xref: /dragonfly/contrib/gcc-4.7/gcc/predict.c (revision e5a92d33)
1 /* Branch prediction routines for the GNU compiler.
2    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* References:
22 
23    [1] "Branch Prediction for Free"
24        Ball and Larus; PLDI '93.
25    [2] "Static Branch Frequency and Program Profile Analysis"
26        Wu and Larus; MICRO-27.
27    [3] "Corpus-based Static Branch Prediction"
28        Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95.  */
29 
30 
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "diagnostic-core.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63 
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 		   1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX.  */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 	     real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68 
69 /* Random guesstimation given names.
70    PROV_VERY_UNLIKELY should be small enough so basic block predicted
71    by it gets bellow HOT_BB_FREQUENCY_FRANCTION.  */
72 #define PROB_VERY_UNLIKELY	(REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN		(REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY	(REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS		(REG_BR_PROB_BASE)
76 
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const_rtx);
82 
83 /* Information we hold about each branch predictor.
84    Filled using information from predict.def.  */
85 
86 struct predictor_info
87 {
88   const char *const name;	/* Name used in the debugging dumps.  */
89   const int hitrate;		/* Expected hitrate used by
90 				   predict_insn_def call.  */
91   const int flags;
92 };
93 
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95    using first_match heuristics.  */
96 #define PRED_FLAG_FIRST_MATCH 1
97 
98 /* Recompute hitrate in percent to our representation.  */
99 
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
101 
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
105 
106   /* Upper bound on predictors.  */
107   {NULL, 0, 0}
108 };
109 #undef DEF_PREDICTOR
110 
111 /* Return TRUE if frequency FREQ is considered to be hot.  */
112 
113 static inline bool
114 maybe_hot_frequency_p (int freq)
115 {
116   struct cgraph_node *node = cgraph_get_node (current_function_decl);
117   if (!profile_info || !flag_branch_probabilities)
118     {
119       if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120         return false;
121       if (node->frequency == NODE_FREQUENCY_HOT)
122         return true;
123     }
124   if (profile_status == PROFILE_ABSENT)
125     return true;
126   if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127       && freq < (ENTRY_BLOCK_PTR->frequency * 2 / 3))
128     return false;
129   if (freq < ENTRY_BLOCK_PTR->frequency / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
130     return false;
131   return true;
132 }
133 
134 /* Return TRUE if frequency FREQ is considered to be hot.  */
135 
136 static inline bool
137 maybe_hot_count_p (gcov_type count)
138 {
139   if (profile_status != PROFILE_READ)
140     return true;
141   /* Code executed at most once is not hot.  */
142   if (profile_info->runs >= count)
143     return false;
144   return (count
145 	  > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
146 }
147 
148 /* Return true in case BB can be CPU intensive and should be optimized
149    for maximal performance.  */
150 
151 bool
152 maybe_hot_bb_p (const_basic_block bb)
153 {
154   if (profile_status == PROFILE_READ)
155     return maybe_hot_count_p (bb->count);
156   return maybe_hot_frequency_p (bb->frequency);
157 }
158 
159 /* Return true if the call can be hot.  */
160 
161 bool
162 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
163 {
164   if (profile_info && flag_branch_probabilities
165       && (edge->count
166 	  <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
167     return false;
168   if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
169       || edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
170     return false;
171   if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
172       && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE)
173     return false;
174   if (optimize_size)
175     return false;
176   if (edge->caller->frequency == NODE_FREQUENCY_HOT)
177     return true;
178   if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
179       && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
180     return false;
181   if (flag_guess_branch_prob
182       && edge->frequency <= (CGRAPH_FREQ_BASE
183       			     / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
184     return false;
185   return true;
186 }
187 
188 /* Return true in case BB can be CPU intensive and should be optimized
189    for maximal performance.  */
190 
191 bool
192 maybe_hot_edge_p (edge e)
193 {
194   if (profile_status == PROFILE_READ)
195     return maybe_hot_count_p (e->count);
196   return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
197 }
198 
199 
200 /* Return true in case BB is probably never executed.  */
201 
202 bool
203 probably_never_executed_bb_p (const_basic_block bb)
204 {
205   if (profile_info && flag_branch_probabilities)
206     return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
207   if ((!profile_info || !flag_branch_probabilities)
208       && (cgraph_get_node (current_function_decl)->frequency
209 	  == NODE_FREQUENCY_UNLIKELY_EXECUTED))
210     return true;
211   return false;
212 }
213 
214 /* Return true if NODE should be optimized for size.  */
215 
216 bool
217 cgraph_optimize_for_size_p (struct cgraph_node *node)
218 {
219   if (optimize_size)
220     return true;
221   if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
222     return true;
223   else
224     return false;
225 }
226 
227 /* Return true when current function should always be optimized for size.  */
228 
229 bool
230 optimize_function_for_size_p (struct function *fun)
231 {
232   if (optimize_size)
233     return true;
234   if (!fun || !fun->decl)
235     return false;
236   return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
237 }
238 
239 /* Return true when current function should always be optimized for speed.  */
240 
241 bool
242 optimize_function_for_speed_p (struct function *fun)
243 {
244   return !optimize_function_for_size_p (fun);
245 }
246 
247 /* Return TRUE when BB should be optimized for size.  */
248 
249 bool
250 optimize_bb_for_size_p (const_basic_block bb)
251 {
252   return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
253 }
254 
255 /* Return TRUE when BB should be optimized for speed.  */
256 
257 bool
258 optimize_bb_for_speed_p (const_basic_block bb)
259 {
260   return !optimize_bb_for_size_p (bb);
261 }
262 
263 /* Return TRUE when BB should be optimized for size.  */
264 
265 bool
266 optimize_edge_for_size_p (edge e)
267 {
268   return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
269 }
270 
271 /* Return TRUE when BB should be optimized for speed.  */
272 
273 bool
274 optimize_edge_for_speed_p (edge e)
275 {
276   return !optimize_edge_for_size_p (e);
277 }
278 
279 /* Return TRUE when BB should be optimized for size.  */
280 
281 bool
282 optimize_insn_for_size_p (void)
283 {
284   return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
285 }
286 
287 /* Return TRUE when BB should be optimized for speed.  */
288 
289 bool
290 optimize_insn_for_speed_p (void)
291 {
292   return !optimize_insn_for_size_p ();
293 }
294 
295 /* Return TRUE when LOOP should be optimized for size.  */
296 
297 bool
298 optimize_loop_for_size_p (struct loop *loop)
299 {
300   return optimize_bb_for_size_p (loop->header);
301 }
302 
303 /* Return TRUE when LOOP should be optimized for speed.  */
304 
305 bool
306 optimize_loop_for_speed_p (struct loop *loop)
307 {
308   return optimize_bb_for_speed_p (loop->header);
309 }
310 
311 /* Return TRUE when LOOP nest should be optimized for speed.  */
312 
313 bool
314 optimize_loop_nest_for_speed_p (struct loop *loop)
315 {
316   struct loop *l = loop;
317   if (optimize_loop_for_speed_p (loop))
318     return true;
319   l = loop->inner;
320   while (l && l != loop)
321     {
322       if (optimize_loop_for_speed_p (l))
323         return true;
324       if (l->inner)
325         l = l->inner;
326       else if (l->next)
327         l = l->next;
328       else
329         {
330 	  while (l != loop && !l->next)
331 	    l = loop_outer (l);
332 	  if (l != loop)
333 	    l = l->next;
334 	}
335     }
336   return false;
337 }
338 
339 /* Return TRUE when LOOP nest should be optimized for size.  */
340 
341 bool
342 optimize_loop_nest_for_size_p (struct loop *loop)
343 {
344   return !optimize_loop_nest_for_speed_p (loop);
345 }
346 
347 /* Return true when edge E is likely to be well predictable by branch
348    predictor.  */
349 
350 bool
351 predictable_edge_p (edge e)
352 {
353   if (profile_status == PROFILE_ABSENT)
354     return false;
355   if ((e->probability
356        <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
357       || (REG_BR_PROB_BASE - e->probability
358           <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
359     return true;
360   return false;
361 }
362 
363 
364 /* Set RTL expansion for BB profile.  */
365 
366 void
367 rtl_profile_for_bb (basic_block bb)
368 {
369   crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
370 }
371 
372 /* Set RTL expansion for edge profile.  */
373 
374 void
375 rtl_profile_for_edge (edge e)
376 {
377   crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
378 }
379 
380 /* Set RTL expansion to default mode (i.e. when profile info is not known).  */
381 void
382 default_rtl_profile (void)
383 {
384   crtl->maybe_hot_insn_p = true;
385 }
386 
387 /* Return true if the one of outgoing edges is already predicted by
388    PREDICTOR.  */
389 
390 bool
391 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
392 {
393   rtx note;
394   if (!INSN_P (BB_END (bb)))
395     return false;
396   for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
397     if (REG_NOTE_KIND (note) == REG_BR_PRED
398 	&& INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
399       return true;
400   return false;
401 }
402 
403 /* This map contains for a basic block the list of predictions for the
404    outgoing edges.  */
405 
406 static struct pointer_map_t *bb_predictions;
407 
408 /*  Structure representing predictions in tree level. */
409 
410 struct edge_prediction {
411     struct edge_prediction *ep_next;
412     edge ep_edge;
413     enum br_predictor ep_predictor;
414     int ep_probability;
415 };
416 
417 /* Return true if the one of outgoing edges is already predicted by
418    PREDICTOR.  */
419 
420 bool
421 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
422 {
423   struct edge_prediction *i;
424   void **preds = pointer_map_contains (bb_predictions, bb);
425 
426   if (!preds)
427     return false;
428 
429   for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
430     if (i->ep_predictor == predictor)
431       return true;
432   return false;
433 }
434 
435 /* Return true when the probability of edge is reliable.
436 
437    The profile guessing code is good at predicting branch outcome (ie.
438    taken/not taken), that is predicted right slightly over 75% of time.
439    It is however notoriously poor on predicting the probability itself.
440    In general the profile appear a lot flatter (with probabilities closer
441    to 50%) than the reality so it is bad idea to use it to drive optimization
442    such as those disabling dynamic branch prediction for well predictable
443    branches.
444 
445    There are two exceptions - edges leading to noreturn edges and edges
446    predicted by number of iterations heuristics are predicted well.  This macro
447    should be able to distinguish those, but at the moment it simply check for
448    noreturn heuristic that is only one giving probability over 99% or bellow
449    1%.  In future we might want to propagate reliability information across the
450    CFG if we find this information useful on multiple places.   */
451 static bool
452 probability_reliable_p (int prob)
453 {
454   return (profile_status == PROFILE_READ
455 	  || (profile_status == PROFILE_GUESSED
456 	      && (prob <= HITRATE (1) || prob >= HITRATE (99))));
457 }
458 
459 /* Same predicate as above, working on edges.  */
460 bool
461 edge_probability_reliable_p (const_edge e)
462 {
463   return probability_reliable_p (e->probability);
464 }
465 
466 /* Same predicate as edge_probability_reliable_p, working on notes.  */
467 bool
468 br_prob_note_reliable_p (const_rtx note)
469 {
470   gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
471   return probability_reliable_p (INTVAL (XEXP (note, 0)));
472 }
473 
474 static void
475 predict_insn (rtx insn, enum br_predictor predictor, int probability)
476 {
477   gcc_assert (any_condjump_p (insn));
478   if (!flag_guess_branch_prob)
479     return;
480 
481   add_reg_note (insn, REG_BR_PRED,
482 		gen_rtx_CONCAT (VOIDmode,
483 				GEN_INT ((int) predictor),
484 				GEN_INT ((int) probability)));
485 }
486 
487 /* Predict insn by given predictor.  */
488 
489 void
490 predict_insn_def (rtx insn, enum br_predictor predictor,
491 		  enum prediction taken)
492 {
493    int probability = predictor_info[(int) predictor].hitrate;
494 
495    if (taken != TAKEN)
496      probability = REG_BR_PROB_BASE - probability;
497 
498    predict_insn (insn, predictor, probability);
499 }
500 
501 /* Predict edge E with given probability if possible.  */
502 
503 void
504 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
505 {
506   rtx last_insn;
507   last_insn = BB_END (e->src);
508 
509   /* We can store the branch prediction information only about
510      conditional jumps.  */
511   if (!any_condjump_p (last_insn))
512     return;
513 
514   /* We always store probability of branching.  */
515   if (e->flags & EDGE_FALLTHRU)
516     probability = REG_BR_PROB_BASE - probability;
517 
518   predict_insn (last_insn, predictor, probability);
519 }
520 
521 /* Predict edge E with the given PROBABILITY.  */
522 void
523 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
524 {
525   gcc_assert (profile_status != PROFILE_GUESSED);
526   if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
527       && flag_guess_branch_prob && optimize)
528     {
529       struct edge_prediction *i = XNEW (struct edge_prediction);
530       void **preds = pointer_map_insert (bb_predictions, e->src);
531 
532       i->ep_next = (struct edge_prediction *) *preds;
533       *preds = i;
534       i->ep_probability = probability;
535       i->ep_predictor = predictor;
536       i->ep_edge = e;
537     }
538 }
539 
540 /* Remove all predictions on given basic block that are attached
541    to edge E.  */
542 void
543 remove_predictions_associated_with_edge (edge e)
544 {
545   void **preds;
546 
547   if (!bb_predictions)
548     return;
549 
550   preds = pointer_map_contains (bb_predictions, e->src);
551 
552   if (preds)
553     {
554       struct edge_prediction **prediction = (struct edge_prediction **) preds;
555       struct edge_prediction *next;
556 
557       while (*prediction)
558 	{
559 	  if ((*prediction)->ep_edge == e)
560 	    {
561 	      next = (*prediction)->ep_next;
562 	      free (*prediction);
563 	      *prediction = next;
564 	    }
565 	  else
566 	    prediction = &((*prediction)->ep_next);
567 	}
568     }
569 }
570 
571 /* Clears the list of predictions stored for BB.  */
572 
573 static void
574 clear_bb_predictions (basic_block bb)
575 {
576   void **preds = pointer_map_contains (bb_predictions, bb);
577   struct edge_prediction *pred, *next;
578 
579   if (!preds)
580     return;
581 
582   for (pred = (struct edge_prediction *) *preds; pred; pred = next)
583     {
584       next = pred->ep_next;
585       free (pred);
586     }
587   *preds = NULL;
588 }
589 
590 /* Return true when we can store prediction on insn INSN.
591    At the moment we represent predictions only on conditional
592    jumps, not at computed jump or other complicated cases.  */
593 static bool
594 can_predict_insn_p (const_rtx insn)
595 {
596   return (JUMP_P (insn)
597 	  && any_condjump_p (insn)
598 	  && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
599 }
600 
601 /* Predict edge E by given predictor if possible.  */
602 
603 void
604 predict_edge_def (edge e, enum br_predictor predictor,
605 		  enum prediction taken)
606 {
607    int probability = predictor_info[(int) predictor].hitrate;
608 
609    if (taken != TAKEN)
610      probability = REG_BR_PROB_BASE - probability;
611 
612    predict_edge (e, predictor, probability);
613 }
614 
615 /* Invert all branch predictions or probability notes in the INSN.  This needs
616    to be done each time we invert the condition used by the jump.  */
617 
618 void
619 invert_br_probabilities (rtx insn)
620 {
621   rtx note;
622 
623   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
624     if (REG_NOTE_KIND (note) == REG_BR_PROB)
625       XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
626     else if (REG_NOTE_KIND (note) == REG_BR_PRED)
627       XEXP (XEXP (note, 0), 1)
628 	= GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
629 }
630 
631 /* Dump information about the branch prediction to the output file.  */
632 
633 static void
634 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
635 		 basic_block bb, int used)
636 {
637   edge e;
638   edge_iterator ei;
639 
640   if (!file)
641     return;
642 
643   FOR_EACH_EDGE (e, ei, bb->succs)
644     if (! (e->flags & EDGE_FALLTHRU))
645       break;
646 
647   fprintf (file, "  %s heuristics%s: %.1f%%",
648 	   predictor_info[predictor].name,
649 	   used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
650 
651   if (bb->count)
652     {
653       fprintf (file, "  exec ");
654       fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
655       if (e)
656 	{
657 	  fprintf (file, " hit ");
658 	  fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
659 	  fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
660 	}
661     }
662 
663   fprintf (file, "\n");
664 }
665 
666 /* We can not predict the probabilities of outgoing edges of bb.  Set them
667    evenly and hope for the best.  */
668 static void
669 set_even_probabilities (basic_block bb)
670 {
671   int nedges = 0;
672   edge e;
673   edge_iterator ei;
674 
675   FOR_EACH_EDGE (e, ei, bb->succs)
676     if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
677       nedges ++;
678   FOR_EACH_EDGE (e, ei, bb->succs)
679     if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
680       e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
681     else
682       e->probability = 0;
683 }
684 
685 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
686    note if not already present.  Remove now useless REG_BR_PRED notes.  */
687 
688 static void
689 combine_predictions_for_insn (rtx insn, basic_block bb)
690 {
691   rtx prob_note;
692   rtx *pnote;
693   rtx note;
694   int best_probability = PROB_EVEN;
695   enum br_predictor best_predictor = END_PREDICTORS;
696   int combined_probability = REG_BR_PROB_BASE / 2;
697   int d;
698   bool first_match = false;
699   bool found = false;
700 
701   if (!can_predict_insn_p (insn))
702     {
703       set_even_probabilities (bb);
704       return;
705     }
706 
707   prob_note = find_reg_note (insn, REG_BR_PROB, 0);
708   pnote = &REG_NOTES (insn);
709   if (dump_file)
710     fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
711 	     bb->index);
712 
713   /* We implement "first match" heuristics and use probability guessed
714      by predictor with smallest index.  */
715   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
716     if (REG_NOTE_KIND (note) == REG_BR_PRED)
717       {
718 	enum br_predictor predictor = ((enum br_predictor)
719 				       INTVAL (XEXP (XEXP (note, 0), 0)));
720 	int probability = INTVAL (XEXP (XEXP (note, 0), 1));
721 
722 	found = true;
723 	if (best_predictor > predictor)
724 	  best_probability = probability, best_predictor = predictor;
725 
726 	d = (combined_probability * probability
727 	     + (REG_BR_PROB_BASE - combined_probability)
728 	     * (REG_BR_PROB_BASE - probability));
729 
730 	/* Use FP math to avoid overflows of 32bit integers.  */
731 	if (d == 0)
732 	  /* If one probability is 0% and one 100%, avoid division by zero.  */
733 	  combined_probability = REG_BR_PROB_BASE / 2;
734 	else
735 	  combined_probability = (((double) combined_probability) * probability
736 				  * REG_BR_PROB_BASE / d + 0.5);
737       }
738 
739   /* Decide which heuristic to use.  In case we didn't match anything,
740      use no_prediction heuristic, in case we did match, use either
741      first match or Dempster-Shaffer theory depending on the flags.  */
742 
743   if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
744     first_match = true;
745 
746   if (!found)
747     dump_prediction (dump_file, PRED_NO_PREDICTION,
748 		     combined_probability, bb, true);
749   else
750     {
751       dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
752 		       bb, !first_match);
753       dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
754 		       bb, first_match);
755     }
756 
757   if (first_match)
758     combined_probability = best_probability;
759   dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
760 
761   while (*pnote)
762     {
763       if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
764 	{
765 	  enum br_predictor predictor = ((enum br_predictor)
766 					 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
767 	  int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
768 
769 	  dump_prediction (dump_file, predictor, probability, bb,
770 			   !first_match || best_predictor == predictor);
771 	  *pnote = XEXP (*pnote, 1);
772 	}
773       else
774 	pnote = &XEXP (*pnote, 1);
775     }
776 
777   if (!prob_note)
778     {
779       add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
780 
781       /* Save the prediction into CFG in case we are seeing non-degenerated
782 	 conditional jump.  */
783       if (!single_succ_p (bb))
784 	{
785 	  BRANCH_EDGE (bb)->probability = combined_probability;
786 	  FALLTHRU_EDGE (bb)->probability
787 	    = REG_BR_PROB_BASE - combined_probability;
788 	}
789     }
790   else if (!single_succ_p (bb))
791     {
792       int prob = INTVAL (XEXP (prob_note, 0));
793 
794       BRANCH_EDGE (bb)->probability = prob;
795       FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
796     }
797   else
798     single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
799 }
800 
801 /* Combine predictions into single probability and store them into CFG.
802    Remove now useless prediction entries.  */
803 
804 static void
805 combine_predictions_for_bb (basic_block bb)
806 {
807   int best_probability = PROB_EVEN;
808   enum br_predictor best_predictor = END_PREDICTORS;
809   int combined_probability = REG_BR_PROB_BASE / 2;
810   int d;
811   bool first_match = false;
812   bool found = false;
813   struct edge_prediction *pred;
814   int nedges = 0;
815   edge e, first = NULL, second = NULL;
816   edge_iterator ei;
817   void **preds;
818 
819   FOR_EACH_EDGE (e, ei, bb->succs)
820     if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
821       {
822 	nedges ++;
823 	if (first && !second)
824 	  second = e;
825 	if (!first)
826 	  first = e;
827       }
828 
829   /* When there is no successor or only one choice, prediction is easy.
830 
831      We are lazy for now and predict only basic blocks with two outgoing
832      edges.  It is possible to predict generic case too, but we have to
833      ignore first match heuristics and do more involved combining.  Implement
834      this later.  */
835   if (nedges != 2)
836     {
837       if (!bb->count)
838 	set_even_probabilities (bb);
839       clear_bb_predictions (bb);
840       if (dump_file)
841 	fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
842 		 nedges, bb->index);
843       return;
844     }
845 
846   if (dump_file)
847     fprintf (dump_file, "Predictions for bb %i\n", bb->index);
848 
849   preds = pointer_map_contains (bb_predictions, bb);
850   if (preds)
851     {
852       /* We implement "first match" heuristics and use probability guessed
853 	 by predictor with smallest index.  */
854       for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
855 	{
856 	  enum br_predictor predictor = pred->ep_predictor;
857 	  int probability = pred->ep_probability;
858 
859 	  if (pred->ep_edge != first)
860 	    probability = REG_BR_PROB_BASE - probability;
861 
862 	  found = true;
863 	  /* First match heuristics would be widly confused if we predicted
864 	     both directions.  */
865 	  if (best_predictor > predictor)
866 	    {
867               struct edge_prediction *pred2;
868 	      int prob = probability;
869 
870               for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
871 	       if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
872 	         {
873 	           int probability2 = pred->ep_probability;
874 
875 		   if (pred2->ep_edge != first)
876 		     probability2 = REG_BR_PROB_BASE - probability2;
877 
878 		   if ((probability < REG_BR_PROB_BASE / 2) !=
879 		       (probability2 < REG_BR_PROB_BASE / 2))
880 		     break;
881 
882 		   /* If the same predictor later gave better result, go for it! */
883 		   if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
884 		       || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
885 		     prob = probability2;
886 		 }
887 	      if (!pred2)
888 	        best_probability = prob, best_predictor = predictor;
889 	    }
890 
891 	  d = (combined_probability * probability
892 	       + (REG_BR_PROB_BASE - combined_probability)
893 	       * (REG_BR_PROB_BASE - probability));
894 
895 	  /* Use FP math to avoid overflows of 32bit integers.  */
896 	  if (d == 0)
897 	    /* If one probability is 0% and one 100%, avoid division by zero.  */
898 	    combined_probability = REG_BR_PROB_BASE / 2;
899 	  else
900 	    combined_probability = (((double) combined_probability)
901 				    * probability
902 		    		    * REG_BR_PROB_BASE / d + 0.5);
903 	}
904     }
905 
906   /* Decide which heuristic to use.  In case we didn't match anything,
907      use no_prediction heuristic, in case we did match, use either
908      first match or Dempster-Shaffer theory depending on the flags.  */
909 
910   if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
911     first_match = true;
912 
913   if (!found)
914     dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
915   else
916     {
917       dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
918 		       !first_match);
919       dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
920 		       first_match);
921     }
922 
923   if (first_match)
924     combined_probability = best_probability;
925   dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
926 
927   if (preds)
928     {
929       for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
930 	{
931 	  enum br_predictor predictor = pred->ep_predictor;
932 	  int probability = pred->ep_probability;
933 
934 	  if (pred->ep_edge != EDGE_SUCC (bb, 0))
935 	    probability = REG_BR_PROB_BASE - probability;
936 	  dump_prediction (dump_file, predictor, probability, bb,
937 			   !first_match || best_predictor == predictor);
938 	}
939     }
940   clear_bb_predictions (bb);
941 
942   if (!bb->count)
943     {
944       first->probability = combined_probability;
945       second->probability = REG_BR_PROB_BASE - combined_probability;
946     }
947 }
948 
949 /* Predict edge probabilities by exploiting loop structure.  */
950 
951 static void
952 predict_loops (void)
953 {
954   loop_iterator li;
955   struct loop *loop;
956 
957   /* Try to predict out blocks in a loop that are not part of a
958      natural loop.  */
959   FOR_EACH_LOOP (li, loop, 0)
960     {
961       basic_block bb, *bbs;
962       unsigned j, n_exits;
963       VEC (edge, heap) *exits;
964       struct tree_niter_desc niter_desc;
965       edge ex;
966 
967       exits = get_loop_exit_edges (loop);
968       n_exits = VEC_length (edge, exits);
969 
970       FOR_EACH_VEC_ELT (edge, exits, j, ex)
971 	{
972 	  tree niter = NULL;
973 	  HOST_WIDE_INT nitercst;
974 	  int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
975 	  int probability;
976 	  enum br_predictor predictor;
977 
978 	  if (number_of_iterations_exit (loop, ex, &niter_desc, false))
979 	    niter = niter_desc.niter;
980 	  if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
981 	    niter = loop_niter_by_eval (loop, ex);
982 
983 	  if (TREE_CODE (niter) == INTEGER_CST)
984 	    {
985 	      if (host_integerp (niter, 1)
986 		  && max
987 		  && compare_tree_int (niter, max - 1) == -1)
988 		nitercst = tree_low_cst (niter, 1) + 1;
989 	      else
990 		nitercst = max;
991 	      predictor = PRED_LOOP_ITERATIONS;
992 	    }
993 	  /* If we have just one exit and we can derive some information about
994 	     the number of iterations of the loop from the statements inside
995 	     the loop, use it to predict this exit.  */
996 	  else if (n_exits == 1)
997 	    {
998 	      nitercst = max_stmt_executions_int (loop, false);
999 	      if (nitercst < 0)
1000 		continue;
1001 	      if (nitercst > max)
1002 		nitercst = max;
1003 
1004 	      predictor = PRED_LOOP_ITERATIONS_GUESSED;
1005 	    }
1006 	  else
1007 	    continue;
1008 
1009 	  /* If the prediction for number of iterations is zero, do not
1010 	     predict the exit edges.  */
1011 	  if (nitercst == 0)
1012 	    continue;
1013 
1014 	  probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1015 	  predict_edge (ex, predictor, probability);
1016 	}
1017       VEC_free (edge, heap, exits);
1018 
1019       bbs = get_loop_body (loop);
1020 
1021       for (j = 0; j < loop->num_nodes; j++)
1022 	{
1023 	  int header_found = 0;
1024 	  edge e;
1025 	  edge_iterator ei;
1026 
1027 	  bb = bbs[j];
1028 
1029 	  /* Bypass loop heuristics on continue statement.  These
1030 	     statements construct loops via "non-loop" constructs
1031 	     in the source language and are better to be handled
1032 	     separately.  */
1033 	  if (predicted_by_p (bb, PRED_CONTINUE))
1034 	    continue;
1035 
1036 	  /* Loop branch heuristics - predict an edge back to a
1037 	     loop's head as taken.  */
1038 	  if (bb == loop->latch)
1039 	    {
1040 	      e = find_edge (loop->latch, loop->header);
1041 	      if (e)
1042 		{
1043 		  header_found = 1;
1044 		  predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1045 		}
1046 	    }
1047 
1048 	  /* Loop exit heuristics - predict an edge exiting the loop if the
1049 	     conditional has no loop header successors as not taken.  */
1050 	  if (!header_found
1051 	      /* If we already used more reliable loop exit predictors, do not
1052 		 bother with PRED_LOOP_EXIT.  */
1053 	      && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1054 	      && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1055 	    {
1056 	      /* For loop with many exits we don't want to predict all exits
1057 	         with the pretty large probability, because if all exits are
1058 		 considered in row, the loop would be predicted to iterate
1059 		 almost never.  The code to divide probability by number of
1060 		 exits is very rough.  It should compute the number of exits
1061 		 taken in each patch through function (not the overall number
1062 		 of exits that might be a lot higher for loops with wide switch
1063 		 statements in them) and compute n-th square root.
1064 
1065 		 We limit the minimal probability by 2% to avoid
1066 		 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1067 		 as this was causing regression in perl benchmark containing such
1068 		 a wide loop.  */
1069 
1070 	      int probability = ((REG_BR_PROB_BASE
1071 		                  - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1072 				 / n_exits);
1073 	      if (probability < HITRATE (2))
1074 		probability = HITRATE (2);
1075 	      FOR_EACH_EDGE (e, ei, bb->succs)
1076 		if (e->dest->index < NUM_FIXED_BLOCKS
1077 		    || !flow_bb_inside_loop_p (loop, e->dest))
1078 		  predict_edge (e, PRED_LOOP_EXIT, probability);
1079 	    }
1080 	}
1081 
1082       /* Free basic blocks from get_loop_body.  */
1083       free (bbs);
1084     }
1085 }
1086 
1087 /* Attempt to predict probabilities of BB outgoing edges using local
1088    properties.  */
1089 static void
1090 bb_estimate_probability_locally (basic_block bb)
1091 {
1092   rtx last_insn = BB_END (bb);
1093   rtx cond;
1094 
1095   if (! can_predict_insn_p (last_insn))
1096     return;
1097   cond = get_condition (last_insn, NULL, false, false);
1098   if (! cond)
1099     return;
1100 
1101   /* Try "pointer heuristic."
1102      A comparison ptr == 0 is predicted as false.
1103      Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
1104   if (COMPARISON_P (cond)
1105       && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1106 	  || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1107     {
1108       if (GET_CODE (cond) == EQ)
1109 	predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1110       else if (GET_CODE (cond) == NE)
1111 	predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1112     }
1113   else
1114 
1115   /* Try "opcode heuristic."
1116      EQ tests are usually false and NE tests are usually true. Also,
1117      most quantities are positive, so we can make the appropriate guesses
1118      about signed comparisons against zero.  */
1119     switch (GET_CODE (cond))
1120       {
1121       case CONST_INT:
1122 	/* Unconditional branch.  */
1123 	predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1124 			  cond == const0_rtx ? NOT_TAKEN : TAKEN);
1125 	break;
1126 
1127       case EQ:
1128       case UNEQ:
1129 	/* Floating point comparisons appears to behave in a very
1130 	   unpredictable way because of special role of = tests in
1131 	   FP code.  */
1132 	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1133 	  ;
1134 	/* Comparisons with 0 are often used for booleans and there is
1135 	   nothing useful to predict about them.  */
1136 	else if (XEXP (cond, 1) == const0_rtx
1137 		 || XEXP (cond, 0) == const0_rtx)
1138 	  ;
1139 	else
1140 	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1141 	break;
1142 
1143       case NE:
1144       case LTGT:
1145 	/* Floating point comparisons appears to behave in a very
1146 	   unpredictable way because of special role of = tests in
1147 	   FP code.  */
1148 	if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1149 	  ;
1150 	/* Comparisons with 0 are often used for booleans and there is
1151 	   nothing useful to predict about them.  */
1152 	else if (XEXP (cond, 1) == const0_rtx
1153 		 || XEXP (cond, 0) == const0_rtx)
1154 	  ;
1155 	else
1156 	  predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1157 	break;
1158 
1159       case ORDERED:
1160 	predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1161 	break;
1162 
1163       case UNORDERED:
1164 	predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1165 	break;
1166 
1167       case LE:
1168       case LT:
1169 	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1170 	    || XEXP (cond, 1) == constm1_rtx)
1171 	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1172 	break;
1173 
1174       case GE:
1175       case GT:
1176 	if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1177 	    || XEXP (cond, 1) == constm1_rtx)
1178 	  predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1179 	break;
1180 
1181       default:
1182 	break;
1183       }
1184 }
1185 
1186 /* Set edge->probability for each successor edge of BB.  */
1187 void
1188 guess_outgoing_edge_probabilities (basic_block bb)
1189 {
1190   bb_estimate_probability_locally (bb);
1191   combine_predictions_for_insn (BB_END (bb), bb);
1192 }
1193 
1194 static tree expr_expected_value (tree, bitmap);
1195 
1196 /* Helper function for expr_expected_value.  */
1197 
1198 static tree
1199 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1200 		       tree op1, bitmap visited)
1201 {
1202   gimple def;
1203 
1204   if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1205     {
1206       if (TREE_CONSTANT (op0))
1207 	return op0;
1208 
1209       if (code != SSA_NAME)
1210 	return NULL_TREE;
1211 
1212       def = SSA_NAME_DEF_STMT (op0);
1213 
1214       /* If we were already here, break the infinite cycle.  */
1215       if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1216 	return NULL;
1217 
1218       if (gimple_code (def) == GIMPLE_PHI)
1219 	{
1220 	  /* All the arguments of the PHI node must have the same constant
1221 	     length.  */
1222 	  int i, n = gimple_phi_num_args (def);
1223 	  tree val = NULL, new_val;
1224 
1225 	  for (i = 0; i < n; i++)
1226 	    {
1227 	      tree arg = PHI_ARG_DEF (def, i);
1228 
1229 	      /* If this PHI has itself as an argument, we cannot
1230 		 determine the string length of this argument.  However,
1231 		 if we can find an expected constant value for the other
1232 		 PHI args then we can still be sure that this is
1233 		 likely a constant.  So be optimistic and just
1234 		 continue with the next argument.  */
1235 	      if (arg == PHI_RESULT (def))
1236 		continue;
1237 
1238 	      new_val = expr_expected_value (arg, visited);
1239 	      if (!new_val)
1240 		return NULL;
1241 	      if (!val)
1242 		val = new_val;
1243 	      else if (!operand_equal_p (val, new_val, false))
1244 		return NULL;
1245 	    }
1246 	  return val;
1247 	}
1248       if (is_gimple_assign (def))
1249 	{
1250 	  if (gimple_assign_lhs (def) != op0)
1251 	    return NULL;
1252 
1253 	  return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1254 					gimple_assign_rhs1 (def),
1255 					gimple_assign_rhs_code (def),
1256 					gimple_assign_rhs2 (def),
1257 					visited);
1258 	}
1259 
1260       if (is_gimple_call (def))
1261 	{
1262 	  tree decl = gimple_call_fndecl (def);
1263 	  if (!decl)
1264 	    return NULL;
1265 	  if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1266 	    switch (DECL_FUNCTION_CODE (decl))
1267 	      {
1268 	      case BUILT_IN_EXPECT:
1269 		{
1270 		  tree val;
1271 		  if (gimple_call_num_args (def) != 2)
1272 		    return NULL;
1273 		  val = gimple_call_arg (def, 0);
1274 		  if (TREE_CONSTANT (val))
1275 		    return val;
1276 		  return gimple_call_arg (def, 1);
1277 		}
1278 
1279 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1280 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1281 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1282 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1283 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1284 	      case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1285 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1286 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1287 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1288 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1289 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1290 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1291 	      case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1292 		/* Assume that any given atomic operation has low contention,
1293 		   and thus the compare-and-swap operation succeeds.  */
1294 		return boolean_true_node;
1295 	    }
1296 	}
1297 
1298       return NULL;
1299     }
1300 
1301   if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1302     {
1303       tree res;
1304       op0 = expr_expected_value (op0, visited);
1305       if (!op0)
1306 	return NULL;
1307       op1 = expr_expected_value (op1, visited);
1308       if (!op1)
1309 	return NULL;
1310       res = fold_build2 (code, type, op0, op1);
1311       if (TREE_CONSTANT (res))
1312 	return res;
1313       return NULL;
1314     }
1315   if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1316     {
1317       tree res;
1318       op0 = expr_expected_value (op0, visited);
1319       if (!op0)
1320 	return NULL;
1321       res = fold_build1 (code, type, op0);
1322       if (TREE_CONSTANT (res))
1323 	return res;
1324       return NULL;
1325     }
1326   return NULL;
1327 }
1328 
1329 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1330    The function is used by builtin_expect branch predictor so the evidence
1331    must come from this construct and additional possible constant folding.
1332 
1333    We may want to implement more involved value guess (such as value range
1334    propagation based prediction), but such tricks shall go to new
1335    implementation.  */
1336 
1337 static tree
1338 expr_expected_value (tree expr, bitmap visited)
1339 {
1340   enum tree_code code;
1341   tree op0, op1;
1342 
1343   if (TREE_CONSTANT (expr))
1344     return expr;
1345 
1346   extract_ops_from_tree (expr, &code, &op0, &op1);
1347   return expr_expected_value_1 (TREE_TYPE (expr),
1348 				op0, code, op1, visited);
1349 }
1350 
1351 
1352 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1353    we no longer need.  */
1354 static unsigned int
1355 strip_predict_hints (void)
1356 {
1357   basic_block bb;
1358   gimple ass_stmt;
1359   tree var;
1360 
1361   FOR_EACH_BB (bb)
1362     {
1363       gimple_stmt_iterator bi;
1364       for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1365 	{
1366 	  gimple stmt = gsi_stmt (bi);
1367 
1368 	  if (gimple_code (stmt) == GIMPLE_PREDICT)
1369 	    {
1370 	      gsi_remove (&bi, true);
1371 	      continue;
1372 	    }
1373 	  else if (gimple_code (stmt) == GIMPLE_CALL)
1374 	    {
1375 	      tree fndecl = gimple_call_fndecl (stmt);
1376 
1377 	      if (fndecl
1378 		  && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1379 		  && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1380 		  && gimple_call_num_args (stmt) == 2)
1381 		{
1382 		  var = gimple_call_lhs (stmt);
1383 		  if (var)
1384 		    {
1385 		      ass_stmt
1386 			= gimple_build_assign (var, gimple_call_arg (stmt, 0));
1387 		      gsi_replace (&bi, ass_stmt, true);
1388 		    }
1389 		  else
1390 		    {
1391 		      gsi_remove (&bi, true);
1392 		      continue;
1393 		    }
1394 		}
1395 	    }
1396 	  gsi_next (&bi);
1397 	}
1398     }
1399   return 0;
1400 }
1401 
1402 /* Predict using opcode of the last statement in basic block.  */
1403 static void
1404 tree_predict_by_opcode (basic_block bb)
1405 {
1406   gimple stmt = last_stmt (bb);
1407   edge then_edge;
1408   tree op0, op1;
1409   tree type;
1410   tree val;
1411   enum tree_code cmp;
1412   bitmap visited;
1413   edge_iterator ei;
1414 
1415   if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1416     return;
1417   FOR_EACH_EDGE (then_edge, ei, bb->succs)
1418     if (then_edge->flags & EDGE_TRUE_VALUE)
1419       break;
1420   op0 = gimple_cond_lhs (stmt);
1421   op1 = gimple_cond_rhs (stmt);
1422   cmp = gimple_cond_code (stmt);
1423   type = TREE_TYPE (op0);
1424   visited = BITMAP_ALLOC (NULL);
1425   val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1426   BITMAP_FREE (visited);
1427   if (val)
1428     {
1429       if (integer_zerop (val))
1430 	predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1431       else
1432 	predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1433       return;
1434     }
1435   /* Try "pointer heuristic."
1436      A comparison ptr == 0 is predicted as false.
1437      Similarly, a comparison ptr1 == ptr2 is predicted as false.  */
1438   if (POINTER_TYPE_P (type))
1439     {
1440       if (cmp == EQ_EXPR)
1441 	predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1442       else if (cmp == NE_EXPR)
1443 	predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1444     }
1445   else
1446 
1447   /* Try "opcode heuristic."
1448      EQ tests are usually false and NE tests are usually true. Also,
1449      most quantities are positive, so we can make the appropriate guesses
1450      about signed comparisons against zero.  */
1451     switch (cmp)
1452       {
1453       case EQ_EXPR:
1454       case UNEQ_EXPR:
1455 	/* Floating point comparisons appears to behave in a very
1456 	   unpredictable way because of special role of = tests in
1457 	   FP code.  */
1458 	if (FLOAT_TYPE_P (type))
1459 	  ;
1460 	/* Comparisons with 0 are often used for booleans and there is
1461 	   nothing useful to predict about them.  */
1462 	else if (integer_zerop (op0) || integer_zerop (op1))
1463 	  ;
1464 	else
1465 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1466 	break;
1467 
1468       case NE_EXPR:
1469       case LTGT_EXPR:
1470 	/* Floating point comparisons appears to behave in a very
1471 	   unpredictable way because of special role of = tests in
1472 	   FP code.  */
1473 	if (FLOAT_TYPE_P (type))
1474 	  ;
1475 	/* Comparisons with 0 are often used for booleans and there is
1476 	   nothing useful to predict about them.  */
1477 	else if (integer_zerop (op0)
1478 		 || integer_zerop (op1))
1479 	  ;
1480 	else
1481 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1482 	break;
1483 
1484       case ORDERED_EXPR:
1485 	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1486 	break;
1487 
1488       case UNORDERED_EXPR:
1489 	predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1490 	break;
1491 
1492       case LE_EXPR:
1493       case LT_EXPR:
1494 	if (integer_zerop (op1)
1495 	    || integer_onep (op1)
1496 	    || integer_all_onesp (op1)
1497 	    || real_zerop (op1)
1498 	    || real_onep (op1)
1499 	    || real_minus_onep (op1))
1500 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1501 	break;
1502 
1503       case GE_EXPR:
1504       case GT_EXPR:
1505 	if (integer_zerop (op1)
1506 	    || integer_onep (op1)
1507 	    || integer_all_onesp (op1)
1508 	    || real_zerop (op1)
1509 	    || real_onep (op1)
1510 	    || real_minus_onep (op1))
1511 	  predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1512 	break;
1513 
1514       default:
1515 	break;
1516       }
1517 }
1518 
1519 /* Try to guess whether the value of return means error code.  */
1520 
1521 static enum br_predictor
1522 return_prediction (tree val, enum prediction *prediction)
1523 {
1524   /* VOID.  */
1525   if (!val)
1526     return PRED_NO_PREDICTION;
1527   /* Different heuristics for pointers and scalars.  */
1528   if (POINTER_TYPE_P (TREE_TYPE (val)))
1529     {
1530       /* NULL is usually not returned.  */
1531       if (integer_zerop (val))
1532 	{
1533 	  *prediction = NOT_TAKEN;
1534 	  return PRED_NULL_RETURN;
1535 	}
1536     }
1537   else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1538     {
1539       /* Negative return values are often used to indicate
1540          errors.  */
1541       if (TREE_CODE (val) == INTEGER_CST
1542 	  && tree_int_cst_sgn (val) < 0)
1543 	{
1544 	  *prediction = NOT_TAKEN;
1545 	  return PRED_NEGATIVE_RETURN;
1546 	}
1547       /* Constant return values seems to be commonly taken.
1548          Zero/one often represent booleans so exclude them from the
1549 	 heuristics.  */
1550       if (TREE_CONSTANT (val)
1551 	  && (!integer_zerop (val) && !integer_onep (val)))
1552 	{
1553 	  *prediction = TAKEN;
1554 	  return PRED_CONST_RETURN;
1555 	}
1556     }
1557   return PRED_NO_PREDICTION;
1558 }
1559 
1560 /* Find the basic block with return expression and look up for possible
1561    return value trying to apply RETURN_PREDICTION heuristics.  */
1562 static void
1563 apply_return_prediction (void)
1564 {
1565   gimple return_stmt = NULL;
1566   tree return_val;
1567   edge e;
1568   gimple phi;
1569   int phi_num_args, i;
1570   enum br_predictor pred;
1571   enum prediction direction;
1572   edge_iterator ei;
1573 
1574   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1575     {
1576       return_stmt = last_stmt (e->src);
1577       if (return_stmt
1578 	  && gimple_code (return_stmt) == GIMPLE_RETURN)
1579 	break;
1580     }
1581   if (!e)
1582     return;
1583   return_val = gimple_return_retval (return_stmt);
1584   if (!return_val)
1585     return;
1586   if (TREE_CODE (return_val) != SSA_NAME
1587       || !SSA_NAME_DEF_STMT (return_val)
1588       || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1589     return;
1590   phi = SSA_NAME_DEF_STMT (return_val);
1591   phi_num_args = gimple_phi_num_args (phi);
1592   pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1593 
1594   /* Avoid the degenerate case where all return values form the function
1595      belongs to same category (ie they are all positive constants)
1596      so we can hardly say something about them.  */
1597   for (i = 1; i < phi_num_args; i++)
1598     if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1599       break;
1600   if (i != phi_num_args)
1601     for (i = 0; i < phi_num_args; i++)
1602       {
1603 	pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1604 	if (pred != PRED_NO_PREDICTION)
1605 	  predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
1606 				         direction);
1607       }
1608 }
1609 
1610 /* Look for basic block that contains unlikely to happen events
1611    (such as noreturn calls) and mark all paths leading to execution
1612    of this basic blocks as unlikely.  */
1613 
1614 static void
1615 tree_bb_level_predictions (void)
1616 {
1617   basic_block bb;
1618   bool has_return_edges = false;
1619   edge e;
1620   edge_iterator ei;
1621 
1622   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1623     if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1624       {
1625         has_return_edges = true;
1626 	break;
1627       }
1628 
1629   apply_return_prediction ();
1630 
1631   FOR_EACH_BB (bb)
1632     {
1633       gimple_stmt_iterator gsi;
1634 
1635       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1636 	{
1637 	  gimple stmt = gsi_stmt (gsi);
1638 	  tree decl;
1639 
1640 	  if (is_gimple_call (stmt))
1641 	    {
1642 	      if ((gimple_call_flags (stmt) & ECF_NORETURN)
1643 	          && has_return_edges)
1644 		predict_paths_leading_to (bb, PRED_NORETURN,
1645 					  NOT_TAKEN);
1646 	      decl = gimple_call_fndecl (stmt);
1647 	      if (decl
1648 		  && lookup_attribute ("cold",
1649 				       DECL_ATTRIBUTES (decl)))
1650 		predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1651 					  NOT_TAKEN);
1652 	    }
1653 	  else if (gimple_code (stmt) == GIMPLE_PREDICT)
1654 	    {
1655 	      predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1656 					gimple_predict_outcome (stmt));
1657 	      /* Keep GIMPLE_PREDICT around so early inlining will propagate
1658 	         hints to callers.  */
1659 	    }
1660 	}
1661     }
1662 }
1663 
1664 #ifdef ENABLE_CHECKING
1665 
1666 /* Callback for pointer_map_traverse, asserts that the pointer map is
1667    empty.  */
1668 
1669 static bool
1670 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1671 		 void *data ATTRIBUTE_UNUSED)
1672 {
1673   gcc_assert (!*value);
1674   return false;
1675 }
1676 #endif
1677 
1678 /* Predict branch probabilities and estimate profile for basic block BB.  */
1679 
1680 static void
1681 tree_estimate_probability_bb (basic_block bb)
1682 {
1683   edge e;
1684   edge_iterator ei;
1685   gimple last;
1686 
1687   FOR_EACH_EDGE (e, ei, bb->succs)
1688     {
1689       /* Predict early returns to be probable, as we've already taken
1690 	 care for error returns and other cases are often used for
1691 	 fast paths through function.
1692 
1693 	 Since we've already removed the return statements, we are
1694 	 looking for CFG like:
1695 
1696 	 if (conditional)
1697 	 {
1698 	 ..
1699 	 goto return_block
1700 	 }
1701 	 some other blocks
1702 	 return_block:
1703 	 return_stmt.  */
1704       if (e->dest != bb->next_bb
1705 	  && e->dest != EXIT_BLOCK_PTR
1706 	  && single_succ_p (e->dest)
1707 	  && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1708 	  && (last = last_stmt (e->dest)) != NULL
1709 	  && gimple_code (last) == GIMPLE_RETURN)
1710 	{
1711 	  edge e1;
1712 	  edge_iterator ei1;
1713 
1714 	  if (single_succ_p (bb))
1715 	    {
1716 	      FOR_EACH_EDGE (e1, ei1, bb->preds)
1717 		if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1718 		    && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1719 		    && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1720 		  predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1721 	    }
1722 	  else
1723 	    if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1724 		&& !predicted_by_p (e->src, PRED_CONST_RETURN)
1725 		&& !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1726 	      predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1727 	}
1728 
1729       /* Look for block we are guarding (ie we dominate it,
1730 	 but it doesn't postdominate us).  */
1731       if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1732 	  && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1733 	  && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1734 	{
1735 	  gimple_stmt_iterator bi;
1736 
1737 	  /* The call heuristic claims that a guarded function call
1738 	     is improbable.  This is because such calls are often used
1739 	     to signal exceptional situations such as printing error
1740 	     messages.  */
1741 	  for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1742 	       gsi_next (&bi))
1743 	    {
1744 	      gimple stmt = gsi_stmt (bi);
1745 	      if (is_gimple_call (stmt)
1746 		  /* Constant and pure calls are hardly used to signalize
1747 		     something exceptional.  */
1748 		  && gimple_has_side_effects (stmt))
1749 		{
1750 		  predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1751 		  break;
1752 		}
1753 	    }
1754 	}
1755     }
1756   tree_predict_by_opcode (bb);
1757 }
1758 
1759 /* Predict branch probabilities and estimate profile of the tree CFG.
1760    This function can be called from the loop optimizers to recompute
1761    the profile information.  */
1762 
1763 void
1764 tree_estimate_probability (void)
1765 {
1766   basic_block bb;
1767 
1768   add_noreturn_fake_exit_edges ();
1769   connect_infinite_loops_to_exit ();
1770   /* We use loop_niter_by_eval, which requires that the loops have
1771      preheaders.  */
1772   create_preheaders (CP_SIMPLE_PREHEADERS);
1773   calculate_dominance_info (CDI_POST_DOMINATORS);
1774 
1775   bb_predictions = pointer_map_create ();
1776   tree_bb_level_predictions ();
1777   record_loop_exits ();
1778 
1779   if (number_of_loops () > 1)
1780     predict_loops ();
1781 
1782   FOR_EACH_BB (bb)
1783     tree_estimate_probability_bb (bb);
1784 
1785   FOR_EACH_BB (bb)
1786     combine_predictions_for_bb (bb);
1787 
1788 #ifdef ENABLE_CHECKING
1789   pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1790 #endif
1791   pointer_map_destroy (bb_predictions);
1792   bb_predictions = NULL;
1793 
1794   estimate_bb_frequencies ();
1795   free_dominance_info (CDI_POST_DOMINATORS);
1796   remove_fake_exit_edges ();
1797 }
1798 
1799 /* Predict branch probabilities and estimate profile of the tree CFG.
1800    This is the driver function for PASS_PROFILE.  */
1801 
1802 static unsigned int
1803 tree_estimate_probability_driver (void)
1804 {
1805   unsigned nb_loops;
1806 
1807   loop_optimizer_init (0);
1808   if (dump_file && (dump_flags & TDF_DETAILS))
1809     flow_loops_dump (dump_file, NULL, 0);
1810 
1811   mark_irreducible_loops ();
1812 
1813   nb_loops = number_of_loops ();
1814   if (nb_loops > 1)
1815     scev_initialize ();
1816 
1817   tree_estimate_probability ();
1818 
1819   if (nb_loops > 1)
1820     scev_finalize ();
1821 
1822   loop_optimizer_finalize ();
1823   if (dump_file && (dump_flags & TDF_DETAILS))
1824     gimple_dump_cfg (dump_file, dump_flags);
1825   if (profile_status == PROFILE_ABSENT)
1826     profile_status = PROFILE_GUESSED;
1827   return 0;
1828 }
1829 
1830 /* Predict edges to successors of CUR whose sources are not postdominated by
1831    BB by PRED and recurse to all postdominators.  */
1832 
1833 static void
1834 predict_paths_for_bb (basic_block cur, basic_block bb,
1835 		      enum br_predictor pred,
1836 		      enum prediction taken,
1837 		      bitmap visited)
1838 {
1839   edge e;
1840   edge_iterator ei;
1841   basic_block son;
1842 
1843   /* We are looking for all edges forming edge cut induced by
1844      set of all blocks postdominated by BB.  */
1845   FOR_EACH_EDGE (e, ei, cur->preds)
1846     if (e->src->index >= NUM_FIXED_BLOCKS
1847 	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1848     {
1849       edge e2;
1850       edge_iterator ei2;
1851       bool found = false;
1852 
1853       /* Ignore fake edges and eh, we predict them as not taken anyway.  */
1854       if (e->flags & (EDGE_EH | EDGE_FAKE))
1855 	continue;
1856       gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1857 
1858       /* See if there is an edge from e->src that is not abnormal
1859 	 and does not lead to BB.  */
1860       FOR_EACH_EDGE (e2, ei2, e->src->succs)
1861 	if (e2 != e
1862 	    && !(e2->flags & (EDGE_EH | EDGE_FAKE))
1863 	    && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
1864 	  {
1865 	    found = true;
1866 	    break;
1867 	  }
1868 
1869       /* If there is non-abnormal path leaving e->src, predict edge
1870 	 using predictor.  Otherwise we need to look for paths
1871 	 leading to e->src.
1872 
1873 	 The second may lead to infinite loop in the case we are predicitng
1874 	 regions that are only reachable by abnormal edges.  We simply
1875 	 prevent visiting given BB twice.  */
1876       if (found)
1877         predict_edge_def (e, pred, taken);
1878       else if (bitmap_set_bit (visited, e->src->index))
1879 	predict_paths_for_bb (e->src, e->src, pred, taken, visited);
1880     }
1881   for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1882        son;
1883        son = next_dom_son (CDI_POST_DOMINATORS, son))
1884     predict_paths_for_bb (son, bb, pred, taken, visited);
1885 }
1886 
1887 /* Sets branch probabilities according to PREDiction and
1888    FLAGS.  */
1889 
1890 static void
1891 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1892 			  enum prediction taken)
1893 {
1894   bitmap visited = BITMAP_ALLOC (NULL);
1895   predict_paths_for_bb (bb, bb, pred, taken, visited);
1896   BITMAP_FREE (visited);
1897 }
1898 
1899 /* Like predict_paths_leading_to but take edge instead of basic block.  */
1900 
1901 static void
1902 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
1903 			       enum prediction taken)
1904 {
1905   bool has_nonloop_edge = false;
1906   edge_iterator ei;
1907   edge e2;
1908 
1909   basic_block bb = e->src;
1910   FOR_EACH_EDGE (e2, ei, bb->succs)
1911     if (e2->dest != e->src && e2->dest != e->dest
1912 	&& !(e->flags & (EDGE_EH | EDGE_FAKE))
1913 	&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
1914       {
1915 	has_nonloop_edge = true;
1916 	break;
1917       }
1918   if (!has_nonloop_edge)
1919     {
1920       bitmap visited = BITMAP_ALLOC (NULL);
1921       predict_paths_for_bb (bb, bb, pred, taken, visited);
1922       BITMAP_FREE (visited);
1923     }
1924   else
1925     predict_edge_def (e, pred, taken);
1926 }
1927 
1928 /* This is used to carry information about basic blocks.  It is
1929    attached to the AUX field of the standard CFG block.  */
1930 
1931 typedef struct block_info_def
1932 {
1933   /* Estimated frequency of execution of basic_block.  */
1934   sreal frequency;
1935 
1936   /* To keep queue of basic blocks to process.  */
1937   basic_block next;
1938 
1939   /* Number of predecessors we need to visit first.  */
1940   int npredecessors;
1941 } *block_info;
1942 
1943 /* Similar information for edges.  */
1944 typedef struct edge_info_def
1945 {
1946   /* In case edge is a loopback edge, the probability edge will be reached
1947      in case header is.  Estimated number of iterations of the loop can be
1948      then computed as 1 / (1 - back_edge_prob).  */
1949   sreal back_edge_prob;
1950   /* True if the edge is a loopback edge in the natural loop.  */
1951   unsigned int back_edge:1;
1952 } *edge_info;
1953 
1954 #define BLOCK_INFO(B)	((block_info) (B)->aux)
1955 #define EDGE_INFO(E)	((edge_info) (E)->aux)
1956 
1957 /* Helper function for estimate_bb_frequencies.
1958    Propagate the frequencies in blocks marked in
1959    TOVISIT, starting in HEAD.  */
1960 
1961 static void
1962 propagate_freq (basic_block head, bitmap tovisit)
1963 {
1964   basic_block bb;
1965   basic_block last;
1966   unsigned i;
1967   edge e;
1968   basic_block nextbb;
1969   bitmap_iterator bi;
1970 
1971   /* For each basic block we need to visit count number of his predecessors
1972      we need to visit first.  */
1973   EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1974     {
1975       edge_iterator ei;
1976       int count = 0;
1977 
1978       bb = BASIC_BLOCK (i);
1979 
1980       FOR_EACH_EDGE (e, ei, bb->preds)
1981 	{
1982 	  bool visit = bitmap_bit_p (tovisit, e->src->index);
1983 
1984 	  if (visit && !(e->flags & EDGE_DFS_BACK))
1985 	    count++;
1986 	  else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1987 	    fprintf (dump_file,
1988 		     "Irreducible region hit, ignoring edge to %i->%i\n",
1989 		     e->src->index, bb->index);
1990 	}
1991       BLOCK_INFO (bb)->npredecessors = count;
1992       /* When function never returns, we will never process exit block.  */
1993       if (!count && bb == EXIT_BLOCK_PTR)
1994 	bb->count = bb->frequency = 0;
1995     }
1996 
1997   memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1998   last = head;
1999   for (bb = head; bb; bb = nextbb)
2000     {
2001       edge_iterator ei;
2002       sreal cyclic_probability, frequency;
2003 
2004       memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2005       memcpy (&frequency, &real_zero, sizeof (real_zero));
2006 
2007       nextbb = BLOCK_INFO (bb)->next;
2008       BLOCK_INFO (bb)->next = NULL;
2009 
2010       /* Compute frequency of basic block.  */
2011       if (bb != head)
2012 	{
2013 #ifdef ENABLE_CHECKING
2014 	  FOR_EACH_EDGE (e, ei, bb->preds)
2015 	    gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2016 			|| (e->flags & EDGE_DFS_BACK));
2017 #endif
2018 
2019 	  FOR_EACH_EDGE (e, ei, bb->preds)
2020 	    if (EDGE_INFO (e)->back_edge)
2021 	      {
2022 		sreal_add (&cyclic_probability, &cyclic_probability,
2023 			   &EDGE_INFO (e)->back_edge_prob);
2024 	      }
2025 	    else if (!(e->flags & EDGE_DFS_BACK))
2026 	      {
2027 		sreal tmp;
2028 
2029 		/*  frequency += (e->probability
2030 				  * BLOCK_INFO (e->src)->frequency /
2031 				  REG_BR_PROB_BASE);  */
2032 
2033 		sreal_init (&tmp, e->probability, 0);
2034 		sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2035 		sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2036 		sreal_add (&frequency, &frequency, &tmp);
2037 	      }
2038 
2039 	  if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2040 	    {
2041 	      memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2042 		      sizeof (frequency));
2043 	    }
2044 	  else
2045 	    {
2046 	      if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2047 		{
2048 		  memcpy (&cyclic_probability, &real_almost_one,
2049 			  sizeof (real_almost_one));
2050 		}
2051 
2052 	      /* BLOCK_INFO (bb)->frequency = frequency
2053 					      / (1 - cyclic_probability) */
2054 
2055 	      sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2056 	      sreal_div (&BLOCK_INFO (bb)->frequency,
2057 			 &frequency, &cyclic_probability);
2058 	    }
2059 	}
2060 
2061       bitmap_clear_bit (tovisit, bb->index);
2062 
2063       e = find_edge (bb, head);
2064       if (e)
2065 	{
2066 	  sreal tmp;
2067 
2068 	  /* EDGE_INFO (e)->back_edge_prob
2069 	     = ((e->probability * BLOCK_INFO (bb)->frequency)
2070 	     / REG_BR_PROB_BASE); */
2071 
2072 	  sreal_init (&tmp, e->probability, 0);
2073 	  sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2074 	  sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2075 		     &tmp, &real_inv_br_prob_base);
2076 	}
2077 
2078       /* Propagate to successor blocks.  */
2079       FOR_EACH_EDGE (e, ei, bb->succs)
2080 	if (!(e->flags & EDGE_DFS_BACK)
2081 	    && BLOCK_INFO (e->dest)->npredecessors)
2082 	  {
2083 	    BLOCK_INFO (e->dest)->npredecessors--;
2084 	    if (!BLOCK_INFO (e->dest)->npredecessors)
2085 	      {
2086 		if (!nextbb)
2087 		  nextbb = e->dest;
2088 		else
2089 		  BLOCK_INFO (last)->next = e->dest;
2090 
2091 		last = e->dest;
2092 	      }
2093 	  }
2094     }
2095 }
2096 
2097 /* Estimate probabilities of loopback edges in loops at same nest level.  */
2098 
2099 static void
2100 estimate_loops_at_level (struct loop *first_loop)
2101 {
2102   struct loop *loop;
2103 
2104   for (loop = first_loop; loop; loop = loop->next)
2105     {
2106       edge e;
2107       basic_block *bbs;
2108       unsigned i;
2109       bitmap tovisit = BITMAP_ALLOC (NULL);
2110 
2111       estimate_loops_at_level (loop->inner);
2112 
2113       /* Find current loop back edge and mark it.  */
2114       e = loop_latch_edge (loop);
2115       EDGE_INFO (e)->back_edge = 1;
2116 
2117       bbs = get_loop_body (loop);
2118       for (i = 0; i < loop->num_nodes; i++)
2119 	bitmap_set_bit (tovisit, bbs[i]->index);
2120       free (bbs);
2121       propagate_freq (loop->header, tovisit);
2122       BITMAP_FREE (tovisit);
2123     }
2124 }
2125 
2126 /* Propagates frequencies through structure of loops.  */
2127 
2128 static void
2129 estimate_loops (void)
2130 {
2131   bitmap tovisit = BITMAP_ALLOC (NULL);
2132   basic_block bb;
2133 
2134   /* Start by estimating the frequencies in the loops.  */
2135   if (number_of_loops () > 1)
2136     estimate_loops_at_level (current_loops->tree_root->inner);
2137 
2138   /* Now propagate the frequencies through all the blocks.  */
2139   FOR_ALL_BB (bb)
2140     {
2141       bitmap_set_bit (tovisit, bb->index);
2142     }
2143   propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2144   BITMAP_FREE (tovisit);
2145 }
2146 
2147 /* Convert counts measured by profile driven feedback to frequencies.
2148    Return nonzero iff there was any nonzero execution count.  */
2149 
2150 int
2151 counts_to_freqs (void)
2152 {
2153   gcov_type count_max, true_count_max = 0;
2154   basic_block bb;
2155 
2156   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2157     true_count_max = MAX (bb->count, true_count_max);
2158 
2159   count_max = MAX (true_count_max, 1);
2160   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2161     bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2162 
2163   return true_count_max;
2164 }
2165 
2166 /* Return true if function is likely to be expensive, so there is no point to
2167    optimize performance of prologue, epilogue or do inlining at the expense
2168    of code size growth.  THRESHOLD is the limit of number of instructions
2169    function can execute at average to be still considered not expensive.  */
2170 
2171 bool
2172 expensive_function_p (int threshold)
2173 {
2174   unsigned int sum = 0;
2175   basic_block bb;
2176   unsigned int limit;
2177 
2178   /* We can not compute accurately for large thresholds due to scaled
2179      frequencies.  */
2180   gcc_assert (threshold <= BB_FREQ_MAX);
2181 
2182   /* Frequencies are out of range.  This either means that function contains
2183      internal loop executing more than BB_FREQ_MAX times or profile feedback
2184      is available and function has not been executed at all.  */
2185   if (ENTRY_BLOCK_PTR->frequency == 0)
2186     return true;
2187 
2188   /* Maximally BB_FREQ_MAX^2 so overflow won't happen.  */
2189   limit = ENTRY_BLOCK_PTR->frequency * threshold;
2190   FOR_EACH_BB (bb)
2191     {
2192       rtx insn;
2193 
2194       for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2195 	   insn = NEXT_INSN (insn))
2196 	if (active_insn_p (insn))
2197 	  {
2198 	    sum += bb->frequency;
2199 	    if (sum > limit)
2200 	      return true;
2201 	}
2202     }
2203 
2204   return false;
2205 }
2206 
2207 /* Estimate basic blocks frequency by given branch probabilities.  */
2208 
2209 void
2210 estimate_bb_frequencies (void)
2211 {
2212   basic_block bb;
2213   sreal freq_max;
2214 
2215   if (profile_status != PROFILE_READ || !counts_to_freqs ())
2216     {
2217       static int real_values_initialized = 0;
2218 
2219       if (!real_values_initialized)
2220         {
2221 	  real_values_initialized = 1;
2222 	  sreal_init (&real_zero, 0, 0);
2223 	  sreal_init (&real_one, 1, 0);
2224 	  sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2225 	  sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2226 	  sreal_init (&real_one_half, 1, -1);
2227 	  sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2228 	  sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2229 	}
2230 
2231       mark_dfs_back_edges ();
2232 
2233       single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2234 
2235       /* Set up block info for each basic block.  */
2236       alloc_aux_for_blocks (sizeof (struct block_info_def));
2237       alloc_aux_for_edges (sizeof (struct edge_info_def));
2238       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2239 	{
2240 	  edge e;
2241 	  edge_iterator ei;
2242 
2243 	  FOR_EACH_EDGE (e, ei, bb->succs)
2244 	    {
2245 	      sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2246 	      sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2247 			 &EDGE_INFO (e)->back_edge_prob,
2248 			 &real_inv_br_prob_base);
2249 	    }
2250 	}
2251 
2252       /* First compute probabilities locally for each loop from innermost
2253          to outermost to examine probabilities for back edges.  */
2254       estimate_loops ();
2255 
2256       memcpy (&freq_max, &real_zero, sizeof (real_zero));
2257       FOR_EACH_BB (bb)
2258 	if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2259 	  memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2260 
2261       sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2262       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2263 	{
2264 	  sreal tmp;
2265 
2266 	  sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2267 	  sreal_add (&tmp, &tmp, &real_one_half);
2268 	  bb->frequency = sreal_to_int (&tmp);
2269 	}
2270 
2271       free_aux_for_blocks ();
2272       free_aux_for_edges ();
2273     }
2274   compute_function_frequency ();
2275 }
2276 
2277 /* Decide whether function is hot, cold or unlikely executed.  */
2278 void
2279 compute_function_frequency (void)
2280 {
2281   basic_block bb;
2282   struct cgraph_node *node = cgraph_get_node (current_function_decl);
2283   if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2284       || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2285     node->only_called_at_startup = true;
2286   if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2287     node->only_called_at_exit = true;
2288 
2289   if (!profile_info || !flag_branch_probabilities)
2290     {
2291       int flags = flags_from_decl_or_type (current_function_decl);
2292       if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2293 	  != NULL)
2294         node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2295       else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2296 	       != NULL)
2297         node->frequency = NODE_FREQUENCY_HOT;
2298       else if (flags & ECF_NORETURN)
2299         node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2300       else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2301         node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2302       else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2303 	       || DECL_STATIC_DESTRUCTOR (current_function_decl))
2304         node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2305       return;
2306     }
2307   node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2308   FOR_EACH_BB (bb)
2309     {
2310       if (maybe_hot_bb_p (bb))
2311 	{
2312 	  node->frequency = NODE_FREQUENCY_HOT;
2313 	  return;
2314 	}
2315       if (!probably_never_executed_bb_p (bb))
2316 	node->frequency = NODE_FREQUENCY_NORMAL;
2317     }
2318 }
2319 
2320 static bool
2321 gate_estimate_probability (void)
2322 {
2323   return flag_guess_branch_prob;
2324 }
2325 
2326 /* Build PREDICT_EXPR.  */
2327 tree
2328 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2329 {
2330   tree t = build1 (PREDICT_EXPR, void_type_node,
2331 		   build_int_cst (integer_type_node, predictor));
2332   SET_PREDICT_EXPR_OUTCOME (t, taken);
2333   return t;
2334 }
2335 
2336 const char *
2337 predictor_name (enum br_predictor predictor)
2338 {
2339   return predictor_info[predictor].name;
2340 }
2341 
2342 struct gimple_opt_pass pass_profile =
2343 {
2344  {
2345   GIMPLE_PASS,
2346   "profile_estimate",			/* name */
2347   gate_estimate_probability,		/* gate */
2348   tree_estimate_probability_driver,	/* execute */
2349   NULL,					/* sub */
2350   NULL,					/* next */
2351   0,					/* static_pass_number */
2352   TV_BRANCH_PROB,			/* tv_id */
2353   PROP_cfg,				/* properties_required */
2354   0,					/* properties_provided */
2355   0,					/* properties_destroyed */
2356   0,					/* todo_flags_start */
2357   TODO_ggc_collect | TODO_verify_ssa			/* todo_flags_finish */
2358  }
2359 };
2360 
2361 struct gimple_opt_pass pass_strip_predict_hints =
2362 {
2363  {
2364   GIMPLE_PASS,
2365   "*strip_predict_hints",		/* name */
2366   NULL,					/* gate */
2367   strip_predict_hints,			/* execute */
2368   NULL,					/* sub */
2369   NULL,					/* next */
2370   0,					/* static_pass_number */
2371   TV_BRANCH_PROB,			/* tv_id */
2372   PROP_cfg,				/* properties_required */
2373   0,					/* properties_provided */
2374   0,					/* properties_destroyed */
2375   0,					/* todo_flags_start */
2376   TODO_ggc_collect | TODO_verify_ssa			/* todo_flags_finish */
2377  }
2378 };
2379 
2380 /* Rebuild function frequencies.  Passes are in general expected to
2381    maintain profile by hand, however in some cases this is not possible:
2382    for example when inlining several functions with loops freuqencies might run
2383    out of scale and thus needs to be recomputed.  */
2384 
2385 void
2386 rebuild_frequencies (void)
2387 {
2388   timevar_push (TV_REBUILD_FREQUENCIES);
2389   if (profile_status == PROFILE_GUESSED)
2390     {
2391       loop_optimizer_init (0);
2392       add_noreturn_fake_exit_edges ();
2393       mark_irreducible_loops ();
2394       connect_infinite_loops_to_exit ();
2395       estimate_bb_frequencies ();
2396       remove_fake_exit_edges ();
2397       loop_optimizer_finalize ();
2398     }
2399   else if (profile_status == PROFILE_READ)
2400     counts_to_freqs ();
2401   else
2402     gcc_unreachable ();
2403   timevar_pop (TV_REBUILD_FREQUENCIES);
2404 }
2405