xref: /dragonfly/contrib/gcc-4.7/gcc/reg-stack.c (revision 25a2db75)
1 /* Register to Stack convert for GNU compiler.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011, 2012
4    Free Software Foundation, Inc.
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it
9    under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3, or (at your option)
11    any later version.
12 
13    GCC is distributed in the hope that it will be useful, but WITHOUT
14    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16    License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 /* This pass converts stack-like registers from the "flat register
23    file" model that gcc uses, to a stack convention that the 387 uses.
24 
25    * The form of the input:
26 
27    On input, the function consists of insn that have had their
28    registers fully allocated to a set of "virtual" registers.  Note that
29    the word "virtual" is used differently here than elsewhere in gcc: for
30    each virtual stack reg, there is a hard reg, but the mapping between
31    them is not known until this pass is run.  On output, hard register
32    numbers have been substituted, and various pop and exchange insns have
33    been emitted.  The hard register numbers and the virtual register
34    numbers completely overlap - before this pass, all stack register
35    numbers are virtual, and afterward they are all hard.
36 
37    The virtual registers can be manipulated normally by gcc, and their
38    semantics are the same as for normal registers.  After the hard
39    register numbers are substituted, the semantics of an insn containing
40    stack-like regs are not the same as for an insn with normal regs: for
41    instance, it is not safe to delete an insn that appears to be a no-op
42    move.  In general, no insn containing hard regs should be changed
43    after this pass is done.
44 
45    * The form of the output:
46 
47    After this pass, hard register numbers represent the distance from
48    the current top of stack to the desired register.  A reference to
49    FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50    represents the register just below that, and so forth.  Also, REG_DEAD
51    notes indicate whether or not a stack register should be popped.
52 
53    A "swap" insn looks like a parallel of two patterns, where each
54    pattern is a SET: one sets A to B, the other B to A.
55 
56    A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57    and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
58    will replace the existing stack top, not push a new value.
59 
60    A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61    SET_SRC is REG or MEM.
62 
63    The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64    appears ambiguous.  As a special case, the presence of a REG_DEAD note
65    for FIRST_STACK_REG differentiates between a load insn and a pop.
66 
67    If a REG_DEAD is present, the insn represents a "pop" that discards
68    the top of the register stack.  If there is no REG_DEAD note, then the
69    insn represents a "dup" or a push of the current top of stack onto the
70    stack.
71 
72    * Methodology:
73 
74    Existing REG_DEAD and REG_UNUSED notes for stack registers are
75    deleted and recreated from scratch.  REG_DEAD is never created for a
76    SET_DEST, only REG_UNUSED.
77 
78    * asm_operands:
79 
80    There are several rules on the usage of stack-like regs in
81    asm_operands insns.  These rules apply only to the operands that are
82    stack-like regs:
83 
84    1. Given a set of input regs that die in an asm_operands, it is
85       necessary to know which are implicitly popped by the asm, and
86       which must be explicitly popped by gcc.
87 
88 	An input reg that is implicitly popped by the asm must be
89 	explicitly clobbered, unless it is constrained to match an
90 	output operand.
91 
92    2. For any input reg that is implicitly popped by an asm, it is
93       necessary to know how to adjust the stack to compensate for the pop.
94       If any non-popped input is closer to the top of the reg-stack than
95       the implicitly popped reg, it would not be possible to know what the
96       stack looked like - it's not clear how the rest of the stack "slides
97       up".
98 
99 	All implicitly popped input regs must be closer to the top of
100 	the reg-stack than any input that is not implicitly popped.
101 
102    3. It is possible that if an input dies in an insn, reload might
103       use the input reg for an output reload.  Consider this example:
104 
105 		asm ("foo" : "=t" (a) : "f" (b));
106 
107       This asm says that input B is not popped by the asm, and that
108       the asm pushes a result onto the reg-stack, i.e., the stack is one
109       deeper after the asm than it was before.  But, it is possible that
110       reload will think that it can use the same reg for both the input and
111       the output, if input B dies in this insn.
112 
113 	If any input operand uses the "f" constraint, all output reg
114 	constraints must use the "&" earlyclobber.
115 
116       The asm above would be written as
117 
118 		asm ("foo" : "=&t" (a) : "f" (b));
119 
120    4. Some operands need to be in particular places on the stack.  All
121       output operands fall in this category - there is no other way to
122       know which regs the outputs appear in unless the user indicates
123       this in the constraints.
124 
125 	Output operands must specifically indicate which reg an output
126 	appears in after an asm.  "=f" is not allowed: the operand
127 	constraints must select a class with a single reg.
128 
129    5. Output operands may not be "inserted" between existing stack regs.
130       Since no 387 opcode uses a read/write operand, all output operands
131       are dead before the asm_operands, and are pushed by the asm_operands.
132       It makes no sense to push anywhere but the top of the reg-stack.
133 
134 	Output operands must start at the top of the reg-stack: output
135 	operands may not "skip" a reg.
136 
137    6. Some asm statements may need extra stack space for internal
138       calculations.  This can be guaranteed by clobbering stack registers
139       unrelated to the inputs and outputs.
140 
141    Here are a couple of reasonable asms to want to write.  This asm
142    takes one input, which is internally popped, and produces two outputs.
143 
144 	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145 
146    This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147    and replaces them with one output.  The user must code the "st(1)"
148    clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149 
150 	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151 
152 */
153 
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl-error.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "recog.h"
167 #include "output.h"
168 #include "basic-block.h"
169 #include "cfglayout.h"
170 #include "reload.h"
171 #include "ggc.h"
172 #include "timevar.h"
173 #include "tree-pass.h"
174 #include "target.h"
175 #include "df.h"
176 #include "vecprim.h"
177 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
178 
179 #ifdef STACK_REGS
180 
181 /* We use this array to cache info about insns, because otherwise we
182    spend too much time in stack_regs_mentioned_p.
183 
184    Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
185    the insn uses stack registers, two indicates the insn does not use
186    stack registers.  */
187 static VEC(char,heap) *stack_regs_mentioned_data;
188 
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190 
191 int regstack_completed = 0;
192 
193 /* This is the basic stack record.  TOP is an index into REG[] such
194    that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
195 
196    If TOP is -2, REG[] is not yet initialized.  Stack initialization
197    consists of placing each live reg in array `reg' and setting `top'
198    appropriately.
199 
200    REG_SET indicates which registers are live.  */
201 
202 typedef struct stack_def
203 {
204   int top;			/* index to top stack element */
205   HARD_REG_SET reg_set;		/* set of live registers */
206   unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207 } *stack;
208 
209 /* This is used to carry information about basic blocks.  It is
210    attached to the AUX field of the standard CFG block.  */
211 
212 typedef struct block_info_def
213 {
214   struct stack_def stack_in;	/* Input stack configuration.  */
215   struct stack_def stack_out;	/* Output stack configuration.  */
216   HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
217   int done;			/* True if block already converted.  */
218   int predecessors;		/* Number of predecessors that need
219 				   to be visited.  */
220 } *block_info;
221 
222 #define BLOCK_INFO(B)	((block_info) (B)->aux)
223 
224 /* Passed to change_stack to indicate where to emit insns.  */
225 enum emit_where
226 {
227   EMIT_AFTER,
228   EMIT_BEFORE
229 };
230 
231 /* The block we're currently working on.  */
232 static basic_block current_block;
233 
234 /* In the current_block, whether we're processing the first register
235    stack or call instruction, i.e. the regstack is currently the
236    same as BLOCK_INFO(current_block)->stack_in.  */
237 static bool starting_stack_p;
238 
239 /* This is the register file for all register after conversion.  */
240 static rtx
241   FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242 
243 #define FP_MODE_REG(regno,mode)	\
244   (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245 
246 /* Used to initialize uninitialized registers.  */
247 static rtx not_a_num;
248 
249 /* Forward declarations */
250 
251 static int stack_regs_mentioned_p (const_rtx pat);
252 static void pop_stack (stack, int);
253 static rtx *get_true_reg (rtx *);
254 
255 static int check_asm_stack_operands (rtx);
256 static void get_asm_operands_in_out (rtx, int *, int *);
257 static rtx stack_result (tree);
258 static void replace_reg (rtx *, int);
259 static void remove_regno_note (rtx, enum reg_note, unsigned int);
260 static int get_hard_regnum (stack, rtx);
261 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
262 static void swap_to_top(rtx, stack, rtx, rtx);
263 static bool move_for_stack_reg (rtx, stack, rtx);
264 static bool move_nan_for_stack_reg (rtx, stack, rtx);
265 static int swap_rtx_condition_1 (rtx);
266 static int swap_rtx_condition (rtx);
267 static void compare_for_stack_reg (rtx, stack, rtx);
268 static bool subst_stack_regs_pat (rtx, stack, rtx);
269 static void subst_asm_stack_regs (rtx, stack);
270 static bool subst_stack_regs (rtx, stack);
271 static void change_stack (rtx, stack, stack, enum emit_where);
272 static void print_stack (FILE *, stack);
273 static rtx next_flags_user (rtx);
274 
275 /* Return nonzero if any stack register is mentioned somewhere within PAT.  */
276 
277 static int
278 stack_regs_mentioned_p (const_rtx pat)
279 {
280   const char *fmt;
281   int i;
282 
283   if (STACK_REG_P (pat))
284     return 1;
285 
286   fmt = GET_RTX_FORMAT (GET_CODE (pat));
287   for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288     {
289       if (fmt[i] == 'E')
290 	{
291 	  int j;
292 
293 	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 	      return 1;
296 	}
297       else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 	return 1;
299     }
300 
301   return 0;
302 }
303 
304 /* Return nonzero if INSN mentions stacked registers, else return zero.  */
305 
306 int
307 stack_regs_mentioned (const_rtx insn)
308 {
309   unsigned int uid, max;
310   int test;
311 
312   if (! INSN_P (insn) || !stack_regs_mentioned_data)
313     return 0;
314 
315   uid = INSN_UID (insn);
316   max = VEC_length (char, stack_regs_mentioned_data);
317   if (uid >= max)
318     {
319       /* Allocate some extra size to avoid too many reallocs, but
320 	 do not grow too quickly.  */
321       max = uid + uid / 20 + 1;
322       VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
323     }
324 
325   test = VEC_index (char, stack_regs_mentioned_data, uid);
326   if (test == 0)
327     {
328       /* This insn has yet to be examined.  Do so now.  */
329       test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330       VEC_replace (char, stack_regs_mentioned_data, uid, test);
331     }
332 
333   return test == 1;
334 }
335 
336 static rtx ix86_flags_rtx;
337 
338 static rtx
339 next_flags_user (rtx insn)
340 {
341   /* Search forward looking for the first use of this value.
342      Stop at block boundaries.  */
343 
344   while (insn != BB_END (current_block))
345     {
346       insn = NEXT_INSN (insn);
347 
348       if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 	return insn;
350 
351       if (CALL_P (insn))
352 	return NULL_RTX;
353     }
354   return NULL_RTX;
355 }
356 
357 /* Reorganize the stack into ascending numbers, before this insn.  */
358 
359 static void
360 straighten_stack (rtx insn, stack regstack)
361 {
362   struct stack_def temp_stack;
363   int top;
364 
365   /* If there is only a single register on the stack, then the stack is
366      already in increasing order and no reorganization is needed.
367 
368      Similarly if the stack is empty.  */
369   if (regstack->top <= 0)
370     return;
371 
372   COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
373 
374   for (top = temp_stack.top = regstack->top; top >= 0; top--)
375     temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
376 
377   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
378 }
379 
380 /* Pop a register from the stack.  */
381 
382 static void
383 pop_stack (stack regstack, int regno)
384 {
385   int top = regstack->top;
386 
387   CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
388   regstack->top--;
389   /* If regno was not at the top of stack then adjust stack.  */
390   if (regstack->reg [top] != regno)
391     {
392       int i;
393       for (i = regstack->top; i >= 0; i--)
394 	if (regstack->reg [i] == regno)
395 	  {
396 	    int j;
397 	    for (j = i; j < top; j++)
398 	      regstack->reg [j] = regstack->reg [j + 1];
399 	    break;
400 	  }
401     }
402 }
403 
404 /* Return a pointer to the REG expression within PAT.  If PAT is not a
405    REG, possible enclosed by a conversion rtx, return the inner part of
406    PAT that stopped the search.  */
407 
408 static rtx *
409 get_true_reg (rtx *pat)
410 {
411   for (;;)
412     switch (GET_CODE (*pat))
413       {
414       case SUBREG:
415 	/* Eliminate FP subregister accesses in favor of the
416 	   actual FP register in use.  */
417 	{
418 	  rtx subreg;
419 	  if (FP_REG_P (subreg = SUBREG_REG (*pat)))
420 	    {
421 	      int regno_off = subreg_regno_offset (REGNO (subreg),
422 						   GET_MODE (subreg),
423 						   SUBREG_BYTE (*pat),
424 						   GET_MODE (*pat));
425 	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426 				  GET_MODE (subreg));
427 	      return pat;
428 	    }
429 	}
430       case FLOAT:
431       case FIX:
432       case FLOAT_EXTEND:
433 	pat = & XEXP (*pat, 0);
434 	break;
435 
436       case UNSPEC:
437 	if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
438 	    || XINT (*pat, 1) == UNSPEC_LDA)
439 	  pat = & XVECEXP (*pat, 0, 0);
440 	return pat;
441 
442       case FLOAT_TRUNCATE:
443 	if (!flag_unsafe_math_optimizations)
444 	  return pat;
445 	pat = & XEXP (*pat, 0);
446 	break;
447 
448       default:
449 	return pat;
450       }
451 }
452 
453 /* Set if we find any malformed asms in a block.  */
454 static bool any_malformed_asm;
455 
456 /* There are many rules that an asm statement for stack-like regs must
457    follow.  Those rules are explained at the top of this file: the rule
458    numbers below refer to that explanation.  */
459 
460 static int
461 check_asm_stack_operands (rtx insn)
462 {
463   int i;
464   int n_clobbers;
465   int malformed_asm = 0;
466   rtx body = PATTERN (insn);
467 
468   char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469   char implicitly_dies[FIRST_PSEUDO_REGISTER];
470   int alt;
471 
472   rtx *clobber_reg = 0;
473   int n_inputs, n_outputs;
474 
475   /* Find out what the constraints require.  If no constraint
476      alternative matches, this asm is malformed.  */
477   extract_insn (insn);
478   constrain_operands (1);
479   alt = which_alternative;
480 
481   preprocess_constraints ();
482 
483   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
484 
485   if (alt < 0)
486     {
487       malformed_asm = 1;
488       /* Avoid further trouble with this insn.  */
489       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
490       return 0;
491     }
492 
493   /* Strip SUBREGs here to make the following code simpler.  */
494   for (i = 0; i < recog_data.n_operands; i++)
495     if (GET_CODE (recog_data.operand[i]) == SUBREG
496 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
497       recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498 
499   /* Set up CLOBBER_REG.  */
500 
501   n_clobbers = 0;
502 
503   if (GET_CODE (body) == PARALLEL)
504     {
505       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506 
507       for (i = 0; i < XVECLEN (body, 0); i++)
508 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 	  {
510 	    rtx clobber = XVECEXP (body, 0, i);
511 	    rtx reg = XEXP (clobber, 0);
512 
513 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
514 	      reg = SUBREG_REG (reg);
515 
516 	    if (STACK_REG_P (reg))
517 	      {
518 		clobber_reg[n_clobbers] = reg;
519 		n_clobbers++;
520 	      }
521 	  }
522     }
523 
524   /* Enforce rule #4: Output operands must specifically indicate which
525      reg an output appears in after an asm.  "=f" is not allowed: the
526      operand constraints must select a class with a single reg.
527 
528      Also enforce rule #5: Output operands must start at the top of
529      the reg-stack: output operands may not "skip" a reg.  */
530 
531   memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
532   for (i = 0; i < n_outputs; i++)
533     if (STACK_REG_P (recog_data.operand[i]))
534       {
535 	if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
536 	  {
537 	    error_for_asm (insn, "output constraint %d must specify a single register", i);
538 	    malformed_asm = 1;
539 	  }
540 	else
541 	  {
542 	    int j;
543 
544 	    for (j = 0; j < n_clobbers; j++)
545 	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 		{
547 		  error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
548 				 i, reg_names [REGNO (clobber_reg[j])]);
549 		  malformed_asm = 1;
550 		  break;
551 		}
552 	    if (j == n_clobbers)
553 	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
554 	  }
555       }
556 
557 
558   /* Search for first non-popped reg.  */
559   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
560     if (! reg_used_as_output[i])
561       break;
562 
563   /* If there are any other popped regs, that's an error.  */
564   for (; i < LAST_STACK_REG + 1; i++)
565     if (reg_used_as_output[i])
566       break;
567 
568   if (i != LAST_STACK_REG + 1)
569     {
570       error_for_asm (insn, "output regs must be grouped at top of stack");
571       malformed_asm = 1;
572     }
573 
574   /* Enforce rule #2: All implicitly popped input regs must be closer
575      to the top of the reg-stack than any input that is not implicitly
576      popped.  */
577 
578   memset (implicitly_dies, 0, sizeof (implicitly_dies));
579   for (i = n_outputs; i < n_outputs + n_inputs; i++)
580     if (STACK_REG_P (recog_data.operand[i]))
581       {
582 	/* An input reg is implicitly popped if it is tied to an
583 	   output, or if there is a CLOBBER for it.  */
584 	int j;
585 
586 	for (j = 0; j < n_clobbers; j++)
587 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 	    break;
589 
590 	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
591 	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
592       }
593 
594   /* Search for first non-popped reg.  */
595   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
596     if (! implicitly_dies[i])
597       break;
598 
599   /* If there are any other popped regs, that's an error.  */
600   for (; i < LAST_STACK_REG + 1; i++)
601     if (implicitly_dies[i])
602       break;
603 
604   if (i != LAST_STACK_REG + 1)
605     {
606       error_for_asm (insn,
607 		     "implicitly popped regs must be grouped at top of stack");
608       malformed_asm = 1;
609     }
610 
611   /* Enforce rule #3: If any input operand uses the "f" constraint, all
612      output constraints must use the "&" earlyclobber.
613 
614      ??? Detect this more deterministically by having constrain_asm_operands
615      record any earlyclobber.  */
616 
617   for (i = n_outputs; i < n_outputs + n_inputs; i++)
618     if (recog_op_alt[i][alt].matches == -1)
619       {
620 	int j;
621 
622 	for (j = 0; j < n_outputs; j++)
623 	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
624 	    {
625 	      error_for_asm (insn,
626 			     "output operand %d must use %<&%> constraint", j);
627 	      malformed_asm = 1;
628 	    }
629       }
630 
631   if (malformed_asm)
632     {
633       /* Avoid further trouble with this insn.  */
634       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
635       any_malformed_asm = true;
636       return 0;
637     }
638 
639   return 1;
640 }
641 
642 /* Calculate the number of inputs and outputs in BODY, an
643    asm_operands.  N_OPERANDS is the total number of operands, and
644    N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
645    placed.  */
646 
647 static void
648 get_asm_operands_in_out (rtx body, int *pout, int *pin)
649 {
650   rtx asmop = extract_asm_operands (body);
651 
652   *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
653   *pout = (recog_data.n_operands
654 	   - ASM_OPERANDS_INPUT_LENGTH (asmop)
655 	   - ASM_OPERANDS_LABEL_LENGTH (asmop));
656 }
657 
658 /* If current function returns its result in an fp stack register,
659    return the REG.  Otherwise, return 0.  */
660 
661 static rtx
662 stack_result (tree decl)
663 {
664   rtx result;
665 
666   /* If the value is supposed to be returned in memory, then clearly
667      it is not returned in a stack register.  */
668   if (aggregate_value_p (DECL_RESULT (decl), decl))
669     return 0;
670 
671   result = DECL_RTL_IF_SET (DECL_RESULT (decl));
672   if (result != 0)
673     result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
674 					   decl, true);
675 
676   return result != 0 && STACK_REG_P (result) ? result : 0;
677 }
678 
679 
680 /*
681  * This section deals with stack register substitution, and forms the second
682  * pass over the RTL.
683  */
684 
685 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
686    the desired hard REGNO.  */
687 
688 static void
689 replace_reg (rtx *reg, int regno)
690 {
691   gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
692   gcc_assert (STACK_REG_P (*reg));
693 
694   gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
695 	      || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
696 
697   *reg = FP_MODE_REG (regno, GET_MODE (*reg));
698 }
699 
700 /* Remove a note of type NOTE, which must be found, for register
701    number REGNO from INSN.  Remove only one such note.  */
702 
703 static void
704 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
705 {
706   rtx *note_link, this_rtx;
707 
708   note_link = &REG_NOTES (insn);
709   for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
710     if (REG_NOTE_KIND (this_rtx) == note
711 	&& REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
712       {
713 	*note_link = XEXP (this_rtx, 1);
714 	return;
715       }
716     else
717       note_link = &XEXP (this_rtx, 1);
718 
719   gcc_unreachable ();
720 }
721 
722 /* Find the hard register number of virtual register REG in REGSTACK.
723    The hard register number is relative to the top of the stack.  -1 is
724    returned if the register is not found.  */
725 
726 static int
727 get_hard_regnum (stack regstack, rtx reg)
728 {
729   int i;
730 
731   gcc_assert (STACK_REG_P (reg));
732 
733   for (i = regstack->top; i >= 0; i--)
734     if (regstack->reg[i] == REGNO (reg))
735       break;
736 
737   return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
738 }
739 
740 /* Emit an insn to pop virtual register REG before or after INSN.
741    REGSTACK is the stack state after INSN and is updated to reflect this
742    pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
743    is represented as a SET whose destination is the register to be popped
744    and source is the top of stack.  A death note for the top of stack
745    cases the movdf pattern to pop.  */
746 
747 static rtx
748 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
749 {
750   rtx pop_insn, pop_rtx;
751   int hard_regno;
752 
753   /* For complex types take care to pop both halves.  These may survive in
754      CLOBBER and USE expressions.  */
755   if (COMPLEX_MODE_P (GET_MODE (reg)))
756     {
757       rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
758       rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
759 
760       pop_insn = NULL_RTX;
761       if (get_hard_regnum (regstack, reg1) >= 0)
762 	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
763       if (get_hard_regnum (regstack, reg2) >= 0)
764 	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
765       gcc_assert (pop_insn);
766       return pop_insn;
767     }
768 
769   hard_regno = get_hard_regnum (regstack, reg);
770 
771   gcc_assert (hard_regno >= FIRST_STACK_REG);
772 
773   pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
774 			 FP_MODE_REG (FIRST_STACK_REG, DFmode));
775 
776   if (where == EMIT_AFTER)
777     pop_insn = emit_insn_after (pop_rtx, insn);
778   else
779     pop_insn = emit_insn_before (pop_rtx, insn);
780 
781   add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
782 
783   regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
784     = regstack->reg[regstack->top];
785   regstack->top -= 1;
786   CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
787 
788   return pop_insn;
789 }
790 
791 /* Emit an insn before or after INSN to swap virtual register REG with
792    the top of stack.  REGSTACK is the stack state before the swap, and
793    is updated to reflect the swap.  A swap insn is represented as a
794    PARALLEL of two patterns: each pattern moves one reg to the other.
795 
796    If REG is already at the top of the stack, no insn is emitted.  */
797 
798 static void
799 emit_swap_insn (rtx insn, stack regstack, rtx reg)
800 {
801   int hard_regno;
802   rtx swap_rtx;
803   int tmp, other_reg;		/* swap regno temps */
804   rtx i1;			/* the stack-reg insn prior to INSN */
805   rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
806 
807   hard_regno = get_hard_regnum (regstack, reg);
808 
809   if (hard_regno == FIRST_STACK_REG)
810     return;
811   if (hard_regno == -1)
812     {
813       /* Something failed if the register wasn't on the stack.  If we had
814 	 malformed asms, we zapped the instruction itself, but that didn't
815 	 produce the same pattern of register sets as before.  To prevent
816 	 further failure, adjust REGSTACK to include REG at TOP.  */
817       gcc_assert (any_malformed_asm);
818       regstack->reg[++regstack->top] = REGNO (reg);
819       return;
820     }
821   gcc_assert (hard_regno >= FIRST_STACK_REG);
822 
823   other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
824 
825   tmp = regstack->reg[other_reg];
826   regstack->reg[other_reg] = regstack->reg[regstack->top];
827   regstack->reg[regstack->top] = tmp;
828 
829   /* Find the previous insn involving stack regs, but don't pass a
830      block boundary.  */
831   i1 = NULL;
832   if (current_block && insn != BB_HEAD (current_block))
833     {
834       rtx tmp = PREV_INSN (insn);
835       rtx limit = PREV_INSN (BB_HEAD (current_block));
836       while (tmp != limit)
837 	{
838 	  if (LABEL_P (tmp)
839 	      || CALL_P (tmp)
840 	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
841 	      || (NONJUMP_INSN_P (tmp)
842 		  && stack_regs_mentioned (tmp)))
843 	    {
844 	      i1 = tmp;
845 	      break;
846 	    }
847 	  tmp = PREV_INSN (tmp);
848 	}
849     }
850 
851   if (i1 != NULL_RTX
852       && (i1set = single_set (i1)) != NULL_RTX)
853     {
854       rtx i1src = *get_true_reg (&SET_SRC (i1set));
855       rtx i1dest = *get_true_reg (&SET_DEST (i1set));
856 
857       /* If the previous register stack push was from the reg we are to
858 	 swap with, omit the swap.  */
859 
860       if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
861 	  && REG_P (i1src)
862 	  && REGNO (i1src) == (unsigned) hard_regno - 1
863 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
864 	return;
865 
866       /* If the previous insn wrote to the reg we are to swap with,
867 	 omit the swap.  */
868 
869       if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
870 	  && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
871 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
872 	return;
873     }
874 
875   /* Avoid emitting the swap if this is the first register stack insn
876      of the current_block.  Instead update the current_block's stack_in
877      and let compensate edges take care of this for us.  */
878   if (current_block && starting_stack_p)
879     {
880       BLOCK_INFO (current_block)->stack_in = *regstack;
881       starting_stack_p = false;
882       return;
883     }
884 
885   swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
886 			 FP_MODE_REG (FIRST_STACK_REG, XFmode));
887 
888   if (i1)
889     emit_insn_after (swap_rtx, i1);
890   else if (current_block)
891     emit_insn_before (swap_rtx, BB_HEAD (current_block));
892   else
893     emit_insn_before (swap_rtx, insn);
894 }
895 
896 /* Emit an insns before INSN to swap virtual register SRC1 with
897    the top of stack and virtual register SRC2 with second stack
898    slot. REGSTACK is the stack state before the swaps, and
899    is updated to reflect the swaps.  A swap insn is represented as a
900    PARALLEL of two patterns: each pattern moves one reg to the other.
901 
902    If SRC1 and/or SRC2 are already at the right place, no swap insn
903    is emitted.  */
904 
905 static void
906 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
907 {
908   struct stack_def temp_stack;
909   int regno, j, k, temp;
910 
911   temp_stack = *regstack;
912 
913   /* Place operand 1 at the top of stack.  */
914   regno = get_hard_regnum (&temp_stack, src1);
915   gcc_assert (regno >= 0);
916   if (regno != FIRST_STACK_REG)
917     {
918       k = temp_stack.top - (regno - FIRST_STACK_REG);
919       j = temp_stack.top;
920 
921       temp = temp_stack.reg[k];
922       temp_stack.reg[k] = temp_stack.reg[j];
923       temp_stack.reg[j] = temp;
924     }
925 
926   /* Place operand 2 next on the stack.  */
927   regno = get_hard_regnum (&temp_stack, src2);
928   gcc_assert (regno >= 0);
929   if (regno != FIRST_STACK_REG + 1)
930     {
931       k = temp_stack.top - (regno - FIRST_STACK_REG);
932       j = temp_stack.top - 1;
933 
934       temp = temp_stack.reg[k];
935       temp_stack.reg[k] = temp_stack.reg[j];
936       temp_stack.reg[j] = temp;
937     }
938 
939   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
940 }
941 
942 /* Handle a move to or from a stack register in PAT, which is in INSN.
943    REGSTACK is the current stack.  Return whether a control flow insn
944    was deleted in the process.  */
945 
946 static bool
947 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
948 {
949   rtx *psrc =  get_true_reg (&SET_SRC (pat));
950   rtx *pdest = get_true_reg (&SET_DEST (pat));
951   rtx src, dest;
952   rtx note;
953   bool control_flow_insn_deleted = false;
954 
955   src = *psrc; dest = *pdest;
956 
957   if (STACK_REG_P (src) && STACK_REG_P (dest))
958     {
959       /* Write from one stack reg to another.  If SRC dies here, then
960 	 just change the register mapping and delete the insn.  */
961 
962       note = find_regno_note (insn, REG_DEAD, REGNO (src));
963       if (note)
964 	{
965 	  int i;
966 
967 	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
968 	  gcc_assert (REGNO (src) != REGNO (dest));
969 
970 	  for (i = regstack->top; i >= 0; i--)
971 	    if (regstack->reg[i] == REGNO (src))
972 	      break;
973 
974 	  /* The destination must be dead, or life analysis is borked.  */
975 	  gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
976 
977 	  /* If the source is not live, this is yet another case of
978 	     uninitialized variables.  Load up a NaN instead.  */
979 	  if (i < 0)
980 	    return move_nan_for_stack_reg (insn, regstack, dest);
981 
982 	  /* It is possible that the dest is unused after this insn.
983 	     If so, just pop the src.  */
984 
985 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
986 	    emit_pop_insn (insn, regstack, src, EMIT_AFTER);
987 	  else
988 	    {
989 	      regstack->reg[i] = REGNO (dest);
990 	      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
991 	      CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
992 	    }
993 
994 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
995 	  delete_insn (insn);
996 	  return control_flow_insn_deleted;
997 	}
998 
999       /* The source reg does not die.  */
1000 
1001       /* If this appears to be a no-op move, delete it, or else it
1002 	 will confuse the machine description output patterns. But if
1003 	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1004 	 for REG_UNUSED will not work for deleted insns.  */
1005 
1006       if (REGNO (src) == REGNO (dest))
1007 	{
1008 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1009 	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1010 
1011 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1012 	  delete_insn (insn);
1013 	  return control_flow_insn_deleted;
1014 	}
1015 
1016       /* The destination ought to be dead.  */
1017       gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1018 
1019       replace_reg (psrc, get_hard_regnum (regstack, src));
1020 
1021       regstack->reg[++regstack->top] = REGNO (dest);
1022       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1023       replace_reg (pdest, FIRST_STACK_REG);
1024     }
1025   else if (STACK_REG_P (src))
1026     {
1027       /* Save from a stack reg to MEM, or possibly integer reg.  Since
1028 	 only top of stack may be saved, emit an exchange first if
1029 	 needs be.  */
1030 
1031       emit_swap_insn (insn, regstack, src);
1032 
1033       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1034       if (note)
1035 	{
1036 	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1037 	  regstack->top--;
1038 	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1039 	}
1040       else if ((GET_MODE (src) == XFmode)
1041 	       && regstack->top < REG_STACK_SIZE - 1)
1042 	{
1043 	  /* A 387 cannot write an XFmode value to a MEM without
1044 	     clobbering the source reg.  The output code can handle
1045 	     this by reading back the value from the MEM.
1046 	     But it is more efficient to use a temp register if one is
1047 	     available.  Push the source value here if the register
1048 	     stack is not full, and then write the value to memory via
1049 	     a pop.  */
1050 	  rtx push_rtx;
1051 	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1052 
1053 	  push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1054 	  emit_insn_before (push_rtx, insn);
1055 	  add_reg_note (insn, REG_DEAD, top_stack_reg);
1056 	}
1057 
1058       replace_reg (psrc, FIRST_STACK_REG);
1059     }
1060   else
1061     {
1062       rtx pat = PATTERN (insn);
1063 
1064       gcc_assert (STACK_REG_P (dest));
1065 
1066       /* Load from MEM, or possibly integer REG or constant, into the
1067 	 stack regs.  The actual target is always the top of the
1068 	 stack. The stack mapping is changed to reflect that DEST is
1069 	 now at top of stack.  */
1070 
1071       /* The destination ought to be dead.  However, there is a
1072 	 special case with i387 UNSPEC_TAN, where destination is live
1073 	 (an argument to fptan) but inherent load of 1.0 is modelled
1074 	 as a load from a constant.  */
1075       if (GET_CODE (pat) == PARALLEL
1076 	  && XVECLEN (pat, 0) == 2
1077 	  && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1078 	  && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1079 	  && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1080 	emit_swap_insn (insn, regstack, dest);
1081       else
1082 	gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1083 
1084       gcc_assert (regstack->top < REG_STACK_SIZE);
1085 
1086       regstack->reg[++regstack->top] = REGNO (dest);
1087       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1088       replace_reg (pdest, FIRST_STACK_REG);
1089     }
1090 
1091   return control_flow_insn_deleted;
1092 }
1093 
1094 /* A helper function which replaces INSN with a pattern that loads up
1095    a NaN into DEST, then invokes move_for_stack_reg.  */
1096 
1097 static bool
1098 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1099 {
1100   rtx pat;
1101 
1102   dest = FP_MODE_REG (REGNO (dest), SFmode);
1103   pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1104   PATTERN (insn) = pat;
1105   INSN_CODE (insn) = -1;
1106 
1107   return move_for_stack_reg (insn, regstack, pat);
1108 }
1109 
1110 /* Swap the condition on a branch, if there is one.  Return true if we
1111    found a condition to swap.  False if the condition was not used as
1112    such.  */
1113 
1114 static int
1115 swap_rtx_condition_1 (rtx pat)
1116 {
1117   const char *fmt;
1118   int i, r = 0;
1119 
1120   if (COMPARISON_P (pat))
1121     {
1122       PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1123       r = 1;
1124     }
1125   else
1126     {
1127       fmt = GET_RTX_FORMAT (GET_CODE (pat));
1128       for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1129 	{
1130 	  if (fmt[i] == 'E')
1131 	    {
1132 	      int j;
1133 
1134 	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1135 		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1136 	    }
1137 	  else if (fmt[i] == 'e')
1138 	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1139 	}
1140     }
1141 
1142   return r;
1143 }
1144 
1145 static int
1146 swap_rtx_condition (rtx insn)
1147 {
1148   rtx pat = PATTERN (insn);
1149 
1150   /* We're looking for a single set to cc0 or an HImode temporary.  */
1151 
1152   if (GET_CODE (pat) == SET
1153       && REG_P (SET_DEST (pat))
1154       && REGNO (SET_DEST (pat)) == FLAGS_REG)
1155     {
1156       insn = next_flags_user (insn);
1157       if (insn == NULL_RTX)
1158 	return 0;
1159       pat = PATTERN (insn);
1160     }
1161 
1162   /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1163      with the cc value right now.  We may be able to search for one
1164      though.  */
1165 
1166   if (GET_CODE (pat) == SET
1167       && GET_CODE (SET_SRC (pat)) == UNSPEC
1168       && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1169     {
1170       rtx dest = SET_DEST (pat);
1171 
1172       /* Search forward looking for the first use of this value.
1173 	 Stop at block boundaries.  */
1174       while (insn != BB_END (current_block))
1175 	{
1176 	  insn = NEXT_INSN (insn);
1177 	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1178 	    break;
1179 	  if (CALL_P (insn))
1180 	    return 0;
1181 	}
1182 
1183       /* We haven't found it.  */
1184       if (insn == BB_END (current_block))
1185 	return 0;
1186 
1187       /* So we've found the insn using this value.  If it is anything
1188 	 other than sahf or the value does not die (meaning we'd have
1189 	 to search further), then we must give up.  */
1190       pat = PATTERN (insn);
1191       if (GET_CODE (pat) != SET
1192 	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1193 	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1194 	  || ! dead_or_set_p (insn, dest))
1195 	return 0;
1196 
1197       /* Now we are prepared to handle this as a normal cc0 setter.  */
1198       insn = next_flags_user (insn);
1199       if (insn == NULL_RTX)
1200 	return 0;
1201       pat = PATTERN (insn);
1202     }
1203 
1204   if (swap_rtx_condition_1 (pat))
1205     {
1206       int fail = 0;
1207       INSN_CODE (insn) = -1;
1208       if (recog_memoized (insn) == -1)
1209 	fail = 1;
1210       /* In case the flags don't die here, recurse to try fix
1211          following user too.  */
1212       else if (! dead_or_set_p (insn, ix86_flags_rtx))
1213 	{
1214 	  insn = next_flags_user (insn);
1215 	  if (!insn || !swap_rtx_condition (insn))
1216 	    fail = 1;
1217 	}
1218       if (fail)
1219 	{
1220 	  swap_rtx_condition_1 (pat);
1221 	  return 0;
1222 	}
1223       return 1;
1224     }
1225   return 0;
1226 }
1227 
1228 /* Handle a comparison.  Special care needs to be taken to avoid
1229    causing comparisons that a 387 cannot do correctly, such as EQ.
1230 
1231    Also, a pop insn may need to be emitted.  The 387 does have an
1232    `fcompp' insn that can pop two regs, but it is sometimes too expensive
1233    to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1234    set up.  */
1235 
1236 static void
1237 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1238 {
1239   rtx *src1, *src2;
1240   rtx src1_note, src2_note;
1241 
1242   src1 = get_true_reg (&XEXP (pat_src, 0));
1243   src2 = get_true_reg (&XEXP (pat_src, 1));
1244 
1245   /* ??? If fxch turns out to be cheaper than fstp, give priority to
1246      registers that die in this insn - move those to stack top first.  */
1247   if ((! STACK_REG_P (*src1)
1248        || (STACK_REG_P (*src2)
1249 	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1250       && swap_rtx_condition (insn))
1251     {
1252       rtx temp;
1253       temp = XEXP (pat_src, 0);
1254       XEXP (pat_src, 0) = XEXP (pat_src, 1);
1255       XEXP (pat_src, 1) = temp;
1256 
1257       src1 = get_true_reg (&XEXP (pat_src, 0));
1258       src2 = get_true_reg (&XEXP (pat_src, 1));
1259 
1260       INSN_CODE (insn) = -1;
1261     }
1262 
1263   /* We will fix any death note later.  */
1264 
1265   src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1266 
1267   if (STACK_REG_P (*src2))
1268     src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1269   else
1270     src2_note = NULL_RTX;
1271 
1272   emit_swap_insn (insn, regstack, *src1);
1273 
1274   replace_reg (src1, FIRST_STACK_REG);
1275 
1276   if (STACK_REG_P (*src2))
1277     replace_reg (src2, get_hard_regnum (regstack, *src2));
1278 
1279   if (src1_note)
1280     {
1281       pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1282       replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1283     }
1284 
1285   /* If the second operand dies, handle that.  But if the operands are
1286      the same stack register, don't bother, because only one death is
1287      needed, and it was just handled.  */
1288 
1289   if (src2_note
1290       && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1291 	    && REGNO (*src1) == REGNO (*src2)))
1292     {
1293       /* As a special case, two regs may die in this insn if src2 is
1294 	 next to top of stack and the top of stack also dies.  Since
1295 	 we have already popped src1, "next to top of stack" is really
1296 	 at top (FIRST_STACK_REG) now.  */
1297 
1298       if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1299 	  && src1_note)
1300 	{
1301 	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1302 	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1303 	}
1304       else
1305 	{
1306 	  /* The 386 can only represent death of the first operand in
1307 	     the case handled above.  In all other cases, emit a separate
1308 	     pop and remove the death note from here.  */
1309 
1310 	  /* link_cc0_insns (insn); */
1311 
1312 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1313 
1314 	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1315 			 EMIT_AFTER);
1316 	}
1317     }
1318 }
1319 
1320 /* Substitute new registers in LOC, which is part of a debug insn.
1321    REGSTACK is the current register layout.  */
1322 
1323 static int
1324 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1325 {
1326   stack regstack = (stack)data;
1327   int hard_regno;
1328 
1329   if (!STACK_REG_P (*loc))
1330     return 0;
1331 
1332   hard_regno = get_hard_regnum (regstack, *loc);
1333 
1334   /* If we can't find an active register, reset this debug insn.  */
1335   if (hard_regno == -1)
1336     return 1;
1337 
1338   gcc_assert (hard_regno >= FIRST_STACK_REG);
1339 
1340   replace_reg (loc, hard_regno);
1341 
1342   return -1;
1343 }
1344 
1345 /* Substitute hardware stack regs in debug insn INSN, using stack
1346    layout REGSTACK.  If we can't find a hardware stack reg for any of
1347    the REGs in it, reset the debug insn.  */
1348 
1349 static void
1350 subst_all_stack_regs_in_debug_insn (rtx insn, struct stack_def *regstack)
1351 {
1352   int ret = for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
1353 			  subst_stack_regs_in_debug_insn,
1354 			  regstack);
1355 
1356   if (ret == 1)
1357     INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1358   else
1359     gcc_checking_assert (ret == 0);
1360 }
1361 
1362 /* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1363    is the current register layout.  Return whether a control flow insn
1364    was deleted in the process.  */
1365 
1366 static bool
1367 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1368 {
1369   rtx *dest, *src;
1370   bool control_flow_insn_deleted = false;
1371 
1372   switch (GET_CODE (pat))
1373     {
1374     case USE:
1375       /* Deaths in USE insns can happen in non optimizing compilation.
1376 	 Handle them by popping the dying register.  */
1377       src = get_true_reg (&XEXP (pat, 0));
1378       if (STACK_REG_P (*src)
1379 	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1380 	{
1381 	  /* USEs are ignored for liveness information so USEs of dead
1382 	     register might happen.  */
1383           if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1384 	    emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1385 	  return control_flow_insn_deleted;
1386 	}
1387       /* Uninitialized USE might happen for functions returning uninitialized
1388          value.  We will properly initialize the USE on the edge to EXIT_BLOCK,
1389 	 so it is safe to ignore the use here. This is consistent with behavior
1390 	 of dataflow analyzer that ignores USE too.  (This also imply that
1391 	 forcibly initializing the register to NaN here would lead to ICE later,
1392 	 since the REG_DEAD notes are not issued.)  */
1393       break;
1394 
1395     case VAR_LOCATION:
1396       gcc_unreachable ();
1397 
1398     case CLOBBER:
1399       {
1400 	rtx note;
1401 
1402 	dest = get_true_reg (&XEXP (pat, 0));
1403 	if (STACK_REG_P (*dest))
1404 	  {
1405 	    note = find_reg_note (insn, REG_DEAD, *dest);
1406 
1407 	    if (pat != PATTERN (insn))
1408 	      {
1409 		/* The fix_truncdi_1 pattern wants to be able to
1410 		   allocate its own scratch register.  It does this by
1411 		   clobbering an fp reg so that it is assured of an
1412 		   empty reg-stack register.  If the register is live,
1413 		   kill it now.  Remove the DEAD/UNUSED note so we
1414 		   don't try to kill it later too.
1415 
1416 		   In reality the UNUSED note can be absent in some
1417 		   complicated cases when the register is reused for
1418 		   partially set variable.  */
1419 
1420 		if (note)
1421 		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1422 		else
1423 		  note = find_reg_note (insn, REG_UNUSED, *dest);
1424 		if (note)
1425 		  remove_note (insn, note);
1426 		replace_reg (dest, FIRST_STACK_REG + 1);
1427 	      }
1428 	    else
1429 	      {
1430 		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1431 		   indicates an uninitialized value.  Because reload removed
1432 		   all other clobbers, this must be due to a function
1433 		   returning without a value.  Load up a NaN.  */
1434 
1435 		if (!note)
1436 		  {
1437 		    rtx t = *dest;
1438 		    if (COMPLEX_MODE_P (GET_MODE (t)))
1439 		      {
1440 			rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1441 			if (get_hard_regnum (regstack, u) == -1)
1442 			  {
1443 			    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1444 			    rtx insn2 = emit_insn_before (pat2, insn);
1445 			    control_flow_insn_deleted
1446 			      |= move_nan_for_stack_reg (insn2, regstack, u);
1447 			  }
1448 		      }
1449 		    if (get_hard_regnum (regstack, t) == -1)
1450 		      control_flow_insn_deleted
1451 			|= move_nan_for_stack_reg (insn, regstack, t);
1452 		  }
1453 	      }
1454 	  }
1455 	break;
1456       }
1457 
1458     case SET:
1459       {
1460 	rtx *src1 = (rtx *) 0, *src2;
1461 	rtx src1_note, src2_note;
1462 	rtx pat_src;
1463 
1464 	dest = get_true_reg (&SET_DEST (pat));
1465 	src  = get_true_reg (&SET_SRC (pat));
1466 	pat_src = SET_SRC (pat);
1467 
1468 	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1469 	if (STACK_REG_P (*src)
1470 	    || (STACK_REG_P (*dest)
1471 		&& (REG_P (*src) || MEM_P (*src)
1472 		    || GET_CODE (*src) == CONST_DOUBLE)))
1473 	  {
1474 	    control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1475 	    break;
1476 	  }
1477 
1478 	switch (GET_CODE (pat_src))
1479 	  {
1480 	  case COMPARE:
1481 	    compare_for_stack_reg (insn, regstack, pat_src);
1482 	    break;
1483 
1484 	  case CALL:
1485 	    {
1486 	      int count;
1487 	      for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1488 		   --count >= 0;)
1489 		{
1490 		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1491 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1492 		}
1493 	    }
1494 	    replace_reg (dest, FIRST_STACK_REG);
1495 	    break;
1496 
1497 	  case REG:
1498 	    /* This is a `tstM2' case.  */
1499 	    gcc_assert (*dest == cc0_rtx);
1500 	    src1 = src;
1501 
1502 	    /* Fall through.  */
1503 
1504 	  case FLOAT_TRUNCATE:
1505 	  case SQRT:
1506 	  case ABS:
1507 	  case NEG:
1508 	    /* These insns only operate on the top of the stack. DEST might
1509 	       be cc0_rtx if we're processing a tstM pattern. Also, it's
1510 	       possible that the tstM case results in a REG_DEAD note on the
1511 	       source.  */
1512 
1513 	    if (src1 == 0)
1514 	      src1 = get_true_reg (&XEXP (pat_src, 0));
1515 
1516 	    emit_swap_insn (insn, regstack, *src1);
1517 
1518 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1519 
1520 	    if (STACK_REG_P (*dest))
1521 	      replace_reg (dest, FIRST_STACK_REG);
1522 
1523 	    if (src1_note)
1524 	      {
1525 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1526 		regstack->top--;
1527 		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1528 	      }
1529 
1530 	    replace_reg (src1, FIRST_STACK_REG);
1531 	    break;
1532 
1533 	  case MINUS:
1534 	  case DIV:
1535 	    /* On i386, reversed forms of subM3 and divM3 exist for
1536 	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1537 	       can be used.  */
1538 	  case MULT:
1539 	  case PLUS:
1540 	    /* These insns can accept the top of stack as a destination
1541 	       from a stack reg or mem, or can use the top of stack as a
1542 	       source and some other stack register (possibly top of stack)
1543 	       as a destination.  */
1544 
1545 	    src1 = get_true_reg (&XEXP (pat_src, 0));
1546 	    src2 = get_true_reg (&XEXP (pat_src, 1));
1547 
1548 	    /* We will fix any death note later.  */
1549 
1550 	    if (STACK_REG_P (*src1))
1551 	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1552 	    else
1553 	      src1_note = NULL_RTX;
1554 	    if (STACK_REG_P (*src2))
1555 	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1556 	    else
1557 	      src2_note = NULL_RTX;
1558 
1559 	    /* If either operand is not a stack register, then the dest
1560 	       must be top of stack.  */
1561 
1562 	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1563 	      emit_swap_insn (insn, regstack, *dest);
1564 	    else
1565 	      {
1566 		/* Both operands are REG.  If neither operand is already
1567 		   at the top of stack, choose to make the one that is the
1568 		   dest the new top of stack.  */
1569 
1570 		int src1_hard_regnum, src2_hard_regnum;
1571 
1572 		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1573 		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1574 
1575 		/* If the source is not live, this is yet another case of
1576 		   uninitialized variables.  Load up a NaN instead.  */
1577 		if (src1_hard_regnum == -1)
1578 		  {
1579 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1580 		    rtx insn2 = emit_insn_before (pat2, insn);
1581 		    control_flow_insn_deleted
1582 		      |= move_nan_for_stack_reg (insn2, regstack, *src1);
1583 		  }
1584 		if (src2_hard_regnum == -1)
1585 		  {
1586 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1587 		    rtx insn2 = emit_insn_before (pat2, insn);
1588 		    control_flow_insn_deleted
1589 		      |= move_nan_for_stack_reg (insn2, regstack, *src2);
1590 		  }
1591 
1592 		if (src1_hard_regnum != FIRST_STACK_REG
1593 		    && src2_hard_regnum != FIRST_STACK_REG)
1594 		  emit_swap_insn (insn, regstack, *dest);
1595 	      }
1596 
1597 	    if (STACK_REG_P (*src1))
1598 	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1599 	    if (STACK_REG_P (*src2))
1600 	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1601 
1602 	    if (src1_note)
1603 	      {
1604 		rtx src1_reg = XEXP (src1_note, 0);
1605 
1606 		/* If the register that dies is at the top of stack, then
1607 		   the destination is somewhere else - merely substitute it.
1608 		   But if the reg that dies is not at top of stack, then
1609 		   move the top of stack to the dead reg, as though we had
1610 		   done the insn and then a store-with-pop.  */
1611 
1612 		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1613 		  {
1614 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1615 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1616 		  }
1617 		else
1618 		  {
1619 		    int regno = get_hard_regnum (regstack, src1_reg);
1620 
1621 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1622 		    replace_reg (dest, regno);
1623 
1624 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1625 		      = regstack->reg[regstack->top];
1626 		  }
1627 
1628 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1629 				    REGNO (XEXP (src1_note, 0)));
1630 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1631 		regstack->top--;
1632 	      }
1633 	    else if (src2_note)
1634 	      {
1635 		rtx src2_reg = XEXP (src2_note, 0);
1636 		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1637 		  {
1638 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1639 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1640 		  }
1641 		else
1642 		  {
1643 		    int regno = get_hard_regnum (regstack, src2_reg);
1644 
1645 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1646 		    replace_reg (dest, regno);
1647 
1648 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1649 		      = regstack->reg[regstack->top];
1650 		  }
1651 
1652 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1653 				    REGNO (XEXP (src2_note, 0)));
1654 		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1655 		regstack->top--;
1656 	      }
1657 	    else
1658 	      {
1659 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1660 		replace_reg (dest, get_hard_regnum (regstack, *dest));
1661 	      }
1662 
1663 	    /* Keep operand 1 matching with destination.  */
1664 	    if (COMMUTATIVE_ARITH_P (pat_src)
1665 		&& REG_P (*src1) && REG_P (*src2)
1666 		&& REGNO (*src1) != REGNO (*dest))
1667 	     {
1668 		int tmp = REGNO (*src1);
1669 		replace_reg (src1, REGNO (*src2));
1670 		replace_reg (src2, tmp);
1671 	     }
1672 	    break;
1673 
1674 	  case UNSPEC:
1675 	    switch (XINT (pat_src, 1))
1676 	      {
1677 	      case UNSPEC_STA:
1678 	      case UNSPEC_FIST:
1679 
1680 	      case UNSPEC_FIST_FLOOR:
1681 	      case UNSPEC_FIST_CEIL:
1682 
1683 		/* These insns only operate on the top of the stack.  */
1684 
1685 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1686 		emit_swap_insn (insn, regstack, *src1);
1687 
1688 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1689 
1690 		if (STACK_REG_P (*dest))
1691 		  replace_reg (dest, FIRST_STACK_REG);
1692 
1693 		if (src1_note)
1694 		  {
1695 		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1696 		    regstack->top--;
1697 		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1698 		  }
1699 
1700 		replace_reg (src1, FIRST_STACK_REG);
1701 		break;
1702 
1703 	      case UNSPEC_FXAM:
1704 
1705 		/* This insn only operate on the top of the stack.  */
1706 
1707 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1708 		emit_swap_insn (insn, regstack, *src1);
1709 
1710 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1711 
1712 		replace_reg (src1, FIRST_STACK_REG);
1713 
1714 		if (src1_note)
1715 		  {
1716 		    remove_regno_note (insn, REG_DEAD,
1717 				       REGNO (XEXP (src1_note, 0)));
1718 		    emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1719 				   EMIT_AFTER);
1720 		  }
1721 
1722 		break;
1723 
1724 	      case UNSPEC_SIN:
1725 	      case UNSPEC_COS:
1726 	      case UNSPEC_FRNDINT:
1727 	      case UNSPEC_F2XM1:
1728 
1729 	      case UNSPEC_FRNDINT_FLOOR:
1730 	      case UNSPEC_FRNDINT_CEIL:
1731 	      case UNSPEC_FRNDINT_TRUNC:
1732 	      case UNSPEC_FRNDINT_MASK_PM:
1733 
1734 		/* Above insns operate on the top of the stack.  */
1735 
1736 	      case UNSPEC_SINCOS_COS:
1737 	      case UNSPEC_XTRACT_FRACT:
1738 
1739 		/* Above insns operate on the top two stack slots,
1740 		   first part of one input, double output insn.  */
1741 
1742 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1743 
1744 		emit_swap_insn (insn, regstack, *src1);
1745 
1746 		/* Input should never die, it is replaced with output.  */
1747 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1748 		gcc_assert (!src1_note);
1749 
1750 		if (STACK_REG_P (*dest))
1751 		  replace_reg (dest, FIRST_STACK_REG);
1752 
1753 		replace_reg (src1, FIRST_STACK_REG);
1754 		break;
1755 
1756 	      case UNSPEC_SINCOS_SIN:
1757 	      case UNSPEC_XTRACT_EXP:
1758 
1759 		/* These insns operate on the top two stack slots,
1760 		   second part of one input, double output insn.  */
1761 
1762 		regstack->top++;
1763 		/* FALLTHRU */
1764 
1765 	      case UNSPEC_TAN:
1766 
1767 		/* For UNSPEC_TAN, regstack->top is already increased
1768 		   by inherent load of constant 1.0.  */
1769 
1770 		/* Output value is generated in the second stack slot.
1771 		   Move current value from second slot to the top.  */
1772 		regstack->reg[regstack->top]
1773 		  = regstack->reg[regstack->top - 1];
1774 
1775 		gcc_assert (STACK_REG_P (*dest));
1776 
1777 		regstack->reg[regstack->top - 1] = REGNO (*dest);
1778 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1779 		replace_reg (dest, FIRST_STACK_REG + 1);
1780 
1781 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1782 
1783 		replace_reg (src1, FIRST_STACK_REG);
1784 		break;
1785 
1786 	      case UNSPEC_FPATAN:
1787 	      case UNSPEC_FYL2X:
1788 	      case UNSPEC_FYL2XP1:
1789 		/* These insns operate on the top two stack slots.  */
1790 
1791 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1792 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1793 
1794 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1795 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1796 
1797 		swap_to_top (insn, regstack, *src1, *src2);
1798 
1799 		replace_reg (src1, FIRST_STACK_REG);
1800 		replace_reg (src2, FIRST_STACK_REG + 1);
1801 
1802 		if (src1_note)
1803 		  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1804 		if (src2_note)
1805 		  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1806 
1807 		/* Pop both input operands from the stack.  */
1808 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1809 				    regstack->reg[regstack->top]);
1810 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1811 				    regstack->reg[regstack->top - 1]);
1812 		regstack->top -= 2;
1813 
1814 		/* Push the result back onto the stack.  */
1815 		regstack->reg[++regstack->top] = REGNO (*dest);
1816 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1817 		replace_reg (dest, FIRST_STACK_REG);
1818 		break;
1819 
1820 	      case UNSPEC_FSCALE_FRACT:
1821 	      case UNSPEC_FPREM_F:
1822 	      case UNSPEC_FPREM1_F:
1823 		/* These insns operate on the top two stack slots,
1824 		   first part of double input, double output insn.  */
1825 
1826 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1827 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1828 
1829 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1830 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1831 
1832 		/* Inputs should never die, they are
1833 		   replaced with outputs.  */
1834 		gcc_assert (!src1_note);
1835 		gcc_assert (!src2_note);
1836 
1837 		swap_to_top (insn, regstack, *src1, *src2);
1838 
1839 		/* Push the result back onto stack. Empty stack slot
1840 		   will be filled in second part of insn.  */
1841 		if (STACK_REG_P (*dest))
1842 		  {
1843 		    regstack->reg[regstack->top] = REGNO (*dest);
1844 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1845 		    replace_reg (dest, FIRST_STACK_REG);
1846 		  }
1847 
1848 		replace_reg (src1, FIRST_STACK_REG);
1849 		replace_reg (src2, FIRST_STACK_REG + 1);
1850 		break;
1851 
1852 	      case UNSPEC_FSCALE_EXP:
1853 	      case UNSPEC_FPREM_U:
1854 	      case UNSPEC_FPREM1_U:
1855 		/* These insns operate on the top two stack slots,
1856 		   second part of double input, double output insn.  */
1857 
1858 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1859 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1860 
1861 		/* Push the result back onto stack. Fill empty slot from
1862 		   first part of insn and fix top of stack pointer.  */
1863 		if (STACK_REG_P (*dest))
1864 		  {
1865 		    regstack->reg[regstack->top - 1] = REGNO (*dest);
1866 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1867 		    replace_reg (dest, FIRST_STACK_REG + 1);
1868 		  }
1869 
1870 		replace_reg (src1, FIRST_STACK_REG);
1871 		replace_reg (src2, FIRST_STACK_REG + 1);
1872 		break;
1873 
1874 	      case UNSPEC_C2_FLAG:
1875 		/* This insn operates on the top two stack slots,
1876 		   third part of C2 setting double input insn.  */
1877 
1878 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1879 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1880 
1881 		replace_reg (src1, FIRST_STACK_REG);
1882 		replace_reg (src2, FIRST_STACK_REG + 1);
1883 		break;
1884 
1885 	      case UNSPEC_SAHF:
1886 		/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1887 		   The combination matches the PPRO fcomi instruction.  */
1888 
1889 		pat_src = XVECEXP (pat_src, 0, 0);
1890 		gcc_assert (GET_CODE (pat_src) == UNSPEC);
1891 		gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1892 		/* Fall through.  */
1893 
1894 	      case UNSPEC_FNSTSW:
1895 		/* Combined fcomp+fnstsw generated for doing well with
1896 		   CSE.  When optimizing this would have been broken
1897 		   up before now.  */
1898 
1899 		pat_src = XVECEXP (pat_src, 0, 0);
1900 		gcc_assert (GET_CODE (pat_src) == COMPARE);
1901 
1902 		compare_for_stack_reg (insn, regstack, pat_src);
1903 		break;
1904 
1905 	      default:
1906 		gcc_unreachable ();
1907 	      }
1908 	    break;
1909 
1910 	  case IF_THEN_ELSE:
1911 	    /* This insn requires the top of stack to be the destination.  */
1912 
1913 	    src1 = get_true_reg (&XEXP (pat_src, 1));
1914 	    src2 = get_true_reg (&XEXP (pat_src, 2));
1915 
1916 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1917 	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1918 
1919 	    /* If the comparison operator is an FP comparison operator,
1920 	       it is handled correctly by compare_for_stack_reg () who
1921 	       will move the destination to the top of stack. But if the
1922 	       comparison operator is not an FP comparison operator, we
1923 	       have to handle it here.  */
1924 	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1925 		&& REGNO (*dest) != regstack->reg[regstack->top])
1926 	      {
1927 		/* In case one of operands is the top of stack and the operands
1928 		   dies, it is safe to make it the destination operand by
1929 		   reversing the direction of cmove and avoid fxch.  */
1930 		if ((REGNO (*src1) == regstack->reg[regstack->top]
1931 		     && src1_note)
1932 		    || (REGNO (*src2) == regstack->reg[regstack->top]
1933 			&& src2_note))
1934 		  {
1935 		    int idx1 = (get_hard_regnum (regstack, *src1)
1936 				- FIRST_STACK_REG);
1937 		    int idx2 = (get_hard_regnum (regstack, *src2)
1938 				- FIRST_STACK_REG);
1939 
1940 		    /* Make reg-stack believe that the operands are already
1941 		       swapped on the stack */
1942 		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
1943 		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
1944 
1945 		    /* Reverse condition to compensate the operand swap.
1946 		       i386 do have comparison always reversible.  */
1947 		    PUT_CODE (XEXP (pat_src, 0),
1948 			      reversed_comparison_code (XEXP (pat_src, 0), insn));
1949 		  }
1950 		else
1951 	          emit_swap_insn (insn, regstack, *dest);
1952 	      }
1953 
1954 	    {
1955 	      rtx src_note [3];
1956 	      int i;
1957 
1958 	      src_note[0] = 0;
1959 	      src_note[1] = src1_note;
1960 	      src_note[2] = src2_note;
1961 
1962 	      if (STACK_REG_P (*src1))
1963 		replace_reg (src1, get_hard_regnum (regstack, *src1));
1964 	      if (STACK_REG_P (*src2))
1965 		replace_reg (src2, get_hard_regnum (regstack, *src2));
1966 
1967 	      for (i = 1; i <= 2; i++)
1968 		if (src_note [i])
1969 		  {
1970 		    int regno = REGNO (XEXP (src_note[i], 0));
1971 
1972 		    /* If the register that dies is not at the top of
1973 		       stack, then move the top of stack to the dead reg.
1974 		       Top of stack should never die, as it is the
1975 		       destination.  */
1976 		    gcc_assert (regno != regstack->reg[regstack->top]);
1977 		    remove_regno_note (insn, REG_DEAD, regno);
1978 		    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1979 				    EMIT_AFTER);
1980 		  }
1981 	    }
1982 
1983 	    /* Make dest the top of stack.  Add dest to regstack if
1984 	       not present.  */
1985 	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1986 	      regstack->reg[++regstack->top] = REGNO (*dest);
1987 	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1988 	    replace_reg (dest, FIRST_STACK_REG);
1989 	    break;
1990 
1991 	  default:
1992 	    gcc_unreachable ();
1993 	  }
1994 	break;
1995       }
1996 
1997     default:
1998       break;
1999     }
2000 
2001   return control_flow_insn_deleted;
2002 }
2003 
2004 /* Substitute hard regnums for any stack regs in INSN, which has
2005    N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
2006    before the insn, and is updated with changes made here.
2007 
2008    There are several requirements and assumptions about the use of
2009    stack-like regs in asm statements.  These rules are enforced by
2010    record_asm_stack_regs; see comments there for details.  Any
2011    asm_operands left in the RTL at this point may be assume to meet the
2012    requirements, since record_asm_stack_regs removes any problem asm.  */
2013 
2014 static void
2015 subst_asm_stack_regs (rtx insn, stack regstack)
2016 {
2017   rtx body = PATTERN (insn);
2018   int alt;
2019 
2020   rtx *note_reg;		/* Array of note contents */
2021   rtx **note_loc;		/* Address of REG field of each note */
2022   enum reg_note *note_kind;	/* The type of each note */
2023 
2024   rtx *clobber_reg = 0;
2025   rtx **clobber_loc = 0;
2026 
2027   struct stack_def temp_stack;
2028   int n_notes;
2029   int n_clobbers;
2030   rtx note;
2031   int i;
2032   int n_inputs, n_outputs;
2033 
2034   if (! check_asm_stack_operands (insn))
2035     return;
2036 
2037   /* Find out what the constraints required.  If no constraint
2038      alternative matches, that is a compiler bug: we should have caught
2039      such an insn in check_asm_stack_operands.  */
2040   extract_insn (insn);
2041   constrain_operands (1);
2042   alt = which_alternative;
2043 
2044   preprocess_constraints ();
2045 
2046   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2047 
2048   gcc_assert (alt >= 0);
2049 
2050   /* Strip SUBREGs here to make the following code simpler.  */
2051   for (i = 0; i < recog_data.n_operands; i++)
2052     if (GET_CODE (recog_data.operand[i]) == SUBREG
2053 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
2054       {
2055 	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2056 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2057       }
2058 
2059   /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
2060 
2061   for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2062     i++;
2063 
2064   note_reg = XALLOCAVEC (rtx, i);
2065   note_loc = XALLOCAVEC (rtx *, i);
2066   note_kind = XALLOCAVEC (enum reg_note, i);
2067 
2068   n_notes = 0;
2069   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2070     {
2071       rtx reg = XEXP (note, 0);
2072       rtx *loc = & XEXP (note, 0);
2073 
2074       if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2075 	{
2076 	  loc = & SUBREG_REG (reg);
2077 	  reg = SUBREG_REG (reg);
2078 	}
2079 
2080       if (STACK_REG_P (reg)
2081 	  && (REG_NOTE_KIND (note) == REG_DEAD
2082 	      || REG_NOTE_KIND (note) == REG_UNUSED))
2083 	{
2084 	  note_reg[n_notes] = reg;
2085 	  note_loc[n_notes] = loc;
2086 	  note_kind[n_notes] = REG_NOTE_KIND (note);
2087 	  n_notes++;
2088 	}
2089     }
2090 
2091   /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2092 
2093   n_clobbers = 0;
2094 
2095   if (GET_CODE (body) == PARALLEL)
2096     {
2097       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2098       clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2099 
2100       for (i = 0; i < XVECLEN (body, 0); i++)
2101 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2102 	  {
2103 	    rtx clobber = XVECEXP (body, 0, i);
2104 	    rtx reg = XEXP (clobber, 0);
2105 	    rtx *loc = & XEXP (clobber, 0);
2106 
2107 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2108 	      {
2109 		loc = & SUBREG_REG (reg);
2110 		reg = SUBREG_REG (reg);
2111 	      }
2112 
2113 	    if (STACK_REG_P (reg))
2114 	      {
2115 		clobber_reg[n_clobbers] = reg;
2116 		clobber_loc[n_clobbers] = loc;
2117 		n_clobbers++;
2118 	      }
2119 	  }
2120     }
2121 
2122   temp_stack = *regstack;
2123 
2124   /* Put the input regs into the desired place in TEMP_STACK.  */
2125 
2126   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2127     if (STACK_REG_P (recog_data.operand[i])
2128 	&& reg_class_subset_p (recog_op_alt[i][alt].cl,
2129 			       FLOAT_REGS)
2130 	&& recog_op_alt[i][alt].cl != FLOAT_REGS)
2131       {
2132 	/* If an operand needs to be in a particular reg in
2133 	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2134 	   these constraints are for single register classes, and
2135 	   reload guaranteed that operand[i] is already in that class,
2136 	   we can just use REGNO (recog_data.operand[i]) to know which
2137 	   actual reg this operand needs to be in.  */
2138 
2139 	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2140 
2141 	gcc_assert (regno >= 0);
2142 
2143 	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2144 	  {
2145 	    /* recog_data.operand[i] is not in the right place.  Find
2146 	       it and swap it with whatever is already in I's place.
2147 	       K is where recog_data.operand[i] is now.  J is where it
2148 	       should be.  */
2149 	    int j, k, temp;
2150 
2151 	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2152 	    j = (temp_stack.top
2153 		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2154 
2155 	    temp = temp_stack.reg[k];
2156 	    temp_stack.reg[k] = temp_stack.reg[j];
2157 	    temp_stack.reg[j] = temp;
2158 	  }
2159       }
2160 
2161   /* Emit insns before INSN to make sure the reg-stack is in the right
2162      order.  */
2163 
2164   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2165 
2166   /* Make the needed input register substitutions.  Do death notes and
2167      clobbers too, because these are for inputs, not outputs.  */
2168 
2169   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2170     if (STACK_REG_P (recog_data.operand[i]))
2171       {
2172 	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2173 
2174 	gcc_assert (regnum >= 0);
2175 
2176 	replace_reg (recog_data.operand_loc[i], regnum);
2177       }
2178 
2179   for (i = 0; i < n_notes; i++)
2180     if (note_kind[i] == REG_DEAD)
2181       {
2182 	int regnum = get_hard_regnum (regstack, note_reg[i]);
2183 
2184 	gcc_assert (regnum >= 0);
2185 
2186 	replace_reg (note_loc[i], regnum);
2187       }
2188 
2189   for (i = 0; i < n_clobbers; i++)
2190     {
2191       /* It's OK for a CLOBBER to reference a reg that is not live.
2192          Don't try to replace it in that case.  */
2193       int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2194 
2195       if (regnum >= 0)
2196 	{
2197 	  /* Sigh - clobbers always have QImode.  But replace_reg knows
2198 	     that these regs can't be MODE_INT and will assert.  Just put
2199 	     the right reg there without calling replace_reg.  */
2200 
2201 	  *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2202 	}
2203     }
2204 
2205   /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2206 
2207   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2208     if (STACK_REG_P (recog_data.operand[i]))
2209       {
2210 	/* An input reg is implicitly popped if it is tied to an
2211 	   output, or if there is a CLOBBER for it.  */
2212 	int j;
2213 
2214 	for (j = 0; j < n_clobbers; j++)
2215 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2216 	    break;
2217 
2218 	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2219 	  {
2220 	    /* recog_data.operand[i] might not be at the top of stack.
2221 	       But that's OK, because all we need to do is pop the
2222 	       right number of regs off of the top of the reg-stack.
2223 	       record_asm_stack_regs guaranteed that all implicitly
2224 	       popped regs were grouped at the top of the reg-stack.  */
2225 
2226 	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2227 				regstack->reg[regstack->top]);
2228 	    regstack->top--;
2229 	  }
2230       }
2231 
2232   /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2233      Note that there isn't any need to substitute register numbers.
2234      ???  Explain why this is true.  */
2235 
2236   for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2237     {
2238       /* See if there is an output for this hard reg.  */
2239       int j;
2240 
2241       for (j = 0; j < n_outputs; j++)
2242 	if (STACK_REG_P (recog_data.operand[j])
2243 	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2244 	  {
2245 	    regstack->reg[++regstack->top] = i;
2246 	    SET_HARD_REG_BIT (regstack->reg_set, i);
2247 	    break;
2248 	  }
2249     }
2250 
2251   /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2252      input that the asm didn't implicitly pop.  If the asm didn't
2253      implicitly pop an input reg, that reg will still be live.
2254 
2255      Note that we can't use find_regno_note here: the register numbers
2256      in the death notes have already been substituted.  */
2257 
2258   for (i = 0; i < n_outputs; i++)
2259     if (STACK_REG_P (recog_data.operand[i]))
2260       {
2261 	int j;
2262 
2263 	for (j = 0; j < n_notes; j++)
2264 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2265 	      && note_kind[j] == REG_UNUSED)
2266 	    {
2267 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2268 				    EMIT_AFTER);
2269 	      break;
2270 	    }
2271       }
2272 
2273   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2274     if (STACK_REG_P (recog_data.operand[i]))
2275       {
2276 	int j;
2277 
2278 	for (j = 0; j < n_notes; j++)
2279 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2280 	      && note_kind[j] == REG_DEAD
2281 	      && TEST_HARD_REG_BIT (regstack->reg_set,
2282 				    REGNO (recog_data.operand[i])))
2283 	    {
2284 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2285 				    EMIT_AFTER);
2286 	      break;
2287 	    }
2288       }
2289 }
2290 
2291 /* Substitute stack hard reg numbers for stack virtual registers in
2292    INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2293    current stack content.  Insns may be emitted as needed to arrange the
2294    stack for the 387 based on the contents of the insn.  Return whether
2295    a control flow insn was deleted in the process.  */
2296 
2297 static bool
2298 subst_stack_regs (rtx insn, stack regstack)
2299 {
2300   rtx *note_link, note;
2301   bool control_flow_insn_deleted = false;
2302   int i;
2303 
2304   if (CALL_P (insn))
2305     {
2306       int top = regstack->top;
2307 
2308       /* If there are any floating point parameters to be passed in
2309 	 registers for this call, make sure they are in the right
2310 	 order.  */
2311 
2312       if (top >= 0)
2313 	{
2314 	  straighten_stack (insn, regstack);
2315 
2316 	  /* Now mark the arguments as dead after the call.  */
2317 
2318 	  while (regstack->top >= 0)
2319 	    {
2320 	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2321 	      regstack->top--;
2322 	    }
2323 	}
2324     }
2325 
2326   /* Do the actual substitution if any stack regs are mentioned.
2327      Since we only record whether entire insn mentions stack regs, and
2328      subst_stack_regs_pat only works for patterns that contain stack regs,
2329      we must check each pattern in a parallel here.  A call_value_pop could
2330      fail otherwise.  */
2331 
2332   if (stack_regs_mentioned (insn))
2333     {
2334       int n_operands = asm_noperands (PATTERN (insn));
2335       if (n_operands >= 0)
2336 	{
2337 	  /* This insn is an `asm' with operands.  Decode the operands,
2338 	     decide how many are inputs, and do register substitution.
2339 	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2340 
2341 	  subst_asm_stack_regs (insn, regstack);
2342 	  return control_flow_insn_deleted;
2343 	}
2344 
2345       if (GET_CODE (PATTERN (insn)) == PARALLEL)
2346 	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2347 	  {
2348 	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2349 	      {
2350 	        if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2351 	           XVECEXP (PATTERN (insn), 0, i)
2352 		     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2353 		control_flow_insn_deleted
2354 		  |= subst_stack_regs_pat (insn, regstack,
2355 					   XVECEXP (PATTERN (insn), 0, i));
2356 	      }
2357 	  }
2358       else
2359 	control_flow_insn_deleted
2360 	  |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2361     }
2362 
2363   /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2364      REG_UNUSED will already have been dealt with, so just return.  */
2365 
2366   if (NOTE_P (insn) || INSN_DELETED_P (insn))
2367     return control_flow_insn_deleted;
2368 
2369   /* If this a noreturn call, we can't insert pop insns after it.
2370      Instead, reset the stack state to empty.  */
2371   if (CALL_P (insn)
2372       && find_reg_note (insn, REG_NORETURN, NULL))
2373     {
2374       regstack->top = -1;
2375       CLEAR_HARD_REG_SET (regstack->reg_set);
2376       return control_flow_insn_deleted;
2377     }
2378 
2379   /* If there is a REG_UNUSED note on a stack register on this insn,
2380      the indicated reg must be popped.  The REG_UNUSED note is removed,
2381      since the form of the newly emitted pop insn references the reg,
2382      making it no longer `unset'.  */
2383 
2384   note_link = &REG_NOTES (insn);
2385   for (note = *note_link; note; note = XEXP (note, 1))
2386     if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2387       {
2388 	*note_link = XEXP (note, 1);
2389 	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2390       }
2391     else
2392       note_link = &XEXP (note, 1);
2393 
2394   return control_flow_insn_deleted;
2395 }
2396 
2397 /* Change the organization of the stack so that it fits a new basic
2398    block.  Some registers might have to be popped, but there can never be
2399    a register live in the new block that is not now live.
2400 
2401    Insert any needed insns before or after INSN, as indicated by
2402    WHERE.  OLD is the original stack layout, and NEW is the desired
2403    form.  OLD is updated to reflect the code emitted, i.e., it will be
2404    the same as NEW upon return.
2405 
2406    This function will not preserve block_end[].  But that information
2407    is no longer needed once this has executed.  */
2408 
2409 static void
2410 change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2411 {
2412   int reg;
2413   int update_end = 0;
2414   int i;
2415 
2416   /* Stack adjustments for the first insn in a block update the
2417      current_block's stack_in instead of inserting insns directly.
2418      compensate_edges will add the necessary code later.  */
2419   if (current_block
2420       && starting_stack_p
2421       && where == EMIT_BEFORE)
2422     {
2423       BLOCK_INFO (current_block)->stack_in = *new_stack;
2424       starting_stack_p = false;
2425       *old = *new_stack;
2426       return;
2427     }
2428 
2429   /* We will be inserting new insns "backwards".  If we are to insert
2430      after INSN, find the next insn, and insert before it.  */
2431 
2432   if (where == EMIT_AFTER)
2433     {
2434       if (current_block && BB_END (current_block) == insn)
2435 	update_end = 1;
2436       insn = NEXT_INSN (insn);
2437     }
2438 
2439   /* Initialize partially dead variables.  */
2440   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2441     if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2442 	&& !TEST_HARD_REG_BIT (old->reg_set, i))
2443       {
2444 	old->reg[++old->top] = i;
2445         SET_HARD_REG_BIT (old->reg_set, i);
2446 	emit_insn_before (gen_rtx_SET (VOIDmode,
2447 				       FP_MODE_REG (i, SFmode), not_a_num), insn);
2448       }
2449 
2450   /* Pop any registers that are not needed in the new block.  */
2451 
2452   /* If the destination block's stack already has a specified layout
2453      and contains two or more registers, use a more intelligent algorithm
2454      to pop registers that minimizes the number number of fxchs below.  */
2455   if (new_stack->top > 0)
2456     {
2457       bool slots[REG_STACK_SIZE];
2458       int pops[REG_STACK_SIZE];
2459       int next, dest, topsrc;
2460 
2461       /* First pass to determine the free slots.  */
2462       for (reg = 0; reg <= new_stack->top; reg++)
2463 	slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2464 
2465       /* Second pass to allocate preferred slots.  */
2466       topsrc = -1;
2467       for (reg = old->top; reg > new_stack->top; reg--)
2468 	if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2469 	  {
2470 	    dest = -1;
2471 	    for (next = 0; next <= new_stack->top; next++)
2472 	      if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2473 		{
2474 		  /* If this is a preference for the new top of stack, record
2475 		     the fact by remembering it's old->reg in topsrc.  */
2476                   if (next == new_stack->top)
2477 		    topsrc = reg;
2478 		  slots[next] = true;
2479 		  dest = next;
2480 		  break;
2481 		}
2482 	    pops[reg] = dest;
2483 	  }
2484 	else
2485 	  pops[reg] = reg;
2486 
2487       /* Intentionally, avoid placing the top of stack in it's correct
2488 	 location, if we still need to permute the stack below and we
2489 	 can usefully place it somewhere else.  This is the case if any
2490 	 slot is still unallocated, in which case we should place the
2491 	 top of stack there.  */
2492       if (topsrc != -1)
2493 	for (reg = 0; reg < new_stack->top; reg++)
2494 	  if (!slots[reg])
2495 	    {
2496 	      pops[topsrc] = reg;
2497 	      slots[new_stack->top] = false;
2498 	      slots[reg] = true;
2499 	      break;
2500 	    }
2501 
2502       /* Third pass allocates remaining slots and emits pop insns.  */
2503       next = new_stack->top;
2504       for (reg = old->top; reg > new_stack->top; reg--)
2505 	{
2506 	  dest = pops[reg];
2507 	  if (dest == -1)
2508 	    {
2509 	      /* Find next free slot.  */
2510 	      while (slots[next])
2511 		next--;
2512 	      dest = next--;
2513 	    }
2514 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2515 			 EMIT_BEFORE);
2516 	}
2517     }
2518   else
2519     {
2520       /* The following loop attempts to maximize the number of times we
2521 	 pop the top of the stack, as this permits the use of the faster
2522 	 ffreep instruction on platforms that support it.  */
2523       int live, next;
2524 
2525       live = 0;
2526       for (reg = 0; reg <= old->top; reg++)
2527         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2528           live++;
2529 
2530       next = live;
2531       while (old->top >= live)
2532         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2533 	  {
2534 	    while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2535 	      next--;
2536 	    emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2537 			   EMIT_BEFORE);
2538 	  }
2539 	else
2540 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2541 			 EMIT_BEFORE);
2542     }
2543 
2544   if (new_stack->top == -2)
2545     {
2546       /* If the new block has never been processed, then it can inherit
2547 	 the old stack order.  */
2548 
2549       new_stack->top = old->top;
2550       memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2551     }
2552   else
2553     {
2554       /* This block has been entered before, and we must match the
2555 	 previously selected stack order.  */
2556 
2557       /* By now, the only difference should be the order of the stack,
2558 	 not their depth or liveliness.  */
2559 
2560       gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2561       gcc_assert (old->top == new_stack->top);
2562 
2563       /* If the stack is not empty (new_stack->top != -1), loop here emitting
2564 	 swaps until the stack is correct.
2565 
2566 	 The worst case number of swaps emitted is N + 2, where N is the
2567 	 depth of the stack.  In some cases, the reg at the top of
2568 	 stack may be correct, but swapped anyway in order to fix
2569 	 other regs.  But since we never swap any other reg away from
2570 	 its correct slot, this algorithm will converge.  */
2571 
2572       if (new_stack->top != -1)
2573 	do
2574 	  {
2575 	    /* Swap the reg at top of stack into the position it is
2576 	       supposed to be in, until the correct top of stack appears.  */
2577 
2578 	    while (old->reg[old->top] != new_stack->reg[new_stack->top])
2579 	      {
2580 		for (reg = new_stack->top; reg >= 0; reg--)
2581 		  if (new_stack->reg[reg] == old->reg[old->top])
2582 		    break;
2583 
2584 		gcc_assert (reg != -1);
2585 
2586 		emit_swap_insn (insn, old,
2587 				FP_MODE_REG (old->reg[reg], DFmode));
2588 	      }
2589 
2590 	    /* See if any regs remain incorrect.  If so, bring an
2591 	     incorrect reg to the top of stack, and let the while loop
2592 	     above fix it.  */
2593 
2594 	    for (reg = new_stack->top; reg >= 0; reg--)
2595 	      if (new_stack->reg[reg] != old->reg[reg])
2596 		{
2597 		  emit_swap_insn (insn, old,
2598 				  FP_MODE_REG (old->reg[reg], DFmode));
2599 		  break;
2600 		}
2601 	  } while (reg >= 0);
2602 
2603       /* At this point there must be no differences.  */
2604 
2605       for (reg = old->top; reg >= 0; reg--)
2606 	gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2607     }
2608 
2609   if (update_end)
2610     BB_END (current_block) = PREV_INSN (insn);
2611 }
2612 
2613 /* Print stack configuration.  */
2614 
2615 static void
2616 print_stack (FILE *file, stack s)
2617 {
2618   if (! file)
2619     return;
2620 
2621   if (s->top == -2)
2622     fprintf (file, "uninitialized\n");
2623   else if (s->top == -1)
2624     fprintf (file, "empty\n");
2625   else
2626     {
2627       int i;
2628       fputs ("[ ", file);
2629       for (i = 0; i <= s->top; ++i)
2630 	fprintf (file, "%d ", s->reg[i]);
2631       fputs ("]\n", file);
2632     }
2633 }
2634 
2635 /* This function was doing life analysis.  We now let the regular live
2636    code do it's job, so we only need to check some extra invariants
2637    that reg-stack expects.  Primary among these being that all registers
2638    are initialized before use.
2639 
2640    The function returns true when code was emitted to CFG edges and
2641    commit_edge_insertions needs to be called.  */
2642 
2643 static int
2644 convert_regs_entry (void)
2645 {
2646   int inserted = 0;
2647   edge e;
2648   edge_iterator ei;
2649 
2650   /* Load something into each stack register live at function entry.
2651      Such live registers can be caused by uninitialized variables or
2652      functions not returning values on all paths.  In order to keep
2653      the push/pop code happy, and to not scrog the register stack, we
2654      must put something in these registers.  Use a QNaN.
2655 
2656      Note that we are inserting converted code here.  This code is
2657      never seen by the convert_regs pass.  */
2658 
2659   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2660     {
2661       basic_block block = e->dest;
2662       block_info bi = BLOCK_INFO (block);
2663       int reg, top = -1;
2664 
2665       for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2666 	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2667 	  {
2668 	    rtx init;
2669 
2670 	    bi->stack_in.reg[++top] = reg;
2671 
2672 	    init = gen_rtx_SET (VOIDmode,
2673 				FP_MODE_REG (FIRST_STACK_REG, SFmode),
2674 				not_a_num);
2675 	    insert_insn_on_edge (init, e);
2676 	    inserted = 1;
2677 	  }
2678 
2679       bi->stack_in.top = top;
2680     }
2681 
2682   return inserted;
2683 }
2684 
2685 /* Construct the desired stack for function exit.  This will either
2686    be `empty', or the function return value at top-of-stack.  */
2687 
2688 static void
2689 convert_regs_exit (void)
2690 {
2691   int value_reg_low, value_reg_high;
2692   stack output_stack;
2693   rtx retvalue;
2694 
2695   retvalue = stack_result (current_function_decl);
2696   value_reg_low = value_reg_high = -1;
2697   if (retvalue)
2698     {
2699       value_reg_low = REGNO (retvalue);
2700       value_reg_high = END_HARD_REGNO (retvalue) - 1;
2701     }
2702 
2703   output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2704   if (value_reg_low == -1)
2705     output_stack->top = -1;
2706   else
2707     {
2708       int reg;
2709 
2710       output_stack->top = value_reg_high - value_reg_low;
2711       for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2712 	{
2713 	  output_stack->reg[value_reg_high - reg] = reg;
2714 	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2715 	}
2716     }
2717 }
2718 
2719 /* Copy the stack info from the end of edge E's source block to the
2720    start of E's destination block.  */
2721 
2722 static void
2723 propagate_stack (edge e)
2724 {
2725   stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2726   stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2727   int reg;
2728 
2729   /* Preserve the order of the original stack, but check whether
2730      any pops are needed.  */
2731   dest_stack->top = -1;
2732   for (reg = 0; reg <= src_stack->top; ++reg)
2733     if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2734       dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2735 
2736   /* Push in any partially dead values.  */
2737   for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2738     if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2739         && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2740       dest_stack->reg[++dest_stack->top] = reg;
2741 }
2742 
2743 
2744 /* Adjust the stack of edge E's source block on exit to match the stack
2745    of it's target block upon input.  The stack layouts of both blocks
2746    should have been defined by now.  */
2747 
2748 static bool
2749 compensate_edge (edge e)
2750 {
2751   basic_block source = e->src, target = e->dest;
2752   stack target_stack = &BLOCK_INFO (target)->stack_in;
2753   stack source_stack = &BLOCK_INFO (source)->stack_out;
2754   struct stack_def regstack;
2755   int reg;
2756 
2757   if (dump_file)
2758     fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2759 
2760   gcc_assert (target_stack->top != -2);
2761 
2762   /* Check whether stacks are identical.  */
2763   if (target_stack->top == source_stack->top)
2764     {
2765       for (reg = target_stack->top; reg >= 0; --reg)
2766 	if (target_stack->reg[reg] != source_stack->reg[reg])
2767 	  break;
2768 
2769       if (reg == -1)
2770 	{
2771 	  if (dump_file)
2772 	    fprintf (dump_file, "no changes needed\n");
2773 	  return false;
2774 	}
2775     }
2776 
2777   if (dump_file)
2778     {
2779       fprintf (dump_file, "correcting stack to ");
2780       print_stack (dump_file, target_stack);
2781     }
2782 
2783   /* Abnormal calls may appear to have values live in st(0), but the
2784      abnormal return path will not have actually loaded the values.  */
2785   if (e->flags & EDGE_ABNORMAL_CALL)
2786     {
2787       /* Assert that the lifetimes are as we expect -- one value
2788          live at st(0) on the end of the source block, and no
2789          values live at the beginning of the destination block.
2790 	 For complex return values, we may have st(1) live as well.  */
2791       gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2792       gcc_assert (target_stack->top == -1);
2793       return false;
2794     }
2795 
2796   /* Handle non-call EH edges specially.  The normal return path have
2797      values in registers.  These will be popped en masse by the unwind
2798      library.  */
2799   if (e->flags & EDGE_EH)
2800     {
2801       gcc_assert (target_stack->top == -1);
2802       return false;
2803     }
2804 
2805   /* We don't support abnormal edges.  Global takes care to
2806      avoid any live register across them, so we should never
2807      have to insert instructions on such edges.  */
2808   gcc_assert (! (e->flags & EDGE_ABNORMAL));
2809 
2810   /* Make a copy of source_stack as change_stack is destructive.  */
2811   regstack = *source_stack;
2812 
2813   /* It is better to output directly to the end of the block
2814      instead of to the edge, because emit_swap can do minimal
2815      insn scheduling.  We can do this when there is only one
2816      edge out, and it is not abnormal.  */
2817   if (EDGE_COUNT (source->succs) == 1)
2818     {
2819       current_block = source;
2820       change_stack (BB_END (source), &regstack, target_stack,
2821 		    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2822     }
2823   else
2824     {
2825       rtx seq, after;
2826 
2827       current_block = NULL;
2828       start_sequence ();
2829 
2830       /* ??? change_stack needs some point to emit insns after.  */
2831       after = emit_note (NOTE_INSN_DELETED);
2832 
2833       change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2834 
2835       seq = get_insns ();
2836       end_sequence ();
2837 
2838       insert_insn_on_edge (seq, e);
2839       return true;
2840     }
2841   return false;
2842 }
2843 
2844 /* Traverse all non-entry edges in the CFG, and emit the necessary
2845    edge compensation code to change the stack from stack_out of the
2846    source block to the stack_in of the destination block.  */
2847 
2848 static bool
2849 compensate_edges (void)
2850 {
2851   bool inserted = false;
2852   basic_block bb;
2853 
2854   starting_stack_p = false;
2855 
2856   FOR_EACH_BB (bb)
2857     if (bb != ENTRY_BLOCK_PTR)
2858       {
2859         edge e;
2860         edge_iterator ei;
2861 
2862         FOR_EACH_EDGE (e, ei, bb->succs)
2863 	  inserted |= compensate_edge (e);
2864       }
2865   return inserted;
2866 }
2867 
2868 /* Select the better of two edges E1 and E2 to use to determine the
2869    stack layout for their shared destination basic block.  This is
2870    typically the more frequently executed.  The edge E1 may be NULL
2871    (in which case E2 is returned), but E2 is always non-NULL.  */
2872 
2873 static edge
2874 better_edge (edge e1, edge e2)
2875 {
2876   if (!e1)
2877     return e2;
2878 
2879   if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2880     return e1;
2881   if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2882     return e2;
2883 
2884   if (e1->count > e2->count)
2885     return e1;
2886   if (e1->count < e2->count)
2887     return e2;
2888 
2889   /* Prefer critical edges to minimize inserting compensation code on
2890      critical edges.  */
2891 
2892   if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2893     return EDGE_CRITICAL_P (e1) ? e1 : e2;
2894 
2895   /* Avoid non-deterministic behavior.  */
2896   return (e1->src->index < e2->src->index) ? e1 : e2;
2897 }
2898 
2899 /* Convert stack register references in one block.  Return true if the CFG
2900    has been modified in the process.  */
2901 
2902 static bool
2903 convert_regs_1 (basic_block block)
2904 {
2905   struct stack_def regstack;
2906   block_info bi = BLOCK_INFO (block);
2907   int reg;
2908   rtx insn, next;
2909   bool control_flow_insn_deleted = false;
2910   bool cfg_altered = false;
2911   int debug_insns_with_starting_stack = 0;
2912 
2913   any_malformed_asm = false;
2914 
2915   /* Choose an initial stack layout, if one hasn't already been chosen.  */
2916   if (bi->stack_in.top == -2)
2917     {
2918       edge e, beste = NULL;
2919       edge_iterator ei;
2920 
2921       /* Select the best incoming edge (typically the most frequent) to
2922 	 use as a template for this basic block.  */
2923       FOR_EACH_EDGE (e, ei, block->preds)
2924 	if (BLOCK_INFO (e->src)->done)
2925 	  beste = better_edge (beste, e);
2926 
2927       if (beste)
2928 	propagate_stack (beste);
2929       else
2930 	{
2931 	  /* No predecessors.  Create an arbitrary input stack.  */
2932 	  bi->stack_in.top = -1;
2933 	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2934 	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2935 	      bi->stack_in.reg[++bi->stack_in.top] = reg;
2936 	}
2937     }
2938 
2939   if (dump_file)
2940     {
2941       fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2942       print_stack (dump_file, &bi->stack_in);
2943     }
2944 
2945   /* Process all insns in this block.  Keep track of NEXT so that we
2946      don't process insns emitted while substituting in INSN.  */
2947   current_block = block;
2948   next = BB_HEAD (block);
2949   regstack = bi->stack_in;
2950   starting_stack_p = true;
2951 
2952   do
2953     {
2954       insn = next;
2955       next = NEXT_INSN (insn);
2956 
2957       /* Ensure we have not missed a block boundary.  */
2958       gcc_assert (next);
2959       if (insn == BB_END (block))
2960 	next = NULL;
2961 
2962       /* Don't bother processing unless there is a stack reg
2963 	 mentioned or if it's a CALL_INSN.  */
2964       if (DEBUG_INSN_P (insn))
2965 	{
2966 	  if (starting_stack_p)
2967 	    debug_insns_with_starting_stack++;
2968 	  else
2969 	    {
2970 	      subst_all_stack_regs_in_debug_insn (insn, &regstack);
2971 
2972 	      /* Nothing must ever die at a debug insn.  If something
2973 		 is referenced in it that becomes dead, it should have
2974 		 died before and the reference in the debug insn
2975 		 should have been removed so as to avoid changing code
2976 		 generation.  */
2977 	      gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2978 	    }
2979 	}
2980       else if (stack_regs_mentioned (insn)
2981 	       || CALL_P (insn))
2982 	{
2983 	  if (dump_file)
2984 	    {
2985 	      fprintf (dump_file, "  insn %d input stack: ",
2986 		       INSN_UID (insn));
2987 	      print_stack (dump_file, &regstack);
2988 	    }
2989 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2990 	  starting_stack_p = false;
2991 	}
2992     }
2993   while (next);
2994 
2995   if (debug_insns_with_starting_stack)
2996     {
2997       /* Since it's the first non-debug instruction that determines
2998 	 the stack requirements of the current basic block, we refrain
2999 	 from updating debug insns before it in the loop above, and
3000 	 fix them up here.  */
3001       for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3002 	   insn = NEXT_INSN (insn))
3003 	{
3004 	  if (!DEBUG_INSN_P (insn))
3005 	    continue;
3006 
3007 	  debug_insns_with_starting_stack--;
3008 	  subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3009 	}
3010     }
3011 
3012   if (dump_file)
3013     {
3014       fprintf (dump_file, "Expected live registers [");
3015       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3016 	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3017 	  fprintf (dump_file, " %d", reg);
3018       fprintf (dump_file, " ]\nOutput stack: ");
3019       print_stack (dump_file, &regstack);
3020     }
3021 
3022   insn = BB_END (block);
3023   if (JUMP_P (insn))
3024     insn = PREV_INSN (insn);
3025 
3026   /* If the function is declared to return a value, but it returns one
3027      in only some cases, some registers might come live here.  Emit
3028      necessary moves for them.  */
3029 
3030   for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3031     {
3032       if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3033 	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3034 	{
3035 	  rtx set;
3036 
3037 	  if (dump_file)
3038 	    fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3039 
3040 	  set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3041 	  insn = emit_insn_after (set, insn);
3042 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3043 	}
3044     }
3045 
3046   /* Amongst the insns possibly deleted during the substitution process above,
3047      might have been the only trapping insn in the block.  We purge the now
3048      possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3049      called at the end of convert_regs.  The order in which we process the
3050      blocks ensures that we never delete an already processed edge.
3051 
3052      Note that, at this point, the CFG may have been damaged by the emission
3053      of instructions after an abnormal call, which moves the basic block end
3054      (and is the reason why we call fixup_abnormal_edges later).  So we must
3055      be sure that the trapping insn has been deleted before trying to purge
3056      dead edges, otherwise we risk purging valid edges.
3057 
3058      ??? We are normally supposed not to delete trapping insns, so we pretend
3059      that the insns deleted above don't actually trap.  It would have been
3060      better to detect this earlier and avoid creating the EH edge in the first
3061      place, still, but we don't have enough information at that time.  */
3062 
3063   if (control_flow_insn_deleted)
3064     cfg_altered |= purge_dead_edges (block);
3065 
3066   /* Something failed if the stack lives don't match.  If we had malformed
3067      asms, we zapped the instruction itself, but that didn't produce the
3068      same pattern of register kills as before.  */
3069 
3070   gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3071 	      || any_malformed_asm);
3072   bi->stack_out = regstack;
3073   bi->done = true;
3074 
3075   return cfg_altered;
3076 }
3077 
3078 /* Convert registers in all blocks reachable from BLOCK.  Return true if the
3079    CFG has been modified in the process.  */
3080 
3081 static bool
3082 convert_regs_2 (basic_block block)
3083 {
3084   basic_block *stack, *sp;
3085   bool cfg_altered = false;
3086 
3087   /* We process the blocks in a top-down manner, in a way such that one block
3088      is only processed after all its predecessors.  The number of predecessors
3089      of every block has already been computed.  */
3090 
3091   stack = XNEWVEC (basic_block, n_basic_blocks);
3092   sp = stack;
3093 
3094   *sp++ = block;
3095 
3096   do
3097     {
3098       edge e;
3099       edge_iterator ei;
3100 
3101       block = *--sp;
3102 
3103       /* Processing BLOCK is achieved by convert_regs_1, which may purge
3104 	 some dead EH outgoing edge after the deletion of the trapping
3105 	 insn inside the block.  Since the number of predecessors of
3106 	 BLOCK's successors was computed based on the initial edge set,
3107 	 we check the necessity to process some of these successors
3108 	 before such an edge deletion may happen.  However, there is
3109 	 a pitfall: if BLOCK is the only predecessor of a successor and
3110 	 the edge between them happens to be deleted, the successor
3111 	 becomes unreachable and should not be processed.  The problem
3112 	 is that there is no way to preventively detect this case so we
3113 	 stack the successor in all cases and hand over the task of
3114 	 fixing up the discrepancy to convert_regs_1.  */
3115 
3116       FOR_EACH_EDGE (e, ei, block->succs)
3117 	if (! (e->flags & EDGE_DFS_BACK))
3118 	  {
3119 	    BLOCK_INFO (e->dest)->predecessors--;
3120 	    if (!BLOCK_INFO (e->dest)->predecessors)
3121 	      *sp++ = e->dest;
3122 	  }
3123 
3124       cfg_altered |= convert_regs_1 (block);
3125     }
3126   while (sp != stack);
3127 
3128   free (stack);
3129 
3130   return cfg_altered;
3131 }
3132 
3133 /* Traverse all basic blocks in a function, converting the register
3134    references in each insn from the "flat" register file that gcc uses,
3135    to the stack-like registers the 387 uses.  */
3136 
3137 static void
3138 convert_regs (void)
3139 {
3140   bool cfg_altered = false;
3141   int inserted;
3142   basic_block b;
3143   edge e;
3144   edge_iterator ei;
3145 
3146   /* Initialize uninitialized registers on function entry.  */
3147   inserted = convert_regs_entry ();
3148 
3149   /* Construct the desired stack for function exit.  */
3150   convert_regs_exit ();
3151   BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3152 
3153   /* ??? Future: process inner loops first, and give them arbitrary
3154      initial stacks which emit_swap_insn can modify.  This ought to
3155      prevent double fxch that often appears at the head of a loop.  */
3156 
3157   /* Process all blocks reachable from all entry points.  */
3158   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3159     cfg_altered |= convert_regs_2 (e->dest);
3160 
3161   /* ??? Process all unreachable blocks.  Though there's no excuse
3162      for keeping these even when not optimizing.  */
3163   FOR_EACH_BB (b)
3164     {
3165       block_info bi = BLOCK_INFO (b);
3166 
3167       if (! bi->done)
3168 	cfg_altered |= convert_regs_2 (b);
3169     }
3170 
3171   /* We must fix up abnormal edges before inserting compensation code
3172      because both mechanisms insert insns on edges.  */
3173   inserted |= fixup_abnormal_edges ();
3174 
3175   inserted |= compensate_edges ();
3176 
3177   clear_aux_for_blocks ();
3178 
3179   if (inserted)
3180     commit_edge_insertions ();
3181 
3182   if (cfg_altered)
3183     cleanup_cfg (0);
3184 
3185   if (dump_file)
3186     fputc ('\n', dump_file);
3187 }
3188 
3189 /* Convert register usage from "flat" register file usage to a "stack
3190    register file.  FILE is the dump file, if used.
3191 
3192    Construct a CFG and run life analysis.  Then convert each insn one
3193    by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3194    code duplication created when the converter inserts pop insns on
3195    the edges.  */
3196 
3197 static bool
3198 reg_to_stack (void)
3199 {
3200   basic_block bb;
3201   int i;
3202   int max_uid;
3203 
3204   /* Clean up previous run.  */
3205   if (stack_regs_mentioned_data != NULL)
3206     VEC_free (char, heap, stack_regs_mentioned_data);
3207 
3208   /* See if there is something to do.  Flow analysis is quite
3209      expensive so we might save some compilation time.  */
3210   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3211     if (df_regs_ever_live_p (i))
3212       break;
3213   if (i > LAST_STACK_REG)
3214     return false;
3215 
3216   df_note_add_problem ();
3217   df_analyze ();
3218 
3219   mark_dfs_back_edges ();
3220 
3221   /* Set up block info for each basic block.  */
3222   alloc_aux_for_blocks (sizeof (struct block_info_def));
3223   FOR_EACH_BB (bb)
3224     {
3225       block_info bi = BLOCK_INFO (bb);
3226       edge_iterator ei;
3227       edge e;
3228       int reg;
3229 
3230       FOR_EACH_EDGE (e, ei, bb->preds)
3231 	if (!(e->flags & EDGE_DFS_BACK)
3232 	    && e->src != ENTRY_BLOCK_PTR)
3233 	  bi->predecessors++;
3234 
3235       /* Set current register status at last instruction `uninitialized'.  */
3236       bi->stack_in.top = -2;
3237 
3238       /* Copy live_at_end and live_at_start into temporaries.  */
3239       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3240 	{
3241 	  if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3242 	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
3243 	  if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3244 	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3245 	}
3246     }
3247 
3248   /* Create the replacement registers up front.  */
3249   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3250     {
3251       enum machine_mode mode;
3252       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3253 	   mode != VOIDmode;
3254 	   mode = GET_MODE_WIDER_MODE (mode))
3255 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3256       for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3257 	   mode != VOIDmode;
3258 	   mode = GET_MODE_WIDER_MODE (mode))
3259 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3260     }
3261 
3262   ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3263 
3264   /* A QNaN for initializing uninitialized variables.
3265 
3266      ??? We can't load from constant memory in PIC mode, because
3267      we're inserting these instructions before the prologue and
3268      the PIC register hasn't been set up.  In that case, fall back
3269      on zero, which we can get from `fldz'.  */
3270 
3271   if ((flag_pic && !TARGET_64BIT)
3272       || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3273     not_a_num = CONST0_RTX (SFmode);
3274   else
3275     {
3276       REAL_VALUE_TYPE r;
3277 
3278       real_nan (&r, "", 1, SFmode);
3279       not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3280       not_a_num = force_const_mem (SFmode, not_a_num);
3281     }
3282 
3283   /* Allocate a cache for stack_regs_mentioned.  */
3284   max_uid = get_max_uid ();
3285   stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3286   memset (VEC_address (char, stack_regs_mentioned_data),
3287 	  0, sizeof (char) * (max_uid + 1));
3288 
3289   convert_regs ();
3290 
3291   free_aux_for_blocks ();
3292   return true;
3293 }
3294 #endif /* STACK_REGS */
3295 
3296 static bool
3297 gate_handle_stack_regs (void)
3298 {
3299 #ifdef STACK_REGS
3300   return 1;
3301 #else
3302   return 0;
3303 #endif
3304 }
3305 
3306 struct rtl_opt_pass pass_stack_regs =
3307 {
3308  {
3309   RTL_PASS,
3310   "*stack_regs",                        /* name */
3311   gate_handle_stack_regs,               /* gate */
3312   NULL,					/* execute */
3313   NULL,                                 /* sub */
3314   NULL,                                 /* next */
3315   0,                                    /* static_pass_number */
3316   TV_REG_STACK,                         /* tv_id */
3317   0,                                    /* properties_required */
3318   0,                                    /* properties_provided */
3319   0,                                    /* properties_destroyed */
3320   0,                                    /* todo_flags_start */
3321   0                                     /* todo_flags_finish */
3322  }
3323 };
3324 
3325 /* Convert register usage from flat register file usage to a stack
3326    register file.  */
3327 static unsigned int
3328 rest_of_handle_stack_regs (void)
3329 {
3330 #ifdef STACK_REGS
3331   reg_to_stack ();
3332   regstack_completed = 1;
3333 #endif
3334   return 0;
3335 }
3336 
3337 struct rtl_opt_pass pass_stack_regs_run =
3338 {
3339  {
3340   RTL_PASS,
3341   "stack",                              /* name */
3342   NULL,                                 /* gate */
3343   rest_of_handle_stack_regs,            /* execute */
3344   NULL,                                 /* sub */
3345   NULL,                                 /* next */
3346   0,                                    /* static_pass_number */
3347   TV_REG_STACK,                         /* tv_id */
3348   0,                                    /* properties_required */
3349   0,                                    /* properties_provided */
3350   0,                                    /* properties_destroyed */
3351   0,                                    /* todo_flags_start */
3352   TODO_df_finish | TODO_verify_rtl_sharing |
3353   TODO_ggc_collect                      /* todo_flags_finish */
3354  }
3355 };
3356