1 /* Lower complex number operations to scalar operations.
2    Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tree-flow.h"
28 #include "gimple.h"
29 #include "tree-iterator.h"
30 #include "tree-pass.h"
31 #include "tree-ssa-propagate.h"
32 
33 
34 /* For each complex ssa name, a lattice value.  We're interested in finding
35    out whether a complex number is degenerate in some way, having only real
36    or only complex parts.  */
37 
38 enum
39 {
40   UNINITIALIZED = 0,
41   ONLY_REAL = 1,
42   ONLY_IMAG = 2,
43   VARYING = 3
44 };
45 
46 /* The type complex_lattice_t holds combinations of the above
47    constants.  */
48 typedef int complex_lattice_t;
49 
50 #define PAIR(a, b)  ((a) << 2 | (b))
51 
52 DEF_VEC_I(complex_lattice_t);
53 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
54 
55 static VEC(complex_lattice_t, heap) *complex_lattice_values;
56 
57 /* For each complex variable, a pair of variables for the components exists in
58    the hashtable.  */
59 static htab_t complex_variable_components;
60 
61 /* For each complex SSA_NAME, a pair of ssa names for the components.  */
62 static VEC(tree, heap) *complex_ssa_name_components;
63 
64 /* Lookup UID in the complex_variable_components hashtable and return the
65    associated tree.  */
66 static tree
67 cvc_lookup (unsigned int uid)
68 {
69   struct int_tree_map *h, in;
70   in.uid = uid;
71   h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
72   return h ? h->to : NULL;
73 }
74 
75 /* Insert the pair UID, TO into the complex_variable_components hashtable.  */
76 
77 static void
78 cvc_insert (unsigned int uid, tree to)
79 {
80   struct int_tree_map *h;
81   void **loc;
82 
83   h = XNEW (struct int_tree_map);
84   h->uid = uid;
85   h->to = to;
86   loc = htab_find_slot_with_hash (complex_variable_components, h,
87 				  uid, INSERT);
88   *(struct int_tree_map **) loc = h;
89 }
90 
91 /* Return true if T is not a zero constant.  In the case of real values,
92    we're only interested in +0.0.  */
93 
94 static int
95 some_nonzerop (tree t)
96 {
97   int zerop = false;
98 
99   /* Operations with real or imaginary part of a complex number zero
100      cannot be treated the same as operations with a real or imaginary
101      operand if we care about the signs of zeros in the result.  */
102   if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
103     zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
104   else if (TREE_CODE (t) == FIXED_CST)
105     zerop = fixed_zerop (t);
106   else if (TREE_CODE (t) == INTEGER_CST)
107     zerop = integer_zerop (t);
108 
109   return !zerop;
110 }
111 
112 
113 /* Compute a lattice value from the components of a complex type REAL
114    and IMAG.  */
115 
116 static complex_lattice_t
117 find_lattice_value_parts (tree real, tree imag)
118 {
119   int r, i;
120   complex_lattice_t ret;
121 
122   r = some_nonzerop (real);
123   i = some_nonzerop (imag);
124   ret = r * ONLY_REAL + i * ONLY_IMAG;
125 
126   /* ??? On occasion we could do better than mapping 0+0i to real, but we
127      certainly don't want to leave it UNINITIALIZED, which eventually gets
128      mapped to VARYING.  */
129   if (ret == UNINITIALIZED)
130     ret = ONLY_REAL;
131 
132   return ret;
133 }
134 
135 
136 /* Compute a lattice value from gimple_val T.  */
137 
138 static complex_lattice_t
139 find_lattice_value (tree t)
140 {
141   tree real, imag;
142 
143   switch (TREE_CODE (t))
144     {
145     case SSA_NAME:
146       return VEC_index (complex_lattice_t, complex_lattice_values,
147 			SSA_NAME_VERSION (t));
148 
149     case COMPLEX_CST:
150       real = TREE_REALPART (t);
151       imag = TREE_IMAGPART (t);
152       break;
153 
154     default:
155       gcc_unreachable ();
156     }
157 
158   return find_lattice_value_parts (real, imag);
159 }
160 
161 /* Determine if LHS is something for which we're interested in seeing
162    simulation results.  */
163 
164 static bool
165 is_complex_reg (tree lhs)
166 {
167   return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
168 }
169 
170 /* Mark the incoming parameters to the function as VARYING.  */
171 
172 static void
173 init_parameter_lattice_values (void)
174 {
175   tree parm, ssa_name;
176 
177   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
178     if (is_complex_reg (parm)
179 	&& var_ann (parm) != NULL
180 	&& (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
181       VEC_replace (complex_lattice_t, complex_lattice_values,
182 		   SSA_NAME_VERSION (ssa_name), VARYING);
183 }
184 
185 /* Initialize simulation state for each statement.  Return false if we
186    found no statements we want to simulate, and thus there's nothing
187    for the entire pass to do.  */
188 
189 static bool
190 init_dont_simulate_again (void)
191 {
192   basic_block bb;
193   gimple_stmt_iterator gsi;
194   gimple phi;
195   bool saw_a_complex_op = false;
196 
197   FOR_EACH_BB (bb)
198     {
199       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
200 	{
201 	  phi = gsi_stmt (gsi);
202 	  prop_set_simulate_again (phi,
203 				   is_complex_reg (gimple_phi_result (phi)));
204 	}
205 
206       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
207 	{
208 	  gimple stmt;
209 	  tree op0, op1;
210 	  bool sim_again_p;
211 
212 	  stmt = gsi_stmt (gsi);
213 	  op0 = op1 = NULL_TREE;
214 
215 	  /* Most control-altering statements must be initially
216 	     simulated, else we won't cover the entire cfg.  */
217 	  sim_again_p = stmt_ends_bb_p (stmt);
218 
219 	  switch (gimple_code (stmt))
220 	    {
221 	    case GIMPLE_CALL:
222 	      if (gimple_call_lhs (stmt))
223 	        sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
224 	      break;
225 
226 	    case GIMPLE_ASSIGN:
227 	      sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
228 	      if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
229 		  || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
230 		op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
231 	      else
232 		op0 = gimple_assign_rhs1 (stmt);
233 	      if (gimple_num_ops (stmt) > 2)
234 		op1 = gimple_assign_rhs2 (stmt);
235 	      break;
236 
237 	    case GIMPLE_COND:
238 	      op0 = gimple_cond_lhs (stmt);
239 	      op1 = gimple_cond_rhs (stmt);
240 	      break;
241 
242 	    default:
243 	      break;
244 	    }
245 
246 	  if (op0 || op1)
247 	    switch (gimple_expr_code (stmt))
248 	      {
249 	      case EQ_EXPR:
250 	      case NE_EXPR:
251 	      case PLUS_EXPR:
252 	      case MINUS_EXPR:
253 	      case MULT_EXPR:
254 	      case TRUNC_DIV_EXPR:
255 	      case CEIL_DIV_EXPR:
256 	      case FLOOR_DIV_EXPR:
257 	      case ROUND_DIV_EXPR:
258 	      case RDIV_EXPR:
259 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
260 		    || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
261 		  saw_a_complex_op = true;
262 		break;
263 
264 	      case NEGATE_EXPR:
265 	      case CONJ_EXPR:
266 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
267 		  saw_a_complex_op = true;
268 		break;
269 
270 	      case REALPART_EXPR:
271 	      case IMAGPART_EXPR:
272 		/* The total store transformation performed during
273 		  gimplification creates such uninitialized loads
274 		  and we need to lower the statement to be able
275 		  to fix things up.  */
276 		if (TREE_CODE (op0) == SSA_NAME
277 		    && ssa_undefined_value_p (op0))
278 		  saw_a_complex_op = true;
279 		break;
280 
281 	      default:
282 		break;
283 	      }
284 
285 	  prop_set_simulate_again (stmt, sim_again_p);
286 	}
287     }
288 
289   return saw_a_complex_op;
290 }
291 
292 
293 /* Evaluate statement STMT against the complex lattice defined above.  */
294 
295 static enum ssa_prop_result
296 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
297 		    tree *result_p)
298 {
299   complex_lattice_t new_l, old_l, op1_l, op2_l;
300   unsigned int ver;
301   tree lhs;
302 
303   lhs = gimple_get_lhs (stmt);
304   /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs.  */
305   if (!lhs)
306     return SSA_PROP_VARYING;
307 
308   /* These conditions should be satisfied due to the initial filter
309      set up in init_dont_simulate_again.  */
310   gcc_assert (TREE_CODE (lhs) == SSA_NAME);
311   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
312 
313   *result_p = lhs;
314   ver = SSA_NAME_VERSION (lhs);
315   old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
316 
317   switch (gimple_expr_code (stmt))
318     {
319     case SSA_NAME:
320     case COMPLEX_CST:
321       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
322       break;
323 
324     case COMPLEX_EXPR:
325       new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
326 				        gimple_assign_rhs2 (stmt));
327       break;
328 
329     case PLUS_EXPR:
330     case MINUS_EXPR:
331       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
332       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
333 
334       /* We've set up the lattice values such that IOR neatly
335 	 models addition.  */
336       new_l = op1_l | op2_l;
337       break;
338 
339     case MULT_EXPR:
340     case RDIV_EXPR:
341     case TRUNC_DIV_EXPR:
342     case CEIL_DIV_EXPR:
343     case FLOOR_DIV_EXPR:
344     case ROUND_DIV_EXPR:
345       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
346       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
347 
348       /* Obviously, if either varies, so does the result.  */
349       if (op1_l == VARYING || op2_l == VARYING)
350 	new_l = VARYING;
351       /* Don't prematurely promote variables if we've not yet seen
352 	 their inputs.  */
353       else if (op1_l == UNINITIALIZED)
354 	new_l = op2_l;
355       else if (op2_l == UNINITIALIZED)
356 	new_l = op1_l;
357       else
358 	{
359 	  /* At this point both numbers have only one component. If the
360 	     numbers are of opposite kind, the result is imaginary,
361 	     otherwise the result is real. The add/subtract translates
362 	     the real/imag from/to 0/1; the ^ performs the comparison.  */
363 	  new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
364 
365 	  /* Don't allow the lattice value to flip-flop indefinitely.  */
366 	  new_l |= old_l;
367 	}
368       break;
369 
370     case NEGATE_EXPR:
371     case CONJ_EXPR:
372       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
373       break;
374 
375     default:
376       new_l = VARYING;
377       break;
378     }
379 
380   /* If nothing changed this round, let the propagator know.  */
381   if (new_l == old_l)
382     return SSA_PROP_NOT_INTERESTING;
383 
384   VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
385   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
386 }
387 
388 /* Evaluate a PHI node against the complex lattice defined above.  */
389 
390 static enum ssa_prop_result
391 complex_visit_phi (gimple phi)
392 {
393   complex_lattice_t new_l, old_l;
394   unsigned int ver;
395   tree lhs;
396   int i;
397 
398   lhs = gimple_phi_result (phi);
399 
400   /* This condition should be satisfied due to the initial filter
401      set up in init_dont_simulate_again.  */
402   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
403 
404   /* We've set up the lattice values such that IOR neatly models PHI meet.  */
405   new_l = UNINITIALIZED;
406   for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
407     new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
408 
409   ver = SSA_NAME_VERSION (lhs);
410   old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
411 
412   if (new_l == old_l)
413     return SSA_PROP_NOT_INTERESTING;
414 
415   VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
416   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
417 }
418 
419 /* Create one backing variable for a complex component of ORIG.  */
420 
421 static tree
422 create_one_component_var (tree type, tree orig, const char *prefix,
423 			  const char *suffix, enum tree_code code)
424 {
425   tree r = create_tmp_var (type, prefix);
426   add_referenced_var (r);
427 
428   DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
429   DECL_ARTIFICIAL (r) = 1;
430 
431   if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
432     {
433       const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
434 
435       DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
436 
437       SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
438       DECL_DEBUG_EXPR_IS_FROM (r) = 1;
439       DECL_IGNORED_P (r) = 0;
440       TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
441     }
442   else
443     {
444       DECL_IGNORED_P (r) = 1;
445       TREE_NO_WARNING (r) = 1;
446     }
447 
448   return r;
449 }
450 
451 /* Retrieve a value for a complex component of VAR.  */
452 
453 static tree
454 get_component_var (tree var, bool imag_p)
455 {
456   size_t decl_index = DECL_UID (var) * 2 + imag_p;
457   tree ret = cvc_lookup (decl_index);
458 
459   if (ret == NULL)
460     {
461       ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
462 				      imag_p ? "CI" : "CR",
463 				      imag_p ? "$imag" : "$real",
464 				      imag_p ? IMAGPART_EXPR : REALPART_EXPR);
465       cvc_insert (decl_index, ret);
466     }
467 
468   return ret;
469 }
470 
471 /* Retrieve a value for a complex component of SSA_NAME.  */
472 
473 static tree
474 get_component_ssa_name (tree ssa_name, bool imag_p)
475 {
476   complex_lattice_t lattice = find_lattice_value (ssa_name);
477   size_t ssa_name_index;
478   tree ret;
479 
480   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
481     {
482       tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
483       if (SCALAR_FLOAT_TYPE_P (inner_type))
484 	return build_real (inner_type, dconst0);
485       else
486 	return build_int_cst (inner_type, 0);
487     }
488 
489   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
490   ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
491   if (ret == NULL)
492     {
493       ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
494       ret = make_ssa_name (ret, NULL);
495 
496       /* Copy some properties from the original.  In particular, whether it
497 	 is used in an abnormal phi, and whether it's uninitialized.  */
498       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
499 	= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
500       if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
501 	  && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
502 	{
503 	  SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
504 	  set_default_def (SSA_NAME_VAR (ret), ret);
505 	}
506 
507       VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
508     }
509 
510   return ret;
511 }
512 
513 /* Set a value for a complex component of SSA_NAME, return a
514    gimple_seq of stuff that needs doing.  */
515 
516 static gimple_seq
517 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
518 {
519   complex_lattice_t lattice = find_lattice_value (ssa_name);
520   size_t ssa_name_index;
521   tree comp;
522   gimple last;
523   gimple_seq list;
524 
525   /* We know the value must be zero, else there's a bug in our lattice
526      analysis.  But the value may well be a variable known to contain
527      zero.  We should be safe ignoring it.  */
528   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
529     return NULL;
530 
531   /* If we've already assigned an SSA_NAME to this component, then this
532      means that our walk of the basic blocks found a use before the set.
533      This is fine.  Now we should create an initialization for the value
534      we created earlier.  */
535   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
536   comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
537   if (comp)
538     ;
539 
540   /* If we've nothing assigned, and the value we're given is already stable,
541      then install that as the value for this SSA_NAME.  This preemptively
542      copy-propagates the value, which avoids unnecessary memory allocation.  */
543   else if (is_gimple_min_invariant (value)
544 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
545     {
546       VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
547       return NULL;
548     }
549   else if (TREE_CODE (value) == SSA_NAME
550 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
551     {
552       /* Replace an anonymous base value with the variable from cvc_lookup.
553 	 This should result in better debug info.  */
554       if (DECL_IGNORED_P (SSA_NAME_VAR (value))
555 	  && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
556 	{
557 	  comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
558 	  replace_ssa_name_symbol (value, comp);
559 	}
560 
561       VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
562       return NULL;
563     }
564 
565   /* Finally, we need to stabilize the result by installing the value into
566      a new ssa name.  */
567   else
568     comp = get_component_ssa_name (ssa_name, imag_p);
569 
570   /* Do all the work to assign VALUE to COMP.  */
571   list = NULL;
572   value = force_gimple_operand (value, &list, false, NULL);
573   last =  gimple_build_assign (comp, value);
574   gimple_seq_add_stmt (&list, last);
575   gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
576 
577   return list;
578 }
579 
580 /* Extract the real or imaginary part of a complex variable or constant.
581    Make sure that it's a proper gimple_val and gimplify it if not.
582    Emit any new code before gsi.  */
583 
584 static tree
585 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
586 		   bool gimple_p)
587 {
588   switch (TREE_CODE (t))
589     {
590     case COMPLEX_CST:
591       return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
592 
593     case COMPLEX_EXPR:
594       gcc_unreachable ();
595 
596     case VAR_DECL:
597     case RESULT_DECL:
598     case PARM_DECL:
599     case COMPONENT_REF:
600     case ARRAY_REF:
601     case VIEW_CONVERT_EXPR:
602     case MEM_REF:
603       {
604 	tree inner_type = TREE_TYPE (TREE_TYPE (t));
605 
606 	t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
607 		    inner_type, unshare_expr (t));
608 
609 	if (gimple_p)
610 	  t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
611                                         GSI_SAME_STMT);
612 
613 	return t;
614       }
615 
616     case SSA_NAME:
617       return get_component_ssa_name (t, imagpart_p);
618 
619     default:
620       gcc_unreachable ();
621     }
622 }
623 
624 /* Update the complex components of the ssa name on the lhs of STMT.  */
625 
626 static void
627 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
628 			   tree i)
629 {
630   tree lhs;
631   gimple_seq list;
632 
633   lhs = gimple_get_lhs (stmt);
634 
635   list = set_component_ssa_name (lhs, false, r);
636   if (list)
637     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
638 
639   list = set_component_ssa_name (lhs, true, i);
640   if (list)
641     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
642 }
643 
644 static void
645 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
646 {
647   gimple_seq list;
648 
649   list = set_component_ssa_name (lhs, false, r);
650   if (list)
651     gsi_insert_seq_on_edge (e, list);
652 
653   list = set_component_ssa_name (lhs, true, i);
654   if (list)
655     gsi_insert_seq_on_edge (e, list);
656 }
657 
658 
659 /* Update an assignment to a complex variable in place.  */
660 
661 static void
662 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
663 {
664   gimple_stmt_iterator orig_si = *gsi;
665   gimple stmt;
666 
667   if (gimple_in_ssa_p (cfun))
668     update_complex_components (gsi, gsi_stmt (*gsi), r, i);
669 
670   gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
671   stmt = gsi_stmt (orig_si);
672   update_stmt (stmt);
673   if (maybe_clean_eh_stmt (stmt))
674     gimple_purge_dead_eh_edges (gimple_bb (stmt));
675 }
676 
677 
678 /* Generate code at the entry point of the function to initialize the
679    component variables for a complex parameter.  */
680 
681 static void
682 update_parameter_components (void)
683 {
684   edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
685   tree parm;
686 
687   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
688     {
689       tree type = TREE_TYPE (parm);
690       tree ssa_name, r, i;
691 
692       if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
693 	continue;
694 
695       type = TREE_TYPE (type);
696       ssa_name = gimple_default_def (cfun, parm);
697       if (!ssa_name)
698 	continue;
699 
700       r = build1 (REALPART_EXPR, type, ssa_name);
701       i = build1 (IMAGPART_EXPR, type, ssa_name);
702       update_complex_components_on_edge (entry_edge, ssa_name, r, i);
703     }
704 }
705 
706 /* Generate code to set the component variables of a complex variable
707    to match the PHI statements in block BB.  */
708 
709 static void
710 update_phi_components (basic_block bb)
711 {
712   gimple_stmt_iterator gsi;
713 
714   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
715     {
716       gimple phi = gsi_stmt (gsi);
717 
718       if (is_complex_reg (gimple_phi_result (phi)))
719 	{
720 	  tree lr, li;
721 	  gimple pr = NULL, pi = NULL;
722 	  unsigned int i, n;
723 
724 	  lr = get_component_ssa_name (gimple_phi_result (phi), false);
725 	  if (TREE_CODE (lr) == SSA_NAME)
726 	    {
727 	      pr = create_phi_node (lr, bb);
728 	      SSA_NAME_DEF_STMT (lr) = pr;
729 	    }
730 
731 	  li = get_component_ssa_name (gimple_phi_result (phi), true);
732 	  if (TREE_CODE (li) == SSA_NAME)
733 	    {
734 	      pi = create_phi_node (li, bb);
735 	      SSA_NAME_DEF_STMT (li) = pi;
736 	    }
737 
738 	  for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
739 	    {
740 	      tree comp, arg = gimple_phi_arg_def (phi, i);
741 	      if (pr)
742 		{
743 		  comp = extract_component (NULL, arg, false, false);
744 		  SET_PHI_ARG_DEF (pr, i, comp);
745 		}
746 	      if (pi)
747 		{
748 		  comp = extract_component (NULL, arg, true, false);
749 		  SET_PHI_ARG_DEF (pi, i, comp);
750 		}
751 	    }
752 	}
753     }
754 }
755 
756 /* Expand a complex move to scalars.  */
757 
758 static void
759 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
760 {
761   tree inner_type = TREE_TYPE (type);
762   tree r, i, lhs, rhs;
763   gimple stmt = gsi_stmt (*gsi);
764 
765   if (is_gimple_assign (stmt))
766     {
767       lhs = gimple_assign_lhs (stmt);
768       if (gimple_num_ops (stmt) == 2)
769 	rhs = gimple_assign_rhs1 (stmt);
770       else
771 	rhs = NULL_TREE;
772     }
773   else if (is_gimple_call (stmt))
774     {
775       lhs = gimple_call_lhs (stmt);
776       rhs = NULL_TREE;
777     }
778   else
779     gcc_unreachable ();
780 
781   if (TREE_CODE (lhs) == SSA_NAME)
782     {
783       if (is_ctrl_altering_stmt (stmt))
784 	{
785 	  edge e;
786 
787 	  /* The value is not assigned on the exception edges, so we need not
788 	     concern ourselves there.  We do need to update on the fallthru
789 	     edge.  Find it.  */
790 	  e = find_fallthru_edge (gsi_bb (*gsi)->succs);
791 	  if (!e)
792 	    gcc_unreachable ();
793 
794 	  r = build1 (REALPART_EXPR, inner_type, lhs);
795 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
796 	  update_complex_components_on_edge (e, lhs, r, i);
797 	}
798       else if (is_gimple_call (stmt)
799 	       || gimple_has_side_effects (stmt)
800 	       || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
801 	{
802 	  r = build1 (REALPART_EXPR, inner_type, lhs);
803 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
804 	  update_complex_components (gsi, stmt, r, i);
805 	}
806       else
807 	{
808 	  if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
809 	    {
810 	      r = extract_component (gsi, rhs, 0, true);
811 	      i = extract_component (gsi, rhs, 1, true);
812 	    }
813 	  else
814 	    {
815 	      r = gimple_assign_rhs1 (stmt);
816 	      i = gimple_assign_rhs2 (stmt);
817 	    }
818 	  update_complex_assignment (gsi, r, i);
819 	}
820     }
821   else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
822     {
823       tree x;
824       gimple t;
825 
826       r = extract_component (gsi, rhs, 0, false);
827       i = extract_component (gsi, rhs, 1, false);
828 
829       x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
830       t = gimple_build_assign (x, r);
831       gsi_insert_before (gsi, t, GSI_SAME_STMT);
832 
833       if (stmt == gsi_stmt (*gsi))
834 	{
835 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
836 	  gimple_assign_set_lhs (stmt, x);
837 	  gimple_assign_set_rhs1 (stmt, i);
838 	}
839       else
840 	{
841 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
842 	  t = gimple_build_assign (x, i);
843 	  gsi_insert_before (gsi, t, GSI_SAME_STMT);
844 
845 	  stmt = gsi_stmt (*gsi);
846 	  gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
847 	  gimple_return_set_retval (stmt, lhs);
848 	}
849 
850       update_stmt (stmt);
851     }
852 }
853 
854 /* Expand complex addition to scalars:
855 	a + b = (ar + br) + i(ai + bi)
856 	a - b = (ar - br) + i(ai + bi)
857 */
858 
859 static void
860 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
861 			 tree ar, tree ai, tree br, tree bi,
862 			 enum tree_code code,
863 			 complex_lattice_t al, complex_lattice_t bl)
864 {
865   tree rr, ri;
866 
867   switch (PAIR (al, bl))
868     {
869     case PAIR (ONLY_REAL, ONLY_REAL):
870       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
871       ri = ai;
872       break;
873 
874     case PAIR (ONLY_REAL, ONLY_IMAG):
875       rr = ar;
876       if (code == MINUS_EXPR)
877 	ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
878       else
879 	ri = bi;
880       break;
881 
882     case PAIR (ONLY_IMAG, ONLY_REAL):
883       if (code == MINUS_EXPR)
884 	rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
885       else
886 	rr = br;
887       ri = ai;
888       break;
889 
890     case PAIR (ONLY_IMAG, ONLY_IMAG):
891       rr = ar;
892       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
893       break;
894 
895     case PAIR (VARYING, ONLY_REAL):
896       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
897       ri = ai;
898       break;
899 
900     case PAIR (VARYING, ONLY_IMAG):
901       rr = ar;
902       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
903       break;
904 
905     case PAIR (ONLY_REAL, VARYING):
906       if (code == MINUS_EXPR)
907 	goto general;
908       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
909       ri = bi;
910       break;
911 
912     case PAIR (ONLY_IMAG, VARYING):
913       if (code == MINUS_EXPR)
914 	goto general;
915       rr = br;
916       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
917       break;
918 
919     case PAIR (VARYING, VARYING):
920     general:
921       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
922       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
923       break;
924 
925     default:
926       gcc_unreachable ();
927     }
928 
929   update_complex_assignment (gsi, rr, ri);
930 }
931 
932 /* Expand a complex multiplication or division to a libcall to the c99
933    compliant routines.  */
934 
935 static void
936 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
937 			tree br, tree bi, enum tree_code code)
938 {
939   enum machine_mode mode;
940   enum built_in_function bcode;
941   tree fn, type, lhs;
942   gimple old_stmt, stmt;
943 
944   old_stmt = gsi_stmt (*gsi);
945   lhs = gimple_assign_lhs (old_stmt);
946   type = TREE_TYPE (lhs);
947 
948   mode = TYPE_MODE (type);
949   gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
950 
951   if (code == MULT_EXPR)
952     bcode = ((enum built_in_function)
953 	     (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
954   else if (code == RDIV_EXPR)
955     bcode = ((enum built_in_function)
956 	     (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
957   else
958     gcc_unreachable ();
959   fn = builtin_decl_explicit (bcode);
960 
961   stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
962   gimple_call_set_lhs (stmt, lhs);
963   update_stmt (stmt);
964   gsi_replace (gsi, stmt, false);
965 
966   if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
967     gimple_purge_dead_eh_edges (gsi_bb (*gsi));
968 
969   if (gimple_in_ssa_p (cfun))
970     {
971       type = TREE_TYPE (type);
972       update_complex_components (gsi, stmt,
973 				 build1 (REALPART_EXPR, type, lhs),
974 				 build1 (IMAGPART_EXPR, type, lhs));
975       SSA_NAME_DEF_STMT (lhs) = stmt;
976     }
977 }
978 
979 /* Expand complex multiplication to scalars:
980 	a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
981 */
982 
983 static void
984 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
985 			       tree ar, tree ai, tree br, tree bi,
986 			       complex_lattice_t al, complex_lattice_t bl)
987 {
988   tree rr, ri;
989 
990   if (al < bl)
991     {
992       complex_lattice_t tl;
993       rr = ar, ar = br, br = rr;
994       ri = ai, ai = bi, bi = ri;
995       tl = al, al = bl, bl = tl;
996     }
997 
998   switch (PAIR (al, bl))
999     {
1000     case PAIR (ONLY_REAL, ONLY_REAL):
1001       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1002       ri = ai;
1003       break;
1004 
1005     case PAIR (ONLY_IMAG, ONLY_REAL):
1006       rr = ar;
1007       if (TREE_CODE (ai) == REAL_CST
1008 	  && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1009 	ri = br;
1010       else
1011 	ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1012       break;
1013 
1014     case PAIR (ONLY_IMAG, ONLY_IMAG):
1015       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1016       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1017       ri = ar;
1018       break;
1019 
1020     case PAIR (VARYING, ONLY_REAL):
1021       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1022       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1023       break;
1024 
1025     case PAIR (VARYING, ONLY_IMAG):
1026       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1027       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1028       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1029       break;
1030 
1031     case PAIR (VARYING, VARYING):
1032       if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1033 	{
1034 	  expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1035 	  return;
1036 	}
1037       else
1038 	{
1039 	  tree t1, t2, t3, t4;
1040 
1041 	  t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1042 	  t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1043 	  t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1044 
1045 	  /* Avoid expanding redundant multiplication for the common
1046 	     case of squaring a complex number.  */
1047 	  if (ar == br && ai == bi)
1048 	    t4 = t3;
1049 	  else
1050 	    t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1051 
1052 	  rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1053 	  ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1054 	}
1055       break;
1056 
1057     default:
1058       gcc_unreachable ();
1059     }
1060 
1061   update_complex_assignment (gsi, rr, ri);
1062 }
1063 
1064 /* Keep this algorithm in sync with fold-const.c:const_binop().
1065 
1066    Expand complex division to scalars, straightforward algorithm.
1067 	a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1068 	    t = br*br + bi*bi
1069 */
1070 
1071 static void
1072 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1073 			     tree ar, tree ai, tree br, tree bi,
1074 			     enum tree_code code)
1075 {
1076   tree rr, ri, div, t1, t2, t3;
1077 
1078   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1079   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1080   div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1081 
1082   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1083   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1084   t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1085   rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1086 
1087   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1088   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1089   t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1090   ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1091 
1092   update_complex_assignment (gsi, rr, ri);
1093 }
1094 
1095 /* Keep this algorithm in sync with fold-const.c:const_binop().
1096 
1097    Expand complex division to scalars, modified algorithm to minimize
1098    overflow with wide input ranges.  */
1099 
1100 static void
1101 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1102 			 tree ar, tree ai, tree br, tree bi,
1103 			 enum tree_code code)
1104 {
1105   tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1106   basic_block bb_cond, bb_true, bb_false, bb_join;
1107   gimple stmt;
1108 
1109   /* Examine |br| < |bi|, and branch.  */
1110   t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1111   t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1112   compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1113 			     LT_EXPR, boolean_type_node, t1, t2);
1114   STRIP_NOPS (compare);
1115 
1116   bb_cond = bb_true = bb_false = bb_join = NULL;
1117   rr = ri = tr = ti = NULL;
1118   if (TREE_CODE (compare) != INTEGER_CST)
1119     {
1120       edge e;
1121       gimple stmt;
1122       tree cond, tmp;
1123 
1124       tmp = create_tmp_var (boolean_type_node, NULL);
1125       stmt = gimple_build_assign (tmp, compare);
1126       if (gimple_in_ssa_p (cfun))
1127 	{
1128 	  tmp = make_ssa_name (tmp,  stmt);
1129 	  gimple_assign_set_lhs (stmt, tmp);
1130 	}
1131 
1132       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1133 
1134       cond = fold_build2_loc (gimple_location (stmt),
1135 			  EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1136       stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1137       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1138 
1139       /* Split the original block, and create the TRUE and FALSE blocks.  */
1140       e = split_block (gsi_bb (*gsi), stmt);
1141       bb_cond = e->src;
1142       bb_join = e->dest;
1143       bb_true = create_empty_bb (bb_cond);
1144       bb_false = create_empty_bb (bb_true);
1145 
1146       /* Wire the blocks together.  */
1147       e->flags = EDGE_TRUE_VALUE;
1148       redirect_edge_succ (e, bb_true);
1149       make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1150       make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1151       make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1152 
1153       /* Update dominance info.  Note that bb_join's data was
1154          updated by split_block.  */
1155       if (dom_info_available_p (CDI_DOMINATORS))
1156         {
1157           set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1158           set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1159         }
1160 
1161       rr = make_rename_temp (inner_type, NULL);
1162       ri = make_rename_temp (inner_type, NULL);
1163     }
1164 
1165   /* In the TRUE branch, we compute
1166       ratio = br/bi;
1167       div = (br * ratio) + bi;
1168       tr = (ar * ratio) + ai;
1169       ti = (ai * ratio) - ar;
1170       tr = tr / div;
1171       ti = ti / div;  */
1172   if (bb_true || integer_nonzerop (compare))
1173     {
1174       if (bb_true)
1175 	{
1176 	  *gsi = gsi_last_bb (bb_true);
1177 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1178 	}
1179 
1180       ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1181 
1182       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1183       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1184 
1185       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1186       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1187 
1188       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1189       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1190 
1191       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1192       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1193 
1194      if (bb_true)
1195        {
1196 	 stmt = gimple_build_assign (rr, tr);
1197 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1198 	 stmt = gimple_build_assign (ri, ti);
1199 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1200 	 gsi_remove (gsi, true);
1201        }
1202     }
1203 
1204   /* In the FALSE branch, we compute
1205       ratio = d/c;
1206       divisor = (d * ratio) + c;
1207       tr = (b * ratio) + a;
1208       ti = b - (a * ratio);
1209       tr = tr / div;
1210       ti = ti / div;  */
1211   if (bb_false || integer_zerop (compare))
1212     {
1213       if (bb_false)
1214 	{
1215 	  *gsi = gsi_last_bb (bb_false);
1216 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1217 	}
1218 
1219       ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1220 
1221       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1222       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1223 
1224       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1225       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1226 
1227       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1228       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1229 
1230       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1231       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1232 
1233      if (bb_false)
1234        {
1235 	 stmt = gimple_build_assign (rr, tr);
1236 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1237 	 stmt = gimple_build_assign (ri, ti);
1238 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1239 	 gsi_remove (gsi, true);
1240        }
1241     }
1242 
1243   if (bb_join)
1244     *gsi = gsi_start_bb (bb_join);
1245   else
1246     rr = tr, ri = ti;
1247 
1248   update_complex_assignment (gsi, rr, ri);
1249 }
1250 
1251 /* Expand complex division to scalars.  */
1252 
1253 static void
1254 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1255 			 tree ar, tree ai, tree br, tree bi,
1256 			 enum tree_code code,
1257 			 complex_lattice_t al, complex_lattice_t bl)
1258 {
1259   tree rr, ri;
1260 
1261   switch (PAIR (al, bl))
1262     {
1263     case PAIR (ONLY_REAL, ONLY_REAL):
1264       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1265       ri = ai;
1266       break;
1267 
1268     case PAIR (ONLY_REAL, ONLY_IMAG):
1269       rr = ai;
1270       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1271       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1272       break;
1273 
1274     case PAIR (ONLY_IMAG, ONLY_REAL):
1275       rr = ar;
1276       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1277       break;
1278 
1279     case PAIR (ONLY_IMAG, ONLY_IMAG):
1280       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1281       ri = ar;
1282       break;
1283 
1284     case PAIR (VARYING, ONLY_REAL):
1285       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1286       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1287       break;
1288 
1289     case PAIR (VARYING, ONLY_IMAG):
1290       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1291       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1292       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1293 
1294     case PAIR (ONLY_REAL, VARYING):
1295     case PAIR (ONLY_IMAG, VARYING):
1296     case PAIR (VARYING, VARYING):
1297       switch (flag_complex_method)
1298 	{
1299 	case 0:
1300 	  /* straightforward implementation of complex divide acceptable.  */
1301 	  expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1302 	  break;
1303 
1304 	case 2:
1305 	  if (SCALAR_FLOAT_TYPE_P (inner_type))
1306 	    {
1307 	      expand_complex_libcall (gsi, ar, ai, br, bi, code);
1308 	      break;
1309 	    }
1310 	  /* FALLTHRU */
1311 
1312 	case 1:
1313 	  /* wide ranges of inputs must work for complex divide.  */
1314 	  expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1315 	  break;
1316 
1317 	default:
1318 	  gcc_unreachable ();
1319 	}
1320       return;
1321 
1322     default:
1323       gcc_unreachable ();
1324     }
1325 
1326   update_complex_assignment (gsi, rr, ri);
1327 }
1328 
1329 /* Expand complex negation to scalars:
1330 	-a = (-ar) + i(-ai)
1331 */
1332 
1333 static void
1334 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1335 			 tree ar, tree ai)
1336 {
1337   tree rr, ri;
1338 
1339   rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1340   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1341 
1342   update_complex_assignment (gsi, rr, ri);
1343 }
1344 
1345 /* Expand complex conjugate to scalars:
1346 	~a = (ar) + i(-ai)
1347 */
1348 
1349 static void
1350 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1351 			  tree ar, tree ai)
1352 {
1353   tree ri;
1354 
1355   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1356 
1357   update_complex_assignment (gsi, ar, ri);
1358 }
1359 
1360 /* Expand complex comparison (EQ or NE only).  */
1361 
1362 static void
1363 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1364 			   tree br, tree bi, enum tree_code code)
1365 {
1366   tree cr, ci, cc, type;
1367   gimple stmt;
1368 
1369   cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1370   ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1371   cc = gimplify_build2 (gsi,
1372 			(code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1373 			boolean_type_node, cr, ci);
1374 
1375   stmt = gsi_stmt (*gsi);
1376 
1377   switch (gimple_code (stmt))
1378     {
1379     case GIMPLE_RETURN:
1380       type = TREE_TYPE (gimple_return_retval (stmt));
1381       gimple_return_set_retval (stmt, fold_convert (type, cc));
1382       break;
1383 
1384     case GIMPLE_ASSIGN:
1385       type = TREE_TYPE (gimple_assign_lhs (stmt));
1386       gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1387       stmt = gsi_stmt (*gsi);
1388       break;
1389 
1390     case GIMPLE_COND:
1391       gimple_cond_set_code (stmt, EQ_EXPR);
1392       gimple_cond_set_lhs (stmt, cc);
1393       gimple_cond_set_rhs (stmt, boolean_true_node);
1394       break;
1395 
1396     default:
1397       gcc_unreachable ();
1398     }
1399 
1400   update_stmt (stmt);
1401 }
1402 
1403 /* Expand inline asm that sets some complex SSA_NAMEs.  */
1404 
1405 static void
1406 expand_complex_asm (gimple_stmt_iterator *gsi)
1407 {
1408   gimple stmt = gsi_stmt (*gsi);
1409   unsigned int i;
1410 
1411   for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1412     {
1413       tree link = gimple_asm_output_op (stmt, i);
1414       tree op = TREE_VALUE (link);
1415       if (TREE_CODE (op) == SSA_NAME
1416 	  && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1417 	{
1418 	  tree type = TREE_TYPE (op);
1419 	  tree inner_type = TREE_TYPE (type);
1420 	  tree r = build1 (REALPART_EXPR, inner_type, op);
1421 	  tree i = build1 (IMAGPART_EXPR, inner_type, op);
1422 	  gimple_seq list = set_component_ssa_name (op, false, r);
1423 
1424 	  if (list)
1425 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1426 
1427 	  list = set_component_ssa_name (op, true, i);
1428 	  if (list)
1429 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1430 	}
1431     }
1432 }
1433 
1434 /* Process one statement.  If we identify a complex operation, expand it.  */
1435 
1436 static void
1437 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1438 {
1439   gimple stmt = gsi_stmt (*gsi);
1440   tree type, inner_type, lhs;
1441   tree ac, ar, ai, bc, br, bi;
1442   complex_lattice_t al, bl;
1443   enum tree_code code;
1444 
1445   if (gimple_code (stmt) == GIMPLE_ASM)
1446     {
1447       expand_complex_asm (gsi);
1448       return;
1449     }
1450 
1451   lhs = gimple_get_lhs (stmt);
1452   if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1453     return;
1454 
1455   type = TREE_TYPE (gimple_op (stmt, 0));
1456   code = gimple_expr_code (stmt);
1457 
1458   /* Initial filter for operations we handle.  */
1459   switch (code)
1460     {
1461     case PLUS_EXPR:
1462     case MINUS_EXPR:
1463     case MULT_EXPR:
1464     case TRUNC_DIV_EXPR:
1465     case CEIL_DIV_EXPR:
1466     case FLOOR_DIV_EXPR:
1467     case ROUND_DIV_EXPR:
1468     case RDIV_EXPR:
1469     case NEGATE_EXPR:
1470     case CONJ_EXPR:
1471       if (TREE_CODE (type) != COMPLEX_TYPE)
1472 	return;
1473       inner_type = TREE_TYPE (type);
1474       break;
1475 
1476     case EQ_EXPR:
1477     case NE_EXPR:
1478       /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1479 	 subocde, so we need to access the operands using gimple_op.  */
1480       inner_type = TREE_TYPE (gimple_op (stmt, 1));
1481       if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1482 	return;
1483       break;
1484 
1485     default:
1486       {
1487 	tree rhs;
1488 
1489 	/* GIMPLE_COND may also fallthru here, but we do not need to
1490 	   do anything with it.  */
1491 	if (gimple_code (stmt) == GIMPLE_COND)
1492 	  return;
1493 
1494 	if (TREE_CODE (type) == COMPLEX_TYPE)
1495 	  expand_complex_move (gsi, type);
1496 	else if (is_gimple_assign (stmt)
1497 		 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1498 		     || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1499 		 && TREE_CODE (lhs) == SSA_NAME)
1500 	  {
1501 	    rhs = gimple_assign_rhs1 (stmt);
1502 	    rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1503 		                     gimple_assign_rhs_code (stmt)
1504 				       == IMAGPART_EXPR,
1505 				     false);
1506 	    gimple_assign_set_rhs_from_tree (gsi, rhs);
1507 	    stmt = gsi_stmt (*gsi);
1508 	    update_stmt (stmt);
1509 	  }
1510       }
1511       return;
1512     }
1513 
1514   /* Extract the components of the two complex values.  Make sure and
1515      handle the common case of the same value used twice specially.  */
1516   if (is_gimple_assign (stmt))
1517     {
1518       ac = gimple_assign_rhs1 (stmt);
1519       bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1520     }
1521   /* GIMPLE_CALL can not get here.  */
1522   else
1523     {
1524       ac = gimple_cond_lhs (stmt);
1525       bc = gimple_cond_rhs (stmt);
1526     }
1527 
1528   ar = extract_component (gsi, ac, false, true);
1529   ai = extract_component (gsi, ac, true, true);
1530 
1531   if (ac == bc)
1532     br = ar, bi = ai;
1533   else if (bc)
1534     {
1535       br = extract_component (gsi, bc, 0, true);
1536       bi = extract_component (gsi, bc, 1, true);
1537     }
1538   else
1539     br = bi = NULL_TREE;
1540 
1541   if (gimple_in_ssa_p (cfun))
1542     {
1543       al = find_lattice_value (ac);
1544       if (al == UNINITIALIZED)
1545 	al = VARYING;
1546 
1547       if (TREE_CODE_CLASS (code) == tcc_unary)
1548 	bl = UNINITIALIZED;
1549       else if (ac == bc)
1550 	bl = al;
1551       else
1552 	{
1553 	  bl = find_lattice_value (bc);
1554 	  if (bl == UNINITIALIZED)
1555 	    bl = VARYING;
1556 	}
1557     }
1558   else
1559     al = bl = VARYING;
1560 
1561   switch (code)
1562     {
1563     case PLUS_EXPR:
1564     case MINUS_EXPR:
1565       expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1566       break;
1567 
1568     case MULT_EXPR:
1569       expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1570       break;
1571 
1572     case TRUNC_DIV_EXPR:
1573     case CEIL_DIV_EXPR:
1574     case FLOOR_DIV_EXPR:
1575     case ROUND_DIV_EXPR:
1576     case RDIV_EXPR:
1577       expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1578       break;
1579 
1580     case NEGATE_EXPR:
1581       expand_complex_negation (gsi, inner_type, ar, ai);
1582       break;
1583 
1584     case CONJ_EXPR:
1585       expand_complex_conjugate (gsi, inner_type, ar, ai);
1586       break;
1587 
1588     case EQ_EXPR:
1589     case NE_EXPR:
1590       expand_complex_comparison (gsi, ar, ai, br, bi, code);
1591       break;
1592 
1593     default:
1594       gcc_unreachable ();
1595     }
1596 }
1597 
1598 
1599 /* Entry point for complex operation lowering during optimization.  */
1600 
1601 static unsigned int
1602 tree_lower_complex (void)
1603 {
1604   int old_last_basic_block;
1605   gimple_stmt_iterator gsi;
1606   basic_block bb;
1607 
1608   if (!init_dont_simulate_again ())
1609     return 0;
1610 
1611   complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1612   VEC_safe_grow_cleared (complex_lattice_t, heap,
1613 			 complex_lattice_values, num_ssa_names);
1614 
1615   init_parameter_lattice_values ();
1616   ssa_propagate (complex_visit_stmt, complex_visit_phi);
1617 
1618   complex_variable_components = htab_create (10,  int_tree_map_hash,
1619 					     int_tree_map_eq, free);
1620 
1621   complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1622   VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1623 			 2 * num_ssa_names);
1624 
1625   update_parameter_components ();
1626 
1627   /* ??? Ideally we'd traverse the blocks in breadth-first order.  */
1628   old_last_basic_block = last_basic_block;
1629   FOR_EACH_BB (bb)
1630     {
1631       if (bb->index >= old_last_basic_block)
1632 	continue;
1633 
1634       update_phi_components (bb);
1635       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1636 	expand_complex_operations_1 (&gsi);
1637     }
1638 
1639   gsi_commit_edge_inserts ();
1640 
1641   htab_delete (complex_variable_components);
1642   VEC_free (tree, heap, complex_ssa_name_components);
1643   VEC_free (complex_lattice_t, heap, complex_lattice_values);
1644   return 0;
1645 }
1646 
1647 struct gimple_opt_pass pass_lower_complex =
1648 {
1649  {
1650   GIMPLE_PASS,
1651   "cplxlower",				/* name */
1652   0,					/* gate */
1653   tree_lower_complex,			/* execute */
1654   NULL,					/* sub */
1655   NULL,					/* next */
1656   0,					/* static_pass_number */
1657   TV_NONE,				/* tv_id */
1658   PROP_ssa,				/* properties_required */
1659   PROP_gimple_lcx,			/* properties_provided */
1660   0,                       		/* properties_destroyed */
1661   0,					/* todo_flags_start */
1662     TODO_ggc_collect
1663     | TODO_update_ssa
1664     | TODO_verify_stmts	 		/* todo_flags_finish */
1665  }
1666 };
1667 
1668 
1669 static bool
1670 gate_no_optimization (void)
1671 {
1672   /* With errors, normal optimization passes are not run.  If we don't
1673      lower complex operations at all, rtl expansion will abort.  */
1674   return !(cfun->curr_properties & PROP_gimple_lcx);
1675 }
1676 
1677 struct gimple_opt_pass pass_lower_complex_O0 =
1678 {
1679  {
1680   GIMPLE_PASS,
1681   "cplxlower0",				/* name */
1682   gate_no_optimization,			/* gate */
1683   tree_lower_complex,			/* execute */
1684   NULL,					/* sub */
1685   NULL,					/* next */
1686   0,					/* static_pass_number */
1687   TV_NONE,				/* tv_id */
1688   PROP_cfg,				/* properties_required */
1689   PROP_gimple_lcx,			/* properties_provided */
1690   0,					/* properties_destroyed */
1691   0,					/* todo_flags_start */
1692   TODO_ggc_collect
1693     | TODO_update_ssa
1694     | TODO_verify_stmts	 		/* todo_flags_finish */
1695  }
1696 };
1697