xref: /dragonfly/contrib/gcc-4.7/gcc/recog.c (revision 0ca59c34)
1 /* Subroutines used by or related to instruction recognition.
2    Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "output.h"
40 #include "reload.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 
46 #ifndef STACK_PUSH_CODE
47 #ifdef STACK_GROWS_DOWNWARD
48 #define STACK_PUSH_CODE PRE_DEC
49 #else
50 #define STACK_PUSH_CODE PRE_INC
51 #endif
52 #endif
53 
54 #ifndef STACK_POP_CODE
55 #ifdef STACK_GROWS_DOWNWARD
56 #define STACK_POP_CODE POST_INC
57 #else
58 #define STACK_POP_CODE POST_DEC
59 #endif
60 #endif
61 
62 #ifndef HAVE_ATTR_enabled
63 static inline bool
64 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
65 {
66   return true;
67 }
68 #endif
69 
70 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
71 static void validate_replace_src_1 (rtx *, void *);
72 static rtx split_insn (rtx);
73 
74 /* Nonzero means allow operands to be volatile.
75    This should be 0 if you are generating rtl, such as if you are calling
76    the functions in optabs.c and expmed.c (most of the time).
77    This should be 1 if all valid insns need to be recognized,
78    such as in reginfo.c and final.c and reload.c.
79 
80    init_recog and init_recog_no_volatile are responsible for setting this.  */
81 
82 int volatile_ok;
83 
84 struct recog_data recog_data;
85 
86 /* Contains a vector of operand_alternative structures for every operand.
87    Set up by preprocess_constraints.  */
88 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
89 
90 /* On return from `constrain_operands', indicate which alternative
91    was satisfied.  */
92 
93 int which_alternative;
94 
95 /* Nonzero after end of reload pass.
96    Set to 1 or 0 by toplev.c.
97    Controls the significance of (SUBREG (MEM)).  */
98 
99 int reload_completed;
100 
101 /* Nonzero after thread_prologue_and_epilogue_insns has run.  */
102 int epilogue_completed;
103 
104 /* Initialize data used by the function `recog'.
105    This must be called once in the compilation of a function
106    before any insn recognition may be done in the function.  */
107 
108 void
109 init_recog_no_volatile (void)
110 {
111   volatile_ok = 0;
112 }
113 
114 void
115 init_recog (void)
116 {
117   volatile_ok = 1;
118 }
119 
120 
121 /* Return true if labels in asm operands BODY are LABEL_REFs.  */
122 
123 static bool
124 asm_labels_ok (rtx body)
125 {
126   rtx asmop;
127   int i;
128 
129   asmop = extract_asm_operands (body);
130   if (asmop == NULL_RTX)
131     return true;
132 
133   for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
134     if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
135       return false;
136 
137   return true;
138 }
139 
140 /* Check that X is an insn-body for an `asm' with operands
141    and that the operands mentioned in it are legitimate.  */
142 
143 int
144 check_asm_operands (rtx x)
145 {
146   int noperands;
147   rtx *operands;
148   const char **constraints;
149   int i;
150 
151   if (!asm_labels_ok (x))
152     return 0;
153 
154   /* Post-reload, be more strict with things.  */
155   if (reload_completed)
156     {
157       /* ??? Doh!  We've not got the wrapping insn.  Cook one up.  */
158       extract_insn (make_insn_raw (x));
159       constrain_operands (1);
160       return which_alternative >= 0;
161     }
162 
163   noperands = asm_noperands (x);
164   if (noperands < 0)
165     return 0;
166   if (noperands == 0)
167     return 1;
168 
169   operands = XALLOCAVEC (rtx, noperands);
170   constraints = XALLOCAVEC (const char *, noperands);
171 
172   decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
173 
174   for (i = 0; i < noperands; i++)
175     {
176       const char *c = constraints[i];
177       if (c[0] == '%')
178 	c++;
179       if (! asm_operand_ok (operands[i], c, constraints))
180 	return 0;
181     }
182 
183   return 1;
184 }
185 
186 /* Static data for the next two routines.  */
187 
188 typedef struct change_t
189 {
190   rtx object;
191   int old_code;
192   rtx *loc;
193   rtx old;
194   bool unshare;
195 } change_t;
196 
197 static change_t *changes;
198 static int changes_allocated;
199 
200 static int num_changes = 0;
201 
202 /* Validate a proposed change to OBJECT.  LOC is the location in the rtl
203    at which NEW_RTX will be placed.  If OBJECT is zero, no validation is done,
204    the change is simply made.
205 
206    Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
207    will be called with the address and mode as parameters.  If OBJECT is
208    an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
209    the change in place.
210 
211    IN_GROUP is nonzero if this is part of a group of changes that must be
212    performed as a group.  In that case, the changes will be stored.  The
213    function `apply_change_group' will validate and apply the changes.
214 
215    If IN_GROUP is zero, this is a single change.  Try to recognize the insn
216    or validate the memory reference with the change applied.  If the result
217    is not valid for the machine, suppress the change and return zero.
218    Otherwise, perform the change and return 1.  */
219 
220 static bool
221 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
222 {
223   rtx old = *loc;
224 
225   if (old == new_rtx || rtx_equal_p (old, new_rtx))
226     return 1;
227 
228   gcc_assert (in_group != 0 || num_changes == 0);
229 
230   *loc = new_rtx;
231 
232   /* Save the information describing this change.  */
233   if (num_changes >= changes_allocated)
234     {
235       if (changes_allocated == 0)
236 	/* This value allows for repeated substitutions inside complex
237 	   indexed addresses, or changes in up to 5 insns.  */
238 	changes_allocated = MAX_RECOG_OPERANDS * 5;
239       else
240 	changes_allocated *= 2;
241 
242       changes = XRESIZEVEC (change_t, changes, changes_allocated);
243     }
244 
245   changes[num_changes].object = object;
246   changes[num_changes].loc = loc;
247   changes[num_changes].old = old;
248   changes[num_changes].unshare = unshare;
249 
250   if (object && !MEM_P (object))
251     {
252       /* Set INSN_CODE to force rerecognition of insn.  Save old code in
253 	 case invalid.  */
254       changes[num_changes].old_code = INSN_CODE (object);
255       INSN_CODE (object) = -1;
256     }
257 
258   num_changes++;
259 
260   /* If we are making a group of changes, return 1.  Otherwise, validate the
261      change group we made.  */
262 
263   if (in_group)
264     return 1;
265   else
266     return apply_change_group ();
267 }
268 
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
270    UNSHARE to false.  */
271 
272 bool
273 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
274 {
275   return validate_change_1 (object, loc, new_rtx, in_group, false);
276 }
277 
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
279    UNSHARE to true.  */
280 
281 bool
282 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
283 {
284   return validate_change_1 (object, loc, new_rtx, in_group, true);
285 }
286 
287 
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289    modifies the operands of X, not (for example) its code.  Simplifications
290    are not the job of this routine.
291 
292    Return true if anything was changed.  */
293 bool
294 canonicalize_change_group (rtx insn, rtx x)
295 {
296   if (COMMUTATIVE_P (x)
297       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
298     {
299       /* Oops, the caller has made X no longer canonical.
300 	 Let's redo the changes in the correct order.  */
301       rtx tem = XEXP (x, 0);
302       validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
303       validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
304       return true;
305     }
306   else
307     return false;
308 }
309 
310 
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312    were valid; i.e. whether INSN can still be recognized.  */
313 
314 int
315 insn_invalid_p (rtx insn)
316 {
317   rtx pat = PATTERN (insn);
318   int num_clobbers = 0;
319   /* If we are before reload and the pattern is a SET, see if we can add
320      clobbers.  */
321   int icode = recog (pat, insn,
322 		     (GET_CODE (pat) == SET
323 		      && ! reload_completed && ! reload_in_progress)
324 		     ? &num_clobbers : 0);
325   int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
326 
327 
328   /* If this is an asm and the operand aren't legal, then fail.  Likewise if
329      this is not an asm and the insn wasn't recognized.  */
330   if ((is_asm && ! check_asm_operands (PATTERN (insn)))
331       || (!is_asm && icode < 0))
332     return 1;
333 
334   /* If we have to add CLOBBERs, fail if we have to add ones that reference
335      hard registers since our callers can't know if they are live or not.
336      Otherwise, add them.  */
337   if (num_clobbers > 0)
338     {
339       rtx newpat;
340 
341       if (added_clobbers_hard_reg_p (icode))
342 	return 1;
343 
344       newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
345       XVECEXP (newpat, 0, 0) = pat;
346       add_clobbers (newpat, icode);
347       PATTERN (insn) = pat = newpat;
348     }
349 
350   /* After reload, verify that all constraints are satisfied.  */
351   if (reload_completed)
352     {
353       extract_insn (insn);
354 
355       if (! constrain_operands (1))
356 	return 1;
357     }
358 
359   INSN_CODE (insn) = icode;
360   return 0;
361 }
362 
363 /* Return number of changes made and not validated yet.  */
364 int
365 num_changes_pending (void)
366 {
367   return num_changes;
368 }
369 
370 /* Tentatively apply the changes numbered NUM and up.
371    Return 1 if all changes are valid, zero otherwise.  */
372 
373 int
374 verify_changes (int num)
375 {
376   int i;
377   rtx last_validated = NULL_RTX;
378 
379   /* The changes have been applied and all INSN_CODEs have been reset to force
380      rerecognition.
381 
382      The changes are valid if we aren't given an object, or if we are
383      given a MEM and it still is a valid address, or if this is in insn
384      and it is recognized.  In the latter case, if reload has completed,
385      we also require that the operands meet the constraints for
386      the insn.  */
387 
388   for (i = num; i < num_changes; i++)
389     {
390       rtx object = changes[i].object;
391 
392       /* If there is no object to test or if it is the same as the one we
393          already tested, ignore it.  */
394       if (object == 0 || object == last_validated)
395 	continue;
396 
397       if (MEM_P (object))
398 	{
399 	  if (! memory_address_addr_space_p (GET_MODE (object),
400 					     XEXP (object, 0),
401 					     MEM_ADDR_SPACE (object)))
402 	    break;
403 	}
404       else if (REG_P (changes[i].old)
405 	       && asm_noperands (PATTERN (object)) > 0
406 	       && REG_EXPR (changes[i].old) != NULL_TREE
407 	       && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
408 	       && DECL_REGISTER (REG_EXPR (changes[i].old)))
409 	{
410 	  /* Don't allow changes of hard register operands to inline
411 	     assemblies if they have been defined as register asm ("x").  */
412 	  break;
413 	}
414       else if (DEBUG_INSN_P (object))
415 	continue;
416       else if (insn_invalid_p (object))
417 	{
418 	  rtx pat = PATTERN (object);
419 
420 	  /* Perhaps we couldn't recognize the insn because there were
421 	     extra CLOBBERs at the end.  If so, try to re-recognize
422 	     without the last CLOBBER (later iterations will cause each of
423 	     them to be eliminated, in turn).  But don't do this if we
424 	     have an ASM_OPERAND.  */
425 	  if (GET_CODE (pat) == PARALLEL
426 	      && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
427 	      && asm_noperands (PATTERN (object)) < 0)
428 	    {
429 	      rtx newpat;
430 
431 	      if (XVECLEN (pat, 0) == 2)
432 		newpat = XVECEXP (pat, 0, 0);
433 	      else
434 		{
435 		  int j;
436 
437 		  newpat
438 		    = gen_rtx_PARALLEL (VOIDmode,
439 					rtvec_alloc (XVECLEN (pat, 0) - 1));
440 		  for (j = 0; j < XVECLEN (newpat, 0); j++)
441 		    XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
442 		}
443 
444 	      /* Add a new change to this group to replace the pattern
445 		 with this new pattern.  Then consider this change
446 		 as having succeeded.  The change we added will
447 		 cause the entire call to fail if things remain invalid.
448 
449 		 Note that this can lose if a later change than the one
450 		 we are processing specified &XVECEXP (PATTERN (object), 0, X)
451 		 but this shouldn't occur.  */
452 
453 	      validate_change (object, &PATTERN (object), newpat, 1);
454 	      continue;
455 	    }
456 	  else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
457 		   || GET_CODE (pat) == VAR_LOCATION)
458 	    /* If this insn is a CLOBBER or USE, it is always valid, but is
459 	       never recognized.  */
460 	    continue;
461 	  else
462 	    break;
463 	}
464       last_validated = object;
465     }
466 
467   return (i == num_changes);
468 }
469 
470 /* A group of changes has previously been issued with validate_change
471    and verified with verify_changes.  Call df_insn_rescan for each of
472    the insn changed and clear num_changes.  */
473 
474 void
475 confirm_change_group (void)
476 {
477   int i;
478   rtx last_object = NULL;
479 
480   for (i = 0; i < num_changes; i++)
481     {
482       rtx object = changes[i].object;
483 
484       if (changes[i].unshare)
485 	*changes[i].loc = copy_rtx (*changes[i].loc);
486 
487       /* Avoid unnecessary rescanning when multiple changes to same instruction
488          are made.  */
489       if (object)
490 	{
491 	  if (object != last_object && last_object && INSN_P (last_object))
492 	    df_insn_rescan (last_object);
493 	  last_object = object;
494 	}
495     }
496 
497   if (last_object && INSN_P (last_object))
498     df_insn_rescan (last_object);
499   num_changes = 0;
500 }
501 
502 /* Apply a group of changes previously issued with `validate_change'.
503    If all changes are valid, call confirm_change_group and return 1,
504    otherwise, call cancel_changes and return 0.  */
505 
506 int
507 apply_change_group (void)
508 {
509   if (verify_changes (0))
510     {
511       confirm_change_group ();
512       return 1;
513     }
514   else
515     {
516       cancel_changes (0);
517       return 0;
518     }
519 }
520 
521 
522 /* Return the number of changes so far in the current group.  */
523 
524 int
525 num_validated_changes (void)
526 {
527   return num_changes;
528 }
529 
530 /* Retract the changes numbered NUM and up.  */
531 
532 void
533 cancel_changes (int num)
534 {
535   int i;
536 
537   /* Back out all the changes.  Do this in the opposite order in which
538      they were made.  */
539   for (i = num_changes - 1; i >= num; i--)
540     {
541       *changes[i].loc = changes[i].old;
542       if (changes[i].object && !MEM_P (changes[i].object))
543 	INSN_CODE (changes[i].object) = changes[i].old_code;
544     }
545   num_changes = num;
546 }
547 
548 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
549    rtx.  */
550 
551 static void
552 simplify_while_replacing (rtx *loc, rtx to, rtx object,
553                           enum machine_mode op0_mode)
554 {
555   rtx x = *loc;
556   enum rtx_code code = GET_CODE (x);
557   rtx new_rtx;
558 
559   if (SWAPPABLE_OPERANDS_P (x)
560       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
561     {
562       validate_unshare_change (object, loc,
563 			       gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
564 					       : swap_condition (code),
565 					       GET_MODE (x), XEXP (x, 1),
566 					       XEXP (x, 0)), 1);
567       x = *loc;
568       code = GET_CODE (x);
569     }
570 
571   switch (code)
572     {
573     case PLUS:
574       /* If we have a PLUS whose second operand is now a CONST_INT, use
575          simplify_gen_binary to try to simplify it.
576          ??? We may want later to remove this, once simplification is
577          separated from this function.  */
578       if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
579 	validate_change (object, loc,
580 			 simplify_gen_binary
581 			 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
582       break;
583     case MINUS:
584       if (CONST_INT_P (XEXP (x, 1))
585 	  || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
586 	validate_change (object, loc,
587 			 simplify_gen_binary
588 			 (PLUS, GET_MODE (x), XEXP (x, 0),
589 			  simplify_gen_unary (NEG,
590 					      GET_MODE (x), XEXP (x, 1),
591 					      GET_MODE (x))), 1);
592       break;
593     case ZERO_EXTEND:
594     case SIGN_EXTEND:
595       if (GET_MODE (XEXP (x, 0)) == VOIDmode)
596 	{
597 	  new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
598 				    op0_mode);
599 	  /* If any of the above failed, substitute in something that
600 	     we know won't be recognized.  */
601 	  if (!new_rtx)
602 	    new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
603 	  validate_change (object, loc, new_rtx, 1);
604 	}
605       break;
606     case SUBREG:
607       /* All subregs possible to simplify should be simplified.  */
608       new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
609 			     SUBREG_BYTE (x));
610 
611       /* Subregs of VOIDmode operands are incorrect.  */
612       if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
613 	new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
614       if (new_rtx)
615 	validate_change (object, loc, new_rtx, 1);
616       break;
617     case ZERO_EXTRACT:
618     case SIGN_EXTRACT:
619       /* If we are replacing a register with memory, try to change the memory
620          to be the mode required for memory in extract operations (this isn't
621          likely to be an insertion operation; if it was, nothing bad will
622          happen, we might just fail in some cases).  */
623 
624       if (MEM_P (XEXP (x, 0))
625 	  && CONST_INT_P (XEXP (x, 1))
626 	  && CONST_INT_P (XEXP (x, 2))
627 	  && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
628 	  && !MEM_VOLATILE_P (XEXP (x, 0)))
629 	{
630 	  enum machine_mode wanted_mode = VOIDmode;
631 	  enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
632 	  int pos = INTVAL (XEXP (x, 2));
633 
634 	  if (GET_CODE (x) == ZERO_EXTRACT)
635 	    {
636 	      enum machine_mode new_mode
637 		= mode_for_extraction (EP_extzv, 1);
638 	      if (new_mode != MAX_MACHINE_MODE)
639 		wanted_mode = new_mode;
640 	    }
641 	  else if (GET_CODE (x) == SIGN_EXTRACT)
642 	    {
643 	      enum machine_mode new_mode
644 		= mode_for_extraction (EP_extv, 1);
645 	      if (new_mode != MAX_MACHINE_MODE)
646 		wanted_mode = new_mode;
647 	    }
648 
649 	  /* If we have a narrower mode, we can do something.  */
650 	  if (wanted_mode != VOIDmode
651 	      && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
652 	    {
653 	      int offset = pos / BITS_PER_UNIT;
654 	      rtx newmem;
655 
656 	      /* If the bytes and bits are counted differently, we
657 	         must adjust the offset.  */
658 	      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
659 		offset =
660 		  (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
661 		   offset);
662 
663 	      gcc_assert (GET_MODE_PRECISION (wanted_mode)
664 			  == GET_MODE_BITSIZE (wanted_mode));
665 	      pos %= GET_MODE_BITSIZE (wanted_mode);
666 
667 	      newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
668 
669 	      validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
670 	      validate_change (object, &XEXP (x, 0), newmem, 1);
671 	    }
672 	}
673 
674       break;
675 
676     default:
677       break;
678     }
679 }
680 
681 /* Replace every occurrence of FROM in X with TO.  Mark each change with
682    validate_change passing OBJECT.  */
683 
684 static void
685 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
686                         bool simplify)
687 {
688   int i, j;
689   const char *fmt;
690   rtx x = *loc;
691   enum rtx_code code;
692   enum machine_mode op0_mode = VOIDmode;
693   int prev_changes = num_changes;
694 
695   if (!x)
696     return;
697 
698   code = GET_CODE (x);
699   fmt = GET_RTX_FORMAT (code);
700   if (fmt[0] == 'e')
701     op0_mode = GET_MODE (XEXP (x, 0));
702 
703   /* X matches FROM if it is the same rtx or they are both referring to the
704      same register in the same mode.  Avoid calling rtx_equal_p unless the
705      operands look similar.  */
706 
707   if (x == from
708       || (REG_P (x) && REG_P (from)
709 	  && GET_MODE (x) == GET_MODE (from)
710 	  && REGNO (x) == REGNO (from))
711       || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
712 	  && rtx_equal_p (x, from)))
713     {
714       validate_unshare_change (object, loc, to, 1);
715       return;
716     }
717 
718   /* Call ourself recursively to perform the replacements.
719      We must not replace inside already replaced expression, otherwise we
720      get infinite recursion for replacements like (reg X)->(subreg (reg X))
721      done by regmove, so we must special case shared ASM_OPERANDS.  */
722 
723   if (GET_CODE (x) == PARALLEL)
724     {
725       for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
726 	{
727 	  if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
728 	      && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
729 	    {
730 	      /* Verify that operands are really shared.  */
731 	      gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
732 			  == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
733 							      (x, 0, j))));
734 	      validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
735 				      from, to, object, simplify);
736 	    }
737 	  else
738 	    validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
739                                     simplify);
740 	}
741     }
742   else
743     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
744       {
745 	if (fmt[i] == 'e')
746 	  validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
747 	else if (fmt[i] == 'E')
748 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
749 	    validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
750                                     simplify);
751       }
752 
753   /* If we didn't substitute, there is nothing more to do.  */
754   if (num_changes == prev_changes)
755     return;
756 
757   /* Allow substituted expression to have different mode.  This is used by
758      regmove to change mode of pseudo register.  */
759   if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
760     op0_mode = GET_MODE (XEXP (x, 0));
761 
762   /* Do changes needed to keep rtx consistent.  Don't do any other
763      simplifications, as it is not our job.  */
764   if (simplify)
765     simplify_while_replacing (loc, to, object, op0_mode);
766 }
767 
768 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
769    with TO.  After all changes have been made, validate by seeing
770    if INSN is still valid.  */
771 
772 int
773 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
774 {
775   validate_replace_rtx_1 (loc, from, to, insn, true);
776   return apply_change_group ();
777 }
778 
779 /* Try replacing every occurrence of FROM in INSN with TO.  After all
780    changes have been made, validate by seeing if INSN is still valid.  */
781 
782 int
783 validate_replace_rtx (rtx from, rtx to, rtx insn)
784 {
785   validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
786   return apply_change_group ();
787 }
788 
789 /* Try replacing every occurrence of FROM in WHERE with TO.  Assume that WHERE
790    is a part of INSN.  After all changes have been made, validate by seeing if
791    INSN is still valid.
792    validate_replace_rtx (from, to, insn) is equivalent to
793    validate_replace_rtx_part (from, to, &PATTERN (insn), insn).  */
794 
795 int
796 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
797 {
798   validate_replace_rtx_1 (where, from, to, insn, true);
799   return apply_change_group ();
800 }
801 
802 /* Same as above, but do not simplify rtx afterwards.  */
803 int
804 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
805                                       rtx insn)
806 {
807   validate_replace_rtx_1 (where, from, to, insn, false);
808   return apply_change_group ();
809 
810 }
811 
812 /* Try replacing every occurrence of FROM in INSN with TO.  This also
813    will replace in REG_EQUAL and REG_EQUIV notes.  */
814 
815 void
816 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
817 {
818   rtx note;
819   validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
820   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
821     if (REG_NOTE_KIND (note) == REG_EQUAL
822 	|| REG_NOTE_KIND (note) == REG_EQUIV)
823       validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
824 }
825 
826 /* Function called by note_uses to replace used subexpressions.  */
827 struct validate_replace_src_data
828 {
829   rtx from;			/* Old RTX */
830   rtx to;			/* New RTX */
831   rtx insn;			/* Insn in which substitution is occurring.  */
832 };
833 
834 static void
835 validate_replace_src_1 (rtx *x, void *data)
836 {
837   struct validate_replace_src_data *d
838     = (struct validate_replace_src_data *) data;
839 
840   validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
841 }
842 
843 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
844    SET_DESTs.  */
845 
846 void
847 validate_replace_src_group (rtx from, rtx to, rtx insn)
848 {
849   struct validate_replace_src_data d;
850 
851   d.from = from;
852   d.to = to;
853   d.insn = insn;
854   note_uses (&PATTERN (insn), validate_replace_src_1, &d);
855 }
856 
857 /* Try simplify INSN.
858    Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
859    pattern and return true if something was simplified.  */
860 
861 bool
862 validate_simplify_insn (rtx insn)
863 {
864   int i;
865   rtx pat = NULL;
866   rtx newpat = NULL;
867 
868   pat = PATTERN (insn);
869 
870   if (GET_CODE (pat) == SET)
871     {
872       newpat = simplify_rtx (SET_SRC (pat));
873       if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
874 	validate_change (insn, &SET_SRC (pat), newpat, 1);
875       newpat = simplify_rtx (SET_DEST (pat));
876       if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
877 	validate_change (insn, &SET_DEST (pat), newpat, 1);
878     }
879   else if (GET_CODE (pat) == PARALLEL)
880     for (i = 0; i < XVECLEN (pat, 0); i++)
881       {
882 	rtx s = XVECEXP (pat, 0, i);
883 
884 	if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
885 	  {
886 	    newpat = simplify_rtx (SET_SRC (s));
887 	    if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
888 	      validate_change (insn, &SET_SRC (s), newpat, 1);
889 	    newpat = simplify_rtx (SET_DEST (s));
890 	    if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
891 	      validate_change (insn, &SET_DEST (s), newpat, 1);
892 	  }
893       }
894   return ((num_changes_pending () > 0) && (apply_change_group () > 0));
895 }
896 
897 #ifdef HAVE_cc0
898 /* Return 1 if the insn using CC0 set by INSN does not contain
899    any ordered tests applied to the condition codes.
900    EQ and NE tests do not count.  */
901 
902 int
903 next_insn_tests_no_inequality (rtx insn)
904 {
905   rtx next = next_cc0_user (insn);
906 
907   /* If there is no next insn, we have to take the conservative choice.  */
908   if (next == 0)
909     return 0;
910 
911   return (INSN_P (next)
912 	  && ! inequality_comparisons_p (PATTERN (next)));
913 }
914 #endif
915 
916 /* Return 1 if OP is a valid general operand for machine mode MODE.
917    This is either a register reference, a memory reference,
918    or a constant.  In the case of a memory reference, the address
919    is checked for general validity for the target machine.
920 
921    Register and memory references must have mode MODE in order to be valid,
922    but some constants have no machine mode and are valid for any mode.
923 
924    If MODE is VOIDmode, OP is checked for validity for whatever mode
925    it has.
926 
927    The main use of this function is as a predicate in match_operand
928    expressions in the machine description.  */
929 
930 int
931 general_operand (rtx op, enum machine_mode mode)
932 {
933   enum rtx_code code = GET_CODE (op);
934 
935   if (mode == VOIDmode)
936     mode = GET_MODE (op);
937 
938   /* Don't accept CONST_INT or anything similar
939      if the caller wants something floating.  */
940   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
941       && GET_MODE_CLASS (mode) != MODE_INT
942       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
943     return 0;
944 
945   if (CONST_INT_P (op)
946       && mode != VOIDmode
947       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
948     return 0;
949 
950   if (CONSTANT_P (op))
951     return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
952 	     || mode == VOIDmode)
953 	    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
954 	    && targetm.legitimate_constant_p (mode == VOIDmode
955 					      ? GET_MODE (op)
956 					      : mode, op));
957 
958   /* Except for certain constants with VOIDmode, already checked for,
959      OP's mode must match MODE if MODE specifies a mode.  */
960 
961   if (GET_MODE (op) != mode)
962     return 0;
963 
964   if (code == SUBREG)
965     {
966       rtx sub = SUBREG_REG (op);
967 
968 #ifdef INSN_SCHEDULING
969       /* On machines that have insn scheduling, we want all memory
970 	 reference to be explicit, so outlaw paradoxical SUBREGs.
971 	 However, we must allow them after reload so that they can
972 	 get cleaned up by cleanup_subreg_operands.  */
973       if (!reload_completed && MEM_P (sub)
974 	  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
975 	return 0;
976 #endif
977       /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
978          may result in incorrect reference.  We should simplify all valid
979          subregs of MEM anyway.  But allow this after reload because we
980 	 might be called from cleanup_subreg_operands.
981 
982 	 ??? This is a kludge.  */
983       if (!reload_completed && SUBREG_BYTE (op) != 0
984 	  && MEM_P (sub))
985 	return 0;
986 
987       /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
988 	 create such rtl, and we must reject it.  */
989       if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
990 	  && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
991 	return 0;
992 
993       op = sub;
994       code = GET_CODE (op);
995     }
996 
997   if (code == REG)
998     return (REGNO (op) >= FIRST_PSEUDO_REGISTER
999 	    || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1000 
1001   if (code == MEM)
1002     {
1003       rtx y = XEXP (op, 0);
1004 
1005       if (! volatile_ok && MEM_VOLATILE_P (op))
1006 	return 0;
1007 
1008       /* Use the mem's mode, since it will be reloaded thus.  */
1009       if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1010 	return 1;
1011     }
1012 
1013   return 0;
1014 }
1015 
1016 /* Return 1 if OP is a valid memory address for a memory reference
1017    of mode MODE.
1018 
1019    The main use of this function is as a predicate in match_operand
1020    expressions in the machine description.  */
1021 
1022 int
1023 address_operand (rtx op, enum machine_mode mode)
1024 {
1025   return memory_address_p (mode, op);
1026 }
1027 
1028 /* Return 1 if OP is a register reference of mode MODE.
1029    If MODE is VOIDmode, accept a register in any mode.
1030 
1031    The main use of this function is as a predicate in match_operand
1032    expressions in the machine description.  */
1033 
1034 int
1035 register_operand (rtx op, enum machine_mode mode)
1036 {
1037   if (GET_MODE (op) != mode && mode != VOIDmode)
1038     return 0;
1039 
1040   if (GET_CODE (op) == SUBREG)
1041     {
1042       rtx sub = SUBREG_REG (op);
1043 
1044       /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1045 	 because it is guaranteed to be reloaded into one.
1046 	 Just make sure the MEM is valid in itself.
1047 	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1048 	 but currently it does result from (SUBREG (REG)...) where the
1049 	 reg went on the stack.)  */
1050       if (! reload_completed && MEM_P (sub))
1051 	return general_operand (op, mode);
1052 
1053 #ifdef CANNOT_CHANGE_MODE_CLASS
1054       if (REG_P (sub)
1055 	  && REGNO (sub) < FIRST_PSEUDO_REGISTER
1056 	  && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1057 	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1058 	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1059 	return 0;
1060 #endif
1061 
1062       /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
1063 	 create such rtl, and we must reject it.  */
1064       if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1065 	  && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1066 	return 0;
1067 
1068       op = sub;
1069     }
1070 
1071   return (REG_P (op)
1072 	  && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1073 	      || in_hard_reg_set_p (operand_reg_set,
1074 				    GET_MODE (op), REGNO (op))));
1075 }
1076 
1077 /* Return 1 for a register in Pmode; ignore the tested mode.  */
1078 
1079 int
1080 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1081 {
1082   return register_operand (op, Pmode);
1083 }
1084 
1085 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1086    or a hard register.  */
1087 
1088 int
1089 scratch_operand (rtx op, enum machine_mode mode)
1090 {
1091   if (GET_MODE (op) != mode && mode != VOIDmode)
1092     return 0;
1093 
1094   return (GET_CODE (op) == SCRATCH
1095 	  || (REG_P (op)
1096 	      && REGNO (op) < FIRST_PSEUDO_REGISTER));
1097 }
1098 
1099 /* Return 1 if OP is a valid immediate operand for mode MODE.
1100 
1101    The main use of this function is as a predicate in match_operand
1102    expressions in the machine description.  */
1103 
1104 int
1105 immediate_operand (rtx op, enum machine_mode mode)
1106 {
1107   /* Don't accept CONST_INT or anything similar
1108      if the caller wants something floating.  */
1109   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1110       && GET_MODE_CLASS (mode) != MODE_INT
1111       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1112     return 0;
1113 
1114   if (CONST_INT_P (op)
1115       && mode != VOIDmode
1116       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1117     return 0;
1118 
1119   return (CONSTANT_P (op)
1120 	  && (GET_MODE (op) == mode || mode == VOIDmode
1121 	      || GET_MODE (op) == VOIDmode)
1122 	  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1123 	  && targetm.legitimate_constant_p (mode == VOIDmode
1124 					    ? GET_MODE (op)
1125 					    : mode, op));
1126 }
1127 
1128 /* Returns 1 if OP is an operand that is a CONST_INT.  */
1129 
1130 int
1131 const_int_operand (rtx op, enum machine_mode mode)
1132 {
1133   if (!CONST_INT_P (op))
1134     return 0;
1135 
1136   if (mode != VOIDmode
1137       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1138     return 0;
1139 
1140   return 1;
1141 }
1142 
1143 /* Returns 1 if OP is an operand that is a constant integer or constant
1144    floating-point number.  */
1145 
1146 int
1147 const_double_operand (rtx op, enum machine_mode mode)
1148 {
1149   /* Don't accept CONST_INT or anything similar
1150      if the caller wants something floating.  */
1151   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1152       && GET_MODE_CLASS (mode) != MODE_INT
1153       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1154     return 0;
1155 
1156   return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1157 	  && (mode == VOIDmode || GET_MODE (op) == mode
1158 	      || GET_MODE (op) == VOIDmode));
1159 }
1160 
1161 /* Return 1 if OP is a general operand that is not an immediate operand.  */
1162 
1163 int
1164 nonimmediate_operand (rtx op, enum machine_mode mode)
1165 {
1166   return (general_operand (op, mode) && ! CONSTANT_P (op));
1167 }
1168 
1169 /* Return 1 if OP is a register reference or immediate value of mode MODE.  */
1170 
1171 int
1172 nonmemory_operand (rtx op, enum machine_mode mode)
1173 {
1174   if (CONSTANT_P (op))
1175     return immediate_operand (op, mode);
1176 
1177   if (GET_MODE (op) != mode && mode != VOIDmode)
1178     return 0;
1179 
1180   if (GET_CODE (op) == SUBREG)
1181     {
1182       /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1183 	 because it is guaranteed to be reloaded into one.
1184 	 Just make sure the MEM is valid in itself.
1185 	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1186 	 but currently it does result from (SUBREG (REG)...) where the
1187 	 reg went on the stack.)  */
1188       if (! reload_completed && MEM_P (SUBREG_REG (op)))
1189 	return general_operand (op, mode);
1190       op = SUBREG_REG (op);
1191     }
1192 
1193   return (REG_P (op)
1194 	  && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1195 	      || in_hard_reg_set_p (operand_reg_set,
1196 				    GET_MODE (op), REGNO (op))));
1197 }
1198 
1199 /* Return 1 if OP is a valid operand that stands for pushing a
1200    value of mode MODE onto the stack.
1201 
1202    The main use of this function is as a predicate in match_operand
1203    expressions in the machine description.  */
1204 
1205 int
1206 push_operand (rtx op, enum machine_mode mode)
1207 {
1208   unsigned int rounded_size = GET_MODE_SIZE (mode);
1209 
1210 #ifdef PUSH_ROUNDING
1211   rounded_size = PUSH_ROUNDING (rounded_size);
1212 #endif
1213 
1214   if (!MEM_P (op))
1215     return 0;
1216 
1217   if (mode != VOIDmode && GET_MODE (op) != mode)
1218     return 0;
1219 
1220   op = XEXP (op, 0);
1221 
1222   if (rounded_size == GET_MODE_SIZE (mode))
1223     {
1224       if (GET_CODE (op) != STACK_PUSH_CODE)
1225 	return 0;
1226     }
1227   else
1228     {
1229       if (GET_CODE (op) != PRE_MODIFY
1230 	  || GET_CODE (XEXP (op, 1)) != PLUS
1231 	  || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1232 	  || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1233 #ifdef STACK_GROWS_DOWNWARD
1234 	  || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1235 #else
1236 	  || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1237 #endif
1238 	  )
1239 	return 0;
1240     }
1241 
1242   return XEXP (op, 0) == stack_pointer_rtx;
1243 }
1244 
1245 /* Return 1 if OP is a valid operand that stands for popping a
1246    value of mode MODE off the stack.
1247 
1248    The main use of this function is as a predicate in match_operand
1249    expressions in the machine description.  */
1250 
1251 int
1252 pop_operand (rtx op, enum machine_mode mode)
1253 {
1254   if (!MEM_P (op))
1255     return 0;
1256 
1257   if (mode != VOIDmode && GET_MODE (op) != mode)
1258     return 0;
1259 
1260   op = XEXP (op, 0);
1261 
1262   if (GET_CODE (op) != STACK_POP_CODE)
1263     return 0;
1264 
1265   return XEXP (op, 0) == stack_pointer_rtx;
1266 }
1267 
1268 /* Return 1 if ADDR is a valid memory address
1269    for mode MODE in address space AS.  */
1270 
1271 int
1272 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1273 			     rtx addr, addr_space_t as)
1274 {
1275 #ifdef GO_IF_LEGITIMATE_ADDRESS
1276   gcc_assert (ADDR_SPACE_GENERIC_P (as));
1277   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1278   return 0;
1279 
1280  win:
1281   return 1;
1282 #else
1283   return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1284 #endif
1285 }
1286 
1287 /* Return 1 if OP is a valid memory reference with mode MODE,
1288    including a valid address.
1289 
1290    The main use of this function is as a predicate in match_operand
1291    expressions in the machine description.  */
1292 
1293 int
1294 memory_operand (rtx op, enum machine_mode mode)
1295 {
1296   rtx inner;
1297 
1298   if (! reload_completed)
1299     /* Note that no SUBREG is a memory operand before end of reload pass,
1300        because (SUBREG (MEM...)) forces reloading into a register.  */
1301     return MEM_P (op) && general_operand (op, mode);
1302 
1303   if (mode != VOIDmode && GET_MODE (op) != mode)
1304     return 0;
1305 
1306   inner = op;
1307   if (GET_CODE (inner) == SUBREG)
1308     inner = SUBREG_REG (inner);
1309 
1310   return (MEM_P (inner) && general_operand (op, mode));
1311 }
1312 
1313 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1314    that is, a memory reference whose address is a general_operand.  */
1315 
1316 int
1317 indirect_operand (rtx op, enum machine_mode mode)
1318 {
1319   /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
1320   if (! reload_completed
1321       && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1322     {
1323       int offset = SUBREG_BYTE (op);
1324       rtx inner = SUBREG_REG (op);
1325 
1326       if (mode != VOIDmode && GET_MODE (op) != mode)
1327 	return 0;
1328 
1329       /* The only way that we can have a general_operand as the resulting
1330 	 address is if OFFSET is zero and the address already is an operand
1331 	 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1332 	 operand.  */
1333 
1334       return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1335 	      || (GET_CODE (XEXP (inner, 0)) == PLUS
1336 		  && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1337 		  && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1338 		  && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1339     }
1340 
1341   return (MEM_P (op)
1342 	  && memory_operand (op, mode)
1343 	  && general_operand (XEXP (op, 0), Pmode));
1344 }
1345 
1346 /* Return 1 if this is an ordered comparison operator (not including
1347    ORDERED and UNORDERED).  */
1348 
1349 int
1350 ordered_comparison_operator (rtx op, enum machine_mode mode)
1351 {
1352   if (mode != VOIDmode && GET_MODE (op) != mode)
1353     return false;
1354   switch (GET_CODE (op))
1355     {
1356     case EQ:
1357     case NE:
1358     case LT:
1359     case LTU:
1360     case LE:
1361     case LEU:
1362     case GT:
1363     case GTU:
1364     case GE:
1365     case GEU:
1366       return true;
1367     default:
1368       return false;
1369     }
1370 }
1371 
1372 /* Return 1 if this is a comparison operator.  This allows the use of
1373    MATCH_OPERATOR to recognize all the branch insns.  */
1374 
1375 int
1376 comparison_operator (rtx op, enum machine_mode mode)
1377 {
1378   return ((mode == VOIDmode || GET_MODE (op) == mode)
1379 	  && COMPARISON_P (op));
1380 }
1381 
1382 /* If BODY is an insn body that uses ASM_OPERANDS, return it.  */
1383 
1384 rtx
1385 extract_asm_operands (rtx body)
1386 {
1387   rtx tmp;
1388   switch (GET_CODE (body))
1389     {
1390     case ASM_OPERANDS:
1391       return body;
1392 
1393     case SET:
1394       /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
1395       tmp = SET_SRC (body);
1396       if (GET_CODE (tmp) == ASM_OPERANDS)
1397 	return tmp;
1398       break;
1399 
1400     case PARALLEL:
1401       tmp = XVECEXP (body, 0, 0);
1402       if (GET_CODE (tmp) == ASM_OPERANDS)
1403 	return tmp;
1404       if (GET_CODE (tmp) == SET)
1405 	{
1406 	  tmp = SET_SRC (tmp);
1407 	  if (GET_CODE (tmp) == ASM_OPERANDS)
1408 	    return tmp;
1409 	}
1410       break;
1411 
1412     default:
1413       break;
1414     }
1415   return NULL;
1416 }
1417 
1418 /* If BODY is an insn body that uses ASM_OPERANDS,
1419    return the number of operands (both input and output) in the insn.
1420    Otherwise return -1.  */
1421 
1422 int
1423 asm_noperands (const_rtx body)
1424 {
1425   rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1426   int n_sets = 0;
1427 
1428   if (asm_op == NULL)
1429     return -1;
1430 
1431   if (GET_CODE (body) == SET)
1432     n_sets = 1;
1433   else if (GET_CODE (body) == PARALLEL)
1434     {
1435       int i;
1436       if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1437 	{
1438 	  /* Multiple output operands, or 1 output plus some clobbers:
1439 	     body is
1440 	     [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
1441 	  /* Count backwards through CLOBBERs to determine number of SETs.  */
1442 	  for (i = XVECLEN (body, 0); i > 0; i--)
1443 	    {
1444 	      if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1445 		break;
1446 	      if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1447 		return -1;
1448 	    }
1449 
1450 	  /* N_SETS is now number of output operands.  */
1451 	  n_sets = i;
1452 
1453 	  /* Verify that all the SETs we have
1454 	     came from a single original asm_operands insn
1455 	     (so that invalid combinations are blocked).  */
1456 	  for (i = 0; i < n_sets; i++)
1457 	    {
1458 	      rtx elt = XVECEXP (body, 0, i);
1459 	      if (GET_CODE (elt) != SET)
1460 		return -1;
1461 	      if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1462 		return -1;
1463 	      /* If these ASM_OPERANDS rtx's came from different original insns
1464 	         then they aren't allowed together.  */
1465 	      if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1466 		  != ASM_OPERANDS_INPUT_VEC (asm_op))
1467 		return -1;
1468 	    }
1469 	}
1470       else
1471 	{
1472 	  /* 0 outputs, but some clobbers:
1473 	     body is [(asm_operands ...) (clobber (reg ...))...].  */
1474 	  /* Make sure all the other parallel things really are clobbers.  */
1475 	  for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1476 	    if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1477 	      return -1;
1478 	}
1479     }
1480 
1481   return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1482 	  + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1483 }
1484 
1485 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1486    copy its operands (both input and output) into the vector OPERANDS,
1487    the locations of the operands within the insn into the vector OPERAND_LOCS,
1488    and the constraints for the operands into CONSTRAINTS.
1489    Write the modes of the operands into MODES.
1490    Return the assembler-template.
1491 
1492    If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1493    we don't store that info.  */
1494 
1495 const char *
1496 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1497 		     const char **constraints, enum machine_mode *modes,
1498 		     location_t *loc)
1499 {
1500   int nbase = 0, n, i;
1501   rtx asmop;
1502 
1503   switch (GET_CODE (body))
1504     {
1505     case ASM_OPERANDS:
1506       /* Zero output asm: BODY is (asm_operands ...).  */
1507       asmop = body;
1508       break;
1509 
1510     case SET:
1511       /* Single output asm: BODY is (set OUTPUT (asm_operands ...)).  */
1512       asmop = SET_SRC (body);
1513 
1514       /* The output is in the SET.
1515 	 Its constraint is in the ASM_OPERANDS itself.  */
1516       if (operands)
1517 	operands[0] = SET_DEST (body);
1518       if (operand_locs)
1519 	operand_locs[0] = &SET_DEST (body);
1520       if (constraints)
1521 	constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1522       if (modes)
1523 	modes[0] = GET_MODE (SET_DEST (body));
1524       nbase = 1;
1525       break;
1526 
1527     case PARALLEL:
1528       {
1529 	int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */
1530 
1531 	asmop = XVECEXP (body, 0, 0);
1532 	if (GET_CODE (asmop) == SET)
1533 	  {
1534 	    asmop = SET_SRC (asmop);
1535 
1536 	    /* At least one output, plus some CLOBBERs.  The outputs are in
1537 	       the SETs.  Their constraints are in the ASM_OPERANDS itself.  */
1538 	    for (i = 0; i < nparallel; i++)
1539 	      {
1540 		if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1541 		  break;		/* Past last SET */
1542 		if (operands)
1543 		  operands[i] = SET_DEST (XVECEXP (body, 0, i));
1544 		if (operand_locs)
1545 		  operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1546 		if (constraints)
1547 		  constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1548 		if (modes)
1549 		  modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1550 	      }
1551 	    nbase = i;
1552 	  }
1553 	break;
1554       }
1555 
1556     default:
1557       gcc_unreachable ();
1558     }
1559 
1560   n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1561   for (i = 0; i < n; i++)
1562     {
1563       if (operand_locs)
1564 	operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1565       if (operands)
1566 	operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1567       if (constraints)
1568 	constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1569       if (modes)
1570 	modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1571     }
1572   nbase += n;
1573 
1574   n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1575   for (i = 0; i < n; i++)
1576     {
1577       if (operand_locs)
1578 	operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1579       if (operands)
1580 	operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1581       if (constraints)
1582 	constraints[nbase + i] = "";
1583       if (modes)
1584 	modes[nbase + i] = Pmode;
1585     }
1586 
1587   if (loc)
1588     *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1589 
1590   return ASM_OPERANDS_TEMPLATE (asmop);
1591 }
1592 
1593 /* Check if an asm_operand matches its constraints.
1594    Return > 0 if ok, = 0 if bad, < 0 if inconclusive.  */
1595 
1596 int
1597 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1598 {
1599   int result = 0;
1600 #ifdef AUTO_INC_DEC
1601   bool incdec_ok = false;
1602 #endif
1603 
1604   /* Use constrain_operands after reload.  */
1605   gcc_assert (!reload_completed);
1606 
1607   /* Empty constraint string is the same as "X,...,X", i.e. X for as
1608      many alternatives as required to match the other operands.  */
1609   if (*constraint == '\0')
1610     result = 1;
1611 
1612   while (*constraint)
1613     {
1614       char c = *constraint;
1615       int len;
1616       switch (c)
1617 	{
1618 	case ',':
1619 	  constraint++;
1620 	  continue;
1621 	case '=':
1622 	case '+':
1623 	case '*':
1624 	case '%':
1625 	case '!':
1626 	case '#':
1627 	case '&':
1628 	case '?':
1629 	  break;
1630 
1631 	case '0': case '1': case '2': case '3': case '4':
1632 	case '5': case '6': case '7': case '8': case '9':
1633 	  /* If caller provided constraints pointer, look up
1634 	     the maching constraint.  Otherwise, our caller should have
1635 	     given us the proper matching constraint, but we can't
1636 	     actually fail the check if they didn't.  Indicate that
1637 	     results are inconclusive.  */
1638 	  if (constraints)
1639 	    {
1640 	      char *end;
1641 	      unsigned long match;
1642 
1643 	      match = strtoul (constraint, &end, 10);
1644 	      if (!result)
1645 		result = asm_operand_ok (op, constraints[match], NULL);
1646 	      constraint = (const char *) end;
1647 	    }
1648 	  else
1649 	    {
1650 	      do
1651 		constraint++;
1652 	      while (ISDIGIT (*constraint));
1653 	      if (! result)
1654 		result = -1;
1655 	    }
1656 	  continue;
1657 
1658 	case 'p':
1659 	  if (address_operand (op, VOIDmode))
1660 	    result = 1;
1661 	  break;
1662 
1663 	case TARGET_MEM_CONSTRAINT:
1664 	case 'V': /* non-offsettable */
1665 	  if (memory_operand (op, VOIDmode))
1666 	    result = 1;
1667 	  break;
1668 
1669 	case 'o': /* offsettable */
1670 	  if (offsettable_nonstrict_memref_p (op))
1671 	    result = 1;
1672 	  break;
1673 
1674 	case '<':
1675 	  /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1676 	     excepting those that expand_call created.  Further, on some
1677 	     machines which do not have generalized auto inc/dec, an inc/dec
1678 	     is not a memory_operand.
1679 
1680 	     Match any memory and hope things are resolved after reload.  */
1681 
1682 	  if (MEM_P (op)
1683 	      && (1
1684 		  || GET_CODE (XEXP (op, 0)) == PRE_DEC
1685 		  || GET_CODE (XEXP (op, 0)) == POST_DEC))
1686 	    result = 1;
1687 #ifdef AUTO_INC_DEC
1688 	  incdec_ok = true;
1689 #endif
1690 	  break;
1691 
1692 	case '>':
1693 	  if (MEM_P (op)
1694 	      && (1
1695 		  || GET_CODE (XEXP (op, 0)) == PRE_INC
1696 		  || GET_CODE (XEXP (op, 0)) == POST_INC))
1697 	    result = 1;
1698 #ifdef AUTO_INC_DEC
1699 	  incdec_ok = true;
1700 #endif
1701 	  break;
1702 
1703 	case 'E':
1704 	case 'F':
1705 	  if (GET_CODE (op) == CONST_DOUBLE
1706 	      || (GET_CODE (op) == CONST_VECTOR
1707 		  && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1708 	    result = 1;
1709 	  break;
1710 
1711 	case 'G':
1712 	  if (GET_CODE (op) == CONST_DOUBLE
1713 	      && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1714 	    result = 1;
1715 	  break;
1716 	case 'H':
1717 	  if (GET_CODE (op) == CONST_DOUBLE
1718 	      && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1719 	    result = 1;
1720 	  break;
1721 
1722 	case 's':
1723 	  if (CONST_INT_P (op)
1724 	      || (GET_CODE (op) == CONST_DOUBLE
1725 		  && GET_MODE (op) == VOIDmode))
1726 	    break;
1727 	  /* Fall through.  */
1728 
1729 	case 'i':
1730 	  if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1731 	    result = 1;
1732 	  break;
1733 
1734 	case 'n':
1735 	  if (CONST_INT_P (op)
1736 	      || (GET_CODE (op) == CONST_DOUBLE
1737 		  && GET_MODE (op) == VOIDmode))
1738 	    result = 1;
1739 	  break;
1740 
1741 	case 'I':
1742 	  if (CONST_INT_P (op)
1743 	      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1744 	    result = 1;
1745 	  break;
1746 	case 'J':
1747 	  if (CONST_INT_P (op)
1748 	      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1749 	    result = 1;
1750 	  break;
1751 	case 'K':
1752 	  if (CONST_INT_P (op)
1753 	      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1754 	    result = 1;
1755 	  break;
1756 	case 'L':
1757 	  if (CONST_INT_P (op)
1758 	      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1759 	    result = 1;
1760 	  break;
1761 	case 'M':
1762 	  if (CONST_INT_P (op)
1763 	      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1764 	    result = 1;
1765 	  break;
1766 	case 'N':
1767 	  if (CONST_INT_P (op)
1768 	      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1769 	    result = 1;
1770 	  break;
1771 	case 'O':
1772 	  if (CONST_INT_P (op)
1773 	      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1774 	    result = 1;
1775 	  break;
1776 	case 'P':
1777 	  if (CONST_INT_P (op)
1778 	      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1779 	    result = 1;
1780 	  break;
1781 
1782 	case 'X':
1783 	  result = 1;
1784 	  break;
1785 
1786 	case 'g':
1787 	  if (general_operand (op, VOIDmode))
1788 	    result = 1;
1789 	  break;
1790 
1791 	default:
1792 	  /* For all other letters, we first check for a register class,
1793 	     otherwise it is an EXTRA_CONSTRAINT.  */
1794 	  if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1795 	    {
1796 	    case 'r':
1797 	      if (GET_MODE (op) == BLKmode)
1798 		break;
1799 	      if (register_operand (op, VOIDmode))
1800 		result = 1;
1801 	    }
1802 #ifdef EXTRA_CONSTRAINT_STR
1803 	  else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1804 	    /* Every memory operand can be reloaded to fit.  */
1805 	    result = result || memory_operand (op, VOIDmode);
1806 	  else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1807 	    /* Every address operand can be reloaded to fit.  */
1808 	    result = result || address_operand (op, VOIDmode);
1809 	  else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1810 	    result = 1;
1811 #endif
1812 	  break;
1813 	}
1814       len = CONSTRAINT_LEN (c, constraint);
1815       do
1816 	constraint++;
1817       while (--len && *constraint);
1818       if (len)
1819 	return 0;
1820     }
1821 
1822 #ifdef AUTO_INC_DEC
1823   /* For operands without < or > constraints reject side-effects.  */
1824   if (!incdec_ok && result && MEM_P (op))
1825     switch (GET_CODE (XEXP (op, 0)))
1826       {
1827       case PRE_INC:
1828       case POST_INC:
1829       case PRE_DEC:
1830       case POST_DEC:
1831       case PRE_MODIFY:
1832       case POST_MODIFY:
1833 	return 0;
1834       default:
1835 	break;
1836       }
1837 #endif
1838 
1839   return result;
1840 }
1841 
1842 /* Given an rtx *P, if it is a sum containing an integer constant term,
1843    return the location (type rtx *) of the pointer to that constant term.
1844    Otherwise, return a null pointer.  */
1845 
1846 rtx *
1847 find_constant_term_loc (rtx *p)
1848 {
1849   rtx *tem;
1850   enum rtx_code code = GET_CODE (*p);
1851 
1852   /* If *P IS such a constant term, P is its location.  */
1853 
1854   if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1855       || code == CONST)
1856     return p;
1857 
1858   /* Otherwise, if not a sum, it has no constant term.  */
1859 
1860   if (GET_CODE (*p) != PLUS)
1861     return 0;
1862 
1863   /* If one of the summands is constant, return its location.  */
1864 
1865   if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1866       && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1867     return p;
1868 
1869   /* Otherwise, check each summand for containing a constant term.  */
1870 
1871   if (XEXP (*p, 0) != 0)
1872     {
1873       tem = find_constant_term_loc (&XEXP (*p, 0));
1874       if (tem != 0)
1875 	return tem;
1876     }
1877 
1878   if (XEXP (*p, 1) != 0)
1879     {
1880       tem = find_constant_term_loc (&XEXP (*p, 1));
1881       if (tem != 0)
1882 	return tem;
1883     }
1884 
1885   return 0;
1886 }
1887 
1888 /* Return 1 if OP is a memory reference
1889    whose address contains no side effects
1890    and remains valid after the addition
1891    of a positive integer less than the
1892    size of the object being referenced.
1893 
1894    We assume that the original address is valid and do not check it.
1895 
1896    This uses strict_memory_address_p as a subroutine, so
1897    don't use it before reload.  */
1898 
1899 int
1900 offsettable_memref_p (rtx op)
1901 {
1902   return ((MEM_P (op))
1903 	  && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1904 					       MEM_ADDR_SPACE (op)));
1905 }
1906 
1907 /* Similar, but don't require a strictly valid mem ref:
1908    consider pseudo-regs valid as index or base regs.  */
1909 
1910 int
1911 offsettable_nonstrict_memref_p (rtx op)
1912 {
1913   return ((MEM_P (op))
1914 	  && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1915 					       MEM_ADDR_SPACE (op)));
1916 }
1917 
1918 /* Return 1 if Y is a memory address which contains no side effects
1919    and would remain valid for address space AS after the addition of
1920    a positive integer less than the size of that mode.
1921 
1922    We assume that the original address is valid and do not check it.
1923    We do check that it is valid for narrower modes.
1924 
1925    If STRICTP is nonzero, we require a strictly valid address,
1926    for the sake of use in reload.c.  */
1927 
1928 int
1929 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1930 				  addr_space_t as)
1931 {
1932   enum rtx_code ycode = GET_CODE (y);
1933   rtx z;
1934   rtx y1 = y;
1935   rtx *y2;
1936   int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1937     (strictp ? strict_memory_address_addr_space_p
1938 	     : memory_address_addr_space_p);
1939   unsigned int mode_sz = GET_MODE_SIZE (mode);
1940 
1941   if (CONSTANT_ADDRESS_P (y))
1942     return 1;
1943 
1944   /* Adjusting an offsettable address involves changing to a narrower mode.
1945      Make sure that's OK.  */
1946 
1947   if (mode_dependent_address_p (y))
1948     return 0;
1949 
1950   /* ??? How much offset does an offsettable BLKmode reference need?
1951      Clearly that depends on the situation in which it's being used.
1952      However, the current situation in which we test 0xffffffff is
1953      less than ideal.  Caveat user.  */
1954   if (mode_sz == 0)
1955     mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1956 
1957   /* If the expression contains a constant term,
1958      see if it remains valid when max possible offset is added.  */
1959 
1960   if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1961     {
1962       int good;
1963 
1964       y1 = *y2;
1965       *y2 = plus_constant (*y2, mode_sz - 1);
1966       /* Use QImode because an odd displacement may be automatically invalid
1967 	 for any wider mode.  But it should be valid for a single byte.  */
1968       good = (*addressp) (QImode, y, as);
1969 
1970       /* In any case, restore old contents of memory.  */
1971       *y2 = y1;
1972       return good;
1973     }
1974 
1975   if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1976     return 0;
1977 
1978   /* The offset added here is chosen as the maximum offset that
1979      any instruction could need to add when operating on something
1980      of the specified mode.  We assume that if Y and Y+c are
1981      valid addresses then so is Y+d for all 0<d<c.  adjust_address will
1982      go inside a LO_SUM here, so we do so as well.  */
1983   if (GET_CODE (y) == LO_SUM
1984       && mode != BLKmode
1985       && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1986     z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1987 			plus_constant (XEXP (y, 1), mode_sz - 1));
1988   else
1989     z = plus_constant (y, mode_sz - 1);
1990 
1991   /* Use QImode because an odd displacement may be automatically invalid
1992      for any wider mode.  But it should be valid for a single byte.  */
1993   return (*addressp) (QImode, z, as);
1994 }
1995 
1996 /* Return 1 if ADDR is an address-expression whose effect depends
1997    on the mode of the memory reference it is used in.
1998 
1999    Autoincrement addressing is a typical example of mode-dependence
2000    because the amount of the increment depends on the mode.  */
2001 
2002 bool
2003 mode_dependent_address_p (rtx addr)
2004 {
2005   /* Auto-increment addressing with anything other than post_modify
2006      or pre_modify always introduces a mode dependency.  Catch such
2007      cases now instead of deferring to the target.  */
2008   if (GET_CODE (addr) == PRE_INC
2009       || GET_CODE (addr) == POST_INC
2010       || GET_CODE (addr) == PRE_DEC
2011       || GET_CODE (addr) == POST_DEC)
2012     return true;
2013 
2014   return targetm.mode_dependent_address_p (addr);
2015 }
2016 
2017 /* Like extract_insn, but save insn extracted and don't extract again, when
2018    called again for the same insn expecting that recog_data still contain the
2019    valid information.  This is used primary by gen_attr infrastructure that
2020    often does extract insn again and again.  */
2021 void
2022 extract_insn_cached (rtx insn)
2023 {
2024   if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2025     return;
2026   extract_insn (insn);
2027   recog_data.insn = insn;
2028 }
2029 
2030 /* Do cached extract_insn, constrain_operands and complain about failures.
2031    Used by insn_attrtab.  */
2032 void
2033 extract_constrain_insn_cached (rtx insn)
2034 {
2035   extract_insn_cached (insn);
2036   if (which_alternative == -1
2037       && !constrain_operands (reload_completed))
2038     fatal_insn_not_found (insn);
2039 }
2040 
2041 /* Do cached constrain_operands and complain about failures.  */
2042 int
2043 constrain_operands_cached (int strict)
2044 {
2045   if (which_alternative == -1)
2046     return constrain_operands (strict);
2047   else
2048     return 1;
2049 }
2050 
2051 /* Analyze INSN and fill in recog_data.  */
2052 
2053 void
2054 extract_insn (rtx insn)
2055 {
2056   int i;
2057   int icode;
2058   int noperands;
2059   rtx body = PATTERN (insn);
2060 
2061   recog_data.n_operands = 0;
2062   recog_data.n_alternatives = 0;
2063   recog_data.n_dups = 0;
2064   recog_data.is_asm = false;
2065 
2066   switch (GET_CODE (body))
2067     {
2068     case USE:
2069     case CLOBBER:
2070     case ASM_INPUT:
2071     case ADDR_VEC:
2072     case ADDR_DIFF_VEC:
2073     case VAR_LOCATION:
2074       return;
2075 
2076     case SET:
2077       if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2078 	goto asm_insn;
2079       else
2080 	goto normal_insn;
2081     case PARALLEL:
2082       if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2083 	   && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2084 	  || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2085 	goto asm_insn;
2086       else
2087 	goto normal_insn;
2088     case ASM_OPERANDS:
2089     asm_insn:
2090       recog_data.n_operands = noperands = asm_noperands (body);
2091       if (noperands >= 0)
2092 	{
2093 	  /* This insn is an `asm' with operands.  */
2094 
2095 	  /* expand_asm_operands makes sure there aren't too many operands.  */
2096 	  gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2097 
2098 	  /* Now get the operand values and constraints out of the insn.  */
2099 	  decode_asm_operands (body, recog_data.operand,
2100 			       recog_data.operand_loc,
2101 			       recog_data.constraints,
2102 			       recog_data.operand_mode, NULL);
2103 	  memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2104 	  if (noperands > 0)
2105 	    {
2106 	      const char *p =  recog_data.constraints[0];
2107 	      recog_data.n_alternatives = 1;
2108 	      while (*p)
2109 		recog_data.n_alternatives += (*p++ == ',');
2110 	    }
2111 	  recog_data.is_asm = true;
2112 	  break;
2113 	}
2114       fatal_insn_not_found (insn);
2115 
2116     default:
2117     normal_insn:
2118       /* Ordinary insn: recognize it, get the operands via insn_extract
2119 	 and get the constraints.  */
2120 
2121       icode = recog_memoized (insn);
2122       if (icode < 0)
2123 	fatal_insn_not_found (insn);
2124 
2125       recog_data.n_operands = noperands = insn_data[icode].n_operands;
2126       recog_data.n_alternatives = insn_data[icode].n_alternatives;
2127       recog_data.n_dups = insn_data[icode].n_dups;
2128 
2129       insn_extract (insn);
2130 
2131       for (i = 0; i < noperands; i++)
2132 	{
2133 	  recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2134 	  recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2135 	  recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2136 	  /* VOIDmode match_operands gets mode from their real operand.  */
2137 	  if (recog_data.operand_mode[i] == VOIDmode)
2138 	    recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2139 	}
2140     }
2141   for (i = 0; i < noperands; i++)
2142     recog_data.operand_type[i]
2143       = (recog_data.constraints[i][0] == '=' ? OP_OUT
2144 	 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2145 	 : OP_IN);
2146 
2147   gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2148 
2149   if (INSN_CODE (insn) < 0)
2150     for (i = 0; i < recog_data.n_alternatives; i++)
2151       recog_data.alternative_enabled_p[i] = true;
2152   else
2153     {
2154       recog_data.insn = insn;
2155       for (i = 0; i < recog_data.n_alternatives; i++)
2156 	{
2157 	  which_alternative = i;
2158 	  recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2159 	}
2160     }
2161 
2162   recog_data.insn = NULL;
2163   which_alternative = -1;
2164 }
2165 
2166 /* After calling extract_insn, you can use this function to extract some
2167    information from the constraint strings into a more usable form.
2168    The collected data is stored in recog_op_alt.  */
2169 void
2170 preprocess_constraints (void)
2171 {
2172   int i;
2173 
2174   for (i = 0; i < recog_data.n_operands; i++)
2175     memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2176 				 * sizeof (struct operand_alternative)));
2177 
2178   for (i = 0; i < recog_data.n_operands; i++)
2179     {
2180       int j;
2181       struct operand_alternative *op_alt;
2182       const char *p = recog_data.constraints[i];
2183 
2184       op_alt = recog_op_alt[i];
2185 
2186       for (j = 0; j < recog_data.n_alternatives; j++)
2187 	{
2188 	  op_alt[j].cl = NO_REGS;
2189 	  op_alt[j].constraint = p;
2190 	  op_alt[j].matches = -1;
2191 	  op_alt[j].matched = -1;
2192 
2193 	  if (!recog_data.alternative_enabled_p[j])
2194 	    {
2195 	      p = skip_alternative (p);
2196 	      continue;
2197 	    }
2198 
2199 	  if (*p == '\0' || *p == ',')
2200 	    {
2201 	      op_alt[j].anything_ok = 1;
2202 	      continue;
2203 	    }
2204 
2205 	  for (;;)
2206 	    {
2207 	      char c = *p;
2208 	      if (c == '#')
2209 		do
2210 		  c = *++p;
2211 		while (c != ',' && c != '\0');
2212 	      if (c == ',' || c == '\0')
2213 		{
2214 		  p++;
2215 		  break;
2216 		}
2217 
2218 	      switch (c)
2219 		{
2220 		case '=': case '+': case '*': case '%':
2221 		case 'E': case 'F': case 'G': case 'H':
2222 		case 's': case 'i': case 'n':
2223 		case 'I': case 'J': case 'K': case 'L':
2224 		case 'M': case 'N': case 'O': case 'P':
2225 		  /* These don't say anything we care about.  */
2226 		  break;
2227 
2228 		case '?':
2229 		  op_alt[j].reject += 6;
2230 		  break;
2231 		case '!':
2232 		  op_alt[j].reject += 600;
2233 		  break;
2234 		case '&':
2235 		  op_alt[j].earlyclobber = 1;
2236 		  break;
2237 
2238 		case '0': case '1': case '2': case '3': case '4':
2239 		case '5': case '6': case '7': case '8': case '9':
2240 		  {
2241 		    char *end;
2242 		    op_alt[j].matches = strtoul (p, &end, 10);
2243 		    recog_op_alt[op_alt[j].matches][j].matched = i;
2244 		    p = end;
2245 		  }
2246 		  continue;
2247 
2248 		case TARGET_MEM_CONSTRAINT:
2249 		  op_alt[j].memory_ok = 1;
2250 		  break;
2251 		case '<':
2252 		  op_alt[j].decmem_ok = 1;
2253 		  break;
2254 		case '>':
2255 		  op_alt[j].incmem_ok = 1;
2256 		  break;
2257 		case 'V':
2258 		  op_alt[j].nonoffmem_ok = 1;
2259 		  break;
2260 		case 'o':
2261 		  op_alt[j].offmem_ok = 1;
2262 		  break;
2263 		case 'X':
2264 		  op_alt[j].anything_ok = 1;
2265 		  break;
2266 
2267 		case 'p':
2268 		  op_alt[j].is_address = 1;
2269 		  op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2270 		      [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2271 					     ADDRESS, SCRATCH)];
2272 		  break;
2273 
2274 		case 'g':
2275 		case 'r':
2276 		  op_alt[j].cl =
2277 		   reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2278 		  break;
2279 
2280 		default:
2281 		  if (EXTRA_MEMORY_CONSTRAINT (c, p))
2282 		    {
2283 		      op_alt[j].memory_ok = 1;
2284 		      break;
2285 		    }
2286 		  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2287 		    {
2288 		      op_alt[j].is_address = 1;
2289 		      op_alt[j].cl
2290 			= (reg_class_subunion
2291 			   [(int) op_alt[j].cl]
2292 			   [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2293 						  ADDRESS, SCRATCH)]);
2294 		      break;
2295 		    }
2296 
2297 		  op_alt[j].cl
2298 		    = (reg_class_subunion
2299 		       [(int) op_alt[j].cl]
2300 		       [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2301 		  break;
2302 		}
2303 	      p += CONSTRAINT_LEN (c, p);
2304 	    }
2305 	}
2306     }
2307 }
2308 
2309 /* Check the operands of an insn against the insn's operand constraints
2310    and return 1 if they are valid.
2311    The information about the insn's operands, constraints, operand modes
2312    etc. is obtained from the global variables set up by extract_insn.
2313 
2314    WHICH_ALTERNATIVE is set to a number which indicates which
2315    alternative of constraints was matched: 0 for the first alternative,
2316    1 for the next, etc.
2317 
2318    In addition, when two operands are required to match
2319    and it happens that the output operand is (reg) while the
2320    input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2321    make the output operand look like the input.
2322    This is because the output operand is the one the template will print.
2323 
2324    This is used in final, just before printing the assembler code and by
2325    the routines that determine an insn's attribute.
2326 
2327    If STRICT is a positive nonzero value, it means that we have been
2328    called after reload has been completed.  In that case, we must
2329    do all checks strictly.  If it is zero, it means that we have been called
2330    before reload has completed.  In that case, we first try to see if we can
2331    find an alternative that matches strictly.  If not, we try again, this
2332    time assuming that reload will fix up the insn.  This provides a "best
2333    guess" for the alternative and is used to compute attributes of insns prior
2334    to reload.  A negative value of STRICT is used for this internal call.  */
2335 
2336 struct funny_match
2337 {
2338   int this_op, other;
2339 };
2340 
2341 int
2342 constrain_operands (int strict)
2343 {
2344   const char *constraints[MAX_RECOG_OPERANDS];
2345   int matching_operands[MAX_RECOG_OPERANDS];
2346   int earlyclobber[MAX_RECOG_OPERANDS];
2347   int c;
2348 
2349   struct funny_match funny_match[MAX_RECOG_OPERANDS];
2350   int funny_match_index;
2351 
2352   which_alternative = 0;
2353   if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2354     return 1;
2355 
2356   for (c = 0; c < recog_data.n_operands; c++)
2357     {
2358       constraints[c] = recog_data.constraints[c];
2359       matching_operands[c] = -1;
2360     }
2361 
2362   do
2363     {
2364       int seen_earlyclobber_at = -1;
2365       int opno;
2366       int lose = 0;
2367       funny_match_index = 0;
2368 
2369       if (!recog_data.alternative_enabled_p[which_alternative])
2370 	{
2371 	  int i;
2372 
2373 	  for (i = 0; i < recog_data.n_operands; i++)
2374 	    constraints[i] = skip_alternative (constraints[i]);
2375 
2376 	  which_alternative++;
2377 	  continue;
2378 	}
2379 
2380       for (opno = 0; opno < recog_data.n_operands; opno++)
2381 	{
2382 	  rtx op = recog_data.operand[opno];
2383 	  enum machine_mode mode = GET_MODE (op);
2384 	  const char *p = constraints[opno];
2385 	  int offset = 0;
2386 	  int win = 0;
2387 	  int val;
2388 	  int len;
2389 
2390 	  earlyclobber[opno] = 0;
2391 
2392 	  /* A unary operator may be accepted by the predicate, but it
2393 	     is irrelevant for matching constraints.  */
2394 	  if (UNARY_P (op))
2395 	    op = XEXP (op, 0);
2396 
2397 	  if (GET_CODE (op) == SUBREG)
2398 	    {
2399 	      if (REG_P (SUBREG_REG (op))
2400 		  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2401 		offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2402 					      GET_MODE (SUBREG_REG (op)),
2403 					      SUBREG_BYTE (op),
2404 					      GET_MODE (op));
2405 	      op = SUBREG_REG (op);
2406 	    }
2407 
2408 	  /* An empty constraint or empty alternative
2409 	     allows anything which matched the pattern.  */
2410 	  if (*p == 0 || *p == ',')
2411 	    win = 1;
2412 
2413 	  do
2414 	    switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2415 	      {
2416 	      case '\0':
2417 		len = 0;
2418 		break;
2419 	      case ',':
2420 		c = '\0';
2421 		break;
2422 
2423 	      case '?':  case '!': case '*':  case '%':
2424 	      case '=':  case '+':
2425 		break;
2426 
2427 	      case '#':
2428 		/* Ignore rest of this alternative as far as
2429 		   constraint checking is concerned.  */
2430 		do
2431 		  p++;
2432 		while (*p && *p != ',');
2433 		len = 0;
2434 		break;
2435 
2436 	      case '&':
2437 		earlyclobber[opno] = 1;
2438 		if (seen_earlyclobber_at < 0)
2439 		  seen_earlyclobber_at = opno;
2440 		break;
2441 
2442 	      case '0':  case '1':  case '2':  case '3':  case '4':
2443 	      case '5':  case '6':  case '7':  case '8':  case '9':
2444 		{
2445 		  /* This operand must be the same as a previous one.
2446 		     This kind of constraint is used for instructions such
2447 		     as add when they take only two operands.
2448 
2449 		     Note that the lower-numbered operand is passed first.
2450 
2451 		     If we are not testing strictly, assume that this
2452 		     constraint will be satisfied.  */
2453 
2454 		  char *end;
2455 		  int match;
2456 
2457 		  match = strtoul (p, &end, 10);
2458 		  p = end;
2459 
2460 		  if (strict < 0)
2461 		    val = 1;
2462 		  else
2463 		    {
2464 		      rtx op1 = recog_data.operand[match];
2465 		      rtx op2 = recog_data.operand[opno];
2466 
2467 		      /* A unary operator may be accepted by the predicate,
2468 			 but it is irrelevant for matching constraints.  */
2469 		      if (UNARY_P (op1))
2470 			op1 = XEXP (op1, 0);
2471 		      if (UNARY_P (op2))
2472 			op2 = XEXP (op2, 0);
2473 
2474 		      val = operands_match_p (op1, op2);
2475 		    }
2476 
2477 		  matching_operands[opno] = match;
2478 		  matching_operands[match] = opno;
2479 
2480 		  if (val != 0)
2481 		    win = 1;
2482 
2483 		  /* If output is *x and input is *--x, arrange later
2484 		     to change the output to *--x as well, since the
2485 		     output op is the one that will be printed.  */
2486 		  if (val == 2 && strict > 0)
2487 		    {
2488 		      funny_match[funny_match_index].this_op = opno;
2489 		      funny_match[funny_match_index++].other = match;
2490 		    }
2491 		}
2492 		len = 0;
2493 		break;
2494 
2495 	      case 'p':
2496 		/* p is used for address_operands.  When we are called by
2497 		   gen_reload, no one will have checked that the address is
2498 		   strictly valid, i.e., that all pseudos requiring hard regs
2499 		   have gotten them.  */
2500 		if (strict <= 0
2501 		    || (strict_memory_address_p (recog_data.operand_mode[opno],
2502 						 op)))
2503 		  win = 1;
2504 		break;
2505 
2506 		/* No need to check general_operand again;
2507 		   it was done in insn-recog.c.  Well, except that reload
2508 		   doesn't check the validity of its replacements, but
2509 		   that should only matter when there's a bug.  */
2510 	      case 'g':
2511 		/* Anything goes unless it is a REG and really has a hard reg
2512 		   but the hard reg is not in the class GENERAL_REGS.  */
2513 		if (REG_P (op))
2514 		  {
2515 		    if (strict < 0
2516 			|| GENERAL_REGS == ALL_REGS
2517 			|| (reload_in_progress
2518 			    && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2519 			|| reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2520 		      win = 1;
2521 		  }
2522 		else if (strict < 0 || general_operand (op, mode))
2523 		  win = 1;
2524 		break;
2525 
2526 	      case 'X':
2527 		/* This is used for a MATCH_SCRATCH in the cases when
2528 		   we don't actually need anything.  So anything goes
2529 		   any time.  */
2530 		win = 1;
2531 		break;
2532 
2533 	      case TARGET_MEM_CONSTRAINT:
2534 		/* Memory operands must be valid, to the extent
2535 		   required by STRICT.  */
2536 		if (MEM_P (op))
2537 		  {
2538 		    if (strict > 0
2539 			&& !strict_memory_address_addr_space_p
2540 			     (GET_MODE (op), XEXP (op, 0),
2541 			      MEM_ADDR_SPACE (op)))
2542 		      break;
2543 		    if (strict == 0
2544 			&& !memory_address_addr_space_p
2545 			     (GET_MODE (op), XEXP (op, 0),
2546 			      MEM_ADDR_SPACE (op)))
2547 		      break;
2548 		    win = 1;
2549 		  }
2550 		/* Before reload, accept what reload can turn into mem.  */
2551 		else if (strict < 0 && CONSTANT_P (op))
2552 		  win = 1;
2553 		/* During reload, accept a pseudo  */
2554 		else if (reload_in_progress && REG_P (op)
2555 			 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2556 		  win = 1;
2557 		break;
2558 
2559 	      case '<':
2560 		if (MEM_P (op)
2561 		    && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2562 			|| GET_CODE (XEXP (op, 0)) == POST_DEC))
2563 		  win = 1;
2564 		break;
2565 
2566 	      case '>':
2567 		if (MEM_P (op)
2568 		    && (GET_CODE (XEXP (op, 0)) == PRE_INC
2569 			|| GET_CODE (XEXP (op, 0)) == POST_INC))
2570 		  win = 1;
2571 		break;
2572 
2573 	      case 'E':
2574 	      case 'F':
2575 		if (GET_CODE (op) == CONST_DOUBLE
2576 		    || (GET_CODE (op) == CONST_VECTOR
2577 			&& GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2578 		  win = 1;
2579 		break;
2580 
2581 	      case 'G':
2582 	      case 'H':
2583 		if (GET_CODE (op) == CONST_DOUBLE
2584 		    && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2585 		  win = 1;
2586 		break;
2587 
2588 	      case 's':
2589 		if (CONST_INT_P (op)
2590 		    || (GET_CODE (op) == CONST_DOUBLE
2591 			&& GET_MODE (op) == VOIDmode))
2592 		  break;
2593 	      case 'i':
2594 		if (CONSTANT_P (op))
2595 		  win = 1;
2596 		break;
2597 
2598 	      case 'n':
2599 		if (CONST_INT_P (op)
2600 		    || (GET_CODE (op) == CONST_DOUBLE
2601 			&& GET_MODE (op) == VOIDmode))
2602 		  win = 1;
2603 		break;
2604 
2605 	      case 'I':
2606 	      case 'J':
2607 	      case 'K':
2608 	      case 'L':
2609 	      case 'M':
2610 	      case 'N':
2611 	      case 'O':
2612 	      case 'P':
2613 		if (CONST_INT_P (op)
2614 		    && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2615 		  win = 1;
2616 		break;
2617 
2618 	      case 'V':
2619 		if (MEM_P (op)
2620 		    && ((strict > 0 && ! offsettable_memref_p (op))
2621 			|| (strict < 0
2622 			    && !(CONSTANT_P (op) || MEM_P (op)))
2623 			|| (reload_in_progress
2624 			    && !(REG_P (op)
2625 				 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2626 		  win = 1;
2627 		break;
2628 
2629 	      case 'o':
2630 		if ((strict > 0 && offsettable_memref_p (op))
2631 		    || (strict == 0 && offsettable_nonstrict_memref_p (op))
2632 		    /* Before reload, accept what reload can handle.  */
2633 		    || (strict < 0
2634 			&& (CONSTANT_P (op) || MEM_P (op)))
2635 		    /* During reload, accept a pseudo  */
2636 		    || (reload_in_progress && REG_P (op)
2637 			&& REGNO (op) >= FIRST_PSEUDO_REGISTER))
2638 		  win = 1;
2639 		break;
2640 
2641 	      default:
2642 		{
2643 		  enum reg_class cl;
2644 
2645 		  cl = (c == 'r'
2646 			   ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2647 		  if (cl != NO_REGS)
2648 		    {
2649 		      if (strict < 0
2650 			  || (strict == 0
2651 			      && REG_P (op)
2652 			      && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2653 			  || (strict == 0 && GET_CODE (op) == SCRATCH)
2654 			  || (REG_P (op)
2655 			      && reg_fits_class_p (op, cl, offset, mode)))
2656 		        win = 1;
2657 		    }
2658 #ifdef EXTRA_CONSTRAINT_STR
2659 		  else if (EXTRA_CONSTRAINT_STR (op, c, p))
2660 		    win = 1;
2661 
2662 		  else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2663 			   /* Every memory operand can be reloaded to fit.  */
2664 			   && ((strict < 0 && MEM_P (op))
2665 			       /* Before reload, accept what reload can turn
2666 				  into mem.  */
2667 			       || (strict < 0 && CONSTANT_P (op))
2668 			       /* During reload, accept a pseudo  */
2669 			       || (reload_in_progress && REG_P (op)
2670 				   && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2671 		    win = 1;
2672 		  else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2673 			   /* Every address operand can be reloaded to fit.  */
2674 			   && strict < 0)
2675 		    win = 1;
2676 		  /* Cater to architectures like IA-64 that define extra memory
2677 		     constraints without using define_memory_constraint.  */
2678 		  else if (reload_in_progress
2679 			   && REG_P (op)
2680 			   && REGNO (op) >= FIRST_PSEUDO_REGISTER
2681 			   && reg_renumber[REGNO (op)] < 0
2682 			   && reg_equiv_mem (REGNO (op)) != 0
2683 			   && EXTRA_CONSTRAINT_STR
2684 			      (reg_equiv_mem (REGNO (op)), c, p))
2685 		    win = 1;
2686 #endif
2687 		  break;
2688 		}
2689 	      }
2690 	  while (p += len, c);
2691 
2692 	  constraints[opno] = p;
2693 	  /* If this operand did not win somehow,
2694 	     this alternative loses.  */
2695 	  if (! win)
2696 	    lose = 1;
2697 	}
2698       /* This alternative won; the operands are ok.
2699 	 Change whichever operands this alternative says to change.  */
2700       if (! lose)
2701 	{
2702 	  int opno, eopno;
2703 
2704 	  /* See if any earlyclobber operand conflicts with some other
2705 	     operand.  */
2706 
2707 	  if (strict > 0  && seen_earlyclobber_at >= 0)
2708 	    for (eopno = seen_earlyclobber_at;
2709 		 eopno < recog_data.n_operands;
2710 		 eopno++)
2711 	      /* Ignore earlyclobber operands now in memory,
2712 		 because we would often report failure when we have
2713 		 two memory operands, one of which was formerly a REG.  */
2714 	      if (earlyclobber[eopno]
2715 		  && REG_P (recog_data.operand[eopno]))
2716 		for (opno = 0; opno < recog_data.n_operands; opno++)
2717 		  if ((MEM_P (recog_data.operand[opno])
2718 		       || recog_data.operand_type[opno] != OP_OUT)
2719 		      && opno != eopno
2720 		      /* Ignore things like match_operator operands.  */
2721 		      && *recog_data.constraints[opno] != 0
2722 		      && ! (matching_operands[opno] == eopno
2723 			    && operands_match_p (recog_data.operand[opno],
2724 						 recog_data.operand[eopno]))
2725 		      && ! safe_from_earlyclobber (recog_data.operand[opno],
2726 						   recog_data.operand[eopno]))
2727 		    lose = 1;
2728 
2729 	  if (! lose)
2730 	    {
2731 	      while (--funny_match_index >= 0)
2732 		{
2733 		  recog_data.operand[funny_match[funny_match_index].other]
2734 		    = recog_data.operand[funny_match[funny_match_index].this_op];
2735 		}
2736 
2737 #ifdef AUTO_INC_DEC
2738 	      /* For operands without < or > constraints reject side-effects.  */
2739 	      if (recog_data.is_asm)
2740 		{
2741 		  for (opno = 0; opno < recog_data.n_operands; opno++)
2742 		    if (MEM_P (recog_data.operand[opno]))
2743 		      switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2744 			{
2745 			case PRE_INC:
2746 			case POST_INC:
2747 			case PRE_DEC:
2748 			case POST_DEC:
2749 			case PRE_MODIFY:
2750 			case POST_MODIFY:
2751 			  if (strchr (recog_data.constraints[opno], '<') == NULL
2752 			      && strchr (recog_data.constraints[opno], '>')
2753 				 == NULL)
2754 			    return 0;
2755 			  break;
2756 			default:
2757 			  break;
2758 			}
2759 		}
2760 #endif
2761 	      return 1;
2762 	    }
2763 	}
2764 
2765       which_alternative++;
2766     }
2767   while (which_alternative < recog_data.n_alternatives);
2768 
2769   which_alternative = -1;
2770   /* If we are about to reject this, but we are not to test strictly,
2771      try a very loose test.  Only return failure if it fails also.  */
2772   if (strict == 0)
2773     return constrain_operands (-1);
2774   else
2775     return 0;
2776 }
2777 
2778 /* Return true iff OPERAND (assumed to be a REG rtx)
2779    is a hard reg in class CLASS when its regno is offset by OFFSET
2780    and changed to mode MODE.
2781    If REG occupies multiple hard regs, all of them must be in CLASS.  */
2782 
2783 bool
2784 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2785 		  enum machine_mode mode)
2786 {
2787   int regno = REGNO (operand);
2788 
2789   if (cl == NO_REGS)
2790     return false;
2791 
2792   return (HARD_REGISTER_NUM_P (regno)
2793 	  && in_hard_reg_set_p (reg_class_contents[(int) cl],
2794 				mode, regno + offset));
2795 }
2796 
2797 /* Split single instruction.  Helper function for split_all_insns and
2798    split_all_insns_noflow.  Return last insn in the sequence if successful,
2799    or NULL if unsuccessful.  */
2800 
2801 static rtx
2802 split_insn (rtx insn)
2803 {
2804   /* Split insns here to get max fine-grain parallelism.  */
2805   rtx first = PREV_INSN (insn);
2806   rtx last = try_split (PATTERN (insn), insn, 1);
2807   rtx insn_set, last_set, note;
2808 
2809   if (last == insn)
2810     return NULL_RTX;
2811 
2812   /* If the original instruction was a single set that was known to be
2813      equivalent to a constant, see if we can say the same about the last
2814      instruction in the split sequence.  The two instructions must set
2815      the same destination.  */
2816   insn_set = single_set (insn);
2817   if (insn_set)
2818     {
2819       last_set = single_set (last);
2820       if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2821 	{
2822 	  note = find_reg_equal_equiv_note (insn);
2823 	  if (note && CONSTANT_P (XEXP (note, 0)))
2824 	    set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2825 	  else if (CONSTANT_P (SET_SRC (insn_set)))
2826 	    set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2827 	}
2828     }
2829 
2830   /* try_split returns the NOTE that INSN became.  */
2831   SET_INSN_DELETED (insn);
2832 
2833   /* ??? Coddle to md files that generate subregs in post-reload
2834      splitters instead of computing the proper hard register.  */
2835   if (reload_completed && first != last)
2836     {
2837       first = NEXT_INSN (first);
2838       for (;;)
2839 	{
2840 	  if (INSN_P (first))
2841 	    cleanup_subreg_operands (first);
2842 	  if (first == last)
2843 	    break;
2844 	  first = NEXT_INSN (first);
2845 	}
2846     }
2847 
2848   return last;
2849 }
2850 
2851 /* Split all insns in the function.  If UPD_LIFE, update life info after.  */
2852 
2853 void
2854 split_all_insns (void)
2855 {
2856   sbitmap blocks;
2857   bool changed;
2858   basic_block bb;
2859 
2860   blocks = sbitmap_alloc (last_basic_block);
2861   sbitmap_zero (blocks);
2862   changed = false;
2863 
2864   FOR_EACH_BB_REVERSE (bb)
2865     {
2866       rtx insn, next;
2867       bool finish = false;
2868 
2869       rtl_profile_for_bb (bb);
2870       for (insn = BB_HEAD (bb); !finish ; insn = next)
2871 	{
2872 	  /* Can't use `next_real_insn' because that might go across
2873 	     CODE_LABELS and short-out basic blocks.  */
2874 	  next = NEXT_INSN (insn);
2875 	  finish = (insn == BB_END (bb));
2876 	  if (INSN_P (insn))
2877 	    {
2878 	      rtx set = single_set (insn);
2879 
2880 	      /* Don't split no-op move insns.  These should silently
2881 		 disappear later in final.  Splitting such insns would
2882 		 break the code that handles LIBCALL blocks.  */
2883 	      if (set && set_noop_p (set))
2884 		{
2885 		  /* Nops get in the way while scheduling, so delete them
2886 		     now if register allocation has already been done.  It
2887 		     is too risky to try to do this before register
2888 		     allocation, and there are unlikely to be very many
2889 		     nops then anyways.  */
2890 		  if (reload_completed)
2891 		      delete_insn_and_edges (insn);
2892 		}
2893 	      else
2894 		{
2895 		  if (split_insn (insn))
2896 		    {
2897 		      SET_BIT (blocks, bb->index);
2898 		      changed = true;
2899 		    }
2900 		}
2901 	    }
2902 	}
2903     }
2904 
2905   default_rtl_profile ();
2906   if (changed)
2907     find_many_sub_basic_blocks (blocks);
2908 
2909 #ifdef ENABLE_CHECKING
2910   verify_flow_info ();
2911 #endif
2912 
2913   sbitmap_free (blocks);
2914 }
2915 
2916 /* Same as split_all_insns, but do not expect CFG to be available.
2917    Used by machine dependent reorg passes.  */
2918 
2919 unsigned int
2920 split_all_insns_noflow (void)
2921 {
2922   rtx next, insn;
2923 
2924   for (insn = get_insns (); insn; insn = next)
2925     {
2926       next = NEXT_INSN (insn);
2927       if (INSN_P (insn))
2928 	{
2929 	  /* Don't split no-op move insns.  These should silently
2930 	     disappear later in final.  Splitting such insns would
2931 	     break the code that handles LIBCALL blocks.  */
2932 	  rtx set = single_set (insn);
2933 	  if (set && set_noop_p (set))
2934 	    {
2935 	      /* Nops get in the way while scheduling, so delete them
2936 		 now if register allocation has already been done.  It
2937 		 is too risky to try to do this before register
2938 		 allocation, and there are unlikely to be very many
2939 		 nops then anyways.
2940 
2941 		 ??? Should we use delete_insn when the CFG isn't valid?  */
2942 	      if (reload_completed)
2943 		delete_insn_and_edges (insn);
2944 	    }
2945 	  else
2946 	    split_insn (insn);
2947 	}
2948     }
2949   return 0;
2950 }
2951 
2952 #ifdef HAVE_peephole2
2953 struct peep2_insn_data
2954 {
2955   rtx insn;
2956   regset live_before;
2957 };
2958 
2959 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2960 static int peep2_current;
2961 
2962 static bool peep2_do_rebuild_jump_labels;
2963 static bool peep2_do_cleanup_cfg;
2964 
2965 /* The number of instructions available to match a peep2.  */
2966 int peep2_current_count;
2967 
2968 /* A non-insn marker indicating the last insn of the block.
2969    The live_before regset for this element is correct, indicating
2970    DF_LIVE_OUT for the block.  */
2971 #define PEEP2_EOB	pc_rtx
2972 
2973 /* Wrap N to fit into the peep2_insn_data buffer.  */
2974 
2975 static int
2976 peep2_buf_position (int n)
2977 {
2978   if (n >= MAX_INSNS_PER_PEEP2 + 1)
2979     n -= MAX_INSNS_PER_PEEP2 + 1;
2980   return n;
2981 }
2982 
2983 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2984    does not exist.  Used by the recognizer to find the next insn to match
2985    in a multi-insn pattern.  */
2986 
2987 rtx
2988 peep2_next_insn (int n)
2989 {
2990   gcc_assert (n <= peep2_current_count);
2991 
2992   n = peep2_buf_position (peep2_current + n);
2993 
2994   return peep2_insn_data[n].insn;
2995 }
2996 
2997 /* Return true if REGNO is dead before the Nth non-note insn
2998    after `current'.  */
2999 
3000 int
3001 peep2_regno_dead_p (int ofs, int regno)
3002 {
3003   gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3004 
3005   ofs = peep2_buf_position (peep2_current + ofs);
3006 
3007   gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3008 
3009   return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3010 }
3011 
3012 /* Similarly for a REG.  */
3013 
3014 int
3015 peep2_reg_dead_p (int ofs, rtx reg)
3016 {
3017   int regno, n;
3018 
3019   gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3020 
3021   ofs = peep2_buf_position (peep2_current + ofs);
3022 
3023   gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3024 
3025   regno = REGNO (reg);
3026   n = hard_regno_nregs[regno][GET_MODE (reg)];
3027   while (--n >= 0)
3028     if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3029       return 0;
3030   return 1;
3031 }
3032 
3033 /* Regno offset to be used in the register search.  */
3034 static int search_ofs;
3035 
3036 /* Try to find a hard register of mode MODE, matching the register class in
3037    CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3038    remains available until the end of LAST_INSN.  LAST_INSN may be NULL_RTX,
3039    in which case the only condition is that the register must be available
3040    before CURRENT_INSN.
3041    Registers that already have bits set in REG_SET will not be considered.
3042 
3043    If an appropriate register is available, it will be returned and the
3044    corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3045    returned.  */
3046 
3047 rtx
3048 peep2_find_free_register (int from, int to, const char *class_str,
3049 			  enum machine_mode mode, HARD_REG_SET *reg_set)
3050 {
3051   enum reg_class cl;
3052   HARD_REG_SET live;
3053   df_ref *def_rec;
3054   int i;
3055 
3056   gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3057   gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3058 
3059   from = peep2_buf_position (peep2_current + from);
3060   to = peep2_buf_position (peep2_current + to);
3061 
3062   gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3063   REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3064 
3065   while (from != to)
3066     {
3067       gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3068 
3069       /* Don't use registers set or clobbered by the insn.  */
3070       for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3071 	   *def_rec; def_rec++)
3072 	SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3073 
3074       from = peep2_buf_position (from + 1);
3075     }
3076 
3077   cl = (class_str[0] == 'r' ? GENERAL_REGS
3078 	   : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3079 
3080   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3081     {
3082       int raw_regno, regno, success, j;
3083 
3084       /* Distribute the free registers as much as possible.  */
3085       raw_regno = search_ofs + i;
3086       if (raw_regno >= FIRST_PSEUDO_REGISTER)
3087 	raw_regno -= FIRST_PSEUDO_REGISTER;
3088 #ifdef REG_ALLOC_ORDER
3089       regno = reg_alloc_order[raw_regno];
3090 #else
3091       regno = raw_regno;
3092 #endif
3093 
3094       /* Don't allocate fixed registers.  */
3095       if (fixed_regs[regno])
3096 	continue;
3097       /* Don't allocate global registers.  */
3098       if (global_regs[regno])
3099 	continue;
3100       /* Make sure the register is of the right class.  */
3101       if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3102 	continue;
3103       /* And can support the mode we need.  */
3104       if (! HARD_REGNO_MODE_OK (regno, mode))
3105 	continue;
3106       /* And that we don't create an extra save/restore.  */
3107       if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3108 	continue;
3109       if (! targetm.hard_regno_scratch_ok (regno))
3110 	continue;
3111 
3112       /* And we don't clobber traceback for noreturn functions.  */
3113       if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3114 	  && (! reload_completed || frame_pointer_needed))
3115 	continue;
3116 
3117       success = 1;
3118       for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3119 	{
3120 	  if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3121 	      || TEST_HARD_REG_BIT (live, regno + j))
3122 	    {
3123 	      success = 0;
3124 	      break;
3125 	    }
3126 	}
3127       if (success)
3128 	{
3129 	  add_to_hard_reg_set (reg_set, mode, regno);
3130 
3131 	  /* Start the next search with the next register.  */
3132 	  if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3133 	    raw_regno = 0;
3134 	  search_ofs = raw_regno;
3135 
3136 	  return gen_rtx_REG (mode, regno);
3137 	}
3138     }
3139 
3140   search_ofs = 0;
3141   return NULL_RTX;
3142 }
3143 
3144 /* Forget all currently tracked instructions, only remember current
3145    LIVE regset.  */
3146 
3147 static void
3148 peep2_reinit_state (regset live)
3149 {
3150   int i;
3151 
3152   /* Indicate that all slots except the last holds invalid data.  */
3153   for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3154     peep2_insn_data[i].insn = NULL_RTX;
3155   peep2_current_count = 0;
3156 
3157   /* Indicate that the last slot contains live_after data.  */
3158   peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3159   peep2_current = MAX_INSNS_PER_PEEP2;
3160 
3161   COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3162 }
3163 
3164 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3165    starting at INSN.  Perform the replacement, removing the old insns and
3166    replacing them with ATTEMPT.  Returns the last insn emitted, or NULL
3167    if the replacement is rejected.  */
3168 
3169 static rtx
3170 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3171 {
3172   int i;
3173   rtx last, eh_note, as_note, before_try, x;
3174   rtx old_insn, new_insn;
3175   bool was_call = false;
3176 
3177   /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3178      match more than one insn, or to be split into more than one insn.  */
3179   old_insn = peep2_insn_data[peep2_current].insn;
3180   if (RTX_FRAME_RELATED_P (old_insn))
3181     {
3182       bool any_note = false;
3183       rtx note;
3184 
3185       if (match_len != 0)
3186 	return NULL;
3187 
3188       /* Look for one "active" insn.  I.e. ignore any "clobber" insns that
3189 	 may be in the stream for the purpose of register allocation.  */
3190       if (active_insn_p (attempt))
3191 	new_insn = attempt;
3192       else
3193 	new_insn = next_active_insn (attempt);
3194       if (next_active_insn (new_insn))
3195 	return NULL;
3196 
3197       /* We have a 1-1 replacement.  Copy over any frame-related info.  */
3198       RTX_FRAME_RELATED_P (new_insn) = 1;
3199 
3200       /* Allow the backend to fill in a note during the split.  */
3201       for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3202 	switch (REG_NOTE_KIND (note))
3203 	  {
3204 	  case REG_FRAME_RELATED_EXPR:
3205 	  case REG_CFA_DEF_CFA:
3206 	  case REG_CFA_ADJUST_CFA:
3207 	  case REG_CFA_OFFSET:
3208 	  case REG_CFA_REGISTER:
3209 	  case REG_CFA_EXPRESSION:
3210 	  case REG_CFA_RESTORE:
3211 	  case REG_CFA_SET_VDRAP:
3212 	    any_note = true;
3213 	    break;
3214 	  default:
3215 	    break;
3216 	  }
3217 
3218       /* If the backend didn't supply a note, copy one over.  */
3219       if (!any_note)
3220         for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3221 	  switch (REG_NOTE_KIND (note))
3222 	    {
3223 	    case REG_FRAME_RELATED_EXPR:
3224 	    case REG_CFA_DEF_CFA:
3225 	    case REG_CFA_ADJUST_CFA:
3226 	    case REG_CFA_OFFSET:
3227 	    case REG_CFA_REGISTER:
3228 	    case REG_CFA_EXPRESSION:
3229 	    case REG_CFA_RESTORE:
3230 	    case REG_CFA_SET_VDRAP:
3231 	      add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3232 	      any_note = true;
3233 	      break;
3234 	    default:
3235 	      break;
3236 	    }
3237 
3238       /* If there still isn't a note, make sure the unwind info sees the
3239 	 same expression as before the split.  */
3240       if (!any_note)
3241 	{
3242 	  rtx old_set, new_set;
3243 
3244 	  /* The old insn had better have been simple, or annotated.  */
3245 	  old_set = single_set (old_insn);
3246 	  gcc_assert (old_set != NULL);
3247 
3248 	  new_set = single_set (new_insn);
3249 	  if (!new_set || !rtx_equal_p (new_set, old_set))
3250 	    add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3251 	}
3252 
3253       /* Copy prologue/epilogue status.  This is required in order to keep
3254 	 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state.  */
3255       maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3256     }
3257 
3258   /* If we are splitting a CALL_INSN, look for the CALL_INSN
3259      in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3260      cfg-related call notes.  */
3261   for (i = 0; i <= match_len; ++i)
3262     {
3263       int j;
3264       rtx note;
3265 
3266       j = peep2_buf_position (peep2_current + i);
3267       old_insn = peep2_insn_data[j].insn;
3268       if (!CALL_P (old_insn))
3269 	continue;
3270       was_call = true;
3271 
3272       new_insn = attempt;
3273       while (new_insn != NULL_RTX)
3274 	{
3275 	  if (CALL_P (new_insn))
3276 	    break;
3277 	  new_insn = NEXT_INSN (new_insn);
3278 	}
3279 
3280       gcc_assert (new_insn != NULL_RTX);
3281 
3282       CALL_INSN_FUNCTION_USAGE (new_insn)
3283 	= CALL_INSN_FUNCTION_USAGE (old_insn);
3284 
3285       for (note = REG_NOTES (old_insn);
3286 	   note;
3287 	   note = XEXP (note, 1))
3288 	switch (REG_NOTE_KIND (note))
3289 	  {
3290 	  case REG_NORETURN:
3291 	  case REG_SETJMP:
3292 	  case REG_TM:
3293 	    add_reg_note (new_insn, REG_NOTE_KIND (note),
3294 			  XEXP (note, 0));
3295 	    break;
3296 	  default:
3297 	    /* Discard all other reg notes.  */
3298 	    break;
3299 	  }
3300 
3301       /* Croak if there is another call in the sequence.  */
3302       while (++i <= match_len)
3303 	{
3304 	  j = peep2_buf_position (peep2_current + i);
3305 	  old_insn = peep2_insn_data[j].insn;
3306 	  gcc_assert (!CALL_P (old_insn));
3307 	}
3308       break;
3309     }
3310 
3311   /* If we matched any instruction that had a REG_ARGS_SIZE, then
3312      move those notes over to the new sequence.  */
3313   as_note = NULL;
3314   for (i = match_len; i >= 0; --i)
3315     {
3316       int j = peep2_buf_position (peep2_current + i);
3317       old_insn = peep2_insn_data[j].insn;
3318 
3319       as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3320       if (as_note)
3321 	break;
3322     }
3323 
3324   i = peep2_buf_position (peep2_current + match_len);
3325   eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3326 
3327   /* Replace the old sequence with the new.  */
3328   last = emit_insn_after_setloc (attempt,
3329 				 peep2_insn_data[i].insn,
3330 				 INSN_LOCATOR (peep2_insn_data[i].insn));
3331   before_try = PREV_INSN (insn);
3332   delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3333 
3334   /* Re-insert the EH_REGION notes.  */
3335   if (eh_note || (was_call && nonlocal_goto_handler_labels))
3336     {
3337       edge eh_edge;
3338       edge_iterator ei;
3339 
3340       FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3341 	if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3342 	  break;
3343 
3344       if (eh_note)
3345 	copy_reg_eh_region_note_backward (eh_note, last, before_try);
3346 
3347       if (eh_edge)
3348 	for (x = last; x != before_try; x = PREV_INSN (x))
3349 	  if (x != BB_END (bb)
3350 	      && (can_throw_internal (x)
3351 		  || can_nonlocal_goto (x)))
3352 	    {
3353 	      edge nfte, nehe;
3354 	      int flags;
3355 
3356 	      nfte = split_block (bb, x);
3357 	      flags = (eh_edge->flags
3358 		       & (EDGE_EH | EDGE_ABNORMAL));
3359 	      if (CALL_P (x))
3360 		flags |= EDGE_ABNORMAL_CALL;
3361 	      nehe = make_edge (nfte->src, eh_edge->dest,
3362 				flags);
3363 
3364 	      nehe->probability = eh_edge->probability;
3365 	      nfte->probability
3366 		= REG_BR_PROB_BASE - nehe->probability;
3367 
3368 	      peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3369 	      bb = nfte->src;
3370 	      eh_edge = nehe;
3371 	    }
3372 
3373       /* Converting possibly trapping insn to non-trapping is
3374 	 possible.  Zap dummy outgoing edges.  */
3375       peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3376     }
3377 
3378   /* Re-insert the ARGS_SIZE notes.  */
3379   if (as_note)
3380     fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3381 
3382   /* If we generated a jump instruction, it won't have
3383      JUMP_LABEL set.  Recompute after we're done.  */
3384   for (x = last; x != before_try; x = PREV_INSN (x))
3385     if (JUMP_P (x))
3386       {
3387 	peep2_do_rebuild_jump_labels = true;
3388 	break;
3389       }
3390 
3391   return last;
3392 }
3393 
3394 /* After performing a replacement in basic block BB, fix up the life
3395    information in our buffer.  LAST is the last of the insns that we
3396    emitted as a replacement.  PREV is the insn before the start of
3397    the replacement.  MATCH_LEN is the number of instructions that were
3398    matched, and which now need to be replaced in the buffer.  */
3399 
3400 static void
3401 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3402 {
3403   int i = peep2_buf_position (peep2_current + match_len + 1);
3404   rtx x;
3405   regset_head live;
3406 
3407   INIT_REG_SET (&live);
3408   COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3409 
3410   gcc_assert (peep2_current_count >= match_len + 1);
3411   peep2_current_count -= match_len + 1;
3412 
3413   x = last;
3414   do
3415     {
3416       if (INSN_P (x))
3417 	{
3418 	  df_insn_rescan (x);
3419 	  if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3420 	    {
3421 	      peep2_current_count++;
3422 	      if (--i < 0)
3423 		i = MAX_INSNS_PER_PEEP2;
3424 	      peep2_insn_data[i].insn = x;
3425 	      df_simulate_one_insn_backwards (bb, x, &live);
3426 	      COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3427 	    }
3428 	}
3429       x = PREV_INSN (x);
3430     }
3431   while (x != prev);
3432   CLEAR_REG_SET (&live);
3433 
3434   peep2_current = i;
3435 }
3436 
3437 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3438    Return true if we added it, false otherwise.  The caller will try to match
3439    peepholes against the buffer if we return false; otherwise it will try to
3440    add more instructions to the buffer.  */
3441 
3442 static bool
3443 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3444 {
3445   int pos;
3446 
3447   /* Once we have filled the maximum number of insns the buffer can hold,
3448      allow the caller to match the insns against peepholes.  We wait until
3449      the buffer is full in case the target has similar peepholes of different
3450      length; we always want to match the longest if possible.  */
3451   if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3452     return false;
3453 
3454   /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3455      any other pattern, lest it change the semantics of the frame info.  */
3456   if (RTX_FRAME_RELATED_P (insn))
3457     {
3458       /* Let the buffer drain first.  */
3459       if (peep2_current_count > 0)
3460 	return false;
3461       /* Now the insn will be the only thing in the buffer.  */
3462     }
3463 
3464   pos = peep2_buf_position (peep2_current + peep2_current_count);
3465   peep2_insn_data[pos].insn = insn;
3466   COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3467   peep2_current_count++;
3468 
3469   df_simulate_one_insn_forwards (bb, insn, live);
3470   return true;
3471 }
3472 
3473 /* Perform the peephole2 optimization pass.  */
3474 
3475 static void
3476 peephole2_optimize (void)
3477 {
3478   rtx insn;
3479   bitmap live;
3480   int i;
3481   basic_block bb;
3482 
3483   peep2_do_cleanup_cfg = false;
3484   peep2_do_rebuild_jump_labels = false;
3485 
3486   df_set_flags (DF_LR_RUN_DCE);
3487   df_note_add_problem ();
3488   df_analyze ();
3489 
3490   /* Initialize the regsets we're going to use.  */
3491   for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3492     peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3493   search_ofs = 0;
3494   live = BITMAP_ALLOC (&reg_obstack);
3495 
3496   FOR_EACH_BB_REVERSE (bb)
3497     {
3498       bool past_end = false;
3499       int pos;
3500 
3501       rtl_profile_for_bb (bb);
3502 
3503       /* Start up propagation.  */
3504       bitmap_copy (live, DF_LR_IN (bb));
3505       df_simulate_initialize_forwards (bb, live);
3506       peep2_reinit_state (live);
3507 
3508       insn = BB_HEAD (bb);
3509       for (;;)
3510 	{
3511 	  rtx attempt, head;
3512 	  int match_len;
3513 
3514 	  if (!past_end && !NONDEBUG_INSN_P (insn))
3515 	    {
3516 	    next_insn:
3517 	      insn = NEXT_INSN (insn);
3518 	      if (insn == NEXT_INSN (BB_END (bb)))
3519 		past_end = true;
3520 	      continue;
3521 	    }
3522 	  if (!past_end && peep2_fill_buffer (bb, insn, live))
3523 	    goto next_insn;
3524 
3525 	  /* If we did not fill an empty buffer, it signals the end of the
3526 	     block.  */
3527 	  if (peep2_current_count == 0)
3528 	    break;
3529 
3530 	  /* The buffer filled to the current maximum, so try to match.  */
3531 
3532 	  pos = peep2_buf_position (peep2_current + peep2_current_count);
3533 	  peep2_insn_data[pos].insn = PEEP2_EOB;
3534 	  COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3535 
3536 	  /* Match the peephole.  */
3537 	  head = peep2_insn_data[peep2_current].insn;
3538 	  attempt = peephole2_insns (PATTERN (head), head, &match_len);
3539 	  if (attempt != NULL)
3540 	    {
3541 	      rtx last = peep2_attempt (bb, head, match_len, attempt);
3542 	      if (last)
3543 		{
3544 		  peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3545 		  continue;
3546 		}
3547 	    }
3548 
3549 	  /* No match: advance the buffer by one insn.  */
3550 	  peep2_current = peep2_buf_position (peep2_current + 1);
3551 	  peep2_current_count--;
3552 	}
3553     }
3554 
3555   default_rtl_profile ();
3556   for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3557     BITMAP_FREE (peep2_insn_data[i].live_before);
3558   BITMAP_FREE (live);
3559   if (peep2_do_rebuild_jump_labels)
3560     rebuild_jump_labels (get_insns ());
3561 }
3562 #endif /* HAVE_peephole2 */
3563 
3564 /* Common predicates for use with define_bypass.  */
3565 
3566 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3567    data not the address operand(s) of the store.  IN_INSN and OUT_INSN
3568    must be either a single_set or a PARALLEL with SETs inside.  */
3569 
3570 int
3571 store_data_bypass_p (rtx out_insn, rtx in_insn)
3572 {
3573   rtx out_set, in_set;
3574   rtx out_pat, in_pat;
3575   rtx out_exp, in_exp;
3576   int i, j;
3577 
3578   in_set = single_set (in_insn);
3579   if (in_set)
3580     {
3581       if (!MEM_P (SET_DEST (in_set)))
3582 	return false;
3583 
3584       out_set = single_set (out_insn);
3585       if (out_set)
3586         {
3587           if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3588             return false;
3589         }
3590       else
3591         {
3592           out_pat = PATTERN (out_insn);
3593 
3594 	  if (GET_CODE (out_pat) != PARALLEL)
3595 	    return false;
3596 
3597           for (i = 0; i < XVECLEN (out_pat, 0); i++)
3598           {
3599             out_exp = XVECEXP (out_pat, 0, i);
3600 
3601             if (GET_CODE (out_exp) == CLOBBER)
3602               continue;
3603 
3604             gcc_assert (GET_CODE (out_exp) == SET);
3605 
3606             if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3607               return false;
3608           }
3609       }
3610     }
3611   else
3612     {
3613       in_pat = PATTERN (in_insn);
3614       gcc_assert (GET_CODE (in_pat) == PARALLEL);
3615 
3616       for (i = 0; i < XVECLEN (in_pat, 0); i++)
3617 	{
3618 	  in_exp = XVECEXP (in_pat, 0, i);
3619 
3620 	  if (GET_CODE (in_exp) == CLOBBER)
3621 	    continue;
3622 
3623 	  gcc_assert (GET_CODE (in_exp) == SET);
3624 
3625 	  if (!MEM_P (SET_DEST (in_exp)))
3626 	    return false;
3627 
3628           out_set = single_set (out_insn);
3629           if (out_set)
3630             {
3631               if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3632                 return false;
3633             }
3634           else
3635             {
3636               out_pat = PATTERN (out_insn);
3637               gcc_assert (GET_CODE (out_pat) == PARALLEL);
3638 
3639               for (j = 0; j < XVECLEN (out_pat, 0); j++)
3640                 {
3641                   out_exp = XVECEXP (out_pat, 0, j);
3642 
3643                   if (GET_CODE (out_exp) == CLOBBER)
3644                     continue;
3645 
3646                   gcc_assert (GET_CODE (out_exp) == SET);
3647 
3648                   if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3649                     return false;
3650                 }
3651             }
3652         }
3653     }
3654 
3655   return true;
3656 }
3657 
3658 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3659    condition, and not the THEN or ELSE branch.  OUT_INSN may be either a single
3660    or multiple set; IN_INSN should be single_set for truth, but for convenience
3661    of insn categorization may be any JUMP or CALL insn.  */
3662 
3663 int
3664 if_test_bypass_p (rtx out_insn, rtx in_insn)
3665 {
3666   rtx out_set, in_set;
3667 
3668   in_set = single_set (in_insn);
3669   if (! in_set)
3670     {
3671       gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3672       return false;
3673     }
3674 
3675   if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3676     return false;
3677   in_set = SET_SRC (in_set);
3678 
3679   out_set = single_set (out_insn);
3680   if (out_set)
3681     {
3682       if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3683 	  || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3684 	return false;
3685     }
3686   else
3687     {
3688       rtx out_pat;
3689       int i;
3690 
3691       out_pat = PATTERN (out_insn);
3692       gcc_assert (GET_CODE (out_pat) == PARALLEL);
3693 
3694       for (i = 0; i < XVECLEN (out_pat, 0); i++)
3695 	{
3696 	  rtx exp = XVECEXP (out_pat, 0, i);
3697 
3698 	  if (GET_CODE (exp) == CLOBBER)
3699 	    continue;
3700 
3701 	  gcc_assert (GET_CODE (exp) == SET);
3702 
3703 	  if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3704 	      || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3705 	    return false;
3706 	}
3707     }
3708 
3709   return true;
3710 }
3711 
3712 static bool
3713 gate_handle_peephole2 (void)
3714 {
3715   return (optimize > 0 && flag_peephole2);
3716 }
3717 
3718 static unsigned int
3719 rest_of_handle_peephole2 (void)
3720 {
3721 #ifdef HAVE_peephole2
3722   peephole2_optimize ();
3723 #endif
3724   return 0;
3725 }
3726 
3727 struct rtl_opt_pass pass_peephole2 =
3728 {
3729  {
3730   RTL_PASS,
3731   "peephole2",                          /* name */
3732   gate_handle_peephole2,                /* gate */
3733   rest_of_handle_peephole2,             /* execute */
3734   NULL,                                 /* sub */
3735   NULL,                                 /* next */
3736   0,                                    /* static_pass_number */
3737   TV_PEEPHOLE2,                         /* tv_id */
3738   0,                                    /* properties_required */
3739   0,                                    /* properties_provided */
3740   0,                                    /* properties_destroyed */
3741   0,                                    /* todo_flags_start */
3742   TODO_df_finish | TODO_verify_rtl_sharing |
3743   0                                    /* todo_flags_finish */
3744  }
3745 };
3746 
3747 static unsigned int
3748 rest_of_handle_split_all_insns (void)
3749 {
3750   split_all_insns ();
3751   return 0;
3752 }
3753 
3754 struct rtl_opt_pass pass_split_all_insns =
3755 {
3756  {
3757   RTL_PASS,
3758   "split1",                             /* name */
3759   NULL,                                 /* gate */
3760   rest_of_handle_split_all_insns,       /* execute */
3761   NULL,                                 /* sub */
3762   NULL,                                 /* next */
3763   0,                                    /* static_pass_number */
3764   TV_NONE,                              /* tv_id */
3765   0,                                    /* properties_required */
3766   0,                                    /* properties_provided */
3767   0,                                    /* properties_destroyed */
3768   0,                                    /* todo_flags_start */
3769   0                                     /* todo_flags_finish */
3770  }
3771 };
3772 
3773 static unsigned int
3774 rest_of_handle_split_after_reload (void)
3775 {
3776   /* If optimizing, then go ahead and split insns now.  */
3777 #ifndef STACK_REGS
3778   if (optimize > 0)
3779 #endif
3780     split_all_insns ();
3781   return 0;
3782 }
3783 
3784 struct rtl_opt_pass pass_split_after_reload =
3785 {
3786  {
3787   RTL_PASS,
3788   "split2",                             /* name */
3789   NULL,                                 /* gate */
3790   rest_of_handle_split_after_reload,    /* execute */
3791   NULL,                                 /* sub */
3792   NULL,                                 /* next */
3793   0,                                    /* static_pass_number */
3794   TV_NONE,                              /* tv_id */
3795   0,                                    /* properties_required */
3796   0,                                    /* properties_provided */
3797   0,                                    /* properties_destroyed */
3798   0,                                    /* todo_flags_start */
3799   0                                     /* todo_flags_finish */
3800  }
3801 };
3802 
3803 static bool
3804 gate_handle_split_before_regstack (void)
3805 {
3806 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3807   /* If flow2 creates new instructions which need splitting
3808      and scheduling after reload is not done, they might not be
3809      split until final which doesn't allow splitting
3810      if HAVE_ATTR_length.  */
3811 # ifdef INSN_SCHEDULING
3812   return (optimize && !flag_schedule_insns_after_reload);
3813 # else
3814   return (optimize);
3815 # endif
3816 #else
3817   return 0;
3818 #endif
3819 }
3820 
3821 static unsigned int
3822 rest_of_handle_split_before_regstack (void)
3823 {
3824   split_all_insns ();
3825   return 0;
3826 }
3827 
3828 struct rtl_opt_pass pass_split_before_regstack =
3829 {
3830  {
3831   RTL_PASS,
3832   "split3",                             /* name */
3833   gate_handle_split_before_regstack,    /* gate */
3834   rest_of_handle_split_before_regstack, /* execute */
3835   NULL,                                 /* sub */
3836   NULL,                                 /* next */
3837   0,                                    /* static_pass_number */
3838   TV_NONE,                              /* tv_id */
3839   0,                                    /* properties_required */
3840   0,                                    /* properties_provided */
3841   0,                                    /* properties_destroyed */
3842   0,                                    /* todo_flags_start */
3843   0                                     /* todo_flags_finish */
3844  }
3845 };
3846 
3847 static bool
3848 gate_handle_split_before_sched2 (void)
3849 {
3850 #ifdef INSN_SCHEDULING
3851   return optimize > 0 && flag_schedule_insns_after_reload;
3852 #else
3853   return 0;
3854 #endif
3855 }
3856 
3857 static unsigned int
3858 rest_of_handle_split_before_sched2 (void)
3859 {
3860 #ifdef INSN_SCHEDULING
3861   split_all_insns ();
3862 #endif
3863   return 0;
3864 }
3865 
3866 struct rtl_opt_pass pass_split_before_sched2 =
3867 {
3868  {
3869   RTL_PASS,
3870   "split4",                             /* name */
3871   gate_handle_split_before_sched2,      /* gate */
3872   rest_of_handle_split_before_sched2,   /* execute */
3873   NULL,                                 /* sub */
3874   NULL,                                 /* next */
3875   0,                                    /* static_pass_number */
3876   TV_NONE,                              /* tv_id */
3877   0,                                    /* properties_required */
3878   0,                                    /* properties_provided */
3879   0,                                    /* properties_destroyed */
3880   0,                                    /* todo_flags_start */
3881   TODO_verify_flow                      /* todo_flags_finish */
3882  }
3883 };
3884 
3885 /* The placement of the splitting that we do for shorten_branches
3886    depends on whether regstack is used by the target or not.  */
3887 static bool
3888 gate_do_final_split (void)
3889 {
3890 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3891   return 1;
3892 #else
3893   return 0;
3894 #endif
3895 }
3896 
3897 struct rtl_opt_pass pass_split_for_shorten_branches =
3898 {
3899  {
3900   RTL_PASS,
3901   "split5",                             /* name */
3902   gate_do_final_split,                  /* gate */
3903   split_all_insns_noflow,               /* execute */
3904   NULL,                                 /* sub */
3905   NULL,                                 /* next */
3906   0,                                    /* static_pass_number */
3907   TV_NONE,                              /* tv_id */
3908   0,                                    /* properties_required */
3909   0,                                    /* properties_provided */
3910   0,                                    /* properties_destroyed */
3911   0,                                    /* todo_flags_start */
3912   TODO_verify_rtl_sharing               /* todo_flags_finish */
3913  }
3914 };
3915