xref: /dragonfly/contrib/gcc-4.7/gcc/profile.c (revision 9348a738)
1 /* Calculate branch probabilities, and basic block execution counts.
2    Copyright (C) 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012
4    Free Software Foundation, Inc.
5    Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
6    based on some ideas from Dain Samples of UC Berkeley.
7    Further mangling by Bob Manson, Cygnus Support.
8 
9 This file is part of GCC.
10 
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15 
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19 for more details.
20 
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3.  If not see
23 <http://www.gnu.org/licenses/>.  */
24 
25 /* Generate basic block profile instrumentation and auxiliary files.
26    Profile generation is optimized, so that not all arcs in the basic
27    block graph need instrumenting. First, the BB graph is closed with
28    one entry (function start), and one exit (function exit).  Any
29    ABNORMAL_EDGE cannot be instrumented (because there is no control
30    path to place the code). We close the graph by inserting fake
31    EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
32    edges that do not go to the exit_block. We ignore such abnormal
33    edges.  Naturally these fake edges are never directly traversed,
34    and so *cannot* be directly instrumented.  Some other graph
35    massaging is done. To optimize the instrumentation we generate the
36    BB minimal span tree, only edges that are not on the span tree
37    (plus the entry point) need instrumenting. From that information
38    all other edge counts can be deduced.  By construction all fake
39    edges must be on the spanning tree. We also attempt to place
40    EDGE_CRITICAL edges on the spanning tree.
41 
42    The auxiliary files generated are <dumpbase>.gcno (at compile time)
43    and <dumpbase>.gcda (at run time).  The format is
44    described in full in gcov-io.h.  */
45 
46 /* ??? Register allocation should use basic block execution counts to
47    give preference to the most commonly executed blocks.  */
48 
49 /* ??? Should calculate branch probabilities before instrumenting code, since
50    then we can use arc counts to help decide which arcs to instrument.  */
51 
52 #include "config.h"
53 #include "system.h"
54 #include "coretypes.h"
55 #include "tm.h"
56 #include "rtl.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "regs.h"
60 #include "expr.h"
61 #include "function.h"
62 #include "basic-block.h"
63 #include "diagnostic-core.h"
64 #include "coverage.h"
65 #include "value-prof.h"
66 #include "tree.h"
67 #include "cfghooks.h"
68 #include "tree-flow.h"
69 #include "timevar.h"
70 #include "cfgloop.h"
71 #include "tree-pass.h"
72 
73 #include "profile.h"
74 
75 struct bb_info {
76   unsigned int count_valid : 1;
77 
78   /* Number of successor and predecessor edges.  */
79   gcov_type succ_count;
80   gcov_type pred_count;
81 };
82 
83 #define BB_INFO(b)  ((struct bb_info *) (b)->aux)
84 
85 
86 /* Counter summary from the last set of coverage counts read.  */
87 
88 const struct gcov_ctr_summary *profile_info;
89 
90 /* Collect statistics on the performance of this pass for the entire source
91    file.  */
92 
93 static int total_num_blocks;
94 static int total_num_edges;
95 static int total_num_edges_ignored;
96 static int total_num_edges_instrumented;
97 static int total_num_blocks_created;
98 static int total_num_passes;
99 static int total_num_times_called;
100 static int total_hist_br_prob[20];
101 static int total_num_branches;
102 
103 /* Forward declarations.  */
104 static void find_spanning_tree (struct edge_list *);
105 
106 /* Add edge instrumentation code to the entire insn chain.
107 
108    F is the first insn of the chain.
109    NUM_BLOCKS is the number of basic blocks found in F.  */
110 
111 static unsigned
112 instrument_edges (struct edge_list *el)
113 {
114   unsigned num_instr_edges = 0;
115   int num_edges = NUM_EDGES (el);
116   basic_block bb;
117 
118   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
119     {
120       edge e;
121       edge_iterator ei;
122 
123       FOR_EACH_EDGE (e, ei, bb->succs)
124 	{
125 	  struct edge_info *inf = EDGE_INFO (e);
126 
127 	  if (!inf->ignore && !inf->on_tree)
128 	    {
129 	      gcc_assert (!(e->flags & EDGE_ABNORMAL));
130 	      if (dump_file)
131 		fprintf (dump_file, "Edge %d to %d instrumented%s\n",
132 			 e->src->index, e->dest->index,
133 			 EDGE_CRITICAL_P (e) ? " (and split)" : "");
134 	      gimple_gen_edge_profiler (num_instr_edges++, e);
135 	    }
136 	}
137     }
138 
139   total_num_blocks_created += num_edges;
140   if (dump_file)
141     fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
142   return num_instr_edges;
143 }
144 
145 /* Add code to measure histograms for values in list VALUES.  */
146 static void
147 instrument_values (histogram_values values)
148 {
149   unsigned i, t;
150 
151   /* Emit code to generate the histograms before the insns.  */
152 
153   for (i = 0; i < VEC_length (histogram_value, values); i++)
154     {
155       histogram_value hist = VEC_index (histogram_value, values, i);
156       switch (hist->type)
157 	{
158 	case HIST_TYPE_INTERVAL:
159 	  t = GCOV_COUNTER_V_INTERVAL;
160 	  break;
161 
162 	case HIST_TYPE_POW2:
163 	  t = GCOV_COUNTER_V_POW2;
164 	  break;
165 
166 	case HIST_TYPE_SINGLE_VALUE:
167 	  t = GCOV_COUNTER_V_SINGLE;
168 	  break;
169 
170 	case HIST_TYPE_CONST_DELTA:
171 	  t = GCOV_COUNTER_V_DELTA;
172 	  break;
173 
174  	case HIST_TYPE_INDIR_CALL:
175  	  t = GCOV_COUNTER_V_INDIR;
176  	  break;
177 
178  	case HIST_TYPE_AVERAGE:
179  	  t = GCOV_COUNTER_AVERAGE;
180  	  break;
181 
182  	case HIST_TYPE_IOR:
183  	  t = GCOV_COUNTER_IOR;
184  	  break;
185 
186 	default:
187 	  gcc_unreachable ();
188 	}
189       if (!coverage_counter_alloc (t, hist->n_counters))
190 	continue;
191 
192       switch (hist->type)
193 	{
194 	case HIST_TYPE_INTERVAL:
195 	  gimple_gen_interval_profiler (hist, t, 0);
196 	  break;
197 
198 	case HIST_TYPE_POW2:
199 	  gimple_gen_pow2_profiler (hist, t, 0);
200 	  break;
201 
202 	case HIST_TYPE_SINGLE_VALUE:
203 	  gimple_gen_one_value_profiler (hist, t, 0);
204 	  break;
205 
206 	case HIST_TYPE_CONST_DELTA:
207 	  gimple_gen_const_delta_profiler (hist, t, 0);
208 	  break;
209 
210  	case HIST_TYPE_INDIR_CALL:
211  	  gimple_gen_ic_profiler (hist, t, 0);
212   	  break;
213 
214 	case HIST_TYPE_AVERAGE:
215 	  gimple_gen_average_profiler (hist, t, 0);
216 	  break;
217 
218 	case HIST_TYPE_IOR:
219 	  gimple_gen_ior_profiler (hist, t, 0);
220 	  break;
221 
222 	default:
223 	  gcc_unreachable ();
224 	}
225     }
226 }
227 
228 
229 /* Computes hybrid profile for all matching entries in da_file.
230 
231    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
232 
233 static gcov_type *
234 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum)
235 {
236   unsigned num_edges = 0;
237   basic_block bb;
238   gcov_type *counts;
239 
240   /* Count the edges to be (possibly) instrumented.  */
241   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
242     {
243       edge e;
244       edge_iterator ei;
245 
246       FOR_EACH_EDGE (e, ei, bb->succs)
247 	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
248 	  num_edges++;
249     }
250 
251   counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, cfg_checksum,
252 				lineno_checksum, &profile_info);
253   if (!counts)
254     return NULL;
255 
256   if (dump_file && profile_info)
257     fprintf(dump_file, "Merged %u profiles with maximal count %u.\n",
258 	    profile_info->runs, (unsigned) profile_info->sum_max);
259 
260   return counts;
261 }
262 
263 
264 static bool
265 is_edge_inconsistent (VEC(edge,gc) *edges)
266 {
267   edge e;
268   edge_iterator ei;
269   FOR_EACH_EDGE (e, ei, edges)
270     {
271       if (!EDGE_INFO (e)->ignore)
272         {
273           if (e->count < 0
274 	      && (!(e->flags & EDGE_FAKE)
275 	          || !block_ends_with_call_p (e->src)))
276 	    {
277 	      if (dump_file)
278 		{
279 		  fprintf (dump_file,
280 		  	   "Edge %i->%i is inconsistent, count"HOST_WIDEST_INT_PRINT_DEC,
281 			   e->src->index, e->dest->index, e->count);
282 		  dump_bb (e->src, dump_file, 0);
283 		  dump_bb (e->dest, dump_file, 0);
284 		}
285               return true;
286 	    }
287         }
288     }
289   return false;
290 }
291 
292 static void
293 correct_negative_edge_counts (void)
294 {
295   basic_block bb;
296   edge e;
297   edge_iterator ei;
298 
299   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
300     {
301       FOR_EACH_EDGE (e, ei, bb->succs)
302         {
303            if (e->count < 0)
304              e->count = 0;
305         }
306     }
307 }
308 
309 /* Check consistency.
310    Return true if inconsistency is found.  */
311 static bool
312 is_inconsistent (void)
313 {
314   basic_block bb;
315   bool inconsistent = false;
316   FOR_EACH_BB (bb)
317     {
318       inconsistent |= is_edge_inconsistent (bb->preds);
319       if (!dump_file && inconsistent)
320 	return true;
321       inconsistent |= is_edge_inconsistent (bb->succs);
322       if (!dump_file && inconsistent)
323 	return true;
324       if (bb->count < 0)
325         {
326 	  if (dump_file)
327 	    {
328 	      fprintf (dump_file, "BB %i count is negative "
329 		       HOST_WIDEST_INT_PRINT_DEC,
330 		       bb->index,
331 		       bb->count);
332 	      dump_bb (bb, dump_file, 0);
333 	    }
334 	  inconsistent = true;
335 	}
336       if (bb->count != sum_edge_counts (bb->preds))
337         {
338 	  if (dump_file)
339 	    {
340 	      fprintf (dump_file, "BB %i count does not match sum of incoming edges "
341 		       HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
342 		       bb->index,
343 		       bb->count,
344 		       sum_edge_counts (bb->preds));
345 	      dump_bb (bb, dump_file, 0);
346 	    }
347 	  inconsistent = true;
348 	}
349       if (bb->count != sum_edge_counts (bb->succs) &&
350           ! (find_edge (bb, EXIT_BLOCK_PTR) != NULL && block_ends_with_call_p (bb)))
351 	{
352 	  if (dump_file)
353 	    {
354 	      fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
355 		       HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
356 		       bb->index,
357 		       bb->count,
358 		       sum_edge_counts (bb->succs));
359 	      dump_bb (bb, dump_file, 0);
360 	    }
361 	  inconsistent = true;
362 	}
363       if (!dump_file && inconsistent)
364 	return true;
365     }
366 
367   return inconsistent;
368 }
369 
370 /* Set each basic block count to the sum of its outgoing edge counts */
371 static void
372 set_bb_counts (void)
373 {
374   basic_block bb;
375   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
376     {
377       bb->count = sum_edge_counts (bb->succs);
378       gcc_assert (bb->count >= 0);
379     }
380 }
381 
382 /* Reads profile data and returns total number of edge counts read */
383 static int
384 read_profile_edge_counts (gcov_type *exec_counts)
385 {
386   basic_block bb;
387   int num_edges = 0;
388   int exec_counts_pos = 0;
389   /* For each edge not on the spanning tree, set its execution count from
390      the .da file.  */
391   /* The first count in the .da file is the number of times that the function
392      was entered.  This is the exec_count for block zero.  */
393 
394   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
395     {
396       edge e;
397       edge_iterator ei;
398 
399       FOR_EACH_EDGE (e, ei, bb->succs)
400 	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
401 	  {
402 	    num_edges++;
403 	    if (exec_counts)
404 	      {
405 		e->count = exec_counts[exec_counts_pos++];
406 		if (e->count > profile_info->sum_max)
407 		  {
408 		    if (flag_profile_correction)
409 		      {
410 			static bool informed = 0;
411 			if (!informed)
412 		          inform (input_location,
413 			          "corrupted profile info: edge count exceeds maximal count");
414 			informed = 1;
415 		      }
416 		    else
417 		      error ("corrupted profile info: edge from %i to %i exceeds maximal count",
418 			     bb->index, e->dest->index);
419 		  }
420 	      }
421 	    else
422 	      e->count = 0;
423 
424 	    EDGE_INFO (e)->count_valid = 1;
425 	    BB_INFO (bb)->succ_count--;
426 	    BB_INFO (e->dest)->pred_count--;
427 	    if (dump_file)
428 	      {
429 		fprintf (dump_file, "\nRead edge from %i to %i, count:",
430 			 bb->index, e->dest->index);
431 		fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
432 			 (HOST_WIDEST_INT) e->count);
433 	      }
434 	  }
435     }
436 
437     return num_edges;
438 }
439 
440 #define OVERLAP_BASE 10000
441 
442 /* Compare the static estimated profile to the actual profile, and
443    return the "degree of overlap" measure between them.
444 
445    Degree of overlap is a number between 0 and OVERLAP_BASE. It is
446    the sum of each basic block's minimum relative weights between
447    two profiles. And overlap of OVERLAP_BASE means two profiles are
448    identical.  */
449 
450 static int
451 compute_frequency_overlap (void)
452 {
453   gcov_type count_total = 0, freq_total = 0;
454   int overlap = 0;
455   basic_block bb;
456 
457   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
458     {
459       count_total += bb->count;
460       freq_total += bb->frequency;
461     }
462 
463   if (count_total == 0 || freq_total == 0)
464     return 0;
465 
466   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
467     overlap += MIN (bb->count * OVERLAP_BASE / count_total,
468 		    bb->frequency * OVERLAP_BASE / freq_total);
469 
470   return overlap;
471 }
472 
473 /* Compute the branch probabilities for the various branches.
474    Annotate them accordingly.
475 
476    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
477 
478 static void
479 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum)
480 {
481   basic_block bb;
482   int i;
483   int num_edges = 0;
484   int changes;
485   int passes;
486   int hist_br_prob[20];
487   int num_branches;
488   gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum);
489   int inconsistent = 0;
490 
491   /* Very simple sanity checks so we catch bugs in our profiling code.  */
492   if (!profile_info)
493     return;
494   if (profile_info->run_max * profile_info->runs < profile_info->sum_max)
495     {
496       error ("corrupted profile info: run_max * runs < sum_max");
497       exec_counts = NULL;
498     }
499 
500   if (profile_info->sum_all < profile_info->sum_max)
501     {
502       error ("corrupted profile info: sum_all is smaller than sum_max");
503       exec_counts = NULL;
504     }
505 
506   /* Attach extra info block to each bb.  */
507   alloc_aux_for_blocks (sizeof (struct bb_info));
508   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
509     {
510       edge e;
511       edge_iterator ei;
512 
513       FOR_EACH_EDGE (e, ei, bb->succs)
514 	if (!EDGE_INFO (e)->ignore)
515 	  BB_INFO (bb)->succ_count++;
516       FOR_EACH_EDGE (e, ei, bb->preds)
517 	if (!EDGE_INFO (e)->ignore)
518 	  BB_INFO (bb)->pred_count++;
519     }
520 
521   /* Avoid predicting entry on exit nodes.  */
522   BB_INFO (EXIT_BLOCK_PTR)->succ_count = 2;
523   BB_INFO (ENTRY_BLOCK_PTR)->pred_count = 2;
524 
525   num_edges = read_profile_edge_counts (exec_counts);
526 
527   if (dump_file)
528     fprintf (dump_file, "\n%d edge counts read\n", num_edges);
529 
530   /* For every block in the file,
531      - if every exit/entrance edge has a known count, then set the block count
532      - if the block count is known, and every exit/entrance edge but one has
533      a known execution count, then set the count of the remaining edge
534 
535      As edge counts are set, decrement the succ/pred count, but don't delete
536      the edge, that way we can easily tell when all edges are known, or only
537      one edge is unknown.  */
538 
539   /* The order that the basic blocks are iterated through is important.
540      Since the code that finds spanning trees starts with block 0, low numbered
541      edges are put on the spanning tree in preference to high numbered edges.
542      Hence, most instrumented edges are at the end.  Graph solving works much
543      faster if we propagate numbers from the end to the start.
544 
545      This takes an average of slightly more than 3 passes.  */
546 
547   changes = 1;
548   passes = 0;
549   while (changes)
550     {
551       passes++;
552       changes = 0;
553       FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
554 	{
555 	  struct bb_info *bi = BB_INFO (bb);
556 	  if (! bi->count_valid)
557 	    {
558 	      if (bi->succ_count == 0)
559 		{
560 		  edge e;
561 		  edge_iterator ei;
562 		  gcov_type total = 0;
563 
564 		  FOR_EACH_EDGE (e, ei, bb->succs)
565 		    total += e->count;
566 		  bb->count = total;
567 		  bi->count_valid = 1;
568 		  changes = 1;
569 		}
570 	      else if (bi->pred_count == 0)
571 		{
572 		  edge e;
573 		  edge_iterator ei;
574 		  gcov_type total = 0;
575 
576 		  FOR_EACH_EDGE (e, ei, bb->preds)
577 		    total += e->count;
578 		  bb->count = total;
579 		  bi->count_valid = 1;
580 		  changes = 1;
581 		}
582 	    }
583 	  if (bi->count_valid)
584 	    {
585 	      if (bi->succ_count == 1)
586 		{
587 		  edge e;
588 		  edge_iterator ei;
589 		  gcov_type total = 0;
590 
591 		  /* One of the counts will be invalid, but it is zero,
592 		     so adding it in also doesn't hurt.  */
593 		  FOR_EACH_EDGE (e, ei, bb->succs)
594 		    total += e->count;
595 
596 		  /* Search for the invalid edge, and set its count.  */
597 		  FOR_EACH_EDGE (e, ei, bb->succs)
598 		    if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
599 		      break;
600 
601 		  /* Calculate count for remaining edge by conservation.  */
602 		  total = bb->count - total;
603 
604 		  gcc_assert (e);
605 		  EDGE_INFO (e)->count_valid = 1;
606 		  e->count = total;
607 		  bi->succ_count--;
608 
609 		  BB_INFO (e->dest)->pred_count--;
610 		  changes = 1;
611 		}
612 	      if (bi->pred_count == 1)
613 		{
614 		  edge e;
615 		  edge_iterator ei;
616 		  gcov_type total = 0;
617 
618 		  /* One of the counts will be invalid, but it is zero,
619 		     so adding it in also doesn't hurt.  */
620 		  FOR_EACH_EDGE (e, ei, bb->preds)
621 		    total += e->count;
622 
623 		  /* Search for the invalid edge, and set its count.  */
624 		  FOR_EACH_EDGE (e, ei, bb->preds)
625 		    if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
626 		      break;
627 
628 		  /* Calculate count for remaining edge by conservation.  */
629 		  total = bb->count - total + e->count;
630 
631 		  gcc_assert (e);
632 		  EDGE_INFO (e)->count_valid = 1;
633 		  e->count = total;
634 		  bi->pred_count--;
635 
636 		  BB_INFO (e->src)->succ_count--;
637 		  changes = 1;
638 		}
639 	    }
640 	}
641     }
642   if (dump_file)
643     {
644       int overlap = compute_frequency_overlap ();
645       dump_flow_info (dump_file, dump_flags);
646       fprintf (dump_file, "Static profile overlap: %d.%d%%\n",
647 	       overlap / (OVERLAP_BASE / 100),
648 	       overlap % (OVERLAP_BASE / 100));
649     }
650 
651   total_num_passes += passes;
652   if (dump_file)
653     fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
654 
655   /* If the graph has been correctly solved, every block will have a
656      succ and pred count of zero.  */
657   FOR_EACH_BB (bb)
658     {
659       gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
660     }
661 
662   /* Check for inconsistent basic block counts */
663   inconsistent = is_inconsistent ();
664 
665   if (inconsistent)
666    {
667      if (flag_profile_correction)
668        {
669          /* Inconsistency detected. Make it flow-consistent. */
670          static int informed = 0;
671          if (informed == 0)
672            {
673              informed = 1;
674              inform (input_location, "correcting inconsistent profile data");
675            }
676          correct_negative_edge_counts ();
677          /* Set bb counts to the sum of the outgoing edge counts */
678          set_bb_counts ();
679          if (dump_file)
680            fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
681          mcf_smooth_cfg ();
682        }
683      else
684        error ("corrupted profile info: profile data is not flow-consistent");
685    }
686 
687   /* For every edge, calculate its branch probability and add a reg_note
688      to the branch insn to indicate this.  */
689 
690   for (i = 0; i < 20; i++)
691     hist_br_prob[i] = 0;
692   num_branches = 0;
693 
694   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
695     {
696       edge e;
697       edge_iterator ei;
698 
699       if (bb->count < 0)
700 	{
701 	  error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
702 		 bb->index, (int)bb->count);
703 	  bb->count = 0;
704 	}
705       FOR_EACH_EDGE (e, ei, bb->succs)
706 	{
707 	  /* Function may return twice in the cased the called function is
708 	     setjmp or calls fork, but we can't represent this by extra
709 	     edge from the entry, since extra edge from the exit is
710 	     already present.  We get negative frequency from the entry
711 	     point.  */
712 	  if ((e->count < 0
713 	       && e->dest == EXIT_BLOCK_PTR)
714 	      || (e->count > bb->count
715 		  && e->dest != EXIT_BLOCK_PTR))
716 	    {
717 	      if (block_ends_with_call_p (bb))
718 		e->count = e->count < 0 ? 0 : bb->count;
719 	    }
720 	  if (e->count < 0 || e->count > bb->count)
721 	    {
722 	      error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
723 		     e->src->index, e->dest->index,
724 		     (int)e->count);
725 	      e->count = bb->count / 2;
726 	    }
727 	}
728       if (bb->count)
729 	{
730 	  FOR_EACH_EDGE (e, ei, bb->succs)
731 	    e->probability = (e->count * REG_BR_PROB_BASE + bb->count / 2) / bb->count;
732 	  if (bb->index >= NUM_FIXED_BLOCKS
733 	      && block_ends_with_condjump_p (bb)
734 	      && EDGE_COUNT (bb->succs) >= 2)
735 	    {
736 	      int prob;
737 	      edge e;
738 	      int index;
739 
740 	      /* Find the branch edge.  It is possible that we do have fake
741 		 edges here.  */
742 	      FOR_EACH_EDGE (e, ei, bb->succs)
743 		if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
744 		  break;
745 
746 	      prob = e->probability;
747 	      index = prob * 20 / REG_BR_PROB_BASE;
748 
749 	      if (index == 20)
750 		index = 19;
751 	      hist_br_prob[index]++;
752 
753 	      num_branches++;
754 	    }
755 	}
756       /* As a last resort, distribute the probabilities evenly.
757 	 Use simple heuristics that if there are normal edges,
758 	 give all abnormals frequency of 0, otherwise distribute the
759 	 frequency over abnormals (this is the case of noreturn
760 	 calls).  */
761       else if (profile_status == PROFILE_ABSENT)
762 	{
763 	  int total = 0;
764 
765 	  FOR_EACH_EDGE (e, ei, bb->succs)
766 	    if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
767 	      total ++;
768 	  if (total)
769 	    {
770 	      FOR_EACH_EDGE (e, ei, bb->succs)
771 		if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
772 		  e->probability = REG_BR_PROB_BASE / total;
773 		else
774 		  e->probability = 0;
775 	    }
776 	  else
777 	    {
778 	      total += EDGE_COUNT (bb->succs);
779 	      FOR_EACH_EDGE (e, ei, bb->succs)
780 		e->probability = REG_BR_PROB_BASE / total;
781 	    }
782 	  if (bb->index >= NUM_FIXED_BLOCKS
783 	      && block_ends_with_condjump_p (bb)
784 	      && EDGE_COUNT (bb->succs) >= 2)
785 	    num_branches++;
786 	}
787     }
788   counts_to_freqs ();
789   profile_status = PROFILE_READ;
790   compute_function_frequency ();
791 
792   if (dump_file)
793     {
794       fprintf (dump_file, "%d branches\n", num_branches);
795       if (num_branches)
796 	for (i = 0; i < 10; i++)
797 	  fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
798 		   (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
799 		   5 * i, 5 * i + 5);
800 
801       total_num_branches += num_branches;
802       for (i = 0; i < 20; i++)
803 	total_hist_br_prob[i] += hist_br_prob[i];
804 
805       fputc ('\n', dump_file);
806       fputc ('\n', dump_file);
807     }
808 
809   free_aux_for_blocks ();
810 }
811 
812 /* Load value histograms values whose description is stored in VALUES array
813    from .gcda file.
814 
815    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
816 
817 static void
818 compute_value_histograms (histogram_values values, unsigned cfg_checksum,
819                           unsigned lineno_checksum)
820 {
821   unsigned i, j, t, any;
822   unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
823   gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
824   gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
825   gcov_type *aact_count;
826 
827   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
828     n_histogram_counters[t] = 0;
829 
830   for (i = 0; i < VEC_length (histogram_value, values); i++)
831     {
832       histogram_value hist = VEC_index (histogram_value, values, i);
833       n_histogram_counters[(int) hist->type] += hist->n_counters;
834     }
835 
836   any = 0;
837   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
838     {
839       if (!n_histogram_counters[t])
840 	{
841 	  histogram_counts[t] = NULL;
842 	  continue;
843 	}
844 
845       histogram_counts[t] =
846 	get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
847 			     n_histogram_counters[t], cfg_checksum,
848 			     lineno_checksum, NULL);
849       if (histogram_counts[t])
850 	any = 1;
851       act_count[t] = histogram_counts[t];
852     }
853   if (!any)
854     return;
855 
856   for (i = 0; i < VEC_length (histogram_value, values); i++)
857     {
858       histogram_value hist = VEC_index (histogram_value, values, i);
859       gimple stmt = hist->hvalue.stmt;
860 
861       t = (int) hist->type;
862 
863       aact_count = act_count[t];
864       act_count[t] += hist->n_counters;
865 
866       gimple_add_histogram_value (cfun, stmt, hist);
867       hist->hvalue.counters =  XNEWVEC (gcov_type, hist->n_counters);
868       for (j = 0; j < hist->n_counters; j++)
869 	hist->hvalue.counters[j] = aact_count[j];
870     }
871 
872   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
873     free (histogram_counts[t]);
874 }
875 
876 /* The entry basic block will be moved around so that it has index=1,
877    there is nothing at index 0 and the exit is at n_basic_block.  */
878 #define BB_TO_GCOV_INDEX(bb)  ((bb)->index - 1)
879 /* When passed NULL as file_name, initialize.
880    When passed something else, output the necessary commands to change
881    line to LINE and offset to FILE_NAME.  */
882 static void
883 output_location (char const *file_name, int line,
884 		 gcov_position_t *offset, basic_block bb)
885 {
886   static char const *prev_file_name;
887   static int prev_line;
888   bool name_differs, line_differs;
889 
890   if (!file_name)
891     {
892       prev_file_name = NULL;
893       prev_line = -1;
894       return;
895     }
896 
897   name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name);
898   line_differs = prev_line != line;
899 
900   if (name_differs || line_differs)
901     {
902       if (!*offset)
903 	{
904 	  *offset = gcov_write_tag (GCOV_TAG_LINES);
905 	  gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
906 	  name_differs = line_differs=true;
907 	}
908 
909       /* If this is a new source file, then output the
910 	 file's name to the .bb file.  */
911       if (name_differs)
912 	{
913 	  prev_file_name = file_name;
914 	  gcov_write_unsigned (0);
915 	  gcov_write_string (prev_file_name);
916 	}
917       if (line_differs)
918 	{
919 	  gcov_write_unsigned (line);
920 	  prev_line = line;
921 	}
922      }
923 }
924 
925 /* Instrument and/or analyze program behavior based on program flow graph.
926    In either case, this function builds a flow graph for the function being
927    compiled.  The flow graph is stored in BB_GRAPH.
928 
929    When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
930    the flow graph that are needed to reconstruct the dynamic behavior of the
931    flow graph.
932 
933    When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
934    information from a data file containing edge count information from previous
935    executions of the function being compiled.  In this case, the flow graph is
936    annotated with actual execution counts, which are later propagated into the
937    rtl for optimization purposes.
938 
939    Main entry point of this file.  */
940 
941 void
942 branch_prob (void)
943 {
944   basic_block bb;
945   unsigned i;
946   unsigned num_edges, ignored_edges;
947   unsigned num_instrumented;
948   struct edge_list *el;
949   histogram_values values = NULL;
950   unsigned cfg_checksum, lineno_checksum;
951 
952   total_num_times_called++;
953 
954   flow_call_edges_add (NULL);
955   add_noreturn_fake_exit_edges ();
956 
957   /* We can't handle cyclic regions constructed using abnormal edges.
958      To avoid these we replace every source of abnormal edge by a fake
959      edge from entry node and every destination by fake edge to exit.
960      This keeps graph acyclic and our calculation exact for all normal
961      edges except for exit and entrance ones.
962 
963      We also add fake exit edges for each call and asm statement in the
964      basic, since it may not return.  */
965 
966   FOR_EACH_BB (bb)
967     {
968       int need_exit_edge = 0, need_entry_edge = 0;
969       int have_exit_edge = 0, have_entry_edge = 0;
970       edge e;
971       edge_iterator ei;
972 
973       /* Functions returning multiple times are not handled by extra edges.
974          Instead we simply allow negative counts on edges from exit to the
975          block past call and corresponding probabilities.  We can't go
976          with the extra edges because that would result in flowgraph that
977 	 needs to have fake edges outside the spanning tree.  */
978 
979       FOR_EACH_EDGE (e, ei, bb->succs)
980 	{
981 	  gimple_stmt_iterator gsi;
982 	  gimple last = NULL;
983 
984 	  /* It may happen that there are compiler generated statements
985 	     without a locus at all.  Go through the basic block from the
986 	     last to the first statement looking for a locus.  */
987 	  for (gsi = gsi_last_nondebug_bb (bb);
988 	       !gsi_end_p (gsi);
989 	       gsi_prev_nondebug (&gsi))
990 	    {
991 	      last = gsi_stmt (gsi);
992 	      if (gimple_has_location (last))
993 		break;
994 	    }
995 
996 	  /* Edge with goto locus might get wrong coverage info unless
997 	     it is the only edge out of BB.
998 	     Don't do that when the locuses match, so
999 	     if (blah) goto something;
1000 	     is not computed twice.  */
1001 	  if (last
1002 	      && gimple_has_location (last)
1003 	      && e->goto_locus != UNKNOWN_LOCATION
1004 	      && !single_succ_p (bb)
1005 	      && (LOCATION_FILE (e->goto_locus)
1006 	          != LOCATION_FILE (gimple_location (last))
1007 		  || (LOCATION_LINE (e->goto_locus)
1008 		      != LOCATION_LINE (gimple_location (last)))))
1009 	    {
1010 	      basic_block new_bb = split_edge (e);
1011 	      edge ne = single_succ_edge (new_bb);
1012 	      ne->goto_locus = e->goto_locus;
1013 	      ne->goto_block = e->goto_block;
1014 	    }
1015 	  if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1016 	       && e->dest != EXIT_BLOCK_PTR)
1017 	    need_exit_edge = 1;
1018 	  if (e->dest == EXIT_BLOCK_PTR)
1019 	    have_exit_edge = 1;
1020 	}
1021       FOR_EACH_EDGE (e, ei, bb->preds)
1022 	{
1023 	  if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1024 	       && e->src != ENTRY_BLOCK_PTR)
1025 	    need_entry_edge = 1;
1026 	  if (e->src == ENTRY_BLOCK_PTR)
1027 	    have_entry_edge = 1;
1028 	}
1029 
1030       if (need_exit_edge && !have_exit_edge)
1031 	{
1032 	  if (dump_file)
1033 	    fprintf (dump_file, "Adding fake exit edge to bb %i\n",
1034 		     bb->index);
1035 	  make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
1036 	}
1037       if (need_entry_edge && !have_entry_edge)
1038 	{
1039 	  if (dump_file)
1040 	    fprintf (dump_file, "Adding fake entry edge to bb %i\n",
1041 		     bb->index);
1042 	  make_edge (ENTRY_BLOCK_PTR, bb, EDGE_FAKE);
1043 	  /* Avoid bbs that have both fake entry edge and also some
1044 	     exit edge.  One of those edges wouldn't be added to the
1045 	     spanning tree, but we can't instrument any of them.  */
1046 	  if (have_exit_edge || need_exit_edge)
1047 	    {
1048 	      gimple_stmt_iterator gsi;
1049 	      gimple first;
1050 	      tree fndecl;
1051 
1052 	      gsi = gsi_after_labels (bb);
1053 	      gcc_checking_assert (!gsi_end_p (gsi));
1054 	      first = gsi_stmt (gsi);
1055 	      if (is_gimple_debug (first))
1056 		{
1057 		  gsi_next_nondebug (&gsi);
1058 		  gcc_checking_assert (!gsi_end_p (gsi));
1059 		  first = gsi_stmt (gsi);
1060 		}
1061 	      /* Don't split the bbs containing __builtin_setjmp_receiver
1062 		 or __builtin_setjmp_dispatcher calls.  These are very
1063 		 special and don't expect anything to be inserted before
1064 		 them.  */
1065 	      if (!is_gimple_call (first)
1066 		  || (fndecl = gimple_call_fndecl (first)) == NULL
1067 		  || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL
1068 		  || (DECL_FUNCTION_CODE (fndecl) != BUILT_IN_SETJMP_RECEIVER
1069 		      && (DECL_FUNCTION_CODE (fndecl)
1070 			  != BUILT_IN_SETJMP_DISPATCHER)))
1071 		{
1072 		  if (dump_file)
1073 		    fprintf (dump_file, "Splitting bb %i after labels\n",
1074 			     bb->index);
1075 		  split_block_after_labels (bb);
1076 		}
1077 	    }
1078 	}
1079     }
1080 
1081   el = create_edge_list ();
1082   num_edges = NUM_EDGES (el);
1083   alloc_aux_for_edges (sizeof (struct edge_info));
1084 
1085   /* The basic blocks are expected to be numbered sequentially.  */
1086   compact_blocks ();
1087 
1088   ignored_edges = 0;
1089   for (i = 0 ; i < num_edges ; i++)
1090     {
1091       edge e = INDEX_EDGE (el, i);
1092       e->count = 0;
1093 
1094       /* Mark edges we've replaced by fake edges above as ignored.  */
1095       if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1096 	  && e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR)
1097 	{
1098 	  EDGE_INFO (e)->ignore = 1;
1099 	  ignored_edges++;
1100 	}
1101     }
1102 
1103   /* Create spanning tree from basic block graph, mark each edge that is
1104      on the spanning tree.  We insert as many abnormal and critical edges
1105      as possible to minimize number of edge splits necessary.  */
1106 
1107   find_spanning_tree (el);
1108 
1109   /* Fake edges that are not on the tree will not be instrumented, so
1110      mark them ignored.  */
1111   for (num_instrumented = i = 0; i < num_edges; i++)
1112     {
1113       edge e = INDEX_EDGE (el, i);
1114       struct edge_info *inf = EDGE_INFO (e);
1115 
1116       if (inf->ignore || inf->on_tree)
1117 	/*NOP*/;
1118       else if (e->flags & EDGE_FAKE)
1119 	{
1120 	  inf->ignore = 1;
1121 	  ignored_edges++;
1122 	}
1123       else
1124 	num_instrumented++;
1125     }
1126 
1127   total_num_blocks += n_basic_blocks;
1128   if (dump_file)
1129     fprintf (dump_file, "%d basic blocks\n", n_basic_blocks);
1130 
1131   total_num_edges += num_edges;
1132   if (dump_file)
1133     fprintf (dump_file, "%d edges\n", num_edges);
1134 
1135   total_num_edges_ignored += ignored_edges;
1136   if (dump_file)
1137     fprintf (dump_file, "%d ignored edges\n", ignored_edges);
1138 
1139 
1140   /* Compute two different checksums. Note that we want to compute
1141      the checksum in only once place, since it depends on the shape
1142      of the control flow which can change during
1143      various transformations.  */
1144   cfg_checksum = coverage_compute_cfg_checksum ();
1145   lineno_checksum = coverage_compute_lineno_checksum ();
1146 
1147   /* Write the data from which gcov can reconstruct the basic block
1148      graph and function line numbers  */
1149 
1150   if (coverage_begin_function (lineno_checksum, cfg_checksum))
1151     {
1152       gcov_position_t offset;
1153 
1154       /* Basic block flags */
1155       offset = gcov_write_tag (GCOV_TAG_BLOCKS);
1156       for (i = 0; i != (unsigned) (n_basic_blocks); i++)
1157 	gcov_write_unsigned (0);
1158       gcov_write_length (offset);
1159 
1160       /* Keep all basic block indexes nonnegative in the gcov output.
1161 	 Index 0 is used for entry block, last index is for exit
1162 	 block.    */
1163       ENTRY_BLOCK_PTR->index = 1;
1164       EXIT_BLOCK_PTR->index = last_basic_block;
1165 
1166       /* Arcs */
1167       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1168 	{
1169 	  edge e;
1170 	  edge_iterator ei;
1171 
1172 	  offset = gcov_write_tag (GCOV_TAG_ARCS);
1173 	  gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
1174 
1175 	  FOR_EACH_EDGE (e, ei, bb->succs)
1176 	    {
1177 	      struct edge_info *i = EDGE_INFO (e);
1178 	      if (!i->ignore)
1179 		{
1180 		  unsigned flag_bits = 0;
1181 
1182 		  if (i->on_tree)
1183 		    flag_bits |= GCOV_ARC_ON_TREE;
1184 		  if (e->flags & EDGE_FAKE)
1185 		    flag_bits |= GCOV_ARC_FAKE;
1186 		  if (e->flags & EDGE_FALLTHRU)
1187 		    flag_bits |= GCOV_ARC_FALLTHROUGH;
1188 		  /* On trees we don't have fallthru flags, but we can
1189 		     recompute them from CFG shape.  */
1190 		  if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
1191 		      && e->src->next_bb == e->dest)
1192 		    flag_bits |= GCOV_ARC_FALLTHROUGH;
1193 
1194 		  gcov_write_unsigned (BB_TO_GCOV_INDEX (e->dest));
1195 		  gcov_write_unsigned (flag_bits);
1196 	        }
1197 	    }
1198 
1199 	  gcov_write_length (offset);
1200 	}
1201 
1202       ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
1203       EXIT_BLOCK_PTR->index = EXIT_BLOCK;
1204 
1205       /* Line numbers.  */
1206       /* Initialize the output.  */
1207       output_location (NULL, 0, NULL, NULL);
1208 
1209       FOR_EACH_BB (bb)
1210 	{
1211 	  gimple_stmt_iterator gsi;
1212 	  gcov_position_t offset = 0;
1213 
1214 	  if (bb == ENTRY_BLOCK_PTR->next_bb)
1215 	    {
1216 	      expanded_location curr_location =
1217 		expand_location (DECL_SOURCE_LOCATION (current_function_decl));
1218 	      output_location (curr_location.file, curr_location.line,
1219 			       &offset, bb);
1220 	    }
1221 
1222 	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1223 	    {
1224 	      gimple stmt = gsi_stmt (gsi);
1225 	      if (gimple_has_location (stmt))
1226 		output_location (gimple_filename (stmt), gimple_lineno (stmt),
1227 				 &offset, bb);
1228 	    }
1229 
1230 	  /* Notice GOTO expressions eliminated while constructing the CFG.  */
1231 	  if (single_succ_p (bb)
1232 	      && single_succ_edge (bb)->goto_locus != UNKNOWN_LOCATION)
1233 	    {
1234 	      expanded_location curr_location
1235 		= expand_location (single_succ_edge (bb)->goto_locus);
1236 	      output_location (curr_location.file, curr_location.line,
1237 			       &offset, bb);
1238 	    }
1239 
1240 	  if (offset)
1241 	    {
1242 	      /* A file of NULL indicates the end of run.  */
1243 	      gcov_write_unsigned (0);
1244 	      gcov_write_string (NULL);
1245 	      gcov_write_length (offset);
1246 	    }
1247 	}
1248     }
1249 
1250 #undef BB_TO_GCOV_INDEX
1251 
1252   if (flag_profile_values)
1253     gimple_find_values_to_profile (&values);
1254 
1255   if (flag_branch_probabilities)
1256     {
1257       compute_branch_probabilities (cfg_checksum, lineno_checksum);
1258       if (flag_profile_values)
1259 	compute_value_histograms (values, cfg_checksum, lineno_checksum);
1260     }
1261 
1262   remove_fake_edges ();
1263 
1264   /* For each edge not on the spanning tree, add counting code.  */
1265   if (profile_arc_flag
1266       && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1267     {
1268       unsigned n_instrumented;
1269 
1270       gimple_init_edge_profiler ();
1271 
1272       n_instrumented = instrument_edges (el);
1273 
1274       gcc_assert (n_instrumented == num_instrumented);
1275 
1276       if (flag_profile_values)
1277 	instrument_values (values);
1278 
1279       /* Commit changes done by instrumentation.  */
1280       gsi_commit_edge_inserts ();
1281     }
1282 
1283   free_aux_for_edges ();
1284 
1285   VEC_free (histogram_value, heap, values);
1286   free_edge_list (el);
1287   coverage_end_function (lineno_checksum, cfg_checksum);
1288 }
1289 
1290 /* Union find algorithm implementation for the basic blocks using
1291    aux fields.  */
1292 
1293 static basic_block
1294 find_group (basic_block bb)
1295 {
1296   basic_block group = bb, bb1;
1297 
1298   while ((basic_block) group->aux != group)
1299     group = (basic_block) group->aux;
1300 
1301   /* Compress path.  */
1302   while ((basic_block) bb->aux != group)
1303     {
1304       bb1 = (basic_block) bb->aux;
1305       bb->aux = (void *) group;
1306       bb = bb1;
1307     }
1308   return group;
1309 }
1310 
1311 static void
1312 union_groups (basic_block bb1, basic_block bb2)
1313 {
1314   basic_block bb1g = find_group (bb1);
1315   basic_block bb2g = find_group (bb2);
1316 
1317   /* ??? I don't have a place for the rank field.  OK.  Lets go w/o it,
1318      this code is unlikely going to be performance problem anyway.  */
1319   gcc_assert (bb1g != bb2g);
1320 
1321   bb1g->aux = bb2g;
1322 }
1323 
1324 /* This function searches all of the edges in the program flow graph, and puts
1325    as many bad edges as possible onto the spanning tree.  Bad edges include
1326    abnormals edges, which can't be instrumented at the moment.  Since it is
1327    possible for fake edges to form a cycle, we will have to develop some
1328    better way in the future.  Also put critical edges to the tree, since they
1329    are more expensive to instrument.  */
1330 
1331 static void
1332 find_spanning_tree (struct edge_list *el)
1333 {
1334   int i;
1335   int num_edges = NUM_EDGES (el);
1336   basic_block bb;
1337 
1338   /* We use aux field for standard union-find algorithm.  */
1339   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1340     bb->aux = bb;
1341 
1342   /* Add fake edge exit to entry we can't instrument.  */
1343   union_groups (EXIT_BLOCK_PTR, ENTRY_BLOCK_PTR);
1344 
1345   /* First add all abnormal edges to the tree unless they form a cycle. Also
1346      add all edges to EXIT_BLOCK_PTR to avoid inserting profiling code behind
1347      setting return value from function.  */
1348   for (i = 0; i < num_edges; i++)
1349     {
1350       edge e = INDEX_EDGE (el, i);
1351       if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1352 	   || e->dest == EXIT_BLOCK_PTR)
1353 	  && !EDGE_INFO (e)->ignore
1354 	  && (find_group (e->src) != find_group (e->dest)))
1355 	{
1356 	  if (dump_file)
1357 	    fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1358 		     e->src->index, e->dest->index);
1359 	  EDGE_INFO (e)->on_tree = 1;
1360 	  union_groups (e->src, e->dest);
1361 	}
1362     }
1363 
1364   /* Now insert all critical edges to the tree unless they form a cycle.  */
1365   for (i = 0; i < num_edges; i++)
1366     {
1367       edge e = INDEX_EDGE (el, i);
1368       if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
1369 	  && find_group (e->src) != find_group (e->dest))
1370 	{
1371 	  if (dump_file)
1372 	    fprintf (dump_file, "Critical edge %d to %d put to tree\n",
1373 		     e->src->index, e->dest->index);
1374 	  EDGE_INFO (e)->on_tree = 1;
1375 	  union_groups (e->src, e->dest);
1376 	}
1377     }
1378 
1379   /* And now the rest.  */
1380   for (i = 0; i < num_edges; i++)
1381     {
1382       edge e = INDEX_EDGE (el, i);
1383       if (!EDGE_INFO (e)->ignore
1384 	  && find_group (e->src) != find_group (e->dest))
1385 	{
1386 	  if (dump_file)
1387 	    fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1388 		     e->src->index, e->dest->index);
1389 	  EDGE_INFO (e)->on_tree = 1;
1390 	  union_groups (e->src, e->dest);
1391 	}
1392     }
1393 
1394   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1395     bb->aux = NULL;
1396 }
1397 
1398 /* Perform file-level initialization for branch-prob processing.  */
1399 
1400 void
1401 init_branch_prob (void)
1402 {
1403   int i;
1404 
1405   total_num_blocks = 0;
1406   total_num_edges = 0;
1407   total_num_edges_ignored = 0;
1408   total_num_edges_instrumented = 0;
1409   total_num_blocks_created = 0;
1410   total_num_passes = 0;
1411   total_num_times_called = 0;
1412   total_num_branches = 0;
1413   for (i = 0; i < 20; i++)
1414     total_hist_br_prob[i] = 0;
1415 }
1416 
1417 /* Performs file-level cleanup after branch-prob processing
1418    is completed.  */
1419 
1420 void
1421 end_branch_prob (void)
1422 {
1423   if (dump_file)
1424     {
1425       fprintf (dump_file, "\n");
1426       fprintf (dump_file, "Total number of blocks: %d\n",
1427 	       total_num_blocks);
1428       fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1429       fprintf (dump_file, "Total number of ignored edges: %d\n",
1430 	       total_num_edges_ignored);
1431       fprintf (dump_file, "Total number of instrumented edges: %d\n",
1432 	       total_num_edges_instrumented);
1433       fprintf (dump_file, "Total number of blocks created: %d\n",
1434 	       total_num_blocks_created);
1435       fprintf (dump_file, "Total number of graph solution passes: %d\n",
1436 	       total_num_passes);
1437       if (total_num_times_called != 0)
1438 	fprintf (dump_file, "Average number of graph solution passes: %d\n",
1439 		 (total_num_passes + (total_num_times_called  >> 1))
1440 		 / total_num_times_called);
1441       fprintf (dump_file, "Total number of branches: %d\n",
1442 	       total_num_branches);
1443       if (total_num_branches)
1444 	{
1445 	  int i;
1446 
1447 	  for (i = 0; i < 10; i++)
1448 	    fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1449 		     (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1450 		     / total_num_branches, 5*i, 5*i+5);
1451 	}
1452     }
1453 }
1454