xref: /dragonfly/contrib/gcc-4.7/gcc/reload.c (revision 9348a738)
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2    Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* This file contains subroutines used only from the file reload1.c.
23    It knows how to scan one insn for operands and values
24    that need to be copied into registers to make valid code.
25    It also finds other operands and values which are valid
26    but for which equivalent values in registers exist and
27    ought to be used instead.
28 
29    Before processing the first insn of the function, call `init_reload'.
30    init_reload actually has to be called earlier anyway.
31 
32    To scan an insn, call `find_reloads'.  This does two things:
33    1. sets up tables describing which values must be reloaded
34    for this insn, and what kind of hard regs they must be reloaded into;
35    2. optionally record the locations where those values appear in
36    the data, so they can be replaced properly later.
37    This is done only if the second arg to `find_reloads' is nonzero.
38 
39    The third arg to `find_reloads' specifies the number of levels
40    of indirect addressing supported by the machine.  If it is zero,
41    indirect addressing is not valid.  If it is one, (MEM (REG n))
42    is valid even if (REG n) did not get a hard register; if it is two,
43    (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44    hard register, and similarly for higher values.
45 
46    Then you must choose the hard regs to reload those pseudo regs into,
47    and generate appropriate load insns before this insn and perhaps
48    also store insns after this insn.  Set up the array `reload_reg_rtx'
49    to contain the REG rtx's for the registers you used.  In some
50    cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51    for certain reloads.  Then that tells you which register to use,
52    so you do not need to allocate one.  But you still do need to add extra
53    instructions to copy the value into and out of that register.
54 
55    Finally you must call `subst_reloads' to substitute the reload reg rtx's
56    into the locations already recorded.
57 
58 NOTE SIDE EFFECTS:
59 
60    find_reloads can alter the operands of the instruction it is called on.
61 
62    1. Two operands of any sort may be interchanged, if they are in a
63    commutative instruction.
64    This happens only if find_reloads thinks the instruction will compile
65    better that way.
66 
67    2. Pseudo-registers that are equivalent to constants are replaced
68    with those constants if they are not in hard registers.
69 
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
73 
74 Using a reload register for several reloads in one insn:
75 
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
79 
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
83 
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload.  */
87 
88 #define REG_OK_STRICT
89 
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow.  */
91 #undef DEBUG_RELOAD
92 
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl-error.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "df.h"
104 #include "reload.h"
105 #include "regs.h"
106 #include "addresses.h"
107 #include "hard-reg-set.h"
108 #include "flags.h"
109 #include "output.h"
110 #include "function.h"
111 #include "params.h"
112 #include "target.h"
113 #include "ira.h"
114 
115 /* True if X is a constant that can be forced into the constant pool.
116    MODE is the mode of the operand, or VOIDmode if not known.  */
117 #define CONST_POOL_OK_P(MODE, X)		\
118   ((MODE) != VOIDmode				\
119    && CONSTANT_P (X)				\
120    && GET_CODE (X) != HIGH			\
121    && !targetm.cannot_force_const_mem (MODE, X))
122 
123 /* True if C is a non-empty register class that has too few registers
124    to be safely used as a reload target class.  */
125 
126 static inline bool
127 small_register_class_p (reg_class_t rclass)
128 {
129   return (reg_class_size [(int) rclass] == 1
130 	  || (reg_class_size [(int) rclass] >= 1
131 	      && targetm.class_likely_spilled_p (rclass)));
132 }
133 
134 
135 /* All reloads of the current insn are recorded here.  See reload.h for
136    comments.  */
137 int n_reloads;
138 struct reload rld[MAX_RELOADS];
139 
140 /* All the "earlyclobber" operands of the current insn
141    are recorded here.  */
142 int n_earlyclobbers;
143 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
144 
145 int reload_n_operands;
146 
147 /* Replacing reloads.
148 
149    If `replace_reloads' is nonzero, then as each reload is recorded
150    an entry is made for it in the table `replacements'.
151    Then later `subst_reloads' can look through that table and
152    perform all the replacements needed.  */
153 
154 /* Nonzero means record the places to replace.  */
155 static int replace_reloads;
156 
157 /* Each replacement is recorded with a structure like this.  */
158 struct replacement
159 {
160   rtx *where;			/* Location to store in */
161   int what;			/* which reload this is for */
162   enum machine_mode mode;	/* mode it must have */
163 };
164 
165 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
166 
167 /* Number of replacements currently recorded.  */
168 static int n_replacements;
169 
170 /* Used to track what is modified by an operand.  */
171 struct decomposition
172 {
173   int reg_flag;		/* Nonzero if referencing a register.  */
174   int safe;		/* Nonzero if this can't conflict with anything.  */
175   rtx base;		/* Base address for MEM.  */
176   HOST_WIDE_INT start;	/* Starting offset or register number.  */
177   HOST_WIDE_INT end;	/* Ending offset or register number.  */
178 };
179 
180 #ifdef SECONDARY_MEMORY_NEEDED
181 
182 /* Save MEMs needed to copy from one class of registers to another.  One MEM
183    is used per mode, but normally only one or two modes are ever used.
184 
185    We keep two versions, before and after register elimination.  The one
186    after register elimination is record separately for each operand.  This
187    is done in case the address is not valid to be sure that we separately
188    reload each.  */
189 
190 static rtx secondary_memlocs[NUM_MACHINE_MODES];
191 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
192 static int secondary_memlocs_elim_used = 0;
193 #endif
194 
195 /* The instruction we are doing reloads for;
196    so we can test whether a register dies in it.  */
197 static rtx this_insn;
198 
199 /* Nonzero if this instruction is a user-specified asm with operands.  */
200 static int this_insn_is_asm;
201 
202 /* If hard_regs_live_known is nonzero,
203    we can tell which hard regs are currently live,
204    at least enough to succeed in choosing dummy reloads.  */
205 static int hard_regs_live_known;
206 
207 /* Indexed by hard reg number,
208    element is nonnegative if hard reg has been spilled.
209    This vector is passed to `find_reloads' as an argument
210    and is not changed here.  */
211 static short *static_reload_reg_p;
212 
213 /* Set to 1 in subst_reg_equivs if it changes anything.  */
214 static int subst_reg_equivs_changed;
215 
216 /* On return from push_reload, holds the reload-number for the OUT
217    operand, which can be different for that from the input operand.  */
218 static int output_reloadnum;
219 
220   /* Compare two RTX's.  */
221 #define MATCHES(x, y) \
222  (x == y || (x != 0 && (REG_P (x)				\
223 			? REG_P (y) && REGNO (x) == REGNO (y)	\
224 			: rtx_equal_p (x, y) && ! side_effects_p (x))))
225 
226   /* Indicates if two reloads purposes are for similar enough things that we
227      can merge their reloads.  */
228 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
229   ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER	\
230    || ((when1) == (when2) && (op1) == (op2))		\
231    || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
232    || ((when1) == RELOAD_FOR_OPERAND_ADDRESS		\
233        && (when2) == RELOAD_FOR_OPERAND_ADDRESS)	\
234    || ((when1) == RELOAD_FOR_OTHER_ADDRESS		\
235        && (when2) == RELOAD_FOR_OTHER_ADDRESS))
236 
237   /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
238 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
239   ((when1) != (when2)					\
240    || ! ((op1) == (op2)					\
241 	 || (when1) == RELOAD_FOR_INPUT			\
242 	 || (when1) == RELOAD_FOR_OPERAND_ADDRESS	\
243 	 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
244 
245   /* If we are going to reload an address, compute the reload type to
246      use.  */
247 #define ADDR_TYPE(type)					\
248   ((type) == RELOAD_FOR_INPUT_ADDRESS			\
249    ? RELOAD_FOR_INPADDR_ADDRESS				\
250    : ((type) == RELOAD_FOR_OUTPUT_ADDRESS		\
251       ? RELOAD_FOR_OUTADDR_ADDRESS			\
252       : (type)))
253 
254 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
255 				  enum machine_mode, enum reload_type,
256 				  enum insn_code *, secondary_reload_info *);
257 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
258 					int, unsigned int);
259 static void push_replacement (rtx *, int, enum machine_mode);
260 static void dup_replacements (rtx *, rtx *);
261 static void combine_reloads (void);
262 static int find_reusable_reload (rtx *, rtx, enum reg_class,
263 				 enum reload_type, int, int);
264 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
265 			      enum machine_mode, reg_class_t, int, int);
266 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
267 static struct decomposition decompose (rtx);
268 static int immune_p (rtx, rtx, struct decomposition);
269 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
270 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
271 				int *);
272 static rtx make_memloc (rtx, int);
273 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
274 					      addr_space_t, rtx *);
275 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
276 				 int, enum reload_type, int, rtx);
277 static rtx subst_reg_equivs (rtx, rtx);
278 static rtx subst_indexed_address (rtx);
279 static void update_auto_inc_notes (rtx, int, int);
280 static int find_reloads_address_1 (enum machine_mode, addr_space_t, rtx, int,
281 				   enum rtx_code, enum rtx_code, rtx *,
282 				   int, enum reload_type,int, rtx);
283 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
284 				       enum machine_mode, int,
285 				       enum reload_type, int);
286 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
287 					int, rtx, int *);
288 static void copy_replacements_1 (rtx *, rtx *, int);
289 static int find_inc_amount (rtx, rtx);
290 static int refers_to_mem_for_reload_p (rtx);
291 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
292 					 rtx, rtx *);
293 
294 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
295    list yet.  */
296 
297 static void
298 push_reg_equiv_alt_mem (int regno, rtx mem)
299 {
300   rtx it;
301 
302   for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
303     if (rtx_equal_p (XEXP (it, 0), mem))
304       return;
305 
306   reg_equiv_alt_mem_list (regno)
307     = alloc_EXPR_LIST (REG_EQUIV, mem,
308 		       reg_equiv_alt_mem_list (regno));
309 }
310 
311 /* Determine if any secondary reloads are needed for loading (if IN_P is
312    nonzero) or storing (if IN_P is zero) X to or from a reload register of
313    register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
314    are needed, push them.
315 
316    Return the reload number of the secondary reload we made, or -1 if
317    we didn't need one.  *PICODE is set to the insn_code to use if we do
318    need a secondary reload.  */
319 
320 static int
321 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
322 		       enum reg_class reload_class,
323 		       enum machine_mode reload_mode, enum reload_type type,
324 		       enum insn_code *picode, secondary_reload_info *prev_sri)
325 {
326   enum reg_class rclass = NO_REGS;
327   enum reg_class scratch_class;
328   enum machine_mode mode = reload_mode;
329   enum insn_code icode = CODE_FOR_nothing;
330   enum insn_code t_icode = CODE_FOR_nothing;
331   enum reload_type secondary_type;
332   int s_reload, t_reload = -1;
333   const char *scratch_constraint;
334   char letter;
335   secondary_reload_info sri;
336 
337   if (type == RELOAD_FOR_INPUT_ADDRESS
338       || type == RELOAD_FOR_OUTPUT_ADDRESS
339       || type == RELOAD_FOR_INPADDR_ADDRESS
340       || type == RELOAD_FOR_OUTADDR_ADDRESS)
341     secondary_type = type;
342   else
343     secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
344 
345   *picode = CODE_FOR_nothing;
346 
347   /* If X is a paradoxical SUBREG, use the inner value to determine both the
348      mode and object being reloaded.  */
349   if (paradoxical_subreg_p (x))
350     {
351       x = SUBREG_REG (x);
352       reload_mode = GET_MODE (x);
353     }
354 
355   /* If X is a pseudo-register that has an equivalent MEM (actually, if it
356      is still a pseudo-register by now, it *must* have an equivalent MEM
357      but we don't want to assume that), use that equivalent when seeing if
358      a secondary reload is needed since whether or not a reload is needed
359      might be sensitive to the form of the MEM.  */
360 
361   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
362       && reg_equiv_mem (REGNO (x)))
363     x = reg_equiv_mem (REGNO (x));
364 
365   sri.icode = CODE_FOR_nothing;
366   sri.prev_sri = prev_sri;
367   rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
368 						      reload_mode, &sri);
369   icode = (enum insn_code) sri.icode;
370 
371   /* If we don't need any secondary registers, done.  */
372   if (rclass == NO_REGS && icode == CODE_FOR_nothing)
373     return -1;
374 
375   if (rclass != NO_REGS)
376     t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
377 				      reload_mode, type, &t_icode, &sri);
378 
379   /* If we will be using an insn, the secondary reload is for a
380      scratch register.  */
381 
382   if (icode != CODE_FOR_nothing)
383     {
384       /* If IN_P is nonzero, the reload register will be the output in
385 	 operand 0.  If IN_P is zero, the reload register will be the input
386 	 in operand 1.  Outputs should have an initial "=", which we must
387 	 skip.  */
388 
389       /* ??? It would be useful to be able to handle only two, or more than
390 	 three, operands, but for now we can only handle the case of having
391 	 exactly three: output, input and one temp/scratch.  */
392       gcc_assert (insn_data[(int) icode].n_operands == 3);
393 
394       /* ??? We currently have no way to represent a reload that needs
395 	 an icode to reload from an intermediate tertiary reload register.
396 	 We should probably have a new field in struct reload to tag a
397 	 chain of scratch operand reloads onto.   */
398       gcc_assert (rclass == NO_REGS);
399 
400       scratch_constraint = insn_data[(int) icode].operand[2].constraint;
401       gcc_assert (*scratch_constraint == '=');
402       scratch_constraint++;
403       if (*scratch_constraint == '&')
404 	scratch_constraint++;
405       letter = *scratch_constraint;
406       scratch_class = (letter == 'r' ? GENERAL_REGS
407 		       : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
408 						   scratch_constraint));
409 
410       rclass = scratch_class;
411       mode = insn_data[(int) icode].operand[2].mode;
412     }
413 
414   /* This case isn't valid, so fail.  Reload is allowed to use the same
415      register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
416      in the case of a secondary register, we actually need two different
417      registers for correct code.  We fail here to prevent the possibility of
418      silently generating incorrect code later.
419 
420      The convention is that secondary input reloads are valid only if the
421      secondary_class is different from class.  If you have such a case, you
422      can not use secondary reloads, you must work around the problem some
423      other way.
424 
425      Allow this when a reload_in/out pattern is being used.  I.e. assume
426      that the generated code handles this case.  */
427 
428   gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
429 	      || t_icode != CODE_FOR_nothing);
430 
431   /* See if we can reuse an existing secondary reload.  */
432   for (s_reload = 0; s_reload < n_reloads; s_reload++)
433     if (rld[s_reload].secondary_p
434 	&& (reg_class_subset_p (rclass, rld[s_reload].rclass)
435 	    || reg_class_subset_p (rld[s_reload].rclass, rclass))
436 	&& ((in_p && rld[s_reload].inmode == mode)
437 	    || (! in_p && rld[s_reload].outmode == mode))
438 	&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
439 	    || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
440 	&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
441 	    || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
442 	&& (small_register_class_p (rclass)
443 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
444 	&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
445 			     opnum, rld[s_reload].opnum))
446       {
447 	if (in_p)
448 	  rld[s_reload].inmode = mode;
449 	if (! in_p)
450 	  rld[s_reload].outmode = mode;
451 
452 	if (reg_class_subset_p (rclass, rld[s_reload].rclass))
453 	  rld[s_reload].rclass = rclass;
454 
455 	rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
456 	rld[s_reload].optional &= optional;
457 	rld[s_reload].secondary_p = 1;
458 	if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
459 			    opnum, rld[s_reload].opnum))
460 	  rld[s_reload].when_needed = RELOAD_OTHER;
461 
462 	break;
463       }
464 
465   if (s_reload == n_reloads)
466     {
467 #ifdef SECONDARY_MEMORY_NEEDED
468       /* If we need a memory location to copy between the two reload regs,
469 	 set it up now.  Note that we do the input case before making
470 	 the reload and the output case after.  This is due to the
471 	 way reloads are output.  */
472 
473       if (in_p && icode == CODE_FOR_nothing
474 	  && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
475 	{
476 	  get_secondary_mem (x, reload_mode, opnum, type);
477 
478 	  /* We may have just added new reloads.  Make sure we add
479 	     the new reload at the end.  */
480 	  s_reload = n_reloads;
481 	}
482 #endif
483 
484       /* We need to make a new secondary reload for this register class.  */
485       rld[s_reload].in = rld[s_reload].out = 0;
486       rld[s_reload].rclass = rclass;
487 
488       rld[s_reload].inmode = in_p ? mode : VOIDmode;
489       rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
490       rld[s_reload].reg_rtx = 0;
491       rld[s_reload].optional = optional;
492       rld[s_reload].inc = 0;
493       /* Maybe we could combine these, but it seems too tricky.  */
494       rld[s_reload].nocombine = 1;
495       rld[s_reload].in_reg = 0;
496       rld[s_reload].out_reg = 0;
497       rld[s_reload].opnum = opnum;
498       rld[s_reload].when_needed = secondary_type;
499       rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
500       rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
501       rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
502       rld[s_reload].secondary_out_icode
503 	= ! in_p ? t_icode : CODE_FOR_nothing;
504       rld[s_reload].secondary_p = 1;
505 
506       n_reloads++;
507 
508 #ifdef SECONDARY_MEMORY_NEEDED
509       if (! in_p && icode == CODE_FOR_nothing
510 	  && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
511 	get_secondary_mem (x, mode, opnum, type);
512 #endif
513     }
514 
515   *picode = icode;
516   return s_reload;
517 }
518 
519 /* If a secondary reload is needed, return its class.  If both an intermediate
520    register and a scratch register is needed, we return the class of the
521    intermediate register.  */
522 reg_class_t
523 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
524 			rtx x)
525 {
526   enum insn_code icode;
527   secondary_reload_info sri;
528 
529   sri.icode = CODE_FOR_nothing;
530   sri.prev_sri = NULL;
531   rclass
532     = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
533   icode = (enum insn_code) sri.icode;
534 
535   /* If there are no secondary reloads at all, we return NO_REGS.
536      If an intermediate register is needed, we return its class.  */
537   if (icode == CODE_FOR_nothing || rclass != NO_REGS)
538     return rclass;
539 
540   /* No intermediate register is needed, but we have a special reload
541      pattern, which we assume for now needs a scratch register.  */
542   return scratch_reload_class (icode);
543 }
544 
545 /* ICODE is the insn_code of a reload pattern.  Check that it has exactly
546    three operands, verify that operand 2 is an output operand, and return
547    its register class.
548    ??? We'd like to be able to handle any pattern with at least 2 operands,
549    for zero or more scratch registers, but that needs more infrastructure.  */
550 enum reg_class
551 scratch_reload_class (enum insn_code icode)
552 {
553   const char *scratch_constraint;
554   char scratch_letter;
555   enum reg_class rclass;
556 
557   gcc_assert (insn_data[(int) icode].n_operands == 3);
558   scratch_constraint = insn_data[(int) icode].operand[2].constraint;
559   gcc_assert (*scratch_constraint == '=');
560   scratch_constraint++;
561   if (*scratch_constraint == '&')
562     scratch_constraint++;
563   scratch_letter = *scratch_constraint;
564   if (scratch_letter == 'r')
565     return GENERAL_REGS;
566   rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
567 				     scratch_constraint);
568   gcc_assert (rclass != NO_REGS);
569   return rclass;
570 }
571 
572 #ifdef SECONDARY_MEMORY_NEEDED
573 
574 /* Return a memory location that will be used to copy X in mode MODE.
575    If we haven't already made a location for this mode in this insn,
576    call find_reloads_address on the location being returned.  */
577 
578 rtx
579 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
580 		   int opnum, enum reload_type type)
581 {
582   rtx loc;
583   int mem_valid;
584 
585   /* By default, if MODE is narrower than a word, widen it to a word.
586      This is required because most machines that require these memory
587      locations do not support short load and stores from all registers
588      (e.g., FP registers).  */
589 
590 #ifdef SECONDARY_MEMORY_NEEDED_MODE
591   mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
592 #else
593   if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
594     mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
595 #endif
596 
597   /* If we already have made a MEM for this operand in MODE, return it.  */
598   if (secondary_memlocs_elim[(int) mode][opnum] != 0)
599     return secondary_memlocs_elim[(int) mode][opnum];
600 
601   /* If this is the first time we've tried to get a MEM for this mode,
602      allocate a new one.  `something_changed' in reload will get set
603      by noticing that the frame size has changed.  */
604 
605   if (secondary_memlocs[(int) mode] == 0)
606     {
607 #ifdef SECONDARY_MEMORY_NEEDED_RTX
608       secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
609 #else
610       secondary_memlocs[(int) mode]
611 	= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
612 #endif
613     }
614 
615   /* Get a version of the address doing any eliminations needed.  If that
616      didn't give us a new MEM, make a new one if it isn't valid.  */
617 
618   loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
619   mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
620 						  MEM_ADDR_SPACE (loc));
621 
622   if (! mem_valid && loc == secondary_memlocs[(int) mode])
623     loc = copy_rtx (loc);
624 
625   /* The only time the call below will do anything is if the stack
626      offset is too large.  In that case IND_LEVELS doesn't matter, so we
627      can just pass a zero.  Adjust the type to be the address of the
628      corresponding object.  If the address was valid, save the eliminated
629      address.  If it wasn't valid, we need to make a reload each time, so
630      don't save it.  */
631 
632   if (! mem_valid)
633     {
634       type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
635 	       : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
636 	       : RELOAD_OTHER);
637 
638       find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
639 			    opnum, type, 0, 0);
640     }
641 
642   secondary_memlocs_elim[(int) mode][opnum] = loc;
643   if (secondary_memlocs_elim_used <= (int)mode)
644     secondary_memlocs_elim_used = (int)mode + 1;
645   return loc;
646 }
647 
648 /* Clear any secondary memory locations we've made.  */
649 
650 void
651 clear_secondary_mem (void)
652 {
653   memset (secondary_memlocs, 0, sizeof secondary_memlocs);
654 }
655 #endif /* SECONDARY_MEMORY_NEEDED */
656 
657 
658 /* Find the largest class which has at least one register valid in
659    mode INNER, and which for every such register, that register number
660    plus N is also valid in OUTER (if in range) and is cheap to move
661    into REGNO.  Such a class must exist.  */
662 
663 static enum reg_class
664 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
665 		  enum machine_mode inner ATTRIBUTE_UNUSED, int n,
666 		  unsigned int dest_regno ATTRIBUTE_UNUSED)
667 {
668   int best_cost = -1;
669   int rclass;
670   int regno;
671   enum reg_class best_class = NO_REGS;
672   enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
673   unsigned int best_size = 0;
674   int cost;
675 
676   for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
677     {
678       int bad = 0;
679       int good = 0;
680       for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
681 	if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
682 	  {
683 	    if (HARD_REGNO_MODE_OK (regno, inner))
684 	      {
685 		good = 1;
686 		if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
687 		    || ! HARD_REGNO_MODE_OK (regno + n, outer))
688 		  bad = 1;
689 	      }
690 	  }
691 
692       if (bad || !good)
693 	continue;
694       cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
695 
696       if ((reg_class_size[rclass] > best_size
697 	   && (best_cost < 0 || best_cost >= cost))
698 	  || best_cost > cost)
699 	{
700 	  best_class = (enum reg_class) rclass;
701 	  best_size = reg_class_size[rclass];
702 	  best_cost = register_move_cost (outer, (enum reg_class) rclass,
703 					  dest_class);
704 	}
705     }
706 
707   gcc_assert (best_size != 0);
708 
709   return best_class;
710 }
711 
712 /* Return the number of a previously made reload that can be combined with
713    a new one, or n_reloads if none of the existing reloads can be used.
714    OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
715    push_reload, they determine the kind of the new reload that we try to
716    combine.  P_IN points to the corresponding value of IN, which can be
717    modified by this function.
718    DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
719 
720 static int
721 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
722 		      enum reload_type type, int opnum, int dont_share)
723 {
724   rtx in = *p_in;
725   int i;
726   /* We can't merge two reloads if the output of either one is
727      earlyclobbered.  */
728 
729   if (earlyclobber_operand_p (out))
730     return n_reloads;
731 
732   /* We can use an existing reload if the class is right
733      and at least one of IN and OUT is a match
734      and the other is at worst neutral.
735      (A zero compared against anything is neutral.)
736 
737      For targets with small register classes, don't use existing reloads
738      unless they are for the same thing since that can cause us to need
739      more reload registers than we otherwise would.  */
740 
741   for (i = 0; i < n_reloads; i++)
742     if ((reg_class_subset_p (rclass, rld[i].rclass)
743 	 || reg_class_subset_p (rld[i].rclass, rclass))
744 	/* If the existing reload has a register, it must fit our class.  */
745 	&& (rld[i].reg_rtx == 0
746 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
747 				  true_regnum (rld[i].reg_rtx)))
748 	&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
749 	     && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
750 	    || (out != 0 && MATCHES (rld[i].out, out)
751 		&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
752 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
753 	&& (small_register_class_p (rclass)
754 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
755 	&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
756       return i;
757 
758   /* Reloading a plain reg for input can match a reload to postincrement
759      that reg, since the postincrement's value is the right value.
760      Likewise, it can match a preincrement reload, since we regard
761      the preincrementation as happening before any ref in this insn
762      to that register.  */
763   for (i = 0; i < n_reloads; i++)
764     if ((reg_class_subset_p (rclass, rld[i].rclass)
765 	 || reg_class_subset_p (rld[i].rclass, rclass))
766 	/* If the existing reload has a register, it must fit our
767 	   class.  */
768 	&& (rld[i].reg_rtx == 0
769 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
770 				  true_regnum (rld[i].reg_rtx)))
771 	&& out == 0 && rld[i].out == 0 && rld[i].in != 0
772 	&& ((REG_P (in)
773 	     && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
774 	     && MATCHES (XEXP (rld[i].in, 0), in))
775 	    || (REG_P (rld[i].in)
776 		&& GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
777 		&& MATCHES (XEXP (in, 0), rld[i].in)))
778 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
779 	&& (small_register_class_p (rclass)
780 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
781 	&& MERGABLE_RELOADS (type, rld[i].when_needed,
782 			     opnum, rld[i].opnum))
783       {
784 	/* Make sure reload_in ultimately has the increment,
785 	   not the plain register.  */
786 	if (REG_P (in))
787 	  *p_in = rld[i].in;
788 	return i;
789       }
790   return n_reloads;
791 }
792 
793 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
794    expression.  MODE is the mode that X will be used in.  OUTPUT is true if
795    the function is invoked for the output part of an enclosing reload.  */
796 
797 static bool
798 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, bool output)
799 {
800   rtx inner;
801 
802   /* Only SUBREGs are problematical.  */
803   if (GET_CODE (x) != SUBREG)
804     return false;
805 
806   inner = SUBREG_REG (x);
807 
808   /* If INNER is a constant or PLUS, then INNER will need reloading.  */
809   if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
810     return true;
811 
812   /* If INNER is not a hard register, then INNER will not need reloading.  */
813   if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
814     return false;
815 
816   /* If INNER is not ok for MODE, then INNER will need reloading.  */
817   if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
818     return true;
819 
820   /* If this is for an output, and the outer part is a word or smaller,
821      INNER is larger than a word and the number of registers in INNER is
822      not the same as the number of words in INNER, then INNER will need
823      reloading (with an in-out reload).  */
824   return (output
825 	  && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
826 	  && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
827 	  && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
828 	      != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
829 }
830 
831 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
832    requiring an extra reload register.  The caller has already found that
833    IN contains some reference to REGNO, so check that we can produce the
834    new value in a single step.  E.g. if we have
835    (set (reg r13) (plus (reg r13) (const int 1))), and there is an
836    instruction that adds one to a register, this should succeed.
837    However, if we have something like
838    (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
839    needs to be loaded into a register first, we need a separate reload
840    register.
841    Such PLUS reloads are generated by find_reload_address_part.
842    The out-of-range PLUS expressions are usually introduced in the instruction
843    patterns by register elimination and substituting pseudos without a home
844    by their function-invariant equivalences.  */
845 static int
846 can_reload_into (rtx in, int regno, enum machine_mode mode)
847 {
848   rtx dst, test_insn;
849   int r = 0;
850   struct recog_data save_recog_data;
851 
852   /* For matching constraints, we often get notional input reloads where
853      we want to use the original register as the reload register.  I.e.
854      technically this is a non-optional input-output reload, but IN is
855      already a valid register, and has been chosen as the reload register.
856      Speed this up, since it trivially works.  */
857   if (REG_P (in))
858     return 1;
859 
860   /* To test MEMs properly, we'd have to take into account all the reloads
861      that are already scheduled, which can become quite complicated.
862      And since we've already handled address reloads for this MEM, it
863      should always succeed anyway.  */
864   if (MEM_P (in))
865     return 1;
866 
867   /* If we can make a simple SET insn that does the job, everything should
868      be fine.  */
869   dst =  gen_rtx_REG (mode, regno);
870   test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
871   save_recog_data = recog_data;
872   if (recog_memoized (test_insn) >= 0)
873     {
874       extract_insn (test_insn);
875       r = constrain_operands (1);
876     }
877   recog_data = save_recog_data;
878   return r;
879 }
880 
881 /* Record one reload that needs to be performed.
882    IN is an rtx saying where the data are to be found before this instruction.
883    OUT says where they must be stored after the instruction.
884    (IN is zero for data not read, and OUT is zero for data not written.)
885    INLOC and OUTLOC point to the places in the instructions where
886    IN and OUT were found.
887    If IN and OUT are both nonzero, it means the same register must be used
888    to reload both IN and OUT.
889 
890    RCLASS is a register class required for the reloaded data.
891    INMODE is the machine mode that the instruction requires
892    for the reg that replaces IN and OUTMODE is likewise for OUT.
893 
894    If IN is zero, then OUT's location and mode should be passed as
895    INLOC and INMODE.
896 
897    STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
898 
899    OPTIONAL nonzero means this reload does not need to be performed:
900    it can be discarded if that is more convenient.
901 
902    OPNUM and TYPE say what the purpose of this reload is.
903 
904    The return value is the reload-number for this reload.
905 
906    If both IN and OUT are nonzero, in some rare cases we might
907    want to make two separate reloads.  (Actually we never do this now.)
908    Therefore, the reload-number for OUT is stored in
909    output_reloadnum when we return; the return value applies to IN.
910    Usually (presently always), when IN and OUT are nonzero,
911    the two reload-numbers are equal, but the caller should be careful to
912    distinguish them.  */
913 
914 int
915 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
916 	     enum reg_class rclass, enum machine_mode inmode,
917 	     enum machine_mode outmode, int strict_low, int optional,
918 	     int opnum, enum reload_type type)
919 {
920   int i;
921   int dont_share = 0;
922   int dont_remove_subreg = 0;
923 #ifdef LIMIT_RELOAD_CLASS
924   rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
925 #endif
926   int secondary_in_reload = -1, secondary_out_reload = -1;
927   enum insn_code secondary_in_icode = CODE_FOR_nothing;
928   enum insn_code secondary_out_icode = CODE_FOR_nothing;
929 
930   /* INMODE and/or OUTMODE could be VOIDmode if no mode
931      has been specified for the operand.  In that case,
932      use the operand's mode as the mode to reload.  */
933   if (inmode == VOIDmode && in != 0)
934     inmode = GET_MODE (in);
935   if (outmode == VOIDmode && out != 0)
936     outmode = GET_MODE (out);
937 
938   /* If find_reloads and friends until now missed to replace a pseudo
939      with a constant of reg_equiv_constant something went wrong
940      beforehand.
941      Note that it can't simply be done here if we missed it earlier
942      since the constant might need to be pushed into the literal pool
943      and the resulting memref would probably need further
944      reloading.  */
945   if (in != 0 && REG_P (in))
946     {
947       int regno = REGNO (in);
948 
949       gcc_assert (regno < FIRST_PSEUDO_REGISTER
950 		  || reg_renumber[regno] >= 0
951 		  || reg_equiv_constant (regno) == NULL_RTX);
952     }
953 
954   /* reg_equiv_constant only contains constants which are obviously
955      not appropriate as destination.  So if we would need to replace
956      the destination pseudo with a constant we are in real
957      trouble.  */
958   if (out != 0 && REG_P (out))
959     {
960       int regno = REGNO (out);
961 
962       gcc_assert (regno < FIRST_PSEUDO_REGISTER
963 		  || reg_renumber[regno] >= 0
964 		  || reg_equiv_constant (regno) == NULL_RTX);
965     }
966 
967   /* If we have a read-write operand with an address side-effect,
968      change either IN or OUT so the side-effect happens only once.  */
969   if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
970     switch (GET_CODE (XEXP (in, 0)))
971       {
972       case POST_INC: case POST_DEC:   case POST_MODIFY:
973 	in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
974 	break;
975 
976       case PRE_INC: case PRE_DEC: case PRE_MODIFY:
977 	out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
978 	break;
979 
980       default:
981 	break;
982       }
983 
984   /* If we are reloading a (SUBREG constant ...), really reload just the
985      inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
986      If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
987      a pseudo and hence will become a MEM) with M1 wider than M2 and the
988      register is a pseudo, also reload the inside expression.
989      For machines that extend byte loads, do this for any SUBREG of a pseudo
990      where both M1 and M2 are a word or smaller, M1 is wider than M2, and
991      M2 is an integral mode that gets extended when loaded.
992      Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
993      where either M1 is not valid for R or M2 is wider than a word but we
994      only need one register to store an M2-sized quantity in R.
995      (However, if OUT is nonzero, we need to reload the reg *and*
996      the subreg, so do nothing here, and let following statement handle it.)
997 
998      Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
999      we can't handle it here because CONST_INT does not indicate a mode.
1000 
1001      Similarly, we must reload the inside expression if we have a
1002      STRICT_LOW_PART (presumably, in == out in this case).
1003 
1004      Also reload the inner expression if it does not require a secondary
1005      reload but the SUBREG does.
1006 
1007      Finally, reload the inner expression if it is a register that is in
1008      the class whose registers cannot be referenced in a different size
1009      and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
1010      cannot reload just the inside since we might end up with the wrong
1011      register class.  But if it is inside a STRICT_LOW_PART, we have
1012      no choice, so we hope we do get the right register class there.  */
1013 
1014   if (in != 0 && GET_CODE (in) == SUBREG
1015       && (subreg_lowpart_p (in) || strict_low)
1016 #ifdef CANNOT_CHANGE_MODE_CLASS
1017       && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1018 #endif
1019       && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1020       && (CONSTANT_P (SUBREG_REG (in))
1021 	  || GET_CODE (SUBREG_REG (in)) == PLUS
1022 	  || strict_low
1023 	  || (((REG_P (SUBREG_REG (in))
1024 		&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1025 	       || MEM_P (SUBREG_REG (in)))
1026 	      && ((GET_MODE_PRECISION (inmode)
1027 		   > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1028 #ifdef LOAD_EXTEND_OP
1029 		  || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1030 		      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1031 			  <= UNITS_PER_WORD)
1032 		      && (GET_MODE_PRECISION (inmode)
1033 			  > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1034 		      && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1035 		      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1036 #endif
1037 #ifdef WORD_REGISTER_OPERATIONS
1038 		  || ((GET_MODE_PRECISION (inmode)
1039 		       < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1040 		      && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1041 			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1042 			   / UNITS_PER_WORD)))
1043 #endif
1044 		  ))
1045 	  || (REG_P (SUBREG_REG (in))
1046 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1047 	      /* The case where out is nonzero
1048 		 is handled differently in the following statement.  */
1049 	      && (out == 0 || subreg_lowpart_p (in))
1050 	      && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1051 		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1052 		       > UNITS_PER_WORD)
1053 		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1054 			/ UNITS_PER_WORD)
1055 		       != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1056 						[GET_MODE (SUBREG_REG (in))]))
1057 		  || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1058 	  || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1059 	      && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1060 					  SUBREG_REG (in))
1061 		  == NO_REGS))
1062 #ifdef CANNOT_CHANGE_MODE_CLASS
1063 	  || (REG_P (SUBREG_REG (in))
1064 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1065 	      && REG_CANNOT_CHANGE_MODE_P
1066 	      (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1067 #endif
1068 	  ))
1069     {
1070 #ifdef LIMIT_RELOAD_CLASS
1071       in_subreg_loc = inloc;
1072 #endif
1073       inloc = &SUBREG_REG (in);
1074       in = *inloc;
1075 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1076       if (MEM_P (in))
1077 	/* This is supposed to happen only for paradoxical subregs made by
1078 	   combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
1079 	gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1080 #endif
1081       inmode = GET_MODE (in);
1082     }
1083 
1084   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1085      where M1 is not valid for R if it was not handled by the code above.
1086 
1087      Similar issue for (SUBREG constant ...) if it was not handled by the
1088      code above.  This can happen if SUBREG_BYTE != 0.
1089 
1090      However, we must reload the inner reg *as well as* the subreg in
1091      that case.  */
1092 
1093   if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1094     {
1095       enum reg_class in_class = rclass;
1096 
1097       if (REG_P (SUBREG_REG (in)))
1098 	in_class
1099 	  = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1100 			      subreg_regno_offset (REGNO (SUBREG_REG (in)),
1101 						   GET_MODE (SUBREG_REG (in)),
1102 						   SUBREG_BYTE (in),
1103 						   GET_MODE (in)),
1104 			      REGNO (SUBREG_REG (in)));
1105 
1106       /* This relies on the fact that emit_reload_insns outputs the
1107 	 instructions for input reloads of type RELOAD_OTHER in the same
1108 	 order as the reloads.  Thus if the outer reload is also of type
1109 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1110 	 output before the outer reload.  */
1111       push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1112 		   in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1113       dont_remove_subreg = 1;
1114     }
1115 
1116   /* Similarly for paradoxical and problematical SUBREGs on the output.
1117      Note that there is no reason we need worry about the previous value
1118      of SUBREG_REG (out); even if wider than out, storing in a subreg is
1119      entitled to clobber it all (except in the case of a word mode subreg
1120      or of a STRICT_LOW_PART, in that latter case the constraint should
1121      label it input-output.)  */
1122   if (out != 0 && GET_CODE (out) == SUBREG
1123       && (subreg_lowpart_p (out) || strict_low)
1124 #ifdef CANNOT_CHANGE_MODE_CLASS
1125       && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1126 #endif
1127       && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1128       && (CONSTANT_P (SUBREG_REG (out))
1129 	  || strict_low
1130 	  || (((REG_P (SUBREG_REG (out))
1131 		&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1132 	       || MEM_P (SUBREG_REG (out)))
1133 	      && ((GET_MODE_PRECISION (outmode)
1134 		   > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1135 #ifdef WORD_REGISTER_OPERATIONS
1136 		  || ((GET_MODE_PRECISION (outmode)
1137 		       < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1138 		      && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1139 			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1140 			   / UNITS_PER_WORD)))
1141 #endif
1142 		  ))
1143 	  || (REG_P (SUBREG_REG (out))
1144 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1145 	      /* The case of a word mode subreg
1146 		 is handled differently in the following statement.  */
1147 	      && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1148 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1149 		        > UNITS_PER_WORD))
1150 	      && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1151 	  || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1152 	      && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1153 					  SUBREG_REG (out))
1154 		  == NO_REGS))
1155 #ifdef CANNOT_CHANGE_MODE_CLASS
1156 	  || (REG_P (SUBREG_REG (out))
1157 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1158 	      && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1159 					   GET_MODE (SUBREG_REG (out)),
1160 					   outmode))
1161 #endif
1162 	  ))
1163     {
1164 #ifdef LIMIT_RELOAD_CLASS
1165       out_subreg_loc = outloc;
1166 #endif
1167       outloc = &SUBREG_REG (out);
1168       out = *outloc;
1169 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1170       gcc_assert (!MEM_P (out)
1171 		  || GET_MODE_SIZE (GET_MODE (out))
1172 		     <= GET_MODE_SIZE (outmode));
1173 #endif
1174       outmode = GET_MODE (out);
1175     }
1176 
1177   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1178      where either M1 is not valid for R or M2 is wider than a word but we
1179      only need one register to store an M2-sized quantity in R.
1180 
1181      However, we must reload the inner reg *as well as* the subreg in
1182      that case and the inner reg is an in-out reload.  */
1183 
1184   if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1185     {
1186       enum reg_class in_out_class
1187 	= find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1188 			    subreg_regno_offset (REGNO (SUBREG_REG (out)),
1189 						 GET_MODE (SUBREG_REG (out)),
1190 						 SUBREG_BYTE (out),
1191 						 GET_MODE (out)),
1192 			    REGNO (SUBREG_REG (out)));
1193 
1194       /* This relies on the fact that emit_reload_insns outputs the
1195 	 instructions for output reloads of type RELOAD_OTHER in reverse
1196 	 order of the reloads.  Thus if the outer reload is also of type
1197 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1198 	 output after the outer reload.  */
1199       push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1200 		   &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1201 		   0, 0, opnum, RELOAD_OTHER);
1202       dont_remove_subreg = 1;
1203     }
1204 
1205   /* If IN appears in OUT, we can't share any input-only reload for IN.  */
1206   if (in != 0 && out != 0 && MEM_P (out)
1207       && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1208       && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1209     dont_share = 1;
1210 
1211   /* If IN is a SUBREG of a hard register, make a new REG.  This
1212      simplifies some of the cases below.  */
1213 
1214   if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1215       && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1216       && ! dont_remove_subreg)
1217     in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1218 
1219   /* Similarly for OUT.  */
1220   if (out != 0 && GET_CODE (out) == SUBREG
1221       && REG_P (SUBREG_REG (out))
1222       && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1223       && ! dont_remove_subreg)
1224     out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1225 
1226   /* Narrow down the class of register wanted if that is
1227      desirable on this machine for efficiency.  */
1228   {
1229     reg_class_t preferred_class = rclass;
1230 
1231     if (in != 0)
1232       preferred_class = targetm.preferred_reload_class (in, rclass);
1233 
1234     /* Output reloads may need analogous treatment, different in detail.  */
1235     if (out != 0)
1236       preferred_class
1237 	= targetm.preferred_output_reload_class (out, preferred_class);
1238 
1239     /* Discard what the target said if we cannot do it.  */
1240     if (preferred_class != NO_REGS
1241 	|| (optional && type == RELOAD_FOR_OUTPUT))
1242       rclass = (enum reg_class) preferred_class;
1243   }
1244 
1245   /* Make sure we use a class that can handle the actual pseudo
1246      inside any subreg.  For example, on the 386, QImode regs
1247      can appear within SImode subregs.  Although GENERAL_REGS
1248      can handle SImode, QImode needs a smaller class.  */
1249 #ifdef LIMIT_RELOAD_CLASS
1250   if (in_subreg_loc)
1251     rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1252   else if (in != 0 && GET_CODE (in) == SUBREG)
1253     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1254 
1255   if (out_subreg_loc)
1256     rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1257   if (out != 0 && GET_CODE (out) == SUBREG)
1258     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1259 #endif
1260 
1261   /* Verify that this class is at least possible for the mode that
1262      is specified.  */
1263   if (this_insn_is_asm)
1264     {
1265       enum machine_mode mode;
1266       if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1267 	mode = inmode;
1268       else
1269 	mode = outmode;
1270       if (mode == VOIDmode)
1271 	{
1272 	  error_for_asm (this_insn, "cannot reload integer constant "
1273 			 "operand in %<asm%>");
1274 	  mode = word_mode;
1275 	  if (in != 0)
1276 	    inmode = word_mode;
1277 	  if (out != 0)
1278 	    outmode = word_mode;
1279 	}
1280       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1281 	if (HARD_REGNO_MODE_OK (i, mode)
1282 	    && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1283 	  break;
1284       if (i == FIRST_PSEUDO_REGISTER)
1285 	{
1286 	  error_for_asm (this_insn, "impossible register constraint "
1287 			 "in %<asm%>");
1288 	  /* Avoid further trouble with this insn.  */
1289 	  PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1290 	  /* We used to continue here setting class to ALL_REGS, but it triggers
1291 	     sanity check on i386 for:
1292 	     void foo(long double d)
1293 	     {
1294 	       asm("" :: "a" (d));
1295 	     }
1296 	     Returning zero here ought to be safe as we take care in
1297 	     find_reloads to not process the reloads when instruction was
1298 	     replaced by USE.  */
1299 
1300 	  return 0;
1301 	}
1302     }
1303 
1304   /* Optional output reloads are always OK even if we have no register class,
1305      since the function of these reloads is only to have spill_reg_store etc.
1306      set, so that the storing insn can be deleted later.  */
1307   gcc_assert (rclass != NO_REGS
1308 	      || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1309 
1310   i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1311 
1312   if (i == n_reloads)
1313     {
1314       /* See if we need a secondary reload register to move between CLASS
1315 	 and IN or CLASS and OUT.  Get the icode and push any required reloads
1316 	 needed for each of them if so.  */
1317 
1318       if (in != 0)
1319 	secondary_in_reload
1320 	  = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1321 				   &secondary_in_icode, NULL);
1322       if (out != 0 && GET_CODE (out) != SCRATCH)
1323 	secondary_out_reload
1324 	  = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1325 				   type, &secondary_out_icode, NULL);
1326 
1327       /* We found no existing reload suitable for re-use.
1328 	 So add an additional reload.  */
1329 
1330 #ifdef SECONDARY_MEMORY_NEEDED
1331       /* If a memory location is needed for the copy, make one.  */
1332       if (in != 0
1333 	  && (REG_P (in)
1334 	      || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1335 	  && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1336 	  && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1337 				      rclass, inmode))
1338 	get_secondary_mem (in, inmode, opnum, type);
1339 #endif
1340 
1341       i = n_reloads;
1342       rld[i].in = in;
1343       rld[i].out = out;
1344       rld[i].rclass = rclass;
1345       rld[i].inmode = inmode;
1346       rld[i].outmode = outmode;
1347       rld[i].reg_rtx = 0;
1348       rld[i].optional = optional;
1349       rld[i].inc = 0;
1350       rld[i].nocombine = 0;
1351       rld[i].in_reg = inloc ? *inloc : 0;
1352       rld[i].out_reg = outloc ? *outloc : 0;
1353       rld[i].opnum = opnum;
1354       rld[i].when_needed = type;
1355       rld[i].secondary_in_reload = secondary_in_reload;
1356       rld[i].secondary_out_reload = secondary_out_reload;
1357       rld[i].secondary_in_icode = secondary_in_icode;
1358       rld[i].secondary_out_icode = secondary_out_icode;
1359       rld[i].secondary_p = 0;
1360 
1361       n_reloads++;
1362 
1363 #ifdef SECONDARY_MEMORY_NEEDED
1364       if (out != 0
1365           && (REG_P (out)
1366 	      || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1367 	  && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1368 	  && SECONDARY_MEMORY_NEEDED (rclass,
1369 				      REGNO_REG_CLASS (reg_or_subregno (out)),
1370 				      outmode))
1371 	get_secondary_mem (out, outmode, opnum, type);
1372 #endif
1373     }
1374   else
1375     {
1376       /* We are reusing an existing reload,
1377 	 but we may have additional information for it.
1378 	 For example, we may now have both IN and OUT
1379 	 while the old one may have just one of them.  */
1380 
1381       /* The modes can be different.  If they are, we want to reload in
1382 	 the larger mode, so that the value is valid for both modes.  */
1383       if (inmode != VOIDmode
1384 	  && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1385 	rld[i].inmode = inmode;
1386       if (outmode != VOIDmode
1387 	  && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1388 	rld[i].outmode = outmode;
1389       if (in != 0)
1390 	{
1391 	  rtx in_reg = inloc ? *inloc : 0;
1392 	  /* If we merge reloads for two distinct rtl expressions that
1393 	     are identical in content, there might be duplicate address
1394 	     reloads.  Remove the extra set now, so that if we later find
1395 	     that we can inherit this reload, we can get rid of the
1396 	     address reloads altogether.
1397 
1398 	     Do not do this if both reloads are optional since the result
1399 	     would be an optional reload which could potentially leave
1400 	     unresolved address replacements.
1401 
1402 	     It is not sufficient to call transfer_replacements since
1403 	     choose_reload_regs will remove the replacements for address
1404 	     reloads of inherited reloads which results in the same
1405 	     problem.  */
1406 	  if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1407 	      && ! (rld[i].optional && optional))
1408 	    {
1409 	      /* We must keep the address reload with the lower operand
1410 		 number alive.  */
1411 	      if (opnum > rld[i].opnum)
1412 		{
1413 		  remove_address_replacements (in);
1414 		  in = rld[i].in;
1415 		  in_reg = rld[i].in_reg;
1416 		}
1417 	      else
1418 		remove_address_replacements (rld[i].in);
1419 	    }
1420 	  /* When emitting reloads we don't necessarily look at the in-
1421 	     and outmode, but also directly at the operands (in and out).
1422 	     So we can't simply overwrite them with whatever we have found
1423 	     for this (to-be-merged) reload, we have to "merge" that too.
1424 	     Reusing another reload already verified that we deal with the
1425 	     same operands, just possibly in different modes.  So we
1426 	     overwrite the operands only when the new mode is larger.
1427 	     See also PR33613.  */
1428 	  if (!rld[i].in
1429 	      || GET_MODE_SIZE (GET_MODE (in))
1430 	           > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1431 	    rld[i].in = in;
1432 	  if (!rld[i].in_reg
1433 	      || (in_reg
1434 		  && GET_MODE_SIZE (GET_MODE (in_reg))
1435 	             > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1436 	    rld[i].in_reg = in_reg;
1437 	}
1438       if (out != 0)
1439 	{
1440 	  if (!rld[i].out
1441 	      || (out
1442 		  && GET_MODE_SIZE (GET_MODE (out))
1443 	             > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1444 	    rld[i].out = out;
1445 	  if (outloc
1446 	      && (!rld[i].out_reg
1447 		  || GET_MODE_SIZE (GET_MODE (*outloc))
1448 		     > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1449 	    rld[i].out_reg = *outloc;
1450 	}
1451       if (reg_class_subset_p (rclass, rld[i].rclass))
1452 	rld[i].rclass = rclass;
1453       rld[i].optional &= optional;
1454       if (MERGE_TO_OTHER (type, rld[i].when_needed,
1455 			  opnum, rld[i].opnum))
1456 	rld[i].when_needed = RELOAD_OTHER;
1457       rld[i].opnum = MIN (rld[i].opnum, opnum);
1458     }
1459 
1460   /* If the ostensible rtx being reloaded differs from the rtx found
1461      in the location to substitute, this reload is not safe to combine
1462      because we cannot reliably tell whether it appears in the insn.  */
1463 
1464   if (in != 0 && in != *inloc)
1465     rld[i].nocombine = 1;
1466 
1467 #if 0
1468   /* This was replaced by changes in find_reloads_address_1 and the new
1469      function inc_for_reload, which go with a new meaning of reload_inc.  */
1470 
1471   /* If this is an IN/OUT reload in an insn that sets the CC,
1472      it must be for an autoincrement.  It doesn't work to store
1473      the incremented value after the insn because that would clobber the CC.
1474      So we must do the increment of the value reloaded from,
1475      increment it, store it back, then decrement again.  */
1476   if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1477     {
1478       out = 0;
1479       rld[i].out = 0;
1480       rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1481       /* If we did not find a nonzero amount-to-increment-by,
1482 	 that contradicts the belief that IN is being incremented
1483 	 in an address in this insn.  */
1484       gcc_assert (rld[i].inc != 0);
1485     }
1486 #endif
1487 
1488   /* If we will replace IN and OUT with the reload-reg,
1489      record where they are located so that substitution need
1490      not do a tree walk.  */
1491 
1492   if (replace_reloads)
1493     {
1494       if (inloc != 0)
1495 	{
1496 	  struct replacement *r = &replacements[n_replacements++];
1497 	  r->what = i;
1498 	  r->where = inloc;
1499 	  r->mode = inmode;
1500 	}
1501       if (outloc != 0 && outloc != inloc)
1502 	{
1503 	  struct replacement *r = &replacements[n_replacements++];
1504 	  r->what = i;
1505 	  r->where = outloc;
1506 	  r->mode = outmode;
1507 	}
1508     }
1509 
1510   /* If this reload is just being introduced and it has both
1511      an incoming quantity and an outgoing quantity that are
1512      supposed to be made to match, see if either one of the two
1513      can serve as the place to reload into.
1514 
1515      If one of them is acceptable, set rld[i].reg_rtx
1516      to that one.  */
1517 
1518   if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1519     {
1520       rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1521 					  inmode, outmode,
1522 					  rld[i].rclass, i,
1523 					  earlyclobber_operand_p (out));
1524 
1525       /* If the outgoing register already contains the same value
1526 	 as the incoming one, we can dispense with loading it.
1527 	 The easiest way to tell the caller that is to give a phony
1528 	 value for the incoming operand (same as outgoing one).  */
1529       if (rld[i].reg_rtx == out
1530 	  && (REG_P (in) || CONSTANT_P (in))
1531 	  && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1532 				  static_reload_reg_p, i, inmode))
1533 	rld[i].in = out;
1534     }
1535 
1536   /* If this is an input reload and the operand contains a register that
1537      dies in this insn and is used nowhere else, see if it is the right class
1538      to be used for this reload.  Use it if so.  (This occurs most commonly
1539      in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
1540      this if it is also an output reload that mentions the register unless
1541      the output is a SUBREG that clobbers an entire register.
1542 
1543      Note that the operand might be one of the spill regs, if it is a
1544      pseudo reg and we are in a block where spilling has not taken place.
1545      But if there is no spilling in this block, that is OK.
1546      An explicitly used hard reg cannot be a spill reg.  */
1547 
1548   if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1549     {
1550       rtx note;
1551       int regno;
1552       enum machine_mode rel_mode = inmode;
1553 
1554       if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1555 	rel_mode = outmode;
1556 
1557       for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1558 	if (REG_NOTE_KIND (note) == REG_DEAD
1559 	    && REG_P (XEXP (note, 0))
1560 	    && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1561 	    && reg_mentioned_p (XEXP (note, 0), in)
1562 	    /* Check that a former pseudo is valid; see find_dummy_reload.  */
1563 	    && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1564 		|| (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1565 				    ORIGINAL_REGNO (XEXP (note, 0)))
1566 		    && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1567 	    && ! refers_to_regno_for_reload_p (regno,
1568 					       end_hard_regno (rel_mode,
1569 							       regno),
1570 					       PATTERN (this_insn), inloc)
1571 	    /* If this is also an output reload, IN cannot be used as
1572 	       the reload register if it is set in this insn unless IN
1573 	       is also OUT.  */
1574 	    && (out == 0 || in == out
1575 		|| ! hard_reg_set_here_p (regno,
1576 					  end_hard_regno (rel_mode, regno),
1577 					  PATTERN (this_insn)))
1578 	    /* ??? Why is this code so different from the previous?
1579 	       Is there any simple coherent way to describe the two together?
1580 	       What's going on here.  */
1581 	    && (in != out
1582 		|| (GET_CODE (in) == SUBREG
1583 		    && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1584 			 / UNITS_PER_WORD)
1585 			== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1586 			     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1587 	    /* Make sure the operand fits in the reg that dies.  */
1588 	    && (GET_MODE_SIZE (rel_mode)
1589 		<= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1590 	    && HARD_REGNO_MODE_OK (regno, inmode)
1591 	    && HARD_REGNO_MODE_OK (regno, outmode))
1592 	  {
1593 	    unsigned int offs;
1594 	    unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1595 				      hard_regno_nregs[regno][outmode]);
1596 
1597 	    for (offs = 0; offs < nregs; offs++)
1598 	      if (fixed_regs[regno + offs]
1599 		  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1600 					  regno + offs))
1601 		break;
1602 
1603 	    if (offs == nregs
1604 		&& (! (refers_to_regno_for_reload_p
1605 		       (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1606 		    || can_reload_into (in, regno, inmode)))
1607 	      {
1608 		rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1609 		break;
1610 	      }
1611 	  }
1612     }
1613 
1614   if (out)
1615     output_reloadnum = i;
1616 
1617   return i;
1618 }
1619 
1620 /* Record an additional place we must replace a value
1621    for which we have already recorded a reload.
1622    RELOADNUM is the value returned by push_reload
1623    when the reload was recorded.
1624    This is used in insn patterns that use match_dup.  */
1625 
1626 static void
1627 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1628 {
1629   if (replace_reloads)
1630     {
1631       struct replacement *r = &replacements[n_replacements++];
1632       r->what = reloadnum;
1633       r->where = loc;
1634       r->mode = mode;
1635     }
1636 }
1637 
1638 /* Duplicate any replacement we have recorded to apply at
1639    location ORIG_LOC to also be performed at DUP_LOC.
1640    This is used in insn patterns that use match_dup.  */
1641 
1642 static void
1643 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1644 {
1645   int i, n = n_replacements;
1646 
1647   for (i = 0; i < n; i++)
1648     {
1649       struct replacement *r = &replacements[i];
1650       if (r->where == orig_loc)
1651 	push_replacement (dup_loc, r->what, r->mode);
1652     }
1653 }
1654 
1655 /* Transfer all replacements that used to be in reload FROM to be in
1656    reload TO.  */
1657 
1658 void
1659 transfer_replacements (int to, int from)
1660 {
1661   int i;
1662 
1663   for (i = 0; i < n_replacements; i++)
1664     if (replacements[i].what == from)
1665       replacements[i].what = to;
1666 }
1667 
1668 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1669    or a subpart of it.  If we have any replacements registered for IN_RTX,
1670    cancel the reloads that were supposed to load them.
1671    Return nonzero if we canceled any reloads.  */
1672 int
1673 remove_address_replacements (rtx in_rtx)
1674 {
1675   int i, j;
1676   char reload_flags[MAX_RELOADS];
1677   int something_changed = 0;
1678 
1679   memset (reload_flags, 0, sizeof reload_flags);
1680   for (i = 0, j = 0; i < n_replacements; i++)
1681     {
1682       if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1683 	reload_flags[replacements[i].what] |= 1;
1684       else
1685 	{
1686 	  replacements[j++] = replacements[i];
1687 	  reload_flags[replacements[i].what] |= 2;
1688 	}
1689     }
1690   /* Note that the following store must be done before the recursive calls.  */
1691   n_replacements = j;
1692 
1693   for (i = n_reloads - 1; i >= 0; i--)
1694     {
1695       if (reload_flags[i] == 1)
1696 	{
1697 	  deallocate_reload_reg (i);
1698 	  remove_address_replacements (rld[i].in);
1699 	  rld[i].in = 0;
1700 	  something_changed = 1;
1701 	}
1702     }
1703   return something_changed;
1704 }
1705 
1706 /* If there is only one output reload, and it is not for an earlyclobber
1707    operand, try to combine it with a (logically unrelated) input reload
1708    to reduce the number of reload registers needed.
1709 
1710    This is safe if the input reload does not appear in
1711    the value being output-reloaded, because this implies
1712    it is not needed any more once the original insn completes.
1713 
1714    If that doesn't work, see we can use any of the registers that
1715    die in this insn as a reload register.  We can if it is of the right
1716    class and does not appear in the value being output-reloaded.  */
1717 
1718 static void
1719 combine_reloads (void)
1720 {
1721   int i, regno;
1722   int output_reload = -1;
1723   int secondary_out = -1;
1724   rtx note;
1725 
1726   /* Find the output reload; return unless there is exactly one
1727      and that one is mandatory.  */
1728 
1729   for (i = 0; i < n_reloads; i++)
1730     if (rld[i].out != 0)
1731       {
1732 	if (output_reload >= 0)
1733 	  return;
1734 	output_reload = i;
1735       }
1736 
1737   if (output_reload < 0 || rld[output_reload].optional)
1738     return;
1739 
1740   /* An input-output reload isn't combinable.  */
1741 
1742   if (rld[output_reload].in != 0)
1743     return;
1744 
1745   /* If this reload is for an earlyclobber operand, we can't do anything.  */
1746   if (earlyclobber_operand_p (rld[output_reload].out))
1747     return;
1748 
1749   /* If there is a reload for part of the address of this operand, we would
1750      need to change it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
1751      its life to the point where doing this combine would not lower the
1752      number of spill registers needed.  */
1753   for (i = 0; i < n_reloads; i++)
1754     if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1755 	 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1756 	&& rld[i].opnum == rld[output_reload].opnum)
1757       return;
1758 
1759   /* Check each input reload; can we combine it?  */
1760 
1761   for (i = 0; i < n_reloads; i++)
1762     if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1763 	/* Life span of this reload must not extend past main insn.  */
1764 	&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1765 	&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1766 	&& rld[i].when_needed != RELOAD_OTHER
1767 	&& (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1768 	    == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1769 				       [(int) rld[output_reload].outmode])
1770 	&& rld[i].inc == 0
1771 	&& rld[i].reg_rtx == 0
1772 #ifdef SECONDARY_MEMORY_NEEDED
1773 	/* Don't combine two reloads with different secondary
1774 	   memory locations.  */
1775 	&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1776 	    || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1777 	    || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1778 			    secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1779 #endif
1780 	&& (targetm.small_register_classes_for_mode_p (VOIDmode)
1781 	    ? (rld[i].rclass == rld[output_reload].rclass)
1782 	    : (reg_class_subset_p (rld[i].rclass,
1783 				   rld[output_reload].rclass)
1784 	       || reg_class_subset_p (rld[output_reload].rclass,
1785 				      rld[i].rclass)))
1786 	&& (MATCHES (rld[i].in, rld[output_reload].out)
1787 	    /* Args reversed because the first arg seems to be
1788 	       the one that we imagine being modified
1789 	       while the second is the one that might be affected.  */
1790 	    || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1791 						      rld[i].in)
1792 		/* However, if the input is a register that appears inside
1793 		   the output, then we also can't share.
1794 		   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1795 		   If the same reload reg is used for both reg 69 and the
1796 		   result to be stored in memory, then that result
1797 		   will clobber the address of the memory ref.  */
1798 		&& ! (REG_P (rld[i].in)
1799 		      && reg_overlap_mentioned_for_reload_p (rld[i].in,
1800 							     rld[output_reload].out))))
1801 	&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1802 					 rld[i].when_needed != RELOAD_FOR_INPUT)
1803 	&& (reg_class_size[(int) rld[i].rclass]
1804 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
1805 	/* We will allow making things slightly worse by combining an
1806 	   input and an output, but no worse than that.  */
1807 	&& (rld[i].when_needed == RELOAD_FOR_INPUT
1808 	    || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1809       {
1810 	int j;
1811 
1812 	/* We have found a reload to combine with!  */
1813 	rld[i].out = rld[output_reload].out;
1814 	rld[i].out_reg = rld[output_reload].out_reg;
1815 	rld[i].outmode = rld[output_reload].outmode;
1816 	/* Mark the old output reload as inoperative.  */
1817 	rld[output_reload].out = 0;
1818 	/* The combined reload is needed for the entire insn.  */
1819 	rld[i].when_needed = RELOAD_OTHER;
1820 	/* If the output reload had a secondary reload, copy it.  */
1821 	if (rld[output_reload].secondary_out_reload != -1)
1822 	  {
1823 	    rld[i].secondary_out_reload
1824 	      = rld[output_reload].secondary_out_reload;
1825 	    rld[i].secondary_out_icode
1826 	      = rld[output_reload].secondary_out_icode;
1827 	  }
1828 
1829 #ifdef SECONDARY_MEMORY_NEEDED
1830 	/* Copy any secondary MEM.  */
1831 	if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1832 	  secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1833 	    = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1834 #endif
1835 	/* If required, minimize the register class.  */
1836 	if (reg_class_subset_p (rld[output_reload].rclass,
1837 				rld[i].rclass))
1838 	  rld[i].rclass = rld[output_reload].rclass;
1839 
1840 	/* Transfer all replacements from the old reload to the combined.  */
1841 	for (j = 0; j < n_replacements; j++)
1842 	  if (replacements[j].what == output_reload)
1843 	    replacements[j].what = i;
1844 
1845 	return;
1846       }
1847 
1848   /* If this insn has only one operand that is modified or written (assumed
1849      to be the first),  it must be the one corresponding to this reload.  It
1850      is safe to use anything that dies in this insn for that output provided
1851      that it does not occur in the output (we already know it isn't an
1852      earlyclobber.  If this is an asm insn, give up.  */
1853 
1854   if (INSN_CODE (this_insn) == -1)
1855     return;
1856 
1857   for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1858     if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1859 	|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1860       return;
1861 
1862   /* See if some hard register that dies in this insn and is not used in
1863      the output is the right class.  Only works if the register we pick
1864      up can fully hold our output reload.  */
1865   for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1866     if (REG_NOTE_KIND (note) == REG_DEAD
1867 	&& REG_P (XEXP (note, 0))
1868 	&& !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1869 						rld[output_reload].out)
1870 	&& (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1871 	&& HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1872 	&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1873 			      regno)
1874 	&& (hard_regno_nregs[regno][rld[output_reload].outmode]
1875 	    <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1876 	/* Ensure that a secondary or tertiary reload for this output
1877 	   won't want this register.  */
1878 	&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1879 	    || (!(TEST_HARD_REG_BIT
1880 		  (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1881 		&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1882 		    || !(TEST_HARD_REG_BIT
1883 			 (reg_class_contents[(int) rld[secondary_out].rclass],
1884 			  regno)))))
1885 	&& !fixed_regs[regno]
1886 	/* Check that a former pseudo is valid; see find_dummy_reload.  */
1887 	&& (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1888 	    || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1889 			       ORIGINAL_REGNO (XEXP (note, 0)))
1890 		&& hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1891       {
1892 	rld[output_reload].reg_rtx
1893 	  = gen_rtx_REG (rld[output_reload].outmode, regno);
1894 	return;
1895       }
1896 }
1897 
1898 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1899    See if one of IN and OUT is a register that may be used;
1900    this is desirable since a spill-register won't be needed.
1901    If so, return the register rtx that proves acceptable.
1902 
1903    INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1904    RCLASS is the register class required for the reload.
1905 
1906    If FOR_REAL is >= 0, it is the number of the reload,
1907    and in some cases when it can be discovered that OUT doesn't need
1908    to be computed, clear out rld[FOR_REAL].out.
1909 
1910    If FOR_REAL is -1, this should not be done, because this call
1911    is just to see if a register can be found, not to find and install it.
1912 
1913    EARLYCLOBBER is nonzero if OUT is an earlyclobber operand.  This
1914    puts an additional constraint on being able to use IN for OUT since
1915    IN must not appear elsewhere in the insn (it is assumed that IN itself
1916    is safe from the earlyclobber).  */
1917 
1918 static rtx
1919 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1920 		   enum machine_mode inmode, enum machine_mode outmode,
1921 		   reg_class_t rclass, int for_real, int earlyclobber)
1922 {
1923   rtx in = real_in;
1924   rtx out = real_out;
1925   int in_offset = 0;
1926   int out_offset = 0;
1927   rtx value = 0;
1928 
1929   /* If operands exceed a word, we can't use either of them
1930      unless they have the same size.  */
1931   if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1932       && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1933 	  || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1934     return 0;
1935 
1936   /* Note that {in,out}_offset are needed only when 'in' or 'out'
1937      respectively refers to a hard register.  */
1938 
1939   /* Find the inside of any subregs.  */
1940   while (GET_CODE (out) == SUBREG)
1941     {
1942       if (REG_P (SUBREG_REG (out))
1943 	  && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1944 	out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1945 					   GET_MODE (SUBREG_REG (out)),
1946 					   SUBREG_BYTE (out),
1947 					   GET_MODE (out));
1948       out = SUBREG_REG (out);
1949     }
1950   while (GET_CODE (in) == SUBREG)
1951     {
1952       if (REG_P (SUBREG_REG (in))
1953 	  && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1954 	in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1955 					  GET_MODE (SUBREG_REG (in)),
1956 					  SUBREG_BYTE (in),
1957 					  GET_MODE (in));
1958       in = SUBREG_REG (in);
1959     }
1960 
1961   /* Narrow down the reg class, the same way push_reload will;
1962      otherwise we might find a dummy now, but push_reload won't.  */
1963   {
1964     reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
1965     if (preferred_class != NO_REGS)
1966       rclass = (enum reg_class) preferred_class;
1967   }
1968 
1969   /* See if OUT will do.  */
1970   if (REG_P (out)
1971       && REGNO (out) < FIRST_PSEUDO_REGISTER)
1972     {
1973       unsigned int regno = REGNO (out) + out_offset;
1974       unsigned int nwords = hard_regno_nregs[regno][outmode];
1975       rtx saved_rtx;
1976 
1977       /* When we consider whether the insn uses OUT,
1978 	 ignore references within IN.  They don't prevent us
1979 	 from copying IN into OUT, because those refs would
1980 	 move into the insn that reloads IN.
1981 
1982 	 However, we only ignore IN in its role as this reload.
1983 	 If the insn uses IN elsewhere and it contains OUT,
1984 	 that counts.  We can't be sure it's the "same" operand
1985 	 so it might not go through this reload.  */
1986       saved_rtx = *inloc;
1987       *inloc = const0_rtx;
1988 
1989       if (regno < FIRST_PSEUDO_REGISTER
1990 	  && HARD_REGNO_MODE_OK (regno, outmode)
1991 	  && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1992 					     PATTERN (this_insn), outloc))
1993 	{
1994 	  unsigned int i;
1995 
1996 	  for (i = 0; i < nwords; i++)
1997 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1998 				     regno + i))
1999 	      break;
2000 
2001 	  if (i == nwords)
2002 	    {
2003 	      if (REG_P (real_out))
2004 		value = real_out;
2005 	      else
2006 		value = gen_rtx_REG (outmode, regno);
2007 	    }
2008 	}
2009 
2010       *inloc = saved_rtx;
2011     }
2012 
2013   /* Consider using IN if OUT was not acceptable
2014      or if OUT dies in this insn (like the quotient in a divmod insn).
2015      We can't use IN unless it is dies in this insn,
2016      which means we must know accurately which hard regs are live.
2017      Also, the result can't go in IN if IN is used within OUT,
2018      or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
2019   if (hard_regs_live_known
2020       && REG_P (in)
2021       && REGNO (in) < FIRST_PSEUDO_REGISTER
2022       && (value == 0
2023 	  || find_reg_note (this_insn, REG_UNUSED, real_out))
2024       && find_reg_note (this_insn, REG_DEAD, real_in)
2025       && !fixed_regs[REGNO (in)]
2026       && HARD_REGNO_MODE_OK (REGNO (in),
2027 			     /* The only case where out and real_out might
2028 				have different modes is where real_out
2029 				is a subreg, and in that case, out
2030 				has a real mode.  */
2031 			     (GET_MODE (out) != VOIDmode
2032 			      ? GET_MODE (out) : outmode))
2033       && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2034 	  /* However only do this if we can be sure that this input
2035 	     operand doesn't correspond with an uninitialized pseudo.
2036 	     global can assign some hardreg to it that is the same as
2037 	     the one assigned to a different, also live pseudo (as it
2038 	     can ignore the conflict).  We must never introduce writes
2039 	     to such hardregs, as they would clobber the other live
2040 	     pseudo.  See PR 20973.  */
2041           || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2042 			     ORIGINAL_REGNO (in))
2043 	      /* Similarly, only do this if we can be sure that the death
2044 		 note is still valid.  global can assign some hardreg to
2045 		 the pseudo referenced in the note and simultaneously a
2046 		 subword of this hardreg to a different, also live pseudo,
2047 		 because only another subword of the hardreg is actually
2048 		 used in the insn.  This cannot happen if the pseudo has
2049 		 been assigned exactly one hardreg.  See PR 33732.  */
2050 	      && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2051     {
2052       unsigned int regno = REGNO (in) + in_offset;
2053       unsigned int nwords = hard_regno_nregs[regno][inmode];
2054 
2055       if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2056 	  && ! hard_reg_set_here_p (regno, regno + nwords,
2057 				    PATTERN (this_insn))
2058 	  && (! earlyclobber
2059 	      || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2060 						 PATTERN (this_insn), inloc)))
2061 	{
2062 	  unsigned int i;
2063 
2064 	  for (i = 0; i < nwords; i++)
2065 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2066 				     regno + i))
2067 	      break;
2068 
2069 	  if (i == nwords)
2070 	    {
2071 	      /* If we were going to use OUT as the reload reg
2072 		 and changed our mind, it means OUT is a dummy that
2073 		 dies here.  So don't bother copying value to it.  */
2074 	      if (for_real >= 0 && value == real_out)
2075 		rld[for_real].out = 0;
2076 	      if (REG_P (real_in))
2077 		value = real_in;
2078 	      else
2079 		value = gen_rtx_REG (inmode, regno);
2080 	    }
2081 	}
2082     }
2083 
2084   return value;
2085 }
2086 
2087 /* This page contains subroutines used mainly for determining
2088    whether the IN or an OUT of a reload can serve as the
2089    reload register.  */
2090 
2091 /* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
2092 
2093 int
2094 earlyclobber_operand_p (rtx x)
2095 {
2096   int i;
2097 
2098   for (i = 0; i < n_earlyclobbers; i++)
2099     if (reload_earlyclobbers[i] == x)
2100       return 1;
2101 
2102   return 0;
2103 }
2104 
2105 /* Return 1 if expression X alters a hard reg in the range
2106    from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2107    either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2108    X should be the body of an instruction.  */
2109 
2110 static int
2111 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2112 {
2113   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2114     {
2115       rtx op0 = SET_DEST (x);
2116 
2117       while (GET_CODE (op0) == SUBREG)
2118 	op0 = SUBREG_REG (op0);
2119       if (REG_P (op0))
2120 	{
2121 	  unsigned int r = REGNO (op0);
2122 
2123 	  /* See if this reg overlaps range under consideration.  */
2124 	  if (r < end_regno
2125 	      && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2126 	    return 1;
2127 	}
2128     }
2129   else if (GET_CODE (x) == PARALLEL)
2130     {
2131       int i = XVECLEN (x, 0) - 1;
2132 
2133       for (; i >= 0; i--)
2134 	if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2135 	  return 1;
2136     }
2137 
2138   return 0;
2139 }
2140 
2141 /* Return 1 if ADDR is a valid memory address for mode MODE
2142    in address space AS, and check that each pseudo reg has the
2143    proper kind of hard reg.  */
2144 
2145 int
2146 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2147 				    rtx addr, addr_space_t as)
2148 {
2149 #ifdef GO_IF_LEGITIMATE_ADDRESS
2150   gcc_assert (ADDR_SPACE_GENERIC_P (as));
2151   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2152   return 0;
2153 
2154  win:
2155   return 1;
2156 #else
2157   return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2158 #endif
2159 }
2160 
2161 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2162    if they are the same hard reg, and has special hacks for
2163    autoincrement and autodecrement.
2164    This is specifically intended for find_reloads to use
2165    in determining whether two operands match.
2166    X is the operand whose number is the lower of the two.
2167 
2168    The value is 2 if Y contains a pre-increment that matches
2169    a non-incrementing address in X.  */
2170 
2171 /* ??? To be completely correct, we should arrange to pass
2172    for X the output operand and for Y the input operand.
2173    For now, we assume that the output operand has the lower number
2174    because that is natural in (SET output (... input ...)).  */
2175 
2176 int
2177 operands_match_p (rtx x, rtx y)
2178 {
2179   int i;
2180   RTX_CODE code = GET_CODE (x);
2181   const char *fmt;
2182   int success_2;
2183 
2184   if (x == y)
2185     return 1;
2186   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2187       && (REG_P (y) || (GET_CODE (y) == SUBREG
2188 				  && REG_P (SUBREG_REG (y)))))
2189     {
2190       int j;
2191 
2192       if (code == SUBREG)
2193 	{
2194 	  i = REGNO (SUBREG_REG (x));
2195 	  if (i >= FIRST_PSEUDO_REGISTER)
2196 	    goto slow;
2197 	  i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2198 				    GET_MODE (SUBREG_REG (x)),
2199 				    SUBREG_BYTE (x),
2200 				    GET_MODE (x));
2201 	}
2202       else
2203 	i = REGNO (x);
2204 
2205       if (GET_CODE (y) == SUBREG)
2206 	{
2207 	  j = REGNO (SUBREG_REG (y));
2208 	  if (j >= FIRST_PSEUDO_REGISTER)
2209 	    goto slow;
2210 	  j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2211 				    GET_MODE (SUBREG_REG (y)),
2212 				    SUBREG_BYTE (y),
2213 				    GET_MODE (y));
2214 	}
2215       else
2216 	j = REGNO (y);
2217 
2218       /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2219 	 multiple hard register group of scalar integer registers, so that
2220 	 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2221 	 register.  */
2222       if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2223 	  && SCALAR_INT_MODE_P (GET_MODE (x))
2224 	  && i < FIRST_PSEUDO_REGISTER)
2225 	i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2226       if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2227 	  && SCALAR_INT_MODE_P (GET_MODE (y))
2228 	  && j < FIRST_PSEUDO_REGISTER)
2229 	j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2230 
2231       return i == j;
2232     }
2233   /* If two operands must match, because they are really a single
2234      operand of an assembler insn, then two postincrements are invalid
2235      because the assembler insn would increment only once.
2236      On the other hand, a postincrement matches ordinary indexing
2237      if the postincrement is the output operand.  */
2238   if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2239     return operands_match_p (XEXP (x, 0), y);
2240   /* Two preincrements are invalid
2241      because the assembler insn would increment only once.
2242      On the other hand, a preincrement matches ordinary indexing
2243      if the preincrement is the input operand.
2244      In this case, return 2, since some callers need to do special
2245      things when this happens.  */
2246   if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2247       || GET_CODE (y) == PRE_MODIFY)
2248     return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2249 
2250  slow:
2251 
2252   /* Now we have disposed of all the cases in which different rtx codes
2253      can match.  */
2254   if (code != GET_CODE (y))
2255     return 0;
2256 
2257   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2258   if (GET_MODE (x) != GET_MODE (y))
2259     return 0;
2260 
2261   /* MEMs refering to different address space are not equivalent.  */
2262   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2263     return 0;
2264 
2265   switch (code)
2266     {
2267     case CONST_INT:
2268     case CONST_DOUBLE:
2269     case CONST_FIXED:
2270       return 0;
2271 
2272     case LABEL_REF:
2273       return XEXP (x, 0) == XEXP (y, 0);
2274     case SYMBOL_REF:
2275       return XSTR (x, 0) == XSTR (y, 0);
2276 
2277     default:
2278       break;
2279     }
2280 
2281   /* Compare the elements.  If any pair of corresponding elements
2282      fail to match, return 0 for the whole things.  */
2283 
2284   success_2 = 0;
2285   fmt = GET_RTX_FORMAT (code);
2286   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2287     {
2288       int val, j;
2289       switch (fmt[i])
2290 	{
2291 	case 'w':
2292 	  if (XWINT (x, i) != XWINT (y, i))
2293 	    return 0;
2294 	  break;
2295 
2296 	case 'i':
2297 	  if (XINT (x, i) != XINT (y, i))
2298 	    return 0;
2299 	  break;
2300 
2301 	case 'e':
2302 	  val = operands_match_p (XEXP (x, i), XEXP (y, i));
2303 	  if (val == 0)
2304 	    return 0;
2305 	  /* If any subexpression returns 2,
2306 	     we should return 2 if we are successful.  */
2307 	  if (val == 2)
2308 	    success_2 = 1;
2309 	  break;
2310 
2311 	case '0':
2312 	  break;
2313 
2314 	case 'E':
2315 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2316 	    return 0;
2317 	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2318 	    {
2319 	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2320 	      if (val == 0)
2321 		return 0;
2322 	      if (val == 2)
2323 		success_2 = 1;
2324 	    }
2325 	  break;
2326 
2327 	  /* It is believed that rtx's at this level will never
2328 	     contain anything but integers and other rtx's,
2329 	     except for within LABEL_REFs and SYMBOL_REFs.  */
2330 	default:
2331 	  gcc_unreachable ();
2332 	}
2333     }
2334   return 1 + success_2;
2335 }
2336 
2337 /* Describe the range of registers or memory referenced by X.
2338    If X is a register, set REG_FLAG and put the first register
2339    number into START and the last plus one into END.
2340    If X is a memory reference, put a base address into BASE
2341    and a range of integer offsets into START and END.
2342    If X is pushing on the stack, we can assume it causes no trouble,
2343    so we set the SAFE field.  */
2344 
2345 static struct decomposition
2346 decompose (rtx x)
2347 {
2348   struct decomposition val;
2349   int all_const = 0;
2350 
2351   memset (&val, 0, sizeof (val));
2352 
2353   switch (GET_CODE (x))
2354     {
2355     case MEM:
2356       {
2357 	rtx base = NULL_RTX, offset = 0;
2358 	rtx addr = XEXP (x, 0);
2359 
2360 	if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2361 	    || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2362 	  {
2363 	    val.base = XEXP (addr, 0);
2364 	    val.start = -GET_MODE_SIZE (GET_MODE (x));
2365 	    val.end = GET_MODE_SIZE (GET_MODE (x));
2366 	    val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2367 	    return val;
2368 	  }
2369 
2370 	if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2371 	  {
2372 	    if (GET_CODE (XEXP (addr, 1)) == PLUS
2373 		&& XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2374 		&& CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2375 	      {
2376 		val.base  = XEXP (addr, 0);
2377 		val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2378 		val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
2379 		val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
2380 		return val;
2381 	      }
2382 	  }
2383 
2384 	if (GET_CODE (addr) == CONST)
2385 	  {
2386 	    addr = XEXP (addr, 0);
2387 	    all_const = 1;
2388 	  }
2389 	if (GET_CODE (addr) == PLUS)
2390 	  {
2391 	    if (CONSTANT_P (XEXP (addr, 0)))
2392 	      {
2393 		base = XEXP (addr, 1);
2394 		offset = XEXP (addr, 0);
2395 	      }
2396 	    else if (CONSTANT_P (XEXP (addr, 1)))
2397 	      {
2398 		base = XEXP (addr, 0);
2399 		offset = XEXP (addr, 1);
2400 	      }
2401 	  }
2402 
2403 	if (offset == 0)
2404 	  {
2405 	    base = addr;
2406 	    offset = const0_rtx;
2407 	  }
2408 	if (GET_CODE (offset) == CONST)
2409 	  offset = XEXP (offset, 0);
2410 	if (GET_CODE (offset) == PLUS)
2411 	  {
2412 	    if (CONST_INT_P (XEXP (offset, 0)))
2413 	      {
2414 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2415 		offset = XEXP (offset, 0);
2416 	      }
2417 	    else if (CONST_INT_P (XEXP (offset, 1)))
2418 	      {
2419 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2420 		offset = XEXP (offset, 1);
2421 	      }
2422 	    else
2423 	      {
2424 		base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2425 		offset = const0_rtx;
2426 	      }
2427 	  }
2428 	else if (!CONST_INT_P (offset))
2429 	  {
2430 	    base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2431 	    offset = const0_rtx;
2432 	  }
2433 
2434 	if (all_const && GET_CODE (base) == PLUS)
2435 	  base = gen_rtx_CONST (GET_MODE (base), base);
2436 
2437 	gcc_assert (CONST_INT_P (offset));
2438 
2439 	val.start = INTVAL (offset);
2440 	val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2441 	val.base = base;
2442       }
2443       break;
2444 
2445     case REG:
2446       val.reg_flag = 1;
2447       val.start = true_regnum (x);
2448       if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2449 	{
2450 	  /* A pseudo with no hard reg.  */
2451 	  val.start = REGNO (x);
2452 	  val.end = val.start + 1;
2453 	}
2454       else
2455 	/* A hard reg.  */
2456 	val.end = end_hard_regno (GET_MODE (x), val.start);
2457       break;
2458 
2459     case SUBREG:
2460       if (!REG_P (SUBREG_REG (x)))
2461 	/* This could be more precise, but it's good enough.  */
2462 	return decompose (SUBREG_REG (x));
2463       val.reg_flag = 1;
2464       val.start = true_regnum (x);
2465       if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2466 	return decompose (SUBREG_REG (x));
2467       else
2468 	/* A hard reg.  */
2469 	val.end = val.start + subreg_nregs (x);
2470       break;
2471 
2472     case SCRATCH:
2473       /* This hasn't been assigned yet, so it can't conflict yet.  */
2474       val.safe = 1;
2475       break;
2476 
2477     default:
2478       gcc_assert (CONSTANT_P (x));
2479       val.safe = 1;
2480       break;
2481     }
2482   return val;
2483 }
2484 
2485 /* Return 1 if altering Y will not modify the value of X.
2486    Y is also described by YDATA, which should be decompose (Y).  */
2487 
2488 static int
2489 immune_p (rtx x, rtx y, struct decomposition ydata)
2490 {
2491   struct decomposition xdata;
2492 
2493   if (ydata.reg_flag)
2494     return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2495   if (ydata.safe)
2496     return 1;
2497 
2498   gcc_assert (MEM_P (y));
2499   /* If Y is memory and X is not, Y can't affect X.  */
2500   if (!MEM_P (x))
2501     return 1;
2502 
2503   xdata = decompose (x);
2504 
2505   if (! rtx_equal_p (xdata.base, ydata.base))
2506     {
2507       /* If bases are distinct symbolic constants, there is no overlap.  */
2508       if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2509 	return 1;
2510       /* Constants and stack slots never overlap.  */
2511       if (CONSTANT_P (xdata.base)
2512 	  && (ydata.base == frame_pointer_rtx
2513 	      || ydata.base == hard_frame_pointer_rtx
2514 	      || ydata.base == stack_pointer_rtx))
2515 	return 1;
2516       if (CONSTANT_P (ydata.base)
2517 	  && (xdata.base == frame_pointer_rtx
2518 	      || xdata.base == hard_frame_pointer_rtx
2519 	      || xdata.base == stack_pointer_rtx))
2520 	return 1;
2521       /* If either base is variable, we don't know anything.  */
2522       return 0;
2523     }
2524 
2525   return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2526 }
2527 
2528 /* Similar, but calls decompose.  */
2529 
2530 int
2531 safe_from_earlyclobber (rtx op, rtx clobber)
2532 {
2533   struct decomposition early_data;
2534 
2535   early_data = decompose (clobber);
2536   return immune_p (op, clobber, early_data);
2537 }
2538 
2539 /* Main entry point of this file: search the body of INSN
2540    for values that need reloading and record them with push_reload.
2541    REPLACE nonzero means record also where the values occur
2542    so that subst_reloads can be used.
2543 
2544    IND_LEVELS says how many levels of indirection are supported by this
2545    machine; a value of zero means that a memory reference is not a valid
2546    memory address.
2547 
2548    LIVE_KNOWN says we have valid information about which hard
2549    regs are live at each point in the program; this is true when
2550    we are called from global_alloc but false when stupid register
2551    allocation has been done.
2552 
2553    RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2554    which is nonnegative if the reg has been commandeered for reloading into.
2555    It is copied into STATIC_RELOAD_REG_P and referenced from there
2556    by various subroutines.
2557 
2558    Return TRUE if some operands need to be changed, because of swapping
2559    commutative operands, reg_equiv_address substitution, or whatever.  */
2560 
2561 int
2562 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2563 	      short *reload_reg_p)
2564 {
2565   int insn_code_number;
2566   int i, j;
2567   int noperands;
2568   /* These start out as the constraints for the insn
2569      and they are chewed up as we consider alternatives.  */
2570   const char *constraints[MAX_RECOG_OPERANDS];
2571   /* These are the preferred classes for an operand, or NO_REGS if it isn't
2572      a register.  */
2573   enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2574   char pref_or_nothing[MAX_RECOG_OPERANDS];
2575   /* Nonzero for a MEM operand whose entire address needs a reload.
2576      May be -1 to indicate the entire address may or may not need a reload.  */
2577   int address_reloaded[MAX_RECOG_OPERANDS];
2578   /* Nonzero for an address operand that needs to be completely reloaded.
2579      May be -1 to indicate the entire operand may or may not need a reload.  */
2580   int address_operand_reloaded[MAX_RECOG_OPERANDS];
2581   /* Value of enum reload_type to use for operand.  */
2582   enum reload_type operand_type[MAX_RECOG_OPERANDS];
2583   /* Value of enum reload_type to use within address of operand.  */
2584   enum reload_type address_type[MAX_RECOG_OPERANDS];
2585   /* Save the usage of each operand.  */
2586   enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2587   int no_input_reloads = 0, no_output_reloads = 0;
2588   int n_alternatives;
2589   reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2590   char this_alternative_match_win[MAX_RECOG_OPERANDS];
2591   char this_alternative_win[MAX_RECOG_OPERANDS];
2592   char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2593   char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2594   int this_alternative_matches[MAX_RECOG_OPERANDS];
2595   int swapped;
2596   reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2597   int this_alternative_number;
2598   int goal_alternative_number = 0;
2599   int operand_reloadnum[MAX_RECOG_OPERANDS];
2600   int goal_alternative_matches[MAX_RECOG_OPERANDS];
2601   int goal_alternative_matched[MAX_RECOG_OPERANDS];
2602   char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2603   char goal_alternative_win[MAX_RECOG_OPERANDS];
2604   char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2605   char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2606   int goal_alternative_swapped;
2607   int best;
2608   int commutative;
2609   char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2610   rtx substed_operand[MAX_RECOG_OPERANDS];
2611   rtx body = PATTERN (insn);
2612   rtx set = single_set (insn);
2613   int goal_earlyclobber = 0, this_earlyclobber;
2614   enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2615   int retval = 0;
2616 
2617   this_insn = insn;
2618   n_reloads = 0;
2619   n_replacements = 0;
2620   n_earlyclobbers = 0;
2621   replace_reloads = replace;
2622   hard_regs_live_known = live_known;
2623   static_reload_reg_p = reload_reg_p;
2624 
2625   /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2626      neither are insns that SET cc0.  Insns that use CC0 are not allowed
2627      to have any input reloads.  */
2628   if (JUMP_P (insn) || CALL_P (insn))
2629     no_output_reloads = 1;
2630 
2631 #ifdef HAVE_cc0
2632   if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2633     no_input_reloads = 1;
2634   if (reg_set_p (cc0_rtx, PATTERN (insn)))
2635     no_output_reloads = 1;
2636 #endif
2637 
2638 #ifdef SECONDARY_MEMORY_NEEDED
2639   /* The eliminated forms of any secondary memory locations are per-insn, so
2640      clear them out here.  */
2641 
2642   if (secondary_memlocs_elim_used)
2643     {
2644       memset (secondary_memlocs_elim, 0,
2645 	      sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2646       secondary_memlocs_elim_used = 0;
2647     }
2648 #endif
2649 
2650   /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2651      is cheap to move between them.  If it is not, there may not be an insn
2652      to do the copy, so we may need a reload.  */
2653   if (GET_CODE (body) == SET
2654       && REG_P (SET_DEST (body))
2655       && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2656       && REG_P (SET_SRC (body))
2657       && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2658       && register_move_cost (GET_MODE (SET_SRC (body)),
2659 			     REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2660 			     REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2661     return 0;
2662 
2663   extract_insn (insn);
2664 
2665   noperands = reload_n_operands = recog_data.n_operands;
2666   n_alternatives = recog_data.n_alternatives;
2667 
2668   /* Just return "no reloads" if insn has no operands with constraints.  */
2669   if (noperands == 0 || n_alternatives == 0)
2670     return 0;
2671 
2672   insn_code_number = INSN_CODE (insn);
2673   this_insn_is_asm = insn_code_number < 0;
2674 
2675   memcpy (operand_mode, recog_data.operand_mode,
2676 	  noperands * sizeof (enum machine_mode));
2677   memcpy (constraints, recog_data.constraints,
2678 	  noperands * sizeof (const char *));
2679 
2680   commutative = -1;
2681 
2682   /* If we will need to know, later, whether some pair of operands
2683      are the same, we must compare them now and save the result.
2684      Reloading the base and index registers will clobber them
2685      and afterward they will fail to match.  */
2686 
2687   for (i = 0; i < noperands; i++)
2688     {
2689       const char *p;
2690       int c;
2691       char *end;
2692 
2693       substed_operand[i] = recog_data.operand[i];
2694       p = constraints[i];
2695 
2696       modified[i] = RELOAD_READ;
2697 
2698       /* Scan this operand's constraint to see if it is an output operand,
2699 	 an in-out operand, is commutative, or should match another.  */
2700 
2701       while ((c = *p))
2702 	{
2703 	  p += CONSTRAINT_LEN (c, p);
2704 	  switch (c)
2705 	    {
2706 	    case '=':
2707 	      modified[i] = RELOAD_WRITE;
2708 	      break;
2709 	    case '+':
2710 	      modified[i] = RELOAD_READ_WRITE;
2711 	      break;
2712 	    case '%':
2713 	      {
2714 		/* The last operand should not be marked commutative.  */
2715 		gcc_assert (i != noperands - 1);
2716 
2717 		/* We currently only support one commutative pair of
2718 		   operands.  Some existing asm code currently uses more
2719 		   than one pair.  Previously, that would usually work,
2720 		   but sometimes it would crash the compiler.  We
2721 		   continue supporting that case as well as we can by
2722 		   silently ignoring all but the first pair.  In the
2723 		   future we may handle it correctly.  */
2724 		if (commutative < 0)
2725 		  commutative = i;
2726 		else
2727 		  gcc_assert (this_insn_is_asm);
2728 	      }
2729 	      break;
2730 	    /* Use of ISDIGIT is tempting here, but it may get expensive because
2731 	       of locale support we don't want.  */
2732 	    case '0': case '1': case '2': case '3': case '4':
2733 	    case '5': case '6': case '7': case '8': case '9':
2734 	      {
2735 		c = strtoul (p - 1, &end, 10);
2736 		p = end;
2737 
2738 		operands_match[c][i]
2739 		  = operands_match_p (recog_data.operand[c],
2740 				      recog_data.operand[i]);
2741 
2742 		/* An operand may not match itself.  */
2743 		gcc_assert (c != i);
2744 
2745 		/* If C can be commuted with C+1, and C might need to match I,
2746 		   then C+1 might also need to match I.  */
2747 		if (commutative >= 0)
2748 		  {
2749 		    if (c == commutative || c == commutative + 1)
2750 		      {
2751 			int other = c + (c == commutative ? 1 : -1);
2752 			operands_match[other][i]
2753 			  = operands_match_p (recog_data.operand[other],
2754 					      recog_data.operand[i]);
2755 		      }
2756 		    if (i == commutative || i == commutative + 1)
2757 		      {
2758 			int other = i + (i == commutative ? 1 : -1);
2759 			operands_match[c][other]
2760 			  = operands_match_p (recog_data.operand[c],
2761 					      recog_data.operand[other]);
2762 		      }
2763 		    /* Note that C is supposed to be less than I.
2764 		       No need to consider altering both C and I because in
2765 		       that case we would alter one into the other.  */
2766 		  }
2767 	      }
2768 	    }
2769 	}
2770     }
2771 
2772   /* Examine each operand that is a memory reference or memory address
2773      and reload parts of the addresses into index registers.
2774      Also here any references to pseudo regs that didn't get hard regs
2775      but are equivalent to constants get replaced in the insn itself
2776      with those constants.  Nobody will ever see them again.
2777 
2778      Finally, set up the preferred classes of each operand.  */
2779 
2780   for (i = 0; i < noperands; i++)
2781     {
2782       RTX_CODE code = GET_CODE (recog_data.operand[i]);
2783 
2784       address_reloaded[i] = 0;
2785       address_operand_reloaded[i] = 0;
2786       operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2787 			 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2788 			 : RELOAD_OTHER);
2789       address_type[i]
2790 	= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2791 	   : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2792 	   : RELOAD_OTHER);
2793 
2794       if (*constraints[i] == 0)
2795 	/* Ignore things like match_operator operands.  */
2796 	;
2797       else if (constraints[i][0] == 'p'
2798 	       || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2799 	{
2800 	  address_operand_reloaded[i]
2801 	    = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2802 				    recog_data.operand[i],
2803 				    recog_data.operand_loc[i],
2804 				    i, operand_type[i], ind_levels, insn);
2805 
2806 	  /* If we now have a simple operand where we used to have a
2807 	     PLUS or MULT, re-recognize and try again.  */
2808 	  if ((OBJECT_P (*recog_data.operand_loc[i])
2809 	       || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2810 	      && (GET_CODE (recog_data.operand[i]) == MULT
2811 		  || GET_CODE (recog_data.operand[i]) == PLUS))
2812 	    {
2813 	      INSN_CODE (insn) = -1;
2814 	      retval = find_reloads (insn, replace, ind_levels, live_known,
2815 				     reload_reg_p);
2816 	      return retval;
2817 	    }
2818 
2819 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2820 	  substed_operand[i] = recog_data.operand[i];
2821 
2822 	  /* Address operands are reloaded in their existing mode,
2823 	     no matter what is specified in the machine description.  */
2824 	  operand_mode[i] = GET_MODE (recog_data.operand[i]);
2825 
2826 	  /* If the address is a single CONST_INT pick address mode
2827 	     instead otherwise we will later not know in which mode
2828 	     the reload should be performed.  */
2829 	  if (operand_mode[i] == VOIDmode)
2830 	    operand_mode[i] = Pmode;
2831 
2832 	}
2833       else if (code == MEM)
2834 	{
2835 	  address_reloaded[i]
2836 	    = find_reloads_address (GET_MODE (recog_data.operand[i]),
2837 				    recog_data.operand_loc[i],
2838 				    XEXP (recog_data.operand[i], 0),
2839 				    &XEXP (recog_data.operand[i], 0),
2840 				    i, address_type[i], ind_levels, insn);
2841 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2842 	  substed_operand[i] = recog_data.operand[i];
2843 	}
2844       else if (code == SUBREG)
2845 	{
2846 	  rtx reg = SUBREG_REG (recog_data.operand[i]);
2847 	  rtx op
2848 	    = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2849 				   ind_levels,
2850 				   set != 0
2851 				   && &SET_DEST (set) == recog_data.operand_loc[i],
2852 				   insn,
2853 				   &address_reloaded[i]);
2854 
2855 	  /* If we made a MEM to load (a part of) the stackslot of a pseudo
2856 	     that didn't get a hard register, emit a USE with a REG_EQUAL
2857 	     note in front so that we might inherit a previous, possibly
2858 	     wider reload.  */
2859 
2860 	  if (replace
2861 	      && MEM_P (op)
2862 	      && REG_P (reg)
2863 	      && (GET_MODE_SIZE (GET_MODE (reg))
2864 		  >= GET_MODE_SIZE (GET_MODE (op)))
2865 	      && reg_equiv_constant (REGNO (reg)) == 0)
2866 	    set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2867 						   insn),
2868 				 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2869 
2870 	  substed_operand[i] = recog_data.operand[i] = op;
2871 	}
2872       else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2873 	/* We can get a PLUS as an "operand" as a result of register
2874 	   elimination.  See eliminate_regs and gen_reload.  We handle
2875 	   a unary operator by reloading the operand.  */
2876 	substed_operand[i] = recog_data.operand[i]
2877 	  = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2878 				 ind_levels, 0, insn,
2879 				 &address_reloaded[i]);
2880       else if (code == REG)
2881 	{
2882 	  /* This is equivalent to calling find_reloads_toplev.
2883 	     The code is duplicated for speed.
2884 	     When we find a pseudo always equivalent to a constant,
2885 	     we replace it by the constant.  We must be sure, however,
2886 	     that we don't try to replace it in the insn in which it
2887 	     is being set.  */
2888 	  int regno = REGNO (recog_data.operand[i]);
2889 	  if (reg_equiv_constant (regno) != 0
2890 	      && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2891 	    {
2892 	      /* Record the existing mode so that the check if constants are
2893 		 allowed will work when operand_mode isn't specified.  */
2894 
2895 	      if (operand_mode[i] == VOIDmode)
2896 		operand_mode[i] = GET_MODE (recog_data.operand[i]);
2897 
2898 	      substed_operand[i] = recog_data.operand[i]
2899 		= reg_equiv_constant (regno);
2900 	    }
2901 	  if (reg_equiv_memory_loc (regno) != 0
2902 	      && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2903 	    /* We need not give a valid is_set_dest argument since the case
2904 	       of a constant equivalence was checked above.  */
2905 	    substed_operand[i] = recog_data.operand[i]
2906 	      = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2907 				     ind_levels, 0, insn,
2908 				     &address_reloaded[i]);
2909 	}
2910       /* If the operand is still a register (we didn't replace it with an
2911 	 equivalent), get the preferred class to reload it into.  */
2912       code = GET_CODE (recog_data.operand[i]);
2913       preferred_class[i]
2914 	= ((code == REG && REGNO (recog_data.operand[i])
2915 	    >= FIRST_PSEUDO_REGISTER)
2916 	   ? reg_preferred_class (REGNO (recog_data.operand[i]))
2917 	   : NO_REGS);
2918       pref_or_nothing[i]
2919 	= (code == REG
2920 	   && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2921 	   && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2922     }
2923 
2924   /* If this is simply a copy from operand 1 to operand 0, merge the
2925      preferred classes for the operands.  */
2926   if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2927       && recog_data.operand[1] == SET_SRC (set))
2928     {
2929       preferred_class[0] = preferred_class[1]
2930 	= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2931       pref_or_nothing[0] |= pref_or_nothing[1];
2932       pref_or_nothing[1] |= pref_or_nothing[0];
2933     }
2934 
2935   /* Now see what we need for pseudo-regs that didn't get hard regs
2936      or got the wrong kind of hard reg.  For this, we must consider
2937      all the operands together against the register constraints.  */
2938 
2939   best = MAX_RECOG_OPERANDS * 2 + 600;
2940 
2941   swapped = 0;
2942   goal_alternative_swapped = 0;
2943  try_swapped:
2944 
2945   /* The constraints are made of several alternatives.
2946      Each operand's constraint looks like foo,bar,... with commas
2947      separating the alternatives.  The first alternatives for all
2948      operands go together, the second alternatives go together, etc.
2949 
2950      First loop over alternatives.  */
2951 
2952   for (this_alternative_number = 0;
2953        this_alternative_number < n_alternatives;
2954        this_alternative_number++)
2955     {
2956       /* Loop over operands for one constraint alternative.  */
2957       /* LOSERS counts those that don't fit this alternative
2958 	 and would require loading.  */
2959       int losers = 0;
2960       /* BAD is set to 1 if it some operand can't fit this alternative
2961 	 even after reloading.  */
2962       int bad = 0;
2963       /* REJECT is a count of how undesirable this alternative says it is
2964 	 if any reloading is required.  If the alternative matches exactly
2965 	 then REJECT is ignored, but otherwise it gets this much
2966 	 counted against it in addition to the reloading needed.  Each
2967 	 ? counts three times here since we want the disparaging caused by
2968 	 a bad register class to only count 1/3 as much.  */
2969       int reject = 0;
2970 
2971       if (!recog_data.alternative_enabled_p[this_alternative_number])
2972 	{
2973 	  int i;
2974 
2975 	  for (i = 0; i < recog_data.n_operands; i++)
2976 	    constraints[i] = skip_alternative (constraints[i]);
2977 
2978 	  continue;
2979 	}
2980 
2981       this_earlyclobber = 0;
2982 
2983       for (i = 0; i < noperands; i++)
2984 	{
2985 	  const char *p = constraints[i];
2986 	  char *end;
2987 	  int len;
2988 	  int win = 0;
2989 	  int did_match = 0;
2990 	  /* 0 => this operand can be reloaded somehow for this alternative.  */
2991 	  int badop = 1;
2992 	  /* 0 => this operand can be reloaded if the alternative allows regs.  */
2993 	  int winreg = 0;
2994 	  int c;
2995 	  int m;
2996 	  rtx operand = recog_data.operand[i];
2997 	  int offset = 0;
2998 	  /* Nonzero means this is a MEM that must be reloaded into a reg
2999 	     regardless of what the constraint says.  */
3000 	  int force_reload = 0;
3001 	  int offmemok = 0;
3002 	  /* Nonzero if a constant forced into memory would be OK for this
3003 	     operand.  */
3004 	  int constmemok = 0;
3005 	  int earlyclobber = 0;
3006 
3007 	  /* If the predicate accepts a unary operator, it means that
3008 	     we need to reload the operand, but do not do this for
3009 	     match_operator and friends.  */
3010 	  if (UNARY_P (operand) && *p != 0)
3011 	    operand = XEXP (operand, 0);
3012 
3013 	  /* If the operand is a SUBREG, extract
3014 	     the REG or MEM (or maybe even a constant) within.
3015 	     (Constants can occur as a result of reg_equiv_constant.)  */
3016 
3017 	  while (GET_CODE (operand) == SUBREG)
3018 	    {
3019 	      /* Offset only matters when operand is a REG and
3020 		 it is a hard reg.  This is because it is passed
3021 		 to reg_fits_class_p if it is a REG and all pseudos
3022 		 return 0 from that function.  */
3023 	      if (REG_P (SUBREG_REG (operand))
3024 		  && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3025 		{
3026 		  if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3027 					     GET_MODE (SUBREG_REG (operand)),
3028 					     SUBREG_BYTE (operand),
3029 					     GET_MODE (operand)) < 0)
3030 		    force_reload = 1;
3031 		  offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3032 						 GET_MODE (SUBREG_REG (operand)),
3033 						 SUBREG_BYTE (operand),
3034 						 GET_MODE (operand));
3035 		}
3036 	      operand = SUBREG_REG (operand);
3037 	      /* Force reload if this is a constant or PLUS or if there may
3038 		 be a problem accessing OPERAND in the outer mode.  */
3039 	      if (CONSTANT_P (operand)
3040 		  || GET_CODE (operand) == PLUS
3041 		  /* We must force a reload of paradoxical SUBREGs
3042 		     of a MEM because the alignment of the inner value
3043 		     may not be enough to do the outer reference.  On
3044 		     big-endian machines, it may also reference outside
3045 		     the object.
3046 
3047 		     On machines that extend byte operations and we have a
3048 		     SUBREG where both the inner and outer modes are no wider
3049 		     than a word and the inner mode is narrower, is integral,
3050 		     and gets extended when loaded from memory, combine.c has
3051 		     made assumptions about the behavior of the machine in such
3052 		     register access.  If the data is, in fact, in memory we
3053 		     must always load using the size assumed to be in the
3054 		     register and let the insn do the different-sized
3055 		     accesses.
3056 
3057 		     This is doubly true if WORD_REGISTER_OPERATIONS.  In
3058 		     this case eliminate_regs has left non-paradoxical
3059 		     subregs for push_reload to see.  Make sure it does
3060 		     by forcing the reload.
3061 
3062 		     ??? When is it right at this stage to have a subreg
3063 		     of a mem that is _not_ to be handled specially?  IMO
3064 		     those should have been reduced to just a mem.  */
3065 		  || ((MEM_P (operand)
3066 		       || (REG_P (operand)
3067 			   && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3068 #ifndef WORD_REGISTER_OPERATIONS
3069 		      && (((GET_MODE_BITSIZE (GET_MODE (operand))
3070 			    < BIGGEST_ALIGNMENT)
3071 			   && (GET_MODE_SIZE (operand_mode[i])
3072 			       > GET_MODE_SIZE (GET_MODE (operand))))
3073 			  || BYTES_BIG_ENDIAN
3074 #ifdef LOAD_EXTEND_OP
3075 			  || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3076 			      && (GET_MODE_SIZE (GET_MODE (operand))
3077 				  <= UNITS_PER_WORD)
3078 			      && (GET_MODE_SIZE (operand_mode[i])
3079 				  > GET_MODE_SIZE (GET_MODE (operand)))
3080 			      && INTEGRAL_MODE_P (GET_MODE (operand))
3081 			      && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3082 #endif
3083 			  )
3084 #endif
3085 		      )
3086 		  )
3087 		force_reload = 1;
3088 	    }
3089 
3090 	  this_alternative[i] = NO_REGS;
3091 	  this_alternative_win[i] = 0;
3092 	  this_alternative_match_win[i] = 0;
3093 	  this_alternative_offmemok[i] = 0;
3094 	  this_alternative_earlyclobber[i] = 0;
3095 	  this_alternative_matches[i] = -1;
3096 
3097 	  /* An empty constraint or empty alternative
3098 	     allows anything which matched the pattern.  */
3099 	  if (*p == 0 || *p == ',')
3100 	    win = 1, badop = 0;
3101 
3102 	  /* Scan this alternative's specs for this operand;
3103 	     set WIN if the operand fits any letter in this alternative.
3104 	     Otherwise, clear BADOP if this operand could
3105 	     fit some letter after reloads,
3106 	     or set WINREG if this operand could fit after reloads
3107 	     provided the constraint allows some registers.  */
3108 
3109 	  do
3110 	    switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3111 	      {
3112 	      case '\0':
3113 		len = 0;
3114 		break;
3115 	      case ',':
3116 		c = '\0';
3117 		break;
3118 
3119 	      case '=':  case '+':  case '*':
3120 		break;
3121 
3122 	      case '%':
3123 		/* We only support one commutative marker, the first
3124 		   one.  We already set commutative above.  */
3125 		break;
3126 
3127 	      case '?':
3128 		reject += 6;
3129 		break;
3130 
3131 	      case '!':
3132 		reject = 600;
3133 		break;
3134 
3135 	      case '#':
3136 		/* Ignore rest of this alternative as far as
3137 		   reloading is concerned.  */
3138 		do
3139 		  p++;
3140 		while (*p && *p != ',');
3141 		len = 0;
3142 		break;
3143 
3144 	      case '0':  case '1':  case '2':  case '3':  case '4':
3145 	      case '5':  case '6':  case '7':  case '8':  case '9':
3146 		m = strtoul (p, &end, 10);
3147 		p = end;
3148 		len = 0;
3149 
3150 		this_alternative_matches[i] = m;
3151 		/* We are supposed to match a previous operand.
3152 		   If we do, we win if that one did.
3153 		   If we do not, count both of the operands as losers.
3154 		   (This is too conservative, since most of the time
3155 		   only a single reload insn will be needed to make
3156 		   the two operands win.  As a result, this alternative
3157 		   may be rejected when it is actually desirable.)  */
3158 		if ((swapped && (m != commutative || i != commutative + 1))
3159 		    /* If we are matching as if two operands were swapped,
3160 		       also pretend that operands_match had been computed
3161 		       with swapped.
3162 		       But if I is the second of those and C is the first,
3163 		       don't exchange them, because operands_match is valid
3164 		       only on one side of its diagonal.  */
3165 		    ? (operands_match
3166 		       [(m == commutative || m == commutative + 1)
3167 		       ? 2 * commutative + 1 - m : m]
3168 		       [(i == commutative || i == commutative + 1)
3169 		       ? 2 * commutative + 1 - i : i])
3170 		    : operands_match[m][i])
3171 		  {
3172 		    /* If we are matching a non-offsettable address where an
3173 		       offsettable address was expected, then we must reject
3174 		       this combination, because we can't reload it.  */
3175 		    if (this_alternative_offmemok[m]
3176 			&& MEM_P (recog_data.operand[m])
3177 			&& this_alternative[m] == NO_REGS
3178 			&& ! this_alternative_win[m])
3179 		      bad = 1;
3180 
3181 		    did_match = this_alternative_win[m];
3182 		  }
3183 		else
3184 		  {
3185 		    /* Operands don't match.  */
3186 		    rtx value;
3187 		    int loc1, loc2;
3188 		    /* Retroactively mark the operand we had to match
3189 		       as a loser, if it wasn't already.  */
3190 		    if (this_alternative_win[m])
3191 		      losers++;
3192 		    this_alternative_win[m] = 0;
3193 		    if (this_alternative[m] == NO_REGS)
3194 		      bad = 1;
3195 		    /* But count the pair only once in the total badness of
3196 		       this alternative, if the pair can be a dummy reload.
3197 		       The pointers in operand_loc are not swapped; swap
3198 		       them by hand if necessary.  */
3199 		    if (swapped && i == commutative)
3200 		      loc1 = commutative + 1;
3201 		    else if (swapped && i == commutative + 1)
3202 		      loc1 = commutative;
3203 		    else
3204 		      loc1 = i;
3205 		    if (swapped && m == commutative)
3206 		      loc2 = commutative + 1;
3207 		    else if (swapped && m == commutative + 1)
3208 		      loc2 = commutative;
3209 		    else
3210 		      loc2 = m;
3211 		    value
3212 		      = find_dummy_reload (recog_data.operand[i],
3213 					   recog_data.operand[m],
3214 					   recog_data.operand_loc[loc1],
3215 					   recog_data.operand_loc[loc2],
3216 					   operand_mode[i], operand_mode[m],
3217 					   this_alternative[m], -1,
3218 					   this_alternative_earlyclobber[m]);
3219 
3220 		    if (value != 0)
3221 		      losers--;
3222 		  }
3223 		/* This can be fixed with reloads if the operand
3224 		   we are supposed to match can be fixed with reloads.  */
3225 		badop = 0;
3226 		this_alternative[i] = this_alternative[m];
3227 
3228 		/* If we have to reload this operand and some previous
3229 		   operand also had to match the same thing as this
3230 		   operand, we don't know how to do that.  So reject this
3231 		   alternative.  */
3232 		if (! did_match || force_reload)
3233 		  for (j = 0; j < i; j++)
3234 		    if (this_alternative_matches[j]
3235 			== this_alternative_matches[i])
3236 		      badop = 1;
3237 		break;
3238 
3239 	      case 'p':
3240 		/* All necessary reloads for an address_operand
3241 		   were handled in find_reloads_address.  */
3242 		this_alternative[i]
3243 		  = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3244 				    ADDRESS, SCRATCH);
3245 		win = 1;
3246 		badop = 0;
3247 		break;
3248 
3249 	      case TARGET_MEM_CONSTRAINT:
3250 		if (force_reload)
3251 		  break;
3252 		if (MEM_P (operand)
3253 		    || (REG_P (operand)
3254 			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3255 			&& reg_renumber[REGNO (operand)] < 0))
3256 		  win = 1;
3257 		if (CONST_POOL_OK_P (operand_mode[i], operand))
3258 		  badop = 0;
3259 		constmemok = 1;
3260 		break;
3261 
3262 	      case '<':
3263 		if (MEM_P (operand)
3264 		    && ! address_reloaded[i]
3265 		    && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3266 			|| GET_CODE (XEXP (operand, 0)) == POST_DEC))
3267 		  win = 1;
3268 		break;
3269 
3270 	      case '>':
3271 		if (MEM_P (operand)
3272 		    && ! address_reloaded[i]
3273 		    && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3274 			|| GET_CODE (XEXP (operand, 0)) == POST_INC))
3275 		  win = 1;
3276 		break;
3277 
3278 		/* Memory operand whose address is not offsettable.  */
3279 	      case 'V':
3280 		if (force_reload)
3281 		  break;
3282 		if (MEM_P (operand)
3283 		    && ! (ind_levels ? offsettable_memref_p (operand)
3284 			  : offsettable_nonstrict_memref_p (operand))
3285 		    /* Certain mem addresses will become offsettable
3286 		       after they themselves are reloaded.  This is important;
3287 		       we don't want our own handling of unoffsettables
3288 		       to override the handling of reg_equiv_address.  */
3289 		    && !(REG_P (XEXP (operand, 0))
3290 			 && (ind_levels == 0
3291 			     || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3292 		  win = 1;
3293 		break;
3294 
3295 		/* Memory operand whose address is offsettable.  */
3296 	      case 'o':
3297 		if (force_reload)
3298 		  break;
3299 		if ((MEM_P (operand)
3300 		     /* If IND_LEVELS, find_reloads_address won't reload a
3301 			pseudo that didn't get a hard reg, so we have to
3302 			reject that case.  */
3303 		     && ((ind_levels ? offsettable_memref_p (operand)
3304 			  : offsettable_nonstrict_memref_p (operand))
3305 			 /* A reloaded address is offsettable because it is now
3306 			    just a simple register indirect.  */
3307 			 || address_reloaded[i] == 1))
3308 		    || (REG_P (operand)
3309 			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3310 			&& reg_renumber[REGNO (operand)] < 0
3311 			/* If reg_equiv_address is nonzero, we will be
3312 			   loading it into a register; hence it will be
3313 			   offsettable, but we cannot say that reg_equiv_mem
3314 			   is offsettable without checking.  */
3315 			&& ((reg_equiv_mem (REGNO (operand)) != 0
3316 			     && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3317 			    || (reg_equiv_address (REGNO (operand)) != 0))))
3318 		  win = 1;
3319 		if (CONST_POOL_OK_P (operand_mode[i], operand)
3320 		    || MEM_P (operand))
3321 		  badop = 0;
3322 		constmemok = 1;
3323 		offmemok = 1;
3324 		break;
3325 
3326 	      case '&':
3327 		/* Output operand that is stored before the need for the
3328 		   input operands (and their index registers) is over.  */
3329 		earlyclobber = 1, this_earlyclobber = 1;
3330 		break;
3331 
3332 	      case 'E':
3333 	      case 'F':
3334 		if (GET_CODE (operand) == CONST_DOUBLE
3335 		    || (GET_CODE (operand) == CONST_VECTOR
3336 			&& (GET_MODE_CLASS (GET_MODE (operand))
3337 			    == MODE_VECTOR_FLOAT)))
3338 		  win = 1;
3339 		break;
3340 
3341 	      case 'G':
3342 	      case 'H':
3343 		if (GET_CODE (operand) == CONST_DOUBLE
3344 		    && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3345 		  win = 1;
3346 		break;
3347 
3348 	      case 's':
3349 		if (CONST_INT_P (operand)
3350 		    || (GET_CODE (operand) == CONST_DOUBLE
3351 			&& GET_MODE (operand) == VOIDmode))
3352 		  break;
3353 	      case 'i':
3354 		if (CONSTANT_P (operand)
3355 		    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3356 		  win = 1;
3357 		break;
3358 
3359 	      case 'n':
3360 		if (CONST_INT_P (operand)
3361 		    || (GET_CODE (operand) == CONST_DOUBLE
3362 			&& GET_MODE (operand) == VOIDmode))
3363 		  win = 1;
3364 		break;
3365 
3366 	      case 'I':
3367 	      case 'J':
3368 	      case 'K':
3369 	      case 'L':
3370 	      case 'M':
3371 	      case 'N':
3372 	      case 'O':
3373 	      case 'P':
3374 		if (CONST_INT_P (operand)
3375 		    && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3376 		  win = 1;
3377 		break;
3378 
3379 	      case 'X':
3380 		force_reload = 0;
3381 		win = 1;
3382 		break;
3383 
3384 	      case 'g':
3385 		if (! force_reload
3386 		    /* A PLUS is never a valid operand, but reload can make
3387 		       it from a register when eliminating registers.  */
3388 		    && GET_CODE (operand) != PLUS
3389 		    /* A SCRATCH is not a valid operand.  */
3390 		    && GET_CODE (operand) != SCRATCH
3391 		    && (! CONSTANT_P (operand)
3392 			|| ! flag_pic
3393 			|| LEGITIMATE_PIC_OPERAND_P (operand))
3394 		    && (GENERAL_REGS == ALL_REGS
3395 			|| !REG_P (operand)
3396 			|| (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3397 			    && reg_renumber[REGNO (operand)] < 0)))
3398 		  win = 1;
3399 		/* Drop through into 'r' case.  */
3400 
3401 	      case 'r':
3402 		this_alternative[i]
3403 		  = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3404 		goto reg;
3405 
3406 	      default:
3407 		if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3408 		  {
3409 #ifdef EXTRA_CONSTRAINT_STR
3410 		    if (EXTRA_MEMORY_CONSTRAINT (c, p))
3411 		      {
3412 			if (force_reload)
3413 			  break;
3414 		        if (EXTRA_CONSTRAINT_STR (operand, c, p))
3415 		          win = 1;
3416 			/* If the address was already reloaded,
3417 			   we win as well.  */
3418 			else if (MEM_P (operand)
3419 				 && address_reloaded[i] == 1)
3420 			  win = 1;
3421 			/* Likewise if the address will be reloaded because
3422 			   reg_equiv_address is nonzero.  For reg_equiv_mem
3423 			   we have to check.  */
3424 		        else if (REG_P (operand)
3425 				 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3426 				 && reg_renumber[REGNO (operand)] < 0
3427 				 && ((reg_equiv_mem (REGNO (operand)) != 0
3428 				      && EXTRA_CONSTRAINT_STR (reg_equiv_mem (REGNO (operand)), c, p))
3429 				     || (reg_equiv_address (REGNO (operand)) != 0)))
3430 			  win = 1;
3431 
3432 			/* If we didn't already win, we can reload
3433 			   constants via force_const_mem, and other
3434 			   MEMs by reloading the address like for 'o'.  */
3435 			if (CONST_POOL_OK_P (operand_mode[i], operand)
3436 			    || MEM_P (operand))
3437 			  badop = 0;
3438 			constmemok = 1;
3439 			offmemok = 1;
3440 			break;
3441 		      }
3442 		    if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3443 		      {
3444 		        if (EXTRA_CONSTRAINT_STR (operand, c, p))
3445 		          win = 1;
3446 
3447 			/* If we didn't already win, we can reload
3448 			   the address into a base register.  */
3449 			this_alternative[i]
3450 			  = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3451 					    ADDRESS, SCRATCH);
3452 			badop = 0;
3453 			break;
3454 		      }
3455 
3456 		    if (EXTRA_CONSTRAINT_STR (operand, c, p))
3457 		      win = 1;
3458 #endif
3459 		    break;
3460 		  }
3461 
3462 		this_alternative[i]
3463 		  = (reg_class_subunion
3464 		     [this_alternative[i]]
3465 		     [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3466 	      reg:
3467 		if (GET_MODE (operand) == BLKmode)
3468 		  break;
3469 		winreg = 1;
3470 		if (REG_P (operand)
3471 		    && reg_fits_class_p (operand, this_alternative[i],
3472 					 offset, GET_MODE (recog_data.operand[i])))
3473 		  win = 1;
3474 		break;
3475 	      }
3476 	  while ((p += len), c);
3477 
3478 	  constraints[i] = p;
3479 
3480 	  /* If this operand could be handled with a reg,
3481 	     and some reg is allowed, then this operand can be handled.  */
3482 	  if (winreg && this_alternative[i] != NO_REGS
3483 	      && (win || !class_only_fixed_regs[this_alternative[i]]))
3484 	    badop = 0;
3485 
3486 	  /* Record which operands fit this alternative.  */
3487 	  this_alternative_earlyclobber[i] = earlyclobber;
3488 	  if (win && ! force_reload)
3489 	    this_alternative_win[i] = 1;
3490 	  else if (did_match && ! force_reload)
3491 	    this_alternative_match_win[i] = 1;
3492 	  else
3493 	    {
3494 	      int const_to_mem = 0;
3495 
3496 	      this_alternative_offmemok[i] = offmemok;
3497 	      losers++;
3498 	      if (badop)
3499 		bad = 1;
3500 	      /* Alternative loses if it has no regs for a reg operand.  */
3501 	      if (REG_P (operand)
3502 		  && this_alternative[i] == NO_REGS
3503 		  && this_alternative_matches[i] < 0)
3504 		bad = 1;
3505 
3506 	      /* If this is a constant that is reloaded into the desired
3507 		 class by copying it to memory first, count that as another
3508 		 reload.  This is consistent with other code and is
3509 		 required to avoid choosing another alternative when
3510 		 the constant is moved into memory by this function on
3511 		 an early reload pass.  Note that the test here is
3512 		 precisely the same as in the code below that calls
3513 		 force_const_mem.  */
3514 	      if (CONST_POOL_OK_P (operand_mode[i], operand)
3515 		  && ((targetm.preferred_reload_class (operand,
3516 						       this_alternative[i])
3517 		       == NO_REGS)
3518 		      || no_input_reloads))
3519 		{
3520 		  const_to_mem = 1;
3521 		  if (this_alternative[i] != NO_REGS)
3522 		    losers++;
3523 		}
3524 
3525 	      /* Alternative loses if it requires a type of reload not
3526 		 permitted for this insn.  We can always reload SCRATCH
3527 		 and objects with a REG_UNUSED note.  */
3528 	      if (GET_CODE (operand) != SCRATCH
3529 		       && modified[i] != RELOAD_READ && no_output_reloads
3530 		       && ! find_reg_note (insn, REG_UNUSED, operand))
3531 		bad = 1;
3532 	      else if (modified[i] != RELOAD_WRITE && no_input_reloads
3533 		       && ! const_to_mem)
3534 		bad = 1;
3535 
3536 	      /* If we can't reload this value at all, reject this
3537 		 alternative.  Note that we could also lose due to
3538 		 LIMIT_RELOAD_CLASS, but we don't check that
3539 		 here.  */
3540 
3541 	      if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3542 		{
3543 		  if (targetm.preferred_reload_class (operand, this_alternative[i])
3544 		      == NO_REGS)
3545 		    reject = 600;
3546 
3547 		  if (operand_type[i] == RELOAD_FOR_OUTPUT
3548 		      && (targetm.preferred_output_reload_class (operand,
3549 								 this_alternative[i])
3550 			  == NO_REGS))
3551 		    reject = 600;
3552 		}
3553 
3554 	      /* We prefer to reload pseudos over reloading other things,
3555 		 since such reloads may be able to be eliminated later.
3556 		 If we are reloading a SCRATCH, we won't be generating any
3557 		 insns, just using a register, so it is also preferred.
3558 		 So bump REJECT in other cases.  Don't do this in the
3559 		 case where we are forcing a constant into memory and
3560 		 it will then win since we don't want to have a different
3561 		 alternative match then.  */
3562 	      if (! (REG_P (operand)
3563 		     && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3564 		  && GET_CODE (operand) != SCRATCH
3565 		  && ! (const_to_mem && constmemok))
3566 		reject += 2;
3567 
3568 	      /* Input reloads can be inherited more often than output
3569 		 reloads can be removed, so penalize output reloads.  */
3570 	      if (operand_type[i] != RELOAD_FOR_INPUT
3571 		  && GET_CODE (operand) != SCRATCH)
3572 		reject++;
3573 	    }
3574 
3575 	  /* If this operand is a pseudo register that didn't get a hard
3576 	     reg and this alternative accepts some register, see if the
3577 	     class that we want is a subset of the preferred class for this
3578 	     register.  If not, but it intersects that class, use the
3579 	     preferred class instead.  If it does not intersect the preferred
3580 	     class, show that usage of this alternative should be discouraged;
3581 	     it will be discouraged more still if the register is `preferred
3582 	     or nothing'.  We do this because it increases the chance of
3583 	     reusing our spill register in a later insn and avoiding a pair
3584 	     of memory stores and loads.
3585 
3586 	     Don't bother with this if this alternative will accept this
3587 	     operand.
3588 
3589 	     Don't do this for a multiword operand, since it is only a
3590 	     small win and has the risk of requiring more spill registers,
3591 	     which could cause a large loss.
3592 
3593 	     Don't do this if the preferred class has only one register
3594 	     because we might otherwise exhaust the class.  */
3595 
3596 	  if (! win && ! did_match
3597 	      && this_alternative[i] != NO_REGS
3598 	      && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3599 	      && reg_class_size [(int) preferred_class[i]] > 0
3600 	      && ! small_register_class_p (preferred_class[i]))
3601 	    {
3602 	      if (! reg_class_subset_p (this_alternative[i],
3603 					preferred_class[i]))
3604 		{
3605 		  /* Since we don't have a way of forming the intersection,
3606 		     we just do something special if the preferred class
3607 		     is a subset of the class we have; that's the most
3608 		     common case anyway.  */
3609 		  if (reg_class_subset_p (preferred_class[i],
3610 					  this_alternative[i]))
3611 		    this_alternative[i] = preferred_class[i];
3612 		  else
3613 		    reject += (2 + 2 * pref_or_nothing[i]);
3614 		}
3615 	    }
3616 	}
3617 
3618       /* Now see if any output operands that are marked "earlyclobber"
3619 	 in this alternative conflict with any input operands
3620 	 or any memory addresses.  */
3621 
3622       for (i = 0; i < noperands; i++)
3623 	if (this_alternative_earlyclobber[i]
3624 	    && (this_alternative_win[i] || this_alternative_match_win[i]))
3625 	  {
3626 	    struct decomposition early_data;
3627 
3628 	    early_data = decompose (recog_data.operand[i]);
3629 
3630 	    gcc_assert (modified[i] != RELOAD_READ);
3631 
3632 	    if (this_alternative[i] == NO_REGS)
3633 	      {
3634 		this_alternative_earlyclobber[i] = 0;
3635 		gcc_assert (this_insn_is_asm);
3636 		error_for_asm (this_insn,
3637 			       "%<&%> constraint used with no register class");
3638 	      }
3639 
3640 	    for (j = 0; j < noperands; j++)
3641 	      /* Is this an input operand or a memory ref?  */
3642 	      if ((MEM_P (recog_data.operand[j])
3643 		   || modified[j] != RELOAD_WRITE)
3644 		  && j != i
3645 		  /* Ignore things like match_operator operands.  */
3646 		  && !recog_data.is_operator[j]
3647 		  /* Don't count an input operand that is constrained to match
3648 		     the early clobber operand.  */
3649 		  && ! (this_alternative_matches[j] == i
3650 			&& rtx_equal_p (recog_data.operand[i],
3651 					recog_data.operand[j]))
3652 		  /* Is it altered by storing the earlyclobber operand?  */
3653 		  && !immune_p (recog_data.operand[j], recog_data.operand[i],
3654 				early_data))
3655 		{
3656 		  /* If the output is in a non-empty few-regs class,
3657 		     it's costly to reload it, so reload the input instead.  */
3658 		  if (small_register_class_p (this_alternative[i])
3659 		      && (REG_P (recog_data.operand[j])
3660 			  || GET_CODE (recog_data.operand[j]) == SUBREG))
3661 		    {
3662 		      losers++;
3663 		      this_alternative_win[j] = 0;
3664 		      this_alternative_match_win[j] = 0;
3665 		    }
3666 		  else
3667 		    break;
3668 		}
3669 	    /* If an earlyclobber operand conflicts with something,
3670 	       it must be reloaded, so request this and count the cost.  */
3671 	    if (j != noperands)
3672 	      {
3673 		losers++;
3674 		this_alternative_win[i] = 0;
3675 		this_alternative_match_win[j] = 0;
3676 		for (j = 0; j < noperands; j++)
3677 		  if (this_alternative_matches[j] == i
3678 		      && this_alternative_match_win[j])
3679 		    {
3680 		      this_alternative_win[j] = 0;
3681 		      this_alternative_match_win[j] = 0;
3682 		      losers++;
3683 		    }
3684 	      }
3685 	  }
3686 
3687       /* If one alternative accepts all the operands, no reload required,
3688 	 choose that alternative; don't consider the remaining ones.  */
3689       if (losers == 0)
3690 	{
3691 	  /* Unswap these so that they are never swapped at `finish'.  */
3692 	  if (commutative >= 0)
3693 	    {
3694 	      recog_data.operand[commutative] = substed_operand[commutative];
3695 	      recog_data.operand[commutative + 1]
3696 		= substed_operand[commutative + 1];
3697 	    }
3698 	  for (i = 0; i < noperands; i++)
3699 	    {
3700 	      goal_alternative_win[i] = this_alternative_win[i];
3701 	      goal_alternative_match_win[i] = this_alternative_match_win[i];
3702 	      goal_alternative[i] = this_alternative[i];
3703 	      goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3704 	      goal_alternative_matches[i] = this_alternative_matches[i];
3705 	      goal_alternative_earlyclobber[i]
3706 		= this_alternative_earlyclobber[i];
3707 	    }
3708 	  goal_alternative_number = this_alternative_number;
3709 	  goal_alternative_swapped = swapped;
3710 	  goal_earlyclobber = this_earlyclobber;
3711 	  goto finish;
3712 	}
3713 
3714       /* REJECT, set by the ! and ? constraint characters and when a register
3715 	 would be reloaded into a non-preferred class, discourages the use of
3716 	 this alternative for a reload goal.  REJECT is incremented by six
3717 	 for each ? and two for each non-preferred class.  */
3718       losers = losers * 6 + reject;
3719 
3720       /* If this alternative can be made to work by reloading,
3721 	 and it needs less reloading than the others checked so far,
3722 	 record it as the chosen goal for reloading.  */
3723       if (! bad)
3724 	{
3725 	  if (best > losers)
3726 	    {
3727 	      for (i = 0; i < noperands; i++)
3728 		{
3729 		  goal_alternative[i] = this_alternative[i];
3730 		  goal_alternative_win[i] = this_alternative_win[i];
3731 		  goal_alternative_match_win[i]
3732 		    = this_alternative_match_win[i];
3733 		  goal_alternative_offmemok[i]
3734 		    = this_alternative_offmemok[i];
3735 		  goal_alternative_matches[i] = this_alternative_matches[i];
3736 		  goal_alternative_earlyclobber[i]
3737 		    = this_alternative_earlyclobber[i];
3738 		}
3739 	      goal_alternative_swapped = swapped;
3740 	      best = losers;
3741 	      goal_alternative_number = this_alternative_number;
3742 	      goal_earlyclobber = this_earlyclobber;
3743 	    }
3744 	}
3745     }
3746 
3747   /* If insn is commutative (it's safe to exchange a certain pair of operands)
3748      then we need to try each alternative twice,
3749      the second time matching those two operands
3750      as if we had exchanged them.
3751      To do this, really exchange them in operands.
3752 
3753      If we have just tried the alternatives the second time,
3754      return operands to normal and drop through.  */
3755 
3756   if (commutative >= 0)
3757     {
3758       swapped = !swapped;
3759       if (swapped)
3760 	{
3761 	  enum reg_class tclass;
3762 	  int t;
3763 
3764 	  recog_data.operand[commutative] = substed_operand[commutative + 1];
3765 	  recog_data.operand[commutative + 1] = substed_operand[commutative];
3766 	  /* Swap the duplicates too.  */
3767 	  for (i = 0; i < recog_data.n_dups; i++)
3768 	    if (recog_data.dup_num[i] == commutative
3769 		|| recog_data.dup_num[i] == commutative + 1)
3770 	      *recog_data.dup_loc[i]
3771 		 = recog_data.operand[(int) recog_data.dup_num[i]];
3772 
3773 	  tclass = preferred_class[commutative];
3774 	  preferred_class[commutative] = preferred_class[commutative + 1];
3775 	  preferred_class[commutative + 1] = tclass;
3776 
3777 	  t = pref_or_nothing[commutative];
3778 	  pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3779 	  pref_or_nothing[commutative + 1] = t;
3780 
3781 	  t = address_reloaded[commutative];
3782 	  address_reloaded[commutative] = address_reloaded[commutative + 1];
3783 	  address_reloaded[commutative + 1] = t;
3784 
3785 	  memcpy (constraints, recog_data.constraints,
3786 		  noperands * sizeof (const char *));
3787 	  goto try_swapped;
3788 	}
3789       else
3790 	{
3791 	  recog_data.operand[commutative] = substed_operand[commutative];
3792 	  recog_data.operand[commutative + 1]
3793 	    = substed_operand[commutative + 1];
3794 	  /* Unswap the duplicates too.  */
3795 	  for (i = 0; i < recog_data.n_dups; i++)
3796 	    if (recog_data.dup_num[i] == commutative
3797 		|| recog_data.dup_num[i] == commutative + 1)
3798 	      *recog_data.dup_loc[i]
3799 		 = recog_data.operand[(int) recog_data.dup_num[i]];
3800 	}
3801     }
3802 
3803   /* The operands don't meet the constraints.
3804      goal_alternative describes the alternative
3805      that we could reach by reloading the fewest operands.
3806      Reload so as to fit it.  */
3807 
3808   if (best == MAX_RECOG_OPERANDS * 2 + 600)
3809     {
3810       /* No alternative works with reloads??  */
3811       if (insn_code_number >= 0)
3812 	fatal_insn ("unable to generate reloads for:", insn);
3813       error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3814       /* Avoid further trouble with this insn.  */
3815       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3816       n_reloads = 0;
3817       return 0;
3818     }
3819 
3820   /* Jump to `finish' from above if all operands are valid already.
3821      In that case, goal_alternative_win is all 1.  */
3822  finish:
3823 
3824   /* Right now, for any pair of operands I and J that are required to match,
3825      with I < J,
3826      goal_alternative_matches[J] is I.
3827      Set up goal_alternative_matched as the inverse function:
3828      goal_alternative_matched[I] = J.  */
3829 
3830   for (i = 0; i < noperands; i++)
3831     goal_alternative_matched[i] = -1;
3832 
3833   for (i = 0; i < noperands; i++)
3834     if (! goal_alternative_win[i]
3835 	&& goal_alternative_matches[i] >= 0)
3836       goal_alternative_matched[goal_alternative_matches[i]] = i;
3837 
3838   for (i = 0; i < noperands; i++)
3839     goal_alternative_win[i] |= goal_alternative_match_win[i];
3840 
3841   /* If the best alternative is with operands 1 and 2 swapped,
3842      consider them swapped before reporting the reloads.  Update the
3843      operand numbers of any reloads already pushed.  */
3844 
3845   if (goal_alternative_swapped)
3846     {
3847       rtx tem;
3848 
3849       tem = substed_operand[commutative];
3850       substed_operand[commutative] = substed_operand[commutative + 1];
3851       substed_operand[commutative + 1] = tem;
3852       tem = recog_data.operand[commutative];
3853       recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3854       recog_data.operand[commutative + 1] = tem;
3855       tem = *recog_data.operand_loc[commutative];
3856       *recog_data.operand_loc[commutative]
3857 	= *recog_data.operand_loc[commutative + 1];
3858       *recog_data.operand_loc[commutative + 1] = tem;
3859 
3860       for (i = 0; i < n_reloads; i++)
3861 	{
3862 	  if (rld[i].opnum == commutative)
3863 	    rld[i].opnum = commutative + 1;
3864 	  else if (rld[i].opnum == commutative + 1)
3865 	    rld[i].opnum = commutative;
3866 	}
3867     }
3868 
3869   for (i = 0; i < noperands; i++)
3870     {
3871       operand_reloadnum[i] = -1;
3872 
3873       /* If this is an earlyclobber operand, we need to widen the scope.
3874 	 The reload must remain valid from the start of the insn being
3875 	 reloaded until after the operand is stored into its destination.
3876 	 We approximate this with RELOAD_OTHER even though we know that we
3877 	 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3878 
3879 	 One special case that is worth checking is when we have an
3880 	 output that is earlyclobber but isn't used past the insn (typically
3881 	 a SCRATCH).  In this case, we only need have the reload live
3882 	 through the insn itself, but not for any of our input or output
3883 	 reloads.
3884 	 But we must not accidentally narrow the scope of an existing
3885 	 RELOAD_OTHER reload - leave these alone.
3886 
3887 	 In any case, anything needed to address this operand can remain
3888 	 however they were previously categorized.  */
3889 
3890       if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3891 	operand_type[i]
3892 	  = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3893 	     ? RELOAD_FOR_INSN : RELOAD_OTHER);
3894     }
3895 
3896   /* Any constants that aren't allowed and can't be reloaded
3897      into registers are here changed into memory references.  */
3898   for (i = 0; i < noperands; i++)
3899     if (! goal_alternative_win[i])
3900       {
3901 	rtx op = recog_data.operand[i];
3902 	rtx subreg = NULL_RTX;
3903 	rtx plus = NULL_RTX;
3904 	enum machine_mode mode = operand_mode[i];
3905 
3906 	/* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3907 	   push_reload so we have to let them pass here.  */
3908 	if (GET_CODE (op) == SUBREG)
3909 	  {
3910 	    subreg = op;
3911 	    op = SUBREG_REG (op);
3912 	    mode = GET_MODE (op);
3913 	  }
3914 
3915 	if (GET_CODE (op) == PLUS)
3916 	  {
3917 	    plus = op;
3918 	    op = XEXP (op, 1);
3919 	  }
3920 
3921 	if (CONST_POOL_OK_P (mode, op)
3922 	    && ((targetm.preferred_reload_class (op, goal_alternative[i])
3923 		 == NO_REGS)
3924 		|| no_input_reloads))
3925 	  {
3926 	    int this_address_reloaded;
3927 	    rtx tem = force_const_mem (mode, op);
3928 
3929 	    /* If we stripped a SUBREG or a PLUS above add it back.  */
3930 	    if (plus != NULL_RTX)
3931 	      tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3932 
3933 	    if (subreg != NULL_RTX)
3934 	      tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3935 
3936 	    this_address_reloaded = 0;
3937 	    substed_operand[i] = recog_data.operand[i]
3938 	      = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3939 				     0, insn, &this_address_reloaded);
3940 
3941 	    /* If the alternative accepts constant pool refs directly
3942 	       there will be no reload needed at all.  */
3943 	    if (plus == NULL_RTX
3944 		&& subreg == NULL_RTX
3945 		&& alternative_allows_const_pool_ref (this_address_reloaded == 0
3946 						      ? substed_operand[i]
3947 						      : NULL,
3948 						      recog_data.constraints[i],
3949 						      goal_alternative_number))
3950 	      goal_alternative_win[i] = 1;
3951 	  }
3952       }
3953 
3954   /* Record the values of the earlyclobber operands for the caller.  */
3955   if (goal_earlyclobber)
3956     for (i = 0; i < noperands; i++)
3957       if (goal_alternative_earlyclobber[i])
3958 	reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3959 
3960   /* Now record reloads for all the operands that need them.  */
3961   for (i = 0; i < noperands; i++)
3962     if (! goal_alternative_win[i])
3963       {
3964 	/* Operands that match previous ones have already been handled.  */
3965 	if (goal_alternative_matches[i] >= 0)
3966 	  ;
3967 	/* Handle an operand with a nonoffsettable address
3968 	   appearing where an offsettable address will do
3969 	   by reloading the address into a base register.
3970 
3971 	   ??? We can also do this when the operand is a register and
3972 	   reg_equiv_mem is not offsettable, but this is a bit tricky,
3973 	   so we don't bother with it.  It may not be worth doing.  */
3974 	else if (goal_alternative_matched[i] == -1
3975 		 && goal_alternative_offmemok[i]
3976 		 && MEM_P (recog_data.operand[i]))
3977 	  {
3978 	    /* If the address to be reloaded is a VOIDmode constant,
3979 	       use the default address mode as mode of the reload register,
3980 	       as would have been done by find_reloads_address.  */
3981 	    addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
3982 	    enum machine_mode address_mode;
3983 	    address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3984 	    if (address_mode == VOIDmode)
3985 	      address_mode = targetm.addr_space.address_mode (as);
3986 
3987 	    operand_reloadnum[i]
3988 	      = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3989 			     &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3990 			     base_reg_class (VOIDmode, as, MEM, SCRATCH),
3991 			     address_mode,
3992 			     VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3993 	    rld[operand_reloadnum[i]].inc
3994 	      = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3995 
3996 	    /* If this operand is an output, we will have made any
3997 	       reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3998 	       now we are treating part of the operand as an input, so
3999 	       we must change these to RELOAD_FOR_INPUT_ADDRESS.  */
4000 
4001 	    if (modified[i] == RELOAD_WRITE)
4002 	      {
4003 		for (j = 0; j < n_reloads; j++)
4004 		  {
4005 		    if (rld[j].opnum == i)
4006 		      {
4007 			if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4008 			  rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4009 			else if (rld[j].when_needed
4010 				 == RELOAD_FOR_OUTADDR_ADDRESS)
4011 			  rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4012 		      }
4013 		  }
4014 	      }
4015 	  }
4016 	else if (goal_alternative_matched[i] == -1)
4017 	  {
4018 	    operand_reloadnum[i]
4019 	      = push_reload ((modified[i] != RELOAD_WRITE
4020 			      ? recog_data.operand[i] : 0),
4021 			     (modified[i] != RELOAD_READ
4022 			      ? recog_data.operand[i] : 0),
4023 			     (modified[i] != RELOAD_WRITE
4024 			      ? recog_data.operand_loc[i] : 0),
4025 			     (modified[i] != RELOAD_READ
4026 			      ? recog_data.operand_loc[i] : 0),
4027 			     (enum reg_class) goal_alternative[i],
4028 			     (modified[i] == RELOAD_WRITE
4029 			      ? VOIDmode : operand_mode[i]),
4030 			     (modified[i] == RELOAD_READ
4031 			      ? VOIDmode : operand_mode[i]),
4032 			     (insn_code_number < 0 ? 0
4033 			      : insn_data[insn_code_number].operand[i].strict_low),
4034 			     0, i, operand_type[i]);
4035 	  }
4036 	/* In a matching pair of operands, one must be input only
4037 	   and the other must be output only.
4038 	   Pass the input operand as IN and the other as OUT.  */
4039 	else if (modified[i] == RELOAD_READ
4040 		 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4041 	  {
4042 	    operand_reloadnum[i]
4043 	      = push_reload (recog_data.operand[i],
4044 			     recog_data.operand[goal_alternative_matched[i]],
4045 			     recog_data.operand_loc[i],
4046 			     recog_data.operand_loc[goal_alternative_matched[i]],
4047 			     (enum reg_class) goal_alternative[i],
4048 			     operand_mode[i],
4049 			     operand_mode[goal_alternative_matched[i]],
4050 			     0, 0, i, RELOAD_OTHER);
4051 	    operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4052 	  }
4053 	else if (modified[i] == RELOAD_WRITE
4054 		 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4055 	  {
4056 	    operand_reloadnum[goal_alternative_matched[i]]
4057 	      = push_reload (recog_data.operand[goal_alternative_matched[i]],
4058 			     recog_data.operand[i],
4059 			     recog_data.operand_loc[goal_alternative_matched[i]],
4060 			     recog_data.operand_loc[i],
4061 			     (enum reg_class) goal_alternative[i],
4062 			     operand_mode[goal_alternative_matched[i]],
4063 			     operand_mode[i],
4064 			     0, 0, i, RELOAD_OTHER);
4065 	    operand_reloadnum[i] = output_reloadnum;
4066 	  }
4067 	else
4068 	  {
4069 	    gcc_assert (insn_code_number < 0);
4070 	    error_for_asm (insn, "inconsistent operand constraints "
4071 			   "in an %<asm%>");
4072 	    /* Avoid further trouble with this insn.  */
4073 	    PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4074 	    n_reloads = 0;
4075 	    return 0;
4076 	  }
4077       }
4078     else if (goal_alternative_matched[i] < 0
4079 	     && goal_alternative_matches[i] < 0
4080 	     && address_operand_reloaded[i] != 1
4081 	     && optimize)
4082       {
4083 	/* For each non-matching operand that's a MEM or a pseudo-register
4084 	   that didn't get a hard register, make an optional reload.
4085 	   This may get done even if the insn needs no reloads otherwise.  */
4086 
4087 	rtx operand = recog_data.operand[i];
4088 
4089 	while (GET_CODE (operand) == SUBREG)
4090 	  operand = SUBREG_REG (operand);
4091 	if ((MEM_P (operand)
4092 	     || (REG_P (operand)
4093 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4094 	    /* If this is only for an output, the optional reload would not
4095 	       actually cause us to use a register now, just note that
4096 	       something is stored here.  */
4097 	    && (goal_alternative[i] != NO_REGS
4098 		|| modified[i] == RELOAD_WRITE)
4099 	    && ! no_input_reloads
4100 	    /* An optional output reload might allow to delete INSN later.
4101 	       We mustn't make in-out reloads on insns that are not permitted
4102 	       output reloads.
4103 	       If this is an asm, we can't delete it; we must not even call
4104 	       push_reload for an optional output reload in this case,
4105 	       because we can't be sure that the constraint allows a register,
4106 	       and push_reload verifies the constraints for asms.  */
4107 	    && (modified[i] == RELOAD_READ
4108 		|| (! no_output_reloads && ! this_insn_is_asm)))
4109 	  operand_reloadnum[i]
4110 	    = push_reload ((modified[i] != RELOAD_WRITE
4111 			    ? recog_data.operand[i] : 0),
4112 			   (modified[i] != RELOAD_READ
4113 			    ? recog_data.operand[i] : 0),
4114 			   (modified[i] != RELOAD_WRITE
4115 			    ? recog_data.operand_loc[i] : 0),
4116 			   (modified[i] != RELOAD_READ
4117 			    ? recog_data.operand_loc[i] : 0),
4118 			   (enum reg_class) goal_alternative[i],
4119 			   (modified[i] == RELOAD_WRITE
4120 			    ? VOIDmode : operand_mode[i]),
4121 			   (modified[i] == RELOAD_READ
4122 			    ? VOIDmode : operand_mode[i]),
4123 			   (insn_code_number < 0 ? 0
4124 			    : insn_data[insn_code_number].operand[i].strict_low),
4125 			   1, i, operand_type[i]);
4126 	/* If a memory reference remains (either as a MEM or a pseudo that
4127 	   did not get a hard register), yet we can't make an optional
4128 	   reload, check if this is actually a pseudo register reference;
4129 	   we then need to emit a USE and/or a CLOBBER so that reload
4130 	   inheritance will do the right thing.  */
4131 	else if (replace
4132 		 && (MEM_P (operand)
4133 		     || (REG_P (operand)
4134 			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4135 			 && reg_renumber [REGNO (operand)] < 0)))
4136 	  {
4137 	    operand = *recog_data.operand_loc[i];
4138 
4139 	    while (GET_CODE (operand) == SUBREG)
4140 	      operand = SUBREG_REG (operand);
4141 	    if (REG_P (operand))
4142 	      {
4143 		if (modified[i] != RELOAD_WRITE)
4144 		  /* We mark the USE with QImode so that we recognize
4145 		     it as one that can be safely deleted at the end
4146 		     of reload.  */
4147 		  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4148 					      insn), QImode);
4149 		if (modified[i] != RELOAD_READ)
4150 		  emit_insn_after (gen_clobber (operand), insn);
4151 	      }
4152 	  }
4153       }
4154     else if (goal_alternative_matches[i] >= 0
4155 	     && goal_alternative_win[goal_alternative_matches[i]]
4156 	     && modified[i] == RELOAD_READ
4157 	     && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4158 	     && ! no_input_reloads && ! no_output_reloads
4159 	     && optimize)
4160       {
4161 	/* Similarly, make an optional reload for a pair of matching
4162 	   objects that are in MEM or a pseudo that didn't get a hard reg.  */
4163 
4164 	rtx operand = recog_data.operand[i];
4165 
4166 	while (GET_CODE (operand) == SUBREG)
4167 	  operand = SUBREG_REG (operand);
4168 	if ((MEM_P (operand)
4169 	     || (REG_P (operand)
4170 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4171 	    && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4172 	  operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4173 	    = push_reload (recog_data.operand[goal_alternative_matches[i]],
4174 			   recog_data.operand[i],
4175 			   recog_data.operand_loc[goal_alternative_matches[i]],
4176 			   recog_data.operand_loc[i],
4177 			   (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4178 			   operand_mode[goal_alternative_matches[i]],
4179 			   operand_mode[i],
4180 			   0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4181       }
4182 
4183   /* Perform whatever substitutions on the operands we are supposed
4184      to make due to commutativity or replacement of registers
4185      with equivalent constants or memory slots.  */
4186 
4187   for (i = 0; i < noperands; i++)
4188     {
4189       /* We only do this on the last pass through reload, because it is
4190 	 possible for some data (like reg_equiv_address) to be changed during
4191 	 later passes.  Moreover, we lose the opportunity to get a useful
4192 	 reload_{in,out}_reg when we do these replacements.  */
4193 
4194       if (replace)
4195 	{
4196 	  rtx substitution = substed_operand[i];
4197 
4198 	  *recog_data.operand_loc[i] = substitution;
4199 
4200 	  /* If we're replacing an operand with a LABEL_REF, we need to
4201 	     make sure that there's a REG_LABEL_OPERAND note attached to
4202 	     this instruction.  */
4203 	  if (GET_CODE (substitution) == LABEL_REF
4204 	      && !find_reg_note (insn, REG_LABEL_OPERAND,
4205 				 XEXP (substitution, 0))
4206 	      /* For a JUMP_P, if it was a branch target it must have
4207 		 already been recorded as such.  */
4208 	      && (!JUMP_P (insn)
4209 		  || !label_is_jump_target_p (XEXP (substitution, 0),
4210 					      insn)))
4211 	    {
4212 	      add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4213 	      if (LABEL_P (XEXP (substitution, 0)))
4214 		++LABEL_NUSES (XEXP (substitution, 0));
4215 	    }
4216 
4217 	}
4218       else
4219 	retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4220     }
4221 
4222   /* If this insn pattern contains any MATCH_DUP's, make sure that
4223      they will be substituted if the operands they match are substituted.
4224      Also do now any substitutions we already did on the operands.
4225 
4226      Don't do this if we aren't making replacements because we might be
4227      propagating things allocated by frame pointer elimination into places
4228      it doesn't expect.  */
4229 
4230   if (insn_code_number >= 0 && replace)
4231     for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4232       {
4233 	int opno = recog_data.dup_num[i];
4234 	*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4235 	dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4236       }
4237 
4238 #if 0
4239   /* This loses because reloading of prior insns can invalidate the equivalence
4240      (or at least find_equiv_reg isn't smart enough to find it any more),
4241      causing this insn to need more reload regs than it needed before.
4242      It may be too late to make the reload regs available.
4243      Now this optimization is done safely in choose_reload_regs.  */
4244 
4245   /* For each reload of a reg into some other class of reg,
4246      search for an existing equivalent reg (same value now) in the right class.
4247      We can use it as long as we don't need to change its contents.  */
4248   for (i = 0; i < n_reloads; i++)
4249     if (rld[i].reg_rtx == 0
4250 	&& rld[i].in != 0
4251 	&& REG_P (rld[i].in)
4252 	&& rld[i].out == 0)
4253       {
4254 	rld[i].reg_rtx
4255 	  = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4256 			    static_reload_reg_p, 0, rld[i].inmode);
4257 	/* Prevent generation of insn to load the value
4258 	   because the one we found already has the value.  */
4259 	if (rld[i].reg_rtx)
4260 	  rld[i].in = rld[i].reg_rtx;
4261       }
4262 #endif
4263 
4264   /* If we detected error and replaced asm instruction by USE, forget about the
4265      reloads.  */
4266   if (GET_CODE (PATTERN (insn)) == USE
4267       && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4268     n_reloads = 0;
4269 
4270   /* Perhaps an output reload can be combined with another
4271      to reduce needs by one.  */
4272   if (!goal_earlyclobber)
4273     combine_reloads ();
4274 
4275   /* If we have a pair of reloads for parts of an address, they are reloading
4276      the same object, the operands themselves were not reloaded, and they
4277      are for two operands that are supposed to match, merge the reloads and
4278      change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
4279 
4280   for (i = 0; i < n_reloads; i++)
4281     {
4282       int k;
4283 
4284       for (j = i + 1; j < n_reloads; j++)
4285 	if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4286 	     || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4287 	     || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4288 	     || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4289 	    && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4290 		|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4291 		|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4292 		|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4293 	    && rtx_equal_p (rld[i].in, rld[j].in)
4294 	    && (operand_reloadnum[rld[i].opnum] < 0
4295 		|| rld[operand_reloadnum[rld[i].opnum]].optional)
4296 	    && (operand_reloadnum[rld[j].opnum] < 0
4297 		|| rld[operand_reloadnum[rld[j].opnum]].optional)
4298 	    && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4299 		|| (goal_alternative_matches[rld[j].opnum]
4300 		    == rld[i].opnum)))
4301 	  {
4302 	    for (k = 0; k < n_replacements; k++)
4303 	      if (replacements[k].what == j)
4304 		replacements[k].what = i;
4305 
4306 	    if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4307 		|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4308 	      rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4309 	    else
4310 	      rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4311 	    rld[j].in = 0;
4312 	  }
4313     }
4314 
4315   /* Scan all the reloads and update their type.
4316      If a reload is for the address of an operand and we didn't reload
4317      that operand, change the type.  Similarly, change the operand number
4318      of a reload when two operands match.  If a reload is optional, treat it
4319      as though the operand isn't reloaded.
4320 
4321      ??? This latter case is somewhat odd because if we do the optional
4322      reload, it means the object is hanging around.  Thus we need only
4323      do the address reload if the optional reload was NOT done.
4324 
4325      Change secondary reloads to be the address type of their operand, not
4326      the normal type.
4327 
4328      If an operand's reload is now RELOAD_OTHER, change any
4329      RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4330      RELOAD_FOR_OTHER_ADDRESS.  */
4331 
4332   for (i = 0; i < n_reloads; i++)
4333     {
4334       if (rld[i].secondary_p
4335 	  && rld[i].when_needed == operand_type[rld[i].opnum])
4336 	rld[i].when_needed = address_type[rld[i].opnum];
4337 
4338       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4339 	   || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4340 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4341 	   || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4342 	  && (operand_reloadnum[rld[i].opnum] < 0
4343 	      || rld[operand_reloadnum[rld[i].opnum]].optional))
4344 	{
4345 	  /* If we have a secondary reload to go along with this reload,
4346 	     change its type to RELOAD_FOR_OPADDR_ADDR.  */
4347 
4348 	  if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4349 	       || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4350 	      && rld[i].secondary_in_reload != -1)
4351 	    {
4352 	      int secondary_in_reload = rld[i].secondary_in_reload;
4353 
4354 	      rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4355 
4356 	      /* If there's a tertiary reload we have to change it also.  */
4357 	      if (secondary_in_reload > 0
4358 		  && rld[secondary_in_reload].secondary_in_reload != -1)
4359 		rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4360 		  = RELOAD_FOR_OPADDR_ADDR;
4361 	    }
4362 
4363 	  if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4364 	       || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4365 	      && rld[i].secondary_out_reload != -1)
4366 	    {
4367 	      int secondary_out_reload = rld[i].secondary_out_reload;
4368 
4369 	      rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4370 
4371 	      /* If there's a tertiary reload we have to change it also.  */
4372 	      if (secondary_out_reload
4373 		  && rld[secondary_out_reload].secondary_out_reload != -1)
4374 		rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4375 		  = RELOAD_FOR_OPADDR_ADDR;
4376 	    }
4377 
4378 	  if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4379 	      || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4380 	    rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4381 	  else
4382 	    rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4383 	}
4384 
4385       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4386 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4387 	  && operand_reloadnum[rld[i].opnum] >= 0
4388 	  && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4389 	      == RELOAD_OTHER))
4390 	rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4391 
4392       if (goal_alternative_matches[rld[i].opnum] >= 0)
4393 	rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4394     }
4395 
4396   /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4397      If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4398      reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4399 
4400      choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4401      conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
4402      single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4403      However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4404      then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4405      RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4406      This is complicated by the fact that a single operand can have more
4407      than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
4408      choose_reload_regs without affecting code quality, and cases that
4409      actually fail are extremely rare, so it turns out to be better to fix
4410      the problem here by not generating cases that choose_reload_regs will
4411      fail for.  */
4412   /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4413      RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4414      a single operand.
4415      We can reduce the register pressure by exploiting that a
4416      RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4417      does not conflict with any of them, if it is only used for the first of
4418      the RELOAD_FOR_X_ADDRESS reloads.  */
4419   {
4420     int first_op_addr_num = -2;
4421     int first_inpaddr_num[MAX_RECOG_OPERANDS];
4422     int first_outpaddr_num[MAX_RECOG_OPERANDS];
4423     int need_change = 0;
4424     /* We use last_op_addr_reload and the contents of the above arrays
4425        first as flags - -2 means no instance encountered, -1 means exactly
4426        one instance encountered.
4427        If more than one instance has been encountered, we store the reload
4428        number of the first reload of the kind in question; reload numbers
4429        are known to be non-negative.  */
4430     for (i = 0; i < noperands; i++)
4431       first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4432     for (i = n_reloads - 1; i >= 0; i--)
4433       {
4434 	switch (rld[i].when_needed)
4435 	  {
4436 	  case RELOAD_FOR_OPERAND_ADDRESS:
4437 	    if (++first_op_addr_num >= 0)
4438 	      {
4439 		first_op_addr_num = i;
4440 		need_change = 1;
4441 	      }
4442 	    break;
4443 	  case RELOAD_FOR_INPUT_ADDRESS:
4444 	    if (++first_inpaddr_num[rld[i].opnum] >= 0)
4445 	      {
4446 		first_inpaddr_num[rld[i].opnum] = i;
4447 		need_change = 1;
4448 	      }
4449 	    break;
4450 	  case RELOAD_FOR_OUTPUT_ADDRESS:
4451 	    if (++first_outpaddr_num[rld[i].opnum] >= 0)
4452 	      {
4453 		first_outpaddr_num[rld[i].opnum] = i;
4454 		need_change = 1;
4455 	      }
4456 	    break;
4457 	  default:
4458 	    break;
4459 	  }
4460       }
4461 
4462     if (need_change)
4463       {
4464 	for (i = 0; i < n_reloads; i++)
4465 	  {
4466 	    int first_num;
4467 	    enum reload_type type;
4468 
4469 	    switch (rld[i].when_needed)
4470 	      {
4471 	      case RELOAD_FOR_OPADDR_ADDR:
4472 		first_num = first_op_addr_num;
4473 		type = RELOAD_FOR_OPERAND_ADDRESS;
4474 		break;
4475 	      case RELOAD_FOR_INPADDR_ADDRESS:
4476 		first_num = first_inpaddr_num[rld[i].opnum];
4477 		type = RELOAD_FOR_INPUT_ADDRESS;
4478 		break;
4479 	      case RELOAD_FOR_OUTADDR_ADDRESS:
4480 		first_num = first_outpaddr_num[rld[i].opnum];
4481 		type = RELOAD_FOR_OUTPUT_ADDRESS;
4482 		break;
4483 	      default:
4484 		continue;
4485 	      }
4486 	    if (first_num < 0)
4487 	      continue;
4488 	    else if (i > first_num)
4489 	      rld[i].when_needed = type;
4490 	    else
4491 	      {
4492 		/* Check if the only TYPE reload that uses reload I is
4493 		   reload FIRST_NUM.  */
4494 		for (j = n_reloads - 1; j > first_num; j--)
4495 		  {
4496 		    if (rld[j].when_needed == type
4497 			&& (rld[i].secondary_p
4498 			    ? rld[j].secondary_in_reload == i
4499 			    : reg_mentioned_p (rld[i].in, rld[j].in)))
4500 		      {
4501 			rld[i].when_needed = type;
4502 			break;
4503 		      }
4504 		  }
4505 	      }
4506 	  }
4507       }
4508   }
4509 
4510   /* See if we have any reloads that are now allowed to be merged
4511      because we've changed when the reload is needed to
4512      RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
4513      check for the most common cases.  */
4514 
4515   for (i = 0; i < n_reloads; i++)
4516     if (rld[i].in != 0 && rld[i].out == 0
4517 	&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4518 	    || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4519 	    || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4520       for (j = 0; j < n_reloads; j++)
4521 	if (i != j && rld[j].in != 0 && rld[j].out == 0
4522 	    && rld[j].when_needed == rld[i].when_needed
4523 	    && MATCHES (rld[i].in, rld[j].in)
4524 	    && rld[i].rclass == rld[j].rclass
4525 	    && !rld[i].nocombine && !rld[j].nocombine
4526 	    && rld[i].reg_rtx == rld[j].reg_rtx)
4527 	  {
4528 	    rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4529 	    transfer_replacements (i, j);
4530 	    rld[j].in = 0;
4531 	  }
4532 
4533 #ifdef HAVE_cc0
4534   /* If we made any reloads for addresses, see if they violate a
4535      "no input reloads" requirement for this insn.  But loads that we
4536      do after the insn (such as for output addresses) are fine.  */
4537   if (no_input_reloads)
4538     for (i = 0; i < n_reloads; i++)
4539       gcc_assert (rld[i].in == 0
4540 		  || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4541 		  || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4542 #endif
4543 
4544   /* Compute reload_mode and reload_nregs.  */
4545   for (i = 0; i < n_reloads; i++)
4546     {
4547       rld[i].mode
4548 	= (rld[i].inmode == VOIDmode
4549 	   || (GET_MODE_SIZE (rld[i].outmode)
4550 	       > GET_MODE_SIZE (rld[i].inmode)))
4551 	  ? rld[i].outmode : rld[i].inmode;
4552 
4553       rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4554     }
4555 
4556   /* Special case a simple move with an input reload and a
4557      destination of a hard reg, if the hard reg is ok, use it.  */
4558   for (i = 0; i < n_reloads; i++)
4559     if (rld[i].when_needed == RELOAD_FOR_INPUT
4560 	&& GET_CODE (PATTERN (insn)) == SET
4561 	&& REG_P (SET_DEST (PATTERN (insn)))
4562 	&& (SET_SRC (PATTERN (insn)) == rld[i].in
4563 	    || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4564 	&& !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4565       {
4566 	rtx dest = SET_DEST (PATTERN (insn));
4567 	unsigned int regno = REGNO (dest);
4568 
4569 	if (regno < FIRST_PSEUDO_REGISTER
4570 	    && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4571 	    && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4572 	  {
4573 	    int nr = hard_regno_nregs[regno][rld[i].mode];
4574 	    int ok = 1, nri;
4575 
4576 	    for (nri = 1; nri < nr; nri ++)
4577 	      if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4578 		ok = 0;
4579 
4580 	    if (ok)
4581 	      rld[i].reg_rtx = dest;
4582 	  }
4583       }
4584 
4585   return retval;
4586 }
4587 
4588 /* Return true if alternative number ALTNUM in constraint-string
4589    CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4590    MEM gives the reference if it didn't need any reloads, otherwise it
4591    is null.  */
4592 
4593 static bool
4594 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4595 				   const char *constraint, int altnum)
4596 {
4597   int c;
4598 
4599   /* Skip alternatives before the one requested.  */
4600   while (altnum > 0)
4601     {
4602       while (*constraint++ != ',')
4603 	;
4604       altnum--;
4605     }
4606   /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4607      If one of them is present, this alternative accepts the result of
4608      passing a constant-pool reference through find_reloads_toplev.
4609 
4610      The same is true of extra memory constraints if the address
4611      was reloaded into a register.  However, the target may elect
4612      to disallow the original constant address, forcing it to be
4613      reloaded into a register instead.  */
4614   for (; (c = *constraint) && c != ',' && c != '#';
4615        constraint += CONSTRAINT_LEN (c, constraint))
4616     {
4617       if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4618 	return true;
4619 #ifdef EXTRA_CONSTRAINT_STR
4620       if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4621 	  && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4622 	return true;
4623 #endif
4624     }
4625   return false;
4626 }
4627 
4628 /* Scan X for memory references and scan the addresses for reloading.
4629    Also checks for references to "constant" regs that we want to eliminate
4630    and replaces them with the values they stand for.
4631    We may alter X destructively if it contains a reference to such.
4632    If X is just a constant reg, we return the equivalent value
4633    instead of X.
4634 
4635    IND_LEVELS says how many levels of indirect addressing this machine
4636    supports.
4637 
4638    OPNUM and TYPE identify the purpose of the reload.
4639 
4640    IS_SET_DEST is true if X is the destination of a SET, which is not
4641    appropriate to be replaced by a constant.
4642 
4643    INSN, if nonzero, is the insn in which we do the reload.  It is used
4644    to determine if we may generate output reloads, and where to put USEs
4645    for pseudos that we have to replace with stack slots.
4646 
4647    ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
4648    result of find_reloads_address.  */
4649 
4650 static rtx
4651 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4652 		     int ind_levels, int is_set_dest, rtx insn,
4653 		     int *address_reloaded)
4654 {
4655   RTX_CODE code = GET_CODE (x);
4656 
4657   const char *fmt = GET_RTX_FORMAT (code);
4658   int i;
4659   int copied;
4660 
4661   if (code == REG)
4662     {
4663       /* This code is duplicated for speed in find_reloads.  */
4664       int regno = REGNO (x);
4665       if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4666 	x = reg_equiv_constant (regno);
4667 #if 0
4668       /*  This creates (subreg (mem...)) which would cause an unnecessary
4669 	  reload of the mem.  */
4670       else if (reg_equiv_mem (regno) != 0)
4671 	x = reg_equiv_mem (regno);
4672 #endif
4673       else if (reg_equiv_memory_loc (regno)
4674 	       && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4675 	{
4676 	  rtx mem = make_memloc (x, regno);
4677 	  if (reg_equiv_address (regno)
4678 	      || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4679 	    {
4680 	      /* If this is not a toplevel operand, find_reloads doesn't see
4681 		 this substitution.  We have to emit a USE of the pseudo so
4682 		 that delete_output_reload can see it.  */
4683 	      if (replace_reloads && recog_data.operand[opnum] != x)
4684 		/* We mark the USE with QImode so that we recognize it
4685 		   as one that can be safely deleted at the end of
4686 		   reload.  */
4687 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4688 			  QImode);
4689 	      x = mem;
4690 	      i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4691 					opnum, type, ind_levels, insn);
4692 	      if (!rtx_equal_p (x, mem))
4693 		push_reg_equiv_alt_mem (regno, x);
4694 	      if (address_reloaded)
4695 		*address_reloaded = i;
4696 	    }
4697 	}
4698       return x;
4699     }
4700   if (code == MEM)
4701     {
4702       rtx tem = x;
4703 
4704       i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4705 				opnum, type, ind_levels, insn);
4706       if (address_reloaded)
4707 	*address_reloaded = i;
4708 
4709       return tem;
4710     }
4711 
4712   if (code == SUBREG && REG_P (SUBREG_REG (x)))
4713     {
4714       /* Check for SUBREG containing a REG that's equivalent to a
4715 	 constant.  If the constant has a known value, truncate it
4716 	 right now.  Similarly if we are extracting a single-word of a
4717 	 multi-word constant.  If the constant is symbolic, allow it
4718 	 to be substituted normally.  push_reload will strip the
4719 	 subreg later.  The constant must not be VOIDmode, because we
4720 	 will lose the mode of the register (this should never happen
4721 	 because one of the cases above should handle it).  */
4722 
4723       int regno = REGNO (SUBREG_REG (x));
4724       rtx tem;
4725 
4726       if (regno >= FIRST_PSEUDO_REGISTER
4727 	  && reg_renumber[regno] < 0
4728 	  && reg_equiv_constant (regno) != 0)
4729 	{
4730 	  tem =
4731 	    simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4732 				 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4733 	  gcc_assert (tem);
4734 	  if (CONSTANT_P (tem)
4735 	      && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4736 	    {
4737 	      tem = force_const_mem (GET_MODE (x), tem);
4738 	      i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4739 					&XEXP (tem, 0), opnum, type,
4740 					ind_levels, insn);
4741 	      if (address_reloaded)
4742 		*address_reloaded = i;
4743 	    }
4744 	  return tem;
4745 	}
4746 
4747       /* If the subreg contains a reg that will be converted to a mem,
4748 	 convert the subreg to a narrower memref now.
4749 	 Otherwise, we would get (subreg (mem ...) ...),
4750 	 which would force reload of the mem.
4751 
4752 	 We also need to do this if there is an equivalent MEM that is
4753 	 not offsettable.  In that case, alter_subreg would produce an
4754 	 invalid address on big-endian machines.
4755 
4756 	 For machines that extend byte loads, we must not reload using
4757 	 a wider mode if we have a paradoxical SUBREG.  find_reloads will
4758 	 force a reload in that case.  So we should not do anything here.  */
4759 
4760       if (regno >= FIRST_PSEUDO_REGISTER
4761 #ifdef LOAD_EXTEND_OP
4762 	  && !paradoxical_subreg_p (x)
4763 #endif
4764 	  && (reg_equiv_address (regno) != 0
4765 	      || (reg_equiv_mem (regno) != 0
4766 		  && (! strict_memory_address_addr_space_p
4767 		      (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
4768 		       MEM_ADDR_SPACE (reg_equiv_mem (regno)))
4769 		      || ! offsettable_memref_p (reg_equiv_mem (regno))
4770 		      || num_not_at_initial_offset))))
4771 	x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4772 					   insn, address_reloaded);
4773     }
4774 
4775   for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4776     {
4777       if (fmt[i] == 'e')
4778 	{
4779 	  rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4780 					      ind_levels, is_set_dest, insn,
4781 					      address_reloaded);
4782 	  /* If we have replaced a reg with it's equivalent memory loc -
4783 	     that can still be handled here e.g. if it's in a paradoxical
4784 	     subreg - we must make the change in a copy, rather than using
4785 	     a destructive change.  This way, find_reloads can still elect
4786 	     not to do the change.  */
4787 	  if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4788 	    {
4789 	      x = shallow_copy_rtx (x);
4790 	      copied = 1;
4791 	    }
4792 	  XEXP (x, i) = new_part;
4793 	}
4794     }
4795   return x;
4796 }
4797 
4798 /* Return a mem ref for the memory equivalent of reg REGNO.
4799    This mem ref is not shared with anything.  */
4800 
4801 static rtx
4802 make_memloc (rtx ad, int regno)
4803 {
4804   /* We must rerun eliminate_regs, in case the elimination
4805      offsets have changed.  */
4806   rtx tem
4807     = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4808 	    0);
4809 
4810   /* If TEM might contain a pseudo, we must copy it to avoid
4811      modifying it when we do the substitution for the reload.  */
4812   if (rtx_varies_p (tem, 0))
4813     tem = copy_rtx (tem);
4814 
4815   tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4816   tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4817 
4818   /* Copy the result if it's still the same as the equivalence, to avoid
4819      modifying it when we do the substitution for the reload.  */
4820   if (tem == reg_equiv_memory_loc (regno))
4821     tem = copy_rtx (tem);
4822   return tem;
4823 }
4824 
4825 /* Returns true if AD could be turned into a valid memory reference
4826    to mode MODE in address space AS by reloading the part pointed to
4827    by PART into a register.  */
4828 
4829 static int
4830 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4831 				   addr_space_t as, rtx *part)
4832 {
4833   int retv;
4834   rtx tem = *part;
4835   rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4836 
4837   *part = reg;
4838   retv = memory_address_addr_space_p (mode, ad, as);
4839   *part = tem;
4840 
4841   return retv;
4842 }
4843 
4844 /* Record all reloads needed for handling memory address AD
4845    which appears in *LOC in a memory reference to mode MODE
4846    which itself is found in location  *MEMREFLOC.
4847    Note that we take shortcuts assuming that no multi-reg machine mode
4848    occurs as part of an address.
4849 
4850    OPNUM and TYPE specify the purpose of this reload.
4851 
4852    IND_LEVELS says how many levels of indirect addressing this machine
4853    supports.
4854 
4855    INSN, if nonzero, is the insn in which we do the reload.  It is used
4856    to determine if we may generate output reloads, and where to put USEs
4857    for pseudos that we have to replace with stack slots.
4858 
4859    Value is one if this address is reloaded or replaced as a whole; it is
4860    zero if the top level of this address was not reloaded or replaced, and
4861    it is -1 if it may or may not have been reloaded or replaced.
4862 
4863    Note that there is no verification that the address will be valid after
4864    this routine does its work.  Instead, we rely on the fact that the address
4865    was valid when reload started.  So we need only undo things that reload
4866    could have broken.  These are wrong register types, pseudos not allocated
4867    to a hard register, and frame pointer elimination.  */
4868 
4869 static int
4870 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4871 		      rtx *loc, int opnum, enum reload_type type,
4872 		      int ind_levels, rtx insn)
4873 {
4874   addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4875 			     : ADDR_SPACE_GENERIC;
4876   int regno;
4877   int removed_and = 0;
4878   int op_index;
4879   rtx tem;
4880 
4881   /* If the address is a register, see if it is a legitimate address and
4882      reload if not.  We first handle the cases where we need not reload
4883      or where we must reload in a non-standard way.  */
4884 
4885   if (REG_P (ad))
4886     {
4887       regno = REGNO (ad);
4888 
4889       if (reg_equiv_constant (regno) != 0)
4890 	{
4891 	  find_reloads_address_part (reg_equiv_constant (regno), loc,
4892 				     base_reg_class (mode, as, MEM, SCRATCH),
4893 				     GET_MODE (ad), opnum, type, ind_levels);
4894 	  return 1;
4895 	}
4896 
4897       tem = reg_equiv_memory_loc (regno);
4898       if (tem != 0)
4899 	{
4900 	  if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4901 	    {
4902 	      tem = make_memloc (ad, regno);
4903 	      if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4904 							XEXP (tem, 0),
4905 							MEM_ADDR_SPACE (tem)))
4906 		{
4907 		  rtx orig = tem;
4908 
4909 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4910 					&XEXP (tem, 0), opnum,
4911 					ADDR_TYPE (type), ind_levels, insn);
4912 		  if (!rtx_equal_p (tem, orig))
4913 		    push_reg_equiv_alt_mem (regno, tem);
4914 		}
4915 	      /* We can avoid a reload if the register's equivalent memory
4916 		 expression is valid as an indirect memory address.
4917 		 But not all addresses are valid in a mem used as an indirect
4918 		 address: only reg or reg+constant.  */
4919 
4920 	      if (ind_levels > 0
4921 		  && strict_memory_address_addr_space_p (mode, tem, as)
4922 		  && (REG_P (XEXP (tem, 0))
4923 		      || (GET_CODE (XEXP (tem, 0)) == PLUS
4924 			  && REG_P (XEXP (XEXP (tem, 0), 0))
4925 			  && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4926 		{
4927 		  /* TEM is not the same as what we'll be replacing the
4928 		     pseudo with after reload, put a USE in front of INSN
4929 		     in the final reload pass.  */
4930 		  if (replace_reloads
4931 		      && num_not_at_initial_offset
4932 		      && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4933 		    {
4934 		      *loc = tem;
4935 		      /* We mark the USE with QImode so that we
4936 			 recognize it as one that can be safely
4937 			 deleted at the end of reload.  */
4938 		      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4939 						  insn), QImode);
4940 
4941 		      /* This doesn't really count as replacing the address
4942 			 as a whole, since it is still a memory access.  */
4943 		    }
4944 		  return 0;
4945 		}
4946 	      ad = tem;
4947 	    }
4948 	}
4949 
4950       /* The only remaining case where we can avoid a reload is if this is a
4951 	 hard register that is valid as a base register and which is not the
4952 	 subject of a CLOBBER in this insn.  */
4953 
4954       else if (regno < FIRST_PSEUDO_REGISTER
4955 	       && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
4956 	       && ! regno_clobbered_p (regno, this_insn, mode, 0))
4957 	return 0;
4958 
4959       /* If we do not have one of the cases above, we must do the reload.  */
4960       push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4961 		   base_reg_class (mode, as, MEM, SCRATCH),
4962 		   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4963       return 1;
4964     }
4965 
4966   if (strict_memory_address_addr_space_p (mode, ad, as))
4967     {
4968       /* The address appears valid, so reloads are not needed.
4969 	 But the address may contain an eliminable register.
4970 	 This can happen because a machine with indirect addressing
4971 	 may consider a pseudo register by itself a valid address even when
4972 	 it has failed to get a hard reg.
4973 	 So do a tree-walk to find and eliminate all such regs.  */
4974 
4975       /* But first quickly dispose of a common case.  */
4976       if (GET_CODE (ad) == PLUS
4977 	  && CONST_INT_P (XEXP (ad, 1))
4978 	  && REG_P (XEXP (ad, 0))
4979 	  && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
4980 	return 0;
4981 
4982       subst_reg_equivs_changed = 0;
4983       *loc = subst_reg_equivs (ad, insn);
4984 
4985       if (! subst_reg_equivs_changed)
4986 	return 0;
4987 
4988       /* Check result for validity after substitution.  */
4989       if (strict_memory_address_addr_space_p (mode, ad, as))
4990 	return 0;
4991     }
4992 
4993 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4994   do
4995     {
4996       if (memrefloc && ADDR_SPACE_GENERIC_P (as))
4997 	{
4998 	  LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4999 				     ind_levels, win);
5000 	}
5001       break;
5002     win:
5003       *memrefloc = copy_rtx (*memrefloc);
5004       XEXP (*memrefloc, 0) = ad;
5005       move_replacements (&ad, &XEXP (*memrefloc, 0));
5006       return -1;
5007     }
5008   while (0);
5009 #endif
5010 
5011   /* The address is not valid.  We have to figure out why.  First see if
5012      we have an outer AND and remove it if so.  Then analyze what's inside.  */
5013 
5014   if (GET_CODE (ad) == AND)
5015     {
5016       removed_and = 1;
5017       loc = &XEXP (ad, 0);
5018       ad = *loc;
5019     }
5020 
5021   /* One possibility for why the address is invalid is that it is itself
5022      a MEM.  This can happen when the frame pointer is being eliminated, a
5023      pseudo is not allocated to a hard register, and the offset between the
5024      frame and stack pointers is not its initial value.  In that case the
5025      pseudo will have been replaced by a MEM referring to the
5026      stack pointer.  */
5027   if (MEM_P (ad))
5028     {
5029       /* First ensure that the address in this MEM is valid.  Then, unless
5030 	 indirect addresses are valid, reload the MEM into a register.  */
5031       tem = ad;
5032       find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5033 			    opnum, ADDR_TYPE (type),
5034 			    ind_levels == 0 ? 0 : ind_levels - 1, insn);
5035 
5036       /* If tem was changed, then we must create a new memory reference to
5037 	 hold it and store it back into memrefloc.  */
5038       if (tem != ad && memrefloc)
5039 	{
5040 	  *memrefloc = copy_rtx (*memrefloc);
5041 	  copy_replacements (tem, XEXP (*memrefloc, 0));
5042 	  loc = &XEXP (*memrefloc, 0);
5043 	  if (removed_and)
5044 	    loc = &XEXP (*loc, 0);
5045 	}
5046 
5047       /* Check similar cases as for indirect addresses as above except
5048 	 that we can allow pseudos and a MEM since they should have been
5049 	 taken care of above.  */
5050 
5051       if (ind_levels == 0
5052 	  || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5053 	  || MEM_P (XEXP (tem, 0))
5054 	  || ! (REG_P (XEXP (tem, 0))
5055 		|| (GET_CODE (XEXP (tem, 0)) == PLUS
5056 		    && REG_P (XEXP (XEXP (tem, 0), 0))
5057 		    && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5058 	{
5059 	  /* Must use TEM here, not AD, since it is the one that will
5060 	     have any subexpressions reloaded, if needed.  */
5061 	  push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5062 		       base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5063 		       VOIDmode, 0,
5064 		       0, opnum, type);
5065 	  return ! removed_and;
5066 	}
5067       else
5068 	return 0;
5069     }
5070 
5071   /* If we have address of a stack slot but it's not valid because the
5072      displacement is too large, compute the sum in a register.
5073      Handle all base registers here, not just fp/ap/sp, because on some
5074      targets (namely SH) we can also get too large displacements from
5075      big-endian corrections.  */
5076   else if (GET_CODE (ad) == PLUS
5077 	   && REG_P (XEXP (ad, 0))
5078 	   && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5079 	   && CONST_INT_P (XEXP (ad, 1))
5080 	   && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5081 				    CONST_INT)
5082 	       /* Similarly, if we were to reload the base register and the
5083 		  mem+offset address is still invalid, then we want to reload
5084 		  the whole address, not just the base register.  */
5085 	       || ! maybe_memory_address_addr_space_p
5086 		     (mode, ad, as, &(XEXP (ad, 0)))))
5087 
5088     {
5089       /* Unshare the MEM rtx so we can safely alter it.  */
5090       if (memrefloc)
5091 	{
5092 	  *memrefloc = copy_rtx (*memrefloc);
5093 	  loc = &XEXP (*memrefloc, 0);
5094 	  if (removed_and)
5095 	    loc = &XEXP (*loc, 0);
5096 	}
5097 
5098       if (double_reg_address_ok
5099 	  && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5100 				  PLUS, CONST_INT))
5101 	{
5102 	  /* Unshare the sum as well.  */
5103 	  *loc = ad = copy_rtx (ad);
5104 
5105 	  /* Reload the displacement into an index reg.
5106 	     We assume the frame pointer or arg pointer is a base reg.  */
5107 	  find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5108 				     INDEX_REG_CLASS, GET_MODE (ad), opnum,
5109 				     type, ind_levels);
5110 	  return 0;
5111 	}
5112       else
5113 	{
5114 	  /* If the sum of two regs is not necessarily valid,
5115 	     reload the sum into a base reg.
5116 	     That will at least work.  */
5117 	  find_reloads_address_part (ad, loc,
5118 				     base_reg_class (mode, as, MEM, SCRATCH),
5119 				     GET_MODE (ad), opnum, type, ind_levels);
5120 	}
5121       return ! removed_and;
5122     }
5123 
5124   /* If we have an indexed stack slot, there are three possible reasons why
5125      it might be invalid: The index might need to be reloaded, the address
5126      might have been made by frame pointer elimination and hence have a
5127      constant out of range, or both reasons might apply.
5128 
5129      We can easily check for an index needing reload, but even if that is the
5130      case, we might also have an invalid constant.  To avoid making the
5131      conservative assumption and requiring two reloads, we see if this address
5132      is valid when not interpreted strictly.  If it is, the only problem is
5133      that the index needs a reload and find_reloads_address_1 will take care
5134      of it.
5135 
5136      Handle all base registers here, not just fp/ap/sp, because on some
5137      targets (namely SPARC) we can also get invalid addresses from preventive
5138      subreg big-endian corrections made by find_reloads_toplev.  We
5139      can also get expressions involving LO_SUM (rather than PLUS) from
5140      find_reloads_subreg_address.
5141 
5142      If we decide to do something, it must be that `double_reg_address_ok'
5143      is true.  We generate a reload of the base register + constant and
5144      rework the sum so that the reload register will be added to the index.
5145      This is safe because we know the address isn't shared.
5146 
5147      We check for the base register as both the first and second operand of
5148      the innermost PLUS and/or LO_SUM.  */
5149 
5150   for (op_index = 0; op_index < 2; ++op_index)
5151     {
5152       rtx operand, addend;
5153       enum rtx_code inner_code;
5154 
5155       if (GET_CODE (ad) != PLUS)
5156 	  continue;
5157 
5158       inner_code = GET_CODE (XEXP (ad, 0));
5159       if (!(GET_CODE (ad) == PLUS
5160 	    && CONST_INT_P (XEXP (ad, 1))
5161 	    && (inner_code == PLUS || inner_code == LO_SUM)))
5162 	continue;
5163 
5164       operand = XEXP (XEXP (ad, 0), op_index);
5165       if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5166 	continue;
5167 
5168       addend = XEXP (XEXP (ad, 0), 1 - op_index);
5169 
5170       if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5171 				GET_CODE (addend))
5172 	   || operand == frame_pointer_rtx
5173 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5174 	   || operand == hard_frame_pointer_rtx
5175 #endif
5176 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5177 	   || operand == arg_pointer_rtx
5178 #endif
5179 	   || operand == stack_pointer_rtx)
5180 	  && ! maybe_memory_address_addr_space_p
5181 		(mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5182 	{
5183 	  rtx offset_reg;
5184 	  enum reg_class cls;
5185 
5186 	  offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5187 
5188 	  /* Form the adjusted address.  */
5189 	  if (GET_CODE (XEXP (ad, 0)) == PLUS)
5190 	    ad = gen_rtx_PLUS (GET_MODE (ad),
5191 			       op_index == 0 ? offset_reg : addend,
5192 			       op_index == 0 ? addend : offset_reg);
5193 	  else
5194 	    ad = gen_rtx_LO_SUM (GET_MODE (ad),
5195 				 op_index == 0 ? offset_reg : addend,
5196 				 op_index == 0 ? addend : offset_reg);
5197 	  *loc = ad;
5198 
5199 	  cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5200 	  find_reloads_address_part (XEXP (ad, op_index),
5201 				     &XEXP (ad, op_index), cls,
5202 				     GET_MODE (ad), opnum, type, ind_levels);
5203 	  find_reloads_address_1 (mode, as,
5204 				  XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5205 				  GET_CODE (XEXP (ad, op_index)),
5206 				  &XEXP (ad, 1 - op_index), opnum,
5207 				  type, 0, insn);
5208 
5209 	  return 0;
5210 	}
5211     }
5212 
5213   /* See if address becomes valid when an eliminable register
5214      in a sum is replaced.  */
5215 
5216   tem = ad;
5217   if (GET_CODE (ad) == PLUS)
5218     tem = subst_indexed_address (ad);
5219   if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5220     {
5221       /* Ok, we win that way.  Replace any additional eliminable
5222 	 registers.  */
5223 
5224       subst_reg_equivs_changed = 0;
5225       tem = subst_reg_equivs (tem, insn);
5226 
5227       /* Make sure that didn't make the address invalid again.  */
5228 
5229       if (! subst_reg_equivs_changed
5230 	  || strict_memory_address_addr_space_p (mode, tem, as))
5231 	{
5232 	  *loc = tem;
5233 	  return 0;
5234 	}
5235     }
5236 
5237   /* If constants aren't valid addresses, reload the constant address
5238      into a register.  */
5239   if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5240     {
5241       enum machine_mode address_mode = GET_MODE (ad);
5242       if (address_mode == VOIDmode)
5243 	address_mode = targetm.addr_space.address_mode (as);
5244 
5245       /* If AD is an address in the constant pool, the MEM rtx may be shared.
5246 	 Unshare it so we can safely alter it.  */
5247       if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5248 	  && CONSTANT_POOL_ADDRESS_P (ad))
5249 	{
5250 	  *memrefloc = copy_rtx (*memrefloc);
5251 	  loc = &XEXP (*memrefloc, 0);
5252 	  if (removed_and)
5253 	    loc = &XEXP (*loc, 0);
5254 	}
5255 
5256       find_reloads_address_part (ad, loc,
5257 				 base_reg_class (mode, as, MEM, SCRATCH),
5258 				 address_mode, opnum, type, ind_levels);
5259       return ! removed_and;
5260     }
5261 
5262   return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5263 				 opnum, type, ind_levels, insn);
5264 }
5265 
5266 /* Find all pseudo regs appearing in AD
5267    that are eliminable in favor of equivalent values
5268    and do not have hard regs; replace them by their equivalents.
5269    INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
5270    front of it for pseudos that we have to replace with stack slots.  */
5271 
5272 static rtx
5273 subst_reg_equivs (rtx ad, rtx insn)
5274 {
5275   RTX_CODE code = GET_CODE (ad);
5276   int i;
5277   const char *fmt;
5278 
5279   switch (code)
5280     {
5281     case HIGH:
5282     case CONST_INT:
5283     case CONST:
5284     case CONST_DOUBLE:
5285     case CONST_FIXED:
5286     case CONST_VECTOR:
5287     case SYMBOL_REF:
5288     case LABEL_REF:
5289     case PC:
5290     case CC0:
5291       return ad;
5292 
5293     case REG:
5294       {
5295 	int regno = REGNO (ad);
5296 
5297 	if (reg_equiv_constant (regno) != 0)
5298 	  {
5299 	    subst_reg_equivs_changed = 1;
5300 	    return reg_equiv_constant (regno);
5301 	  }
5302 	if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5303 	  {
5304 	    rtx mem = make_memloc (ad, regno);
5305 	    if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5306 	      {
5307 		subst_reg_equivs_changed = 1;
5308 		/* We mark the USE with QImode so that we recognize it
5309 		   as one that can be safely deleted at the end of
5310 		   reload.  */
5311 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5312 			  QImode);
5313 		return mem;
5314 	      }
5315 	  }
5316       }
5317       return ad;
5318 
5319     case PLUS:
5320       /* Quickly dispose of a common case.  */
5321       if (XEXP (ad, 0) == frame_pointer_rtx
5322 	  && CONST_INT_P (XEXP (ad, 1)))
5323 	return ad;
5324       break;
5325 
5326     default:
5327       break;
5328     }
5329 
5330   fmt = GET_RTX_FORMAT (code);
5331   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5332     if (fmt[i] == 'e')
5333       XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5334   return ad;
5335 }
5336 
5337 /* Compute the sum of X and Y, making canonicalizations assumed in an
5338    address, namely: sum constant integers, surround the sum of two
5339    constants with a CONST, put the constant as the second operand, and
5340    group the constant on the outermost sum.
5341 
5342    This routine assumes both inputs are already in canonical form.  */
5343 
5344 rtx
5345 form_sum (enum machine_mode mode, rtx x, rtx y)
5346 {
5347   rtx tem;
5348 
5349   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5350   gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5351 
5352   if (CONST_INT_P (x))
5353     return plus_constant (y, INTVAL (x));
5354   else if (CONST_INT_P (y))
5355     return plus_constant (x, INTVAL (y));
5356   else if (CONSTANT_P (x))
5357     tem = x, x = y, y = tem;
5358 
5359   if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5360     return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5361 
5362   /* Note that if the operands of Y are specified in the opposite
5363      order in the recursive calls below, infinite recursion will occur.  */
5364   if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5365     return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5366 
5367   /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
5368      constant will have been placed second.  */
5369   if (CONSTANT_P (x) && CONSTANT_P (y))
5370     {
5371       if (GET_CODE (x) == CONST)
5372 	x = XEXP (x, 0);
5373       if (GET_CODE (y) == CONST)
5374 	y = XEXP (y, 0);
5375 
5376       return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5377     }
5378 
5379   return gen_rtx_PLUS (mode, x, y);
5380 }
5381 
5382 /* If ADDR is a sum containing a pseudo register that should be
5383    replaced with a constant (from reg_equiv_constant),
5384    return the result of doing so, and also apply the associative
5385    law so that the result is more likely to be a valid address.
5386    (But it is not guaranteed to be one.)
5387 
5388    Note that at most one register is replaced, even if more are
5389    replaceable.  Also, we try to put the result into a canonical form
5390    so it is more likely to be a valid address.
5391 
5392    In all other cases, return ADDR.  */
5393 
5394 static rtx
5395 subst_indexed_address (rtx addr)
5396 {
5397   rtx op0 = 0, op1 = 0, op2 = 0;
5398   rtx tem;
5399   int regno;
5400 
5401   if (GET_CODE (addr) == PLUS)
5402     {
5403       /* Try to find a register to replace.  */
5404       op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5405       if (REG_P (op0)
5406 	  && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5407 	  && reg_renumber[regno] < 0
5408 	  && reg_equiv_constant (regno) != 0)
5409 	op0 = reg_equiv_constant (regno);
5410       else if (REG_P (op1)
5411 	       && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5412 	       && reg_renumber[regno] < 0
5413 	       && reg_equiv_constant (regno) != 0)
5414 	op1 = reg_equiv_constant (regno);
5415       else if (GET_CODE (op0) == PLUS
5416 	       && (tem = subst_indexed_address (op0)) != op0)
5417 	op0 = tem;
5418       else if (GET_CODE (op1) == PLUS
5419 	       && (tem = subst_indexed_address (op1)) != op1)
5420 	op1 = tem;
5421       else
5422 	return addr;
5423 
5424       /* Pick out up to three things to add.  */
5425       if (GET_CODE (op1) == PLUS)
5426 	op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5427       else if (GET_CODE (op0) == PLUS)
5428 	op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5429 
5430       /* Compute the sum.  */
5431       if (op2 != 0)
5432 	op1 = form_sum (GET_MODE (addr), op1, op2);
5433       if (op1 != 0)
5434 	op0 = form_sum (GET_MODE (addr), op0, op1);
5435 
5436       return op0;
5437     }
5438   return addr;
5439 }
5440 
5441 /* Update the REG_INC notes for an insn.  It updates all REG_INC
5442    notes for the instruction which refer to REGNO the to refer
5443    to the reload number.
5444 
5445    INSN is the insn for which any REG_INC notes need updating.
5446 
5447    REGNO is the register number which has been reloaded.
5448 
5449    RELOADNUM is the reload number.  */
5450 
5451 static void
5452 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5453 		       int reloadnum ATTRIBUTE_UNUSED)
5454 {
5455 #ifdef AUTO_INC_DEC
5456   rtx link;
5457 
5458   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5459     if (REG_NOTE_KIND (link) == REG_INC
5460         && (int) REGNO (XEXP (link, 0)) == regno)
5461       push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5462 #endif
5463 }
5464 
5465 /* Record the pseudo registers we must reload into hard registers in a
5466    subexpression of a would-be memory address, X referring to a value
5467    in mode MODE.  (This function is not called if the address we find
5468    is strictly valid.)
5469 
5470    CONTEXT = 1 means we are considering regs as index regs,
5471    = 0 means we are considering them as base regs.
5472    OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5473    or an autoinc code.
5474    If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5475    is the code of the index part of the address.  Otherwise, pass SCRATCH
5476    for this argument.
5477    OPNUM and TYPE specify the purpose of any reloads made.
5478 
5479    IND_LEVELS says how many levels of indirect addressing are
5480    supported at this point in the address.
5481 
5482    INSN, if nonzero, is the insn in which we do the reload.  It is used
5483    to determine if we may generate output reloads.
5484 
5485    We return nonzero if X, as a whole, is reloaded or replaced.  */
5486 
5487 /* Note that we take shortcuts assuming that no multi-reg machine mode
5488    occurs as part of an address.
5489    Also, this is not fully machine-customizable; it works for machines
5490    such as VAXen and 68000's and 32000's, but other possible machines
5491    could have addressing modes that this does not handle right.
5492    If you add push_reload calls here, you need to make sure gen_reload
5493    handles those cases gracefully.  */
5494 
5495 static int
5496 find_reloads_address_1 (enum machine_mode mode, addr_space_t as,
5497 			rtx x, int context,
5498 			enum rtx_code outer_code, enum rtx_code index_code,
5499 			rtx *loc, int opnum, enum reload_type type,
5500 			int ind_levels, rtx insn)
5501 {
5502 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX)	\
5503   ((CONTEXT) == 0							\
5504    ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX)		\
5505    : REGNO_OK_FOR_INDEX_P (REGNO))
5506 
5507   enum reg_class context_reg_class;
5508   RTX_CODE code = GET_CODE (x);
5509 
5510   if (context == 1)
5511     context_reg_class = INDEX_REG_CLASS;
5512   else
5513     context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5514 
5515   switch (code)
5516     {
5517     case PLUS:
5518       {
5519 	rtx orig_op0 = XEXP (x, 0);
5520 	rtx orig_op1 = XEXP (x, 1);
5521 	RTX_CODE code0 = GET_CODE (orig_op0);
5522 	RTX_CODE code1 = GET_CODE (orig_op1);
5523 	rtx op0 = orig_op0;
5524 	rtx op1 = orig_op1;
5525 
5526 	if (GET_CODE (op0) == SUBREG)
5527 	  {
5528 	    op0 = SUBREG_REG (op0);
5529 	    code0 = GET_CODE (op0);
5530 	    if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5531 	      op0 = gen_rtx_REG (word_mode,
5532 				 (REGNO (op0) +
5533 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5534 						       GET_MODE (SUBREG_REG (orig_op0)),
5535 						       SUBREG_BYTE (orig_op0),
5536 						       GET_MODE (orig_op0))));
5537 	  }
5538 
5539 	if (GET_CODE (op1) == SUBREG)
5540 	  {
5541 	    op1 = SUBREG_REG (op1);
5542 	    code1 = GET_CODE (op1);
5543 	    if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5544 	      /* ??? Why is this given op1's mode and above for
5545 		 ??? op0 SUBREGs we use word_mode?  */
5546 	      op1 = gen_rtx_REG (GET_MODE (op1),
5547 				 (REGNO (op1) +
5548 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5549 						       GET_MODE (SUBREG_REG (orig_op1)),
5550 						       SUBREG_BYTE (orig_op1),
5551 						       GET_MODE (orig_op1))));
5552 	  }
5553 	/* Plus in the index register may be created only as a result of
5554 	   register rematerialization for expression like &localvar*4.  Reload it.
5555 	   It may be possible to combine the displacement on the outer level,
5556 	   but it is probably not worthwhile to do so.  */
5557 	if (context == 1)
5558 	  {
5559 	    find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5560 				  opnum, ADDR_TYPE (type), ind_levels, insn);
5561 	    push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5562 			 context_reg_class,
5563 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5564 	    return 1;
5565 	  }
5566 
5567 	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5568 	    || code0 == ZERO_EXTEND || code1 == MEM)
5569 	  {
5570 	    find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5571 				    &XEXP (x, 0), opnum, type, ind_levels,
5572 				    insn);
5573 	    find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5574 				    &XEXP (x, 1), opnum, type, ind_levels,
5575 				    insn);
5576 	  }
5577 
5578 	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5579 		 || code1 == ZERO_EXTEND || code0 == MEM)
5580 	  {
5581 	    find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5582 				    &XEXP (x, 0), opnum, type, ind_levels,
5583 				    insn);
5584 	    find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5585 				    &XEXP (x, 1), opnum, type, ind_levels,
5586 				    insn);
5587 	  }
5588 
5589 	else if (code0 == CONST_INT || code0 == CONST
5590 		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5591 	  find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5592 				  &XEXP (x, 1), opnum, type, ind_levels,
5593 				  insn);
5594 
5595 	else if (code1 == CONST_INT || code1 == CONST
5596 		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5597 	  find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5598 				  &XEXP (x, 0), opnum, type, ind_levels,
5599 				  insn);
5600 
5601 	else if (code0 == REG && code1 == REG)
5602 	  {
5603 	    if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5604 		&& regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5605 	      return 0;
5606 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5607 		     && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5608 	      return 0;
5609 	    else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5610 	      find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5611 				      &XEXP (x, 1), opnum, type, ind_levels,
5612 				      insn);
5613 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5614 	      find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5615 				      &XEXP (x, 0), opnum, type, ind_levels,
5616 				      insn);
5617 	    else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5618 	      find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5619 				      &XEXP (x, 0), opnum, type, ind_levels,
5620 				      insn);
5621 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5622 	      find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5623 				      &XEXP (x, 1), opnum, type, ind_levels,
5624 				      insn);
5625 	    else
5626 	      {
5627 		find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5628 					&XEXP (x, 0), opnum, type, ind_levels,
5629 					insn);
5630 		find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5631 					&XEXP (x, 1), opnum, type, ind_levels,
5632 					insn);
5633 	      }
5634 	  }
5635 
5636 	else if (code0 == REG)
5637 	  {
5638 	    find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5639 				    &XEXP (x, 0), opnum, type, ind_levels,
5640 				    insn);
5641 	    find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5642 				    &XEXP (x, 1), opnum, type, ind_levels,
5643 				    insn);
5644 	  }
5645 
5646 	else if (code1 == REG)
5647 	  {
5648 	    find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5649 				    &XEXP (x, 1), opnum, type, ind_levels,
5650 				    insn);
5651 	    find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5652 				    &XEXP (x, 0), opnum, type, ind_levels,
5653 				    insn);
5654 	  }
5655       }
5656 
5657       return 0;
5658 
5659     case POST_MODIFY:
5660     case PRE_MODIFY:
5661       {
5662 	rtx op0 = XEXP (x, 0);
5663 	rtx op1 = XEXP (x, 1);
5664 	enum rtx_code index_code;
5665 	int regno;
5666 	int reloadnum;
5667 
5668 	if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5669 	  return 0;
5670 
5671 	/* Currently, we only support {PRE,POST}_MODIFY constructs
5672 	   where a base register is {inc,dec}remented by the contents
5673 	   of another register or by a constant value.  Thus, these
5674 	   operands must match.  */
5675 	gcc_assert (op0 == XEXP (op1, 0));
5676 
5677 	/* Require index register (or constant).  Let's just handle the
5678 	   register case in the meantime... If the target allows
5679 	   auto-modify by a constant then we could try replacing a pseudo
5680 	   register with its equivalent constant where applicable.
5681 
5682 	   We also handle the case where the register was eliminated
5683 	   resulting in a PLUS subexpression.
5684 
5685 	   If we later decide to reload the whole PRE_MODIFY or
5686 	   POST_MODIFY, inc_for_reload might clobber the reload register
5687 	   before reading the index.  The index register might therefore
5688 	   need to live longer than a TYPE reload normally would, so be
5689 	   conservative and class it as RELOAD_OTHER.  */
5690 	if ((REG_P (XEXP (op1, 1))
5691 	     && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5692 	    || GET_CODE (XEXP (op1, 1)) == PLUS)
5693 	  find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5694 				  &XEXP (op1, 1), opnum, RELOAD_OTHER,
5695 				  ind_levels, insn);
5696 
5697 	gcc_assert (REG_P (XEXP (op1, 0)));
5698 
5699 	regno = REGNO (XEXP (op1, 0));
5700 	index_code = GET_CODE (XEXP (op1, 1));
5701 
5702 	/* A register that is incremented cannot be constant!  */
5703 	gcc_assert (regno < FIRST_PSEUDO_REGISTER
5704 		    || reg_equiv_constant (regno) == 0);
5705 
5706 	/* Handle a register that is equivalent to a memory location
5707 	    which cannot be addressed directly.  */
5708 	if (reg_equiv_memory_loc (regno) != 0
5709 	    && (reg_equiv_address (regno) != 0
5710 		|| num_not_at_initial_offset))
5711 	  {
5712 	    rtx tem = make_memloc (XEXP (x, 0), regno);
5713 
5714 	    if (reg_equiv_address (regno)
5715 		|| ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5716 	      {
5717 		rtx orig = tem;
5718 
5719 		/* First reload the memory location's address.
5720 		    We can't use ADDR_TYPE (type) here, because we need to
5721 		    write back the value after reading it, hence we actually
5722 		    need two registers.  */
5723 		find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5724 				      &XEXP (tem, 0), opnum,
5725 				      RELOAD_OTHER,
5726 				      ind_levels, insn);
5727 
5728 		if (!rtx_equal_p (tem, orig))
5729 		  push_reg_equiv_alt_mem (regno, tem);
5730 
5731 		/* Then reload the memory location into a base
5732 		   register.  */
5733 		reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5734 					 &XEXP (op1, 0),
5735 					 base_reg_class (mode, as,
5736 							 code, index_code),
5737 					 GET_MODE (x), GET_MODE (x), 0,
5738 					 0, opnum, RELOAD_OTHER);
5739 
5740 		update_auto_inc_notes (this_insn, regno, reloadnum);
5741 		return 0;
5742 	      }
5743 	  }
5744 
5745 	if (reg_renumber[regno] >= 0)
5746 	  regno = reg_renumber[regno];
5747 
5748 	/* We require a base register here...  */
5749 	if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5750 	  {
5751 	    reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5752 				     &XEXP (op1, 0), &XEXP (x, 0),
5753 				     base_reg_class (mode, as,
5754 						     code, index_code),
5755 				     GET_MODE (x), GET_MODE (x), 0, 0,
5756 				     opnum, RELOAD_OTHER);
5757 
5758 	    update_auto_inc_notes (this_insn, regno, reloadnum);
5759 	    return 0;
5760 	  }
5761       }
5762       return 0;
5763 
5764     case POST_INC:
5765     case POST_DEC:
5766     case PRE_INC:
5767     case PRE_DEC:
5768       if (REG_P (XEXP (x, 0)))
5769 	{
5770 	  int regno = REGNO (XEXP (x, 0));
5771 	  int value = 0;
5772 	  rtx x_orig = x;
5773 
5774 	  /* A register that is incremented cannot be constant!  */
5775 	  gcc_assert (regno < FIRST_PSEUDO_REGISTER
5776 		      || reg_equiv_constant (regno) == 0);
5777 
5778 	  /* Handle a register that is equivalent to a memory location
5779 	     which cannot be addressed directly.  */
5780 	  if (reg_equiv_memory_loc (regno) != 0
5781 	      && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5782 	    {
5783 	      rtx tem = make_memloc (XEXP (x, 0), regno);
5784 	      if (reg_equiv_address (regno)
5785 		  || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5786 		{
5787 		  rtx orig = tem;
5788 
5789 		  /* First reload the memory location's address.
5790 		     We can't use ADDR_TYPE (type) here, because we need to
5791 		     write back the value after reading it, hence we actually
5792 		     need two registers.  */
5793 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5794 					&XEXP (tem, 0), opnum, type,
5795 					ind_levels, insn);
5796 		  if (!rtx_equal_p (tem, orig))
5797 		    push_reg_equiv_alt_mem (regno, tem);
5798 		  /* Put this inside a new increment-expression.  */
5799 		  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5800 		  /* Proceed to reload that, as if it contained a register.  */
5801 		}
5802 	    }
5803 
5804 	  /* If we have a hard register that is ok in this incdec context,
5805 	     don't make a reload.  If the register isn't nice enough for
5806 	     autoincdec, we can reload it.  But, if an autoincrement of a
5807 	     register that we here verified as playing nice, still outside
5808 	     isn't "valid", it must be that no autoincrement is "valid".
5809 	     If that is true and something made an autoincrement anyway,
5810 	     this must be a special context where one is allowed.
5811 	     (For example, a "push" instruction.)
5812 	     We can't improve this address, so leave it alone.  */
5813 
5814 	  /* Otherwise, reload the autoincrement into a suitable hard reg
5815 	     and record how much to increment by.  */
5816 
5817 	  if (reg_renumber[regno] >= 0)
5818 	    regno = reg_renumber[regno];
5819 	  if (regno >= FIRST_PSEUDO_REGISTER
5820 	      || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5821 				      index_code))
5822 	    {
5823 	      int reloadnum;
5824 
5825 	      /* If we can output the register afterwards, do so, this
5826 		 saves the extra update.
5827 		 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5828 		 CALL_INSN - and it does not set CC0.
5829 		 But don't do this if we cannot directly address the
5830 		 memory location, since this will make it harder to
5831 		 reuse address reloads, and increases register pressure.
5832 		 Also don't do this if we can probably update x directly.  */
5833 	      rtx equiv = (MEM_P (XEXP (x, 0))
5834 			   ? XEXP (x, 0)
5835 			   : reg_equiv_mem (regno));
5836 	      enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5837 	      if (insn && NONJUMP_INSN_P (insn) && equiv
5838 		  && memory_operand (equiv, GET_MODE (equiv))
5839 #ifdef HAVE_cc0
5840 		  && ! sets_cc0_p (PATTERN (insn))
5841 #endif
5842 		  && ! (icode != CODE_FOR_nothing
5843 			&& insn_operand_matches (icode, 0, equiv)
5844 			&& insn_operand_matches (icode, 1, equiv)))
5845 		{
5846 		  /* We use the original pseudo for loc, so that
5847 		     emit_reload_insns() knows which pseudo this
5848 		     reload refers to and updates the pseudo rtx, not
5849 		     its equivalent memory location, as well as the
5850 		     corresponding entry in reg_last_reload_reg.  */
5851 		  loc = &XEXP (x_orig, 0);
5852 		  x = XEXP (x, 0);
5853 		  reloadnum
5854 		    = push_reload (x, x, loc, loc,
5855 				   context_reg_class,
5856 				   GET_MODE (x), GET_MODE (x), 0, 0,
5857 				   opnum, RELOAD_OTHER);
5858 		}
5859 	      else
5860 		{
5861 		  reloadnum
5862 		    = push_reload (x, x, loc, (rtx*) 0,
5863 				   context_reg_class,
5864 				   GET_MODE (x), GET_MODE (x), 0, 0,
5865 				   opnum, type);
5866 		  rld[reloadnum].inc
5867 		    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5868 
5869 		  value = 1;
5870 		}
5871 
5872 	      update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5873 				     reloadnum);
5874 	    }
5875 	  return value;
5876 	}
5877       return 0;
5878 
5879     case TRUNCATE:
5880     case SIGN_EXTEND:
5881     case ZERO_EXTEND:
5882       /* Look for parts to reload in the inner expression and reload them
5883 	 too, in addition to this operation.  Reloading all inner parts in
5884 	 addition to this one shouldn't be necessary, but at this point,
5885 	 we don't know if we can possibly omit any part that *can* be
5886 	 reloaded.  Targets that are better off reloading just either part
5887 	 (or perhaps even a different part of an outer expression), should
5888 	 define LEGITIMIZE_RELOAD_ADDRESS.  */
5889       find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5890 			      context, code, SCRATCH, &XEXP (x, 0), opnum,
5891 			      type, ind_levels, insn);
5892       push_reload (x, NULL_RTX, loc, (rtx*) 0,
5893 		   context_reg_class,
5894 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5895       return 1;
5896 
5897     case MEM:
5898       /* This is probably the result of a substitution, by eliminate_regs, of
5899 	 an equivalent address for a pseudo that was not allocated to a hard
5900 	 register.  Verify that the specified address is valid and reload it
5901 	 into a register.
5902 
5903 	 Since we know we are going to reload this item, don't decrement for
5904 	 the indirection level.
5905 
5906 	 Note that this is actually conservative:  it would be slightly more
5907 	 efficient to use the value of SPILL_INDIRECT_LEVELS from
5908 	 reload1.c here.  */
5909 
5910       find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5911 			    opnum, ADDR_TYPE (type), ind_levels, insn);
5912       push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5913 		   context_reg_class,
5914 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5915       return 1;
5916 
5917     case REG:
5918       {
5919 	int regno = REGNO (x);
5920 
5921 	if (reg_equiv_constant (regno) != 0)
5922 	  {
5923 	    find_reloads_address_part (reg_equiv_constant (regno), loc,
5924 				       context_reg_class,
5925 				       GET_MODE (x), opnum, type, ind_levels);
5926 	    return 1;
5927 	  }
5928 
5929 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5930 	 that feeds this insn.  */
5931 	if (reg_equiv_mem (regno) != 0)
5932 	  {
5933 	    push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5934 			 context_reg_class,
5935 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5936 	    return 1;
5937 	  }
5938 #endif
5939 
5940 	if (reg_equiv_memory_loc (regno)
5941 	    && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5942 	  {
5943 	    rtx tem = make_memloc (x, regno);
5944 	    if (reg_equiv_address (regno) != 0
5945 		|| ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5946 	      {
5947 		x = tem;
5948 		find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5949 				      &XEXP (x, 0), opnum, ADDR_TYPE (type),
5950 				      ind_levels, insn);
5951 		if (!rtx_equal_p (x, tem))
5952 		  push_reg_equiv_alt_mem (regno, x);
5953 	      }
5954 	  }
5955 
5956 	if (reg_renumber[regno] >= 0)
5957 	  regno = reg_renumber[regno];
5958 
5959 	if (regno >= FIRST_PSEUDO_REGISTER
5960 	    || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5961 				    index_code))
5962 	  {
5963 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5964 			 context_reg_class,
5965 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5966 	    return 1;
5967 	  }
5968 
5969 	/* If a register appearing in an address is the subject of a CLOBBER
5970 	   in this insn, reload it into some other register to be safe.
5971 	   The CLOBBER is supposed to make the register unavailable
5972 	   from before this insn to after it.  */
5973 	if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5974 	  {
5975 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5976 			 context_reg_class,
5977 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5978 	    return 1;
5979 	  }
5980       }
5981       return 0;
5982 
5983     case SUBREG:
5984       if (REG_P (SUBREG_REG (x)))
5985 	{
5986 	  /* If this is a SUBREG of a hard register and the resulting register
5987 	     is of the wrong class, reload the whole SUBREG.  This avoids
5988 	     needless copies if SUBREG_REG is multi-word.  */
5989 	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5990 	    {
5991 	      int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5992 
5993 	      if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5994 				       index_code))
5995 		{
5996 		  push_reload (x, NULL_RTX, loc, (rtx*) 0,
5997 			       context_reg_class,
5998 			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5999 		  return 1;
6000 		}
6001 	    }
6002 	  /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6003 	     is larger than the class size, then reload the whole SUBREG.  */
6004 	  else
6005 	    {
6006 	      enum reg_class rclass = context_reg_class;
6007 	      if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6008 		  > reg_class_size[(int) rclass])
6009 		{
6010 		  x = find_reloads_subreg_address (x, 0, opnum,
6011 						   ADDR_TYPE (type),
6012 						   ind_levels, insn, NULL);
6013 		  push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6014 			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6015 		  return 1;
6016 		}
6017 	    }
6018 	}
6019       break;
6020 
6021     default:
6022       break;
6023     }
6024 
6025   {
6026     const char *fmt = GET_RTX_FORMAT (code);
6027     int i;
6028 
6029     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6030       {
6031 	if (fmt[i] == 'e')
6032 	  /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6033 	     we get here.  */
6034 	  find_reloads_address_1 (mode, as, XEXP (x, i), context,
6035 				  code, SCRATCH, &XEXP (x, i),
6036 				  opnum, type, ind_levels, insn);
6037       }
6038   }
6039 
6040 #undef REG_OK_FOR_CONTEXT
6041   return 0;
6042 }
6043 
6044 /* X, which is found at *LOC, is a part of an address that needs to be
6045    reloaded into a register of class RCLASS.  If X is a constant, or if
6046    X is a PLUS that contains a constant, check that the constant is a
6047    legitimate operand and that we are supposed to be able to load
6048    it into the register.
6049 
6050    If not, force the constant into memory and reload the MEM instead.
6051 
6052    MODE is the mode to use, in case X is an integer constant.
6053 
6054    OPNUM and TYPE describe the purpose of any reloads made.
6055 
6056    IND_LEVELS says how many levels of indirect addressing this machine
6057    supports.  */
6058 
6059 static void
6060 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6061 			   enum machine_mode mode, int opnum,
6062 			   enum reload_type type, int ind_levels)
6063 {
6064   if (CONSTANT_P (x)
6065       && (!targetm.legitimate_constant_p (mode, x)
6066 	  || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6067     {
6068       x = force_const_mem (mode, x);
6069       find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6070 			    opnum, type, ind_levels, 0);
6071     }
6072 
6073   else if (GET_CODE (x) == PLUS
6074 	   && CONSTANT_P (XEXP (x, 1))
6075 	   && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6076 	       || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6077 		   == NO_REGS))
6078     {
6079       rtx tem;
6080 
6081       tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6082       x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6083       find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6084 			    opnum, type, ind_levels, 0);
6085     }
6086 
6087   push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6088 	       mode, VOIDmode, 0, 0, opnum, type);
6089 }
6090 
6091 /* X, a subreg of a pseudo, is a part of an address that needs to be
6092    reloaded.
6093 
6094    If the pseudo is equivalent to a memory location that cannot be directly
6095    addressed, make the necessary address reloads.
6096 
6097    If address reloads have been necessary, or if the address is changed
6098    by register elimination, return the rtx of the memory location;
6099    otherwise, return X.
6100 
6101    If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6102    memory location.
6103 
6104    OPNUM and TYPE identify the purpose of the reload.
6105 
6106    IND_LEVELS says how many levels of indirect addressing are
6107    supported at this point in the address.
6108 
6109    INSN, if nonzero, is the insn in which we do the reload.  It is used
6110    to determine where to put USEs for pseudos that we have to replace with
6111    stack slots.  */
6112 
6113 static rtx
6114 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6115 			     enum reload_type type, int ind_levels, rtx insn,
6116 			     int *address_reloaded)
6117 {
6118   int regno = REGNO (SUBREG_REG (x));
6119   int reloaded = 0;
6120 
6121   if (reg_equiv_memory_loc (regno))
6122     {
6123       /* If the address is not directly addressable, or if the address is not
6124 	 offsettable, then it must be replaced.  */
6125       if (! force_replace
6126 	  && (reg_equiv_address (regno)
6127 	      || ! offsettable_memref_p (reg_equiv_mem (regno))))
6128 	force_replace = 1;
6129 
6130       if (force_replace || num_not_at_initial_offset)
6131 	{
6132 	  rtx tem = make_memloc (SUBREG_REG (x), regno);
6133 
6134 	  /* If the address changes because of register elimination, then
6135 	     it must be replaced.  */
6136 	  if (force_replace
6137 	      || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6138 	    {
6139 	      unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6140 	      unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6141 	      int offset;
6142 	      rtx orig = tem;
6143 
6144 	      /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6145 		 hold the correct (negative) byte offset.  */
6146 	      if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6147 		offset = inner_size - outer_size;
6148 	      else
6149 		offset = SUBREG_BYTE (x);
6150 
6151 	      XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6152 	      PUT_MODE (tem, GET_MODE (x));
6153 	      if (MEM_OFFSET_KNOWN_P (tem))
6154 		set_mem_offset (tem, MEM_OFFSET (tem) + offset);
6155 	      if (MEM_SIZE_KNOWN_P (tem)
6156 		  && MEM_SIZE (tem) != (HOST_WIDE_INT) outer_size)
6157 		set_mem_size (tem, outer_size);
6158 
6159 	      /* If this was a paradoxical subreg that we replaced, the
6160 		 resulting memory must be sufficiently aligned to allow
6161 		 us to widen the mode of the memory.  */
6162 	      if (outer_size > inner_size)
6163 		{
6164 		  rtx base;
6165 
6166 		  base = XEXP (tem, 0);
6167 		  if (GET_CODE (base) == PLUS)
6168 		    {
6169 		      if (CONST_INT_P (XEXP (base, 1))
6170 			  && INTVAL (XEXP (base, 1)) % outer_size != 0)
6171 			return x;
6172 		      base = XEXP (base, 0);
6173 		    }
6174 		  if (!REG_P (base)
6175 		      || (REGNO_POINTER_ALIGN (REGNO (base))
6176 			  < outer_size * BITS_PER_UNIT))
6177 		    return x;
6178 		}
6179 
6180 	      reloaded = find_reloads_address (GET_MODE (tem), &tem,
6181 					       XEXP (tem, 0), &XEXP (tem, 0),
6182 					       opnum, type, ind_levels, insn);
6183 	      /* ??? Do we need to handle nonzero offsets somehow?  */
6184 	      if (!offset && !rtx_equal_p (tem, orig))
6185 		push_reg_equiv_alt_mem (regno, tem);
6186 
6187 	      /* For some processors an address may be valid in the
6188 		 original mode but not in a smaller mode.  For
6189 		 example, ARM accepts a scaled index register in
6190 		 SImode but not in HImode.  Note that this is only
6191 		 a problem if the address in reg_equiv_mem is already
6192 		 invalid in the new mode; other cases would be fixed
6193 		 by find_reloads_address as usual.
6194 
6195 		 ??? We attempt to handle such cases here by doing an
6196 		 additional reload of the full address after the
6197 		 usual processing by find_reloads_address.  Note that
6198 		 this may not work in the general case, but it seems
6199 		 to cover the cases where this situation currently
6200 		 occurs.  A more general fix might be to reload the
6201 		 *value* instead of the address, but this would not
6202 		 be expected by the callers of this routine as-is.
6203 
6204 		 If find_reloads_address already completed replaced
6205 		 the address, there is nothing further to do.  */
6206 	      if (reloaded == 0
6207 		  && reg_equiv_mem (regno) != 0
6208 		  && !strict_memory_address_addr_space_p
6209 			(GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6210 			 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6211 		{
6212 		  push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6213 			       base_reg_class (GET_MODE (tem),
6214 					       MEM_ADDR_SPACE (tem),
6215 					       MEM, SCRATCH),
6216 			       GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6217 			       opnum, type);
6218 		  reloaded = 1;
6219 		}
6220 	      /* If this is not a toplevel operand, find_reloads doesn't see
6221 		 this substitution.  We have to emit a USE of the pseudo so
6222 		 that delete_output_reload can see it.  */
6223 	      if (replace_reloads && recog_data.operand[opnum] != x)
6224 		/* We mark the USE with QImode so that we recognize it
6225 		   as one that can be safely deleted at the end of
6226 		   reload.  */
6227 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6228 							 SUBREG_REG (x)),
6229 					    insn), QImode);
6230 	      x = tem;
6231 	    }
6232 	}
6233     }
6234   if (address_reloaded)
6235     *address_reloaded = reloaded;
6236 
6237   return x;
6238 }
6239 
6240 /* Substitute into the current INSN the registers into which we have reloaded
6241    the things that need reloading.  The array `replacements'
6242    contains the locations of all pointers that must be changed
6243    and says what to replace them with.
6244 
6245    Return the rtx that X translates into; usually X, but modified.  */
6246 
6247 void
6248 subst_reloads (rtx insn)
6249 {
6250   int i;
6251 
6252   for (i = 0; i < n_replacements; i++)
6253     {
6254       struct replacement *r = &replacements[i];
6255       rtx reloadreg = rld[r->what].reg_rtx;
6256       if (reloadreg)
6257 	{
6258 #ifdef DEBUG_RELOAD
6259 	  /* This checking takes a very long time on some platforms
6260 	     causing the gcc.c-torture/compile/limits-fnargs.c test
6261 	     to time out during testing.  See PR 31850.
6262 
6263 	     Internal consistency test.  Check that we don't modify
6264 	     anything in the equivalence arrays.  Whenever something from
6265 	     those arrays needs to be reloaded, it must be unshared before
6266 	     being substituted into; the equivalence must not be modified.
6267 	     Otherwise, if the equivalence is used after that, it will
6268 	     have been modified, and the thing substituted (probably a
6269 	     register) is likely overwritten and not a usable equivalence.  */
6270 	  int check_regno;
6271 
6272 	  for (check_regno = 0; check_regno < max_regno; check_regno++)
6273 	    {
6274 #define CHECK_MODF(ARRAY)						\
6275 	      gcc_assert (!VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY		\
6276 			  || !loc_mentioned_in_p (r->where,		\
6277 						  VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY))
6278 
6279 	      CHECK_MODF (equiv_constant);
6280 	      CHECK_MODF (equiv_memory_loc);
6281 	      CHECK_MODF (equiv_address);
6282 	      CHECK_MODF (equiv_mem);
6283 #undef CHECK_MODF
6284 	    }
6285 #endif /* DEBUG_RELOAD */
6286 
6287 	  /* If we're replacing a LABEL_REF with a register, there must
6288 	     already be an indication (to e.g. flow) which label this
6289 	     register refers to.  */
6290 	  gcc_assert (GET_CODE (*r->where) != LABEL_REF
6291 		      || !JUMP_P (insn)
6292 		      || find_reg_note (insn,
6293 					REG_LABEL_OPERAND,
6294 					XEXP (*r->where, 0))
6295 		      || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6296 
6297 	  /* Encapsulate RELOADREG so its machine mode matches what
6298 	     used to be there.  Note that gen_lowpart_common will
6299 	     do the wrong thing if RELOADREG is multi-word.  RELOADREG
6300 	     will always be a REG here.  */
6301 	  if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6302 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6303 
6304 	  *r->where = reloadreg;
6305 	}
6306       /* If reload got no reg and isn't optional, something's wrong.  */
6307       else
6308 	gcc_assert (rld[r->what].optional);
6309     }
6310 }
6311 
6312 /* Make a copy of any replacements being done into X and move those
6313    copies to locations in Y, a copy of X.  */
6314 
6315 void
6316 copy_replacements (rtx x, rtx y)
6317 {
6318   copy_replacements_1 (&x, &y, n_replacements);
6319 }
6320 
6321 static void
6322 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6323 {
6324   int i, j;
6325   rtx x, y;
6326   struct replacement *r;
6327   enum rtx_code code;
6328   const char *fmt;
6329 
6330   for (j = 0; j < orig_replacements; j++)
6331     if (replacements[j].where == px)
6332       {
6333 	r = &replacements[n_replacements++];
6334 	r->where = py;
6335 	r->what = replacements[j].what;
6336 	r->mode = replacements[j].mode;
6337       }
6338 
6339   x = *px;
6340   y = *py;
6341   code = GET_CODE (x);
6342   fmt = GET_RTX_FORMAT (code);
6343 
6344   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6345     {
6346       if (fmt[i] == 'e')
6347 	copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6348       else if (fmt[i] == 'E')
6349 	for (j = XVECLEN (x, i); --j >= 0; )
6350 	  copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6351 			       orig_replacements);
6352     }
6353 }
6354 
6355 /* Change any replacements being done to *X to be done to *Y.  */
6356 
6357 void
6358 move_replacements (rtx *x, rtx *y)
6359 {
6360   int i;
6361 
6362   for (i = 0; i < n_replacements; i++)
6363     if (replacements[i].where == x)
6364       replacements[i].where = y;
6365 }
6366 
6367 /* If LOC was scheduled to be replaced by something, return the replacement.
6368    Otherwise, return *LOC.  */
6369 
6370 rtx
6371 find_replacement (rtx *loc)
6372 {
6373   struct replacement *r;
6374 
6375   for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6376     {
6377       rtx reloadreg = rld[r->what].reg_rtx;
6378 
6379       if (reloadreg && r->where == loc)
6380 	{
6381 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6382 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6383 
6384 	  return reloadreg;
6385 	}
6386       else if (reloadreg && GET_CODE (*loc) == SUBREG
6387 	       && r->where == &SUBREG_REG (*loc))
6388 	{
6389 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6390 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6391 
6392 	  return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6393 				      GET_MODE (SUBREG_REG (*loc)),
6394 				      SUBREG_BYTE (*loc));
6395 	}
6396     }
6397 
6398   /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6399      what's inside and make a new rtl if so.  */
6400   if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6401       || GET_CODE (*loc) == MULT)
6402     {
6403       rtx x = find_replacement (&XEXP (*loc, 0));
6404       rtx y = find_replacement (&XEXP (*loc, 1));
6405 
6406       if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6407 	return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6408     }
6409 
6410   return *loc;
6411 }
6412 
6413 /* Return nonzero if register in range [REGNO, ENDREGNO)
6414    appears either explicitly or implicitly in X
6415    other than being stored into (except for earlyclobber operands).
6416 
6417    References contained within the substructure at LOC do not count.
6418    LOC may be zero, meaning don't ignore anything.
6419 
6420    This is similar to refers_to_regno_p in rtlanal.c except that we
6421    look at equivalences for pseudos that didn't get hard registers.  */
6422 
6423 static int
6424 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6425 			      rtx x, rtx *loc)
6426 {
6427   int i;
6428   unsigned int r;
6429   RTX_CODE code;
6430   const char *fmt;
6431 
6432   if (x == 0)
6433     return 0;
6434 
6435  repeat:
6436   code = GET_CODE (x);
6437 
6438   switch (code)
6439     {
6440     case REG:
6441       r = REGNO (x);
6442 
6443       /* If this is a pseudo, a hard register must not have been allocated.
6444 	 X must therefore either be a constant or be in memory.  */
6445       if (r >= FIRST_PSEUDO_REGISTER)
6446 	{
6447 	  if (reg_equiv_memory_loc (r))
6448 	    return refers_to_regno_for_reload_p (regno, endregno,
6449 						 reg_equiv_memory_loc (r),
6450 						 (rtx*) 0);
6451 
6452 	  gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6453 	  return 0;
6454 	}
6455 
6456       return (endregno > r
6457 	      && regno < r + (r < FIRST_PSEUDO_REGISTER
6458 			      ? hard_regno_nregs[r][GET_MODE (x)]
6459 			      : 1));
6460 
6461     case SUBREG:
6462       /* If this is a SUBREG of a hard reg, we can see exactly which
6463 	 registers are being modified.  Otherwise, handle normally.  */
6464       if (REG_P (SUBREG_REG (x))
6465 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6466 	{
6467 	  unsigned int inner_regno = subreg_regno (x);
6468 	  unsigned int inner_endregno
6469 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6470 			     ? subreg_nregs (x) : 1);
6471 
6472 	  return endregno > inner_regno && regno < inner_endregno;
6473 	}
6474       break;
6475 
6476     case CLOBBER:
6477     case SET:
6478       if (&SET_DEST (x) != loc
6479 	  /* Note setting a SUBREG counts as referring to the REG it is in for
6480 	     a pseudo but not for hard registers since we can
6481 	     treat each word individually.  */
6482 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
6483 	       && loc != &SUBREG_REG (SET_DEST (x))
6484 	       && REG_P (SUBREG_REG (SET_DEST (x)))
6485 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6486 	       && refers_to_regno_for_reload_p (regno, endregno,
6487 						SUBREG_REG (SET_DEST (x)),
6488 						loc))
6489 	      /* If the output is an earlyclobber operand, this is
6490 		 a conflict.  */
6491 	      || ((!REG_P (SET_DEST (x))
6492 		   || earlyclobber_operand_p (SET_DEST (x)))
6493 		  && refers_to_regno_for_reload_p (regno, endregno,
6494 						   SET_DEST (x), loc))))
6495 	return 1;
6496 
6497       if (code == CLOBBER || loc == &SET_SRC (x))
6498 	return 0;
6499       x = SET_SRC (x);
6500       goto repeat;
6501 
6502     default:
6503       break;
6504     }
6505 
6506   /* X does not match, so try its subexpressions.  */
6507 
6508   fmt = GET_RTX_FORMAT (code);
6509   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6510     {
6511       if (fmt[i] == 'e' && loc != &XEXP (x, i))
6512 	{
6513 	  if (i == 0)
6514 	    {
6515 	      x = XEXP (x, 0);
6516 	      goto repeat;
6517 	    }
6518 	  else
6519 	    if (refers_to_regno_for_reload_p (regno, endregno,
6520 					      XEXP (x, i), loc))
6521 	      return 1;
6522 	}
6523       else if (fmt[i] == 'E')
6524 	{
6525 	  int j;
6526 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6527 	    if (loc != &XVECEXP (x, i, j)
6528 		&& refers_to_regno_for_reload_p (regno, endregno,
6529 						 XVECEXP (x, i, j), loc))
6530 	      return 1;
6531 	}
6532     }
6533   return 0;
6534 }
6535 
6536 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
6537    we check if any register number in X conflicts with the relevant register
6538    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
6539    contains a MEM (we don't bother checking for memory addresses that can't
6540    conflict because we expect this to be a rare case.
6541 
6542    This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6543    that we look at equivalences for pseudos that didn't get hard registers.  */
6544 
6545 int
6546 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6547 {
6548   int regno, endregno;
6549 
6550   /* Overly conservative.  */
6551   if (GET_CODE (x) == STRICT_LOW_PART
6552       || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6553     x = XEXP (x, 0);
6554 
6555   /* If either argument is a constant, then modifying X can not affect IN.  */
6556   if (CONSTANT_P (x) || CONSTANT_P (in))
6557     return 0;
6558   else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6559     return refers_to_mem_for_reload_p (in);
6560   else if (GET_CODE (x) == SUBREG)
6561     {
6562       regno = REGNO (SUBREG_REG (x));
6563       if (regno < FIRST_PSEUDO_REGISTER)
6564 	regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6565 				      GET_MODE (SUBREG_REG (x)),
6566 				      SUBREG_BYTE (x),
6567 				      GET_MODE (x));
6568       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6569 			  ? subreg_nregs (x) : 1);
6570 
6571       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6572     }
6573   else if (REG_P (x))
6574     {
6575       regno = REGNO (x);
6576 
6577       /* If this is a pseudo, it must not have been assigned a hard register.
6578 	 Therefore, it must either be in memory or be a constant.  */
6579 
6580       if (regno >= FIRST_PSEUDO_REGISTER)
6581 	{
6582 	  if (reg_equiv_memory_loc (regno))
6583 	    return refers_to_mem_for_reload_p (in);
6584 	  gcc_assert (reg_equiv_constant (regno));
6585 	  return 0;
6586 	}
6587 
6588       endregno = END_HARD_REGNO (x);
6589 
6590       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6591     }
6592   else if (MEM_P (x))
6593     return refers_to_mem_for_reload_p (in);
6594   else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6595 	   || GET_CODE (x) == CC0)
6596     return reg_mentioned_p (x, in);
6597   else
6598     {
6599       gcc_assert (GET_CODE (x) == PLUS);
6600 
6601       /* We actually want to know if X is mentioned somewhere inside IN.
6602 	 We must not say that (plus (sp) (const_int 124)) is in
6603 	 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6604 	 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6605 	 into a RELOAD_OTHER on behalf of another RELOAD_OTHER.  */
6606       while (MEM_P (in))
6607 	in = XEXP (in, 0);
6608       if (REG_P (in))
6609 	return 0;
6610       else if (GET_CODE (in) == PLUS)
6611 	return (rtx_equal_p (x, in)
6612 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6613 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6614       else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6615 		   || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6616     }
6617 
6618   gcc_unreachable ();
6619 }
6620 
6621 /* Return nonzero if anything in X contains a MEM.  Look also for pseudo
6622    registers.  */
6623 
6624 static int
6625 refers_to_mem_for_reload_p (rtx x)
6626 {
6627   const char *fmt;
6628   int i;
6629 
6630   if (MEM_P (x))
6631     return 1;
6632 
6633   if (REG_P (x))
6634     return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6635 	    && reg_equiv_memory_loc (REGNO (x)));
6636 
6637   fmt = GET_RTX_FORMAT (GET_CODE (x));
6638   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6639     if (fmt[i] == 'e'
6640 	&& (MEM_P (XEXP (x, i))
6641 	    || refers_to_mem_for_reload_p (XEXP (x, i))))
6642       return 1;
6643 
6644   return 0;
6645 }
6646 
6647 /* Check the insns before INSN to see if there is a suitable register
6648    containing the same value as GOAL.
6649    If OTHER is -1, look for a register in class RCLASS.
6650    Otherwise, just see if register number OTHER shares GOAL's value.
6651 
6652    Return an rtx for the register found, or zero if none is found.
6653 
6654    If RELOAD_REG_P is (short *)1,
6655    we reject any hard reg that appears in reload_reg_rtx
6656    because such a hard reg is also needed coming into this insn.
6657 
6658    If RELOAD_REG_P is any other nonzero value,
6659    it is a vector indexed by hard reg number
6660    and we reject any hard reg whose element in the vector is nonnegative
6661    as well as any that appears in reload_reg_rtx.
6662 
6663    If GOAL is zero, then GOALREG is a register number; we look
6664    for an equivalent for that register.
6665 
6666    MODE is the machine mode of the value we want an equivalence for.
6667    If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6668 
6669    This function is used by jump.c as well as in the reload pass.
6670 
6671    If GOAL is the sum of the stack pointer and a constant, we treat it
6672    as if it were a constant except that sp is required to be unchanging.  */
6673 
6674 rtx
6675 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6676 		short *reload_reg_p, int goalreg, enum machine_mode mode)
6677 {
6678   rtx p = insn;
6679   rtx goaltry, valtry, value, where;
6680   rtx pat;
6681   int regno = -1;
6682   int valueno;
6683   int goal_mem = 0;
6684   int goal_const = 0;
6685   int goal_mem_addr_varies = 0;
6686   int need_stable_sp = 0;
6687   int nregs;
6688   int valuenregs;
6689   int num = 0;
6690 
6691   if (goal == 0)
6692     regno = goalreg;
6693   else if (REG_P (goal))
6694     regno = REGNO (goal);
6695   else if (MEM_P (goal))
6696     {
6697       enum rtx_code code = GET_CODE (XEXP (goal, 0));
6698       if (MEM_VOLATILE_P (goal))
6699 	return 0;
6700       if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6701 	return 0;
6702       /* An address with side effects must be reexecuted.  */
6703       switch (code)
6704 	{
6705 	case POST_INC:
6706 	case PRE_INC:
6707 	case POST_DEC:
6708 	case PRE_DEC:
6709 	case POST_MODIFY:
6710 	case PRE_MODIFY:
6711 	  return 0;
6712 	default:
6713 	  break;
6714 	}
6715       goal_mem = 1;
6716     }
6717   else if (CONSTANT_P (goal))
6718     goal_const = 1;
6719   else if (GET_CODE (goal) == PLUS
6720 	   && XEXP (goal, 0) == stack_pointer_rtx
6721 	   && CONSTANT_P (XEXP (goal, 1)))
6722     goal_const = need_stable_sp = 1;
6723   else if (GET_CODE (goal) == PLUS
6724 	   && XEXP (goal, 0) == frame_pointer_rtx
6725 	   && CONSTANT_P (XEXP (goal, 1)))
6726     goal_const = 1;
6727   else
6728     return 0;
6729 
6730   num = 0;
6731   /* Scan insns back from INSN, looking for one that copies
6732      a value into or out of GOAL.
6733      Stop and give up if we reach a label.  */
6734 
6735   while (1)
6736     {
6737       p = PREV_INSN (p);
6738       if (p && DEBUG_INSN_P (p))
6739 	continue;
6740       num++;
6741       if (p == 0 || LABEL_P (p)
6742 	  || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6743 	return 0;
6744 
6745       /* Don't reuse register contents from before a setjmp-type
6746 	 function call; on the second return (from the longjmp) it
6747 	 might have been clobbered by a later reuse.  It doesn't
6748 	 seem worthwhile to actually go and see if it is actually
6749 	 reused even if that information would be readily available;
6750 	 just don't reuse it across the setjmp call.  */
6751       if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6752 	return 0;
6753 
6754       if (NONJUMP_INSN_P (p)
6755 	  /* If we don't want spill regs ...  */
6756 	  && (! (reload_reg_p != 0
6757 		 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6758 	      /* ... then ignore insns introduced by reload; they aren't
6759 		 useful and can cause results in reload_as_needed to be
6760 		 different from what they were when calculating the need for
6761 		 spills.  If we notice an input-reload insn here, we will
6762 		 reject it below, but it might hide a usable equivalent.
6763 		 That makes bad code.  It may even fail: perhaps no reg was
6764 		 spilled for this insn because it was assumed we would find
6765 		 that equivalent.  */
6766 	      || INSN_UID (p) < reload_first_uid))
6767 	{
6768 	  rtx tem;
6769 	  pat = single_set (p);
6770 
6771 	  /* First check for something that sets some reg equal to GOAL.  */
6772 	  if (pat != 0
6773 	      && ((regno >= 0
6774 		   && true_regnum (SET_SRC (pat)) == regno
6775 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6776 		  ||
6777 		  (regno >= 0
6778 		   && true_regnum (SET_DEST (pat)) == regno
6779 		   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6780 		  ||
6781 		  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6782 		   /* When looking for stack pointer + const,
6783 		      make sure we don't use a stack adjust.  */
6784 		   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6785 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6786 		  || (goal_mem
6787 		      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6788 		      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6789 		  || (goal_mem
6790 		      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6791 		      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6792 		  /* If we are looking for a constant,
6793 		     and something equivalent to that constant was copied
6794 		     into a reg, we can use that reg.  */
6795 		  || (goal_const && REG_NOTES (p) != 0
6796 		      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6797 		      && ((rtx_equal_p (XEXP (tem, 0), goal)
6798 			   && (valueno
6799 			       = true_regnum (valtry = SET_DEST (pat))) >= 0)
6800 			  || (REG_P (SET_DEST (pat))
6801 			      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6802 			      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6803 			      && CONST_INT_P (goal)
6804 			      && 0 != (goaltry
6805 				       = operand_subword (XEXP (tem, 0), 0, 0,
6806 							  VOIDmode))
6807 			      && rtx_equal_p (goal, goaltry)
6808 			      && (valtry
6809 				  = operand_subword (SET_DEST (pat), 0, 0,
6810 						     VOIDmode))
6811 			      && (valueno = true_regnum (valtry)) >= 0)))
6812 		  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6813 							  NULL_RTX))
6814 		      && REG_P (SET_DEST (pat))
6815 		      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6816 		      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6817 		      && CONST_INT_P (goal)
6818 		      && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6819 							  VOIDmode))
6820 		      && rtx_equal_p (goal, goaltry)
6821 		      && (valtry
6822 			  = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6823 		      && (valueno = true_regnum (valtry)) >= 0)))
6824 	    {
6825 	      if (other >= 0)
6826 		{
6827 		  if (valueno != other)
6828 		    continue;
6829 		}
6830 	      else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6831 		continue;
6832 	      else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6833 					  mode, valueno))
6834 		continue;
6835 	      value = valtry;
6836 	      where = p;
6837 	      break;
6838 	    }
6839 	}
6840     }
6841 
6842   /* We found a previous insn copying GOAL into a suitable other reg VALUE
6843      (or copying VALUE into GOAL, if GOAL is also a register).
6844      Now verify that VALUE is really valid.  */
6845 
6846   /* VALUENO is the register number of VALUE; a hard register.  */
6847 
6848   /* Don't try to re-use something that is killed in this insn.  We want
6849      to be able to trust REG_UNUSED notes.  */
6850   if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6851     return 0;
6852 
6853   /* If we propose to get the value from the stack pointer or if GOAL is
6854      a MEM based on the stack pointer, we need a stable SP.  */
6855   if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6856       || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6857 							  goal)))
6858     need_stable_sp = 1;
6859 
6860   /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
6861   if (GET_MODE (value) != mode)
6862     return 0;
6863 
6864   /* Reject VALUE if it was loaded from GOAL
6865      and is also a register that appears in the address of GOAL.  */
6866 
6867   if (goal_mem && value == SET_DEST (single_set (where))
6868       && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6869 				       goal, (rtx*) 0))
6870     return 0;
6871 
6872   /* Reject registers that overlap GOAL.  */
6873 
6874   if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6875     nregs = hard_regno_nregs[regno][mode];
6876   else
6877     nregs = 1;
6878   valuenregs = hard_regno_nregs[valueno][mode];
6879 
6880   if (!goal_mem && !goal_const
6881       && regno + nregs > valueno && regno < valueno + valuenregs)
6882     return 0;
6883 
6884   /* Reject VALUE if it is one of the regs reserved for reloads.
6885      Reload1 knows how to reuse them anyway, and it would get
6886      confused if we allocated one without its knowledge.
6887      (Now that insns introduced by reload are ignored above,
6888      this case shouldn't happen, but I'm not positive.)  */
6889 
6890   if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6891     {
6892       int i;
6893       for (i = 0; i < valuenregs; ++i)
6894 	if (reload_reg_p[valueno + i] >= 0)
6895 	  return 0;
6896     }
6897 
6898   /* Reject VALUE if it is a register being used for an input reload
6899      even if it is not one of those reserved.  */
6900 
6901   if (reload_reg_p != 0)
6902     {
6903       int i;
6904       for (i = 0; i < n_reloads; i++)
6905 	if (rld[i].reg_rtx != 0 && rld[i].in)
6906 	  {
6907 	    int regno1 = REGNO (rld[i].reg_rtx);
6908 	    int nregs1 = hard_regno_nregs[regno1]
6909 					 [GET_MODE (rld[i].reg_rtx)];
6910 	    if (regno1 < valueno + valuenregs
6911 		&& regno1 + nregs1 > valueno)
6912 	      return 0;
6913 	  }
6914     }
6915 
6916   if (goal_mem)
6917     /* We must treat frame pointer as varying here,
6918        since it can vary--in a nonlocal goto as generated by expand_goto.  */
6919     goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6920 
6921   /* Now verify that the values of GOAL and VALUE remain unaltered
6922      until INSN is reached.  */
6923 
6924   p = insn;
6925   while (1)
6926     {
6927       p = PREV_INSN (p);
6928       if (p == where)
6929 	return value;
6930 
6931       /* Don't trust the conversion past a function call
6932 	 if either of the two is in a call-clobbered register, or memory.  */
6933       if (CALL_P (p))
6934 	{
6935 	  int i;
6936 
6937 	  if (goal_mem || need_stable_sp)
6938 	    return 0;
6939 
6940 	  if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6941 	    for (i = 0; i < nregs; ++i)
6942 	      if (call_used_regs[regno + i]
6943 		  || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6944 		return 0;
6945 
6946 	  if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6947 	    for (i = 0; i < valuenregs; ++i)
6948 	      if (call_used_regs[valueno + i]
6949 		  || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6950 		return 0;
6951 	}
6952 
6953       if (INSN_P (p))
6954 	{
6955 	  pat = PATTERN (p);
6956 
6957 	  /* Watch out for unspec_volatile, and volatile asms.  */
6958 	  if (volatile_insn_p (pat))
6959 	    return 0;
6960 
6961 	  /* If this insn P stores in either GOAL or VALUE, return 0.
6962 	     If GOAL is a memory ref and this insn writes memory, return 0.
6963 	     If GOAL is a memory ref and its address is not constant,
6964 	     and this insn P changes a register used in GOAL, return 0.  */
6965 
6966 	  if (GET_CODE (pat) == COND_EXEC)
6967 	    pat = COND_EXEC_CODE (pat);
6968 	  if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6969 	    {
6970 	      rtx dest = SET_DEST (pat);
6971 	      while (GET_CODE (dest) == SUBREG
6972 		     || GET_CODE (dest) == ZERO_EXTRACT
6973 		     || GET_CODE (dest) == STRICT_LOW_PART)
6974 		dest = XEXP (dest, 0);
6975 	      if (REG_P (dest))
6976 		{
6977 		  int xregno = REGNO (dest);
6978 		  int xnregs;
6979 		  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6980 		    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6981 		  else
6982 		    xnregs = 1;
6983 		  if (xregno < regno + nregs && xregno + xnregs > regno)
6984 		    return 0;
6985 		  if (xregno < valueno + valuenregs
6986 		      && xregno + xnregs > valueno)
6987 		    return 0;
6988 		  if (goal_mem_addr_varies
6989 		      && reg_overlap_mentioned_for_reload_p (dest, goal))
6990 		    return 0;
6991 		  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6992 		    return 0;
6993 		}
6994 	      else if (goal_mem && MEM_P (dest)
6995 		       && ! push_operand (dest, GET_MODE (dest)))
6996 		return 0;
6997 	      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6998 		       && reg_equiv_memory_loc (regno) != 0)
6999 		return 0;
7000 	      else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7001 		return 0;
7002 	    }
7003 	  else if (GET_CODE (pat) == PARALLEL)
7004 	    {
7005 	      int i;
7006 	      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7007 		{
7008 		  rtx v1 = XVECEXP (pat, 0, i);
7009 		  if (GET_CODE (v1) == COND_EXEC)
7010 		    v1 = COND_EXEC_CODE (v1);
7011 		  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7012 		    {
7013 		      rtx dest = SET_DEST (v1);
7014 		      while (GET_CODE (dest) == SUBREG
7015 			     || GET_CODE (dest) == ZERO_EXTRACT
7016 			     || GET_CODE (dest) == STRICT_LOW_PART)
7017 			dest = XEXP (dest, 0);
7018 		      if (REG_P (dest))
7019 			{
7020 			  int xregno = REGNO (dest);
7021 			  int xnregs;
7022 			  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7023 			    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7024 			  else
7025 			    xnregs = 1;
7026 			  if (xregno < regno + nregs
7027 			      && xregno + xnregs > regno)
7028 			    return 0;
7029 			  if (xregno < valueno + valuenregs
7030 			      && xregno + xnregs > valueno)
7031 			    return 0;
7032 			  if (goal_mem_addr_varies
7033 			      && reg_overlap_mentioned_for_reload_p (dest,
7034 								     goal))
7035 			    return 0;
7036 			  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7037 			    return 0;
7038 			}
7039 		      else if (goal_mem && MEM_P (dest)
7040 			       && ! push_operand (dest, GET_MODE (dest)))
7041 			return 0;
7042 		      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7043 			       && reg_equiv_memory_loc (regno) != 0)
7044 			return 0;
7045 		      else if (need_stable_sp
7046 			       && push_operand (dest, GET_MODE (dest)))
7047 			return 0;
7048 		    }
7049 		}
7050 	    }
7051 
7052 	  if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7053 	    {
7054 	      rtx link;
7055 
7056 	      for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7057 		   link = XEXP (link, 1))
7058 		{
7059 		  pat = XEXP (link, 0);
7060 		  if (GET_CODE (pat) == CLOBBER)
7061 		    {
7062 		      rtx dest = SET_DEST (pat);
7063 
7064 		      if (REG_P (dest))
7065 			{
7066 			  int xregno = REGNO (dest);
7067 			  int xnregs
7068 			    = hard_regno_nregs[xregno][GET_MODE (dest)];
7069 
7070 			  if (xregno < regno + nregs
7071 			      && xregno + xnregs > regno)
7072 			    return 0;
7073 			  else if (xregno < valueno + valuenregs
7074 				   && xregno + xnregs > valueno)
7075 			    return 0;
7076 			  else if (goal_mem_addr_varies
7077 				   && reg_overlap_mentioned_for_reload_p (dest,
7078 								     goal))
7079 			    return 0;
7080 			}
7081 
7082 		      else if (goal_mem && MEM_P (dest)
7083 			       && ! push_operand (dest, GET_MODE (dest)))
7084 			return 0;
7085 		      else if (need_stable_sp
7086 			       && push_operand (dest, GET_MODE (dest)))
7087 			return 0;
7088 		    }
7089 		}
7090 	    }
7091 
7092 #ifdef AUTO_INC_DEC
7093 	  /* If this insn auto-increments or auto-decrements
7094 	     either regno or valueno, return 0 now.
7095 	     If GOAL is a memory ref and its address is not constant,
7096 	     and this insn P increments a register used in GOAL, return 0.  */
7097 	  {
7098 	    rtx link;
7099 
7100 	    for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7101 	      if (REG_NOTE_KIND (link) == REG_INC
7102 		  && REG_P (XEXP (link, 0)))
7103 		{
7104 		  int incno = REGNO (XEXP (link, 0));
7105 		  if (incno < regno + nregs && incno >= regno)
7106 		    return 0;
7107 		  if (incno < valueno + valuenregs && incno >= valueno)
7108 		    return 0;
7109 		  if (goal_mem_addr_varies
7110 		      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7111 							     goal))
7112 		    return 0;
7113 		}
7114 	  }
7115 #endif
7116 	}
7117     }
7118 }
7119 
7120 /* Find a place where INCED appears in an increment or decrement operator
7121    within X, and return the amount INCED is incremented or decremented by.
7122    The value is always positive.  */
7123 
7124 static int
7125 find_inc_amount (rtx x, rtx inced)
7126 {
7127   enum rtx_code code = GET_CODE (x);
7128   const char *fmt;
7129   int i;
7130 
7131   if (code == MEM)
7132     {
7133       rtx addr = XEXP (x, 0);
7134       if ((GET_CODE (addr) == PRE_DEC
7135 	   || GET_CODE (addr) == POST_DEC
7136 	   || GET_CODE (addr) == PRE_INC
7137 	   || GET_CODE (addr) == POST_INC)
7138 	  && XEXP (addr, 0) == inced)
7139 	return GET_MODE_SIZE (GET_MODE (x));
7140       else if ((GET_CODE (addr) == PRE_MODIFY
7141 		|| GET_CODE (addr) == POST_MODIFY)
7142 	       && GET_CODE (XEXP (addr, 1)) == PLUS
7143 	       && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7144 	       && XEXP (addr, 0) == inced
7145 	       && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7146 	{
7147 	  i = INTVAL (XEXP (XEXP (addr, 1), 1));
7148 	  return i < 0 ? -i : i;
7149 	}
7150     }
7151 
7152   fmt = GET_RTX_FORMAT (code);
7153   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7154     {
7155       if (fmt[i] == 'e')
7156 	{
7157 	  int tem = find_inc_amount (XEXP (x, i), inced);
7158 	  if (tem != 0)
7159 	    return tem;
7160 	}
7161       if (fmt[i] == 'E')
7162 	{
7163 	  int j;
7164 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7165 	    {
7166 	      int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7167 	      if (tem != 0)
7168 		return tem;
7169 	    }
7170 	}
7171     }
7172 
7173   return 0;
7174 }
7175 
7176 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7177    REG_INC note in insn INSN.  REGNO must refer to a hard register.  */
7178 
7179 #ifdef AUTO_INC_DEC
7180 static int
7181 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7182 			   rtx insn)
7183 {
7184   rtx link;
7185 
7186   gcc_assert (insn);
7187 
7188   if (! INSN_P (insn))
7189     return 0;
7190 
7191   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7192     if (REG_NOTE_KIND (link) == REG_INC)
7193       {
7194 	unsigned int test = (int) REGNO (XEXP (link, 0));
7195 	if (test >= regno && test < endregno)
7196 	  return 1;
7197       }
7198   return 0;
7199 }
7200 #else
7201 
7202 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7203 
7204 #endif
7205 
7206 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7207    If SETS is 1, also consider SETs.  If SETS is 2, enable checking
7208    REG_INC.  REGNO must refer to a hard register.  */
7209 
7210 int
7211 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7212 		   int sets)
7213 {
7214   unsigned int nregs, endregno;
7215 
7216   /* regno must be a hard register.  */
7217   gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7218 
7219   nregs = hard_regno_nregs[regno][mode];
7220   endregno = regno + nregs;
7221 
7222   if ((GET_CODE (PATTERN (insn)) == CLOBBER
7223        || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7224       && REG_P (XEXP (PATTERN (insn), 0)))
7225     {
7226       unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7227 
7228       return test >= regno && test < endregno;
7229     }
7230 
7231   if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7232     return 1;
7233 
7234   if (GET_CODE (PATTERN (insn)) == PARALLEL)
7235     {
7236       int i = XVECLEN (PATTERN (insn), 0) - 1;
7237 
7238       for (; i >= 0; i--)
7239 	{
7240 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
7241 	  if ((GET_CODE (elt) == CLOBBER
7242 	       || (sets == 1 && GET_CODE (elt) == SET))
7243 	      && REG_P (XEXP (elt, 0)))
7244 	    {
7245 	      unsigned int test = REGNO (XEXP (elt, 0));
7246 
7247 	      if (test >= regno && test < endregno)
7248 		return 1;
7249 	    }
7250 	  if (sets == 2
7251 	      && reg_inc_found_and_valid_p (regno, endregno, elt))
7252 	    return 1;
7253 	}
7254     }
7255 
7256   return 0;
7257 }
7258 
7259 /* Find the low part, with mode MODE, of a hard regno RELOADREG.  */
7260 rtx
7261 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7262 {
7263   int regno;
7264 
7265   if (GET_MODE (reloadreg) == mode)
7266     return reloadreg;
7267 
7268   regno = REGNO (reloadreg);
7269 
7270   if (REG_WORDS_BIG_ENDIAN)
7271     regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7272       - (int) hard_regno_nregs[regno][mode];
7273 
7274   return gen_rtx_REG (mode, regno);
7275 }
7276 
7277 static const char *const reload_when_needed_name[] =
7278 {
7279   "RELOAD_FOR_INPUT",
7280   "RELOAD_FOR_OUTPUT",
7281   "RELOAD_FOR_INSN",
7282   "RELOAD_FOR_INPUT_ADDRESS",
7283   "RELOAD_FOR_INPADDR_ADDRESS",
7284   "RELOAD_FOR_OUTPUT_ADDRESS",
7285   "RELOAD_FOR_OUTADDR_ADDRESS",
7286   "RELOAD_FOR_OPERAND_ADDRESS",
7287   "RELOAD_FOR_OPADDR_ADDR",
7288   "RELOAD_OTHER",
7289   "RELOAD_FOR_OTHER_ADDRESS"
7290 };
7291 
7292 /* These functions are used to print the variables set by 'find_reloads' */
7293 
7294 DEBUG_FUNCTION void
7295 debug_reload_to_stream (FILE *f)
7296 {
7297   int r;
7298   const char *prefix;
7299 
7300   if (! f)
7301     f = stderr;
7302   for (r = 0; r < n_reloads; r++)
7303     {
7304       fprintf (f, "Reload %d: ", r);
7305 
7306       if (rld[r].in != 0)
7307 	{
7308 	  fprintf (f, "reload_in (%s) = ",
7309 		   GET_MODE_NAME (rld[r].inmode));
7310 	  print_inline_rtx (f, rld[r].in, 24);
7311 	  fprintf (f, "\n\t");
7312 	}
7313 
7314       if (rld[r].out != 0)
7315 	{
7316 	  fprintf (f, "reload_out (%s) = ",
7317 		   GET_MODE_NAME (rld[r].outmode));
7318 	  print_inline_rtx (f, rld[r].out, 24);
7319 	  fprintf (f, "\n\t");
7320 	}
7321 
7322       fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7323 
7324       fprintf (f, "%s (opnum = %d)",
7325 	       reload_when_needed_name[(int) rld[r].when_needed],
7326 	       rld[r].opnum);
7327 
7328       if (rld[r].optional)
7329 	fprintf (f, ", optional");
7330 
7331       if (rld[r].nongroup)
7332 	fprintf (f, ", nongroup");
7333 
7334       if (rld[r].inc != 0)
7335 	fprintf (f, ", inc by %d", rld[r].inc);
7336 
7337       if (rld[r].nocombine)
7338 	fprintf (f, ", can't combine");
7339 
7340       if (rld[r].secondary_p)
7341 	fprintf (f, ", secondary_reload_p");
7342 
7343       if (rld[r].in_reg != 0)
7344 	{
7345 	  fprintf (f, "\n\treload_in_reg: ");
7346 	  print_inline_rtx (f, rld[r].in_reg, 24);
7347 	}
7348 
7349       if (rld[r].out_reg != 0)
7350 	{
7351 	  fprintf (f, "\n\treload_out_reg: ");
7352 	  print_inline_rtx (f, rld[r].out_reg, 24);
7353 	}
7354 
7355       if (rld[r].reg_rtx != 0)
7356 	{
7357 	  fprintf (f, "\n\treload_reg_rtx: ");
7358 	  print_inline_rtx (f, rld[r].reg_rtx, 24);
7359 	}
7360 
7361       prefix = "\n\t";
7362       if (rld[r].secondary_in_reload != -1)
7363 	{
7364 	  fprintf (f, "%ssecondary_in_reload = %d",
7365 		   prefix, rld[r].secondary_in_reload);
7366 	  prefix = ", ";
7367 	}
7368 
7369       if (rld[r].secondary_out_reload != -1)
7370 	fprintf (f, "%ssecondary_out_reload = %d\n",
7371 		 prefix, rld[r].secondary_out_reload);
7372 
7373       prefix = "\n\t";
7374       if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7375 	{
7376 	  fprintf (f, "%ssecondary_in_icode = %s", prefix,
7377 		   insn_data[rld[r].secondary_in_icode].name);
7378 	  prefix = ", ";
7379 	}
7380 
7381       if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7382 	fprintf (f, "%ssecondary_out_icode = %s", prefix,
7383 		 insn_data[rld[r].secondary_out_icode].name);
7384 
7385       fprintf (f, "\n");
7386     }
7387 }
7388 
7389 DEBUG_FUNCTION void
7390 debug_reload (void)
7391 {
7392   debug_reload_to_stream (stderr);
7393 }
7394