:
1176 	break;
1177       }
1178 }
1179 
1180 /* Set edge->probability for each successor edge of BB.  */
1181 void
1182 guess_outgoing_edge_probabilities (basic_block bb)
1183 {
1184   bb_estimate_probability_locally (bb);
1185   combine_predictions_for_insn (BB_END (bb), bb);
1186 }
1187 
1188 static tree expr_expected_value (tree, bitmap);
1189 
1190 /* Helper function for expr_expected_value.  */
1191 
1192 static tree
1193 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1194 		       tree op1, bitmap visited)
1195 {
1196   gimple def;
1197 
1198   if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1199     {
1200       if (TREE_CONSTANT (op0))
1201 	return op0;
1202 
1203       if (code != SSA_NAME)
1204 	return NULL_TREE;
1205 
1206       def = SSA_NAME_DEF_STMT (op0);
1207 
1208       /* If we were already here, break the infinite cycle.  */
1209       if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1210 	return NULL;
1211 
1212       if (gimple_code (def) == GIMPLE_PHI)
1213 	{
1214 	  /* All the arguments of the PHI node must have the same constant
1215 	     length.  */
1216 	  int i, n = gimple_phi_num_args (def);
1217 	  tree val = NULL, new_val;
1218 
1219 	  for (i = 0; i < n; i++)
1220 	    {
1221 	      tree arg = PHI_ARG_DEF (def, i);
1222 
1223 	      /* If this PHI has itself as an argument, we cannot
1224 		 determine the string length of this argument.  However,
1225 		 if we can find an expected constant value for the other
1226 		 PHI args then we can still be sure that this is
1227 		 likely a constant.  So be optimistic and just
1228 		 continue with the next argument.  */
1229 	      if (arg == PHI_RESULT (def))
1230 		continue;
1231 
1232 	      new_val = expr_expected_value (arg, visited);
1233 	      if (!new_val)
1234 		return NULL;
1235 	      if (!val)
1236 		val = new_val;
1237 	      else if (!operand_equal_p (val, new_val, false))
1238 		return NULL;
1239 	    }
1240 	  return val;
1241 	}
1242       if (is_gimple_assign (def))
1243 	{
1244 	  if (gimple_assign_lhs (def) != op0)
1245 	    return NULL;
1246 
1247 	  return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1248 					gimple_assign_rhs1 (def),
1249 					gimple_assign_rhs_code (def),
1250 					gimple_assign_rhs2 (def),
1251 					visited);
1252 	}
1253 
1254       if (is_gimple_call (def))
1255 	{
1256 	  tree decl = gimple_call_fndecl (def);
1257 	  if (!decl)
1258 	    return NULL;
1259 	  if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1260 	    switch (DECL_FUNCTION_CODE (decl))
1261 	      {
1262 	      case BUILT_IN_EXPECT:
1263 		{
1264 		  tree val;
1265 		  if (gimple_call_num_args (def) != 2)
1266 		    return NULL;
1267 		  val = gimple_call_arg (def, 0);
1268 		  if (TREE_CONSTANT (val))
1269 		    return val;
1270 		  return gimple_call_arg (def, 1);
1271 		}
1272 
1273 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1274 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1275 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1276 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1277 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1278 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1279 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1280 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1281 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1282 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1283 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1284 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1285 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1286 		/* Assume that any given atomic operation has low contention,
1287 		   and thus the compare-and-swap operation succeeds.  */
1288 		return boolean_true_node;
1289 	    }
1290 	}
1291 
1292       return NULL;
1293     }
1294 
1295   if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1296     {
1297       tree res;
1298       op0 = expr_expected_value (op0, visited);
1299       if (!op0)
1300 	return NULL;
1301       op1 = expr_expected_value (op1, visited);
1302       if (!op1)
1303 	return NULL;
1304       res = fold_build2 (code, type, op0, op1);
1305       if (TREE_CONSTANT (res))
1306 	return res;
1307       return NULL;
1308     }
1309   if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1310     {
1311       tree res;
1312       op0 = expr_expected_value (op0, visited);
1313       if (!op0)
1314 	return NULL;
1315       res = fold_build1 (code, type, op0);
1316       if (TREE_CONSTANT (res))
1317 	return res;
1318       return NULL;
1319     }
1320   return NULL;
1321 }
1322 
1323 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1324    The function is used by builtin_expect branch predictor so the evidence
1325    must come from this construct and additional possible constant folding.
1326 
1327    We may want to implement more involved value guess (such as value range
1328    propagation based prediction), but such tricks shall go to new
1329    implementation.  */
1330 
1331 static tree
1332 expr_expected_value (tree expr, bitmap visited)
1333 {
1334   enum tree_code code;
1335   tree op0, op1;
1336 
1337   if (TREE_CONSTANT (expr))
1338     return expr;
1339 
1340   extract_ops_from_tree (expr, &code, &op0, &op1);
1341   return expr_expected_value_1 (TREE_TYPE (expr),
1342 				op0, code, op1, visited);
1343 }
1344 
1345 
1346 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1347    we no longer need.  */
1348 static unsigned int
1349 strip_predict_hints (void)
1350 {
1351   basic_block bb;
1352   gimple ass_stmt;
1353   tree var;
1354 
1355   FOR_EACH_BB (bb)
1356     {
1357       gimple_stmt_iterator bi;
1358       for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1359 	{
1360 	  gimple stmt = gsi_stmt (bi);
1361 
1362 	  if (gimple_code (stmt) == GIMPLE_PREDICT)
1363 	    {
1364 	      gsi_remove (&bi, true);
1365 	      continue;
1366 	    }
1367 	  else if (gimple_code (stmt) == GIMPLE_CALL)
1368 	    {
1369 	      tree fndecl = gimple_call_fndecl (stmt);
1370 
1371 	      if (fndecl
1372 		  && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1373 		  && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1374 		  && gimple_call_num_args (stmt) == 2)
1375 		{
1376 		  var = gimple_call_lhs (stmt);
1377 		  if (var)
1378 		    {
1379 		      ass_stmt
1380 			= gimple_build_assign (var, gimple_call_arg (stmt, 0));
1381 		      gsi_replace (&bi, ass_stmt, true);
1382 		    }
1383 		  else
1384 		    {
1385 		      gsi_remove (&bi, true);
1386 		      continue;
1387 		    }
1388 		}
1389 	    }
1390 	  gsi_next (&bi);
1391 	}
1392     }
1393   return 0;
1394 }
1395 
1396 /* Predict using opcode of the last statement in basic block.  */
1397 static void
1398 tree_predict_by_opcode (basic_block bb)
1399 {
1400   gimple stmt = last_stmt (bb);
1401   edge then_edge;
1402   tree op0, op1;
1403   tree type;
1404   tree val;
1405   enum tree_code cmp;
1406   bitmap visited;
1407   edge_iterator ei;
1408 
1409   if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1410     return;
1411   FOR_EACH_EDGE (then_edge, ei, bb->succs)
1412     if (then_edge->flags & EDGE_TRUE_VALUE)
1413       break;
1414   op0 = gimple_cond_lhs (stmt);
1415   op1 = gimple_cond_rhs (stmt);
1416   cmp = gimple_cond_code (stmt);
1417   type = TREE_TYPE (op0);
1418   visited = BITMAP_ALLOC (NULL);
1419   val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1420   BITMAP_FREE (visited);
1421   if (val)
1422     {
1423       if (integer_zerop (val))
1424 	predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1425       else
1426 	predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1427       return;
1428     }
1429   /* Try "pointer heuristic."
1430      A comparison ptr == 0 is predicted as false.
1431      Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
1432   if (POINTER_TYPE_P (type))
1433     {
1434       if (cmp == EQ_EXPR)
1435 	predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1436       else if (cmp == NE_EXPR)
1437 	predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1438     }
1439   else
1440 
1441   /* Try "opcode heuristic."
1442      EQ tests are usually false and NE tests are usually true. Also,
1443      most quantities are positive, so we can make the appropriate guesses
1444      about signed comparisons against zero.  */
1445     switch (cmp)
1446       {
1447       case EQ_EXPR:
1448       case UNEQ_EXPR:
1449 	/* Floating point comparisons appears to behave in a very
1450 	   unpredictable way because of special role of = tests in
1451 	   FP code.  */
1452 	if (FLOAT_TYPE_P (type))
1453 	  ;
1454 	/* Comparisons with 0 are often used for booleans and there is
1455 	   nothing useful to predict about them.  */
1456 	else if (integer_zerop (op0) || integer_zerop (op1))
1457 	  ;
1458 	else
1459 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1460 	break;
1461 
1462       case NE_EXPR:
1463       case LTGT_EXPR:
1464 	/* Floating point comparisons appears to behave in a very
1465 	   unpredictable way because of special role of = tests in
1466 	   FP code.  */
1467 	if (FLOAT_TYPE_P (type))
1468 	  ;
1469 	/* Comparisons with 0 are often used for booleans and there is
1470 	   nothing useful to predict about them.  */
1471 	else if (integer_zerop (op0)
1472 		 || integer_zerop (op1))
1473 	  ;
1474 	else
1475 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1476 	break;
1477 
1478       case ORDERED_EXPR:
1479 	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1480 	break;
1481 
1482       case UNORDERED_EXPR:
1483 	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1484 	break;
1485 
1486       case LE_EXPR:
1487       case LT_EXPR:
1488 	if (integer_zerop (op1)
1489 	    || integer_onep (op1)
1490 	    || integer_all_onesp (op1)
1491 	    || real_zerop (op1)
1492 	    || real_onep (op1)
1493 	    || real_minus_onep (op1))
1494 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1495 	break;
1496 
1497       case GE_EXPR:
1498       case GT_EXPR:
1499 	if (integer_zerop (op1)
1500 	    || integer_onep (op1)
1501 	    || integer_all_onesp (op1)
1502 	    || real_zerop (op1)
1503 	    || real_onep (op1)
1504 	    || real_minus_onep (op1))
1505 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1506 	break;
1507 
1508       default:
1509 	break;
1510       }
1511 }
1512 
1513 /* Try to guess whether the value of return means error code.  */
1514 
1515 static enum br_predictor
1516 return_prediction (tree val, enum prediction *prediction)
1517 {
1518   /* VOID.  */
1519   if (!val)
1520     return PRED_NO_PREDICTION;
1521   /* Different heuristics for pointers and scalars.  */
1522   if (POINTER_TYPE_P (TREE_TYPE (val)))
1523     {
1524       /* NULL is usually not returned.  */
1525       if (integer_zerop (val))
1526 	{
1527 	  *prediction = NOT_TAKEN;
1528 	  return PRED_NULL_RETURN;
1529 	}
1530     }
1531   else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1532     {
1533       /* Negative return values are often used to indicate
1534          errors.  */
1535       if (TREE_CODE (val) == INTEGER_CST
1536 	  && tree_int_cst_sgn (val) < 0)
1537 	{
1538 	  *prediction = NOT_TAKEN;
1539 	  return PRED_NEGATIVE_RETURN;
1540 	}
1541       /* Constant return values seems to be commonly taken.
1542          Zero/one often represent booleans so exclude them from the
1543 	 heuristics.  */
1544       if (TREE_CONSTANT (val)
1545 	  && (!integer_zerop (val) && !integer_onep (val)))
1546 	{
1547 	  *prediction = TAKEN;
1548 	  return PRED_CONST_RETURN;
1549 	}
1550     }
1551   return PRED_NO_PREDICTION;
1552 }
1553 
1554 /* Find the basic block with return expression and look up for possible
1555    return value trying to apply RETURN_PREDICTION heuristics.  */
1556 static void
1557 apply_return_prediction (void)
1558 {
1559   gimple return_stmt = NULL;
1560   tree return_val;
1561   edge e;
1562   gimple phi;
1563   int phi_num_args, i;
1564   enum br_predictor pred;
1565   enum prediction direction;
1566   edge_iterator ei;
1567 
1568   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1569     {
1570       return_stmt = last_stmt (e->src);
1571       if (return_stmt
1572 	  && gimple_code (return_stmt) == GIMPLE_RETURN)
1573 	break;
1574     }
1575   if (!e)
1576     return;
1577   return_val = gimple_return_retval (return_stmt);
1578   if (!return_val)
1579     return;
1580   if (TREE_CODE (return_val) != SSA_NAME
1581       || !SSA_NAME_DEF_STMT (return_val)
1582       || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1583     return;
1584   phi = SSA_NAME_DEF_STMT (return_val);
1585   phi_num_args = gimple_phi_num_args (phi);
1586   pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1587 
1588   /* Avoid the degenerate case where all return values form the function
1589      belongs to same category (ie they are all positive constants)
1590      so we can hardly say something about them.  */
1591   for (i = 1; i < phi_num_args; i++)
1592     if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1593       break;
1594   if (i != phi_num_args)
1595     for (i = 0; i < phi_num_args; i++)
1596       {
1597 	pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1598 	if (pred != PRED_NO_PREDICTION)
1599 	  predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
1600 				         direction);
1601       }
1602 }
1603 
1604 /* Look for basic block that contains unlikely to happen events
1605    (such as noreturn calls) and mark all paths leading to execution
1606    of this basic blocks as unlikely.  */
1607 
1608 static void
1609 tree_bb_level_predictions (void)
1610 {
1611   basic_block bb;
1612   bool has_return_edges = false;
1613   edge e;
1614   edge_iterator ei;
1615 
1616   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1617     if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1618       {
1619         has_return_edges = true;
1620 	break;
1621       }
1622 
1623   apply_return_prediction ();
1624 
1625   FOR_EACH_BB (bb)
1626     {
1627       gimple_stmt_iterator gsi;
1628 
1629       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1630 	{
1631 	  gimple stmt = gsi_stmt (gsi);
1632 	  tree decl;
1633 
1634 	  if (is_gimple_call (stmt))
1635 	    {
1636 	      if ((gimple_call_flags (stmt) & ECF_NORETURN)
1637 	          && has_return_edges)
1638 		predict_paths_leading_to (bb, PRED_NORETURN,
1639 					  NOT_TAKEN);
1640 	      decl = gimple_call_fndecl (stmt);
1641 	      if (decl
1642 		  && lookup_attribute ("cold",
1643 				       DECL_ATTRIBUTES (decl)))
1644 		predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1645 					  NOT_TAKEN);
1646 	    }
1647 	  else if (gimple_code (stmt) == GIMPLE_PREDICT)
1648 	    {
1649 	      predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1650 					gimple_predict_outcome (stmt));
1651 	      /* Keep GIMPLE_PREDICT around so early inlining will propagate
1652 	         hints to callers.  */
1653 	    }
1654 	}
1655     }
1656 }
1657 
1658 #ifdef ENABLE_CHECKING
1659 
1660 /* Callback for pointer_map_traverse, asserts that the pointer map is
1661    empty.  */
1662 
1663 static bool
1664 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1665 		 void *data ATTRIBUTE_UNUSED)
1666 {
1667   gcc_assert (!*value);
1668   return false;
1669 }
1670 #endif
1671 
1672 /* Predict branch probabilities and estimate profile for basic block BB.  */
1673 
1674 static void
1675 tree_estimate_probability_bb (basic_block bb)
1676 {
1677   edge e;
1678   edge_iterator ei;
1679   gimple last;
1680 
1681   FOR_EACH_EDGE (e, ei, bb->succs)
1682     {
1683       /* Predict early returns to be probable, as we've already taken
1684 	 care for error returns and other cases are often used for
1685 	 fast paths through function.
1686 
1687 	 Since we've already removed the return statements, we are
1688 	 looking for CFG like:
1689 
1690 	 if (conditional)
1691 	 {
1692 	 ..
1693 	 goto return_block
1694 	 }
1695 	 some other blocks
1696 	 return_block:
1697 	 return_stmt.  */
1698       if (e->dest != bb->next_bb
1699 	  && e->dest != EXIT_BLOCK_PTR
1700 	  && single_succ_p (e->dest)
1701 	  && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1702 	  && (last = last_stmt (e->dest)) != NULL
1703 	  && gimple_code (last) == GIMPLE_RETURN)
1704 	{
1705 	  edge e1;
1706 	  edge_iterator ei1;
1707 
1708 	  if (single_succ_p (bb))
1709 	    {
1710 	      FOR_EACH_EDGE (e1, ei1, bb->preds)
1711 		if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1712 		    && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1713 		    && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1714 		  predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1715 	    }
1716 	  else
1717 	    if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1718 		&& !predicted_by_p (e->src, PRED_CONST_RETURN)
1719 		&& !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1720 	      predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1721 	}
1722 
1723       /* Look for block we are guarding (ie we dominate it,
1724 	 but it doesn't postdominate us).  */
1725       if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1726 	  && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1727 	  && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1728 	{
1729 	  gimple_stmt_iterator bi;
1730 
1731 	  /* The call heuristic claims that a guarded function call
1732 	     is improbable.  This is because such calls are often used
1733 	     to signal exceptional situations such as printing error
1734 	     messages.  */
1735 	  for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1736 	       gsi_next (&bi))
1737 	    {
1738 	      gimple stmt = gsi_stmt (bi);
1739 	      if (is_gimple_call (stmt)
1740 		  /* Constant and pure calls are hardly used to signalize
1741 		     something exceptional.  */
1742 		  && gimple_has_side_effects (stmt))
1743 		{
1744 		  predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1745 		  break;
1746 		}
1747 	    }
1748 	}
1749     }
1750   tree_predict_by_opcode (bb);
1751 }
1752 
1753 /* Predict branch probabilities and estimate profile of the tree CFG.
1754    This function can be called from the loop optimizers to recompute
1755    the profile information.  */
1756 
1757 void
1758 tree_estimate_probability (void)
1759 {
1760   basic_block bb;
1761 
1762   add_noreturn_fake_exit_edges ();
1763   connect_infinite_loops_to_exit ();
1764   /* We use loop_niter_by_eval, which requires that the loops have
1765      preheaders.  */
1766   create_preheaders (CP_SIMPLE_PREHEADERS);
1767   calculate_dominance_info (CDI_POST_DOMINATORS);
1768 
1769   bb_predictions = pointer_map_create ();
1770   tree_bb_level_predictions ();
1771   record_loop_exits ();
1772 
1773   if (number_of_loops () > 1)
1774     predict_loops ();
1775 
1776   FOR_EACH_BB (bb)
1777     tree_estimate_probability_bb (bb);
1778 
1779   FOR_EACH_BB (bb)
1780     combine_predictions_for_bb (bb);
1781 
1782 #ifdef ENABLE_CHECKING
1783   pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1784 #endif
1785   pointer_map_destroy (bb_predictions);
1786   bb_predictions = NULL;
1787 
1788   estimate_bb_frequencies ();
1789   free_dominance_info (CDI_POST_DOMINATORS);
1790   remove_fake_exit_edges ();
1791 }
1792 
1793 /* Predict branch probabilities and estimate profile of the tree CFG.
1794    This is the driver function for PASS_PROFILE.  */
1795 
1796 static unsigned int
1797 tree_estimate_probability_driver (void)
1798 {
1799   unsigned nb_loops;
1800 
1801   loop_optimizer_init (0);
1802   if (dump_file && (dump_flags & TDF_DETAILS))
1803     flow_loops_dump (dump_file, NULL, 0);
1804 
1805   mark_irreducible_loops ();
1806 
1807   nb_loops = number_of_loops ();
1808   if (nb_loops > 1)
1809     scev_initialize ();
1810 
1811   tree_estimate_probability ();
1812 
1813   if (nb_loops > 1)
1814     scev_finalize ();
1815 
1816   loop_optimizer_finalize ();
1817   if (dump_file && (dump_flags & TDF_DETAILS))
1818     gimple_dump_cfg (dump_file, dump_flags);
1819   if (profile_status == PROFILE_ABSENT)
1820     profile_status = PROFILE_GUESSED;
1821   return 0;
1822 }
1823 
1824 /* Predict edges to successors of CUR whose sources are not postdominated by
1825    BB by PRED and recurse to all postdominators.  */
1826 
1827 static void
1828 predict_paths_for_bb (basic_block cur, basic_block bb,
1829 		      enum br_predictor pred,
1830 		      enum prediction taken,
1831 		      bitmap visited)
1832 {
1833   edge e;
1834   edge_iterator ei;
1835   basic_block son;
1836 
1837   /* We are looking for all edges forming edge cut induced by
1838      set of all blocks postdominated by BB.  */
1839   FOR_EACH_EDGE (e, ei, cur->preds)
1840     if (e->src->index >= NUM_FIXED_BLOCKS
1841 	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1842     {
1843       edge e2;
1844       edge_iterator ei2;
1845       bool found = false;
1846 
1847       /* Ignore fake edges and eh, we predict them as not taken anyway.  */
1848       if (e->flags & (EDGE_EH | EDGE_FAKE))
1849 	continue;
1850       gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1851 
1852       /* See if there is an edge from e->src that is not abnormal
1853 	 and does not lead to BB.  */
1854       FOR_EACH_EDGE (e2, ei2, e->src->succs)
1855 	if (e2 != e
1856 	    && !(e2->flags & (EDGE_EH | EDGE_FAKE))
1857 	    && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
1858 	  {
1859 	    found = true;
1860 	    break;
1861 	  }
1862 
1863       /* If there is non-abnormal path leaving e->src, predict edge
1864 	 using predictor.  Otherwise we need to look for paths
1865 	 leading to e->src.
1866 
1867 	 The second may lead to infinite loop in the case we are predicitng
1868 	 regions that are only reachable by abnormal edges.  We simply
1869 	 prevent visiting given BB twice.  */
1870       if (found)
1871         predict_edge_def (e, pred, taken);
1872       else if (bitmap_set_bit (visited, e->src->index))
1873 	predict_paths_for_bb (e->src, e->src, pred, taken, visited);
1874     }
1875   for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1876        son;
1877        son = next_dom_son (CDI_POST_DOMINATORS, son))
1878     predict_paths_for_bb (son, bb, pred, taken, visited);
1879 }
1880 
1881 /* Sets branch probabilities according to PREDiction and
1882    FLAGS.  */
1883 
1884 static void
1885 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1886 			  enum prediction taken)
1887 {
1888   bitmap visited = BITMAP_ALLOC (NULL);
1889   predict_paths_for_bb (bb, bb, pred, taken, visited);
1890   BITMAP_FREE (visited);
1891 }
1892 
1893 /* Like predict_paths_leading_to but take edge instead of basic block.  */
1894 
1895 static void
1896 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
1897 			       enum prediction taken)
1898 {
1899   bool has_nonloop_edge = false;
1900   edge_iterator ei;
1901   edge e2;
1902 
1903   basic_block bb = e->src;
1904   FOR_EACH_EDGE (e2, ei, bb->succs)
1905     if (e2->dest != e->src && e2->dest != e->dest
1906 	&& !(e->flags & (EDGE_EH | EDGE_FAKE))
1907 	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
1908       {
1909 	has_nonloop_edge = true;
1910 	break;
1911       }
1912   if (!has_nonloop_edge)
1913     {
1914       bitmap visited = BITMAP_ALLOC (NULL);
1915       predict_paths_for_bb (bb, bb, pred, taken, visited);
1916       BITMAP_FREE (visited);
1917     }
1918   else
1919     predict_edge_def (e, pred, taken);
1920 }
1921 
1922 /* This is used to carry information about basic blocks.  It is
1923    attached to the AUX field of the standard CFG block.  */
1924 
1925 typedef struct block_info_def
1926 {
1927   /* Estimated frequency of execution of basic_block.  */
1928   sreal frequency;
1929 
1930   /* To keep queue of basic blocks to process.  */
1931   basic_block next;
1932 
1933   /* Number of predecessors we need to visit first.  */
1934   int npredecessors;
1935 } *block_info;
1936 
1937 /* Similar information for edges.  */
1938 typedef struct edge_info_def
1939 {
1940   /* In case edge is a loopback edge, the probability edge will be reached
1941      in case header is.  Estimated number of iterations of the loop can be
1942      then computed as 1 / (1 - back_edge_prob).  */
1943   sreal back_edge_prob;
1944   /* True if the edge is a loopback edge in the natural loop.  */
1945   unsigned int back_edge:1;
1946 } *edge_info;
1947 
1948 #define BLOCK_INFO(B)	((block_info) (B)->aux)
1949 #define EDGE_INFO(E)	((edge_info) (E)->aux)
1950 
1951 /* Helper function for estimate_bb_frequencies.
1952    Propagate the frequencies in blocks marked in
1953    TOVISIT, starting in HEAD.  */
1954 
1955 static void
1956 propagate_freq (basic_block head, bitmap tovisit)
1957 {
1958   basic_block bb;
1959   basic_block last;
1960   unsigned i;
1961   edge e;
1962   basic_block nextbb;
1963   bitmap_iterator bi;
1964 
1965   /* For each basic block we need to visit count number of his predecessors
1966      we need to visit first.  */
1967   EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1968     {
1969       edge_iterator ei;
1970       int count = 0;
1971 
1972       bb = BASIC_BLOCK (i);
1973 
1974       FOR_EACH_EDGE (e, ei, bb->preds)
1975 	{
1976 	  bool visit = bitmap_bit_p (tovisit, e->src->index);
1977 
1978 	  if (visit && !(e->flags & EDGE_DFS_BACK))
1979 	    count++;
1980 	  else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1981 	    fprintf (dump_file,
1982 		     "Irreducible region hit, ignoring edge to %i->%i\n",
1983 		     e->src->index, bb->index);
1984 	}
1985       BLOCK_INFO (bb)->npredecessors = count;
1986       /* When function never returns, we will never process exit block.  */
1987       if (!count && bb == EXIT_BLOCK_PTR)
1988 	bb->count = bb->frequency = 0;
1989     }
1990 
1991   memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1992   last = head;
1993   for (bb = head; bb; bb = nextbb)
1994     {
1995       edge_iterator ei;
1996       sreal cyclic_probability, frequency;
1997 
1998       memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1999       memcpy (&frequency, &real_zero, sizeof (real_zero));
2000 
2001       nextbb = BLOCK_INFO (bb)->next;
2002       BLOCK_INFO (bb)->next = NULL;
2003 
2004       /* Compute frequency of basic block.  */
2005       if (bb != head)
2006 	{
2007 #ifdef ENABLE_CHECKING
2008 	  FOR_EACH_EDGE (e, ei, bb->preds)
2009 	    gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2010 			|| (e->flags & EDGE_DFS_BACK));
2011 #endif
2012 
2013 	  FOR_EACH_EDGE (e, ei, bb->preds)
2014 	    if (EDGE_INFO (e)->back_edge)
2015 	      {
2016 		sreal_add (&cyclic_probability, &cyclic_probability,
2017 			   &EDGE_INFO (e)->back_edge_prob);
2018 	      }
2019 	    else if (!(e->flags & EDGE_DFS_BACK))
2020 	      {
2021 		sreal tmp;
2022 
2023 		/*  frequency += (e->probability
2024 				  * BLOCK_INFO (e->src)->frequency /
2025 				  REG_BR_PROB_BASE);  */
2026 
2027 		sreal_init (&tmp, e->probability, 0);
2028 		sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2029 		sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2030 		sreal_add (&frequency, &frequency, &tmp);
2031 	      }
2032 
2033 	  if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2034 	    {
2035 	      memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2036 		      sizeof (frequency));
2037 	    }
2038 	  else
2039 	    {
2040 	      if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2041 		{
2042 		  memcpy (&cyclic_probability, &real_almost_one,
2043 			  sizeof (real_almost_one));
2044 		}
2045 
2046 	      /* BLOCK_INFO (bb)->frequency = frequency
2047 					      / (1 - cyclic_probability) */
2048 
2049 	      sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2050 	      sreal_div (&BLOCK_INFO (bb)->frequency,
2051 			 &frequency, &cyclic_probability);
2052 	    }
2053 	}
2054 
2055       bitmap_clear_bit (tovisit, bb->index);
2056 
2057       e = find_edge (bb, head);
2058       if (e)
2059 	{
2060 	  sreal tmp;
2061 
2062 	  /* EDGE_INFO (e)->back_edge_prob
2063 	     = ((e->probability * BLOCK_INFO (bb)->frequency)
2064 	     / REG_BR_PROB_BASE); */
2065 
2066 	  sreal_init (&tmp, e->probability, 0);
2067 	  sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2068 	  sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2069 		     &tmp, &real_inv_br_prob_base);
2070 	}
2071 
2072       /* Propagate to successor blocks.  */
2073       FOR_EACH_EDGE (e, ei, bb->succs)
2074 	if (!(e->flags & EDGE_DFS_BACK)
2075 	    && BLOCK_INFO (e->dest)->npredecessors)
2076 	  {
2077 	    BLOCK_INFO (e->dest)->npredecessors--;
2078 	    if (!BLOCK_INFO (e->dest)->npredecessors)
2079 	      {
2080 		if (!nextbb)
2081 		  nextbb = e->dest;
2082 		else
2083 		  BLOCK_INFO (last)->next = e->dest;
2084 
2085 		last = e->dest;
2086 	      }
2087 	  }
2088     }
2089 }
2090 
2091 /* Estimate probabilities of loopback edges in loops at same nest level.  */
2092 
2093 static void
2094 estimate_loops_at_level (struct loop *first_loop)
2095 {
2096   struct loop *loop;
2097 
2098   for (loop = first_loop; loop; loop = loop->next)
2099     {
2100       edge e;
2101       basic_block *bbs;
2102       unsigned i;
2103       bitmap tovisit = BITMAP_ALLOC (NULL);
2104 
2105       estimate_loops_at_level (loop->inner);
2106 
2107       /* Find current loop back edge and mark it.  */
2108       e = loop_latch_edge (loop);
2109       EDGE_INFO (e)->back_edge = 1;
2110 
2111       bbs = get_loop_body (loop);
2112       for (i = 0; i < loop->num_nodes; i++)
2113 	bitmap_set_bit (tovisit, bbs[i]->index);
2114       free (bbs);
2115       propagate_freq (loop->header, tovisit);
2116       BITMAP_FREE (tovisit);
2117     }
2118 }
2119 
2120 /* Propagates frequencies through structure of loops.  */
2121 
2122 static void
2123 estimate_loops (void)
2124 {
2125   bitmap tovisit = BITMAP_ALLOC (NULL);
2126   basic_block bb;
2127 
2128   /* Start by estimating the frequencies in the loops.  */
2129   if (number_of_loops () > 1)
2130     estimate_loops_at_level (current_loops->tree_root->inner);
2131 
2132   /* Now propagate the frequencies through all the blocks.  */
2133   FOR_ALL_BB (bb)
2134     {
2135       bitmap_set_bit (tovisit, bb->index);
2136     }
2137   propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2138   BITMAP_FREE (tovisit);
2139 }
2140 
2141 /* Convert counts measured by profile driven feedback to frequencies.
2142    Return nonzero iff there was any nonzero execution count.  */
2143 
2144 int
2145 counts_to_freqs (void)
2146 {
2147   gcov_type count_max, true_count_max = 0;
2148   basic_block bb;
2149 
2150   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2151     true_count_max = MAX (bb->count, true_count_max);
2152 
2153   count_max = MAX (true_count_max, 1);
2154   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2155     bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2156 
2157   return true_count_max;
2158 }
2159 
2160 /* Return true if function is likely to be expensive, so there is no point to
2161    optimize performance of prologue, epilogue or do inlining at the expense
2162    of code size growth.  THRESHOLD is the limit of number of instructions
2163    function can execute at average to be still considered not expensive.  */
2164 
2165 bool
2166 expensive_function_p (int threshold)
2167 {
2168   unsigned int sum = 0;
2169   basic_block bb;
2170   unsigned int limit;
2171 
2172   /* We can not compute accurately for large thresholds due to scaled
2173      frequencies.  */
2174   gcc_assert (threshold <= BB_FREQ_MAX);
2175 
2176   /* Frequencies are out of range.  This either means that function contains
2177      internal loop executing more than BB_FREQ_MAX times or profile feedback
2178      is available and function has not been executed at all.  */
2179   if (ENTRY_BLOCK_PTR->frequency == 0)
2180     return true;
2181 
2182   /* Maximally BB_FREQ_MAX^2 so overflow won't happen.  */
2183   limit = ENTRY_BLOCK_PTR->frequency * threshold;
2184   FOR_EACH_BB (bb)
2185     {
2186       rtx insn;
2187 
2188       for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2189 	   insn = NEXT_INSN (insn))
2190 	if (active_insn_p (insn))
2191 	  {
2192 	    sum += bb->frequency;
2193 	    if (sum > limit)
2194 	      return true;
2195 	}
2196     }
2197 
2198   return false;
2199 }
2200 
2201 /* Estimate basic blocks frequency by given branch probabilities.  */
2202 
2203 void
2204 estimate_bb_frequencies (void)
2205 {
2206   basic_block bb;
2207   sreal freq_max;
2208 
2209   if (profile_status != PROFILE_READ || !counts_to_freqs ())
2210     {
2211       static int real_values_initialized = 0;
2212 
2213       if (!real_values_initialized)
2214         {
2215 	  real_values_initialized = 1;
2216 	  sreal_init (&real_zero, 0, 0);
2217 	  sreal_init (&real_one, 1, 0);
2218 	  sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2219 	  sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2220 	  sreal_init (&real_one_half, 1, -1);
2221 	  sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2222 	  sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2223 	}
2224 
2225       mark_dfs_back_edges ();
2226 
2227       single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2228 
2229       /* Set up block info for each basic block.  */
2230       alloc_aux_for_blocks (sizeof (struct block_info_def));
2231       alloc_aux_for_edges (sizeof (struct edge_info_def));
2232       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2233 	{
2234 	  edge e;
2235 	  edge_iterator ei;
2236 
2237 	  FOR_EACH_EDGE (e, ei, bb->succs)
2238 	    {
2239 	      sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2240 	      sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2241 			 &EDGE_INFO (e)->back_edge_prob,
2242 			 &real_inv_br_prob_base);
2243 	    }
2244 	}
2245 
2246       /* First compute probabilities locally for each loop from innermost
2247          to outermost to examine probabilities for back edges.  */
2248       estimate_loops ();
2249 
2250       memcpy (&freq_max, &real_zero, sizeof (real_zero));
2251       FOR_EACH_BB (bb)
2252 	if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2253 	  memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2254 
2255       sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2256       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2257 	{
2258 	  sreal tmp;
2259 
2260 	  sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2261 	  sreal_add (&tmp, &tmp, &real_one_half);
2262 	  bb->frequency = sreal_to_int (&tmp);
2263 	}
2264 
2265       free_aux_for_blocks ();
2266       free_aux_for_edges ();
2267     }
2268   compute_function_frequency ();
2269 }
2270 
2271 /* Decide whether function is hot, cold or unlikely executed.  */
2272 void
2273 compute_function_frequency (void)
2274 {
2275   basic_block bb;
2276   struct cgraph_node *node = cgraph_get_node (current_function_decl);
2277   if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2278       || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2279     node->only_called_at_startup = true;
2280   if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2281     node->only_called_at_exit = true;
2282 
2283   if (!profile_info || !flag_branch_probabilities)
2284     {
2285       int flags = flags_from_decl_or_type (current_function_decl);
2286       if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2287 	  != NULL)
2288         node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2289       else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2290 	       != NULL)
2291         node->frequency = NODE_FREQUENCY_HOT;
2292       else if (flags & ECF_NORETURN)
2293         node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2294       else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2295         node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2296       else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2297 	       || DECL_STATIC_DESTRUCTOR (current_function_decl))
2298         node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2299       return;
2300     }
2301   node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2302   FOR_EACH_BB (bb)
2303     {
2304       if (maybe_hot_bb_p (bb))
2305 	{
2306 	  node->frequency = NODE_FREQUENCY_HOT;
2307 	  return;
2308 	}
2309       if (!probably_never_executed_bb_p (bb))
2310 	node->frequency = NODE_FREQUENCY_NORMAL;
2311     }
2312 }
2313 
2314 static bool
2315 gate_estimate_probability (void)
2316 {
2317   return flag_guess_branch_prob;
2318 }
2319 
2320 /* Build PREDICT_EXPR.  */
2321 tree
2322 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2323 {
2324   tree t = build1 (PREDICT_EXPR, void_type_node,
2325 		   build_int_cst (integer_type_node, predictor));
2326   SET_PREDICT_EXPR_OUTCOME (t, taken);
2327   return t;
2328 }
2329 
2330 const char *
2331 predictor_name (enum br_predictor predictor)
2332 {
2333   return predictor_info[predictor].name;
2334 }
2335 
2336 struct gimple_opt_pass pass_profile =
2337 {
2338  {
2339   GIMPLE_PASS,
2340   "profile_estimate",			/* name */
2341   gate_estimate_probability,		/* gate */
2342   tree_estimate_probability_driver,	/* execute */
2343   NULL,					/* sub */
2344   NULL,					/* next */
2345   0,					/* static_pass_number */
2346   TV_BRANCH_PROB,			/* tv_id */
2347   PROP_cfg,				/* properties_required */
2348   0,					/* properties_provided */
2349   0,					/* properties_destroyed */
2350   0,					/* todo_flags_start */
2351   TODO_ggc_collect | TODO_verify_ssa			/* todo_flags_finish */
2352  }
2353 };
2354 
2355 struct gimple_opt_pass pass_strip_predict_hints =
2356 {
2357  {
2358   GIMPLE_PASS,
2359   "*strip_predict_hints",		/* name */
2360   NULL,					/* gate */
2361   strip_predict_hints,			/* execute */
2362   NULL,					/* sub */
2363   NULL,					/* next */
2364   0,					/* static_pass_number */
2365   TV_BRANCH_PROB,			/* tv_id */
2366   PROP_cfg,				/* properties_required */
2367   0,					/* properties_provided */
2368   0,					/* properties_destroyed */
2369   0,					/* todo_flags_start */
2370   TODO_ggc_collect | TODO_verify_ssa			/* todo_flags_finish */
2371  }
2372 };
2373 
2374 /* Rebuild function frequencies.  Passes are in general expected to
2375    maintain profile by hand, however in some cases this is not possible:
2376    for example when inlining several functions with loops freuqencies might run
2377    out of scale and thus needs to be recomputed.  */
2378 
2379 void
2380 rebuild_frequencies (void)
2381 {
2382   timevar_push (TV_REBUILD_FREQUENCIES);
2383   if (profile_status == PROFILE_GUESSED)
2384     {
2385       loop_optimizer_init (0);
2386       add_noreturn_fake_exit_edges ();
2387       mark_irreducible_loops ();
2388       connect_infinite_loops_to_exit ();
2389       estimate_bb_frequencies ();
2390       remove_fake_exit_edges ();
2391       loop_optimizer_finalize ();
2392     }
2393   else if (profile_status == PROFILE_READ)
2394     counts_to_freqs ();
2395   else
2396     gcc_unreachable ();
2397   timevar_pop (TV_REBUILD_FREQUENCIES);
2398 }
2399