xref: /dragonfly/contrib/gcc-4.7/gcc/reginfo.c (revision 8edfbc5e)
1 /* Compute different info about registers.
2    Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3    1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4    2009, 2010, 2011  Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 
23 /* This file contains regscan pass of the compiler and passes for
24    dealing with info about modes of pseudo-registers inside
25    subregisters.  It also defines some tables of information about the
26    hardware registers, function init_reg_sets to initialize the
27    tables, and other auxiliary functions to deal with info about
28    registers and their classes.  */
29 
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "hard-reg-set.h"
35 #include "rtl.h"
36 #include "expr.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "basic-block.h"
40 #include "regs.h"
41 #include "addresses.h"
42 #include "function.h"
43 #include "insn-config.h"
44 #include "recog.h"
45 #include "reload.h"
46 #include "diagnostic-core.h"
47 #include "output.h"
48 #include "timevar.h"
49 #include "hashtab.h"
50 #include "target.h"
51 #include "tree-pass.h"
52 #include "df.h"
53 #include "ira.h"
54 
55 /* Maximum register number used in this function, plus one.  */
56 
57 int max_regno;
58 
59 
60 struct target_hard_regs default_target_hard_regs;
61 struct target_regs default_target_regs;
62 #if SWITCHABLE_TARGET
63 struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
64 struct target_regs *this_target_regs = &default_target_regs;
65 #endif
66 
67 /* Data for initializing fixed_regs.  */
68 static const char initial_fixed_regs[] = FIXED_REGISTERS;
69 
70 /* Data for initializing call_used_regs.  */
71 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
72 
73 #ifdef CALL_REALLY_USED_REGISTERS
74 /* Data for initializing call_really_used_regs.  */
75 static const char initial_call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
76 #endif
77 
78 #ifdef CALL_REALLY_USED_REGISTERS
79 #define CALL_REALLY_USED_REGNO_P(X)  call_really_used_regs[X]
80 #else
81 #define CALL_REALLY_USED_REGNO_P(X)  call_used_regs[X]
82 #endif
83 
84 /* Indexed by hard register number, contains 1 for registers
85    that are being used for global register decls.
86    These must be exempt from ordinary flow analysis
87    and are also considered fixed.  */
88 char global_regs[FIRST_PSEUDO_REGISTER];
89 
90 /* Declaration for the global register. */
91 tree global_regs_decl[FIRST_PSEUDO_REGISTER];
92 
93 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
94    in dataflow more conveniently.  */
95 regset regs_invalidated_by_call_regset;
96 
97 /* Same information as FIXED_REG_SET but in regset form.  */
98 regset fixed_reg_set_regset;
99 
100 /* The bitmap_obstack is used to hold some static variables that
101    should not be reset after each function is compiled.  */
102 static bitmap_obstack persistent_obstack;
103 
104 /* Used to initialize reg_alloc_order.  */
105 #ifdef REG_ALLOC_ORDER
106 static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
107 #endif
108 
109 /* The same information, but as an array of unsigned ints.  We copy from
110    these unsigned ints to the table above.  We do this so the tm.h files
111    do not have to be aware of the wordsize for machines with <= 64 regs.
112    Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
113 #define N_REG_INTS  \
114   ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
115 
116 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
117   = REG_CLASS_CONTENTS;
118 
119 /* Array containing all of the register names.  */
120 static const char *const initial_reg_names[] = REGISTER_NAMES;
121 
122 /* Array containing all of the register class names.  */
123 const char * reg_class_names[] = REG_CLASS_NAMES;
124 
125 #define last_mode_for_init_move_cost \
126   (this_target_regs->x_last_mode_for_init_move_cost)
127 
128 /* No more global register variables may be declared; true once
129    reginfo has been initialized.  */
130 static int no_global_reg_vars = 0;
131 
132 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
133    correspond to the hard registers, if any, set in that map.  This
134    could be done far more efficiently by having all sorts of special-cases
135    with moving single words, but probably isn't worth the trouble.  */
136 void
137 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
138 {
139   unsigned i;
140   bitmap_iterator bi;
141 
142   EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
143     {
144       if (i >= FIRST_PSEUDO_REGISTER)
145 	return;
146       SET_HARD_REG_BIT (*to, i);
147     }
148 }
149 
150 /* Function called only once per target_globals to initialize the
151    target_hard_regs structure.  Once this is done, various switches
152    may override.  */
153 void
154 init_reg_sets (void)
155 {
156   int i, j;
157 
158   /* First copy the register information from the initial int form into
159      the regsets.  */
160 
161   for (i = 0; i < N_REG_CLASSES; i++)
162     {
163       CLEAR_HARD_REG_SET (reg_class_contents[i]);
164 
165       /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
166       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
167 	if (int_reg_class_contents[i][j / 32]
168 	    & ((unsigned) 1 << (j % 32)))
169 	  SET_HARD_REG_BIT (reg_class_contents[i], j);
170     }
171 
172   /* Sanity check: make sure the target macros FIXED_REGISTERS and
173      CALL_USED_REGISTERS had the right number of initializers.  */
174   gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
175   gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
176 #ifdef CALL_REALLY_USED_REGISTERS
177   gcc_assert (sizeof call_really_used_regs
178 	      == sizeof initial_call_really_used_regs);
179 #endif
180 #ifdef REG_ALLOC_ORDER
181   gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
182 #endif
183   gcc_assert (sizeof reg_names == sizeof initial_reg_names);
184 
185   memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
186   memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
187 #ifdef CALL_REALLY_USED_REGISTERS
188   memcpy (call_really_used_regs, initial_call_really_used_regs,
189 	  sizeof call_really_used_regs);
190 #endif
191 #ifdef REG_ALLOC_ORDER
192   memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
193 #endif
194   memcpy (reg_names, initial_reg_names, sizeof reg_names);
195 
196   SET_HARD_REG_SET (accessible_reg_set);
197   SET_HARD_REG_SET (operand_reg_set);
198 }
199 
200 /* Initialize may_move_cost and friends for mode M.  */
201 void
202 init_move_cost (enum machine_mode m)
203 {
204   static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
205   bool all_match = true;
206   unsigned int i, j;
207 
208   gcc_assert (have_regs_of_mode[m]);
209   for (i = 0; i < N_REG_CLASSES; i++)
210     if (contains_reg_of_mode[i][m])
211       for (j = 0; j < N_REG_CLASSES; j++)
212 	{
213 	  int cost;
214 	  if (!contains_reg_of_mode[j][m])
215 	    cost = 65535;
216 	  else
217 	    {
218 	      cost = register_move_cost (m, (enum reg_class) i,
219 					 (enum reg_class) j);
220 	      gcc_assert (cost < 65535);
221 	    }
222 	  all_match &= (last_move_cost[i][j] == cost);
223 	  last_move_cost[i][j] = cost;
224 	}
225   if (all_match && last_mode_for_init_move_cost != -1)
226     {
227       move_cost[m] = move_cost[last_mode_for_init_move_cost];
228       may_move_in_cost[m] = may_move_in_cost[last_mode_for_init_move_cost];
229       may_move_out_cost[m] = may_move_out_cost[last_mode_for_init_move_cost];
230       return;
231     }
232   last_mode_for_init_move_cost = m;
233   move_cost[m] = (move_table *)xmalloc (sizeof (move_table)
234 					* N_REG_CLASSES);
235   may_move_in_cost[m] = (move_table *)xmalloc (sizeof (move_table)
236 					       * N_REG_CLASSES);
237   may_move_out_cost[m] = (move_table *)xmalloc (sizeof (move_table)
238 					        * N_REG_CLASSES);
239   for (i = 0; i < N_REG_CLASSES; i++)
240     if (contains_reg_of_mode[i][m])
241       for (j = 0; j < N_REG_CLASSES; j++)
242 	{
243 	  int cost;
244 	  enum reg_class *p1, *p2;
245 
246 	  if (last_move_cost[i][j] == 65535)
247 	    {
248 	      move_cost[m][i][j] = 65535;
249 	      may_move_in_cost[m][i][j] = 65535;
250 	      may_move_out_cost[m][i][j] = 65535;
251 	    }
252 	  else
253 	    {
254 	      cost = last_move_cost[i][j];
255 
256 	      for (p2 = &reg_class_subclasses[j][0];
257 		   *p2 != LIM_REG_CLASSES; p2++)
258 		if (*p2 != i && contains_reg_of_mode[*p2][m])
259 		  cost = MAX (cost, move_cost[m][i][*p2]);
260 
261 	      for (p1 = &reg_class_subclasses[i][0];
262 		   *p1 != LIM_REG_CLASSES; p1++)
263 		if (*p1 != j && contains_reg_of_mode[*p1][m])
264 		  cost = MAX (cost, move_cost[m][*p1][j]);
265 
266 	      gcc_assert (cost <= 65535);
267 	      move_cost[m][i][j] = cost;
268 
269 	      if (reg_class_subset_p ((enum reg_class) i, (enum reg_class) j))
270 		may_move_in_cost[m][i][j] = 0;
271 	      else
272 		may_move_in_cost[m][i][j] = cost;
273 
274 	      if (reg_class_subset_p ((enum reg_class) j, (enum reg_class) i))
275 		may_move_out_cost[m][i][j] = 0;
276 	      else
277 		may_move_out_cost[m][i][j] = cost;
278 	    }
279 	}
280     else
281       for (j = 0; j < N_REG_CLASSES; j++)
282 	{
283 	  move_cost[m][i][j] = 65535;
284 	  may_move_in_cost[m][i][j] = 65535;
285 	  may_move_out_cost[m][i][j] = 65535;
286 	}
287 }
288 
289 /* We need to save copies of some of the register information which
290    can be munged by command-line switches so we can restore it during
291    subsequent back-end reinitialization.  */
292 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
293 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
294 #ifdef CALL_REALLY_USED_REGISTERS
295 static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
296 #endif
297 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
298 static HARD_REG_SET saved_accessible_reg_set;
299 static HARD_REG_SET saved_operand_reg_set;
300 
301 /* Save the register information.  */
302 void
303 save_register_info (void)
304 {
305   /* Sanity check:  make sure the target macros FIXED_REGISTERS and
306      CALL_USED_REGISTERS had the right number of initializers.  */
307   gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
308   gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
309   memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
310   memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
311 
312   /* Likewise for call_really_used_regs.  */
313 #ifdef CALL_REALLY_USED_REGISTERS
314   gcc_assert (sizeof call_really_used_regs
315 	      == sizeof saved_call_really_used_regs);
316   memcpy (saved_call_really_used_regs, call_really_used_regs,
317 	  sizeof call_really_used_regs);
318 #endif
319 
320   /* And similarly for reg_names.  */
321   gcc_assert (sizeof reg_names == sizeof saved_reg_names);
322   memcpy (saved_reg_names, reg_names, sizeof reg_names);
323   COPY_HARD_REG_SET (saved_accessible_reg_set, accessible_reg_set);
324   COPY_HARD_REG_SET (saved_operand_reg_set, operand_reg_set);
325 }
326 
327 /* Restore the register information.  */
328 static void
329 restore_register_info (void)
330 {
331   memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
332   memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
333 
334 #ifdef CALL_REALLY_USED_REGISTERS
335   memcpy (call_really_used_regs, saved_call_really_used_regs,
336 	  sizeof call_really_used_regs);
337 #endif
338 
339   memcpy (reg_names, saved_reg_names, sizeof reg_names);
340   COPY_HARD_REG_SET (accessible_reg_set, saved_accessible_reg_set);
341   COPY_HARD_REG_SET (operand_reg_set, saved_operand_reg_set);
342 }
343 
344 /* After switches have been processed, which perhaps alter
345    `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
346 static void
347 init_reg_sets_1 (void)
348 {
349   unsigned int i, j;
350   unsigned int /* enum machine_mode */ m;
351 
352   restore_register_info ();
353 
354 #ifdef REG_ALLOC_ORDER
355   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
356     inv_reg_alloc_order[reg_alloc_order[i]] = i;
357 #endif
358 
359   /* Let the target tweak things if necessary.  */
360 
361   targetm.conditional_register_usage ();
362 
363   /* Compute number of hard regs in each class.  */
364 
365   memset (reg_class_size, 0, sizeof reg_class_size);
366   for (i = 0; i < N_REG_CLASSES; i++)
367     {
368       bool any_nonfixed = false;
369       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
370 	if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
371 	  {
372 	    reg_class_size[i]++;
373 	    if (!fixed_regs[j])
374 	      any_nonfixed = true;
375 	  }
376       class_only_fixed_regs[i] = !any_nonfixed;
377     }
378 
379   /* Initialize the table of subunions.
380      reg_class_subunion[I][J] gets the largest-numbered reg-class
381      that is contained in the union of classes I and J.  */
382 
383   memset (reg_class_subunion, 0, sizeof reg_class_subunion);
384   for (i = 0; i < N_REG_CLASSES; i++)
385     {
386       for (j = 0; j < N_REG_CLASSES; j++)
387 	{
388 	  HARD_REG_SET c;
389 	  int k;
390 
391 	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
392 	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
393 	  for (k = 0; k < N_REG_CLASSES; k++)
394 	    if (hard_reg_set_subset_p (reg_class_contents[k], c)
395 		&& !hard_reg_set_subset_p (reg_class_contents[k],
396 					  reg_class_contents
397 					  [(int) reg_class_subunion[i][j]]))
398 	      reg_class_subunion[i][j] = (enum reg_class) k;
399 	}
400     }
401 
402   /* Initialize the table of superunions.
403      reg_class_superunion[I][J] gets the smallest-numbered reg-class
404      containing the union of classes I and J.  */
405 
406   memset (reg_class_superunion, 0, sizeof reg_class_superunion);
407   for (i = 0; i < N_REG_CLASSES; i++)
408     {
409       for (j = 0; j < N_REG_CLASSES; j++)
410 	{
411 	  HARD_REG_SET c;
412 	  int k;
413 
414 	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
415 	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
416 	  for (k = 0; k < N_REG_CLASSES; k++)
417 	    if (hard_reg_set_subset_p (c, reg_class_contents[k]))
418 	      break;
419 
420 	  reg_class_superunion[i][j] = (enum reg_class) k;
421 	}
422     }
423 
424   /* Initialize the tables of subclasses and superclasses of each reg class.
425      First clear the whole table, then add the elements as they are found.  */
426 
427   for (i = 0; i < N_REG_CLASSES; i++)
428     {
429       for (j = 0; j < N_REG_CLASSES; j++)
430 	reg_class_subclasses[i][j] = LIM_REG_CLASSES;
431     }
432 
433   for (i = 0; i < N_REG_CLASSES; i++)
434     {
435       if (i == (int) NO_REGS)
436 	continue;
437 
438       for (j = i + 1; j < N_REG_CLASSES; j++)
439 	if (hard_reg_set_subset_p (reg_class_contents[i],
440 				  reg_class_contents[j]))
441 	  {
442 	    /* Reg class I is a subclass of J.
443 	       Add J to the table of superclasses of I.  */
444 	    enum reg_class *p;
445 
446 	    /* Add I to the table of superclasses of J.  */
447 	    p = &reg_class_subclasses[j][0];
448 	    while (*p != LIM_REG_CLASSES) p++;
449 	    *p = (enum reg_class) i;
450 	  }
451     }
452 
453   /* Initialize "constant" tables.  */
454 
455   CLEAR_HARD_REG_SET (fixed_reg_set);
456   CLEAR_HARD_REG_SET (call_used_reg_set);
457   CLEAR_HARD_REG_SET (call_fixed_reg_set);
458   CLEAR_HARD_REG_SET (regs_invalidated_by_call);
459   if (!regs_invalidated_by_call_regset)
460     {
461       bitmap_obstack_initialize (&persistent_obstack);
462       regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
463     }
464   else
465     CLEAR_REG_SET (regs_invalidated_by_call_regset);
466   if (!fixed_reg_set_regset)
467     fixed_reg_set_regset = ALLOC_REG_SET (&persistent_obstack);
468   else
469     CLEAR_REG_SET (fixed_reg_set_regset);
470 
471   AND_HARD_REG_SET (operand_reg_set, accessible_reg_set);
472   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
473     {
474       /* As a special exception, registers whose class is NO_REGS are
475 	 not accepted by `register_operand'.  The reason for this change
476 	 is to allow the representation of special architecture artifacts
477 	 (such as a condition code register) without extending the rtl
478 	 definitions.  Since registers of class NO_REGS cannot be used
479 	 as registers in any case where register classes are examined,
480 	 it is better to apply this exception in a target-independent way.  */
481       if (REGNO_REG_CLASS (i) == NO_REGS)
482 	CLEAR_HARD_REG_BIT (operand_reg_set, i);
483 
484       /* If a register is too limited to be treated as a register operand,
485 	 then it should never be allocated to a pseudo.  */
486       if (!TEST_HARD_REG_BIT (operand_reg_set, i))
487 	{
488 	  fixed_regs[i] = 1;
489 	  call_used_regs[i] = 1;
490 	}
491 
492       /* call_used_regs must include fixed_regs.  */
493       gcc_assert (!fixed_regs[i] || call_used_regs[i]);
494 #ifdef CALL_REALLY_USED_REGISTERS
495       /* call_used_regs must include call_really_used_regs.  */
496       gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
497 #endif
498 
499       if (fixed_regs[i])
500 	{
501 	  SET_HARD_REG_BIT (fixed_reg_set, i);
502 	  SET_REGNO_REG_SET (fixed_reg_set_regset, i);
503 	}
504 
505       if (call_used_regs[i])
506 	SET_HARD_REG_BIT (call_used_reg_set, i);
507 
508       /* There are a couple of fixed registers that we know are safe to
509 	 exclude from being clobbered by calls:
510 
511 	 The frame pointer is always preserved across calls.  The arg
512 	 pointer is if it is fixed.  The stack pointer usually is,
513 	 unless TARGET_RETURN_POPS_ARGS, in which case an explicit
514 	 CLOBBER will be present.  If we are generating PIC code, the
515 	 PIC offset table register is preserved across calls, though the
516 	 target can override that.  */
517 
518       if (i == STACK_POINTER_REGNUM)
519 	;
520       else if (global_regs[i])
521         {
522 	  SET_HARD_REG_BIT (regs_invalidated_by_call, i);
523 	  SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
524 	}
525       else if (i == FRAME_POINTER_REGNUM)
526 	;
527 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
528       else if (i == HARD_FRAME_POINTER_REGNUM)
529 	;
530 #endif
531 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
532       else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
533 	;
534 #endif
535       else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
536 	       && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
537 	;
538       else if (CALL_REALLY_USED_REGNO_P (i))
539         {
540 	  SET_HARD_REG_BIT (regs_invalidated_by_call, i);
541 	  SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
542         }
543     }
544 
545   COPY_HARD_REG_SET(call_fixed_reg_set, fixed_reg_set);
546 
547   /* Preserve global registers if called more than once.  */
548   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
549     {
550       if (global_regs[i])
551 	{
552 	  fixed_regs[i] = call_used_regs[i] = 1;
553 	  SET_HARD_REG_BIT (fixed_reg_set, i);
554 	  SET_HARD_REG_BIT (call_used_reg_set, i);
555 	  SET_HARD_REG_BIT (call_fixed_reg_set, i);
556 	}
557     }
558 
559   memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
560   memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
561   for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
562     {
563       HARD_REG_SET ok_regs;
564       CLEAR_HARD_REG_SET (ok_regs);
565       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
566 	if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, (enum machine_mode) m))
567 	  SET_HARD_REG_BIT (ok_regs, j);
568 
569       for (i = 0; i < N_REG_CLASSES; i++)
570 	if ((targetm.class_max_nregs ((reg_class_t) i, (enum machine_mode) m)
571 	     <= reg_class_size[i])
572 	    && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
573 	  {
574 	     contains_reg_of_mode [i][m] = 1;
575 	     have_regs_of_mode [m] = 1;
576 	  }
577      }
578 
579   /* Reset move_cost and friends, making sure we only free shared
580      table entries once.  */
581   for (i = 0; i < MAX_MACHINE_MODE; i++)
582     if (move_cost[i])
583       {
584 	for (j = 0; j < i && move_cost[i] != move_cost[j]; j++)
585 	  ;
586 	if (i == j)
587 	  {
588 	    free (move_cost[i]);
589 	    free (may_move_in_cost[i]);
590 	    free (may_move_out_cost[i]);
591 	  }
592       }
593   memset (move_cost, 0, sizeof move_cost);
594   memset (may_move_in_cost, 0, sizeof may_move_in_cost);
595   memset (may_move_out_cost, 0, sizeof may_move_out_cost);
596   last_mode_for_init_move_cost = -1;
597 }
598 
599 /* Compute the table of register modes.
600    These values are used to record death information for individual registers
601    (as opposed to a multi-register mode).
602    This function might be invoked more than once, if the target has support
603    for changing register usage conventions on a per-function basis.
604 */
605 void
606 init_reg_modes_target (void)
607 {
608   int i, j;
609 
610   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
611     for (j = 0; j < MAX_MACHINE_MODE; j++)
612       hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
613 
614   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
615     {
616       reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
617 
618       /* If we couldn't find a valid mode, just use the previous mode
619 	 if it is suitable, otherwise fall back on word_mode.  */
620       if (reg_raw_mode[i] == VOIDmode)
621     	{
622 	  if (i > 0 && hard_regno_nregs[i][reg_raw_mode[i - 1]] == 1)
623 	    reg_raw_mode[i] = reg_raw_mode[i - 1];
624 	  else
625 	    reg_raw_mode[i] = word_mode;
626 	}
627     }
628 }
629 
630 /* Finish initializing the register sets and initialize the register modes.
631    This function might be invoked more than once, if the target has support
632    for changing register usage conventions on a per-function basis.
633 */
634 void
635 init_regs (void)
636 {
637   /* This finishes what was started by init_reg_sets, but couldn't be done
638      until after register usage was specified.  */
639   init_reg_sets_1 ();
640 }
641 
642 /* The same as previous function plus initializing IRA.  */
643 void
644 reinit_regs (void)
645 {
646   init_regs ();
647   /* caller_save needs to be re-initialized.  */
648   caller_save_initialized_p = false;
649   ira_init ();
650 }
651 
652 /* Initialize some fake stack-frame MEM references for use in
653    memory_move_secondary_cost.  */
654 void
655 init_fake_stack_mems (void)
656 {
657   int i;
658 
659   for (i = 0; i < MAX_MACHINE_MODE; i++)
660     top_of_stack[i] = gen_rtx_MEM ((enum machine_mode) i, stack_pointer_rtx);
661 }
662 
663 
664 /* Compute cost of moving data from a register of class FROM to one of
665    TO, using MODE.  */
666 
667 int
668 register_move_cost (enum machine_mode mode, reg_class_t from, reg_class_t to)
669 {
670   return targetm.register_move_cost (mode, from, to);
671 }
672 
673 /* Compute cost of moving registers to/from memory.  */
674 
675 int
676 memory_move_cost (enum machine_mode mode, reg_class_t rclass, bool in)
677 {
678   return targetm.memory_move_cost (mode, rclass, in);
679 }
680 
681 /* Compute extra cost of moving registers to/from memory due to reloads.
682    Only needed if secondary reloads are required for memory moves.  */
683 int
684 memory_move_secondary_cost (enum machine_mode mode, reg_class_t rclass,
685 			    bool in)
686 {
687   reg_class_t altclass;
688   int partial_cost = 0;
689   /* We need a memory reference to feed to SECONDARY... macros.  */
690   /* mem may be unused even if the SECONDARY_ macros are defined.  */
691   rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
692 
693   altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
694 
695   if (altclass == NO_REGS)
696     return 0;
697 
698   if (in)
699     partial_cost = register_move_cost (mode, altclass, rclass);
700   else
701     partial_cost = register_move_cost (mode, rclass, altclass);
702 
703   if (rclass == altclass)
704     /* This isn't simply a copy-to-temporary situation.  Can't guess
705        what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
706        calling here in that case.
707 
708        I'm tempted to put in an assert here, but returning this will
709        probably only give poor estimates, which is what we would've
710        had before this code anyways.  */
711     return partial_cost;
712 
713   /* Check if the secondary reload register will also need a
714      secondary reload.  */
715   return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
716 }
717 
718 /* Return a machine mode that is legitimate for hard reg REGNO and large
719    enough to save nregs.  If we can't find one, return VOIDmode.
720    If CALL_SAVED is true, only consider modes that are call saved.  */
721 enum machine_mode
722 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
723 		      unsigned int nregs, bool call_saved)
724 {
725   unsigned int /* enum machine_mode */ m;
726   enum machine_mode found_mode = VOIDmode, mode;
727 
728   /* We first look for the largest integer mode that can be validly
729      held in REGNO.  If none, we look for the largest floating-point mode.
730      If we still didn't find a valid mode, try CCmode.  */
731 
732   for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
733        mode != VOIDmode;
734        mode = GET_MODE_WIDER_MODE (mode))
735     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
736 	&& HARD_REGNO_MODE_OK (regno, mode)
737 	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
738       found_mode = mode;
739 
740   if (found_mode != VOIDmode)
741     return found_mode;
742 
743   for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
744        mode != VOIDmode;
745        mode = GET_MODE_WIDER_MODE (mode))
746     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
747 	&& HARD_REGNO_MODE_OK (regno, mode)
748 	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
749       found_mode = mode;
750 
751   if (found_mode != VOIDmode)
752     return found_mode;
753 
754   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
755        mode != VOIDmode;
756        mode = GET_MODE_WIDER_MODE (mode))
757     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
758 	&& HARD_REGNO_MODE_OK (regno, mode)
759 	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
760       found_mode = mode;
761 
762   if (found_mode != VOIDmode)
763     return found_mode;
764 
765   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
766        mode != VOIDmode;
767        mode = GET_MODE_WIDER_MODE (mode))
768     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
769 	&& HARD_REGNO_MODE_OK (regno, mode)
770 	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
771       found_mode = mode;
772 
773   if (found_mode != VOIDmode)
774     return found_mode;
775 
776   /* Iterate over all of the CCmodes.  */
777   for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
778     {
779       mode = (enum machine_mode) m;
780       if ((unsigned) hard_regno_nregs[regno][mode] == nregs
781 	  && HARD_REGNO_MODE_OK (regno, mode)
782 	  && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
783 	return mode;
784     }
785 
786   /* We can't find a mode valid for this register.  */
787   return VOIDmode;
788 }
789 
790 /* Specify the usage characteristics of the register named NAME.
791    It should be a fixed register if FIXED and a
792    call-used register if CALL_USED.  */
793 void
794 fix_register (const char *name, int fixed, int call_used)
795 {
796   int i;
797   int reg, nregs;
798 
799   /* Decode the name and update the primary form of
800      the register info.  */
801 
802   if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
803     {
804       gcc_assert (nregs >= 1);
805       for (i = reg; i < reg + nregs; i++)
806 	{
807 	  if ((i == STACK_POINTER_REGNUM
808 #ifdef HARD_FRAME_POINTER_REGNUM
809 	       || i == HARD_FRAME_POINTER_REGNUM
810 #else
811 	       || i == FRAME_POINTER_REGNUM
812 #endif
813 	       )
814 	      && (fixed == 0 || call_used == 0))
815 	    {
816 	      switch (fixed)
817 		{
818 		case 0:
819 		  switch (call_used)
820 		    {
821 		    case 0:
822 		      error ("can%'t use %qs as a call-saved register", name);
823 		      break;
824 
825 		    case 1:
826 		      error ("can%'t use %qs as a call-used register", name);
827 		      break;
828 
829 		    default:
830 		      gcc_unreachable ();
831 		    }
832 		  break;
833 
834 		case 1:
835 		  switch (call_used)
836 		    {
837 		    case 1:
838 		      error ("can%'t use %qs as a fixed register", name);
839 		      break;
840 
841 		    case 0:
842 		    default:
843 		      gcc_unreachable ();
844 		    }
845 		  break;
846 
847 		default:
848 		  gcc_unreachable ();
849 		}
850 	    }
851 	  else
852 	    {
853 	      fixed_regs[i] = fixed;
854 	      call_used_regs[i] = call_used;
855 #ifdef CALL_REALLY_USED_REGISTERS
856 	      if (fixed == 0)
857 		call_really_used_regs[i] = call_used;
858 #endif
859 	    }
860 	}
861     }
862   else
863     {
864       warning (0, "unknown register name: %s", name);
865     }
866 }
867 
868 /* Mark register number I as global.  */
869 void
870 globalize_reg (tree decl, int i)
871 {
872   location_t loc = DECL_SOURCE_LOCATION (decl);
873 
874 #ifdef STACK_REGS
875   if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
876     {
877       error ("stack register used for global register variable");
878       return;
879     }
880 #endif
881 
882   if (fixed_regs[i] == 0 && no_global_reg_vars)
883     error_at (loc, "global register variable follows a function definition");
884 
885   if (global_regs[i])
886     {
887       warning_at (loc, 0,
888 		  "register of %qD used for multiple global register variables",
889 		  decl);
890       inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
891 	      "conflicts with %qD", global_regs_decl[i]);
892       return;
893     }
894 
895   if (call_used_regs[i] && ! fixed_regs[i])
896     warning_at (loc, 0, "call-clobbered register used for global register variable");
897 
898   global_regs[i] = 1;
899   global_regs_decl[i] = decl;
900 
901   /* If we're globalizing the frame pointer, we need to set the
902      appropriate regs_invalidated_by_call bit, even if it's already
903      set in fixed_regs.  */
904   if (i != STACK_POINTER_REGNUM)
905     {
906       SET_HARD_REG_BIT (regs_invalidated_by_call, i);
907       SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
908     }
909 
910   /* If already fixed, nothing else to do.  */
911   if (fixed_regs[i])
912     return;
913 
914   fixed_regs[i] = call_used_regs[i] = 1;
915 #ifdef CALL_REALLY_USED_REGISTERS
916   call_really_used_regs[i] = 1;
917 #endif
918 
919   SET_HARD_REG_BIT (fixed_reg_set, i);
920   SET_HARD_REG_BIT (call_used_reg_set, i);
921   SET_HARD_REG_BIT (call_fixed_reg_set, i);
922 
923   reinit_regs ();
924 }
925 
926 
927 /* Structure used to record preferences of given pseudo.  */
928 struct reg_pref
929 {
930   /* (enum reg_class) prefclass is the preferred class.  May be
931      NO_REGS if no class is better than memory.  */
932   char prefclass;
933 
934   /* altclass is a register class that we should use for allocating
935      pseudo if no register in the preferred class is available.
936      If no register in this class is available, memory is preferred.
937 
938      It might appear to be more general to have a bitmask of classes here,
939      but since it is recommended that there be a class corresponding to the
940      union of most major pair of classes, that generality is not required.  */
941   char altclass;
942 
943   /* allocnoclass is a register class that IRA uses for allocating
944      the pseudo.  */
945   char allocnoclass;
946 };
947 
948 /* Record preferences of each pseudo.  This is available after RA is
949    run.  */
950 static struct reg_pref *reg_pref;
951 
952 /* Current size of reg_info.  */
953 static int reg_info_size;
954 
955 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
956    This function is sometimes called before the info has been computed.
957    When that happens, just return GENERAL_REGS, which is innocuous.  */
958 enum reg_class
959 reg_preferred_class (int regno)
960 {
961   if (reg_pref == 0)
962     return GENERAL_REGS;
963 
964   return (enum reg_class) reg_pref[regno].prefclass;
965 }
966 
967 enum reg_class
968 reg_alternate_class (int regno)
969 {
970   if (reg_pref == 0)
971     return ALL_REGS;
972 
973   return (enum reg_class) reg_pref[regno].altclass;
974 }
975 
976 /* Return the reg_class which is used by IRA for its allocation.  */
977 enum reg_class
978 reg_allocno_class (int regno)
979 {
980   if (reg_pref == 0)
981     return NO_REGS;
982 
983   return (enum reg_class) reg_pref[regno].allocnoclass;
984 }
985 
986 
987 
988 /* Allocate space for reg info.  */
989 static void
990 allocate_reg_info (void)
991 {
992   reg_info_size = max_reg_num ();
993   gcc_assert (! reg_pref && ! reg_renumber);
994   reg_renumber = XNEWVEC (short, reg_info_size);
995   reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
996   memset (reg_renumber, -1, reg_info_size * sizeof (short));
997 }
998 
999 
1000 /* Resize reg info. The new elements will be uninitialized.  Return
1001    TRUE if new elements (for new pseudos) were added.  */
1002 bool
1003 resize_reg_info (void)
1004 {
1005   int old;
1006 
1007   if (reg_pref == NULL)
1008     {
1009       allocate_reg_info ();
1010       return true;
1011     }
1012   if (reg_info_size == max_reg_num ())
1013     return false;
1014   old = reg_info_size;
1015   reg_info_size = max_reg_num ();
1016   gcc_assert (reg_pref && reg_renumber);
1017   reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
1018   reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
1019   memset (reg_pref + old, -1,
1020 	  (reg_info_size - old) * sizeof (struct reg_pref));
1021   memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
1022   return true;
1023 }
1024 
1025 
1026 /* Free up the space allocated by allocate_reg_info.  */
1027 void
1028 free_reg_info (void)
1029 {
1030   if (reg_pref)
1031     {
1032       free (reg_pref);
1033       reg_pref = NULL;
1034     }
1035 
1036   if (reg_renumber)
1037     {
1038       free (reg_renumber);
1039       reg_renumber = NULL;
1040     }
1041 }
1042 
1043 /* Initialize some global data for this pass.  */
1044 static unsigned int
1045 reginfo_init (void)
1046 {
1047   if (df)
1048     df_compute_regs_ever_live (true);
1049 
1050   /* This prevents dump_flow_info from losing if called
1051      before reginfo is run.  */
1052   reg_pref = NULL;
1053   /* No more global register variables may be declared.  */
1054   no_global_reg_vars = 1;
1055   return 1;
1056 }
1057 
1058 struct rtl_opt_pass pass_reginfo_init =
1059 {
1060  {
1061   RTL_PASS,
1062   "reginfo",                            /* name */
1063   NULL,                                 /* gate */
1064   reginfo_init,                         /* execute */
1065   NULL,                                 /* sub */
1066   NULL,                                 /* next */
1067   0,                                    /* static_pass_number */
1068   TV_NONE,                              /* tv_id */
1069   0,                                    /* properties_required */
1070   0,                                    /* properties_provided */
1071   0,                                    /* properties_destroyed */
1072   0,                                    /* todo_flags_start */
1073   0                                     /* todo_flags_finish */
1074  }
1075 };
1076 
1077 
1078 
1079 /* Set up preferred, alternate, and cover classes for REGNO as
1080    PREFCLASS, ALTCLASS, and ALLOCNOCLASS.  */
1081 void
1082 setup_reg_classes (int regno,
1083 		   enum reg_class prefclass, enum reg_class altclass,
1084 		   enum reg_class allocnoclass)
1085 {
1086   if (reg_pref == NULL)
1087     return;
1088   gcc_assert (reg_info_size == max_reg_num ());
1089   reg_pref[regno].prefclass = prefclass;
1090   reg_pref[regno].altclass = altclass;
1091   reg_pref[regno].allocnoclass = allocnoclass;
1092 }
1093 
1094 
1095 /* This is the `regscan' pass of the compiler, run just before cse and
1096    again just before loop.  It finds the first and last use of each
1097    pseudo-register.  */
1098 
1099 static void reg_scan_mark_refs (rtx, rtx);
1100 
1101 void
1102 reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
1103 {
1104   rtx insn;
1105 
1106   timevar_push (TV_REG_SCAN);
1107 
1108   for (insn = f; insn; insn = NEXT_INSN (insn))
1109     if (INSN_P (insn))
1110       {
1111 	reg_scan_mark_refs (PATTERN (insn), insn);
1112 	if (REG_NOTES (insn))
1113 	  reg_scan_mark_refs (REG_NOTES (insn), insn);
1114       }
1115 
1116   timevar_pop (TV_REG_SCAN);
1117 }
1118 
1119 
1120 /* X is the expression to scan.  INSN is the insn it appears in.
1121    NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1122    We should only record information for REGs with numbers
1123    greater than or equal to MIN_REGNO.  */
1124 static void
1125 reg_scan_mark_refs (rtx x, rtx insn)
1126 {
1127   enum rtx_code code;
1128   rtx dest;
1129   rtx note;
1130 
1131   if (!x)
1132     return;
1133   code = GET_CODE (x);
1134   switch (code)
1135     {
1136     case CONST:
1137     case CONST_INT:
1138     case CONST_DOUBLE:
1139     case CONST_FIXED:
1140     case CONST_VECTOR:
1141     case CC0:
1142     case PC:
1143     case SYMBOL_REF:
1144     case LABEL_REF:
1145     case ADDR_VEC:
1146     case ADDR_DIFF_VEC:
1147     case REG:
1148       return;
1149 
1150     case EXPR_LIST:
1151       if (XEXP (x, 0))
1152 	reg_scan_mark_refs (XEXP (x, 0), insn);
1153       if (XEXP (x, 1))
1154 	reg_scan_mark_refs (XEXP (x, 1), insn);
1155       break;
1156 
1157     case INSN_LIST:
1158       if (XEXP (x, 1))
1159 	reg_scan_mark_refs (XEXP (x, 1), insn);
1160       break;
1161 
1162     case CLOBBER:
1163       if (MEM_P (XEXP (x, 0)))
1164 	reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1165       break;
1166 
1167     case SET:
1168       /* Count a set of the destination if it is a register.  */
1169       for (dest = SET_DEST (x);
1170 	   GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1171 	   || GET_CODE (dest) == ZERO_EXTEND;
1172 	   dest = XEXP (dest, 0))
1173 	;
1174 
1175       /* If this is setting a pseudo from another pseudo or the sum of a
1176 	 pseudo and a constant integer and the other pseudo is known to be
1177 	 a pointer, set the destination to be a pointer as well.
1178 
1179 	 Likewise if it is setting the destination from an address or from a
1180 	 value equivalent to an address or to the sum of an address and
1181 	 something else.
1182 
1183 	 But don't do any of this if the pseudo corresponds to a user
1184 	 variable since it should have already been set as a pointer based
1185 	 on the type.  */
1186 
1187       if (REG_P (SET_DEST (x))
1188 	  && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1189 	  /* If the destination pseudo is set more than once, then other
1190 	     sets might not be to a pointer value (consider access to a
1191 	     union in two threads of control in the presence of global
1192 	     optimizations).  So only set REG_POINTER on the destination
1193 	     pseudo if this is the only set of that pseudo.  */
1194 	  && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1195 	  && ! REG_USERVAR_P (SET_DEST (x))
1196 	  && ! REG_POINTER (SET_DEST (x))
1197 	  && ((REG_P (SET_SRC (x))
1198 	       && REG_POINTER (SET_SRC (x)))
1199 	      || ((GET_CODE (SET_SRC (x)) == PLUS
1200 		   || GET_CODE (SET_SRC (x)) == LO_SUM)
1201 		  && CONST_INT_P (XEXP (SET_SRC (x), 1))
1202 		  && REG_P (XEXP (SET_SRC (x), 0))
1203 		  && REG_POINTER (XEXP (SET_SRC (x), 0)))
1204 	      || GET_CODE (SET_SRC (x)) == CONST
1205 	      || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1206 	      || GET_CODE (SET_SRC (x)) == LABEL_REF
1207 	      || (GET_CODE (SET_SRC (x)) == HIGH
1208 		  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1209 		      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1210 		      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1211 	      || ((GET_CODE (SET_SRC (x)) == PLUS
1212 		   || GET_CODE (SET_SRC (x)) == LO_SUM)
1213 		  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1214 		      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1215 		      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1216 	      || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1217 		  && (GET_CODE (XEXP (note, 0)) == CONST
1218 		      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1219 		      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1220 	REG_POINTER (SET_DEST (x)) = 1;
1221 
1222       /* If this is setting a register from a register or from a simple
1223 	 conversion of a register, propagate REG_EXPR.  */
1224       if (REG_P (dest) && !REG_ATTRS (dest))
1225 	{
1226 	  rtx src = SET_SRC (x);
1227 
1228 	  while (GET_CODE (src) == SIGN_EXTEND
1229 		 || GET_CODE (src) == ZERO_EXTEND
1230 		 || GET_CODE (src) == TRUNCATE
1231 		 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
1232 	    src = XEXP (src, 0);
1233 
1234 	  set_reg_attrs_from_value (dest, src);
1235 	}
1236 
1237       /* ... fall through ...  */
1238 
1239     default:
1240       {
1241 	const char *fmt = GET_RTX_FORMAT (code);
1242 	int i;
1243 	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1244 	  {
1245 	    if (fmt[i] == 'e')
1246 	      reg_scan_mark_refs (XEXP (x, i), insn);
1247 	    else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1248 	      {
1249 		int j;
1250 		for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1251 		  reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1252 	      }
1253 	  }
1254       }
1255     }
1256 }
1257 
1258 
1259 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1260    is also in C2.  */
1261 int
1262 reg_class_subset_p (reg_class_t c1, reg_class_t c2)
1263 {
1264   return (c1 == c2
1265 	  || c2 == ALL_REGS
1266 	  || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1267 				   reg_class_contents[(int) c2]));
1268 }
1269 
1270 /* Return nonzero if there is a register that is in both C1 and C2.  */
1271 int
1272 reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
1273 {
1274   return (c1 == c2
1275 	  || c1 == ALL_REGS
1276 	  || c2 == ALL_REGS
1277 	  || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1278 				      reg_class_contents[(int) c2]));
1279 }
1280 
1281 
1282 
1283 /* Passes for keeping and updating info about modes of registers
1284    inside subregisters.  */
1285 
1286 #ifdef CANNOT_CHANGE_MODE_CLASS
1287 
1288 static bitmap invalid_mode_changes;
1289 
1290 static void
1291 record_subregs_of_mode (rtx subreg, bitmap subregs_of_mode)
1292 {
1293   enum machine_mode mode;
1294   unsigned int regno;
1295 
1296   if (!REG_P (SUBREG_REG (subreg)))
1297     return;
1298 
1299   regno = REGNO (SUBREG_REG (subreg));
1300   mode = GET_MODE (subreg);
1301 
1302   if (regno < FIRST_PSEUDO_REGISTER)
1303     return;
1304 
1305   if (bitmap_set_bit (subregs_of_mode,
1306 		      regno * NUM_MACHINE_MODES + (unsigned int) mode))
1307     {
1308       unsigned int rclass;
1309       for (rclass = 0; rclass < N_REG_CLASSES; rclass++)
1310 	if (!bitmap_bit_p (invalid_mode_changes,
1311 			   regno * N_REG_CLASSES + rclass)
1312 	    && CANNOT_CHANGE_MODE_CLASS (PSEUDO_REGNO_MODE (regno),
1313 					 mode, (enum reg_class) rclass))
1314 	  bitmap_set_bit (invalid_mode_changes,
1315 			  regno * N_REG_CLASSES + rclass);
1316     }
1317 }
1318 
1319 /* Call record_subregs_of_mode for all the subregs in X.  */
1320 static void
1321 find_subregs_of_mode (rtx x, bitmap subregs_of_mode)
1322 {
1323   enum rtx_code code = GET_CODE (x);
1324   const char * const fmt = GET_RTX_FORMAT (code);
1325   int i;
1326 
1327   if (code == SUBREG)
1328     record_subregs_of_mode (x, subregs_of_mode);
1329 
1330   /* Time for some deep diving.  */
1331   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1332     {
1333       if (fmt[i] == 'e')
1334 	find_subregs_of_mode (XEXP (x, i), subregs_of_mode);
1335       else if (fmt[i] == 'E')
1336 	{
1337 	  int j;
1338 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1339 	    find_subregs_of_mode (XVECEXP (x, i, j), subregs_of_mode);
1340 	}
1341     }
1342 }
1343 
1344 void
1345 init_subregs_of_mode (void)
1346 {
1347   basic_block bb;
1348   rtx insn;
1349   bitmap_obstack srom_obstack;
1350   bitmap subregs_of_mode;
1351 
1352   gcc_assert (invalid_mode_changes == NULL);
1353   invalid_mode_changes = BITMAP_ALLOC (NULL);
1354   bitmap_obstack_initialize (&srom_obstack);
1355   subregs_of_mode = BITMAP_ALLOC (&srom_obstack);
1356 
1357   FOR_EACH_BB (bb)
1358     FOR_BB_INSNS (bb, insn)
1359       if (NONDEBUG_INSN_P (insn))
1360         find_subregs_of_mode (PATTERN (insn), subregs_of_mode);
1361 
1362   BITMAP_FREE (subregs_of_mode);
1363   bitmap_obstack_release (&srom_obstack);
1364 }
1365 
1366 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
1367    mode.  */
1368 bool
1369 invalid_mode_change_p (unsigned int regno,
1370 		       enum reg_class rclass)
1371 {
1372   return bitmap_bit_p (invalid_mode_changes,
1373 		       regno * N_REG_CLASSES + (unsigned) rclass);
1374 }
1375 
1376 void
1377 finish_subregs_of_mode (void)
1378 {
1379   BITMAP_FREE (invalid_mode_changes);
1380 }
1381 #else
1382 void
1383 init_subregs_of_mode (void)
1384 {
1385 }
1386 void
1387 finish_subregs_of_mode (void)
1388 {
1389 }
1390 
1391 #endif /* CANNOT_CHANGE_MODE_CLASS */
1392