xref: /dragonfly/contrib/gcc-4.7/gcc/sel-sched.c (revision 77b0c609)
1 /* Instruction scheduling pass.  Selective scheduler and pipeliner.
2    Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "output.h"
47 #include "emit-rtl.h"
48 
49 #ifdef INSN_SCHEDULING
50 #include "sel-sched-ir.h"
51 #include "sel-sched-dump.h"
52 #include "sel-sched.h"
53 #include "dbgcnt.h"
54 
55 /* Implementation of selective scheduling approach.
56    The below implementation follows the original approach with the following
57    changes:
58 
59    o the scheduler works after register allocation (but can be also tuned
60    to work before RA);
61    o some instructions are not copied or register renamed;
62    o conditional jumps are not moved with code duplication;
63    o several jumps in one parallel group are not supported;
64    o when pipelining outer loops, code motion through inner loops
65    is not supported;
66    o control and data speculation are supported;
67    o some improvements for better compile time/performance were made.
68 
69    Terminology
70    ===========
71 
72    A vinsn, or virtual insn, is an insn with additional data characterizing
73    insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74    Vinsns also act as smart pointers to save memory by reusing them in
75    different expressions.  A vinsn is described by vinsn_t type.
76 
77    An expression is a vinsn with additional data characterizing its properties
78    at some point in the control flow graph.  The data may be its usefulness,
79    priority, speculative status, whether it was renamed/subsituted, etc.
80    An expression is described by expr_t type.
81 
82    Availability set (av_set) is a set of expressions at a given control flow
83    point. It is represented as av_set_t.  The expressions in av sets are kept
84    sorted in the terms of expr_greater_p function.  It allows to truncate
85    the set while leaving the best expressions.
86 
87    A fence is a point through which code motion is prohibited.  On each step,
88    we gather a parallel group of insns at a fence.  It is possible to have
89    multiple fences. A fence is represented via fence_t.
90 
91    A boundary is the border between the fence group and the rest of the code.
92    Currently, we never have more than one boundary per fence, as we finalize
93    the fence group when a jump is scheduled. A boundary is represented
94    via bnd_t.
95 
96    High-level overview
97    ===================
98 
99    The scheduler finds regions to schedule, schedules each one, and finalizes.
100    The regions are formed starting from innermost loops, so that when the inner
101    loop is pipelined, its prologue can be scheduled together with yet unprocessed
102    outer loop. The rest of acyclic regions are found using extend_rgns:
103    the blocks that are not yet allocated to any regions are traversed in top-down
104    order, and a block is added to a region to which all its predecessors belong;
105    otherwise, the block starts its own region.
106 
107    The main scheduling loop (sel_sched_region_2) consists of just
108    scheduling on each fence and updating fences.  For each fence,
109    we fill a parallel group of insns (fill_insns) until some insns can be added.
110    First, we compute available exprs (av-set) at the boundary of the current
111    group.  Second, we choose the best expression from it.  If the stall is
112    required to schedule any of the expressions, we advance the current cycle
113    appropriately.  So, the final group does not exactly correspond to a VLIW
114    word.  Third, we move the chosen expression to the boundary (move_op)
115    and update the intermediate av sets and liveness sets.  We quit fill_insns
116    when either no insns left for scheduling or we have scheduled enough insns
117    so we feel like advancing a scheduling point.
118 
119    Computing available expressions
120    ===============================
121 
122    The computation (compute_av_set) is a bottom-up traversal.  At each insn,
123    we're moving the union of its successors' sets through it via
124    moveup_expr_set.  The dependent expressions are removed.  Local
125    transformations (substitution, speculation) are applied to move more
126    exprs.  Then the expr corresponding to the current insn is added.
127    The result is saved on each basic block header.
128 
129    When traversing the CFG, we're moving down for no more than max_ws insns.
130    Also, we do not move down to ineligible successors (is_ineligible_successor),
131    which include moving along a back-edge, moving to already scheduled code,
132    and moving to another fence.  The first two restrictions are lifted during
133    pipelining, which allows us to move insns along a back-edge.  We always have
134    an acyclic region for scheduling because we forbid motion through fences.
135 
136    Choosing the best expression
137    ============================
138 
139    We sort the final availability set via sel_rank_for_schedule, then we remove
140    expressions which are not yet ready (tick_check_p) or which dest registers
141    cannot be used.  For some of them, we choose another register via
142    find_best_reg.  To do this, we run find_used_regs to calculate the set of
143    registers which cannot be used.  The find_used_regs function performs
144    a traversal of code motion paths for an expr.  We consider for renaming
145    only registers which are from the same regclass as the original one and
146    using which does not interfere with any live ranges.  Finally, we convert
147    the resulting set to the ready list format and use max_issue and reorder*
148    hooks similarly to the Haifa scheduler.
149 
150    Scheduling the best expression
151    ==============================
152 
153    We run the move_op routine to perform the same type of code motion paths
154    traversal as in find_used_regs.  (These are working via the same driver,
155    code_motion_path_driver.)  When moving down the CFG, we look for original
156    instruction that gave birth to a chosen expression.  We undo
157    the transformations performed on an expression via the history saved in it.
158    When found, we remove the instruction or leave a reg-reg copy/speculation
159    check if needed.  On a way up, we insert bookkeeping copies at each join
160    point.  If a copy is not needed, it will be removed later during this
161    traversal.  We update the saved av sets and liveness sets on the way up, too.
162 
163    Finalizing the schedule
164    =======================
165 
166    When pipelining, we reschedule the blocks from which insns were pipelined
167    to get a tighter schedule.  On Itanium, we also perform bundling via
168    the same routine from ia64.c.
169 
170    Dependence analysis changes
171    ===========================
172 
173    We augmented the sched-deps.c with hooks that get called when a particular
174    dependence is found in a particular part of an insn.  Using these hooks, we
175    can do several actions such as: determine whether an insn can be moved through
176    another (has_dependence_p, moveup_expr); find out whether an insn can be
177    scheduled on the current cycle (tick_check_p); find out registers that
178    are set/used/clobbered by an insn and find out all the strange stuff that
179    restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180    init_global_and_expr_for_insn).
181 
182    Initialization changes
183    ======================
184 
185    There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186    reused in all of the schedulers.  We have split up the initialization of data
187    of such parts into different functions prefixed with scheduler type and
188    postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189    sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190    The same splitting is done with current_sched_info structure:
191    dependence-related parts are in sched_deps_info, common part is in
192    common_sched_info, and haifa/sel/etc part is in current_sched_info.
193 
194    Target contexts
195    ===============
196 
197    As we now have multiple-point scheduling, this would not work with backends
198    which save some of the scheduler state to use it in the target hooks.
199    For this purpose, we introduce a concept of target contexts, which
200    encapsulate such information.  The backend should implement simple routines
201    of allocating/freeing/setting such a context.  The scheduler calls these
202    as target hooks and handles the target context as an opaque pointer (similar
203    to the DFA state type, state_t).
204 
205    Various speedups
206    ================
207 
208    As the correct data dependence graph is not supported during scheduling (which
209    is to be changed in mid-term), we cache as much of the dependence analysis
210    results as possible to avoid reanalyzing.  This includes: bitmap caches on
211    each insn in stream of the region saying yes/no for a query with a pair of
212    UIDs; hashtables with the previously done transformations on each insn in
213    stream; a vector keeping a history of transformations on each expr.
214 
215    Also, we try to minimize the dependence context used on each fence to check
216    whether the given expression is ready for scheduling by removing from it
217    insns that are definitely completed the execution.  The results of
218    tick_check_p checks are also cached in a vector on each fence.
219 
220    We keep a valid liveness set on each insn in a region to avoid the high
221    cost of recomputation on large basic blocks.
222 
223    Finally, we try to minimize the number of needed updates to the availability
224    sets.  The updates happen in two cases: when fill_insns terminates,
225    we advance all fences and increase the stage number to show that the region
226    has changed and the sets are to be recomputed; and when the next iteration
227    of a loop in fill_insns happens (but this one reuses the saved av sets
228    on bb headers.)  Thus, we try to break the fill_insns loop only when
229    "significant" number of insns from the current scheduling window was
230    scheduled.  This should be made a target param.
231 
232 
233    TODO: correctly support the data dependence graph at all stages and get rid
234    of all caches.  This should speed up the scheduler.
235    TODO: implement moving cond jumps with bookkeeping copies on both targets.
236    TODO: tune the scheduler before RA so it does not create too much pseudos.
237 
238 
239    References:
240    S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241    selective scheduling and software pipelining.
242    ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243 
244    Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245    and Dmitry Zhurikhin.  An interblock VLIW-targeted instruction scheduler
246    for GCC. In Proceedings of GCC Developers' Summit 2006.
247 
248    Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik.  GCC Instruction
249    Scheduler and Software Pipeliner on the Itanium Platform.   EPIC-7 Workshop.
250    http://rogue.colorado.edu/EPIC7/.
251 
252 */
253 
254 /* True when pipelining is enabled.  */
255 bool pipelining_p;
256 
257 /* True if bookkeeping is enabled.  */
258 bool bookkeeping_p;
259 
260 /* Maximum number of insns that are eligible for renaming.  */
261 int max_insns_to_rename;
262 
263 
264 /* Definitions of local types and macros.  */
265 
266 /* Represents possible outcomes of moving an expression through an insn.  */
267 enum MOVEUP_EXPR_CODE
268   {
269     /* The expression is not changed.  */
270     MOVEUP_EXPR_SAME,
271 
272     /* Not changed, but requires a new destination register.  */
273     MOVEUP_EXPR_AS_RHS,
274 
275     /* Cannot be moved.  */
276     MOVEUP_EXPR_NULL,
277 
278     /* Changed (substituted or speculated).  */
279     MOVEUP_EXPR_CHANGED
280   };
281 
282 /* The container to be passed into rtx search & replace functions.  */
283 struct rtx_search_arg
284 {
285   /* What we are searching for.  */
286   rtx x;
287 
288   /* The occurence counter.  */
289   int n;
290 };
291 
292 typedef struct rtx_search_arg *rtx_search_arg_p;
293 
294 /* This struct contains precomputed hard reg sets that are needed when
295    computing registers available for renaming.  */
296 struct hard_regs_data
297 {
298   /* For every mode, this stores registers available for use with
299      that mode.  */
300   HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301 
302   /* True when regs_for_mode[mode] is initialized.  */
303   bool regs_for_mode_ok[NUM_MACHINE_MODES];
304 
305   /* For every register, it has regs that are ok to rename into it.
306      The register in question is always set.  If not, this means
307      that the whole set is not computed yet.  */
308   HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309 
310   /* For every mode, this stores registers not available due to
311      call clobbering.  */
312   HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313 
314   /* All registers that are used or call used.  */
315   HARD_REG_SET regs_ever_used;
316 
317 #ifdef STACK_REGS
318   /* Stack registers.  */
319   HARD_REG_SET stack_regs;
320 #endif
321 };
322 
323 /* Holds the results of computation of available for renaming and
324    unavailable hard registers.  */
325 struct reg_rename
326 {
327   /* These are unavailable due to calls crossing, globalness, etc.  */
328   HARD_REG_SET unavailable_hard_regs;
329 
330   /* These are *available* for renaming.  */
331   HARD_REG_SET available_for_renaming;
332 
333   /* Whether this code motion path crosses a call.  */
334   bool crosses_call;
335 };
336 
337 /* A global structure that contains the needed information about harg
338    regs.  */
339 static struct hard_regs_data sel_hrd;
340 
341 
342 /* This structure holds local data used in code_motion_path_driver hooks on
343    the same or adjacent levels of recursion.  Here we keep those parameters
344    that are not used in code_motion_path_driver routine itself, but only in
345    its hooks.  Moreover, all parameters that can be modified in hooks are
346    in this structure, so all other parameters passed explicitly to hooks are
347    read-only.  */
348 struct cmpd_local_params
349 {
350   /* Local params used in move_op_* functions.  */
351 
352   /* Edges for bookkeeping generation.  */
353   edge e1, e2;
354 
355   /* C_EXPR merged from all successors and locally allocated temporary C_EXPR.  */
356   expr_t c_expr_merged, c_expr_local;
357 
358   /* Local params used in fur_* functions.  */
359   /* Copy of the ORIGINAL_INSN list, stores the original insns already
360      found before entering the current level of code_motion_path_driver.  */
361   def_list_t old_original_insns;
362 
363   /* Local params used in move_op_* functions.  */
364   /* True when we have removed last insn in the block which was
365      also a boundary.  Do not update anything or create bookkeeping copies.  */
366   BOOL_BITFIELD removed_last_insn : 1;
367 };
368 
369 /* Stores the static parameters for move_op_* calls.  */
370 struct moveop_static_params
371 {
372   /* Destination register.  */
373   rtx dest;
374 
375   /* Current C_EXPR.  */
376   expr_t c_expr;
377 
378   /* An UID of expr_vliw which is to be moved up.  If we find other exprs,
379      they are to be removed.  */
380   int uid;
381 
382 #ifdef ENABLE_CHECKING
383   /* This is initialized to the insn on which the driver stopped its traversal.  */
384   insn_t failed_insn;
385 #endif
386 
387   /* True if we scheduled an insn with different register.  */
388   bool was_renamed;
389 };
390 
391 /* Stores the static parameters for fur_* calls.  */
392 struct fur_static_params
393 {
394   /* Set of registers unavailable on the code motion path.  */
395   regset used_regs;
396 
397   /* Pointer to the list of original insns definitions.  */
398   def_list_t *original_insns;
399 
400   /* True if a code motion path contains a CALL insn.  */
401   bool crosses_call;
402 };
403 
404 typedef struct fur_static_params *fur_static_params_p;
405 typedef struct cmpd_local_params *cmpd_local_params_p;
406 typedef struct moveop_static_params *moveop_static_params_p;
407 
408 /* Set of hooks and parameters that determine behaviour specific to
409    move_op or find_used_regs functions.  */
410 struct code_motion_path_driver_info_def
411 {
412   /* Called on enter to the basic block.  */
413   int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414 
415   /* Called when original expr is found.  */
416   void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417 
418   /* Called while descending current basic block if current insn is not
419      the original EXPR we're searching for.  */
420   bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421 
422   /* Function to merge C_EXPRes from different successors.  */
423   void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424 
425   /* Function to finalize merge from different successors and possibly
426      deallocate temporary data structures used for merging.  */
427   void (*after_merge_succs) (cmpd_local_params_p, void *);
428 
429   /* Called on the backward stage of recursion to do moveup_expr.
430      Used only with move_op_*.  */
431   void (*ascend) (insn_t, void *);
432 
433   /* Called on the ascending pass, before returning from the current basic
434      block or from the whole traversal.  */
435   void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436 
437   /* When processing successors in move_op we need only descend into
438      SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL.  */
439   int succ_flags;
440 
441   /* The routine name to print in dumps ("move_op" of "find_used_regs").  */
442   const char *routine_name;
443 };
444 
445 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446    FUR_HOOKS.  */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448 
449 /* Set of hooks for performing move_op and find_used_regs routines with
450    code_motion_path_driver.  */
451 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452 
453 /* True if/when we want to emulate Haifa scheduler in the common code.
454    This is used in sched_rgn_local_init and in various places in
455    sched-deps.c.  */
456 int sched_emulate_haifa_p;
457 
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459    av_sets.  Av_set of bb header is valid if its (bb header's) level is equal
460    to GLOBAL_LEVEL.  And invalid if lesser.  This is primarily used to advance
461    scheduling window.  */
462 int global_level;
463 
464 /* Current fences.  */
465 flist_t fences;
466 
467 /* True when separable insns should be scheduled as RHSes.  */
468 static bool enable_schedule_as_rhs_p;
469 
470 /* Used in verify_target_availability to assert that target reg is reported
471    unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472    we haven't scheduled anything on the previous fence.
473    if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474    have more conservative value than the one returned by the
475    find_used_regs, thus we shouldn't assert that these values are equal.  */
476 static bool scheduled_something_on_previous_fence;
477 
478 /* All newly emitted insns will have their uids greater than this value.  */
479 static int first_emitted_uid;
480 
481 /* Set of basic blocks that are forced to start new ebbs.  This is a subset
482    of all the ebb heads.  */
483 static bitmap_head _forced_ebb_heads;
484 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485 
486 /* Blocks that need to be rescheduled after pipelining.  */
487 bitmap blocks_to_reschedule = NULL;
488 
489 /* True when the first lv set should be ignored when updating liveness.  */
490 static bool ignore_first = false;
491 
492 /* Number of insns max_issue has initialized data structures for.  */
493 static int max_issue_size = 0;
494 
495 /* Whether we can issue more instructions.  */
496 static int can_issue_more;
497 
498 /* Maximum software lookahead window size, reduced when rescheduling after
499    pipelining.  */
500 static int max_ws;
501 
502 /* Number of insns scheduled in current region.  */
503 static int num_insns_scheduled;
504 
505 /* A vector of expressions is used to be able to sort them.  */
506 DEF_VEC_P(expr_t);
507 DEF_VEC_ALLOC_P(expr_t,heap);
508 static VEC(expr_t, heap) *vec_av_set = NULL;
509 
510 /* A vector of vinsns is used to hold temporary lists of vinsns.  */
511 DEF_VEC_P(vinsn_t);
512 DEF_VEC_ALLOC_P(vinsn_t,heap);
513 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514 
515 /* This vector has the exprs which may still present in av_sets, but actually
516    can't be moved up due to bookkeeping created during code motion to another
517    fence.  See comment near the call to update_and_record_unavailable_insns
518    for the detailed explanations.  */
519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520 
521 /* This vector has vinsns which are scheduled with renaming on the first fence
522    and then seen on the second.  For expressions with such vinsns, target
523    availability information may be wrong.  */
524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525 
526 /* Vector to store temporary nops inserted in move_op to prevent removal
527    of empty bbs.  */
528 DEF_VEC_P(insn_t);
529 DEF_VEC_ALLOC_P(insn_t,heap);
530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531 
532 /* These bitmaps record original instructions scheduled on the current
533    iteration and bookkeeping copies created by them.  */
534 static bitmap current_originators = NULL;
535 static bitmap current_copies = NULL;
536 
537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538    visit them afterwards.  */
539 static bitmap code_motion_visited_blocks = NULL;
540 
541 /* Variables to accumulate different statistics.  */
542 
543 /* The number of bookkeeping copies created.  */
544 static int stat_bookkeeping_copies;
545 
546 /* The number of insns that required bookkeeiping for their scheduling.  */
547 static int stat_insns_needed_bookkeeping;
548 
549 /* The number of insns that got renamed.  */
550 static int stat_renamed_scheduled;
551 
552 /* The number of substitutions made during scheduling.  */
553 static int stat_substitutions_total;
554 
555 
556 /* Forward declarations of static functions.  */
557 static bool rtx_ok_for_substitution_p (rtx, rtx);
558 static int sel_rank_for_schedule (const void *, const void *);
559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
561 
562 static rtx get_dest_from_orig_ops (av_set_t);
563 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
564 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
565                             def_list_t *);
566 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
567 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
568                                     cmpd_local_params_p, void *);
569 static void sel_sched_region_1 (void);
570 static void sel_sched_region_2 (int);
571 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
572 
573 static void debug_state (state_t);
574 
575 
576 /* Functions that work with fences.  */
577 
578 /* Advance one cycle on FENCE.  */
579 static void
580 advance_one_cycle (fence_t fence)
581 {
582   unsigned i;
583   int cycle;
584   rtx insn;
585 
586   advance_state (FENCE_STATE (fence));
587   cycle = ++FENCE_CYCLE (fence);
588   FENCE_ISSUED_INSNS (fence) = 0;
589   FENCE_STARTS_CYCLE_P (fence) = 1;
590   can_issue_more = issue_rate;
591   FENCE_ISSUE_MORE (fence) = can_issue_more;
592 
593   for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
594     {
595       if (INSN_READY_CYCLE (insn) < cycle)
596         {
597           remove_from_deps (FENCE_DC (fence), insn);
598           VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
599           continue;
600         }
601       i++;
602     }
603   if (sched_verbose >= 2)
604     {
605       sel_print ("Finished a cycle.  Current cycle = %d\n", FENCE_CYCLE (fence));
606       debug_state (FENCE_STATE (fence));
607     }
608 }
609 
610 /* Returns true when SUCC in a fallthru bb of INSN, possibly
611    skipping empty basic blocks.  */
612 static bool
613 in_fallthru_bb_p (rtx insn, rtx succ)
614 {
615   basic_block bb = BLOCK_FOR_INSN (insn);
616   edge e;
617 
618   if (bb == BLOCK_FOR_INSN (succ))
619     return true;
620 
621   e = find_fallthru_edge_from (bb);
622   if (e)
623     bb = e->dest;
624   else
625     return false;
626 
627   while (sel_bb_empty_p (bb))
628     bb = bb->next_bb;
629 
630   return bb == BLOCK_FOR_INSN (succ);
631 }
632 
633 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
634    When a successor will continue a ebb, transfer all parameters of a fence
635    to the new fence.  ORIG_MAX_SEQNO is the maximal seqno before this round
636    of scheduling helping to distinguish between the old and the new code.  */
637 static void
638 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
639 			 int orig_max_seqno)
640 {
641   bool was_here_p = false;
642   insn_t insn = NULL_RTX;
643   insn_t succ;
644   succ_iterator si;
645   ilist_iterator ii;
646   fence_t fence = FLIST_FENCE (old_fences);
647   basic_block bb;
648 
649   /* Get the only element of FENCE_BNDS (fence).  */
650   FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
651     {
652       gcc_assert (!was_here_p);
653       was_here_p = true;
654     }
655   gcc_assert (was_here_p && insn != NULL_RTX);
656 
657   /* When in the "middle" of the block, just move this fence
658      to the new list.  */
659   bb = BLOCK_FOR_INSN (insn);
660   if (! sel_bb_end_p (insn)
661       || (single_succ_p (bb)
662           && single_pred_p (single_succ (bb))))
663     {
664       insn_t succ;
665 
666       succ = (sel_bb_end_p (insn)
667               ? sel_bb_head (single_succ (bb))
668               : NEXT_INSN (insn));
669 
670       if (INSN_SEQNO (succ) > 0
671           && INSN_SEQNO (succ) <= orig_max_seqno
672           && INSN_SCHED_TIMES (succ) <= 0)
673         {
674           FENCE_INSN (fence) = succ;
675           move_fence_to_fences (old_fences, new_fences);
676 
677           if (sched_verbose >= 1)
678             sel_print ("Fence %d continues as %d[%d] (state continue)\n",
679                        INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
680         }
681       return;
682     }
683 
684   /* Otherwise copy fence's structures to (possibly) multiple successors.  */
685   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
686     {
687       int seqno = INSN_SEQNO (succ);
688 
689       if (0 < seqno && seqno <= orig_max_seqno
690           && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
691         {
692           bool b = (in_same_ebb_p (insn, succ)
693                     || in_fallthru_bb_p (insn, succ));
694 
695           if (sched_verbose >= 1)
696             sel_print ("Fence %d continues as %d[%d] (state %s)\n",
697                        INSN_UID (insn), INSN_UID (succ),
698                        BLOCK_NUM (succ), b ? "continue" : "reset");
699 
700           if (b)
701             add_dirty_fence_to_fences (new_fences, succ, fence);
702           else
703             {
704               /* Mark block of the SUCC as head of the new ebb.  */
705               bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
706               add_clean_fence_to_fences (new_fences, succ, fence);
707             }
708         }
709     }
710 }
711 
712 
713 /* Functions to support substitution.  */
714 
715 /* Returns whether INSN with dependence status DS is eligible for
716    substitution, i.e. it's a copy operation x := y, and RHS that is
717    moved up through this insn should be substituted.  */
718 static bool
719 can_substitute_through_p (insn_t insn, ds_t ds)
720 {
721   /* We can substitute only true dependencies.  */
722   if ((ds & DEP_OUTPUT)
723       || (ds & DEP_ANTI)
724       || ! INSN_RHS (insn)
725       || ! INSN_LHS (insn))
726     return false;
727 
728   /* Now we just need to make sure the INSN_RHS consists of only one
729      simple REG rtx.  */
730   if (REG_P (INSN_LHS (insn))
731       && REG_P (INSN_RHS (insn)))
732     return true;
733   return false;
734 }
735 
736 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
737    source (if INSN is eligible for substitution).  Returns TRUE if
738    substitution was actually performed, FALSE otherwise.  Substitution might
739    be not performed because it's either EXPR' vinsn doesn't contain INSN's
740    destination or the resulting insn is invalid for the target machine.
741    When UNDO is true, perform unsubstitution instead (the difference is in
742    the part of rtx on which validate_replace_rtx is called).  */
743 static bool
744 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
745 {
746   rtx *where;
747   bool new_insn_valid;
748   vinsn_t *vi = &EXPR_VINSN (expr);
749   bool has_rhs = VINSN_RHS (*vi) != NULL;
750   rtx old, new_rtx;
751 
752   /* Do not try to replace in SET_DEST.  Although we'll choose new
753      register for the RHS, we don't want to change RHS' original reg.
754      If the insn is not SET, we may still be able to substitute something
755      in it, and if we're here (don't have deps), it doesn't write INSN's
756      dest.  */
757   where = (has_rhs
758 	   ? &VINSN_RHS (*vi)
759 	   : &PATTERN (VINSN_INSN_RTX (*vi)));
760   old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
761 
762   /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI.  */
763   if (rtx_ok_for_substitution_p (old, *where))
764     {
765       rtx new_insn;
766       rtx *where_replace;
767 
768       /* We should copy these rtxes before substitution.  */
769       new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
770       new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
771 
772       /* Where we'll replace.
773          WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
774 	 used instead of SET_SRC.  */
775       where_replace = (has_rhs
776 		       ? &SET_SRC (PATTERN (new_insn))
777 		       : &PATTERN (new_insn));
778 
779       new_insn_valid
780         = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
781                                                 new_insn);
782 
783       /* ??? Actually, constrain_operands result depends upon choice of
784          destination register.  E.g. if we allow single register to be an rhs,
785 	 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
786 	 in invalid insn dx=dx, so we'll loose this rhs here.
787 	 Just can't come up with significant testcase for this, so just
788 	 leaving it for now.  */
789       if (new_insn_valid)
790 	{
791 	  change_vinsn_in_expr (expr,
792 				create_vinsn_from_insn_rtx (new_insn, false));
793 
794 	  /* Do not allow clobbering the address register of speculative
795              insns.  */
796 	  if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
797               && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
798 					 expr_dest_reg (expr)))
799 	    EXPR_TARGET_AVAILABLE (expr) = false;
800 
801 	  return true;
802 	}
803       else
804         return false;
805     }
806   else
807     return false;
808 }
809 
810 /* Helper function for count_occurences_equiv.  */
811 static int
812 count_occurrences_1 (rtx *cur_rtx, void *arg)
813 {
814   rtx_search_arg_p p = (rtx_search_arg_p) arg;
815 
816   if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
817     {
818       /* Bail out if mode is different or more than one register is used.  */
819       if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
820           || (HARD_REGISTER_P (*cur_rtx)
821 	      && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
822         {
823           p->n = 0;
824           return 1;
825         }
826 
827       p->n++;
828 
829       /* Do not traverse subexprs.  */
830       return -1;
831     }
832 
833   if (GET_CODE (*cur_rtx) == SUBREG
834       && (!REG_P (SUBREG_REG (*cur_rtx))
835 	  || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
836     {
837       /* ??? Do not support substituting regs inside subregs.  In that case,
838          simplify_subreg will be called by validate_replace_rtx, and
839          unsubstitution will fail later.  */
840       p->n = 0;
841       return 1;
842     }
843 
844   /* Continue search.  */
845   return 0;
846 }
847 
848 /* Return the number of places WHAT appears within WHERE.
849    Bail out when we found a reference occupying several hard registers.  */
850 static int
851 count_occurrences_equiv (rtx what, rtx where)
852 {
853   struct rtx_search_arg arg;
854 
855   gcc_assert (REG_P (what));
856   arg.x = what;
857   arg.n = 0;
858 
859   for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
860 
861   return arg.n;
862 }
863 
864 /* Returns TRUE if WHAT is found in WHERE rtx tree.  */
865 static bool
866 rtx_ok_for_substitution_p (rtx what, rtx where)
867 {
868   return (count_occurrences_equiv (what, where) > 0);
869 }
870 
871 
872 /* Functions to support register renaming.  */
873 
874 /* Substitute VI's set source with REGNO.  Returns newly created pattern
875    that has REGNO as its source.  */
876 static rtx
877 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
878 {
879   rtx lhs_rtx;
880   rtx pattern;
881   rtx insn_rtx;
882 
883   lhs_rtx = copy_rtx (VINSN_LHS (vi));
884 
885   pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
886   insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
887 
888   return insn_rtx;
889 }
890 
891 /* Returns whether INSN's src can be replaced with register number
892    NEW_SRC_REG. E.g. the following insn is valid for i386:
893 
894     (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
895       (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
896 			(reg:SI 0 ax [orig:770 c1 ] [770]))
897 		    (const_int 288 [0x120])) [0 str S1 A8])
898 	    (const_int 0 [0x0])) 43 {*movqi_1} (nil)
899 	(nil))
900 
901   But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
902   because of operand constraints:
903 
904     (define_insn "*movqi_1"
905       [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
906 	    (match_operand:QI 1 "general_operand"      " q,qn,qm,q,rn,qm,qn")
907 	    )]
908 
909   So do constrain_operands here, before choosing NEW_SRC_REG as best
910   reg for rhs.  */
911 
912 static bool
913 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
914 {
915   vinsn_t vi = INSN_VINSN (insn);
916   enum machine_mode mode;
917   rtx dst_loc;
918   bool res;
919 
920   gcc_assert (VINSN_SEPARABLE_P (vi));
921 
922   get_dest_and_mode (insn, &dst_loc, &mode);
923   gcc_assert (mode == GET_MODE (new_src_reg));
924 
925   if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
926     return true;
927 
928   /* See whether SET_SRC can be replaced with this register.  */
929   validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
930   res = verify_changes (0);
931   cancel_changes (0);
932 
933   return res;
934 }
935 
936 /* Returns whether INSN still be valid after replacing it's DEST with
937    register NEW_REG.  */
938 static bool
939 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
940 {
941   vinsn_t vi = INSN_VINSN (insn);
942   bool res;
943 
944   /* We should deal here only with separable insns.  */
945   gcc_assert (VINSN_SEPARABLE_P (vi));
946   gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
947 
948   /* See whether SET_DEST can be replaced with this register.  */
949   validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
950   res = verify_changes (0);
951   cancel_changes (0);
952 
953   return res;
954 }
955 
956 /* Create a pattern with rhs of VI and lhs of LHS_RTX.  */
957 static rtx
958 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
959 {
960   rtx rhs_rtx;
961   rtx pattern;
962   rtx insn_rtx;
963 
964   rhs_rtx = copy_rtx (VINSN_RHS (vi));
965 
966   pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
967   insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
968 
969   return insn_rtx;
970 }
971 
972 /* Substitute lhs in the given expression EXPR for the register with number
973    NEW_REGNO.  SET_DEST may be arbitrary rtx, not only register.  */
974 static void
975 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
976 {
977   rtx insn_rtx;
978   vinsn_t vinsn;
979 
980   insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
981   vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
982 
983   change_vinsn_in_expr (expr, vinsn);
984   EXPR_WAS_RENAMED (expr) = 1;
985   EXPR_TARGET_AVAILABLE (expr) = 1;
986 }
987 
988 /* Returns whether VI writes either one of the USED_REGS registers or,
989    if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers.  */
990 static bool
991 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
992                             HARD_REG_SET unavailable_hard_regs)
993 {
994   unsigned regno;
995   reg_set_iterator rsi;
996 
997   EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
998     {
999       if (REGNO_REG_SET_P (used_regs, regno))
1000         return true;
1001       if (HARD_REGISTER_NUM_P (regno)
1002           && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 	return true;
1004     }
1005 
1006   EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1007     {
1008       if (REGNO_REG_SET_P (used_regs, regno))
1009         return true;
1010       if (HARD_REGISTER_NUM_P (regno)
1011           && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1012 	return true;
1013     }
1014 
1015   return false;
1016 }
1017 
1018 /* Returns register class of the output register in INSN.
1019    Returns NO_REGS for call insns because some targets have constraints on
1020    destination register of a call insn.
1021 
1022    Code adopted from regrename.c::build_def_use.  */
1023 static enum reg_class
1024 get_reg_class (rtx insn)
1025 {
1026   int alt, i, n_ops;
1027 
1028   extract_insn (insn);
1029   if (! constrain_operands (1))
1030     fatal_insn_not_found (insn);
1031   preprocess_constraints ();
1032   alt = which_alternative;
1033   n_ops = recog_data.n_operands;
1034 
1035   for (i = 0; i < n_ops; ++i)
1036     {
1037       int matches = recog_op_alt[i][alt].matches;
1038       if (matches >= 0)
1039 	recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1040     }
1041 
1042   if (asm_noperands (PATTERN (insn)) > 0)
1043     {
1044       for (i = 0; i < n_ops; i++)
1045 	if (recog_data.operand_type[i] == OP_OUT)
1046 	  {
1047 	    rtx *loc = recog_data.operand_loc[i];
1048 	    rtx op = *loc;
1049 	    enum reg_class cl = recog_op_alt[i][alt].cl;
1050 
1051 	    if (REG_P (op)
1052 		&& REGNO (op) == ORIGINAL_REGNO (op))
1053 	      continue;
1054 
1055 	    return cl;
1056 	  }
1057     }
1058   else if (!CALL_P (insn))
1059     {
1060       for (i = 0; i < n_ops + recog_data.n_dups; i++)
1061        {
1062 	 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1063 	 enum reg_class cl = recog_op_alt[opn][alt].cl;
1064 
1065 	 if (recog_data.operand_type[opn] == OP_OUT ||
1066 	     recog_data.operand_type[opn] == OP_INOUT)
1067 	   return cl;
1068        }
1069     }
1070 
1071 /*  Insns like
1072     (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1073     may result in returning NO_REGS, cause flags is written implicitly through
1074     CMP insn, which has no OP_OUT | OP_INOUT operands.  */
1075   return NO_REGS;
1076 }
1077 
1078 #ifdef HARD_REGNO_RENAME_OK
1079 /* Calculate HARD_REGNO_RENAME_OK data for REGNO.  */
1080 static void
1081 init_hard_regno_rename (int regno)
1082 {
1083   int cur_reg;
1084 
1085   SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1086 
1087   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1088     {
1089       /* We are not interested in renaming in other regs.  */
1090       if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1091         continue;
1092 
1093       if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1094         SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1095     }
1096 }
1097 #endif
1098 
1099 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1100    data first.  */
1101 static inline bool
1102 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1103 {
1104 #ifdef HARD_REGNO_RENAME_OK
1105   /* Check whether this is all calculated.  */
1106   if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1107     return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1108 
1109   init_hard_regno_rename (from);
1110 
1111   return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1112 #else
1113   return true;
1114 #endif
1115 }
1116 
1117 /* Calculate set of registers that are capable of holding MODE.  */
1118 static void
1119 init_regs_for_mode (enum machine_mode mode)
1120 {
1121   int cur_reg;
1122 
1123   CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1124   CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1125 
1126   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1127     {
1128       int nregs = hard_regno_nregs[cur_reg][mode];
1129       int i;
1130 
1131       for (i = nregs - 1; i >= 0; --i)
1132         if (fixed_regs[cur_reg + i]
1133                 || global_regs[cur_reg + i]
1134             /* Can't use regs which aren't saved by
1135                the prologue.  */
1136             || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1137 	    /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1138 	       it affects aliasing globally and invalidates all AV sets.  */
1139 	    || get_reg_base_value (cur_reg + i)
1140 #ifdef LEAF_REGISTERS
1141             /* We can't use a non-leaf register if we're in a
1142                leaf function.  */
1143             || (current_function_is_leaf
1144                 && !LEAF_REGISTERS[cur_reg + i])
1145 #endif
1146             )
1147           break;
1148 
1149       if (i >= 0)
1150         continue;
1151 
1152       /* See whether it accepts all modes that occur in
1153          original insns.  */
1154       if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1155         continue;
1156 
1157       if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1158         SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1159                           cur_reg);
1160 
1161       /* If the CUR_REG passed all the checks above,
1162          then it's ok.  */
1163       SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1164     }
1165 
1166   sel_hrd.regs_for_mode_ok[mode] = true;
1167 }
1168 
1169 /* Init all register sets gathered in HRD.  */
1170 static void
1171 init_hard_regs_data (void)
1172 {
1173   int cur_reg = 0;
1174   int cur_mode = 0;
1175 
1176   CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1177   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1178     if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1179       SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1180 
1181   /* Initialize registers that are valid based on mode when this is
1182      really needed.  */
1183   for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1184     sel_hrd.regs_for_mode_ok[cur_mode] = false;
1185 
1186   /* Mark that all HARD_REGNO_RENAME_OK is not calculated.  */
1187   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1188     CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1189 
1190 #ifdef STACK_REGS
1191   CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1192 
1193   for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1194     SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1195 #endif
1196 }
1197 
1198 /* Mark hardware regs in REG_RENAME_P that are not suitable
1199    for renaming rhs in INSN due to hardware restrictions (register class,
1200    modes compatibility etc).  This doesn't affect original insn's dest reg,
1201    if it isn't in USED_REGS.  DEF is a definition insn of rhs for which the
1202    destination register is sought.  LHS (DEF->ORIG_INSN) may be REG or MEM.
1203    Registers that are in used_regs are always marked in
1204    unavailable_hard_regs as well.  */
1205 
1206 static void
1207 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1208                             regset used_regs ATTRIBUTE_UNUSED)
1209 {
1210   enum machine_mode mode;
1211   enum reg_class cl = NO_REGS;
1212   rtx orig_dest;
1213   unsigned cur_reg, regno;
1214   hard_reg_set_iterator hrsi;
1215 
1216   gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1217   gcc_assert (reg_rename_p);
1218 
1219   orig_dest = SET_DEST (PATTERN (def->orig_insn));
1220 
1221   /* We have decided not to rename 'mem = something;' insns, as 'something'
1222      is usually a register.  */
1223   if (!REG_P (orig_dest))
1224     return;
1225 
1226   regno = REGNO (orig_dest);
1227 
1228   /* If before reload, don't try to work with pseudos.  */
1229   if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1230     return;
1231 
1232   if (reload_completed)
1233     cl = get_reg_class (def->orig_insn);
1234 
1235   /* Stop if the original register is one of the fixed_regs, global_regs or
1236      frame pointer, or we could not discover its class.  */
1237   if (fixed_regs[regno]
1238       || global_regs[regno]
1239 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1240       || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1241 #else
1242       || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1243 #endif
1244       || (reload_completed && cl == NO_REGS))
1245     {
1246       SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1247 
1248       /* Give a chance for original register, if it isn't in used_regs.  */
1249       if (!def->crosses_call)
1250         CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1251 
1252       return;
1253     }
1254 
1255   /* If something allocated on stack in this function, mark frame pointer
1256      register unavailable, considering also modes.
1257      FIXME: it is enough to do this once per all original defs.  */
1258   if (frame_pointer_needed)
1259     {
1260       add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1261 			   Pmode, FRAME_POINTER_REGNUM);
1262 
1263       if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1264         add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1265 			     Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1266     }
1267 
1268 #ifdef STACK_REGS
1269   /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1270      is equivalent to as if all stack regs were in this set.
1271      I.e. no stack register can be renamed, and even if it's an original
1272      register here we make sure it won't be lifted over it's previous def
1273      (it's previous def will appear as if it's a FIRST_STACK_REG def.
1274      The HARD_REGNO_RENAME_OK covers other cases in condition below.  */
1275   if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1276       && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1277     IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1278                       sel_hrd.stack_regs);
1279 #endif
1280 
1281   /* If there's a call on this path, make regs from call_used_reg_set
1282      unavailable.  */
1283   if (def->crosses_call)
1284     IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1285                       call_used_reg_set);
1286 
1287   /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1288      but not register classes.  */
1289   if (!reload_completed)
1290     return;
1291 
1292   /* Leave regs as 'available' only from the current
1293      register class.  */
1294   COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1295                      reg_class_contents[cl]);
1296 
1297   mode = GET_MODE (orig_dest);
1298 
1299   /* Leave only registers available for this mode.  */
1300   if (!sel_hrd.regs_for_mode_ok[mode])
1301     init_regs_for_mode (mode);
1302   AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1303                     sel_hrd.regs_for_mode[mode]);
1304 
1305   /* Exclude registers that are partially call clobbered.  */
1306   if (def->crosses_call
1307       && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1308     AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1309                             sel_hrd.regs_for_call_clobbered[mode]);
1310 
1311   /* Leave only those that are ok to rename.  */
1312   EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1313                                   0, cur_reg, hrsi)
1314     {
1315       int nregs;
1316       int i;
1317 
1318       nregs = hard_regno_nregs[cur_reg][mode];
1319       gcc_assert (nregs > 0);
1320 
1321       for (i = nregs - 1; i >= 0; --i)
1322         if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1323           break;
1324 
1325       if (i >= 0)
1326         CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1327                             cur_reg);
1328     }
1329 
1330   AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1331                           reg_rename_p->unavailable_hard_regs);
1332 
1333   /* Regno is always ok from the renaming part of view, but it really
1334      could be in *unavailable_hard_regs already, so set it here instead
1335      of there.  */
1336   SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1337 }
1338 
1339 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1340    best register more recently than REG2.  */
1341 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1342 
1343 /* Indicates the number of times renaming happened before the current one.  */
1344 static int reg_rename_this_tick;
1345 
1346 /* Choose the register among free, that is suitable for storing
1347    the rhs value.
1348 
1349    ORIGINAL_INSNS is the list of insns where the operation (rhs)
1350    originally appears.  There could be multiple original operations
1351    for single rhs since we moving it up and merging along different
1352    paths.
1353 
1354    Some code is adapted from regrename.c (regrename_optimize).
1355    If original register is available, function returns it.
1356    Otherwise it performs the checks, so the new register should
1357    comply with the following:
1358     - it should not violate any live ranges (such registers are in
1359       REG_RENAME_P->available_for_renaming set);
1360     - it should not be in the HARD_REGS_USED regset;
1361     - it should be in the class compatible with original uses;
1362     - it should not be clobbered through reference with different mode;
1363     - if we're in the leaf function, then the new register should
1364       not be in the LEAF_REGISTERS;
1365     - etc.
1366 
1367    If several registers meet the conditions, the register with smallest
1368    tick is returned to achieve more even register allocation.
1369 
1370    If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1371 
1372    If no register satisfies the above conditions, NULL_RTX is returned.  */
1373 static rtx
1374 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1375                    struct reg_rename *reg_rename_p,
1376                    def_list_t original_insns, bool *is_orig_reg_p_ptr)
1377 {
1378   int best_new_reg;
1379   unsigned cur_reg;
1380   enum machine_mode mode = VOIDmode;
1381   unsigned regno, i, n;
1382   hard_reg_set_iterator hrsi;
1383   def_list_iterator di;
1384   def_t def;
1385 
1386   /* If original register is available, return it.  */
1387   *is_orig_reg_p_ptr = true;
1388 
1389   FOR_EACH_DEF (def, di, original_insns)
1390     {
1391       rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1392 
1393       gcc_assert (REG_P (orig_dest));
1394 
1395       /* Check that all original operations have the same mode.
1396          This is done for the next loop; if we'd return from this
1397          loop, we'd check only part of them, but in this case
1398          it doesn't matter.  */
1399       if (mode == VOIDmode)
1400         mode = GET_MODE (orig_dest);
1401       gcc_assert (mode == GET_MODE (orig_dest));
1402 
1403       regno = REGNO (orig_dest);
1404       for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1405         if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1406           break;
1407 
1408       /* All hard registers are available.  */
1409       if (i == n)
1410         {
1411           gcc_assert (mode != VOIDmode);
1412 
1413           /* Hard registers should not be shared.  */
1414           return gen_rtx_REG (mode, regno);
1415         }
1416     }
1417 
1418   *is_orig_reg_p_ptr = false;
1419   best_new_reg = -1;
1420 
1421   /* Among all available regs choose the register that was
1422      allocated earliest.  */
1423   EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1424                                   0, cur_reg, hrsi)
1425     if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1426       {
1427 	/* Check that all hard regs for mode are available.  */
1428 	for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1429 	  if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1430 	      || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1431 				     cur_reg + i))
1432 	    break;
1433 
1434 	if (i < n)
1435 	  continue;
1436 
1437         /* All hard registers are available.  */
1438         if (best_new_reg < 0
1439             || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1440           {
1441             best_new_reg = cur_reg;
1442 
1443             /* Return immediately when we know there's no better reg.  */
1444             if (! reg_rename_tick[best_new_reg])
1445               break;
1446           }
1447       }
1448 
1449   if (best_new_reg >= 0)
1450     {
1451       /* Use the check from the above loop.  */
1452       gcc_assert (mode != VOIDmode);
1453       return gen_rtx_REG (mode, best_new_reg);
1454     }
1455 
1456   return NULL_RTX;
1457 }
1458 
1459 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1460    assumptions about available registers in the function.  */
1461 static rtx
1462 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1463                  def_list_t original_insns, bool *is_orig_reg_p_ptr)
1464 {
1465   rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1466                                     original_insns, is_orig_reg_p_ptr);
1467 
1468   /* FIXME loop over hard_regno_nregs here.  */
1469   gcc_assert (best_reg == NULL_RTX
1470 	      || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1471 
1472   return best_reg;
1473 }
1474 
1475 /* Choose the pseudo register for storing rhs value.  As this is supposed
1476    to work before reload, we return either the original register or make
1477    the new one.  The parameters are the same that in choose_nest_reg_1
1478    functions, except that USED_REGS may contain pseudos.
1479    If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1480 
1481    TODO: take into account register pressure while doing this.  Up to this
1482    moment, this function would never return NULL for pseudos, but we should
1483    not rely on this.  */
1484 static rtx
1485 choose_best_pseudo_reg (regset used_regs,
1486                         struct reg_rename *reg_rename_p,
1487                         def_list_t original_insns, bool *is_orig_reg_p_ptr)
1488 {
1489   def_list_iterator i;
1490   def_t def;
1491   enum machine_mode mode = VOIDmode;
1492   bool bad_hard_regs = false;
1493 
1494   /* We should not use this after reload.  */
1495   gcc_assert (!reload_completed);
1496 
1497   /* If original register is available, return it.  */
1498   *is_orig_reg_p_ptr = true;
1499 
1500   FOR_EACH_DEF (def, i, original_insns)
1501     {
1502       rtx dest = SET_DEST (PATTERN (def->orig_insn));
1503       int orig_regno;
1504 
1505       gcc_assert (REG_P (dest));
1506 
1507       /* Check that all original operations have the same mode.  */
1508       if (mode == VOIDmode)
1509         mode = GET_MODE (dest);
1510       else
1511         gcc_assert (mode == GET_MODE (dest));
1512       orig_regno = REGNO (dest);
1513 
1514       if (!REGNO_REG_SET_P (used_regs, orig_regno))
1515         {
1516           if (orig_regno < FIRST_PSEUDO_REGISTER)
1517             {
1518               gcc_assert (df_regs_ever_live_p (orig_regno));
1519 
1520               /* For hard registers, we have to check hardware imposed
1521                  limitations (frame/stack registers, calls crossed).  */
1522               if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1523                                       orig_regno))
1524 		{
1525 		  /* Don't let register cross a call if it doesn't already
1526 		     cross one.  This condition is written in accordance with
1527 		     that in sched-deps.c sched_analyze_reg().  */
1528 		  if (!reg_rename_p->crosses_call
1529 		      || REG_N_CALLS_CROSSED (orig_regno) > 0)
1530 		    return gen_rtx_REG (mode, orig_regno);
1531 		}
1532 
1533               bad_hard_regs = true;
1534             }
1535           else
1536             return dest;
1537         }
1538      }
1539 
1540   *is_orig_reg_p_ptr = false;
1541 
1542   /* We had some original hard registers that couldn't be used.
1543      Those were likely special.  Don't try to create a pseudo.  */
1544   if (bad_hard_regs)
1545     return NULL_RTX;
1546 
1547   /* We haven't found a register from original operations.  Get a new one.
1548      FIXME: control register pressure somehow.  */
1549   {
1550     rtx new_reg = gen_reg_rtx (mode);
1551 
1552     gcc_assert (mode != VOIDmode);
1553 
1554     max_regno = max_reg_num ();
1555     maybe_extend_reg_info_p ();
1556     REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1557 
1558     return new_reg;
1559   }
1560 }
1561 
1562 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1563    USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS.  */
1564 static void
1565 verify_target_availability (expr_t expr, regset used_regs,
1566 			    struct reg_rename *reg_rename_p)
1567 {
1568   unsigned n, i, regno;
1569   enum machine_mode mode;
1570   bool target_available, live_available, hard_available;
1571 
1572   if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1573     return;
1574 
1575   regno = expr_dest_regno (expr);
1576   mode = GET_MODE (EXPR_LHS (expr));
1577   target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1578   n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1579 
1580   live_available = hard_available = true;
1581   for (i = 0; i < n; i++)
1582     {
1583       if (bitmap_bit_p (used_regs, regno + i))
1584         live_available = false;
1585       if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1586         hard_available = false;
1587     }
1588 
1589   /* When target is not available, it may be due to hard register
1590      restrictions, e.g. crosses calls, so we check hard_available too.  */
1591   if (target_available)
1592     gcc_assert (live_available);
1593   else
1594     /* Check only if we haven't scheduled something on the previous fence,
1595        cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1596        and having more than one fence, we may end having targ_un in a block
1597        in which successors target register is actually available.
1598 
1599        The last condition handles the case when a dependence from a call insn
1600        was created in sched-deps.c for insns with destination registers that
1601        never crossed a call before, but do cross one after our code motion.
1602 
1603        FIXME: in the latter case, we just uselessly called find_used_regs,
1604        because we can't move this expression with any other register
1605        as well.  */
1606     gcc_assert (scheduled_something_on_previous_fence || !live_available
1607 		|| !hard_available
1608 		|| (!reload_completed && reg_rename_p->crosses_call
1609 		    && REG_N_CALLS_CROSSED (regno) == 0));
1610 }
1611 
1612 /* Collect unavailable registers due to liveness for EXPR from BNDS
1613    into USED_REGS.  Save additional information about available
1614    registers and unavailable due to hardware restriction registers
1615    into REG_RENAME_P structure.  Save original insns into ORIGINAL_INSNS
1616    list.  */
1617 static void
1618 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1619 				    struct reg_rename *reg_rename_p,
1620 				    def_list_t *original_insns)
1621 {
1622   for (; bnds; bnds = BLIST_NEXT (bnds))
1623     {
1624       bool res;
1625       av_set_t orig_ops = NULL;
1626       bnd_t bnd = BLIST_BND (bnds);
1627 
1628       /* If the chosen best expr doesn't belong to current boundary,
1629 	 skip it.  */
1630       if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1631 	continue;
1632 
1633       /* Put in ORIG_OPS all exprs from this boundary that became
1634 	 RES on top.  */
1635       orig_ops = find_sequential_best_exprs (bnd, expr, false);
1636 
1637       /* Compute used regs and OR it into the USED_REGS.  */
1638       res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1639 			    reg_rename_p, original_insns);
1640 
1641       /* FIXME: the assert is true until we'd have several boundaries.  */
1642       gcc_assert (res);
1643       av_set_clear (&orig_ops);
1644     }
1645 }
1646 
1647 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1648    If BEST_REG is valid, replace LHS of EXPR with it.  */
1649 static bool
1650 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1651 {
1652   /* Try whether we'll be able to generate the insn
1653      'dest := best_reg' at the place of the original operation.  */
1654   for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1655     {
1656       insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1657 
1658       gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1659 
1660       if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1661 	  && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1662 	      || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1663 	return false;
1664     }
1665 
1666   /* Make sure that EXPR has the right destination
1667      register.  */
1668   if (expr_dest_regno (expr) != REGNO (best_reg))
1669     replace_dest_with_reg_in_expr (expr, best_reg);
1670   else
1671     EXPR_TARGET_AVAILABLE (expr) = 1;
1672 
1673   return true;
1674 }
1675 
1676 /* Select and assign best register to EXPR searching from BNDS.
1677    Set *IS_ORIG_REG_P to TRUE if original register was selected.
1678    Return FALSE if no register can be chosen, which could happen when:
1679    * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1680    * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1681      that are used on the moving path.  */
1682 static bool
1683 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1684 {
1685   static struct reg_rename reg_rename_data;
1686 
1687   regset used_regs;
1688   def_list_t original_insns = NULL;
1689   bool reg_ok;
1690 
1691   *is_orig_reg_p = false;
1692 
1693   /* Don't bother to do anything if this insn doesn't set any registers.  */
1694   if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1695       && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1696     return true;
1697 
1698   used_regs = get_clear_regset_from_pool ();
1699   CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1700 
1701   collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1702 				      &original_insns);
1703 
1704 #ifdef ENABLE_CHECKING
1705   /* If after reload, make sure we're working with hard regs here.  */
1706   if (reload_completed)
1707     {
1708       reg_set_iterator rsi;
1709       unsigned i;
1710 
1711       EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1712         gcc_unreachable ();
1713     }
1714 #endif
1715 
1716   if (EXPR_SEPARABLE_P (expr))
1717     {
1718       rtx best_reg = NULL_RTX;
1719       /* Check that we have computed availability of a target register
1720 	 correctly.  */
1721       verify_target_availability (expr, used_regs, &reg_rename_data);
1722 
1723       /* Turn everything in hard regs after reload.  */
1724       if (reload_completed)
1725 	{
1726 	  HARD_REG_SET hard_regs_used;
1727 	  REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1728 
1729 	  /* Join hard registers unavailable due to register class
1730 	     restrictions and live range intersection.  */
1731 	  IOR_HARD_REG_SET (hard_regs_used,
1732 			    reg_rename_data.unavailable_hard_regs);
1733 
1734 	  best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1735 				      original_insns, is_orig_reg_p);
1736 	}
1737       else
1738 	best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1739 					   original_insns, is_orig_reg_p);
1740 
1741       if (!best_reg)
1742 	reg_ok = false;
1743       else if (*is_orig_reg_p)
1744 	{
1745 	  /* In case of unification BEST_REG may be different from EXPR's LHS
1746 	     when EXPR's LHS is unavailable, and there is another LHS among
1747 	     ORIGINAL_INSNS.  */
1748 	  reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1749 	}
1750       else
1751 	{
1752 	  /* Forbid renaming of low-cost insns.  */
1753 	  if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1754 	    reg_ok = false;
1755 	  else
1756 	    reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1757 	}
1758     }
1759   else
1760     {
1761       /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1762 	 any of the HARD_REGS_USED set.  */
1763       if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1764 				      reg_rename_data.unavailable_hard_regs))
1765 	{
1766 	  reg_ok = false;
1767 	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1768 	}
1769       else
1770 	{
1771 	  reg_ok = true;
1772 	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1773 	}
1774     }
1775 
1776   ilist_clear (&original_insns);
1777   return_regset_to_pool (used_regs);
1778 
1779   return reg_ok;
1780 }
1781 
1782 
1783 /* Return true if dependence described by DS can be overcomed.  */
1784 static bool
1785 can_speculate_dep_p (ds_t ds)
1786 {
1787   if (spec_info == NULL)
1788     return false;
1789 
1790   /* Leave only speculative data.  */
1791   ds &= SPECULATIVE;
1792 
1793   if (ds == 0)
1794     return false;
1795 
1796   {
1797     /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1798        that we can overcome.  */
1799     ds_t spec_mask = spec_info->mask;
1800 
1801     if ((ds & spec_mask) != ds)
1802       return false;
1803   }
1804 
1805   if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1806     return false;
1807 
1808   return true;
1809 }
1810 
1811 /* Get a speculation check instruction.
1812    C_EXPR is a speculative expression,
1813    CHECK_DS describes speculations that should be checked,
1814    ORIG_INSN is the original non-speculative insn in the stream.  */
1815 static insn_t
1816 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1817 {
1818   rtx check_pattern;
1819   rtx insn_rtx;
1820   insn_t insn;
1821   basic_block recovery_block;
1822   rtx label;
1823 
1824   /* Create a recovery block if target is going to emit branchy check, or if
1825      ORIG_INSN was speculative already.  */
1826   if (targetm.sched.needs_block_p (check_ds)
1827       || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1828     {
1829       recovery_block = sel_create_recovery_block (orig_insn);
1830       label = BB_HEAD (recovery_block);
1831     }
1832   else
1833     {
1834       recovery_block = NULL;
1835       label = NULL_RTX;
1836     }
1837 
1838   /* Get pattern of the check.  */
1839   check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1840 						check_ds);
1841 
1842   gcc_assert (check_pattern != NULL);
1843 
1844   /* Emit check.  */
1845   insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1846 
1847   insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1848 				      INSN_SEQNO (orig_insn), orig_insn);
1849 
1850   /* Make check to be non-speculative.  */
1851   EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1852   INSN_SPEC_CHECKED_DS (insn) = check_ds;
1853 
1854   /* Decrease priority of check by difference of load/check instruction
1855      latencies.  */
1856   EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1857 				       - sel_vinsn_cost (INSN_VINSN (insn)));
1858 
1859   /* Emit copy of original insn (though with replaced target register,
1860      if needed) to the recovery block.  */
1861   if (recovery_block != NULL)
1862     {
1863       rtx twin_rtx;
1864 
1865       twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1866       twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1867       sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1868 					    INSN_EXPR (orig_insn),
1869 					    INSN_SEQNO (insn),
1870 					    bb_note (recovery_block));
1871     }
1872 
1873   /* If we've generated a data speculation check, make sure
1874      that all the bookkeeping instruction we'll create during
1875      this move_op () will allocate an ALAT entry so that the
1876      check won't fail.
1877      In case of control speculation we must convert C_EXPR to control
1878      speculative mode, because failing to do so will bring us an exception
1879      thrown by the non-control-speculative load.  */
1880   check_ds = ds_get_max_dep_weak (check_ds);
1881   speculate_expr (c_expr, check_ds);
1882 
1883   return insn;
1884 }
1885 
1886 /* True when INSN is a "regN = regN" copy.  */
1887 static bool
1888 identical_copy_p (rtx insn)
1889 {
1890   rtx lhs, rhs, pat;
1891 
1892   pat = PATTERN (insn);
1893 
1894   if (GET_CODE (pat) != SET)
1895     return false;
1896 
1897   lhs = SET_DEST (pat);
1898   if (!REG_P (lhs))
1899     return false;
1900 
1901   rhs = SET_SRC (pat);
1902   if (!REG_P (rhs))
1903     return false;
1904 
1905   return REGNO (lhs) == REGNO (rhs);
1906 }
1907 
1908 /* Undo all transformations on *AV_PTR that were done when
1909    moving through INSN.  */
1910 static void
1911 undo_transformations (av_set_t *av_ptr, rtx insn)
1912 {
1913   av_set_iterator av_iter;
1914   expr_t expr;
1915   av_set_t new_set = NULL;
1916 
1917   /* First, kill any EXPR that uses registers set by an insn.  This is
1918      required for correctness.  */
1919   FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1920     if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1921         && bitmap_intersect_p (INSN_REG_SETS (insn),
1922                                VINSN_REG_USES (EXPR_VINSN (expr)))
1923         /* When an insn looks like 'r1 = r1', we could substitute through
1924            it, but the above condition will still hold.  This happened with
1925            gcc.c-torture/execute/961125-1.c.  */
1926         && !identical_copy_p (insn))
1927       {
1928         if (sched_verbose >= 6)
1929           sel_print ("Expr %d removed due to use/set conflict\n",
1930                      INSN_UID (EXPR_INSN_RTX (expr)));
1931         av_set_iter_remove (&av_iter);
1932       }
1933 
1934   /* Undo transformations looking at the history vector.  */
1935   FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1936     {
1937       int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1938                                         insn, EXPR_VINSN (expr), true);
1939 
1940       if (index >= 0)
1941         {
1942           expr_history_def *phist;
1943 
1944           phist = VEC_index (expr_history_def,
1945                              EXPR_HISTORY_OF_CHANGES (expr),
1946                              index);
1947 
1948           switch (phist->type)
1949             {
1950             case TRANS_SPECULATION:
1951               {
1952                 ds_t old_ds, new_ds;
1953 
1954                 /* Compute the difference between old and new speculative
1955                    statuses: that's what we need to check.
1956                    Earlier we used to assert that the status will really
1957                    change.  This no longer works because only the probability
1958                    bits in the status may have changed during compute_av_set,
1959                    and in the case of merging different probabilities of the
1960                    same speculative status along different paths we do not
1961                    record this in the history vector.  */
1962                 old_ds = phist->spec_ds;
1963                 new_ds = EXPR_SPEC_DONE_DS (expr);
1964 
1965                 old_ds &= SPECULATIVE;
1966                 new_ds &= SPECULATIVE;
1967                 new_ds &= ~old_ds;
1968 
1969                 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1970                 break;
1971               }
1972             case TRANS_SUBSTITUTION:
1973               {
1974                 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1975                 vinsn_t new_vi;
1976                 bool add = true;
1977 
1978                 new_vi = phist->old_expr_vinsn;
1979 
1980                 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1981                             == EXPR_SEPARABLE_P (expr));
1982                 copy_expr (tmp_expr, expr);
1983 
1984                 if (vinsn_equal_p (phist->new_expr_vinsn,
1985                                    EXPR_VINSN (tmp_expr)))
1986                   change_vinsn_in_expr (tmp_expr, new_vi);
1987                 else
1988                   /* This happens when we're unsubstituting on a bookkeeping
1989                      copy, which was in turn substituted.  The history is wrong
1990                      in this case.  Do it the hard way.  */
1991                   add = substitute_reg_in_expr (tmp_expr, insn, true);
1992                 if (add)
1993                   av_set_add (&new_set, tmp_expr);
1994                 clear_expr (tmp_expr);
1995                 break;
1996               }
1997             default:
1998               gcc_unreachable ();
1999             }
2000         }
2001 
2002     }
2003 
2004   av_set_union_and_clear (av_ptr, &new_set, NULL);
2005 }
2006 
2007 
2008 /* Moveup_* helpers for code motion and computing av sets.  */
2009 
2010 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2011    The difference from the below function is that only substitution is
2012    performed.  */
2013 static enum MOVEUP_EXPR_CODE
2014 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2015 {
2016   vinsn_t vi = EXPR_VINSN (expr);
2017   ds_t *has_dep_p;
2018   ds_t full_ds;
2019 
2020   /* Do this only inside insn group.  */
2021   gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2022 
2023   full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2024   if (full_ds == 0)
2025     return MOVEUP_EXPR_SAME;
2026 
2027   /* Substitution is the possible choice in this case.  */
2028   if (has_dep_p[DEPS_IN_RHS])
2029     {
2030       /* Can't substitute UNIQUE VINSNs.  */
2031       gcc_assert (!VINSN_UNIQUE_P (vi));
2032 
2033       if (can_substitute_through_p (through_insn,
2034                                     has_dep_p[DEPS_IN_RHS])
2035           && substitute_reg_in_expr (expr, through_insn, false))
2036         {
2037           EXPR_WAS_SUBSTITUTED (expr) = true;
2038           return MOVEUP_EXPR_CHANGED;
2039         }
2040 
2041       /* Don't care about this, as even true dependencies may be allowed
2042          in an insn group.  */
2043       return MOVEUP_EXPR_SAME;
2044     }
2045 
2046   /* This can catch output dependencies in COND_EXECs.  */
2047   if (has_dep_p[DEPS_IN_INSN])
2048     return MOVEUP_EXPR_NULL;
2049 
2050   /* This is either an output or an anti dependence, which usually have
2051      a zero latency.  Allow this here, if we'd be wrong, tick_check_p
2052      will fix this.  */
2053   gcc_assert (has_dep_p[DEPS_IN_LHS]);
2054   return MOVEUP_EXPR_AS_RHS;
2055 }
2056 
2057 /* True when a trapping EXPR cannot be moved through THROUGH_INSN.  */
2058 #define CANT_MOVE_TRAPPING(expr, through_insn)                \
2059   (VINSN_MAY_TRAP_P (EXPR_VINSN (expr))                       \
2060    && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2061    && !sel_insn_is_speculation_check (through_insn))
2062 
2063 /* True when a conflict on a target register was found during moveup_expr.  */
2064 static bool was_target_conflict = false;
2065 
2066 /* Return true when moving a debug INSN across THROUGH_INSN will
2067    create a bookkeeping block.  We don't want to create such blocks,
2068    for they would cause codegen differences between compilations with
2069    and without debug info.  */
2070 
2071 static bool
2072 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2073 					 insn_t through_insn)
2074 {
2075   basic_block bbi, bbt;
2076   edge e1, e2;
2077   edge_iterator ei1, ei2;
2078 
2079   if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2080     {
2081       if (sched_verbose >= 9)
2082 	sel_print ("no bookkeeping required: ");
2083       return FALSE;
2084     }
2085 
2086   bbi = BLOCK_FOR_INSN (insn);
2087 
2088   if (EDGE_COUNT (bbi->preds) == 1)
2089     {
2090       if (sched_verbose >= 9)
2091 	sel_print ("only one pred edge: ");
2092       return TRUE;
2093     }
2094 
2095   bbt = BLOCK_FOR_INSN (through_insn);
2096 
2097   FOR_EACH_EDGE (e1, ei1, bbt->succs)
2098     {
2099       FOR_EACH_EDGE (e2, ei2, bbi->preds)
2100 	{
2101 	  if (find_block_for_bookkeeping (e1, e2, TRUE))
2102 	    {
2103 	      if (sched_verbose >= 9)
2104 		sel_print ("found existing block: ");
2105 	      return FALSE;
2106 	    }
2107 	}
2108     }
2109 
2110   if (sched_verbose >= 9)
2111     sel_print ("would create bookkeeping block: ");
2112 
2113   return TRUE;
2114 }
2115 
2116 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2117    performing necessary transformations.  Record the type of transformation
2118    made in PTRANS_TYPE, when it is not NULL.  When INSIDE_INSN_GROUP,
2119    permit all dependencies except true ones, and try to remove those
2120    too via forward substitution.  All cases when a non-eliminable
2121    non-zero cost dependency exists inside an insn group will be fixed
2122    in tick_check_p instead.  */
2123 static enum MOVEUP_EXPR_CODE
2124 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2125             enum local_trans_type *ptrans_type)
2126 {
2127   vinsn_t vi = EXPR_VINSN (expr);
2128   insn_t insn = VINSN_INSN_RTX (vi);
2129   bool was_changed = false;
2130   bool as_rhs = false;
2131   ds_t *has_dep_p;
2132   ds_t full_ds;
2133 
2134   /* ??? We use dependencies of non-debug insns on debug insns to
2135      indicate that the debug insns need to be reset if the non-debug
2136      insn is pulled ahead of it.  It's hard to figure out how to
2137      introduce such a notion in sel-sched, but it already fails to
2138      support debug insns in other ways, so we just go ahead and
2139      let the deug insns go corrupt for now.  */
2140   if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2141     return MOVEUP_EXPR_SAME;
2142 
2143   /* When inside_insn_group, delegate to the helper.  */
2144   if (inside_insn_group)
2145     return moveup_expr_inside_insn_group (expr, through_insn);
2146 
2147   /* Deal with unique insns and control dependencies.  */
2148   if (VINSN_UNIQUE_P (vi))
2149     {
2150       /* We can move jumps without side-effects or jumps that are
2151 	 mutually exclusive with instruction THROUGH_INSN (all in cases
2152 	 dependencies allow to do so and jump is not speculative).  */
2153       if (control_flow_insn_p (insn))
2154         {
2155           basic_block fallthru_bb;
2156 
2157           /* Do not move checks and do not move jumps through other
2158              jumps.  */
2159           if (control_flow_insn_p (through_insn)
2160               || sel_insn_is_speculation_check (insn))
2161             return MOVEUP_EXPR_NULL;
2162 
2163           /* Don't move jumps through CFG joins.  */
2164           if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2165             return MOVEUP_EXPR_NULL;
2166 
2167           /* The jump should have a clear fallthru block, and
2168              this block should be in the current region.  */
2169           if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2170               || ! in_current_region_p (fallthru_bb))
2171             return MOVEUP_EXPR_NULL;
2172 
2173           /* And it should be mutually exclusive with through_insn.  */
2174           if (! sched_insns_conditions_mutex_p (insn, through_insn)
2175 	      && ! DEBUG_INSN_P (through_insn))
2176             return MOVEUP_EXPR_NULL;
2177         }
2178 
2179       /* Don't move what we can't move.  */
2180       if (EXPR_CANT_MOVE (expr)
2181 	  && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2182 	return MOVEUP_EXPR_NULL;
2183 
2184       /* Don't move SCHED_GROUP instruction through anything.
2185          If we don't force this, then it will be possible to start
2186          scheduling a sched_group before all its dependencies are
2187          resolved.
2188          ??? Haifa deals with this issue by delaying the SCHED_GROUP
2189          as late as possible through rank_for_schedule.  */
2190       if (SCHED_GROUP_P (insn))
2191 	return MOVEUP_EXPR_NULL;
2192     }
2193   else
2194     gcc_assert (!control_flow_insn_p (insn));
2195 
2196   /* Don't move debug insns if this would require bookkeeping.  */
2197   if (DEBUG_INSN_P (insn)
2198       && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2199       && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2200     return MOVEUP_EXPR_NULL;
2201 
2202   /* Deal with data dependencies.  */
2203   was_target_conflict = false;
2204   full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2205   if (full_ds == 0)
2206     {
2207       if (!CANT_MOVE_TRAPPING (expr, through_insn))
2208 	return MOVEUP_EXPR_SAME;
2209     }
2210   else
2211     {
2212       /* We can move UNIQUE insn up only as a whole and unchanged,
2213          so it shouldn't have any dependencies.  */
2214       if (VINSN_UNIQUE_P (vi))
2215 	return MOVEUP_EXPR_NULL;
2216     }
2217 
2218   if (full_ds != 0 && can_speculate_dep_p (full_ds))
2219     {
2220       int res;
2221 
2222       res = speculate_expr (expr, full_ds);
2223       if (res >= 0)
2224 	{
2225           /* Speculation was successful.  */
2226           full_ds = 0;
2227           was_changed = (res > 0);
2228           if (res == 2)
2229             was_target_conflict = true;
2230           if (ptrans_type)
2231             *ptrans_type = TRANS_SPECULATION;
2232 	  sel_clear_has_dependence ();
2233 	}
2234     }
2235 
2236   if (has_dep_p[DEPS_IN_INSN])
2237     /* We have some dependency that cannot be discarded.  */
2238     return MOVEUP_EXPR_NULL;
2239 
2240   if (has_dep_p[DEPS_IN_LHS])
2241     {
2242       /* Only separable insns can be moved up with the new register.
2243          Anyways, we should mark that the original register is
2244          unavailable.  */
2245       if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2246         return MOVEUP_EXPR_NULL;
2247 
2248       EXPR_TARGET_AVAILABLE (expr) = false;
2249       was_target_conflict = true;
2250       as_rhs = true;
2251     }
2252 
2253   /* At this point we have either separable insns, that will be lifted
2254      up only as RHSes, or non-separable insns with no dependency in lhs.
2255      If dependency is in RHS, then try to perform substitution and move up
2256      substituted RHS:
2257 
2258       Ex. 1:				  Ex.2
2259 	y = x;				    y = x;
2260 	z = y*2;			    y = y*2;
2261 
2262     In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2263     moved above y=x assignment as z=x*2.
2264 
2265     In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2266     side can be moved because of the output dependency.  The operation was
2267     cropped to its rhs above.  */
2268   if (has_dep_p[DEPS_IN_RHS])
2269     {
2270       ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2271 
2272       /* Can't substitute UNIQUE VINSNs.  */
2273       gcc_assert (!VINSN_UNIQUE_P (vi));
2274 
2275       if (can_speculate_dep_p (*rhs_dsp))
2276 	{
2277           int res;
2278 
2279           res = speculate_expr (expr, *rhs_dsp);
2280           if (res >= 0)
2281             {
2282               /* Speculation was successful.  */
2283               *rhs_dsp = 0;
2284               was_changed = (res > 0);
2285               if (res == 2)
2286                 was_target_conflict = true;
2287               if (ptrans_type)
2288                 *ptrans_type = TRANS_SPECULATION;
2289             }
2290 	  else
2291 	    return MOVEUP_EXPR_NULL;
2292 	}
2293       else if (can_substitute_through_p (through_insn,
2294                                          *rhs_dsp)
2295                && substitute_reg_in_expr (expr, through_insn, false))
2296 	{
2297           /* ??? We cannot perform substitution AND speculation on the same
2298              insn.  */
2299           gcc_assert (!was_changed);
2300           was_changed = true;
2301           if (ptrans_type)
2302             *ptrans_type = TRANS_SUBSTITUTION;
2303           EXPR_WAS_SUBSTITUTED (expr) = true;
2304 	}
2305       else
2306 	return MOVEUP_EXPR_NULL;
2307     }
2308 
2309   /* Don't move trapping insns through jumps.
2310      This check should be at the end to give a chance to control speculation
2311      to perform its duties.  */
2312   if (CANT_MOVE_TRAPPING (expr, through_insn))
2313     return MOVEUP_EXPR_NULL;
2314 
2315   return (was_changed
2316           ? MOVEUP_EXPR_CHANGED
2317           : (as_rhs
2318              ? MOVEUP_EXPR_AS_RHS
2319              : MOVEUP_EXPR_SAME));
2320 }
2321 
2322 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2323    if successful.  When INSIDE_INSN_GROUP, also try ignore dependencies
2324    that can exist within a parallel group.  Write to RES the resulting
2325    code for moveup_expr.  */
2326 static bool
2327 try_bitmap_cache (expr_t expr, insn_t insn,
2328                   bool inside_insn_group,
2329                   enum MOVEUP_EXPR_CODE *res)
2330 {
2331   int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2332 
2333   /* First check whether we've analyzed this situation already.  */
2334   if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2335     {
2336       if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2337         {
2338           if (sched_verbose >= 6)
2339             sel_print ("removed (cached)\n");
2340           *res = MOVEUP_EXPR_NULL;
2341           return true;
2342         }
2343       else
2344         {
2345           if (sched_verbose >= 6)
2346             sel_print ("unchanged (cached)\n");
2347           *res = MOVEUP_EXPR_SAME;
2348           return true;
2349         }
2350     }
2351   else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2352     {
2353       if (inside_insn_group)
2354         {
2355           if (sched_verbose >= 6)
2356             sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2357           *res = MOVEUP_EXPR_SAME;
2358           return true;
2359 
2360         }
2361       else
2362         EXPR_TARGET_AVAILABLE (expr) = false;
2363 
2364       /* This is the only case when propagation result can change over time,
2365          as we can dynamically switch off scheduling as RHS.  In this case,
2366          just check the flag to reach the correct decision.  */
2367       if (enable_schedule_as_rhs_p)
2368         {
2369           if (sched_verbose >= 6)
2370             sel_print ("unchanged (as RHS, cached)\n");
2371           *res = MOVEUP_EXPR_AS_RHS;
2372           return true;
2373         }
2374       else
2375         {
2376           if (sched_verbose >= 6)
2377             sel_print ("removed (cached as RHS, but renaming"
2378                        " is now disabled)\n");
2379           *res = MOVEUP_EXPR_NULL;
2380           return true;
2381         }
2382     }
2383 
2384   return false;
2385 }
2386 
2387 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2388    if successful.  Write to RES the resulting code for moveup_expr.  */
2389 static bool
2390 try_transformation_cache (expr_t expr, insn_t insn,
2391                           enum MOVEUP_EXPR_CODE *res)
2392 {
2393   struct transformed_insns *pti
2394     = (struct transformed_insns *)
2395     htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2396                          &EXPR_VINSN (expr),
2397                          VINSN_HASH_RTX (EXPR_VINSN (expr)));
2398   if (pti)
2399     {
2400       /* This EXPR was already moved through this insn and was
2401          changed as a result.  Fetch the proper data from
2402          the hashtable.  */
2403       insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2404                               INSN_UID (insn), pti->type,
2405                               pti->vinsn_old, pti->vinsn_new,
2406                               EXPR_SPEC_DONE_DS (expr));
2407 
2408       if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2409         pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2410       change_vinsn_in_expr (expr, pti->vinsn_new);
2411       if (pti->was_target_conflict)
2412         EXPR_TARGET_AVAILABLE (expr) = false;
2413       if (pti->type == TRANS_SPECULATION)
2414         {
2415           EXPR_SPEC_DONE_DS (expr) = pti->ds;
2416           EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2417         }
2418 
2419       if (sched_verbose >= 6)
2420         {
2421           sel_print ("changed (cached): ");
2422           dump_expr (expr);
2423           sel_print ("\n");
2424         }
2425 
2426       *res = MOVEUP_EXPR_CHANGED;
2427       return true;
2428     }
2429 
2430   return false;
2431 }
2432 
2433 /* Update bitmap caches on INSN with result RES of propagating EXPR.  */
2434 static void
2435 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2436                      enum MOVEUP_EXPR_CODE res)
2437 {
2438   int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2439 
2440   /* Do not cache result of propagating jumps through an insn group,
2441      as it is always true, which is not useful outside the group.  */
2442   if (inside_insn_group)
2443     return;
2444 
2445   if (res == MOVEUP_EXPR_NULL)
2446     {
2447       bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2448       bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2449     }
2450   else if (res == MOVEUP_EXPR_SAME)
2451     {
2452       bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2453       bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2454     }
2455   else if (res == MOVEUP_EXPR_AS_RHS)
2456     {
2457       bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2458       bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2459     }
2460   else
2461     gcc_unreachable ();
2462 }
2463 
2464 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2465    and transformation type TRANS_TYPE.  */
2466 static void
2467 update_transformation_cache (expr_t expr, insn_t insn,
2468                              bool inside_insn_group,
2469                              enum local_trans_type trans_type,
2470                              vinsn_t expr_old_vinsn)
2471 {
2472   struct transformed_insns *pti;
2473 
2474   if (inside_insn_group)
2475     return;
2476 
2477   pti = XNEW (struct transformed_insns);
2478   pti->vinsn_old = expr_old_vinsn;
2479   pti->vinsn_new = EXPR_VINSN (expr);
2480   pti->type = trans_type;
2481   pti->was_target_conflict = was_target_conflict;
2482   pti->ds = EXPR_SPEC_DONE_DS (expr);
2483   pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2484   vinsn_attach (pti->vinsn_old);
2485   vinsn_attach (pti->vinsn_new);
2486   *((struct transformed_insns **)
2487     htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2488                               pti, VINSN_HASH_RTX (expr_old_vinsn),
2489                               INSERT)) = pti;
2490 }
2491 
2492 /* Same as moveup_expr, but first looks up the result of
2493    transformation in caches.  */
2494 static enum MOVEUP_EXPR_CODE
2495 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2496 {
2497   enum MOVEUP_EXPR_CODE res;
2498   bool got_answer = false;
2499 
2500   if (sched_verbose >= 6)
2501     {
2502       sel_print ("Moving ");
2503       dump_expr (expr);
2504       sel_print (" through %d: ", INSN_UID (insn));
2505     }
2506 
2507   if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2508       && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2509 	  == EXPR_INSN_RTX (expr)))
2510     /* Don't use cached information for debug insns that are heads of
2511        basic blocks.  */;
2512   else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2513     /* When inside insn group, we do not want remove stores conflicting
2514        with previosly issued loads.  */
2515     got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2516   else if (try_transformation_cache (expr, insn, &res))
2517     got_answer = true;
2518 
2519   if (! got_answer)
2520     {
2521       /* Invoke moveup_expr and record the results.  */
2522       vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2523       ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2524       int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2525       bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2526       enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2527 
2528       /* ??? Invent something better than this.  We can't allow old_vinsn
2529          to go, we need it for the history vector.  */
2530       vinsn_attach (expr_old_vinsn);
2531 
2532       res = moveup_expr (expr, insn, inside_insn_group,
2533                          &trans_type);
2534       switch (res)
2535         {
2536         case MOVEUP_EXPR_NULL:
2537           update_bitmap_cache (expr, insn, inside_insn_group, res);
2538 	  if (sched_verbose >= 6)
2539             sel_print ("removed\n");
2540 	  break;
2541 
2542 	case MOVEUP_EXPR_SAME:
2543           update_bitmap_cache (expr, insn, inside_insn_group, res);
2544           if (sched_verbose >= 6)
2545             sel_print ("unchanged\n");
2546 	  break;
2547 
2548         case MOVEUP_EXPR_AS_RHS:
2549           gcc_assert (!unique_p || inside_insn_group);
2550           update_bitmap_cache (expr, insn, inside_insn_group, res);
2551 	  if (sched_verbose >= 6)
2552             sel_print ("unchanged (as RHS)\n");
2553 	  break;
2554 
2555 	case MOVEUP_EXPR_CHANGED:
2556           gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2557                       || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2558           insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2559                                   INSN_UID (insn), trans_type,
2560                                   expr_old_vinsn, EXPR_VINSN (expr),
2561                                   expr_old_spec_ds);
2562           update_transformation_cache (expr, insn, inside_insn_group,
2563                                        trans_type, expr_old_vinsn);
2564           if (sched_verbose >= 6)
2565             {
2566               sel_print ("changed: ");
2567               dump_expr (expr);
2568               sel_print ("\n");
2569             }
2570 	  break;
2571 	default:
2572 	  gcc_unreachable ();
2573         }
2574 
2575       vinsn_detach (expr_old_vinsn);
2576     }
2577 
2578   return res;
2579 }
2580 
2581 /* Moves an av set AVP up through INSN, performing necessary
2582    transformations.  */
2583 static void
2584 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2585 {
2586   av_set_iterator i;
2587   expr_t expr;
2588 
2589   FOR_EACH_EXPR_1 (expr, i, avp)
2590     {
2591 
2592       switch (moveup_expr_cached (expr, insn, inside_insn_group))
2593 	{
2594 	case MOVEUP_EXPR_SAME:
2595         case MOVEUP_EXPR_AS_RHS:
2596 	  break;
2597 
2598 	case MOVEUP_EXPR_NULL:
2599 	  av_set_iter_remove (&i);
2600 	  break;
2601 
2602 	case MOVEUP_EXPR_CHANGED:
2603           expr = merge_with_other_exprs (avp, &i, expr);
2604 	  break;
2605 
2606 	default:
2607 	  gcc_unreachable ();
2608 	}
2609     }
2610 }
2611 
2612 /* Moves AVP set along PATH.  */
2613 static void
2614 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2615 {
2616   int last_cycle;
2617 
2618   if (sched_verbose >= 6)
2619     sel_print ("Moving expressions up in the insn group...\n");
2620   if (! path)
2621     return;
2622   last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2623   while (path
2624          && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2625     {
2626       moveup_set_expr (avp, ILIST_INSN (path), true);
2627       path = ILIST_NEXT (path);
2628     }
2629 }
2630 
2631 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW.  */
2632 static bool
2633 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2634 {
2635   expr_def _tmp, *tmp = &_tmp;
2636   int last_cycle;
2637   bool res = true;
2638 
2639   copy_expr_onside (tmp, expr);
2640   last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2641   while (path
2642          && res
2643          && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2644     {
2645       res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2646              != MOVEUP_EXPR_NULL);
2647       path = ILIST_NEXT (path);
2648     }
2649 
2650   if (res)
2651     {
2652       vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2653       vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2654 
2655       if (tmp_vinsn != expr_vliw_vinsn)
2656 	res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2657     }
2658 
2659   clear_expr (tmp);
2660   return res;
2661 }
2662 
2663 
2664 /* Functions that compute av and lv sets.  */
2665 
2666 /* Returns true if INSN is not a downward continuation of the given path P in
2667    the current stage.  */
2668 static bool
2669 is_ineligible_successor (insn_t insn, ilist_t p)
2670 {
2671   insn_t prev_insn;
2672 
2673   /* Check if insn is not deleted.  */
2674   if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2675     gcc_unreachable ();
2676   else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2677     gcc_unreachable ();
2678 
2679   /* If it's the first insn visited, then the successor is ok.  */
2680   if (!p)
2681     return false;
2682 
2683   prev_insn = ILIST_INSN (p);
2684 
2685   if (/* a backward edge.  */
2686       INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2687       /* is already visited.  */
2688       || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2689 	  && (ilist_is_in_p (p, insn)
2690               /* We can reach another fence here and still seqno of insn
2691                  would be equal to seqno of prev_insn.  This is possible
2692                  when prev_insn is a previously created bookkeeping copy.
2693                  In that case it'd get a seqno of insn.  Thus, check here
2694                  whether insn is in current fence too.  */
2695               || IN_CURRENT_FENCE_P (insn)))
2696       /* Was already scheduled on this round.  */
2697       || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2698 	  && IN_CURRENT_FENCE_P (insn))
2699       /* An insn from another fence could also be
2700 	 scheduled earlier even if this insn is not in
2701 	 a fence list right now.  Check INSN_SCHED_CYCLE instead.  */
2702       || (!pipelining_p
2703           && INSN_SCHED_TIMES (insn) > 0))
2704     return true;
2705   else
2706     return false;
2707 }
2708 
2709 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2710    of handling multiple successors and properly merging its av_sets.  P is
2711    the current path traversed.  WS is the size of lookahead window.
2712    Return the av set computed.  */
2713 static av_set_t
2714 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2715 {
2716   struct succs_info *sinfo;
2717   av_set_t expr_in_all_succ_branches = NULL;
2718   int is;
2719   insn_t succ, zero_succ = NULL;
2720   av_set_t av1 = NULL;
2721 
2722   gcc_assert (sel_bb_end_p (insn));
2723 
2724   /* Find different kind of successors needed for correct computing of
2725      SPEC and TARGET_AVAILABLE attributes.  */
2726   sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2727 
2728   /* Debug output.  */
2729   if (sched_verbose >= 6)
2730     {
2731       sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2732       dump_insn_vector (sinfo->succs_ok);
2733       sel_print ("\n");
2734       if (sinfo->succs_ok_n != sinfo->all_succs_n)
2735         sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2736     }
2737 
2738   /* Add insn to the tail of current path.  */
2739   ilist_add (&p, insn);
2740 
2741   FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2742     {
2743       av_set_t succ_set;
2744 
2745       /* We will edit SUCC_SET and EXPR_SPEC field of its elements.  */
2746       succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2747 
2748       av_set_split_usefulness (succ_set,
2749                                VEC_index (int, sinfo->probs_ok, is),
2750                                sinfo->all_prob);
2751 
2752       if (sinfo->all_succs_n > 1)
2753 	{
2754           /* Find EXPR'es that came from *all* successors and save them
2755              into expr_in_all_succ_branches.  This set will be used later
2756              for calculating speculation attributes of EXPR'es.  */
2757           if (is == 0)
2758             {
2759               expr_in_all_succ_branches = av_set_copy (succ_set);
2760 
2761               /* Remember the first successor for later. */
2762               zero_succ = succ;
2763             }
2764           else
2765             {
2766               av_set_iterator i;
2767               expr_t expr;
2768 
2769               FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2770                 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2771                   av_set_iter_remove (&i);
2772             }
2773 	}
2774 
2775       /* Union the av_sets.  Check liveness restrictions on target registers
2776          in special case of two successors.  */
2777       if (sinfo->succs_ok_n == 2 && is == 1)
2778         {
2779           basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2780           basic_block bb1 = BLOCK_FOR_INSN (succ);
2781 
2782           gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2783           av_set_union_and_live (&av1, &succ_set,
2784                                  BB_LV_SET (bb0),
2785                                  BB_LV_SET (bb1),
2786                                  insn);
2787         }
2788       else
2789         av_set_union_and_clear (&av1, &succ_set, insn);
2790     }
2791 
2792   /* Check liveness restrictions via hard way when there are more than
2793      two successors.  */
2794   if (sinfo->succs_ok_n > 2)
2795     FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2796       {
2797         basic_block succ_bb = BLOCK_FOR_INSN (succ);
2798 
2799         gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2800         mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2801                                   BB_LV_SET (succ_bb));
2802       }
2803 
2804   /* Finally, check liveness restrictions on paths leaving the region.  */
2805   if (sinfo->all_succs_n > sinfo->succs_ok_n)
2806     FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2807       mark_unavailable_targets
2808         (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2809 
2810   if (sinfo->all_succs_n > 1)
2811     {
2812       av_set_iterator i;
2813       expr_t expr;
2814 
2815       /* Increase the spec attribute of all EXPR'es that didn't come
2816 	 from all successors.  */
2817       FOR_EACH_EXPR (expr, i, av1)
2818 	if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2819 	  EXPR_SPEC (expr)++;
2820 
2821       av_set_clear (&expr_in_all_succ_branches);
2822 
2823       /* Do not move conditional branches through other
2824 	 conditional branches.  So, remove all conditional
2825 	 branches from av_set if current operator is a conditional
2826 	 branch.  */
2827       av_set_substract_cond_branches (&av1);
2828     }
2829 
2830   ilist_remove (&p);
2831   free_succs_info (sinfo);
2832 
2833   if (sched_verbose >= 6)
2834     {
2835       sel_print ("av_succs (%d): ", INSN_UID (insn));
2836       dump_av_set (av1);
2837       sel_print ("\n");
2838     }
2839 
2840   return av1;
2841 }
2842 
2843 /* This function computes av_set for the FIRST_INSN by dragging valid
2844    av_set through all basic block insns either from the end of basic block
2845    (computed using compute_av_set_at_bb_end) or from the insn on which
2846    MAX_WS was exceeded.  It uses compute_av_set_at_bb_end to compute av_set
2847    below the basic block and handling conditional branches.
2848    FIRST_INSN - the basic block head, P - path consisting of the insns
2849    traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2850    and bb ends are added to the path), WS - current window size,
2851    NEED_COPY_P - true if we'll make a copy of av_set before returning it.  */
2852 static av_set_t
2853 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2854 			  bool need_copy_p)
2855 {
2856   insn_t cur_insn;
2857   int end_ws = ws;
2858   insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2859   insn_t after_bb_end = NEXT_INSN (bb_end);
2860   insn_t last_insn;
2861   av_set_t av = NULL;
2862   basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2863 
2864   /* Return NULL if insn is not on the legitimate downward path.  */
2865   if (is_ineligible_successor (first_insn, p))
2866     {
2867       if (sched_verbose >= 6)
2868         sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2869 
2870       return NULL;
2871     }
2872 
2873   /* If insn already has valid av(insn) computed, just return it.  */
2874   if (AV_SET_VALID_P (first_insn))
2875     {
2876       av_set_t av_set;
2877 
2878       if (sel_bb_head_p (first_insn))
2879 	av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2880       else
2881 	av_set = NULL;
2882 
2883       if (sched_verbose >= 6)
2884         {
2885           sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2886           dump_av_set (av_set);
2887           sel_print ("\n");
2888         }
2889 
2890       return need_copy_p ? av_set_copy (av_set) : av_set;
2891     }
2892 
2893   ilist_add (&p, first_insn);
2894 
2895   /* As the result after this loop have completed, in LAST_INSN we'll
2896      have the insn which has valid av_set to start backward computation
2897      from: it either will be NULL because on it the window size was exceeded
2898      or other valid av_set as returned by compute_av_set for the last insn
2899      of the basic block.  */
2900   for (last_insn = first_insn; last_insn != after_bb_end;
2901        last_insn = NEXT_INSN (last_insn))
2902     {
2903       /* We may encounter valid av_set not only on bb_head, but also on
2904 	 those insns on which previously MAX_WS was exceeded.  */
2905       if (AV_SET_VALID_P (last_insn))
2906 	{
2907           if (sched_verbose >= 6)
2908             sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2909 	  break;
2910 	}
2911 
2912       /* The special case: the last insn of the BB may be an
2913          ineligible_successor due to its SEQ_NO that was set on
2914 	 it as a bookkeeping.  */
2915       if (last_insn != first_insn
2916           && is_ineligible_successor (last_insn, p))
2917 	{
2918           if (sched_verbose >= 6)
2919             sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2920 	  break;
2921 	}
2922 
2923       if (DEBUG_INSN_P (last_insn))
2924 	continue;
2925 
2926       if (end_ws > max_ws)
2927 	{
2928 	  /* We can reach max lookahead size at bb_header, so clean av_set
2929 	     first.  */
2930 	  INSN_WS_LEVEL (last_insn) = global_level;
2931 
2932 	  if (sched_verbose >= 6)
2933             sel_print ("Insn %d is beyond the software lookahead window size\n",
2934                        INSN_UID (last_insn));
2935 	  break;
2936 	}
2937 
2938       end_ws++;
2939     }
2940 
2941   /* Get the valid av_set into AV above the LAST_INSN to start backward
2942      computation from.  It either will be empty av_set or av_set computed from
2943      the successors on the last insn of the current bb.  */
2944   if (last_insn != after_bb_end)
2945     {
2946       av = NULL;
2947 
2948       /* This is needed only to obtain av_sets that are identical to
2949          those computed by the old compute_av_set version.  */
2950       if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2951         av_set_add (&av, INSN_EXPR (last_insn));
2952     }
2953   else
2954     /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END.  */
2955     av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2956 
2957   /* Compute av_set in AV starting from below the LAST_INSN up to
2958      location above the FIRST_INSN.  */
2959   for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2960        cur_insn = PREV_INSN (cur_insn))
2961     if (!INSN_NOP_P (cur_insn))
2962       {
2963         expr_t expr;
2964 
2965         moveup_set_expr (&av, cur_insn, false);
2966 
2967         /* If the expression for CUR_INSN is already in the set,
2968            replace it by the new one.  */
2969         expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2970         if (expr != NULL)
2971           {
2972             clear_expr (expr);
2973             copy_expr (expr, INSN_EXPR (cur_insn));
2974           }
2975         else
2976           av_set_add (&av, INSN_EXPR (cur_insn));
2977       }
2978 
2979   /* Clear stale bb_av_set.  */
2980   if (sel_bb_head_p (first_insn))
2981     {
2982       av_set_clear (&BB_AV_SET (cur_bb));
2983       BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2984       BB_AV_LEVEL (cur_bb) = global_level;
2985     }
2986 
2987   if (sched_verbose >= 6)
2988     {
2989       sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2990       dump_av_set (av);
2991       sel_print ("\n");
2992     }
2993 
2994   ilist_remove (&p);
2995   return av;
2996 }
2997 
2998 /* Compute av set before INSN.
2999    INSN - the current operation (actual rtx INSN)
3000    P - the current path, which is list of insns visited so far
3001    WS - software lookahead window size.
3002    UNIQUE_P - TRUE, if returned av_set will be changed, hence
3003    if we want to save computed av_set in s_i_d, we should make a copy of it.
3004 
3005    In the resulting set we will have only expressions that don't have delay
3006    stalls and nonsubstitutable dependences.  */
3007 static av_set_t
3008 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3009 {
3010   return compute_av_set_inside_bb (insn, p, ws, unique_p);
3011 }
3012 
3013 /* Propagate a liveness set LV through INSN.  */
3014 static void
3015 propagate_lv_set (regset lv, insn_t insn)
3016 {
3017   gcc_assert (INSN_P (insn));
3018 
3019   if (INSN_NOP_P (insn))
3020     return;
3021 
3022   df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3023 }
3024 
3025 /* Return livness set at the end of BB.  */
3026 static regset
3027 compute_live_after_bb (basic_block bb)
3028 {
3029   edge e;
3030   edge_iterator ei;
3031   regset lv = get_clear_regset_from_pool ();
3032 
3033   gcc_assert (!ignore_first);
3034 
3035   FOR_EACH_EDGE (e, ei, bb->succs)
3036     if (sel_bb_empty_p (e->dest))
3037       {
3038         if (! BB_LV_SET_VALID_P (e->dest))
3039           {
3040             gcc_unreachable ();
3041             gcc_assert (BB_LV_SET (e->dest) == NULL);
3042             BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3043             BB_LV_SET_VALID_P (e->dest) = true;
3044           }
3045         IOR_REG_SET (lv, BB_LV_SET (e->dest));
3046       }
3047     else
3048       IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3049 
3050   return lv;
3051 }
3052 
3053 /* Compute the set of all live registers at the point before INSN and save
3054    it at INSN if INSN is bb header.  */
3055 regset
3056 compute_live (insn_t insn)
3057 {
3058   basic_block bb = BLOCK_FOR_INSN (insn);
3059   insn_t final, temp;
3060   regset lv;
3061 
3062   /* Return the valid set if we're already on it.  */
3063   if (!ignore_first)
3064     {
3065       regset src = NULL;
3066 
3067       if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3068         src = BB_LV_SET (bb);
3069       else
3070         {
3071           gcc_assert (in_current_region_p (bb));
3072           if (INSN_LIVE_VALID_P (insn))
3073             src = INSN_LIVE (insn);
3074         }
3075 
3076       if (src)
3077 	{
3078 	  lv = get_regset_from_pool ();
3079 	  COPY_REG_SET (lv, src);
3080 
3081           if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3082             {
3083               COPY_REG_SET (BB_LV_SET (bb), lv);
3084               BB_LV_SET_VALID_P (bb) = true;
3085             }
3086 
3087 	  return_regset_to_pool (lv);
3088 	  return lv;
3089 	}
3090     }
3091 
3092   /* We've skipped the wrong lv_set.  Don't skip the right one.  */
3093   ignore_first = false;
3094   gcc_assert (in_current_region_p (bb));
3095 
3096   /* Find a valid LV set in this block or below, if needed.
3097      Start searching from the next insn: either ignore_first is true, or
3098      INSN doesn't have a correct live set.  */
3099   temp = NEXT_INSN (insn);
3100   final = NEXT_INSN (BB_END (bb));
3101   while (temp != final && ! INSN_LIVE_VALID_P (temp))
3102     temp = NEXT_INSN (temp);
3103   if (temp == final)
3104     {
3105       lv = compute_live_after_bb (bb);
3106       temp = PREV_INSN (temp);
3107     }
3108   else
3109     {
3110       lv = get_regset_from_pool ();
3111       COPY_REG_SET (lv, INSN_LIVE (temp));
3112     }
3113 
3114   /* Put correct lv sets on the insns which have bad sets.  */
3115   final = PREV_INSN (insn);
3116   while (temp != final)
3117     {
3118       propagate_lv_set (lv, temp);
3119       COPY_REG_SET (INSN_LIVE (temp), lv);
3120       INSN_LIVE_VALID_P (temp) = true;
3121       temp = PREV_INSN (temp);
3122     }
3123 
3124   /* Also put it in a BB.  */
3125   if (sel_bb_head_p (insn))
3126     {
3127       basic_block bb = BLOCK_FOR_INSN (insn);
3128 
3129       COPY_REG_SET (BB_LV_SET (bb), lv);
3130       BB_LV_SET_VALID_P (bb) = true;
3131     }
3132 
3133   /* We return LV to the pool, but will not clear it there.  Thus we can
3134      legimatelly use LV till the next use of regset_pool_get ().  */
3135   return_regset_to_pool (lv);
3136   return lv;
3137 }
3138 
3139 /* Update liveness sets for INSN.  */
3140 static inline void
3141 update_liveness_on_insn (rtx insn)
3142 {
3143   ignore_first = true;
3144   compute_live (insn);
3145 }
3146 
3147 /* Compute liveness below INSN and write it into REGS.  */
3148 static inline void
3149 compute_live_below_insn (rtx insn, regset regs)
3150 {
3151   rtx succ;
3152   succ_iterator si;
3153 
3154   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3155     IOR_REG_SET (regs, compute_live (succ));
3156 }
3157 
3158 /* Update the data gathered in av and lv sets starting from INSN.  */
3159 static void
3160 update_data_sets (rtx insn)
3161 {
3162   update_liveness_on_insn (insn);
3163   if (sel_bb_head_p (insn))
3164     {
3165       gcc_assert (AV_LEVEL (insn) != 0);
3166       BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3167       compute_av_set (insn, NULL, 0, 0);
3168     }
3169 }
3170 
3171 
3172 /* Helper for move_op () and find_used_regs ().
3173    Return speculation type for which a check should be created on the place
3174    of INSN.  EXPR is one of the original ops we are searching for.  */
3175 static ds_t
3176 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3177 {
3178   ds_t to_check_ds;
3179   ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3180 
3181   to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3182 
3183   if (targetm.sched.get_insn_checked_ds)
3184     already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3185 
3186   if (spec_info != NULL
3187       && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3188     already_checked_ds |= BEGIN_CONTROL;
3189 
3190   already_checked_ds = ds_get_speculation_types (already_checked_ds);
3191 
3192   to_check_ds &= ~already_checked_ds;
3193 
3194   return to_check_ds;
3195 }
3196 
3197 /* Find the set of registers that are unavailable for storing expres
3198    while moving ORIG_OPS up on the path starting from INSN due to
3199    liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3200 
3201    All the original operations found during the traversal are saved in the
3202    ORIGINAL_INSNS list.
3203 
3204    REG_RENAME_P denotes the set of hardware registers that
3205    can not be used with renaming due to the register class restrictions,
3206    mode restrictions and other (the register we'll choose should be
3207    compatible class with the original uses, shouldn't be in call_used_regs,
3208    should be HARD_REGNO_RENAME_OK etc).
3209 
3210    Returns TRUE if we've found all original insns, FALSE otherwise.
3211 
3212    This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3213    to traverse the code motion paths.  This helper function finds registers
3214    that are not available for storing expres while moving ORIG_OPS up on the
3215    path starting from INSN.  A register considered as used on the moving path,
3216    if one of the following conditions is not satisfied:
3217 
3218       (1) a register not set or read on any path from xi to an instance of
3219 	  the original operation,
3220       (2) not among the live registers of the point immediately following the
3221           first original operation on a given downward path, except for the
3222 	  original target register of the operation,
3223       (3) not live on the other path of any conditional branch that is passed
3224 	  by the operation, in case original operations are not present on
3225 	  both paths of the conditional branch.
3226 
3227    All the original operations found during the traversal are saved in the
3228    ORIGINAL_INSNS list.
3229 
3230    REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3231    from INSN to original insn. In this case CALL_USED_REG_SET will be added
3232    to unavailable hard regs at the point original operation is found.  */
3233 
3234 static bool
3235 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3236 		struct reg_rename  *reg_rename_p, def_list_t *original_insns)
3237 {
3238   def_list_iterator i;
3239   def_t def;
3240   int res;
3241   bool needs_spec_check_p = false;
3242   expr_t expr;
3243   av_set_iterator expr_iter;
3244   struct fur_static_params sparams;
3245   struct cmpd_local_params lparams;
3246 
3247   /* We haven't visited any blocks yet.  */
3248   bitmap_clear (code_motion_visited_blocks);
3249 
3250   /* Init parameters for code_motion_path_driver.  */
3251   sparams.crosses_call = false;
3252   sparams.original_insns = original_insns;
3253   sparams.used_regs = used_regs;
3254 
3255   /* Set the appropriate hooks and data.  */
3256   code_motion_path_driver_info = &fur_hooks;
3257 
3258   res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3259 
3260   reg_rename_p->crosses_call |= sparams.crosses_call;
3261 
3262   gcc_assert (res == 1);
3263   gcc_assert (original_insns && *original_insns);
3264 
3265   /* ??? We calculate whether an expression needs a check when computing
3266      av sets.  This information is not as precise as it could be due to
3267      merging this bit in merge_expr.  We can do better in find_used_regs,
3268      but we want to avoid multiple traversals of the same code motion
3269      paths.  */
3270   FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3271     needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3272 
3273   /* Mark hardware regs in REG_RENAME_P that are not suitable
3274      for renaming expr in INSN due to hardware restrictions (register class,
3275      modes compatibility etc).  */
3276   FOR_EACH_DEF (def, i, *original_insns)
3277     {
3278       vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3279 
3280       if (VINSN_SEPARABLE_P (vinsn))
3281 	mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3282 
3283       /* Do not allow clobbering of ld.[sa] address in case some of the
3284          original operations need a check.  */
3285       if (needs_spec_check_p)
3286 	IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3287     }
3288 
3289   return true;
3290 }
3291 
3292 
3293 /* Functions to choose the best insn from available ones.  */
3294 
3295 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook.  */
3296 static int
3297 sel_target_adjust_priority (expr_t expr)
3298 {
3299   int priority = EXPR_PRIORITY (expr);
3300   int new_priority;
3301 
3302   if (targetm.sched.adjust_priority)
3303     new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3304   else
3305     new_priority = priority;
3306 
3307   /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly.  */
3308   EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3309 
3310   gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3311 
3312   if (sched_verbose >= 4)
3313     sel_print ("sel_target_adjust_priority: insn %d,  %d+%d = %d.\n",
3314 	       INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3315 	       EXPR_PRIORITY_ADJ (expr), new_priority);
3316 
3317   return new_priority;
3318 }
3319 
3320 /* Rank two available exprs for schedule.  Never return 0 here.  */
3321 static int
3322 sel_rank_for_schedule (const void *x, const void *y)
3323 {
3324   expr_t tmp = *(const expr_t *) y;
3325   expr_t tmp2 = *(const expr_t *) x;
3326   insn_t tmp_insn, tmp2_insn;
3327   vinsn_t tmp_vinsn, tmp2_vinsn;
3328   int val;
3329 
3330   tmp_vinsn = EXPR_VINSN (tmp);
3331   tmp2_vinsn = EXPR_VINSN (tmp2);
3332   tmp_insn = EXPR_INSN_RTX (tmp);
3333   tmp2_insn = EXPR_INSN_RTX (tmp2);
3334 
3335   /* Schedule debug insns as early as possible.  */
3336   if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3337     return -1;
3338   else if (DEBUG_INSN_P (tmp2_insn))
3339     return 1;
3340 
3341   /* Prefer SCHED_GROUP_P insns to any others.  */
3342   if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3343     {
3344       if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3345         return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3346 
3347       /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3348          cannot be cloned.  */
3349       if (VINSN_UNIQUE_P (tmp2_vinsn))
3350         return 1;
3351       return -1;
3352     }
3353 
3354   /* Discourage scheduling of speculative checks.  */
3355   val = (sel_insn_is_speculation_check (tmp_insn)
3356 	 - sel_insn_is_speculation_check (tmp2_insn));
3357   if (val)
3358     return val;
3359 
3360   /* Prefer not scheduled insn over scheduled one.  */
3361   if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3362     {
3363       val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3364       if (val)
3365 	return val;
3366     }
3367 
3368   /* Prefer jump over non-jump instruction.  */
3369   if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3370     return -1;
3371   else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3372     return 1;
3373 
3374   /* Prefer an expr with greater priority.  */
3375   if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3376     {
3377       int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3378           p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3379 
3380       val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3381     }
3382   else
3383     val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3384 	  + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3385   if (val)
3386     return val;
3387 
3388   if (spec_info != NULL && spec_info->mask != 0)
3389     /* This code was taken from haifa-sched.c: rank_for_schedule ().  */
3390     {
3391       ds_t ds1, ds2;
3392       dw_t dw1, dw2;
3393       int dw;
3394 
3395       ds1 = EXPR_SPEC_DONE_DS (tmp);
3396       if (ds1)
3397 	dw1 = ds_weak (ds1);
3398       else
3399 	dw1 = NO_DEP_WEAK;
3400 
3401       ds2 = EXPR_SPEC_DONE_DS (tmp2);
3402       if (ds2)
3403 	dw2 = ds_weak (ds2);
3404       else
3405 	dw2 = NO_DEP_WEAK;
3406 
3407       dw = dw2 - dw1;
3408       if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3409 	return dw;
3410     }
3411 
3412   /* Prefer an old insn to a bookkeeping insn.  */
3413   if (INSN_UID (tmp_insn) < first_emitted_uid
3414       && INSN_UID (tmp2_insn) >= first_emitted_uid)
3415     return -1;
3416   if (INSN_UID (tmp_insn) >= first_emitted_uid
3417       && INSN_UID (tmp2_insn) < first_emitted_uid)
3418     return 1;
3419 
3420   /* Prefer an insn with smaller UID, as a last resort.
3421      We can't safely use INSN_LUID as it is defined only for those insns
3422      that are in the stream.  */
3423   return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3424 }
3425 
3426 /* Filter out expressions from av set pointed to by AV_PTR
3427    that are pipelined too many times.  */
3428 static void
3429 process_pipelined_exprs (av_set_t *av_ptr)
3430 {
3431   expr_t expr;
3432   av_set_iterator si;
3433 
3434   /* Don't pipeline already pipelined code as that would increase
3435      number of unnecessary register moves.  */
3436   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3437     {
3438       if (EXPR_SCHED_TIMES (expr)
3439 	  >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3440 	av_set_iter_remove (&si);
3441     }
3442 }
3443 
3444 /* Filter speculative insns from AV_PTR if we don't want them.  */
3445 static void
3446 process_spec_exprs (av_set_t *av_ptr)
3447 {
3448   bool try_data_p = true;
3449   bool try_control_p = true;
3450   expr_t expr;
3451   av_set_iterator si;
3452 
3453   if (spec_info == NULL)
3454     return;
3455 
3456   /* Scan *AV_PTR to find out if we want to consider speculative
3457      instructions for scheduling.  */
3458   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3459     {
3460       ds_t ds;
3461 
3462       ds = EXPR_SPEC_DONE_DS (expr);
3463 
3464       /* The probability of a success is too low - don't speculate.  */
3465       if ((ds & SPECULATIVE)
3466           && (ds_weak (ds) < spec_info->data_weakness_cutoff
3467               || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3468 	      || (pipelining_p && false
3469 		  && (ds & DATA_SPEC)
3470 		  && (ds & CONTROL_SPEC))))
3471         {
3472           av_set_iter_remove (&si);
3473           continue;
3474         }
3475 
3476       if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3477           && !(ds & BEGIN_DATA))
3478         try_data_p = false;
3479 
3480       if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3481           && !(ds & BEGIN_CONTROL))
3482         try_control_p = false;
3483     }
3484 
3485   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3486     {
3487       ds_t ds;
3488 
3489       ds = EXPR_SPEC_DONE_DS (expr);
3490 
3491       if (ds & SPECULATIVE)
3492         {
3493           if ((ds & BEGIN_DATA) && !try_data_p)
3494             /* We don't want any data speculative instructions right
3495                now.  */
3496             av_set_iter_remove (&si);
3497 
3498           if ((ds & BEGIN_CONTROL) && !try_control_p)
3499             /* We don't want any control speculative instructions right
3500                now.  */
3501             av_set_iter_remove (&si);
3502         }
3503     }
3504 }
3505 
3506 /* Search for any use-like insns in AV_PTR and decide on scheduling
3507    them.  Return one when found, and NULL otherwise.
3508    Note that we check here whether a USE could be scheduled to avoid
3509    an infinite loop later.  */
3510 static expr_t
3511 process_use_exprs (av_set_t *av_ptr)
3512 {
3513   expr_t expr;
3514   av_set_iterator si;
3515   bool uses_present_p = false;
3516   bool try_uses_p = true;
3517 
3518   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3519     {
3520       /* This will also initialize INSN_CODE for later use.  */
3521       if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3522         {
3523           /* If we have a USE in *AV_PTR that was not scheduled yet,
3524              do so because it will do good only.  */
3525           if (EXPR_SCHED_TIMES (expr) <= 0)
3526             {
3527               if (EXPR_TARGET_AVAILABLE (expr) == 1)
3528                 return expr;
3529 
3530               av_set_iter_remove (&si);
3531             }
3532           else
3533             {
3534               gcc_assert (pipelining_p);
3535 
3536               uses_present_p = true;
3537             }
3538         }
3539       else
3540         try_uses_p = false;
3541     }
3542 
3543   if (uses_present_p)
3544     {
3545       /* If we don't want to schedule any USEs right now and we have some
3546            in *AV_PTR, remove them, else just return the first one found.  */
3547       if (!try_uses_p)
3548         {
3549           FOR_EACH_EXPR_1 (expr, si, av_ptr)
3550             if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3551               av_set_iter_remove (&si);
3552         }
3553       else
3554         {
3555           FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556             {
3557               gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3558 
3559               if (EXPR_TARGET_AVAILABLE (expr) == 1)
3560                 return expr;
3561 
3562               av_set_iter_remove (&si);
3563             }
3564         }
3565     }
3566 
3567   return NULL;
3568 }
3569 
3570 /* Lookup EXPR in VINSN_VEC and return TRUE if found.  */
3571 static bool
3572 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3573 {
3574   vinsn_t vinsn;
3575   int n;
3576 
3577   FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3578     if (VINSN_SEPARABLE_P (vinsn))
3579       {
3580         if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3581           return true;
3582       }
3583     else
3584       {
3585         /* For non-separable instructions, the blocking insn can have
3586            another pattern due to substitution, and we can't choose
3587            different register as in the above case.  Check all registers
3588            being written instead.  */
3589         if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3590                                 VINSN_REG_SETS (EXPR_VINSN (expr))))
3591           return true;
3592       }
3593 
3594   return false;
3595 }
3596 
3597 #ifdef ENABLE_CHECKING
3598 /* Return true if either of expressions from ORIG_OPS can be blocked
3599    by previously created bookkeeping code.  STATIC_PARAMS points to static
3600    parameters of move_op.  */
3601 static bool
3602 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3603 {
3604   expr_t expr;
3605   av_set_iterator iter;
3606   moveop_static_params_p sparams;
3607 
3608   /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3609      created while scheduling on another fence.  */
3610   FOR_EACH_EXPR (expr, iter, orig_ops)
3611     if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3612       return true;
3613 
3614   gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3615   sparams = (moveop_static_params_p) static_params;
3616 
3617   /* Expressions can be also blocked by bookkeeping created during current
3618      move_op.  */
3619   if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3620     FOR_EACH_EXPR (expr, iter, orig_ops)
3621       if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3622         return true;
3623 
3624   /* Expressions in ORIG_OPS may have wrong destination register due to
3625      renaming.  Check with the right register instead.  */
3626   if (sparams->dest && REG_P (sparams->dest))
3627     {
3628       rtx reg = sparams->dest;
3629       vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3630 
3631       if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3632 	  || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3633 	  || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3634 	return true;
3635     }
3636 
3637   return false;
3638 }
3639 #endif
3640 
3641 /* Clear VINSN_VEC and detach vinsns.  */
3642 static void
3643 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3644 {
3645   unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3646   if (len > 0)
3647     {
3648       vinsn_t vinsn;
3649       int n;
3650 
3651       FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3652         vinsn_detach (vinsn);
3653       VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3654     }
3655 }
3656 
3657 /* Add the vinsn of EXPR to the VINSN_VEC.  */
3658 static void
3659 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3660 {
3661   vinsn_attach (EXPR_VINSN (expr));
3662   VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3663 }
3664 
3665 /* Free the vector representing blocked expressions.  */
3666 static void
3667 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3668 {
3669   if (*vinsn_vec)
3670     VEC_free (vinsn_t, heap, *vinsn_vec);
3671 }
3672 
3673 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT.  */
3674 
3675 void sel_add_to_insn_priority (rtx insn, int amount)
3676 {
3677   EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3678 
3679   if (sched_verbose >= 2)
3680     sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3681 	       INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3682 	       EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3683 }
3684 
3685 /* Turn AV into a vector, filter inappropriate insns and sort it.  Return
3686    true if there is something to schedule.  BNDS and FENCE are current
3687    boundaries and fence, respectively.  If we need to stall for some cycles
3688    before an expr from AV would become available, write this number to
3689    *PNEED_STALL.  */
3690 static bool
3691 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3692                  int *pneed_stall)
3693 {
3694   av_set_iterator si;
3695   expr_t expr;
3696   int sched_next_worked = 0, stalled, n;
3697   static int av_max_prio, est_ticks_till_branch;
3698   int min_need_stall = -1;
3699   deps_t dc = BND_DC (BLIST_BND (bnds));
3700 
3701   /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3702      already scheduled.  */
3703   if (av == NULL)
3704     return false;
3705 
3706   /* Empty vector from the previous stuff.  */
3707   if (VEC_length (expr_t, vec_av_set) > 0)
3708     VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3709 
3710   /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3711      for each insn.  */
3712   gcc_assert (VEC_empty (expr_t, vec_av_set));
3713   FOR_EACH_EXPR (expr, si, av)
3714     {
3715       VEC_safe_push (expr_t, heap, vec_av_set, expr);
3716 
3717       gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3718 
3719       /* Adjust priority using target backend hook.  */
3720       sel_target_adjust_priority (expr);
3721     }
3722 
3723   /* Sort the vector.  */
3724   VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3725 
3726   /* We record maximal priority of insns in av set for current instruction
3727      group.  */
3728   if (FENCE_STARTS_CYCLE_P (fence))
3729     av_max_prio = est_ticks_till_branch = INT_MIN;
3730 
3731   /* Filter out inappropriate expressions.  Loop's direction is reversed to
3732      visit "best" instructions first.  We assume that VEC_unordered_remove
3733      moves last element in place of one being deleted.  */
3734   for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3735     {
3736       expr_t expr = VEC_index (expr_t, vec_av_set, n);
3737       insn_t insn = EXPR_INSN_RTX (expr);
3738       signed char target_available;
3739       bool is_orig_reg_p = true;
3740       int need_cycles, new_prio;
3741 
3742       /* Don't allow any insns other than from SCHED_GROUP if we have one.  */
3743       if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3744         {
3745           VEC_unordered_remove (expr_t, vec_av_set, n);
3746           continue;
3747         }
3748 
3749       /* Set number of sched_next insns (just in case there
3750          could be several).  */
3751       if (FENCE_SCHED_NEXT (fence))
3752         sched_next_worked++;
3753 
3754       /* Check all liveness requirements and try renaming.
3755          FIXME: try to minimize calls to this.  */
3756       target_available = EXPR_TARGET_AVAILABLE (expr);
3757 
3758       /* If insn was already scheduled on the current fence,
3759 	 set TARGET_AVAILABLE to -1 no matter what expr's attribute says.  */
3760       if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3761 	target_available = -1;
3762 
3763       /* If the availability of the EXPR is invalidated by the insertion of
3764 	 bookkeeping earlier, make sure that we won't choose this expr for
3765 	 scheduling if it's not separable, and if it is separable, then
3766 	 we have to recompute the set of available registers for it.  */
3767       if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3768 	{
3769           VEC_unordered_remove (expr_t, vec_av_set, n);
3770           if (sched_verbose >= 4)
3771             sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3772                        INSN_UID (insn));
3773           continue;
3774         }
3775 
3776       if (target_available == true)
3777 	{
3778           /* Do nothing -- we can use an existing register.  */
3779 	  is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3780         }
3781       else if (/* Non-separable instruction will never
3782                   get another register. */
3783                (target_available == false
3784                 && !EXPR_SEPARABLE_P (expr))
3785                /* Don't try to find a register for low-priority expression.  */
3786                || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3787                /* ??? FIXME: Don't try to rename data speculation.  */
3788                || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3789                || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3790         {
3791           VEC_unordered_remove (expr_t, vec_av_set, n);
3792           if (sched_verbose >= 4)
3793             sel_print ("Expr %d has no suitable target register\n",
3794                        INSN_UID (insn));
3795           continue;
3796         }
3797 
3798       /* Filter expressions that need to be renamed or speculated when
3799 	 pipelining, because compensating register copies or speculation
3800 	 checks are likely to be placed near the beginning of the loop,
3801 	 causing a stall.  */
3802       if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3803 	  && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3804 	{
3805 	  /* Estimation of number of cycles until loop branch for
3806 	     renaming/speculation to be successful.  */
3807 	  int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3808 
3809 	  if ((int) current_loop_nest->ninsns < 9)
3810 	    {
3811 	      VEC_unordered_remove (expr_t, vec_av_set, n);
3812 	      if (sched_verbose >= 4)
3813 		sel_print ("Pipelining expr %d will likely cause stall\n",
3814 			   INSN_UID (insn));
3815 	      continue;
3816 	    }
3817 
3818 	  if ((int) current_loop_nest->ninsns - num_insns_scheduled
3819 	      < need_n_ticks_till_branch * issue_rate / 2
3820 	      && est_ticks_till_branch < need_n_ticks_till_branch)
3821 	     {
3822 	       VEC_unordered_remove (expr_t, vec_av_set, n);
3823 	       if (sched_verbose >= 4)
3824 		 sel_print ("Pipelining expr %d will likely cause stall\n",
3825 			    INSN_UID (insn));
3826 	       continue;
3827 	     }
3828 	}
3829 
3830       /* We want to schedule speculation checks as late as possible.  Discard
3831 	 them from av set if there are instructions with higher priority.  */
3832       if (sel_insn_is_speculation_check (insn)
3833 	  && EXPR_PRIORITY (expr) < av_max_prio)
3834 	{
3835           stalled++;
3836           min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3837           VEC_unordered_remove (expr_t, vec_av_set, n);
3838 	  if (sched_verbose >= 4)
3839 	    sel_print ("Delaying speculation check %d until its first use\n",
3840 		       INSN_UID (insn));
3841 	  continue;
3842 	}
3843 
3844       /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO.  */
3845       if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3846 	av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3847 
3848       /* Don't allow any insns whose data is not yet ready.
3849          Check first whether we've already tried them and failed.  */
3850       if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3851 	{
3852           need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3853 			 - FENCE_CYCLE (fence));
3854 	  if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3855 	    est_ticks_till_branch = MAX (est_ticks_till_branch,
3856 					 EXPR_PRIORITY (expr) + need_cycles);
3857 
3858 	  if (need_cycles > 0)
3859 	    {
3860 	      stalled++;
3861 	      min_need_stall = (min_need_stall < 0
3862 				? need_cycles
3863 				: MIN (min_need_stall, need_cycles));
3864 	      VEC_unordered_remove (expr_t, vec_av_set, n);
3865 
3866 	      if (sched_verbose >= 4)
3867 		sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3868 			   INSN_UID (insn),
3869 			   FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3870 	      continue;
3871 	    }
3872 	}
3873 
3874       /* Now resort to dependence analysis to find whether EXPR might be
3875          stalled due to dependencies from FENCE's context.  */
3876       need_cycles = tick_check_p (expr, dc, fence);
3877       new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3878 
3879       if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3880 	est_ticks_till_branch = MAX (est_ticks_till_branch,
3881 				     new_prio);
3882 
3883       if (need_cycles > 0)
3884         {
3885           if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3886             {
3887               int new_size = INSN_UID (insn) * 3 / 2;
3888 
3889               FENCE_READY_TICKS (fence)
3890                 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3891                                      new_size, FENCE_READY_TICKS_SIZE (fence),
3892                                      sizeof (int));
3893             }
3894           FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3895             = FENCE_CYCLE (fence) + need_cycles;
3896 
3897           stalled++;
3898           min_need_stall = (min_need_stall < 0
3899                             ? need_cycles
3900                             : MIN (min_need_stall, need_cycles));
3901 
3902           VEC_unordered_remove (expr_t, vec_av_set, n);
3903 
3904           if (sched_verbose >= 4)
3905             sel_print ("Expr %d is not ready yet until cycle %d\n",
3906                        INSN_UID (insn),
3907                        FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3908           continue;
3909         }
3910 
3911       if (sched_verbose >= 4)
3912         sel_print ("Expr %d is ok\n", INSN_UID (insn));
3913       min_need_stall = 0;
3914     }
3915 
3916   /* Clear SCHED_NEXT.  */
3917   if (FENCE_SCHED_NEXT (fence))
3918     {
3919       gcc_assert (sched_next_worked == 1);
3920       FENCE_SCHED_NEXT (fence) = NULL_RTX;
3921     }
3922 
3923   /* No need to stall if this variable was not initialized.  */
3924   if (min_need_stall < 0)
3925     min_need_stall = 0;
3926 
3927   if (VEC_empty (expr_t, vec_av_set))
3928     {
3929       /* We need to set *pneed_stall here, because later we skip this code
3930          when ready list is empty.  */
3931       *pneed_stall = min_need_stall;
3932       return false;
3933     }
3934   else
3935     gcc_assert (min_need_stall == 0);
3936 
3937   /* Sort the vector.  */
3938   VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3939 
3940   if (sched_verbose >= 4)
3941     {
3942       sel_print ("Total ready exprs: %d, stalled: %d\n",
3943                  VEC_length (expr_t, vec_av_set), stalled);
3944       sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3945       FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3946         dump_expr (expr);
3947       sel_print ("\n");
3948     }
3949 
3950   *pneed_stall = 0;
3951   return true;
3952 }
3953 
3954 /* Convert a vectored and sorted av set to the ready list that
3955    the rest of the backend wants to see.  */
3956 static void
3957 convert_vec_av_set_to_ready (void)
3958 {
3959   int n;
3960   expr_t expr;
3961 
3962   /* Allocate and fill the ready list from the sorted vector.  */
3963   ready.n_ready = VEC_length (expr_t, vec_av_set);
3964   ready.first = ready.n_ready - 1;
3965 
3966   gcc_assert (ready.n_ready > 0);
3967 
3968   if (ready.n_ready > max_issue_size)
3969     {
3970       max_issue_size = ready.n_ready;
3971       sched_extend_ready_list (ready.n_ready);
3972     }
3973 
3974   FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3975     {
3976       vinsn_t vi = EXPR_VINSN (expr);
3977       insn_t insn = VINSN_INSN_RTX (vi);
3978 
3979       ready_try[n] = 0;
3980       ready.vec[n] = insn;
3981     }
3982 }
3983 
3984 /* Initialize ready list from *AV_PTR for the max_issue () call.
3985    If any unrecognizable insn found in *AV_PTR, return it (and skip
3986    max_issue).  BND and FENCE are current boundary and fence,
3987    respectively.  If we need to stall for some cycles before an expr
3988    from *AV_PTR would become available, write this number to *PNEED_STALL.  */
3989 static expr_t
3990 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3991                  int *pneed_stall)
3992 {
3993   expr_t expr;
3994 
3995   /* We do not support multiple boundaries per fence.  */
3996   gcc_assert (BLIST_NEXT (bnds) == NULL);
3997 
3998   /* Process expressions required special handling, i.e.  pipelined,
3999      speculative and recog() < 0 expressions first.  */
4000   process_pipelined_exprs (av_ptr);
4001   process_spec_exprs (av_ptr);
4002 
4003   /* A USE could be scheduled immediately.  */
4004   expr = process_use_exprs (av_ptr);
4005   if (expr)
4006     {
4007       *pneed_stall = 0;
4008       return expr;
4009     }
4010 
4011   /* Turn the av set to a vector for sorting.  */
4012   if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4013     {
4014       ready.n_ready = 0;
4015       return NULL;
4016     }
4017 
4018   /* Build the final ready list.  */
4019   convert_vec_av_set_to_ready ();
4020   return NULL;
4021 }
4022 
4023 /* Wrapper for dfa_new_cycle ().  Returns TRUE if cycle was advanced.  */
4024 static bool
4025 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4026 {
4027   int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4028                              ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4029                              : FENCE_CYCLE (fence) - 1;
4030   bool res = false;
4031   int sort_p = 0;
4032 
4033   if (!targetm.sched.dfa_new_cycle)
4034     return false;
4035 
4036   memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4037 
4038   while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4039                                                  insn, last_scheduled_cycle,
4040                                                  FENCE_CYCLE (fence), &sort_p))
4041     {
4042       memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4043       advance_one_cycle (fence);
4044       memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045       res = true;
4046     }
4047 
4048   return res;
4049 }
4050 
4051 /* Invoke reorder* target hooks on the ready list.  Return the number of insns
4052    we can issue.  FENCE is the current fence.  */
4053 static int
4054 invoke_reorder_hooks (fence_t fence)
4055 {
4056   int issue_more;
4057   bool ran_hook = false;
4058 
4059   /* Call the reorder hook at the beginning of the cycle, and call
4060      the reorder2 hook in the middle of the cycle.  */
4061   if (FENCE_ISSUED_INSNS (fence) == 0)
4062     {
4063       if (targetm.sched.reorder
4064           && !SCHED_GROUP_P (ready_element (&ready, 0))
4065           && ready.n_ready > 1)
4066         {
4067           /* Don't give reorder the most prioritized insn as it can break
4068              pipelining.  */
4069           if (pipelining_p)
4070             --ready.n_ready;
4071 
4072           issue_more
4073             = targetm.sched.reorder (sched_dump, sched_verbose,
4074                                      ready_lastpos (&ready),
4075                                      &ready.n_ready, FENCE_CYCLE (fence));
4076 
4077           if (pipelining_p)
4078             ++ready.n_ready;
4079 
4080           ran_hook = true;
4081         }
4082       else
4083         /* Initialize can_issue_more for variable_issue.  */
4084         issue_more = issue_rate;
4085     }
4086   else if (targetm.sched.reorder2
4087            && !SCHED_GROUP_P (ready_element (&ready, 0)))
4088     {
4089       if (ready.n_ready == 1)
4090         issue_more =
4091           targetm.sched.reorder2 (sched_dump, sched_verbose,
4092                                   ready_lastpos (&ready),
4093                                   &ready.n_ready, FENCE_CYCLE (fence));
4094       else
4095         {
4096           if (pipelining_p)
4097             --ready.n_ready;
4098 
4099           issue_more =
4100             targetm.sched.reorder2 (sched_dump, sched_verbose,
4101                                     ready.n_ready
4102                                     ? ready_lastpos (&ready) : NULL,
4103                                     &ready.n_ready, FENCE_CYCLE (fence));
4104 
4105           if (pipelining_p)
4106             ++ready.n_ready;
4107         }
4108 
4109       ran_hook = true;
4110     }
4111   else
4112     issue_more = FENCE_ISSUE_MORE (fence);
4113 
4114   /* Ensure that ready list and vec_av_set are in line with each other,
4115      i.e. vec_av_set[i] == ready_element (&ready, i).  */
4116   if (issue_more && ran_hook)
4117     {
4118       int i, j, n;
4119       rtx *arr = ready.vec;
4120       expr_t *vec = VEC_address (expr_t, vec_av_set);
4121 
4122       for (i = 0, n = ready.n_ready; i < n; i++)
4123         if (EXPR_INSN_RTX (vec[i]) != arr[i])
4124           {
4125             expr_t tmp;
4126 
4127             for (j = i; j < n; j++)
4128               if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129                 break;
4130             gcc_assert (j < n);
4131 
4132             tmp = vec[i];
4133             vec[i] = vec[j];
4134             vec[j] = tmp;
4135           }
4136     }
4137 
4138   return issue_more;
4139 }
4140 
4141 /* Return an EXPR correponding to INDEX element of ready list, if
4142    FOLLOW_READY_ELEMENT is true (i.e., an expr of
4143    ready_element (&ready, INDEX) will be returned), and to INDEX element of
4144    ready.vec otherwise.  */
4145 static inline expr_t
4146 find_expr_for_ready (int index, bool follow_ready_element)
4147 {
4148   expr_t expr;
4149   int real_index;
4150 
4151   real_index = follow_ready_element ? ready.first - index : index;
4152 
4153   expr = VEC_index (expr_t, vec_av_set, real_index);
4154   gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4155 
4156   return expr;
4157 }
4158 
4159 /* Calculate insns worth trying via lookahead_guard hook.  Return a number
4160    of such insns found.  */
4161 static int
4162 invoke_dfa_lookahead_guard (void)
4163 {
4164   int i, n;
4165   bool have_hook
4166     = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4167 
4168   if (sched_verbose >= 2)
4169     sel_print ("ready after reorder: ");
4170 
4171   for (i = 0, n = 0; i < ready.n_ready; i++)
4172     {
4173       expr_t expr;
4174       insn_t insn;
4175       int r;
4176 
4177       /* In this loop insn is Ith element of the ready list given by
4178          ready_element, not Ith element of ready.vec.  */
4179       insn = ready_element (&ready, i);
4180 
4181       if (! have_hook || i == 0)
4182         r = 0;
4183       else
4184         r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4185 
4186       gcc_assert (INSN_CODE (insn) >= 0);
4187 
4188       /* Only insns with ready_try = 0 can get here
4189          from fill_ready_list.  */
4190       gcc_assert (ready_try [i] == 0);
4191       ready_try[i] = r;
4192       if (!r)
4193         n++;
4194 
4195       expr = find_expr_for_ready (i, true);
4196 
4197       if (sched_verbose >= 2)
4198         {
4199           dump_vinsn (EXPR_VINSN (expr));
4200           sel_print (":%d; ", ready_try[i]);
4201         }
4202     }
4203 
4204   if (sched_verbose >= 2)
4205     sel_print ("\n");
4206   return n;
4207 }
4208 
4209 /* Calculate the number of privileged insns and return it.  */
4210 static int
4211 calculate_privileged_insns (void)
4212 {
4213   expr_t cur_expr, min_spec_expr = NULL;
4214   int privileged_n = 0, i;
4215 
4216   for (i = 0; i < ready.n_ready; i++)
4217     {
4218       if (ready_try[i])
4219         continue;
4220 
4221       if (! min_spec_expr)
4222 	min_spec_expr = find_expr_for_ready (i, true);
4223 
4224       cur_expr = find_expr_for_ready (i, true);
4225 
4226       if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4227         break;
4228 
4229       ++privileged_n;
4230     }
4231 
4232   if (i == ready.n_ready)
4233     privileged_n = 0;
4234 
4235   if (sched_verbose >= 2)
4236     sel_print ("privileged_n: %d insns with SPEC %d\n",
4237                privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4238   return privileged_n;
4239 }
4240 
4241 /* Call the rest of the hooks after the choice was made.  Return
4242    the number of insns that still can be issued given that the current
4243    number is ISSUE_MORE.  FENCE and BEST_INSN are the current fence
4244    and the insn chosen for scheduling, respectively.  */
4245 static int
4246 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4247 {
4248   gcc_assert (INSN_P (best_insn));
4249 
4250   /* First, call dfa_new_cycle, and then variable_issue, if available.  */
4251   sel_dfa_new_cycle (best_insn, fence);
4252 
4253   if (targetm.sched.variable_issue)
4254     {
4255       memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4256       issue_more =
4257         targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4258                                       issue_more);
4259       memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4260     }
4261   else if (GET_CODE (PATTERN (best_insn)) != USE
4262            && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263     issue_more--;
4264 
4265   return issue_more;
4266 }
4267 
4268 /* Estimate the cost of issuing INSN on DFA state STATE.  */
4269 static int
4270 estimate_insn_cost (rtx insn, state_t state)
4271 {
4272   static state_t temp = NULL;
4273   int cost;
4274 
4275   if (!temp)
4276     temp = xmalloc (dfa_state_size);
4277 
4278   memcpy (temp, state, dfa_state_size);
4279   cost = state_transition (temp, insn);
4280 
4281   if (cost < 0)
4282     return 0;
4283   else if (cost == 0)
4284     return 1;
4285   return cost;
4286 }
4287 
4288 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4289    This function properly handles ASMs, USEs etc.  */
4290 static int
4291 get_expr_cost (expr_t expr, fence_t fence)
4292 {
4293   rtx insn = EXPR_INSN_RTX (expr);
4294 
4295   if (recog_memoized (insn) < 0)
4296     {
4297       if (!FENCE_STARTS_CYCLE_P (fence)
4298 	  && INSN_ASM_P (insn))
4299 	/* This is asm insn which is tryed to be issued on the
4300 	   cycle not first.  Issue it on the next cycle.  */
4301 	return 1;
4302       else
4303 	/* A USE insn, or something else we don't need to
4304 	   understand.  We can't pass these directly to
4305 	   state_transition because it will trigger a
4306 	   fatal error for unrecognizable insns.  */
4307 	return 0;
4308     }
4309   else
4310     return estimate_insn_cost (insn, FENCE_STATE (fence));
4311 }
4312 
4313 /* Find the best insn for scheduling, either via max_issue or just take
4314    the most prioritized available.  */
4315 static int
4316 choose_best_insn (fence_t fence, int privileged_n, int *index)
4317 {
4318   int can_issue = 0;
4319 
4320   if (dfa_lookahead > 0)
4321     {
4322       cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4323       /* TODO: pass equivalent of first_cycle_insn_p to max_issue ().  */
4324       can_issue = max_issue (&ready, privileged_n,
4325                              FENCE_STATE (fence), true, index);
4326       if (sched_verbose >= 2)
4327         sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4328                    can_issue, FENCE_ISSUED_INSNS (fence));
4329     }
4330   else
4331     {
4332       /* We can't use max_issue; just return the first available element.  */
4333       int i;
4334 
4335       for (i = 0; i < ready.n_ready; i++)
4336 	{
4337 	  expr_t expr = find_expr_for_ready (i, true);
4338 
4339 	  if (get_expr_cost (expr, fence) < 1)
4340 	    {
4341 	      can_issue = can_issue_more;
4342 	      *index = i;
4343 
4344 	      if (sched_verbose >= 2)
4345 		sel_print ("using %dth insn from the ready list\n", i + 1);
4346 
4347 	      break;
4348 	    }
4349 	}
4350 
4351       if (i == ready.n_ready)
4352 	{
4353 	  can_issue = 0;
4354 	  *index = -1;
4355 	}
4356     }
4357 
4358   return can_issue;
4359 }
4360 
4361 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4362    BNDS and FENCE are current boundaries and scheduling fence respectively.
4363    Return the expr found and NULL if nothing can be issued atm.
4364    Write to PNEED_STALL the number of cycles to stall if no expr was found.  */
4365 static expr_t
4366 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4367                 int *pneed_stall)
4368 {
4369   expr_t best;
4370 
4371   /* Choose the best insn for scheduling via:
4372      1) sorting the ready list based on priority;
4373      2) calling the reorder hook;
4374      3) calling max_issue.  */
4375   best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4376   if (best == NULL && ready.n_ready > 0)
4377     {
4378       int privileged_n, index;
4379 
4380       can_issue_more = invoke_reorder_hooks (fence);
4381       if (can_issue_more > 0)
4382         {
4383           /* Try choosing the best insn until we find one that is could be
4384              scheduled due to liveness restrictions on its destination register.
4385              In the future, we'd like to choose once and then just probe insns
4386              in the order of their priority.  */
4387           invoke_dfa_lookahead_guard ();
4388           privileged_n = calculate_privileged_insns ();
4389           can_issue_more = choose_best_insn (fence, privileged_n, &index);
4390           if (can_issue_more)
4391             best = find_expr_for_ready (index, true);
4392         }
4393       /* We had some available insns, so if we can't issue them,
4394          we have a stall.  */
4395       if (can_issue_more == 0)
4396         {
4397           best = NULL;
4398           *pneed_stall = 1;
4399         }
4400     }
4401 
4402   if (best != NULL)
4403     {
4404       can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4405                                                can_issue_more);
4406       if (targetm.sched.variable_issue
4407 	  && can_issue_more == 0)
4408         *pneed_stall = 1;
4409     }
4410 
4411   if (sched_verbose >= 2)
4412     {
4413       if (best != NULL)
4414         {
4415           sel_print ("Best expression (vliw form): ");
4416           dump_expr (best);
4417           sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4418         }
4419       else
4420         sel_print ("No best expr found!\n");
4421     }
4422 
4423   return best;
4424 }
4425 
4426 
4427 /* Functions that implement the core of the scheduler.  */
4428 
4429 
4430 /* Emit an instruction from EXPR with SEQNO and VINSN after
4431    PLACE_TO_INSERT.  */
4432 static insn_t
4433 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4434                            insn_t place_to_insert)
4435 {
4436   /* This assert fails when we have identical instructions
4437      one of which dominates the other.  In this case move_op ()
4438      finds the first instruction and doesn't search for second one.
4439      The solution would be to compute av_set after the first found
4440      insn and, if insn present in that set, continue searching.
4441      For now we workaround this issue in move_op.  */
4442   gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4443 
4444   if (EXPR_WAS_RENAMED (expr))
4445     {
4446       unsigned regno = expr_dest_regno (expr);
4447 
4448       if (HARD_REGISTER_NUM_P (regno))
4449 	{
4450 	  df_set_regs_ever_live (regno, true);
4451 	  reg_rename_tick[regno] = ++reg_rename_this_tick;
4452 	}
4453     }
4454 
4455   return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4456                                        place_to_insert);
4457 }
4458 
4459 /* Return TRUE if BB can hold bookkeeping code.  */
4460 static bool
4461 block_valid_for_bookkeeping_p (basic_block bb)
4462 {
4463   insn_t bb_end = BB_END (bb);
4464 
4465   if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4466     return false;
4467 
4468   if (INSN_P (bb_end))
4469     {
4470       if (INSN_SCHED_TIMES (bb_end) > 0)
4471 	return false;
4472     }
4473   else
4474     gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4475 
4476   return true;
4477 }
4478 
4479 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4480    into E2->dest, except from E1->src (there may be a sequence of empty basic
4481    blocks between E1->src and E2->dest).  Return found block, or NULL if new
4482    one must be created.  If LAX holds, don't assume there is a simple path
4483    from E1->src to E2->dest.  */
4484 static basic_block
4485 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4486 {
4487   basic_block candidate_block = NULL;
4488   edge e;
4489 
4490   /* Loop over edges from E1 to E2, inclusive.  */
4491   for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4492     {
4493       if (EDGE_COUNT (e->dest->preds) == 2)
4494 	{
4495 	  if (candidate_block == NULL)
4496 	    candidate_block = (EDGE_PRED (e->dest, 0) == e
4497 			       ? EDGE_PRED (e->dest, 1)->src
4498 			       : EDGE_PRED (e->dest, 0)->src);
4499 	  else
4500 	    /* Found additional edge leading to path from e1 to e2
4501 	       from aside.  */
4502 	    return NULL;
4503 	}
4504       else if (EDGE_COUNT (e->dest->preds) > 2)
4505 	/* Several edges leading to path from e1 to e2 from aside.  */
4506 	return NULL;
4507 
4508       if (e == e2)
4509 	return ((!lax || candidate_block)
4510 		&& block_valid_for_bookkeeping_p (candidate_block)
4511 		? candidate_block
4512 		: NULL);
4513 
4514       if (lax && EDGE_COUNT (e->dest->succs) != 1)
4515 	return NULL;
4516     }
4517 
4518   if (lax)
4519     return NULL;
4520 
4521   gcc_unreachable ();
4522 }
4523 
4524 /* Create new basic block for bookkeeping code for path(s) incoming into
4525    E2->dest, except from E1->src.  Return created block.  */
4526 static basic_block
4527 create_block_for_bookkeeping (edge e1, edge e2)
4528 {
4529   basic_block new_bb, bb = e2->dest;
4530 
4531   /* Check that we don't spoil the loop structure.  */
4532   if (current_loop_nest)
4533     {
4534       basic_block latch = current_loop_nest->latch;
4535 
4536       /* We do not split header.  */
4537       gcc_assert (e2->dest != current_loop_nest->header);
4538 
4539       /* We do not redirect the only edge to the latch block.  */
4540       gcc_assert (e1->dest != latch
4541 		  || !single_pred_p (latch)
4542 		  || e1 != single_pred_edge (latch));
4543     }
4544 
4545   /* Split BB to insert BOOK_INSN there.  */
4546   new_bb = sched_split_block (bb, NULL);
4547 
4548   /* Move note_list from the upper bb.  */
4549   gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4550   BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4551   BB_NOTE_LIST (bb) = NULL_RTX;
4552 
4553   gcc_assert (e2->dest == bb);
4554 
4555   /* Skip block for bookkeeping copy when leaving E1->src.  */
4556   if (e1->flags & EDGE_FALLTHRU)
4557     sel_redirect_edge_and_branch_force (e1, new_bb);
4558   else
4559     sel_redirect_edge_and_branch (e1, new_bb);
4560 
4561   gcc_assert (e1->dest == new_bb);
4562   gcc_assert (sel_bb_empty_p (bb));
4563 
4564   /* To keep basic block numbers in sync between debug and non-debug
4565      compilations, we have to rotate blocks here.  Consider that we
4566      started from (a,b)->d, (c,d)->e, and d contained only debug
4567      insns.  It would have been removed before if the debug insns
4568      weren't there, so we'd have split e rather than d.  So what we do
4569      now is to swap the block numbers of new_bb and
4570      single_succ(new_bb) == e, so that the insns that were in e before
4571      get the new block number.  */
4572 
4573   if (MAY_HAVE_DEBUG_INSNS)
4574     {
4575       basic_block succ;
4576       insn_t insn = sel_bb_head (new_bb);
4577       insn_t last;
4578 
4579       if (DEBUG_INSN_P (insn)
4580 	  && single_succ_p (new_bb)
4581 	  && (succ = single_succ (new_bb))
4582 	  && succ != EXIT_BLOCK_PTR
4583 	  && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4584 	{
4585 	  while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4586 	    insn = NEXT_INSN (insn);
4587 
4588 	  if (insn == last)
4589 	    {
4590 	      sel_global_bb_info_def gbi;
4591 	      sel_region_bb_info_def rbi;
4592 	      int i;
4593 
4594 	      if (sched_verbose >= 2)
4595 		sel_print ("Swapping block ids %i and %i\n",
4596 			   new_bb->index, succ->index);
4597 
4598 	      i = new_bb->index;
4599 	      new_bb->index = succ->index;
4600 	      succ->index = i;
4601 
4602 	      SET_BASIC_BLOCK (new_bb->index, new_bb);
4603 	      SET_BASIC_BLOCK (succ->index, succ);
4604 
4605 	      memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4606 	      memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4607 		      sizeof (gbi));
4608 	      memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4609 
4610 	      memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4611 	      memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4612 		      sizeof (rbi));
4613 	      memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4614 
4615 	      i = BLOCK_TO_BB (new_bb->index);
4616 	      BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4617 	      BLOCK_TO_BB (succ->index) = i;
4618 
4619 	      i = CONTAINING_RGN (new_bb->index);
4620 	      CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4621 	      CONTAINING_RGN (succ->index) = i;
4622 
4623 	      for (i = 0; i < current_nr_blocks; i++)
4624 		if (BB_TO_BLOCK (i) == succ->index)
4625 		  BB_TO_BLOCK (i) = new_bb->index;
4626 		else if (BB_TO_BLOCK (i) == new_bb->index)
4627 		  BB_TO_BLOCK (i) = succ->index;
4628 
4629 	      FOR_BB_INSNS (new_bb, insn)
4630 		if (INSN_P (insn))
4631 		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4632 
4633 	      FOR_BB_INSNS (succ, insn)
4634 		if (INSN_P (insn))
4635 		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4636 
4637 	      if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4638 		bitmap_set_bit (code_motion_visited_blocks, succ->index);
4639 
4640 	      gcc_assert (LABEL_P (BB_HEAD (new_bb))
4641 			  && LABEL_P (BB_HEAD (succ)));
4642 
4643 	      if (sched_verbose >= 4)
4644 		sel_print ("Swapping code labels %i and %i\n",
4645 			   CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4646 			   CODE_LABEL_NUMBER (BB_HEAD (succ)));
4647 
4648 	      i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4649 	      CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4650 		= CODE_LABEL_NUMBER (BB_HEAD (succ));
4651 	      CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4652 	    }
4653 	}
4654     }
4655 
4656   return bb;
4657 }
4658 
4659 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4660    into E2->dest, except from E1->src.  If the returned insn immediately
4661    precedes a fence, assign that fence to *FENCE_TO_REWIND.  */
4662 static insn_t
4663 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4664 {
4665   insn_t place_to_insert;
4666   /* Find a basic block that can hold bookkeeping.  If it can be found, do not
4667      create new basic block, but insert bookkeeping there.  */
4668   basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4669 
4670   if (book_block)
4671     {
4672       place_to_insert = BB_END (book_block);
4673 
4674       /* Don't use a block containing only debug insns for
4675 	 bookkeeping, this causes scheduling differences between debug
4676 	 and non-debug compilations, for the block would have been
4677 	 removed already.  */
4678       if (DEBUG_INSN_P (place_to_insert))
4679 	{
4680 	  rtx insn = sel_bb_head (book_block);
4681 
4682 	  while (insn != place_to_insert &&
4683 		 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4684 	    insn = NEXT_INSN (insn);
4685 
4686 	  if (insn == place_to_insert)
4687 	    book_block = NULL;
4688 	}
4689     }
4690 
4691   if (!book_block)
4692     {
4693       book_block = create_block_for_bookkeeping (e1, e2);
4694       place_to_insert = BB_END (book_block);
4695       if (sched_verbose >= 9)
4696 	sel_print ("New block is %i, split from bookkeeping block %i\n",
4697 		   EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4698     }
4699   else
4700     {
4701       if (sched_verbose >= 9)
4702 	sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4703     }
4704 
4705   *fence_to_rewind = NULL;
4706   /* If basic block ends with a jump, insert bookkeeping code right before it.
4707      Notice if we are crossing a fence when taking PREV_INSN.  */
4708   if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4709     {
4710       *fence_to_rewind = flist_lookup (fences, place_to_insert);
4711       place_to_insert = PREV_INSN (place_to_insert);
4712     }
4713 
4714   return place_to_insert;
4715 }
4716 
4717 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4718    for JOIN_POINT.   */
4719 static int
4720 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4721 {
4722   int seqno;
4723   rtx next;
4724 
4725   /* Check if we are about to insert bookkeeping copy before a jump, and use
4726      jump's seqno for the copy; otherwise, use JOIN_POINT's seqno.  */
4727   next = NEXT_INSN (place_to_insert);
4728   if (INSN_P (next)
4729       && JUMP_P (next)
4730       && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4731     {
4732       gcc_assert (INSN_SCHED_TIMES (next) == 0);
4733       seqno = INSN_SEQNO (next);
4734     }
4735   else if (INSN_SEQNO (join_point) > 0)
4736     seqno = INSN_SEQNO (join_point);
4737   else
4738     {
4739       seqno = get_seqno_by_preds (place_to_insert);
4740 
4741       /* Sometimes the fences can move in such a way that there will be
4742          no instructions with positive seqno around this bookkeeping.
4743          This means that there will be no way to get to it by a regular
4744          fence movement.  Never mind because we pick up such pieces for
4745          rescheduling anyways, so any positive value will do for now.  */
4746       if (seqno < 0)
4747         {
4748           gcc_assert (pipelining_p);
4749           seqno = 1;
4750         }
4751     }
4752 
4753   gcc_assert (seqno > 0);
4754   return seqno;
4755 }
4756 
4757 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4758    NEW_SEQNO to it.  Return created insn.  */
4759 static insn_t
4760 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4761 {
4762   rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4763 
4764   vinsn_t new_vinsn
4765     = create_vinsn_from_insn_rtx (new_insn_rtx,
4766 				  VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4767 
4768   insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4769 					       place_to_insert);
4770 
4771   INSN_SCHED_TIMES (new_insn) = 0;
4772   bitmap_set_bit (current_copies, INSN_UID (new_insn));
4773 
4774   return new_insn;
4775 }
4776 
4777 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4778    E2->dest, except from E1->src (there may be a sequence of empty blocks
4779    between E1->src and E2->dest).  Return block containing the copy.
4780    All scheduler data is initialized for the newly created insn.  */
4781 static basic_block
4782 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4783 {
4784   insn_t join_point, place_to_insert, new_insn;
4785   int new_seqno;
4786   bool need_to_exchange_data_sets;
4787   fence_t fence_to_rewind;
4788 
4789   if (sched_verbose >= 4)
4790     sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4791 	       e2->dest->index);
4792 
4793   join_point = sel_bb_head (e2->dest);
4794   place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4795   new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4796   need_to_exchange_data_sets
4797     = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4798 
4799   new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4800 
4801   if (fence_to_rewind)
4802     FENCE_INSN (fence_to_rewind) = new_insn;
4803 
4804   /* When inserting bookkeeping insn in new block, av sets should be
4805      following: old basic block (that now holds bookkeeping) data sets are
4806      the same as was before generation of bookkeeping, and new basic block
4807      (that now hold all other insns of old basic block) data sets are
4808      invalid.  So exchange data sets for these basic blocks as sel_split_block
4809      mistakenly exchanges them in this case.  Cannot do it earlier because
4810      when single instruction is added to new basic block it should hold NULL
4811      lv_set.  */
4812   if (need_to_exchange_data_sets)
4813     exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4814 			BLOCK_FOR_INSN (join_point));
4815 
4816   stat_bookkeeping_copies++;
4817   return BLOCK_FOR_INSN (new_insn);
4818 }
4819 
4820 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4821    on FENCE, but we are unable to copy them.  */
4822 static void
4823 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4824 {
4825   expr_t expr;
4826   av_set_iterator i;
4827 
4828   /*  An expression does not need bookkeeping if it is available on all paths
4829       from current block to original block and current block dominates
4830       original block.  We check availability on all paths by examining
4831       EXPR_SPEC; this is not equivalent, because it may be positive even
4832       if expr is available on all paths (but if expr is not available on
4833       any path, EXPR_SPEC will be positive).  */
4834 
4835   FOR_EACH_EXPR_1 (expr, i, av_ptr)
4836     {
4837       if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4838 	  && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4839 	  && (EXPR_SPEC (expr)
4840 	      || !EXPR_ORIG_BB_INDEX (expr)
4841 	      || !dominated_by_p (CDI_DOMINATORS,
4842 				  BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4843 				  BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4844 	{
4845           if (sched_verbose >= 4)
4846             sel_print ("Expr %d removed because it would need bookkeeping, which "
4847                        "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4848 	  av_set_iter_remove (&i);
4849 	}
4850     }
4851 }
4852 
4853 /* Moving conditional jump through some instructions.
4854 
4855    Consider example:
4856 
4857        ...                     <- current scheduling point
4858        NOTE BASIC BLOCK:       <- bb header
4859        (p8)  add r14=r14+0x9;;
4860        (p8)  mov [r14]=r23
4861        (!p8) jump L1;;
4862        NOTE BASIC BLOCK:
4863        ...
4864 
4865    We can schedule jump one cycle earlier, than mov, because they cannot be
4866    executed together as their predicates are mutually exclusive.
4867 
4868    This is done in this way: first, new fallthrough basic block is created
4869    after jump (it is always can be done, because there already should be a
4870    fallthrough block, where control flow goes in case of predicate being true -
4871    in our example; otherwise there should be a dependence between those
4872    instructions and jump and we cannot schedule jump right now);
4873    next, all instructions between jump and current scheduling point are moved
4874    to this new block.  And the result is this:
4875 
4876       NOTE BASIC BLOCK:
4877       (!p8) jump L1           <- current scheduling point
4878       NOTE BASIC BLOCK:       <- bb header
4879       (p8)  add r14=r14+0x9;;
4880       (p8)  mov [r14]=r23
4881       NOTE BASIC BLOCK:
4882       ...
4883 */
4884 static void
4885 move_cond_jump (rtx insn, bnd_t bnd)
4886 {
4887   edge ft_edge;
4888   basic_block block_from, block_next, block_new, block_bnd, bb;
4889   rtx next, prev, link, head;
4890 
4891   block_from = BLOCK_FOR_INSN (insn);
4892   block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4893   prev = BND_TO (bnd);
4894 
4895 #ifdef ENABLE_CHECKING
4896   /* Moving of jump should not cross any other jumps or beginnings of new
4897      basic blocks.  The only exception is when we move a jump through
4898      mutually exclusive insns along fallthru edges.  */
4899   if (block_from != block_bnd)
4900     {
4901       bb = block_from;
4902       for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4903            link = PREV_INSN (link))
4904         {
4905           if (INSN_P (link))
4906             gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4907           if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4908             {
4909               gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4910               bb = BLOCK_FOR_INSN (link);
4911             }
4912         }
4913     }
4914 #endif
4915 
4916   /* Jump is moved to the boundary.  */
4917   next = PREV_INSN (insn);
4918   BND_TO (bnd) = insn;
4919 
4920   ft_edge = find_fallthru_edge_from (block_from);
4921   block_next = ft_edge->dest;
4922   /* There must be a fallthrough block (or where should go
4923   control flow in case of false jump predicate otherwise?).  */
4924   gcc_assert (block_next);
4925 
4926   /* Create new empty basic block after source block.  */
4927   block_new = sel_split_edge (ft_edge);
4928   gcc_assert (block_new->next_bb == block_next
4929               && block_from->next_bb == block_new);
4930 
4931   /* Move all instructions except INSN to BLOCK_NEW.  */
4932   bb = block_bnd;
4933   head = BB_HEAD (block_new);
4934   while (bb != block_from->next_bb)
4935     {
4936       rtx from, to;
4937       from = bb == block_bnd ? prev : sel_bb_head (bb);
4938       to = bb == block_from ? next : sel_bb_end (bb);
4939 
4940       /* The jump being moved can be the first insn in the block.
4941          In this case we don't have to move anything in this block.  */
4942       if (NEXT_INSN (to) != from)
4943         {
4944           reorder_insns (from, to, head);
4945 
4946           for (link = to; link != head; link = PREV_INSN (link))
4947             EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4948           head = to;
4949         }
4950 
4951       /* Cleanup possibly empty blocks left.  */
4952       block_next = bb->next_bb;
4953       if (bb != block_from)
4954 	tidy_control_flow (bb, false);
4955       bb = block_next;
4956     }
4957 
4958   /* Assert there is no jump to BLOCK_NEW, only fallthrough edge.  */
4959   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4960 
4961   gcc_assert (!sel_bb_empty_p (block_from)
4962               && !sel_bb_empty_p (block_new));
4963 
4964   /* Update data sets for BLOCK_NEW to represent that INSN and
4965      instructions from the other branch of INSN is no longer
4966      available at BLOCK_NEW.  */
4967   BB_AV_LEVEL (block_new) = global_level;
4968   gcc_assert (BB_LV_SET (block_new) == NULL);
4969   BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4970   update_data_sets (sel_bb_head (block_new));
4971 
4972   /* INSN is a new basic block header - so prepare its data
4973      structures and update availability and liveness sets.  */
4974   update_data_sets (insn);
4975 
4976   if (sched_verbose >= 4)
4977     sel_print ("Moving jump %d\n", INSN_UID (insn));
4978 }
4979 
4980 /* Remove nops generated during move_op for preventing removal of empty
4981    basic blocks.  */
4982 static void
4983 remove_temp_moveop_nops (bool full_tidying)
4984 {
4985   int i;
4986   insn_t insn;
4987 
4988   FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4989     {
4990       gcc_assert (INSN_NOP_P (insn));
4991       return_nop_to_pool (insn, full_tidying);
4992     }
4993 
4994   /* Empty the vector.  */
4995   if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4996     VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4997 		      VEC_length (insn_t, vec_temp_moveop_nops));
4998 }
4999 
5000 /* Records the maximal UID before moving up an instruction.  Used for
5001    distinguishing between bookkeeping copies and original insns.  */
5002 static int max_uid_before_move_op = 0;
5003 
5004 /* Remove from AV_VLIW_P all instructions but next when debug counter
5005    tells us so.  Next instruction is fetched from BNDS.  */
5006 static void
5007 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5008 {
5009   if (! dbg_cnt (sel_sched_insn_cnt))
5010     /* Leave only the next insn in av_vliw.  */
5011     {
5012       av_set_iterator av_it;
5013       expr_t expr;
5014       bnd_t bnd = BLIST_BND (bnds);
5015       insn_t next = BND_TO (bnd);
5016 
5017       gcc_assert (BLIST_NEXT (bnds) == NULL);
5018 
5019       FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5020         if (EXPR_INSN_RTX (expr) != next)
5021           av_set_iter_remove (&av_it);
5022     }
5023 }
5024 
5025 /* Compute available instructions on BNDS.  FENCE is the current fence.  Write
5026    the computed set to *AV_VLIW_P.  */
5027 static void
5028 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5029 {
5030   if (sched_verbose >= 2)
5031     {
5032       sel_print ("Boundaries: ");
5033       dump_blist (bnds);
5034       sel_print ("\n");
5035     }
5036 
5037   for (; bnds; bnds = BLIST_NEXT (bnds))
5038     {
5039       bnd_t bnd = BLIST_BND (bnds);
5040       av_set_t av1_copy;
5041       insn_t bnd_to = BND_TO (bnd);
5042 
5043       /* Rewind BND->TO to the basic block header in case some bookkeeping
5044          instructions were inserted before BND->TO and it needs to be
5045          adjusted.  */
5046       if (sel_bb_head_p (bnd_to))
5047         gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5048       else
5049         while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5050           {
5051             bnd_to = PREV_INSN (bnd_to);
5052             if (sel_bb_head_p (bnd_to))
5053               break;
5054           }
5055 
5056       if (BND_TO (bnd) != bnd_to)
5057 	{
5058   	  gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5059 	  FENCE_INSN (fence) = bnd_to;
5060 	  BND_TO (bnd) = bnd_to;
5061 	}
5062 
5063       av_set_clear (&BND_AV (bnd));
5064       BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5065 
5066       av_set_clear (&BND_AV1 (bnd));
5067       BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5068 
5069       moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5070 
5071       av1_copy = av_set_copy (BND_AV1 (bnd));
5072       av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5073     }
5074 
5075   if (sched_verbose >= 2)
5076     {
5077       sel_print ("Available exprs (vliw form): ");
5078       dump_av_set (*av_vliw_p);
5079       sel_print ("\n");
5080     }
5081 }
5082 
5083 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5084    expression.  When FOR_MOVEOP is true, also replace the register of
5085    expressions found with the register from EXPR_VLIW.  */
5086 static av_set_t
5087 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5088 {
5089   av_set_t expr_seq = NULL;
5090   expr_t expr;
5091   av_set_iterator i;
5092 
5093   FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5094     {
5095       if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5096         {
5097           if (for_moveop)
5098             {
5099               /* The sequential expression has the right form to pass
5100                  to move_op except when renaming happened.  Put the
5101                  correct register in EXPR then.  */
5102               if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5103 		{
5104                   if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5105 		    {
5106 		      replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5107 		      stat_renamed_scheduled++;
5108 		    }
5109 		  /* Also put the correct TARGET_AVAILABLE bit on the expr.
5110                      This is needed when renaming came up with original
5111                      register.  */
5112                   else if (EXPR_TARGET_AVAILABLE (expr)
5113                            != EXPR_TARGET_AVAILABLE (expr_vliw))
5114 		    {
5115 		      gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5116 		      EXPR_TARGET_AVAILABLE (expr) = 1;
5117 		    }
5118 		}
5119               if (EXPR_WAS_SUBSTITUTED (expr))
5120                 stat_substitutions_total++;
5121             }
5122 
5123           av_set_add (&expr_seq, expr);
5124 
5125           /* With substitution inside insn group, it is possible
5126              that more than one expression in expr_seq will correspond
5127              to expr_vliw.  In this case, choose one as the attempt to
5128              move both leads to miscompiles.  */
5129           break;
5130         }
5131     }
5132 
5133   if (for_moveop && sched_verbose >= 2)
5134     {
5135       sel_print ("Best expression(s) (sequential form): ");
5136       dump_av_set (expr_seq);
5137       sel_print ("\n");
5138     }
5139 
5140   return expr_seq;
5141 }
5142 
5143 
5144 /* Move nop to previous block.  */
5145 static void ATTRIBUTE_UNUSED
5146 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5147 {
5148   insn_t prev_insn, next_insn, note;
5149 
5150   gcc_assert (sel_bb_head_p (nop)
5151               && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5152   note = bb_note (BLOCK_FOR_INSN (nop));
5153   prev_insn = sel_bb_end (prev_bb);
5154   next_insn = NEXT_INSN (nop);
5155   gcc_assert (prev_insn != NULL_RTX
5156               && PREV_INSN (note) == prev_insn);
5157 
5158   NEXT_INSN (prev_insn) = nop;
5159   PREV_INSN (nop) = prev_insn;
5160 
5161   PREV_INSN (note) = nop;
5162   NEXT_INSN (note) = next_insn;
5163 
5164   NEXT_INSN (nop) = note;
5165   PREV_INSN (next_insn) = note;
5166 
5167   BB_END (prev_bb) = nop;
5168   BLOCK_FOR_INSN (nop) = prev_bb;
5169 }
5170 
5171 /* Prepare a place to insert the chosen expression on BND.  */
5172 static insn_t
5173 prepare_place_to_insert (bnd_t bnd)
5174 {
5175   insn_t place_to_insert;
5176 
5177   /* Init place_to_insert before calling move_op, as the later
5178      can possibly remove BND_TO (bnd).  */
5179   if (/* If this is not the first insn scheduled.  */
5180       BND_PTR (bnd))
5181     {
5182       /* Add it after last scheduled.  */
5183       place_to_insert = ILIST_INSN (BND_PTR (bnd));
5184       if (DEBUG_INSN_P (place_to_insert))
5185 	{
5186 	  ilist_t l = BND_PTR (bnd);
5187 	  while ((l = ILIST_NEXT (l)) &&
5188 		 DEBUG_INSN_P (ILIST_INSN (l)))
5189 	    ;
5190 	  if (!l)
5191 	    place_to_insert = NULL;
5192 	}
5193     }
5194   else
5195     place_to_insert = NULL;
5196 
5197   if (!place_to_insert)
5198     {
5199       /* Add it before BND_TO.  The difference is in the
5200          basic block, where INSN will be added.  */
5201       place_to_insert = get_nop_from_pool (BND_TO (bnd));
5202       gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5203                   == BLOCK_FOR_INSN (BND_TO (bnd)));
5204     }
5205 
5206   return place_to_insert;
5207 }
5208 
5209 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5210    Return the expression to emit in C_EXPR.  */
5211 static bool
5212 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5213                         av_set_t expr_seq, expr_t c_expr)
5214 {
5215   bool b, should_move;
5216   unsigned book_uid;
5217   bitmap_iterator bi;
5218   int n_bookkeeping_copies_before_moveop;
5219 
5220   /* Make a move.  This call will remove the original operation,
5221      insert all necessary bookkeeping instructions and update the
5222      data sets.  After that all we have to do is add the operation
5223      at before BND_TO (BND).  */
5224   n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5225   max_uid_before_move_op = get_max_uid ();
5226   bitmap_clear (current_copies);
5227   bitmap_clear (current_originators);
5228 
5229   b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5230                get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5231 
5232   /* We should be able to find the expression we've chosen for
5233      scheduling.  */
5234   gcc_assert (b);
5235 
5236   if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5237     stat_insns_needed_bookkeeping++;
5238 
5239   EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5240     {
5241       unsigned uid;
5242       bitmap_iterator bi;
5243 
5244       /* We allocate these bitmaps lazily.  */
5245       if (! INSN_ORIGINATORS_BY_UID (book_uid))
5246         INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5247 
5248       bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5249                    current_originators);
5250 
5251       /* Transitively add all originators' originators.  */
5252       EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5253        if (INSN_ORIGINATORS_BY_UID (uid))
5254 	 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5255 			  INSN_ORIGINATORS_BY_UID (uid));
5256     }
5257 
5258   return should_move;
5259 }
5260 
5261 
5262 /* Debug a DFA state as an array of bytes.  */
5263 static void
5264 debug_state (state_t state)
5265 {
5266   unsigned char *p;
5267   unsigned int i, size = dfa_state_size;
5268 
5269   sel_print ("state (%u):", size);
5270   for (i = 0, p = (unsigned char *) state; i < size; i++)
5271     sel_print (" %d", p[i]);
5272   sel_print ("\n");
5273 }
5274 
5275 /* Advance state on FENCE with INSN.  Return true if INSN is
5276    an ASM, and we should advance state once more.  */
5277 static bool
5278 advance_state_on_fence (fence_t fence, insn_t insn)
5279 {
5280   bool asm_p;
5281 
5282   if (recog_memoized (insn) >= 0)
5283     {
5284       int res;
5285       state_t temp_state = alloca (dfa_state_size);
5286 
5287       gcc_assert (!INSN_ASM_P (insn));
5288       asm_p = false;
5289 
5290       memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5291       res = state_transition (FENCE_STATE (fence), insn);
5292       gcc_assert (res < 0);
5293 
5294       if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5295         {
5296           FENCE_ISSUED_INSNS (fence)++;
5297 
5298           /* We should never issue more than issue_rate insns.  */
5299           if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5300             gcc_unreachable ();
5301         }
5302     }
5303   else
5304     {
5305       /* This could be an ASM insn which we'd like to schedule
5306          on the next cycle.  */
5307       asm_p = INSN_ASM_P (insn);
5308       if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5309         advance_one_cycle (fence);
5310     }
5311 
5312   if (sched_verbose >= 2)
5313     debug_state (FENCE_STATE (fence));
5314   if (!DEBUG_INSN_P (insn))
5315     FENCE_STARTS_CYCLE_P (fence) = 0;
5316   FENCE_ISSUE_MORE (fence) = can_issue_more;
5317   return asm_p;
5318 }
5319 
5320 /* Update FENCE on which INSN was scheduled and this INSN, too.  NEED_STALL
5321    is nonzero if we need to stall after issuing INSN.  */
5322 static void
5323 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5324 {
5325   bool asm_p;
5326 
5327   /* First, reflect that something is scheduled on this fence.  */
5328   asm_p = advance_state_on_fence (fence, insn);
5329   FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5330   VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5331   if (SCHED_GROUP_P (insn))
5332     {
5333       FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5334       SCHED_GROUP_P (insn) = 0;
5335     }
5336   else
5337     FENCE_SCHED_NEXT (fence) = NULL_RTX;
5338   if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5339     FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5340 
5341   /* Set instruction scheduling info.  This will be used in bundling,
5342      pipelining, tick computations etc.  */
5343   ++INSN_SCHED_TIMES (insn);
5344   EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5345   EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5346   INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5347   INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5348 
5349   /* This does not account for adjust_cost hooks, just add the biggest
5350      constant the hook may add to the latency.  TODO: make this
5351      a target dependent constant.  */
5352   INSN_READY_CYCLE (insn)
5353     = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5354                                  ? 1
5355                                  : maximal_insn_latency (insn) + 1);
5356 
5357   /* Change these fields last, as they're used above.  */
5358   FENCE_AFTER_STALL_P (fence) = 0;
5359   if (asm_p || need_stall)
5360     advance_one_cycle (fence);
5361 
5362   /* Indicate that we've scheduled something on this fence.  */
5363   FENCE_SCHEDULED_P (fence) = true;
5364   scheduled_something_on_previous_fence = true;
5365 
5366   /* Print debug information when insn's fields are updated.  */
5367   if (sched_verbose >= 2)
5368     {
5369       sel_print ("Scheduling insn: ");
5370       dump_insn_1 (insn, 1);
5371       sel_print ("\n");
5372     }
5373 }
5374 
5375 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5376    old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5377    return it.  */
5378 static blist_t *
5379 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5380                    blist_t *bnds_tailp)
5381 {
5382   succ_iterator si;
5383   insn_t succ;
5384 
5385   advance_deps_context (BND_DC (bnd), insn);
5386   FOR_EACH_SUCC_1 (succ, si, insn,
5387                    SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5388     {
5389       ilist_t ptr = ilist_copy (BND_PTR (bnd));
5390 
5391       ilist_add (&ptr, insn);
5392 
5393       if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5394 	  && is_ineligible_successor (succ, ptr))
5395 	{
5396 	  ilist_clear (&ptr);
5397 	  continue;
5398 	}
5399 
5400       if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5401 	{
5402 	  if (sched_verbose >= 9)
5403 	    sel_print ("Updating fence insn from %i to %i\n",
5404 		       INSN_UID (insn), INSN_UID (succ));
5405 	  FENCE_INSN (fence) = succ;
5406 	}
5407       blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5408       bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5409     }
5410 
5411   blist_remove (bndsp);
5412   return bnds_tailp;
5413 }
5414 
5415 /* Schedule EXPR_VLIW on BND.  Return the insn emitted.  */
5416 static insn_t
5417 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5418 {
5419   av_set_t expr_seq;
5420   expr_t c_expr = XALLOCA (expr_def);
5421   insn_t place_to_insert;
5422   insn_t insn;
5423   bool should_move;
5424 
5425   expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5426 
5427   /* In case of scheduling a jump skipping some other instructions,
5428      prepare CFG.  After this, jump is at the boundary and can be
5429      scheduled as usual insn by MOVE_OP.  */
5430   if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5431     {
5432       insn = EXPR_INSN_RTX (expr_vliw);
5433 
5434       /* Speculative jumps are not handled.  */
5435       if (insn != BND_TO (bnd)
5436           && !sel_insn_is_speculation_check (insn))
5437         move_cond_jump (insn, bnd);
5438     }
5439 
5440   /* Find a place for C_EXPR to schedule.  */
5441   place_to_insert = prepare_place_to_insert (bnd);
5442   should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5443   clear_expr (c_expr);
5444 
5445   /* Add the instruction.  The corner case to care about is when
5446      the expr_seq set has more than one expr, and we chose the one that
5447      is not equal to expr_vliw.  Then expr_vliw may be insn in stream, and
5448      we can't use it.  Generate the new vinsn.  */
5449   if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5450     {
5451       vinsn_t vinsn_new;
5452 
5453       vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5454       change_vinsn_in_expr (expr_vliw, vinsn_new);
5455       should_move = false;
5456     }
5457   if (should_move)
5458     insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5459   else
5460     insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5461                                       place_to_insert);
5462 
5463   /* Return the nops generated for preserving of data sets back
5464      into pool.  */
5465   if (INSN_NOP_P (place_to_insert))
5466     return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5467   remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5468 
5469   av_set_clear (&expr_seq);
5470 
5471   /* Save the expression scheduled so to reset target availability if we'll
5472      meet it later on the same fence.  */
5473   if (EXPR_WAS_RENAMED (expr_vliw))
5474     vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5475 
5476   /* Check that the recent movement didn't destroyed loop
5477      structure.  */
5478   gcc_assert (!pipelining_p
5479               || current_loop_nest == NULL
5480               || loop_latch_edge (current_loop_nest));
5481   return insn;
5482 }
5483 
5484 /* Stall for N cycles on FENCE.  */
5485 static void
5486 stall_for_cycles (fence_t fence, int n)
5487 {
5488   int could_more;
5489 
5490   could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5491   while (n--)
5492     advance_one_cycle (fence);
5493   if (could_more)
5494     FENCE_AFTER_STALL_P (fence) = 1;
5495 }
5496 
5497 /* Gather a parallel group of insns at FENCE and assign their seqno
5498    to SEQNO.  All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5499    list for later recalculation of seqnos.  */
5500 static void
5501 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5502 {
5503   blist_t bnds = NULL, *bnds_tailp;
5504   av_set_t av_vliw = NULL;
5505   insn_t insn = FENCE_INSN (fence);
5506 
5507   if (sched_verbose >= 2)
5508     sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5509                INSN_UID (insn), FENCE_CYCLE (fence));
5510 
5511   blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5512   bnds_tailp = &BLIST_NEXT (bnds);
5513   set_target_context (FENCE_TC (fence));
5514   can_issue_more = FENCE_ISSUE_MORE (fence);
5515   target_bb = INSN_BB (insn);
5516 
5517   /* Do while we can add any operation to the current group.  */
5518   do
5519     {
5520       blist_t *bnds_tailp1, *bndsp;
5521       expr_t expr_vliw;
5522       int need_stall = false;
5523       int was_stall = 0, scheduled_insns = 0;
5524       int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5525       int max_stall = pipelining_p ? 1 : 3;
5526       bool last_insn_was_debug = false;
5527       bool was_debug_bb_end_p = false;
5528 
5529       compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5530       remove_insns_that_need_bookkeeping (fence, &av_vliw);
5531       remove_insns_for_debug (bnds, &av_vliw);
5532 
5533       /* Return early if we have nothing to schedule.  */
5534       if (av_vliw == NULL)
5535         break;
5536 
5537       /* Choose the best expression and, if needed, destination register
5538 	 for it.  */
5539       do
5540         {
5541           expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5542           if (! expr_vliw && need_stall)
5543             {
5544               /* All expressions required a stall.  Do not recompute av sets
5545                  as we'll get the same answer (modulo the insns between
5546                  the fence and its boundary, which will not be available for
5547                  pipelining).
5548 		 If we are going to stall for too long, break to recompute av
5549 		 sets and bring more insns for pipelining.  */
5550               was_stall++;
5551 	      if (need_stall <= 3)
5552 		stall_for_cycles (fence, need_stall);
5553 	      else
5554 		{
5555 		  stall_for_cycles (fence, 1);
5556 		  break;
5557 		}
5558             }
5559         }
5560       while (! expr_vliw && need_stall);
5561 
5562       /* Now either we've selected expr_vliw or we have nothing to schedule.  */
5563       if (!expr_vliw)
5564         {
5565 	  av_set_clear (&av_vliw);
5566           break;
5567         }
5568 
5569       bndsp = &bnds;
5570       bnds_tailp1 = bnds_tailp;
5571 
5572       do
5573 	/* This code will be executed only once until we'd have several
5574            boundaries per fence.  */
5575         {
5576 	  bnd_t bnd = BLIST_BND (*bndsp);
5577 
5578 	  if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5579 	    {
5580 	      bndsp = &BLIST_NEXT (*bndsp);
5581 	      continue;
5582 	    }
5583 
5584           insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5585 	  last_insn_was_debug = DEBUG_INSN_P (insn);
5586 	  if (last_insn_was_debug)
5587 	    was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5588           update_fence_and_insn (fence, insn, need_stall);
5589           bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5590 
5591 	  /* Add insn to the list of scheduled on this cycle instructions.  */
5592 	  ilist_add (*scheduled_insns_tailpp, insn);
5593 	  *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5594         }
5595       while (*bndsp != *bnds_tailp1);
5596 
5597       av_set_clear (&av_vliw);
5598       if (!last_insn_was_debug)
5599 	scheduled_insns++;
5600 
5601       /* We currently support information about candidate blocks only for
5602 	 one 'target_bb' block.  Hence we can't schedule after jump insn,
5603 	 as this will bring two boundaries and, hence, necessity to handle
5604 	 information for two or more blocks concurrently.  */
5605       if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5606           || (was_stall
5607               && (was_stall >= max_stall
5608                   || scheduled_insns >= max_insns)))
5609         break;
5610     }
5611   while (bnds);
5612 
5613   gcc_assert (!FENCE_BNDS (fence));
5614 
5615   /* Update boundaries of the FENCE.  */
5616   while (bnds)
5617     {
5618       ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5619 
5620       if (ptr)
5621 	{
5622 	  insn = ILIST_INSN (ptr);
5623 
5624 	  if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5625 	    ilist_add (&FENCE_BNDS (fence), insn);
5626 	}
5627 
5628       blist_remove (&bnds);
5629     }
5630 
5631   /* Update target context on the fence.  */
5632   reset_target_context (FENCE_TC (fence), false);
5633 }
5634 
5635 /* All exprs in ORIG_OPS must have the same destination register or memory.
5636    Return that destination.  */
5637 static rtx
5638 get_dest_from_orig_ops (av_set_t orig_ops)
5639 {
5640   rtx dest = NULL_RTX;
5641   av_set_iterator av_it;
5642   expr_t expr;
5643   bool first_p = true;
5644 
5645   FOR_EACH_EXPR (expr, av_it, orig_ops)
5646     {
5647       rtx x = EXPR_LHS (expr);
5648 
5649       if (first_p)
5650 	{
5651 	  first_p = false;
5652 	  dest = x;
5653 	}
5654       else
5655 	gcc_assert (dest == x
5656 		    || (dest != NULL_RTX && x != NULL_RTX
5657 			&& rtx_equal_p (dest, x)));
5658     }
5659 
5660   return dest;
5661 }
5662 
5663 /* Update data sets for the bookkeeping block and record those expressions
5664    which become no longer available after inserting this bookkeeping.  */
5665 static void
5666 update_and_record_unavailable_insns (basic_block book_block)
5667 {
5668   av_set_iterator i;
5669   av_set_t old_av_set = NULL;
5670   expr_t cur_expr;
5671   rtx bb_end = sel_bb_end (book_block);
5672 
5673   /* First, get correct liveness in the bookkeeping block.  The problem is
5674      the range between the bookeeping insn and the end of block.  */
5675   update_liveness_on_insn (bb_end);
5676   if (control_flow_insn_p (bb_end))
5677     update_liveness_on_insn (PREV_INSN (bb_end));
5678 
5679   /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5680      fence above, where we may choose to schedule an insn which is
5681      actually blocked from moving up with the bookkeeping we create here.  */
5682   if (AV_SET_VALID_P (sel_bb_head (book_block)))
5683     {
5684       old_av_set = av_set_copy (BB_AV_SET (book_block));
5685       update_data_sets (sel_bb_head (book_block));
5686 
5687       /* Traverse all the expressions in the old av_set and check whether
5688 	 CUR_EXPR is in new AV_SET.  */
5689       FOR_EACH_EXPR (cur_expr, i, old_av_set)
5690         {
5691           expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5692 					   EXPR_VINSN (cur_expr));
5693 
5694           if (! new_expr
5695               /* In this case, we can just turn off the E_T_A bit, but we can't
5696                  represent this information with the current vector.  */
5697               || EXPR_TARGET_AVAILABLE (new_expr)
5698 		 != EXPR_TARGET_AVAILABLE (cur_expr))
5699 	    /* Unfortunately, the below code could be also fired up on
5700 	       separable insns.
5701 	       FIXME: add an example of how this could happen.  */
5702             vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5703         }
5704 
5705       av_set_clear (&old_av_set);
5706     }
5707 }
5708 
5709 /* The main effect of this function is that sparams->c_expr is merged
5710    with (or copied to) lparams->c_expr_merged.  If there's only one successor,
5711    we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5712    lparams->c_expr_merged is copied back to sparams->c_expr after all
5713    successors has been traversed.  lparams->c_expr_local is an expr allocated
5714    on stack in the caller function, and is used if there is more than one
5715    successor.
5716 
5717    SUCC is one of the SUCCS_NORMAL successors of INSN,
5718    MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5719    LPARAMS and STATIC_PARAMS contain the parameters described above.  */
5720 static void
5721 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5722                      insn_t succ ATTRIBUTE_UNUSED,
5723 		     int moveop_drv_call_res,
5724 		     cmpd_local_params_p lparams, void *static_params)
5725 {
5726   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5727 
5728   /* Nothing to do, if original expr wasn't found below.  */
5729   if (moveop_drv_call_res != 1)
5730     return;
5731 
5732   /* If this is a first successor.  */
5733   if (!lparams->c_expr_merged)
5734     {
5735       lparams->c_expr_merged = sparams->c_expr;
5736       sparams->c_expr = lparams->c_expr_local;
5737     }
5738   else
5739     {
5740       /* We must merge all found expressions to get reasonable
5741 	 EXPR_SPEC_DONE_DS for the resulting insn.  If we don't
5742 	 do so then we can first find the expr with epsilon
5743 	 speculation success probability and only then with the
5744 	 good probability.  As a result the insn will get epsilon
5745 	 probability and will never be scheduled because of
5746 	 weakness_cutoff in find_best_expr.
5747 
5748 	 We call merge_expr_data here instead of merge_expr
5749 	 because due to speculation C_EXPR and X may have the
5750 	 same insns with different speculation types.  And as of
5751 	 now such insns are considered non-equal.
5752 
5753 	 However, EXPR_SCHED_TIMES is different -- we must get
5754 	 SCHED_TIMES from a real insn, not a bookkeeping copy.
5755 	 We force this here.  Instead, we may consider merging
5756 	 SCHED_TIMES to the maximum instead of minimum in the
5757 	 below function.  */
5758       int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5759 
5760       merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5761       if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5762 	EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5763 
5764       clear_expr (sparams->c_expr);
5765     }
5766 }
5767 
5768 /*  Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5769 
5770    SUCC is one of the SUCCS_NORMAL successors of INSN,
5771    MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5772      if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5773    STATIC_PARAMS contain USED_REGS set.  */
5774 static void
5775 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5776 		 int moveop_drv_call_res,
5777 		 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5778 		 void *static_params)
5779 {
5780   regset succ_live;
5781   fur_static_params_p sparams = (fur_static_params_p) static_params;
5782 
5783   /* Here we compute live regsets only for branches that do not lie
5784      on the code motion paths.  These branches correspond to value
5785      MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5786      for such branches code_motion_path_driver is not called.  */
5787   if (moveop_drv_call_res != 0)
5788     return;
5789 
5790   /* Mark all registers that do not meet the following condition:
5791      (3) not live on the other path of any conditional branch
5792      that is passed by the operation, in case original
5793      operations are not present on both paths of the
5794      conditional branch.  */
5795   succ_live = compute_live (succ);
5796   IOR_REG_SET (sparams->used_regs, succ_live);
5797 }
5798 
5799 /* This function is called after the last successor.  Copies LP->C_EXPR_MERGED
5800    into SP->CEXPR.  */
5801 static void
5802 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5803 {
5804   moveop_static_params_p sp = (moveop_static_params_p) sparams;
5805 
5806   sp->c_expr = lp->c_expr_merged;
5807 }
5808 
5809 /* Track bookkeeping copies created, insns scheduled, and blocks for
5810    rescheduling when INSN is found by move_op.  */
5811 static void
5812 track_scheduled_insns_and_blocks (rtx insn)
5813 {
5814   /* Even if this insn can be a copy that will be removed during current move_op,
5815      we still need to count it as an originator.  */
5816   bitmap_set_bit (current_originators, INSN_UID (insn));
5817 
5818   if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5819     {
5820       /* Note that original block needs to be rescheduled, as we pulled an
5821 	 instruction out of it.  */
5822       if (INSN_SCHED_TIMES (insn) > 0)
5823 	bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5824       else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5825 	num_insns_scheduled++;
5826     }
5827 
5828   /* For instructions we must immediately remove insn from the
5829      stream, so subsequent update_data_sets () won't include this
5830      insn into av_set.
5831      For expr we must make insn look like "INSN_REG (insn) := c_expr".  */
5832   if (INSN_UID (insn) > max_uid_before_move_op)
5833     stat_bookkeeping_copies--;
5834 }
5835 
5836 /* Emit a register-register copy for INSN if needed.  Return true if
5837    emitted one.  PARAMS is the move_op static parameters.  */
5838 static bool
5839 maybe_emit_renaming_copy (rtx insn,
5840                           moveop_static_params_p params)
5841 {
5842   bool insn_emitted  = false;
5843   rtx cur_reg;
5844 
5845   /* Bail out early when expression can not be renamed at all.  */
5846   if (!EXPR_SEPARABLE_P (params->c_expr))
5847     return false;
5848 
5849   cur_reg = expr_dest_reg (params->c_expr);
5850   gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5851 
5852   /* If original operation has expr and the register chosen for
5853      that expr is not original operation's dest reg, substitute
5854      operation's right hand side with the register chosen.  */
5855   if (REGNO (params->dest) != REGNO (cur_reg))
5856     {
5857       insn_t reg_move_insn, reg_move_insn_rtx;
5858 
5859       reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5860                                                     params->dest);
5861       reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5862                                                    INSN_EXPR (insn),
5863                                                    INSN_SEQNO (insn),
5864                                                    insn);
5865       EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5866       replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5867 
5868       insn_emitted = true;
5869       params->was_renamed = true;
5870     }
5871 
5872   return insn_emitted;
5873 }
5874 
5875 /* Emit a speculative check for INSN speculated as EXPR if needed.
5876    Return true if we've  emitted one.  PARAMS is the move_op static
5877    parameters.  */
5878 static bool
5879 maybe_emit_speculative_check (rtx insn, expr_t expr,
5880                               moveop_static_params_p params)
5881 {
5882   bool insn_emitted = false;
5883   insn_t x;
5884   ds_t check_ds;
5885 
5886   check_ds = get_spec_check_type_for_insn (insn, expr);
5887   if (check_ds != 0)
5888     {
5889       /* A speculation check should be inserted.  */
5890       x = create_speculation_check (params->c_expr, check_ds, insn);
5891       insn_emitted = true;
5892     }
5893   else
5894     {
5895       EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5896       x = insn;
5897     }
5898 
5899   gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5900               && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5901   return insn_emitted;
5902 }
5903 
5904 /* Handle transformations that leave an insn in place of original
5905    insn such as renaming/speculation.  Return true if one of such
5906    transformations actually happened, and we have emitted this insn.  */
5907 static bool
5908 handle_emitting_transformations (rtx insn, expr_t expr,
5909                                  moveop_static_params_p params)
5910 {
5911   bool insn_emitted = false;
5912 
5913   insn_emitted = maybe_emit_renaming_copy (insn, params);
5914   insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5915 
5916   return insn_emitted;
5917 }
5918 
5919 /* If INSN is the only insn in the basic block (not counting JUMP,
5920    which may be a jump to next insn, and DEBUG_INSNs), we want to
5921    leave a NOP there till the return to fill_insns.  */
5922 
5923 static bool
5924 need_nop_to_preserve_insn_bb (rtx insn)
5925 {
5926   insn_t bb_head, bb_end, bb_next, in_next;
5927   basic_block bb = BLOCK_FOR_INSN (insn);
5928 
5929   bb_head = sel_bb_head (bb);
5930   bb_end = sel_bb_end (bb);
5931 
5932   if (bb_head == bb_end)
5933     return true;
5934 
5935   while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5936     bb_head = NEXT_INSN (bb_head);
5937 
5938   if (bb_head == bb_end)
5939     return true;
5940 
5941   while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5942     bb_end = PREV_INSN (bb_end);
5943 
5944   if (bb_head == bb_end)
5945     return true;
5946 
5947   bb_next = NEXT_INSN (bb_head);
5948   while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5949     bb_next = NEXT_INSN (bb_next);
5950 
5951   if (bb_next == bb_end && JUMP_P (bb_end))
5952     return true;
5953 
5954   in_next = NEXT_INSN (insn);
5955   while (DEBUG_INSN_P (in_next))
5956     in_next = NEXT_INSN (in_next);
5957 
5958   if (IN_CURRENT_FENCE_P (in_next))
5959     return true;
5960 
5961   return false;
5962 }
5963 
5964 /* Remove INSN from stream.  When ONLY_DISCONNECT is true, its data
5965    is not removed but reused when INSN is re-emitted.  */
5966 static void
5967 remove_insn_from_stream (rtx insn, bool only_disconnect)
5968 {
5969   /* If there's only one insn in the BB, make sure that a nop is
5970      inserted into it, so the basic block won't disappear when we'll
5971      delete INSN below with sel_remove_insn. It should also survive
5972      till the return to fill_insns.  */
5973   if (need_nop_to_preserve_insn_bb (insn))
5974     {
5975       insn_t nop = get_nop_from_pool (insn);
5976       gcc_assert (INSN_NOP_P (nop));
5977       VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5978     }
5979 
5980   sel_remove_insn (insn, only_disconnect, false);
5981 }
5982 
5983 /* This function is called when original expr is found.
5984    INSN - current insn traversed, EXPR - the corresponding expr found.
5985    LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5986    is static parameters of move_op.  */
5987 static void
5988 move_op_orig_expr_found (insn_t insn, expr_t expr,
5989                          cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5990                          void *static_params)
5991 {
5992   bool only_disconnect, insn_emitted;
5993   moveop_static_params_p params = (moveop_static_params_p) static_params;
5994 
5995   copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5996   track_scheduled_insns_and_blocks (insn);
5997   insn_emitted = handle_emitting_transformations (insn, expr, params);
5998   only_disconnect = (params->uid == INSN_UID (insn)
5999                      && ! insn_emitted  && ! EXPR_WAS_CHANGED (expr));
6000 
6001   /* Mark that we've disconnected an insn.  */
6002   if (only_disconnect)
6003     params->uid = -1;
6004   remove_insn_from_stream (insn, only_disconnect);
6005 }
6006 
6007 /* The function is called when original expr is found.
6008    INSN - current insn traversed, EXPR - the corresponding expr found,
6009    crosses_call and original_insns in STATIC_PARAMS are updated.  */
6010 static void
6011 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6012                      cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6013                      void *static_params)
6014 {
6015   fur_static_params_p params = (fur_static_params_p) static_params;
6016   regset tmp;
6017 
6018   if (CALL_P (insn))
6019     params->crosses_call = true;
6020 
6021   def_list_add (params->original_insns, insn, params->crosses_call);
6022 
6023   /* Mark the registers that do not meet the following condition:
6024     (2) not among the live registers of the point
6025 	immediately following the first original operation on
6026 	a given downward path, except for the original target
6027 	register of the operation.  */
6028   tmp = get_clear_regset_from_pool ();
6029   compute_live_below_insn (insn, tmp);
6030   AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6031   AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6032   IOR_REG_SET (params->used_regs, tmp);
6033   return_regset_to_pool (tmp);
6034 
6035   /* (*1) We need to add to USED_REGS registers that are read by
6036      INSN's lhs. This may lead to choosing wrong src register.
6037      E.g. (scheduling const expr enabled):
6038 
6039 	429: ax=0x0	<- Can't use AX for this expr (0x0)
6040 	433: dx=[bp-0x18]
6041 	427: [ax+dx+0x1]=ax
6042 	  REG_DEAD: ax
6043 	168: di=dx
6044 	  REG_DEAD: dx
6045      */
6046   /* FIXME: see comment above and enable MEM_P
6047      in vinsn_separable_p.  */
6048   gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6049 	      || !MEM_P (INSN_LHS (insn)));
6050 }
6051 
6052 /* This function is called on the ascending pass, before returning from
6053    current basic block.  */
6054 static void
6055 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6056                        void *static_params)
6057 {
6058   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6059   basic_block book_block = NULL;
6060 
6061   /* When we have removed the boundary insn for scheduling, which also
6062      happened to be the end insn in its bb, we don't need to update sets.  */
6063   if (!lparams->removed_last_insn
6064       && lparams->e1
6065       && sel_bb_head_p (insn))
6066     {
6067       /* We should generate bookkeeping code only if we are not at the
6068          top level of the move_op.  */
6069       if (sel_num_cfg_preds_gt_1 (insn))
6070         book_block = generate_bookkeeping_insn (sparams->c_expr,
6071                                                 lparams->e1, lparams->e2);
6072       /* Update data sets for the current insn.  */
6073       update_data_sets (insn);
6074     }
6075 
6076   /* If bookkeeping code was inserted, we need to update av sets of basic
6077      block that received bookkeeping.  After generation of bookkeeping insn,
6078      bookkeeping block does not contain valid av set because we are not following
6079      the original algorithm in every detail with regards to e.g. renaming
6080      simple reg-reg copies.  Consider example:
6081 
6082      bookkeeping block           scheduling fence
6083      \            /
6084       \    join  /
6085        ----------
6086        |        |
6087        ----------
6088       /           \
6089      /             \
6090      r1 := r2          r1 := r3
6091 
6092      We try to schedule insn "r1 := r3" on the current
6093      scheduling fence.  Also, note that av set of bookkeeping block
6094      contain both insns "r1 := r2" and "r1 := r3".  When the insn has
6095      been scheduled, the CFG is as follows:
6096 
6097      r1 := r3               r1 := r3
6098      bookkeeping block           scheduling fence
6099      \            /
6100       \    join  /
6101        ----------
6102        |        |
6103        ----------
6104       /          \
6105      /            \
6106      r1 := r2
6107 
6108      Here, insn "r1 := r3" was scheduled at the current scheduling point
6109      and bookkeeping code was generated at the bookeeping block.  This
6110      way insn "r1 := r2" is no longer available as a whole instruction
6111      (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6112      This situation is handled by calling update_data_sets.
6113 
6114      Since update_data_sets is called only on the bookkeeping block, and
6115      it also may have predecessors with av_sets, containing instructions that
6116      are no longer available, we save all such expressions that become
6117      unavailable during data sets update on the bookkeeping block in
6118      VEC_BOOKKEEPING_BLOCKED_VINSNS.  Later we avoid selecting such
6119      expressions for scheduling.  This allows us to avoid recomputation of
6120      av_sets outside the code motion path.  */
6121 
6122   if (book_block)
6123     update_and_record_unavailable_insns (book_block);
6124 
6125   /* If INSN was previously marked for deletion, it's time to do it.  */
6126   if (lparams->removed_last_insn)
6127     insn = PREV_INSN (insn);
6128 
6129   /* Do not tidy control flow at the topmost moveop, as we can erroneously
6130      kill a block with a single nop in which the insn should be emitted.  */
6131   if (lparams->e1)
6132     tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6133 }
6134 
6135 /* This function is called on the ascending pass, before returning from the
6136    current basic block.  */
6137 static void
6138 fur_at_first_insn (insn_t insn,
6139                    cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6140                    void *static_params ATTRIBUTE_UNUSED)
6141 {
6142   gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6143 	      || AV_LEVEL (insn) == -1);
6144 }
6145 
6146 /* Called on the backward stage of recursion to call moveup_expr for insn
6147    and sparams->c_expr.  */
6148 static void
6149 move_op_ascend (insn_t insn, void *static_params)
6150 {
6151   enum MOVEUP_EXPR_CODE res;
6152   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6153 
6154   if (! INSN_NOP_P (insn))
6155     {
6156       res = moveup_expr_cached (sparams->c_expr, insn, false);
6157       gcc_assert (res != MOVEUP_EXPR_NULL);
6158     }
6159 
6160   /* Update liveness for this insn as it was invalidated.  */
6161   update_liveness_on_insn (insn);
6162 }
6163 
6164 /* This function is called on enter to the basic block.
6165    Returns TRUE if this block already have been visited and
6166    code_motion_path_driver should return 1, FALSE otherwise.  */
6167 static int
6168 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6169 	      void *static_params, bool visited_p)
6170 {
6171   fur_static_params_p sparams = (fur_static_params_p) static_params;
6172 
6173   if (visited_p)
6174     {
6175       /* If we have found something below this block, there should be at
6176 	 least one insn in ORIGINAL_INSNS.  */
6177       gcc_assert (*sparams->original_insns);
6178 
6179       /* Adjust CROSSES_CALL, since we may have come to this block along
6180 	 different path.  */
6181       DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6182 	  |= sparams->crosses_call;
6183     }
6184   else
6185     local_params->old_original_insns = *sparams->original_insns;
6186 
6187   return 1;
6188 }
6189 
6190 /* Same as above but for move_op.   */
6191 static int
6192 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6193                   cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6194                   void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6195 {
6196   if (visited_p)
6197     return -1;
6198   return 1;
6199 }
6200 
6201 /* This function is called while descending current basic block if current
6202    insn is not the original EXPR we're searching for.
6203 
6204    Return value: FALSE, if code_motion_path_driver should perform a local
6205 			cleanup and return 0 itself;
6206 		 TRUE, if code_motion_path_driver should continue.  */
6207 static bool
6208 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6209 			    void *static_params)
6210 {
6211   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6212 
6213 #ifdef ENABLE_CHECKING
6214   sparams->failed_insn = insn;
6215 #endif
6216 
6217   /* If we're scheduling separate expr, in order to generate correct code
6218      we need to stop the search at bookkeeping code generated with the
6219      same destination register or memory.  */
6220   if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6221     return false;
6222   return true;
6223 }
6224 
6225 /* This function is called while descending current basic block if current
6226    insn is not the original EXPR we're searching for.
6227 
6228    Return value: TRUE (code_motion_path_driver should continue).  */
6229 static bool
6230 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6231 {
6232   bool mutexed;
6233   expr_t r;
6234   av_set_iterator avi;
6235   fur_static_params_p sparams = (fur_static_params_p) static_params;
6236 
6237   if (CALL_P (insn))
6238     sparams->crosses_call = true;
6239   else if (DEBUG_INSN_P (insn))
6240     return true;
6241 
6242   /* If current insn we are looking at cannot be executed together
6243      with original insn, then we can skip it safely.
6244 
6245      Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6246 	      INSN = (!p6) r14 = r14 + 1;
6247 
6248      Here we can schedule ORIG_OP with lhs = r14, though only
6249      looking at the set of used and set registers of INSN we must
6250      forbid it.  So, add set/used in INSN registers to the
6251      untouchable set only if there is an insn in ORIG_OPS that can
6252      affect INSN.  */
6253   mutexed = true;
6254   FOR_EACH_EXPR (r, avi, orig_ops)
6255     if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6256       {
6257 	mutexed = false;
6258 	break;
6259       }
6260 
6261   /* Mark all registers that do not meet the following condition:
6262      (1) Not set or read on any path from xi to an instance of the
6263 	 original operation.  */
6264   if (!mutexed)
6265     {
6266       IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6267       IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6268       IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6269     }
6270 
6271   return true;
6272 }
6273 
6274 /* Hooks and data to perform move_op operations with code_motion_path_driver.  */
6275 struct code_motion_path_driver_info_def move_op_hooks = {
6276   move_op_on_enter,
6277   move_op_orig_expr_found,
6278   move_op_orig_expr_not_found,
6279   move_op_merge_succs,
6280   move_op_after_merge_succs,
6281   move_op_ascend,
6282   move_op_at_first_insn,
6283   SUCCS_NORMAL,
6284   "move_op"
6285 };
6286 
6287 /* Hooks and data to perform find_used_regs operations
6288    with code_motion_path_driver.  */
6289 struct code_motion_path_driver_info_def fur_hooks = {
6290   fur_on_enter,
6291   fur_orig_expr_found,
6292   fur_orig_expr_not_found,
6293   fur_merge_succs,
6294   NULL, /* fur_after_merge_succs */
6295   NULL, /* fur_ascend */
6296   fur_at_first_insn,
6297   SUCCS_ALL,
6298   "find_used_regs"
6299 };
6300 
6301 /* Traverse all successors of INSN.  For each successor that is SUCCS_NORMAL
6302    code_motion_path_driver is called recursively.  Original operation
6303    was found at least on one path that is starting with one of INSN's
6304    successors (this fact is asserted).  ORIG_OPS is expressions we're looking
6305    for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6306    of either move_op or find_used_regs depending on the caller.
6307 
6308    Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6309    know for sure at this point.  */
6310 static int
6311 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6312                                 ilist_t path, void *static_params)
6313 {
6314   int res = 0;
6315   succ_iterator succ_i;
6316   rtx succ;
6317   basic_block bb;
6318   int old_index;
6319   unsigned old_succs;
6320 
6321   struct cmpd_local_params lparams;
6322   expr_def _x;
6323 
6324   lparams.c_expr_local = &_x;
6325   lparams.c_expr_merged = NULL;
6326 
6327   /* We need to process only NORMAL succs for move_op, and collect live
6328      registers from ALL branches (including those leading out of the
6329      region) for find_used_regs.
6330 
6331      In move_op, there can be a case when insn's bb number has changed
6332      due to created bookkeeping.  This happens very rare, as we need to
6333      move expression from the beginning to the end of the same block.
6334      Rescan successors in this case.  */
6335 
6336  rescan:
6337   bb = BLOCK_FOR_INSN (insn);
6338   old_index = bb->index;
6339   old_succs = EDGE_COUNT (bb->succs);
6340 
6341   FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6342     {
6343       int b;
6344 
6345       lparams.e1 = succ_i.e1;
6346       lparams.e2 = succ_i.e2;
6347 
6348       /* Go deep into recursion only for NORMAL edges (non-backedges within the
6349 	 current region).  */
6350       if (succ_i.current_flags == SUCCS_NORMAL)
6351 	b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6352 				     static_params);
6353       else
6354 	b = 0;
6355 
6356       /* Merge c_expres found or unify live register sets from different
6357 	 successors.  */
6358       code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6359 						 static_params);
6360       if (b == 1)
6361         res = b;
6362       else if (b == -1 && res != 1)
6363         res = b;
6364 
6365       /* We have simplified the control flow below this point.  In this case,
6366          the iterator becomes invalid.  We need to try again.  */
6367       if (BLOCK_FOR_INSN (insn)->index != old_index
6368           || EDGE_COUNT (bb->succs) != old_succs)
6369         {
6370           insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6371           goto rescan;
6372         }
6373     }
6374 
6375 #ifdef ENABLE_CHECKING
6376   /* Here, RES==1 if original expr was found at least for one of the
6377      successors.  After the loop, RES may happen to have zero value
6378      only if at some point the expr searched is present in av_set, but is
6379      not found below.  In most cases, this situation is an error.
6380      The exception is when the original operation is blocked by
6381      bookkeeping generated for another fence or for another path in current
6382      move_op.  */
6383   gcc_assert (res == 1
6384 	      || (res == 0
6385 		  && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6386 							       static_params))
6387 	      || res == -1);
6388 #endif
6389 
6390   /* Merge data, clean up, etc.  */
6391   if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6392     code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6393 
6394   return res;
6395 }
6396 
6397 
6398 /* Perform a cleanup when the driver is about to terminate.  ORIG_OPS_P
6399    is the pointer to the av set with expressions we were looking for,
6400    PATH_P is the pointer to the traversed path.  */
6401 static inline void
6402 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6403 {
6404   ilist_remove (path_p);
6405   av_set_clear (orig_ops_p);
6406 }
6407 
6408 /* The driver function that implements move_op or find_used_regs
6409    functionality dependent whether code_motion_path_driver_INFO is set to
6410    &MOVE_OP_HOOKS or &FUR_HOOKS.  This function implements the common parts
6411    of code (CFG traversal etc) that are shared among both functions.  INSN
6412    is the insn we're starting the search from, ORIG_OPS are the expressions
6413    we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6414    parameters of the driver, and STATIC_PARAMS are static parameters of
6415    the caller.
6416 
6417    Returns whether original instructions were found.  Note that top-level
6418    code_motion_path_driver always returns true.  */
6419 static int
6420 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6421 			 cmpd_local_params_p local_params_in,
6422 			 void *static_params)
6423 {
6424   expr_t expr = NULL;
6425   basic_block bb = BLOCK_FOR_INSN (insn);
6426   insn_t first_insn, bb_tail, before_first;
6427   bool removed_last_insn = false;
6428 
6429   if (sched_verbose >= 6)
6430     {
6431       sel_print ("%s (", code_motion_path_driver_info->routine_name);
6432       dump_insn (insn);
6433       sel_print (",");
6434       dump_av_set (orig_ops);
6435       sel_print (")\n");
6436     }
6437 
6438   gcc_assert (orig_ops);
6439 
6440   /* If no original operations exist below this insn, return immediately.  */
6441   if (is_ineligible_successor (insn, path))
6442     {
6443       if (sched_verbose >= 6)
6444         sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6445       return false;
6446     }
6447 
6448   /* The block can have invalid av set, in which case it was created earlier
6449      during move_op.  Return immediately.  */
6450   if (sel_bb_head_p (insn))
6451     {
6452       if (! AV_SET_VALID_P (insn))
6453         {
6454           if (sched_verbose >= 6)
6455             sel_print ("Returned from block %d as it had invalid av set\n",
6456                        bb->index);
6457           return false;
6458         }
6459 
6460       if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6461         {
6462           /* We have already found an original operation on this branch, do not
6463              go any further and just return TRUE here.  If we don't stop here,
6464              function can have exponential behaviour even on the small code
6465              with many different paths (e.g. with data speculation and
6466              recovery blocks).  */
6467           if (sched_verbose >= 6)
6468             sel_print ("Block %d already visited in this traversal\n", bb->index);
6469           if (code_motion_path_driver_info->on_enter)
6470             return code_motion_path_driver_info->on_enter (insn,
6471                                                            local_params_in,
6472                                                            static_params,
6473                                                            true);
6474         }
6475     }
6476 
6477   if (code_motion_path_driver_info->on_enter)
6478     code_motion_path_driver_info->on_enter (insn, local_params_in,
6479                                             static_params, false);
6480   orig_ops = av_set_copy (orig_ops);
6481 
6482   /* Filter the orig_ops set.  */
6483   if (AV_SET_VALID_P (insn))
6484     av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6485 
6486   /* If no more original ops, return immediately.  */
6487   if (!orig_ops)
6488     {
6489       if (sched_verbose >= 6)
6490         sel_print ("No intersection with av set of block %d\n", bb->index);
6491       return false;
6492     }
6493 
6494   /* For non-speculative insns we have to leave only one form of the
6495      original operation, because if we don't, we may end up with
6496      different C_EXPRes and, consequently, with bookkeepings for different
6497      expression forms along the same code motion path.  That may lead to
6498      generation of incorrect code.  So for each code motion we stick to
6499      the single form of the instruction,  except for speculative insns
6500      which we need to keep in different forms with all speculation
6501      types.  */
6502   av_set_leave_one_nonspec (&orig_ops);
6503 
6504   /* It is not possible that all ORIG_OPS are filtered out.  */
6505   gcc_assert (orig_ops);
6506 
6507   /* It is enough to place only heads and tails of visited basic blocks into
6508      the PATH.  */
6509   ilist_add (&path, insn);
6510   first_insn = insn;
6511   bb_tail = sel_bb_end (bb);
6512 
6513   /* Descend the basic block in search of the original expr; this part
6514      corresponds to the part of the original move_op procedure executed
6515      before the recursive call.  */
6516   for (;;)
6517     {
6518       /* Look at the insn and decide if it could be an ancestor of currently
6519 	 scheduling operation.  If it is so, then the insn "dest = op" could
6520 	 either be replaced with "dest = reg", because REG now holds the result
6521 	 of OP, or just removed, if we've scheduled the insn as a whole.
6522 
6523 	 If this insn doesn't contain currently scheduling OP, then proceed
6524 	 with searching and look at its successors.  Operations we're searching
6525 	 for could have changed when moving up through this insn via
6526 	 substituting.  In this case, perform unsubstitution on them first.
6527 
6528 	 When traversing the DAG below this insn is finished, insert
6529 	 bookkeeping code, if the insn is a joint point, and remove
6530 	 leftovers.  */
6531 
6532       expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6533       if (expr)
6534 	{
6535 	  insn_t last_insn = PREV_INSN (insn);
6536 
6537 	  /* We have found the original operation.   */
6538           if (sched_verbose >= 6)
6539             sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6540 
6541 	  code_motion_path_driver_info->orig_expr_found
6542             (insn, expr, local_params_in, static_params);
6543 
6544 	  /* Step back, so on the way back we'll start traversing from the
6545 	     previous insn (or we'll see that it's bb_note and skip that
6546 	     loop).  */
6547           if (insn == first_insn)
6548             {
6549               first_insn = NEXT_INSN (last_insn);
6550               removed_last_insn = sel_bb_end_p (last_insn);
6551             }
6552 	  insn = last_insn;
6553 	  break;
6554 	}
6555       else
6556 	{
6557 	  /* We haven't found the original expr, continue descending the basic
6558 	     block.  */
6559 	  if (code_motion_path_driver_info->orig_expr_not_found
6560               (insn, orig_ops, static_params))
6561 	    {
6562 	      /* Av set ops could have been changed when moving through this
6563 	         insn.  To find them below it, we have to un-substitute them.  */
6564 	      undo_transformations (&orig_ops, insn);
6565 	    }
6566 	  else
6567 	    {
6568 	      /* Clean up and return, if the hook tells us to do so.  It may
6569 		 happen if we've encountered the previously created
6570 		 bookkeeping.  */
6571 	      code_motion_path_driver_cleanup (&orig_ops, &path);
6572 	      return -1;
6573 	    }
6574 
6575 	  gcc_assert (orig_ops);
6576         }
6577 
6578       /* Stop at insn if we got to the end of BB.  */
6579       if (insn == bb_tail)
6580 	break;
6581 
6582       insn = NEXT_INSN (insn);
6583     }
6584 
6585   /* Here INSN either points to the insn before the original insn (may be
6586      bb_note, if original insn was a bb_head) or to the bb_end.  */
6587   if (!expr)
6588     {
6589       int res;
6590       rtx last_insn = PREV_INSN (insn);
6591       bool added_to_path;
6592 
6593       gcc_assert (insn == sel_bb_end (bb));
6594 
6595       /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6596 	 it's already in PATH then).  */
6597       if (insn != first_insn)
6598 	{
6599 	  ilist_add (&path, insn);
6600 	  added_to_path = true;
6601 	}
6602       else
6603         added_to_path = false;
6604 
6605       /* Process_successors should be able to find at least one
6606 	 successor for which code_motion_path_driver returns TRUE.  */
6607       res = code_motion_process_successors (insn, orig_ops,
6608                                             path, static_params);
6609 
6610       /* Jump in the end of basic block could have been removed or replaced
6611          during code_motion_process_successors, so recompute insn as the
6612          last insn in bb.  */
6613       if (NEXT_INSN (last_insn) != insn)
6614         {
6615           insn = sel_bb_end (bb);
6616           first_insn = sel_bb_head (bb);
6617         }
6618 
6619       /* Remove bb tail from path.  */
6620       if (added_to_path)
6621 	ilist_remove (&path);
6622 
6623       if (res != 1)
6624 	{
6625 	  /* This is the case when one of the original expr is no longer available
6626 	     due to bookkeeping created on this branch with the same register.
6627 	     In the original algorithm, which doesn't have update_data_sets call
6628 	     on a bookkeeping block, it would simply result in returning
6629 	     FALSE when we've encountered a previously generated bookkeeping
6630 	     insn in moveop_orig_expr_not_found.  */
6631 	  code_motion_path_driver_cleanup (&orig_ops, &path);
6632 	  return res;
6633 	}
6634     }
6635 
6636   /* Don't need it any more.  */
6637   av_set_clear (&orig_ops);
6638 
6639   /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6640      the beginning of the basic block.  */
6641   before_first = PREV_INSN (first_insn);
6642   while (insn != before_first)
6643     {
6644       if (code_motion_path_driver_info->ascend)
6645 	code_motion_path_driver_info->ascend (insn, static_params);
6646 
6647       insn = PREV_INSN (insn);
6648     }
6649 
6650   /* Now we're at the bb head.  */
6651   insn = first_insn;
6652   ilist_remove (&path);
6653   local_params_in->removed_last_insn = removed_last_insn;
6654   code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6655 
6656   /* This should be the very last operation as at bb head we could change
6657      the numbering by creating bookkeeping blocks.  */
6658   if (removed_last_insn)
6659     insn = PREV_INSN (insn);
6660   bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6661   return true;
6662 }
6663 
6664 /* Move up the operations from ORIG_OPS set traversing the dag starting
6665    from INSN.  PATH represents the edges traversed so far.
6666    DEST is the register chosen for scheduling the current expr.  Insert
6667    bookkeeping code in the join points.  EXPR_VLIW is the chosen expression,
6668    C_EXPR is how it looks like at the given cfg point.
6669    Set *SHOULD_MOVE to indicate whether we have only disconnected
6670    one of the insns found.
6671 
6672    Returns whether original instructions were found, which is asserted
6673    to be true in the caller.  */
6674 static bool
6675 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6676          rtx dest, expr_t c_expr, bool *should_move)
6677 {
6678   struct moveop_static_params sparams;
6679   struct cmpd_local_params lparams;
6680   int res;
6681 
6682   /* Init params for code_motion_path_driver.  */
6683   sparams.dest = dest;
6684   sparams.c_expr = c_expr;
6685   sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6686 #ifdef ENABLE_CHECKING
6687   sparams.failed_insn = NULL;
6688 #endif
6689   sparams.was_renamed = false;
6690   lparams.e1 = NULL;
6691 
6692   /* We haven't visited any blocks yet.  */
6693   bitmap_clear (code_motion_visited_blocks);
6694 
6695   /* Set appropriate hooks and data.  */
6696   code_motion_path_driver_info = &move_op_hooks;
6697   res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6698 
6699   gcc_assert (res != -1);
6700 
6701   if (sparams.was_renamed)
6702     EXPR_WAS_RENAMED (expr_vliw) = true;
6703 
6704   *should_move = (sparams.uid == -1);
6705 
6706   return res;
6707 }
6708 
6709 
6710 /* Functions that work with regions.  */
6711 
6712 /* Current number of seqno used in init_seqno and init_seqno_1.  */
6713 static int cur_seqno;
6714 
6715 /* A helper for init_seqno.  Traverse the region starting from BB and
6716    compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6717    Clear visited blocks from BLOCKS_TO_RESCHEDULE.  */
6718 static void
6719 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6720 {
6721   int bbi = BLOCK_TO_BB (bb->index);
6722   insn_t insn, note = bb_note (bb);
6723   insn_t succ_insn;
6724   succ_iterator si;
6725 
6726   SET_BIT (visited_bbs, bbi);
6727   if (blocks_to_reschedule)
6728     bitmap_clear_bit (blocks_to_reschedule, bb->index);
6729 
6730   FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6731 		   SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6732     {
6733       basic_block succ = BLOCK_FOR_INSN (succ_insn);
6734       int succ_bbi = BLOCK_TO_BB (succ->index);
6735 
6736       gcc_assert (in_current_region_p (succ));
6737 
6738       if (!TEST_BIT (visited_bbs, succ_bbi))
6739 	{
6740 	  gcc_assert (succ_bbi > bbi);
6741 
6742 	  init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6743 	}
6744       else if (blocks_to_reschedule)
6745         bitmap_set_bit (forced_ebb_heads, succ->index);
6746     }
6747 
6748   for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6749     INSN_SEQNO (insn) = cur_seqno--;
6750 }
6751 
6752 /* Initialize seqnos for the current region.  BLOCKS_TO_RESCHEDULE contains
6753    blocks on which we're rescheduling when pipelining, FROM is the block where
6754    traversing region begins (it may not be the head of the region when
6755    pipelining, but the head of the loop instead).
6756 
6757    Returns the maximal seqno found.  */
6758 static int
6759 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6760 {
6761   sbitmap visited_bbs;
6762   bitmap_iterator bi;
6763   unsigned bbi;
6764 
6765   visited_bbs = sbitmap_alloc (current_nr_blocks);
6766 
6767   if (blocks_to_reschedule)
6768     {
6769       sbitmap_ones (visited_bbs);
6770       EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6771         {
6772 	  gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6773           RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6774 	}
6775     }
6776   else
6777     {
6778       sbitmap_zero (visited_bbs);
6779       from = EBB_FIRST_BB (0);
6780     }
6781 
6782   cur_seqno = sched_max_luid - 1;
6783   init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6784 
6785   /* cur_seqno may be positive if the number of instructions is less than
6786      sched_max_luid - 1 (when rescheduling or if some instructions have been
6787      removed by the call to purge_empty_blocks in sel_sched_region_1).  */
6788   gcc_assert (cur_seqno >= 0);
6789 
6790   sbitmap_free (visited_bbs);
6791   return sched_max_luid - 1;
6792 }
6793 
6794 /* Initialize scheduling parameters for current region.  */
6795 static void
6796 sel_setup_region_sched_flags (void)
6797 {
6798   enable_schedule_as_rhs_p = 1;
6799   bookkeeping_p = 1;
6800   pipelining_p = (bookkeeping_p
6801                   && (flag_sel_sched_pipelining != 0)
6802 		  && current_loop_nest != NULL
6803 		  && loop_has_exit_edges (current_loop_nest));
6804   max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6805   max_ws = MAX_WS;
6806 }
6807 
6808 /* Return true if all basic blocks of current region are empty.  */
6809 static bool
6810 current_region_empty_p (void)
6811 {
6812   int i;
6813   for (i = 0; i < current_nr_blocks; i++)
6814     if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6815       return false;
6816 
6817   return true;
6818 }
6819 
6820 /* Prepare and verify loop nest for pipelining.  */
6821 static void
6822 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6823 {
6824   current_loop_nest = get_loop_nest_for_rgn (rgn);
6825 
6826   if (!current_loop_nest)
6827     return;
6828 
6829   /* If this loop has any saved loop preheaders from nested loops,
6830      add these basic blocks to the current region.  */
6831   sel_add_loop_preheaders (bbs);
6832 
6833   /* Check that we're starting with a valid information.  */
6834   gcc_assert (loop_latch_edge (current_loop_nest));
6835   gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6836 }
6837 
6838 /* Compute instruction priorities for current region.  */
6839 static void
6840 sel_compute_priorities (int rgn)
6841 {
6842   sched_rgn_compute_dependencies (rgn);
6843 
6844   /* Compute insn priorities in haifa style.  Then free haifa style
6845      dependencies that we've calculated for this.  */
6846   compute_priorities ();
6847 
6848   if (sched_verbose >= 5)
6849     debug_rgn_dependencies (0);
6850 
6851   free_rgn_deps ();
6852 }
6853 
6854 /* Init scheduling data for RGN.  Returns true when this region should not
6855    be scheduled.  */
6856 static bool
6857 sel_region_init (int rgn)
6858 {
6859   int i;
6860   bb_vec_t bbs;
6861 
6862   rgn_setup_region (rgn);
6863 
6864   /* Even if sched_is_disabled_for_current_region_p() is true, we still
6865      do region initialization here so the region can be bundled correctly,
6866      but we'll skip the scheduling in sel_sched_region ().  */
6867   if (current_region_empty_p ())
6868     return true;
6869 
6870   bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6871 
6872   for (i = 0; i < current_nr_blocks; i++)
6873     VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6874 
6875   sel_init_bbs (bbs);
6876 
6877   if (flag_sel_sched_pipelining)
6878     setup_current_loop_nest (rgn, &bbs);
6879 
6880   sel_setup_region_sched_flags ();
6881 
6882   /* Initialize luids and dependence analysis which both sel-sched and haifa
6883      need.  */
6884   sched_init_luids (bbs);
6885   sched_deps_init (false);
6886 
6887   /* Initialize haifa data.  */
6888   rgn_setup_sched_infos ();
6889   sel_set_sched_flags ();
6890   haifa_init_h_i_d (bbs);
6891 
6892   sel_compute_priorities (rgn);
6893   init_deps_global ();
6894 
6895   /* Main initialization.  */
6896   sel_setup_sched_infos ();
6897   sel_init_global_and_expr (bbs);
6898 
6899   VEC_free (basic_block, heap, bbs);
6900 
6901   blocks_to_reschedule = BITMAP_ALLOC (NULL);
6902 
6903   /* Init correct liveness sets on each instruction of a single-block loop.
6904      This is the only situation when we can't update liveness when calling
6905      compute_live for the first insn of the loop.  */
6906   if (current_loop_nest)
6907     {
6908       int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6909                     ? 1
6910                     : 0);
6911 
6912       if (current_nr_blocks == header + 1)
6913         update_liveness_on_insn
6914           (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6915     }
6916 
6917   /* Set hooks so that no newly generated insn will go out unnoticed.  */
6918   sel_register_cfg_hooks ();
6919 
6920   /* !!! We call target.sched.init () for the whole region, but we invoke
6921      targetm.sched.finish () for every ebb.  */
6922   if (targetm.sched.init)
6923     /* None of the arguments are actually used in any target.  */
6924     targetm.sched.init (sched_dump, sched_verbose, -1);
6925 
6926   first_emitted_uid = get_max_uid () + 1;
6927   preheader_removed = false;
6928 
6929   /* Reset register allocation ticks array.  */
6930   memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6931   reg_rename_this_tick = 0;
6932 
6933   bitmap_initialize (forced_ebb_heads, 0);
6934   bitmap_clear (forced_ebb_heads);
6935 
6936   setup_nop_vinsn ();
6937   current_copies = BITMAP_ALLOC (NULL);
6938   current_originators = BITMAP_ALLOC (NULL);
6939   code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6940 
6941   return false;
6942 }
6943 
6944 /* Simplify insns after the scheduling.  */
6945 static void
6946 simplify_changed_insns (void)
6947 {
6948   int i;
6949 
6950   for (i = 0; i < current_nr_blocks; i++)
6951     {
6952       basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6953       rtx insn;
6954 
6955       FOR_BB_INSNS (bb, insn)
6956 	if (INSN_P (insn))
6957 	  {
6958 	    expr_t expr = INSN_EXPR (insn);
6959 
6960 	    if (EXPR_WAS_SUBSTITUTED (expr))
6961 	      validate_simplify_insn (insn);
6962 	  }
6963     }
6964 }
6965 
6966 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6967    this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6968    PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure.  */
6969 static void
6970 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6971 {
6972   insn_t head, tail;
6973   basic_block bb1 = bb;
6974   if (sched_verbose >= 2)
6975     sel_print ("Finishing schedule in bbs: ");
6976 
6977   do
6978     {
6979       bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6980 
6981       if (sched_verbose >= 2)
6982 	sel_print ("%d; ", bb1->index);
6983     }
6984   while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6985 
6986   if (sched_verbose >= 2)
6987     sel_print ("\n");
6988 
6989   get_ebb_head_tail (bb, bb1, &head, &tail);
6990 
6991   current_sched_info->head = head;
6992   current_sched_info->tail = tail;
6993   current_sched_info->prev_head = PREV_INSN (head);
6994   current_sched_info->next_tail = NEXT_INSN (tail);
6995 }
6996 
6997 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB.  */
6998 static void
6999 reset_sched_cycles_in_current_ebb (void)
7000 {
7001   int last_clock = 0;
7002   int haifa_last_clock = -1;
7003   int haifa_clock = 0;
7004   int issued_insns = 0;
7005   insn_t insn;
7006 
7007   if (targetm.sched.init)
7008     {
7009       /* None of the arguments are actually used in any target.
7010 	 NB: We should have md_reset () hook for cases like this.  */
7011       targetm.sched.init (sched_dump, sched_verbose, -1);
7012     }
7013 
7014   state_reset (curr_state);
7015   advance_state (curr_state);
7016 
7017   for (insn = current_sched_info->head;
7018        insn != current_sched_info->next_tail;
7019        insn = NEXT_INSN (insn))
7020     {
7021       int cost, haifa_cost;
7022       int sort_p;
7023       bool asm_p, real_insn, after_stall, all_issued;
7024       int clock;
7025 
7026       if (!INSN_P (insn))
7027 	continue;
7028 
7029       asm_p = false;
7030       real_insn = recog_memoized (insn) >= 0;
7031       clock = INSN_SCHED_CYCLE (insn);
7032 
7033       cost = clock - last_clock;
7034 
7035       /* Initialize HAIFA_COST.  */
7036       if (! real_insn)
7037 	{
7038 	  asm_p = INSN_ASM_P (insn);
7039 
7040 	  if (asm_p)
7041 	    /* This is asm insn which *had* to be scheduled first
7042 	       on the cycle.  */
7043 	    haifa_cost = 1;
7044 	  else
7045 	    /* This is a use/clobber insn.  It should not change
7046 	       cost.  */
7047 	    haifa_cost = 0;
7048 	}
7049       else
7050         haifa_cost = estimate_insn_cost (insn, curr_state);
7051 
7052       /* Stall for whatever cycles we've stalled before.  */
7053       after_stall = 0;
7054       if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7055         {
7056           haifa_cost = cost;
7057           after_stall = 1;
7058         }
7059       all_issued = issued_insns == issue_rate;
7060       if (haifa_cost == 0 && all_issued)
7061 	haifa_cost = 1;
7062       if (haifa_cost > 0)
7063 	{
7064 	  int i = 0;
7065 
7066 	  while (haifa_cost--)
7067 	    {
7068 	      advance_state (curr_state);
7069 	      issued_insns = 0;
7070               i++;
7071 
7072 	      if (sched_verbose >= 2)
7073                 {
7074                   sel_print ("advance_state (state_transition)\n");
7075                   debug_state (curr_state);
7076                 }
7077 
7078               /* The DFA may report that e.g. insn requires 2 cycles to be
7079                  issued, but on the next cycle it says that insn is ready
7080                  to go.  Check this here.  */
7081               if (!after_stall
7082                   && real_insn
7083                   && haifa_cost > 0
7084                   && estimate_insn_cost (insn, curr_state) == 0)
7085                 break;
7086 
7087               /* When the data dependency stall is longer than the DFA stall,
7088                  and when we have issued exactly issue_rate insns and stalled,
7089                  it could be that after this longer stall the insn will again
7090                  become unavailable  to the DFA restrictions.  Looks strange
7091                  but happens e.g. on x86-64.  So recheck DFA on the last
7092                  iteration.  */
7093               if ((after_stall || all_issued)
7094                   && real_insn
7095                   && haifa_cost == 0)
7096                 haifa_cost = estimate_insn_cost (insn, curr_state);
7097             }
7098 
7099 	  haifa_clock += i;
7100           if (sched_verbose >= 2)
7101             sel_print ("haifa clock: %d\n", haifa_clock);
7102 	}
7103       else
7104 	gcc_assert (haifa_cost == 0);
7105 
7106       if (sched_verbose >= 2)
7107 	sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7108 
7109       if (targetm.sched.dfa_new_cycle)
7110 	while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7111 					    haifa_last_clock, haifa_clock,
7112 					    &sort_p))
7113 	  {
7114 	    advance_state (curr_state);
7115 	    issued_insns = 0;
7116 	    haifa_clock++;
7117 	    if (sched_verbose >= 2)
7118               {
7119                 sel_print ("advance_state (dfa_new_cycle)\n");
7120                 debug_state (curr_state);
7121 		sel_print ("haifa clock: %d\n", haifa_clock + 1);
7122               }
7123           }
7124 
7125       if (real_insn)
7126 	{
7127 	  cost = state_transition (curr_state, insn);
7128 	  issued_insns++;
7129 
7130           if (sched_verbose >= 2)
7131 	    {
7132 	      sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7133 			 haifa_clock + 1);
7134               debug_state (curr_state);
7135 	    }
7136 	  gcc_assert (cost < 0);
7137 	}
7138 
7139       if (targetm.sched.variable_issue)
7140 	targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7141 
7142       INSN_SCHED_CYCLE (insn) = haifa_clock;
7143 
7144       last_clock = clock;
7145       haifa_last_clock = haifa_clock;
7146     }
7147 }
7148 
7149 /* Put TImode markers on insns starting a new issue group.  */
7150 static void
7151 put_TImodes (void)
7152 {
7153   int last_clock = -1;
7154   insn_t insn;
7155 
7156   for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7157        insn = NEXT_INSN (insn))
7158     {
7159       int cost, clock;
7160 
7161       if (!INSN_P (insn))
7162 	continue;
7163 
7164       clock = INSN_SCHED_CYCLE (insn);
7165       cost = (last_clock == -1) ? 1 : clock - last_clock;
7166 
7167       gcc_assert (cost >= 0);
7168 
7169       if (issue_rate > 1
7170 	  && GET_CODE (PATTERN (insn)) != USE
7171 	  && GET_CODE (PATTERN (insn)) != CLOBBER)
7172 	{
7173 	  if (reload_completed && cost > 0)
7174 	    PUT_MODE (insn, TImode);
7175 
7176 	  last_clock = clock;
7177 	}
7178 
7179       if (sched_verbose >= 2)
7180 	sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7181     }
7182 }
7183 
7184 /* Perform MD_FINISH on EBBs comprising current region.  When
7185    RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7186    to produce correct sched cycles on insns.  */
7187 static void
7188 sel_region_target_finish (bool reset_sched_cycles_p)
7189 {
7190   int i;
7191   bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7192 
7193   for (i = 0; i < current_nr_blocks; i++)
7194     {
7195       if (bitmap_bit_p (scheduled_blocks, i))
7196 	continue;
7197 
7198       /* While pipelining outer loops, skip bundling for loop
7199 	 preheaders.  Those will be rescheduled in the outer loop.  */
7200       if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7201 	continue;
7202 
7203       find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7204 
7205       if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7206 	continue;
7207 
7208       if (reset_sched_cycles_p)
7209 	reset_sched_cycles_in_current_ebb ();
7210 
7211       if (targetm.sched.init)
7212 	targetm.sched.init (sched_dump, sched_verbose, -1);
7213 
7214       put_TImodes ();
7215 
7216       if (targetm.sched.finish)
7217 	{
7218 	  targetm.sched.finish (sched_dump, sched_verbose);
7219 
7220 	  /* Extend luids so that insns generated by the target will
7221 	     get zero luid.  */
7222 	  sched_extend_luids ();
7223 	}
7224     }
7225 
7226   BITMAP_FREE (scheduled_blocks);
7227 }
7228 
7229 /* Free the scheduling data for the current region.  When RESET_SCHED_CYCLES_P
7230    is true, make an additional pass emulating scheduler to get correct insn
7231    cycles for md_finish calls.  */
7232 static void
7233 sel_region_finish (bool reset_sched_cycles_p)
7234 {
7235   simplify_changed_insns ();
7236   sched_finish_ready_list ();
7237   free_nop_pool ();
7238 
7239   /* Free the vectors.  */
7240   if (vec_av_set)
7241     VEC_free (expr_t, heap, vec_av_set);
7242   BITMAP_FREE (current_copies);
7243   BITMAP_FREE (current_originators);
7244   BITMAP_FREE (code_motion_visited_blocks);
7245   vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7246   vinsn_vec_free (&vec_target_unavailable_vinsns);
7247 
7248   /* If LV_SET of the region head should be updated, do it now because
7249      there will be no other chance.  */
7250   {
7251     succ_iterator si;
7252     insn_t insn;
7253 
7254     FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7255                      SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7256       {
7257 	basic_block bb = BLOCK_FOR_INSN (insn);
7258 
7259 	if (!BB_LV_SET_VALID_P (bb))
7260 	  compute_live (insn);
7261       }
7262   }
7263 
7264   /* Emulate the Haifa scheduler for bundling.  */
7265   if (reload_completed)
7266     sel_region_target_finish (reset_sched_cycles_p);
7267 
7268   sel_finish_global_and_expr ();
7269 
7270   bitmap_clear (forced_ebb_heads);
7271 
7272   free_nop_vinsn ();
7273 
7274   finish_deps_global ();
7275   sched_finish_luids ();
7276   VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
7277 
7278   sel_finish_bbs ();
7279   BITMAP_FREE (blocks_to_reschedule);
7280 
7281   sel_unregister_cfg_hooks ();
7282 
7283   max_issue_size = 0;
7284 }
7285 
7286 
7287 /* Functions that implement the scheduler driver.  */
7288 
7289 /* Schedule a parallel instruction group on each of FENCES.  MAX_SEQNO
7290    is the current maximum seqno.  SCHEDULED_INSNS_TAILPP is the list
7291    of insns scheduled -- these would be postprocessed later.  */
7292 static void
7293 schedule_on_fences (flist_t fences, int max_seqno,
7294                     ilist_t **scheduled_insns_tailpp)
7295 {
7296   flist_t old_fences = fences;
7297 
7298   if (sched_verbose >= 1)
7299     {
7300       sel_print ("\nScheduling on fences: ");
7301       dump_flist (fences);
7302       sel_print ("\n");
7303     }
7304 
7305   scheduled_something_on_previous_fence = false;
7306   for (; fences; fences = FLIST_NEXT (fences))
7307     {
7308       fence_t fence = NULL;
7309       int seqno = 0;
7310       flist_t fences2;
7311       bool first_p = true;
7312 
7313       /* Choose the next fence group to schedule.
7314          The fact that insn can be scheduled only once
7315          on the cycle is guaranteed by two properties:
7316          1. seqnos of parallel groups decrease with each iteration.
7317          2. If is_ineligible_successor () sees the larger seqno, it
7318          checks if candidate insn is_in_current_fence_p ().  */
7319       for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7320         {
7321           fence_t f = FLIST_FENCE (fences2);
7322 
7323           if (!FENCE_PROCESSED_P (f))
7324             {
7325               int i = INSN_SEQNO (FENCE_INSN (f));
7326 
7327               if (first_p || i > seqno)
7328                 {
7329                   seqno = i;
7330                   fence = f;
7331                   first_p = false;
7332                 }
7333               else
7334                 /* ??? Seqnos of different groups should be different.  */
7335                 gcc_assert (1 || i != seqno);
7336             }
7337         }
7338 
7339       gcc_assert (fence);
7340 
7341       /* As FENCE is nonnull, SEQNO is initialized.  */
7342       seqno -= max_seqno + 1;
7343       fill_insns (fence, seqno, scheduled_insns_tailpp);
7344       FENCE_PROCESSED_P (fence) = true;
7345     }
7346 
7347   /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7348      don't need to keep bookkeeping-invalidated and target-unavailable
7349      vinsns any more.  */
7350   vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7351   vinsn_vec_clear (&vec_target_unavailable_vinsns);
7352 }
7353 
7354 /* Calculate MIN_SEQNO and MAX_SEQNO.  */
7355 static void
7356 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7357 {
7358   *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7359 
7360   /* The first element is already processed.  */
7361   while ((fences = FLIST_NEXT (fences)))
7362     {
7363       int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7364 
7365       if (*min_seqno > seqno)
7366         *min_seqno = seqno;
7367       else if (*max_seqno < seqno)
7368         *max_seqno = seqno;
7369     }
7370 }
7371 
7372 /* Calculate new fences from FENCES.  */
7373 static flist_t
7374 calculate_new_fences (flist_t fences, int orig_max_seqno)
7375 {
7376   flist_t old_fences = fences;
7377   struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7378 
7379   flist_tail_init (new_fences);
7380   for (; fences; fences = FLIST_NEXT (fences))
7381     {
7382       fence_t fence = FLIST_FENCE (fences);
7383       insn_t insn;
7384 
7385       if (!FENCE_BNDS (fence))
7386         {
7387           /* This fence doesn't have any successors.  */
7388           if (!FENCE_SCHEDULED_P (fence))
7389             {
7390               /* Nothing was scheduled on this fence.  */
7391               int seqno;
7392 
7393               insn = FENCE_INSN (fence);
7394               seqno = INSN_SEQNO (insn);
7395               gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7396 
7397               if (sched_verbose >= 1)
7398                 sel_print ("Fence %d[%d] has not changed\n",
7399                            INSN_UID (insn),
7400                            BLOCK_NUM (insn));
7401               move_fence_to_fences (fences, new_fences);
7402             }
7403         }
7404       else
7405         extract_new_fences_from (fences, new_fences, orig_max_seqno);
7406     }
7407 
7408   flist_clear (&old_fences);
7409   return FLIST_TAIL_HEAD (new_fences);
7410 }
7411 
7412 /* Update seqnos of insns given by PSCHEDULED_INSNS.  MIN_SEQNO and MAX_SEQNO
7413    are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7414    the highest seqno used in a region.  Return the updated highest seqno.  */
7415 static int
7416 update_seqnos_and_stage (int min_seqno, int max_seqno,
7417                          int highest_seqno_in_use,
7418                          ilist_t *pscheduled_insns)
7419 {
7420   int new_hs;
7421   ilist_iterator ii;
7422   insn_t insn;
7423 
7424   /* Actually, new_hs is the seqno of the instruction, that was
7425      scheduled first (i.e. it is the first one in SCHEDULED_INSNS).  */
7426   if (*pscheduled_insns)
7427     {
7428       new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7429                 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7430       gcc_assert (new_hs > highest_seqno_in_use);
7431     }
7432   else
7433     new_hs = highest_seqno_in_use;
7434 
7435   FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7436     {
7437       gcc_assert (INSN_SEQNO (insn) < 0);
7438       INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7439       gcc_assert (INSN_SEQNO (insn) <= new_hs);
7440 
7441       /* When not pipelining, purge unneeded insn info on the scheduled insns.
7442          For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7443          require > 1GB of memory e.g. on limit-fnargs.c.  */
7444       if (! pipelining_p)
7445         free_data_for_scheduled_insn (insn);
7446     }
7447 
7448   ilist_clear (pscheduled_insns);
7449   global_level++;
7450 
7451   return new_hs;
7452 }
7453 
7454 /* The main driver for scheduling a region.  This function is responsible
7455    for correct propagation of fences (i.e. scheduling points) and creating
7456    a group of parallel insns at each of them.  It also supports
7457    pipelining.  ORIG_MAX_SEQNO is the maximal seqno before this pass
7458    of scheduling.  */
7459 static void
7460 sel_sched_region_2 (int orig_max_seqno)
7461 {
7462   int highest_seqno_in_use = orig_max_seqno;
7463 
7464   stat_bookkeeping_copies = 0;
7465   stat_insns_needed_bookkeeping = 0;
7466   stat_renamed_scheduled = 0;
7467   stat_substitutions_total = 0;
7468   num_insns_scheduled = 0;
7469 
7470   while (fences)
7471     {
7472       int min_seqno, max_seqno;
7473       ilist_t scheduled_insns = NULL;
7474       ilist_t *scheduled_insns_tailp = &scheduled_insns;
7475 
7476       find_min_max_seqno (fences, &min_seqno, &max_seqno);
7477       schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7478       fences = calculate_new_fences (fences, orig_max_seqno);
7479       highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7480                                                       highest_seqno_in_use,
7481                                                       &scheduled_insns);
7482     }
7483 
7484   if (sched_verbose >= 1)
7485     sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7486                "bookkeeping, %d insns renamed, %d insns substituted\n",
7487                stat_bookkeeping_copies,
7488                stat_insns_needed_bookkeeping,
7489                stat_renamed_scheduled,
7490                stat_substitutions_total);
7491 }
7492 
7493 /* Schedule a region.  When pipelining, search for possibly never scheduled
7494    bookkeeping code and schedule it.  Reschedule pipelined code without
7495    pipelining after.  */
7496 static void
7497 sel_sched_region_1 (void)
7498 {
7499   int orig_max_seqno;
7500 
7501   /* Remove empty blocks that might be in the region from the beginning.  */
7502   purge_empty_blocks ();
7503 
7504   orig_max_seqno = init_seqno (NULL, NULL);
7505   gcc_assert (orig_max_seqno >= 1);
7506 
7507   /* When pipelining outer loops, create fences on the loop header,
7508      not preheader.  */
7509   fences = NULL;
7510   if (current_loop_nest)
7511     init_fences (BB_END (EBB_FIRST_BB (0)));
7512   else
7513     init_fences (bb_note (EBB_FIRST_BB (0)));
7514   global_level = 1;
7515 
7516   sel_sched_region_2 (orig_max_seqno);
7517 
7518   gcc_assert (fences == NULL);
7519 
7520   if (pipelining_p)
7521     {
7522       int i;
7523       basic_block bb;
7524       struct flist_tail_def _new_fences;
7525       flist_tail_t new_fences = &_new_fences;
7526       bool do_p = true;
7527 
7528       pipelining_p = false;
7529       max_ws = MIN (max_ws, issue_rate * 3 / 2);
7530       bookkeeping_p = false;
7531       enable_schedule_as_rhs_p = false;
7532 
7533       /* Schedule newly created code, that has not been scheduled yet.  */
7534       do_p = true;
7535 
7536       while (do_p)
7537         {
7538           do_p = false;
7539 
7540           for (i = 0; i < current_nr_blocks; i++)
7541             {
7542               basic_block bb = EBB_FIRST_BB (i);
7543 
7544               if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7545                 {
7546                   if (! bb_ends_ebb_p (bb))
7547                     bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7548                   if (sel_bb_empty_p (bb))
7549                     {
7550                       bitmap_clear_bit (blocks_to_reschedule, bb->index);
7551                       continue;
7552                     }
7553                   clear_outdated_rtx_info (bb);
7554                   if (sel_insn_is_speculation_check (BB_END (bb))
7555                       && JUMP_P (BB_END (bb)))
7556                     bitmap_set_bit (blocks_to_reschedule,
7557                                     BRANCH_EDGE (bb)->dest->index);
7558                 }
7559               else if (! sel_bb_empty_p (bb)
7560                        && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7561                 bitmap_set_bit (blocks_to_reschedule, bb->index);
7562             }
7563 
7564           for (i = 0; i < current_nr_blocks; i++)
7565             {
7566               bb = EBB_FIRST_BB (i);
7567 
7568               /* While pipelining outer loops, skip bundling for loop
7569                  preheaders.  Those will be rescheduled in the outer
7570                  loop.  */
7571               if (sel_is_loop_preheader_p (bb))
7572                 {
7573                   clear_outdated_rtx_info (bb);
7574                   continue;
7575                 }
7576 
7577               if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7578                 {
7579                   flist_tail_init (new_fences);
7580 
7581                   orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7582 
7583                   /* Mark BB as head of the new ebb.  */
7584                   bitmap_set_bit (forced_ebb_heads, bb->index);
7585 
7586                   gcc_assert (fences == NULL);
7587 
7588                   init_fences (bb_note (bb));
7589 
7590                   sel_sched_region_2 (orig_max_seqno);
7591 
7592                   do_p = true;
7593                   break;
7594                 }
7595             }
7596         }
7597     }
7598 }
7599 
7600 /* Schedule the RGN region.  */
7601 void
7602 sel_sched_region (int rgn)
7603 {
7604   bool schedule_p;
7605   bool reset_sched_cycles_p;
7606 
7607   if (sel_region_init (rgn))
7608     return;
7609 
7610   if (sched_verbose >= 1)
7611     sel_print ("Scheduling region %d\n", rgn);
7612 
7613   schedule_p = (!sched_is_disabled_for_current_region_p ()
7614                 && dbg_cnt (sel_sched_region_cnt));
7615   reset_sched_cycles_p = pipelining_p;
7616   if (schedule_p)
7617     sel_sched_region_1 ();
7618   else
7619     /* Force initialization of INSN_SCHED_CYCLEs for correct bundling.  */
7620     reset_sched_cycles_p = true;
7621 
7622   sel_region_finish (reset_sched_cycles_p);
7623 }
7624 
7625 /* Perform global init for the scheduler.  */
7626 static void
7627 sel_global_init (void)
7628 {
7629   calculate_dominance_info (CDI_DOMINATORS);
7630   alloc_sched_pools ();
7631 
7632   /* Setup the infos for sched_init.  */
7633   sel_setup_sched_infos ();
7634   setup_sched_dump ();
7635 
7636   sched_rgn_init (false);
7637   sched_init ();
7638 
7639   sched_init_bbs ();
7640   /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass.  */
7641   after_recovery = 0;
7642   can_issue_more = issue_rate;
7643 
7644   sched_extend_target ();
7645   sched_deps_init (true);
7646   setup_nop_and_exit_insns ();
7647   sel_extend_global_bb_info ();
7648   init_lv_sets ();
7649   init_hard_regs_data ();
7650 }
7651 
7652 /* Free the global data of the scheduler.  */
7653 static void
7654 sel_global_finish (void)
7655 {
7656   free_bb_note_pool ();
7657   free_lv_sets ();
7658   sel_finish_global_bb_info ();
7659 
7660   free_regset_pool ();
7661   free_nop_and_exit_insns ();
7662 
7663   sched_rgn_finish ();
7664   sched_deps_finish ();
7665   sched_finish ();
7666 
7667   if (current_loops)
7668     sel_finish_pipelining ();
7669 
7670   free_sched_pools ();
7671   free_dominance_info (CDI_DOMINATORS);
7672 }
7673 
7674 /* Return true when we need to skip selective scheduling.  Used for debugging.  */
7675 bool
7676 maybe_skip_selective_scheduling (void)
7677 {
7678   return ! dbg_cnt (sel_sched_cnt);
7679 }
7680 
7681 /* The entry point.  */
7682 void
7683 run_selective_scheduling (void)
7684 {
7685   int rgn;
7686 
7687   if (n_basic_blocks == NUM_FIXED_BLOCKS)
7688     return;
7689 
7690   sel_global_init ();
7691 
7692   for (rgn = 0; rgn < nr_regions; rgn++)
7693     sel_sched_region (rgn);
7694 
7695   sel_global_finish ();
7696 }
7697 
7698 #endif
7699