xref: /dragonfly/contrib/gcc-4.7/gcc/tree-eh.c (revision 91dc43dd)
1 /* Exception handling semantics and decomposition for trees.
2    Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
35 #include "timevar.h"
36 #include "langhooks.h"
37 #include "ggc.h"
38 #include "diagnostic-core.h"
39 #include "gimple.h"
40 #include "target.h"
41 
42 /* In some instances a tree and a gimple need to be stored in a same table,
43    i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree *tp; tree t; gimple g;} treemple;
45 
46 /* Nonzero if we are using EH to handle cleanups.  */
47 static int using_eh_for_cleanups_p = 0;
48 
49 void
50 using_eh_for_cleanups (void)
51 {
52   using_eh_for_cleanups_p = 1;
53 }
54 
55 /* Misc functions used in this file.  */
56 
57 /* Remember and lookup EH landing pad data for arbitrary statements.
58    Really this means any statement that could_throw_p.  We could
59    stuff this information into the stmt_ann data structure, but:
60 
61    (1) We absolutely rely on this information being kept until
62    we get to rtl.  Once we're done with lowering here, if we lose
63    the information there's no way to recover it!
64 
65    (2) There are many more statements that *cannot* throw as
66    compared to those that can.  We should be saving some amount
67    of space by only allocating memory for those that can throw.  */
68 
69 /* Add statement T in function IFUN to landing pad NUM.  */
70 
71 void
72 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
73 {
74   struct throw_stmt_node *n;
75   void **slot;
76 
77   gcc_assert (num != 0);
78 
79   n = ggc_alloc_throw_stmt_node ();
80   n->stmt = t;
81   n->lp_nr = num;
82 
83   if (!get_eh_throw_stmt_table (ifun))
84     set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
85 						    struct_ptr_eq,
86 						    ggc_free));
87 
88   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
89   gcc_assert (!*slot);
90   *slot = n;
91 }
92 
93 /* Add statement T in the current function (cfun) to EH landing pad NUM.  */
94 
95 void
96 add_stmt_to_eh_lp (gimple t, int num)
97 {
98   add_stmt_to_eh_lp_fn (cfun, t, num);
99 }
100 
101 /* Add statement T to the single EH landing pad in REGION.  */
102 
103 static void
104 record_stmt_eh_region (eh_region region, gimple t)
105 {
106   if (region == NULL)
107     return;
108   if (region->type == ERT_MUST_NOT_THROW)
109     add_stmt_to_eh_lp_fn (cfun, t, -region->index);
110   else
111     {
112       eh_landing_pad lp = region->landing_pads;
113       if (lp == NULL)
114 	lp = gen_eh_landing_pad (region);
115       else
116 	gcc_assert (lp->next_lp == NULL);
117       add_stmt_to_eh_lp_fn (cfun, t, lp->index);
118     }
119 }
120 
121 
122 /* Remove statement T in function IFUN from its EH landing pad.  */
123 
124 bool
125 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
126 {
127   struct throw_stmt_node dummy;
128   void **slot;
129 
130   if (!get_eh_throw_stmt_table (ifun))
131     return false;
132 
133   dummy.stmt = t;
134   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
135                         NO_INSERT);
136   if (slot)
137     {
138       htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
139       return true;
140     }
141   else
142     return false;
143 }
144 
145 
146 /* Remove statement T in the current function (cfun) from its
147    EH landing pad.  */
148 
149 bool
150 remove_stmt_from_eh_lp (gimple t)
151 {
152   return remove_stmt_from_eh_lp_fn (cfun, t);
153 }
154 
155 /* Determine if statement T is inside an EH region in function IFUN.
156    Positive numbers indicate a landing pad index; negative numbers
157    indicate a MUST_NOT_THROW region index; zero indicates that the
158    statement is not recorded in the region table.  */
159 
160 int
161 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
162 {
163   struct throw_stmt_node *p, n;
164 
165   if (ifun->eh->throw_stmt_table == NULL)
166     return 0;
167 
168   n.stmt = t;
169   p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
170   return p ? p->lp_nr : 0;
171 }
172 
173 /* Likewise, but always use the current function.  */
174 
175 int
176 lookup_stmt_eh_lp (gimple t)
177 {
178   /* We can get called from initialized data when -fnon-call-exceptions
179      is on; prevent crash.  */
180   if (!cfun)
181     return 0;
182   return lookup_stmt_eh_lp_fn (cfun, t);
183 }
184 
185 /* First pass of EH node decomposition.  Build up a tree of GIMPLE_TRY_FINALLY
186    nodes and LABEL_DECL nodes.  We will use this during the second phase to
187    determine if a goto leaves the body of a TRY_FINALLY_EXPR node.  */
188 
189 struct finally_tree_node
190 {
191   /* When storing a GIMPLE_TRY, we have to record a gimple.  However
192      when deciding whether a GOTO to a certain LABEL_DECL (which is a
193      tree) leaves the TRY block, its necessary to record a tree in
194      this field.  Thus a treemple is used. */
195   treemple child;
196   gimple parent;
197 };
198 
199 /* Note that this table is *not* marked GTY.  It is short-lived.  */
200 static htab_t finally_tree;
201 
202 static void
203 record_in_finally_tree (treemple child, gimple parent)
204 {
205   struct finally_tree_node *n;
206   void **slot;
207 
208   n = XNEW (struct finally_tree_node);
209   n->child = child;
210   n->parent = parent;
211 
212   slot = htab_find_slot (finally_tree, n, INSERT);
213   gcc_assert (!*slot);
214   *slot = n;
215 }
216 
217 static void
218 collect_finally_tree (gimple stmt, gimple region);
219 
220 /* Go through the gimple sequence.  Works with collect_finally_tree to
221    record all GIMPLE_LABEL and GIMPLE_TRY statements. */
222 
223 static void
224 collect_finally_tree_1 (gimple_seq seq, gimple region)
225 {
226   gimple_stmt_iterator gsi;
227 
228   for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
229     collect_finally_tree (gsi_stmt (gsi), region);
230 }
231 
232 static void
233 collect_finally_tree (gimple stmt, gimple region)
234 {
235   treemple temp;
236 
237   switch (gimple_code (stmt))
238     {
239     case GIMPLE_LABEL:
240       temp.t = gimple_label_label (stmt);
241       record_in_finally_tree (temp, region);
242       break;
243 
244     case GIMPLE_TRY:
245       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
246         {
247           temp.g = stmt;
248           record_in_finally_tree (temp, region);
249           collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
250 	  collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
251         }
252       else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
253         {
254           collect_finally_tree_1 (gimple_try_eval (stmt), region);
255           collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
256         }
257       break;
258 
259     case GIMPLE_CATCH:
260       collect_finally_tree_1 (gimple_catch_handler (stmt), region);
261       break;
262 
263     case GIMPLE_EH_FILTER:
264       collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
265       break;
266 
267     case GIMPLE_EH_ELSE:
268       collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
269       collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
270       break;
271 
272     default:
273       /* A type, a decl, or some kind of statement that we're not
274 	 interested in.  Don't walk them.  */
275       break;
276     }
277 }
278 
279 
280 /* Use the finally tree to determine if a jump from START to TARGET
281    would leave the try_finally node that START lives in.  */
282 
283 static bool
284 outside_finally_tree (treemple start, gimple target)
285 {
286   struct finally_tree_node n, *p;
287 
288   do
289     {
290       n.child = start;
291       p = (struct finally_tree_node *) htab_find (finally_tree, &n);
292       if (!p)
293 	return true;
294       start.g = p->parent;
295     }
296   while (start.g != target);
297 
298   return false;
299 }
300 
301 /* Second pass of EH node decomposition.  Actually transform the GIMPLE_TRY
302    nodes into a set of gotos, magic labels, and eh regions.
303    The eh region creation is straight-forward, but frobbing all the gotos
304    and such into shape isn't.  */
305 
306 /* The sequence into which we record all EH stuff.  This will be
307    placed at the end of the function when we're all done.  */
308 static gimple_seq eh_seq;
309 
310 /* Record whether an EH region contains something that can throw,
311    indexed by EH region number.  */
312 static bitmap eh_region_may_contain_throw_map;
313 
314 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
315    statements that are seen to escape this GIMPLE_TRY_FINALLY node.
316    The idea is to record a gimple statement for everything except for
317    the conditionals, which get their labels recorded. Since labels are
318    of type 'tree', we need this node to store both gimple and tree
319    objects.  REPL_STMT is the sequence used to replace the goto/return
320    statement.  CONT_STMT is used to store the statement that allows
321    the return/goto to jump to the original destination. */
322 
323 struct goto_queue_node
324 {
325   treemple stmt;
326   gimple_seq repl_stmt;
327   gimple cont_stmt;
328   int index;
329   /* This is used when index >= 0 to indicate that stmt is a label (as
330      opposed to a goto stmt).  */
331   int is_label;
332 };
333 
334 /* State of the world while lowering.  */
335 
336 struct leh_state
337 {
338   /* What's "current" while constructing the eh region tree.  These
339      correspond to variables of the same name in cfun->eh, which we
340      don't have easy access to.  */
341   eh_region cur_region;
342 
343   /* What's "current" for the purposes of __builtin_eh_pointer.  For
344      a CATCH, this is the associated TRY.  For an EH_FILTER, this is
345      the associated ALLOWED_EXCEPTIONS, etc.  */
346   eh_region ehp_region;
347 
348   /* Processing of TRY_FINALLY requires a bit more state.  This is
349      split out into a separate structure so that we don't have to
350      copy so much when processing other nodes.  */
351   struct leh_tf_state *tf;
352 };
353 
354 struct leh_tf_state
355 {
356   /* Pointer to the GIMPLE_TRY_FINALLY node under discussion.  The
357      try_finally_expr is the original GIMPLE_TRY_FINALLY.  We need to retain
358      this so that outside_finally_tree can reliably reference the tree used
359      in the collect_finally_tree data structures.  */
360   gimple try_finally_expr;
361   gimple top_p;
362 
363   /* While lowering a top_p usually it is expanded into multiple statements,
364      thus we need the following field to store them. */
365   gimple_seq top_p_seq;
366 
367   /* The state outside this try_finally node.  */
368   struct leh_state *outer;
369 
370   /* The exception region created for it.  */
371   eh_region region;
372 
373   /* The goto queue.  */
374   struct goto_queue_node *goto_queue;
375   size_t goto_queue_size;
376   size_t goto_queue_active;
377 
378   /* Pointer map to help in searching goto_queue when it is large.  */
379   struct pointer_map_t *goto_queue_map;
380 
381   /* The set of unique labels seen as entries in the goto queue.  */
382   VEC(tree,heap) *dest_array;
383 
384   /* A label to be added at the end of the completed transformed
385      sequence.  It will be set if may_fallthru was true *at one time*,
386      though subsequent transformations may have cleared that flag.  */
387   tree fallthru_label;
388 
389   /* True if it is possible to fall out the bottom of the try block.
390      Cleared if the fallthru is converted to a goto.  */
391   bool may_fallthru;
392 
393   /* True if any entry in goto_queue is a GIMPLE_RETURN.  */
394   bool may_return;
395 
396   /* True if the finally block can receive an exception edge.
397      Cleared if the exception case is handled by code duplication.  */
398   bool may_throw;
399 };
400 
401 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
402 
403 /* Search for STMT in the goto queue.  Return the replacement,
404    or null if the statement isn't in the queue.  */
405 
406 #define LARGE_GOTO_QUEUE 20
407 
408 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
409 
410 static gimple_seq
411 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
412 {
413   unsigned int i;
414   void **slot;
415 
416   if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
417     {
418       for (i = 0; i < tf->goto_queue_active; i++)
419 	if ( tf->goto_queue[i].stmt.g == stmt.g)
420 	  return tf->goto_queue[i].repl_stmt;
421       return NULL;
422     }
423 
424   /* If we have a large number of entries in the goto_queue, create a
425      pointer map and use that for searching.  */
426 
427   if (!tf->goto_queue_map)
428     {
429       tf->goto_queue_map = pointer_map_create ();
430       for (i = 0; i < tf->goto_queue_active; i++)
431 	{
432 	  slot = pointer_map_insert (tf->goto_queue_map,
433                                      tf->goto_queue[i].stmt.g);
434           gcc_assert (*slot == NULL);
435 	  *slot = &tf->goto_queue[i];
436 	}
437     }
438 
439   slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
440   if (slot != NULL)
441     return (((struct goto_queue_node *) *slot)->repl_stmt);
442 
443   return NULL;
444 }
445 
446 /* A subroutine of replace_goto_queue_1.  Handles the sub-clauses of a
447    lowered GIMPLE_COND.  If, by chance, the replacement is a simple goto,
448    then we can just splat it in, otherwise we add the new stmts immediately
449    after the GIMPLE_COND and redirect.  */
450 
451 static void
452 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
453 				gimple_stmt_iterator *gsi)
454 {
455   tree label;
456   gimple_seq new_seq;
457   treemple temp;
458   location_t loc = gimple_location (gsi_stmt (*gsi));
459 
460   temp.tp = tp;
461   new_seq = find_goto_replacement (tf, temp);
462   if (!new_seq)
463     return;
464 
465   if (gimple_seq_singleton_p (new_seq)
466       && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
467     {
468       *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
469       return;
470     }
471 
472   label = create_artificial_label (loc);
473   /* Set the new label for the GIMPLE_COND */
474   *tp = label;
475 
476   gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
477   gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
478 }
479 
480 /* The real work of replace_goto_queue.  Returns with TSI updated to
481    point to the next statement.  */
482 
483 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
484 
485 static void
486 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
487 		      gimple_stmt_iterator *gsi)
488 {
489   gimple_seq seq;
490   treemple temp;
491   temp.g = NULL;
492 
493   switch (gimple_code (stmt))
494     {
495     case GIMPLE_GOTO:
496     case GIMPLE_RETURN:
497       temp.g = stmt;
498       seq = find_goto_replacement (tf, temp);
499       if (seq)
500 	{
501 	  gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
502 	  gsi_remove (gsi, false);
503 	  return;
504 	}
505       break;
506 
507     case GIMPLE_COND:
508       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
509       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
510       break;
511 
512     case GIMPLE_TRY:
513       replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
514       replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
515       break;
516     case GIMPLE_CATCH:
517       replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
518       break;
519     case GIMPLE_EH_FILTER:
520       replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
521       break;
522     case GIMPLE_EH_ELSE:
523       replace_goto_queue_stmt_list (gimple_eh_else_n_body (stmt), tf);
524       replace_goto_queue_stmt_list (gimple_eh_else_e_body (stmt), tf);
525       break;
526 
527     default:
528       /* These won't have gotos in them.  */
529       break;
530     }
531 
532   gsi_next (gsi);
533 }
534 
535 /* A subroutine of replace_goto_queue.  Handles GIMPLE_SEQ.  */
536 
537 static void
538 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
539 {
540   gimple_stmt_iterator gsi = gsi_start (seq);
541 
542   while (!gsi_end_p (gsi))
543     replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
544 }
545 
546 /* Replace all goto queue members.  */
547 
548 static void
549 replace_goto_queue (struct leh_tf_state *tf)
550 {
551   if (tf->goto_queue_active == 0)
552     return;
553   replace_goto_queue_stmt_list (tf->top_p_seq, tf);
554   replace_goto_queue_stmt_list (eh_seq, tf);
555 }
556 
557 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
558    data to be added, IS_LABEL indicates whether NEW_STMT is a label or
559    a gimple return. */
560 
561 static void
562 record_in_goto_queue (struct leh_tf_state *tf,
563                       treemple new_stmt,
564                       int index,
565                       bool is_label)
566 {
567   size_t active, size;
568   struct goto_queue_node *q;
569 
570   gcc_assert (!tf->goto_queue_map);
571 
572   active = tf->goto_queue_active;
573   size = tf->goto_queue_size;
574   if (active >= size)
575     {
576       size = (size ? size * 2 : 32);
577       tf->goto_queue_size = size;
578       tf->goto_queue
579          = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
580     }
581 
582   q = &tf->goto_queue[active];
583   tf->goto_queue_active = active + 1;
584 
585   memset (q, 0, sizeof (*q));
586   q->stmt = new_stmt;
587   q->index = index;
588   q->is_label = is_label;
589 }
590 
591 /* Record the LABEL label in the goto queue contained in TF.
592    TF is not null.  */
593 
594 static void
595 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
596 {
597   int index;
598   treemple temp, new_stmt;
599 
600   if (!label)
601     return;
602 
603   /* Computed and non-local gotos do not get processed.  Given
604      their nature we can neither tell whether we've escaped the
605      finally block nor redirect them if we knew.  */
606   if (TREE_CODE (label) != LABEL_DECL)
607     return;
608 
609   /* No need to record gotos that don't leave the try block.  */
610   temp.t = label;
611   if (!outside_finally_tree (temp, tf->try_finally_expr))
612     return;
613 
614   if (! tf->dest_array)
615     {
616       tf->dest_array = VEC_alloc (tree, heap, 10);
617       VEC_quick_push (tree, tf->dest_array, label);
618       index = 0;
619     }
620   else
621     {
622       int n = VEC_length (tree, tf->dest_array);
623       for (index = 0; index < n; ++index)
624         if (VEC_index (tree, tf->dest_array, index) == label)
625           break;
626       if (index == n)
627         VEC_safe_push (tree, heap, tf->dest_array, label);
628     }
629 
630   /* In the case of a GOTO we want to record the destination label,
631      since with a GIMPLE_COND we have an easy access to the then/else
632      labels. */
633   new_stmt = stmt;
634   record_in_goto_queue (tf, new_stmt, index, true);
635 }
636 
637 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
638    node, and if so record that fact in the goto queue associated with that
639    try_finally node.  */
640 
641 static void
642 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
643 {
644   struct leh_tf_state *tf = state->tf;
645   treemple new_stmt;
646 
647   if (!tf)
648     return;
649 
650   switch (gimple_code (stmt))
651     {
652     case GIMPLE_COND:
653       new_stmt.tp = gimple_op_ptr (stmt, 2);
654       record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
655       new_stmt.tp = gimple_op_ptr (stmt, 3);
656       record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
657       break;
658     case GIMPLE_GOTO:
659       new_stmt.g = stmt;
660       record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
661       break;
662 
663     case GIMPLE_RETURN:
664       tf->may_return = true;
665       new_stmt.g = stmt;
666       record_in_goto_queue (tf, new_stmt, -1, false);
667       break;
668 
669     default:
670       gcc_unreachable ();
671     }
672 }
673 
674 
675 #ifdef ENABLE_CHECKING
676 /* We do not process GIMPLE_SWITCHes for now.  As long as the original source
677    was in fact structured, and we've not yet done jump threading, then none
678    of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this.  */
679 
680 static void
681 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
682 {
683   struct leh_tf_state *tf = state->tf;
684   size_t i, n;
685 
686   if (!tf)
687     return;
688 
689   n = gimple_switch_num_labels (switch_expr);
690 
691   for (i = 0; i < n; ++i)
692     {
693       treemple temp;
694       tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
695       temp.t = lab;
696       gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
697     }
698 }
699 #else
700 #define verify_norecord_switch_expr(state, switch_expr)
701 #endif
702 
703 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB.  If MOD is
704    non-null, insert it before the new branch.  */
705 
706 static void
707 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
708 {
709   gimple x;
710 
711   /* In the case of a return, the queue node must be a gimple statement.  */
712   gcc_assert (!q->is_label);
713 
714   /* Note that the return value may have already been computed, e.g.,
715 
716 	int x;
717 	int foo (void)
718 	{
719 	  x = 0;
720 	  try {
721 	    return x;
722 	  } finally {
723 	    x++;
724 	  }
725 	}
726 
727      should return 0, not 1.  We don't have to do anything to make
728      this happens because the return value has been placed in the
729      RESULT_DECL already.  */
730 
731   q->cont_stmt = q->stmt.g;
732 
733   if (!q->repl_stmt)
734     q->repl_stmt = gimple_seq_alloc ();
735 
736   if (mod)
737     gimple_seq_add_seq (&q->repl_stmt, mod);
738 
739   x = gimple_build_goto (finlab);
740   gimple_seq_add_stmt (&q->repl_stmt, x);
741 }
742 
743 /* Similar, but easier, for GIMPLE_GOTO.  */
744 
745 static void
746 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
747 		     struct leh_tf_state *tf)
748 {
749   gimple x;
750 
751   gcc_assert (q->is_label);
752   if (!q->repl_stmt)
753     q->repl_stmt = gimple_seq_alloc ();
754 
755   q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
756 
757   if (mod)
758     gimple_seq_add_seq (&q->repl_stmt, mod);
759 
760   x = gimple_build_goto (finlab);
761   gimple_seq_add_stmt (&q->repl_stmt, x);
762 }
763 
764 /* Emit a standard landing pad sequence into SEQ for REGION.  */
765 
766 static void
767 emit_post_landing_pad (gimple_seq *seq, eh_region region)
768 {
769   eh_landing_pad lp = region->landing_pads;
770   gimple x;
771 
772   if (lp == NULL)
773     lp = gen_eh_landing_pad (region);
774 
775   lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
776   EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
777 
778   x = gimple_build_label (lp->post_landing_pad);
779   gimple_seq_add_stmt (seq, x);
780 }
781 
782 /* Emit a RESX statement into SEQ for REGION.  */
783 
784 static void
785 emit_resx (gimple_seq *seq, eh_region region)
786 {
787   gimple x = gimple_build_resx (region->index);
788   gimple_seq_add_stmt (seq, x);
789   if (region->outer)
790     record_stmt_eh_region (region->outer, x);
791 }
792 
793 /* Emit an EH_DISPATCH statement into SEQ for REGION.  */
794 
795 static void
796 emit_eh_dispatch (gimple_seq *seq, eh_region region)
797 {
798   gimple x = gimple_build_eh_dispatch (region->index);
799   gimple_seq_add_stmt (seq, x);
800 }
801 
802 /* Note that the current EH region may contain a throw, or a
803    call to a function which itself may contain a throw.  */
804 
805 static void
806 note_eh_region_may_contain_throw (eh_region region)
807 {
808   while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
809     {
810       if (region->type == ERT_MUST_NOT_THROW)
811 	break;
812       region = region->outer;
813       if (region == NULL)
814 	break;
815     }
816 }
817 
818 /* Check if REGION has been marked as containing a throw.  If REGION is
819    NULL, this predicate is false.  */
820 
821 static inline bool
822 eh_region_may_contain_throw (eh_region r)
823 {
824   return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
825 }
826 
827 /* We want to transform
828 	try { body; } catch { stuff; }
829    to
830 	normal_seqence:
831 	  body;
832 	  over:
833 	eh_seqence:
834 	  landing_pad:
835 	  stuff;
836 	  goto over;
837 
838    TP is a GIMPLE_TRY node.  REGION is the region whose post_landing_pad
839    should be placed before the second operand, or NULL.  OVER is
840    an existing label that should be put at the exit, or NULL.  */
841 
842 static gimple_seq
843 frob_into_branch_around (gimple tp, eh_region region, tree over)
844 {
845   gimple x;
846   gimple_seq cleanup, result;
847   location_t loc = gimple_location (tp);
848 
849   cleanup = gimple_try_cleanup (tp);
850   result = gimple_try_eval (tp);
851 
852   if (region)
853     emit_post_landing_pad (&eh_seq, region);
854 
855   if (gimple_seq_may_fallthru (cleanup))
856     {
857       if (!over)
858 	over = create_artificial_label (loc);
859       x = gimple_build_goto (over);
860       gimple_seq_add_stmt (&cleanup, x);
861     }
862   gimple_seq_add_seq (&eh_seq, cleanup);
863 
864   if (over)
865     {
866       x = gimple_build_label (over);
867       gimple_seq_add_stmt (&result, x);
868     }
869   return result;
870 }
871 
872 /* A subroutine of lower_try_finally.  Duplicate the tree rooted at T.
873    Make sure to record all new labels found.  */
874 
875 static gimple_seq
876 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
877 {
878   gimple region = NULL;
879   gimple_seq new_seq;
880 
881   new_seq = copy_gimple_seq_and_replace_locals (seq);
882 
883   if (outer_state->tf)
884     region = outer_state->tf->try_finally_expr;
885   collect_finally_tree_1 (new_seq, region);
886 
887   return new_seq;
888 }
889 
890 /* A subroutine of lower_try_finally.  Create a fallthru label for
891    the given try_finally state.  The only tricky bit here is that
892    we have to make sure to record the label in our outer context.  */
893 
894 static tree
895 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
896 {
897   tree label = tf->fallthru_label;
898   treemple temp;
899 
900   if (!label)
901     {
902       label = create_artificial_label (gimple_location (tf->try_finally_expr));
903       tf->fallthru_label = label;
904       if (tf->outer->tf)
905         {
906           temp.t = label;
907           record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
908         }
909     }
910   return label;
911 }
912 
913 /* A subroutine of lower_try_finally.  If FINALLY consits of a
914    GIMPLE_EH_ELSE node, return it.  */
915 
916 static inline gimple
917 get_eh_else (gimple_seq finally)
918 {
919   gimple x = gimple_seq_first_stmt (finally);
920   if (gimple_code (x) == GIMPLE_EH_ELSE)
921     {
922       gcc_assert (gimple_seq_singleton_p (finally));
923       return x;
924     }
925   return NULL;
926 }
927 
928 /* A subroutine of lower_try_finally.  If the eh_protect_cleanup_actions
929    langhook returns non-null, then the language requires that the exception
930    path out of a try_finally be treated specially.  To wit: the code within
931    the finally block may not itself throw an exception.  We have two choices
932    here. First we can duplicate the finally block and wrap it in a
933    must_not_throw region.  Second, we can generate code like
934 
935 	try {
936 	  finally_block;
937 	} catch {
938 	  if (fintmp == eh_edge)
939 	    protect_cleanup_actions;
940 	}
941 
942    where "fintmp" is the temporary used in the switch statement generation
943    alternative considered below.  For the nonce, we always choose the first
944    option.
945 
946    THIS_STATE may be null if this is a try-cleanup, not a try-finally.  */
947 
948 static void
949 honor_protect_cleanup_actions (struct leh_state *outer_state,
950 			       struct leh_state *this_state,
951 			       struct leh_tf_state *tf)
952 {
953   tree protect_cleanup_actions;
954   gimple_stmt_iterator gsi;
955   bool finally_may_fallthru;
956   gimple_seq finally;
957   gimple x, eh_else;
958 
959   /* First check for nothing to do.  */
960   if (lang_hooks.eh_protect_cleanup_actions == NULL)
961     return;
962   protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
963   if (protect_cleanup_actions == NULL)
964     return;
965 
966   finally = gimple_try_cleanup (tf->top_p);
967   eh_else = get_eh_else (finally);
968 
969   /* Duplicate the FINALLY block.  Only need to do this for try-finally,
970      and not for cleanups.  If we've got an EH_ELSE, extract it now.  */
971   if (eh_else)
972     {
973       finally = gimple_eh_else_e_body (eh_else);
974       gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
975     }
976   else if (this_state)
977     finally = lower_try_finally_dup_block (finally, outer_state);
978   finally_may_fallthru = gimple_seq_may_fallthru (finally);
979 
980   /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
981      set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
982      to be in an enclosing scope, but needs to be implemented at this level
983      to avoid a nesting violation (see wrap_temporary_cleanups in
984      cp/decl.c).  Since it's logically at an outer level, we should call
985      terminate before we get to it, so strip it away before adding the
986      MUST_NOT_THROW filter.  */
987   gsi = gsi_start (finally);
988   x = gsi_stmt (gsi);
989   if (gimple_code (x) == GIMPLE_TRY
990       && gimple_try_kind (x) == GIMPLE_TRY_CATCH
991       && gimple_try_catch_is_cleanup (x))
992     {
993       gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
994       gsi_remove (&gsi, false);
995     }
996 
997   /* Wrap the block with protect_cleanup_actions as the action.  */
998   x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
999   x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1000 			GIMPLE_TRY_CATCH);
1001   finally = lower_eh_must_not_throw (outer_state, x);
1002 
1003   /* Drop all of this into the exception sequence.  */
1004   emit_post_landing_pad (&eh_seq, tf->region);
1005   gimple_seq_add_seq (&eh_seq, finally);
1006   if (finally_may_fallthru)
1007     emit_resx (&eh_seq, tf->region);
1008 
1009   /* Having now been handled, EH isn't to be considered with
1010      the rest of the outgoing edges.  */
1011   tf->may_throw = false;
1012 }
1013 
1014 /* A subroutine of lower_try_finally.  We have determined that there is
1015    no fallthru edge out of the finally block.  This means that there is
1016    no outgoing edge corresponding to any incoming edge.  Restructure the
1017    try_finally node for this special case.  */
1018 
1019 static void
1020 lower_try_finally_nofallthru (struct leh_state *state,
1021 			      struct leh_tf_state *tf)
1022 {
1023   tree lab;
1024   gimple x, eh_else;
1025   gimple_seq finally;
1026   struct goto_queue_node *q, *qe;
1027 
1028   lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1029 
1030   /* We expect that tf->top_p is a GIMPLE_TRY. */
1031   finally = gimple_try_cleanup (tf->top_p);
1032   tf->top_p_seq = gimple_try_eval (tf->top_p);
1033 
1034   x = gimple_build_label (lab);
1035   gimple_seq_add_stmt (&tf->top_p_seq, x);
1036 
1037   q = tf->goto_queue;
1038   qe = q + tf->goto_queue_active;
1039   for (; q < qe; ++q)
1040     if (q->index < 0)
1041       do_return_redirection (q, lab, NULL);
1042     else
1043       do_goto_redirection (q, lab, NULL, tf);
1044 
1045   replace_goto_queue (tf);
1046 
1047   /* Emit the finally block into the stream.  Lower EH_ELSE at this time.  */
1048   eh_else = get_eh_else (finally);
1049   if (eh_else)
1050     {
1051       finally = gimple_eh_else_n_body (eh_else);
1052       lower_eh_constructs_1 (state, finally);
1053       gimple_seq_add_seq (&tf->top_p_seq, finally);
1054 
1055       if (tf->may_throw)
1056 	{
1057 	  finally = gimple_eh_else_e_body (eh_else);
1058 	  lower_eh_constructs_1 (state, finally);
1059 
1060 	  emit_post_landing_pad (&eh_seq, tf->region);
1061 	  gimple_seq_add_seq (&eh_seq, finally);
1062 	}
1063     }
1064   else
1065     {
1066       lower_eh_constructs_1 (state, finally);
1067       gimple_seq_add_seq (&tf->top_p_seq, finally);
1068 
1069       if (tf->may_throw)
1070 	{
1071 	  emit_post_landing_pad (&eh_seq, tf->region);
1072 
1073 	  x = gimple_build_goto (lab);
1074 	  gimple_seq_add_stmt (&eh_seq, x);
1075 	}
1076     }
1077 }
1078 
1079 /* A subroutine of lower_try_finally.  We have determined that there is
1080    exactly one destination of the finally block.  Restructure the
1081    try_finally node for this special case.  */
1082 
1083 static void
1084 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1085 {
1086   struct goto_queue_node *q, *qe;
1087   gimple x;
1088   gimple_seq finally;
1089   tree finally_label;
1090   location_t loc = gimple_location (tf->try_finally_expr);
1091 
1092   finally = gimple_try_cleanup (tf->top_p);
1093   tf->top_p_seq = gimple_try_eval (tf->top_p);
1094 
1095   /* Since there's only one destination, and the destination edge can only
1096      either be EH or non-EH, that implies that all of our incoming edges
1097      are of the same type.  Therefore we can lower EH_ELSE immediately.  */
1098   x = get_eh_else (finally);
1099   if (x)
1100     {
1101       if (tf->may_throw)
1102 	finally = gimple_eh_else_e_body (x);
1103       else
1104 	finally = gimple_eh_else_n_body (x);
1105     }
1106 
1107   lower_eh_constructs_1 (state, finally);
1108 
1109   if (tf->may_throw)
1110     {
1111       /* Only reachable via the exception edge.  Add the given label to
1112          the head of the FINALLY block.  Append a RESX at the end.  */
1113       emit_post_landing_pad (&eh_seq, tf->region);
1114       gimple_seq_add_seq (&eh_seq, finally);
1115       emit_resx (&eh_seq, tf->region);
1116       return;
1117     }
1118 
1119   if (tf->may_fallthru)
1120     {
1121       /* Only reachable via the fallthru edge.  Do nothing but let
1122 	 the two blocks run together; we'll fall out the bottom.  */
1123       gimple_seq_add_seq (&tf->top_p_seq, finally);
1124       return;
1125     }
1126 
1127   finally_label = create_artificial_label (loc);
1128   x = gimple_build_label (finally_label);
1129   gimple_seq_add_stmt (&tf->top_p_seq, x);
1130 
1131   gimple_seq_add_seq (&tf->top_p_seq, finally);
1132 
1133   q = tf->goto_queue;
1134   qe = q + tf->goto_queue_active;
1135 
1136   if (tf->may_return)
1137     {
1138       /* Reachable by return expressions only.  Redirect them.  */
1139       for (; q < qe; ++q)
1140 	do_return_redirection (q, finally_label, NULL);
1141       replace_goto_queue (tf);
1142     }
1143   else
1144     {
1145       /* Reachable by goto expressions only.  Redirect them.  */
1146       for (; q < qe; ++q)
1147 	do_goto_redirection (q, finally_label, NULL, tf);
1148       replace_goto_queue (tf);
1149 
1150       if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1151 	{
1152 	  /* Reachable by goto to fallthru label only.  Redirect it
1153 	     to the new label (already created, sadly), and do not
1154 	     emit the final branch out, or the fallthru label.  */
1155 	  tf->fallthru_label = NULL;
1156 	  return;
1157 	}
1158     }
1159 
1160   /* Place the original return/goto to the original destination
1161      immediately after the finally block. */
1162   x = tf->goto_queue[0].cont_stmt;
1163   gimple_seq_add_stmt (&tf->top_p_seq, x);
1164   maybe_record_in_goto_queue (state, x);
1165 }
1166 
1167 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1168    and outgoing from the finally block.  Implement this by duplicating the
1169    finally block for every destination.  */
1170 
1171 static void
1172 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1173 {
1174   gimple_seq finally;
1175   gimple_seq new_stmt;
1176   gimple_seq seq;
1177   gimple x, eh_else;
1178   tree tmp;
1179   location_t tf_loc = gimple_location (tf->try_finally_expr);
1180 
1181   finally = gimple_try_cleanup (tf->top_p);
1182 
1183   /* Notice EH_ELSE, and simplify some of the remaining code
1184      by considering FINALLY to be the normal return path only.  */
1185   eh_else = get_eh_else (finally);
1186   if (eh_else)
1187     finally = gimple_eh_else_n_body (eh_else);
1188 
1189   tf->top_p_seq = gimple_try_eval (tf->top_p);
1190   new_stmt = NULL;
1191 
1192   if (tf->may_fallthru)
1193     {
1194       seq = lower_try_finally_dup_block (finally, state);
1195       lower_eh_constructs_1 (state, seq);
1196       gimple_seq_add_seq (&new_stmt, seq);
1197 
1198       tmp = lower_try_finally_fallthru_label (tf);
1199       x = gimple_build_goto (tmp);
1200       gimple_seq_add_stmt (&new_stmt, x);
1201     }
1202 
1203   if (tf->may_throw)
1204     {
1205       /* We don't need to copy the EH path of EH_ELSE,
1206 	 since it is only emitted once.  */
1207       if (eh_else)
1208 	seq = gimple_eh_else_e_body (eh_else);
1209       else
1210 	seq = lower_try_finally_dup_block (finally, state);
1211       lower_eh_constructs_1 (state, seq);
1212 
1213       emit_post_landing_pad (&eh_seq, tf->region);
1214       gimple_seq_add_seq (&eh_seq, seq);
1215       emit_resx (&eh_seq, tf->region);
1216     }
1217 
1218   if (tf->goto_queue)
1219     {
1220       struct goto_queue_node *q, *qe;
1221       int return_index, index;
1222       struct labels_s
1223       {
1224 	struct goto_queue_node *q;
1225 	tree label;
1226       } *labels;
1227 
1228       return_index = VEC_length (tree, tf->dest_array);
1229       labels = XCNEWVEC (struct labels_s, return_index + 1);
1230 
1231       q = tf->goto_queue;
1232       qe = q + tf->goto_queue_active;
1233       for (; q < qe; q++)
1234 	{
1235 	  index = q->index < 0 ? return_index : q->index;
1236 
1237 	  if (!labels[index].q)
1238 	    labels[index].q = q;
1239 	}
1240 
1241       for (index = 0; index < return_index + 1; index++)
1242 	{
1243 	  tree lab;
1244 
1245 	  q = labels[index].q;
1246 	  if (! q)
1247 	    continue;
1248 
1249 	  lab = labels[index].label
1250 	    = create_artificial_label (tf_loc);
1251 
1252 	  if (index == return_index)
1253 	    do_return_redirection (q, lab, NULL);
1254 	  else
1255 	    do_goto_redirection (q, lab, NULL, tf);
1256 
1257 	  x = gimple_build_label (lab);
1258           gimple_seq_add_stmt (&new_stmt, x);
1259 
1260 	  seq = lower_try_finally_dup_block (finally, state);
1261 	  lower_eh_constructs_1 (state, seq);
1262           gimple_seq_add_seq (&new_stmt, seq);
1263 
1264           gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1265 	  maybe_record_in_goto_queue (state, q->cont_stmt);
1266 	}
1267 
1268       for (q = tf->goto_queue; q < qe; q++)
1269 	{
1270 	  tree lab;
1271 
1272 	  index = q->index < 0 ? return_index : q->index;
1273 
1274 	  if (labels[index].q == q)
1275 	    continue;
1276 
1277 	  lab = labels[index].label;
1278 
1279 	  if (index == return_index)
1280 	    do_return_redirection (q, lab, NULL);
1281 	  else
1282 	    do_goto_redirection (q, lab, NULL, tf);
1283 	}
1284 
1285       replace_goto_queue (tf);
1286       free (labels);
1287     }
1288 
1289   /* Need to link new stmts after running replace_goto_queue due
1290      to not wanting to process the same goto stmts twice.  */
1291   gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1292 }
1293 
1294 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1295    and outgoing from the finally block.  Implement this by instrumenting
1296    each incoming edge and creating a switch statement at the end of the
1297    finally block that branches to the appropriate destination.  */
1298 
1299 static void
1300 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1301 {
1302   struct goto_queue_node *q, *qe;
1303   tree finally_tmp, finally_label;
1304   int return_index, eh_index, fallthru_index;
1305   int nlabels, ndests, j, last_case_index;
1306   tree last_case;
1307   VEC (tree,heap) *case_label_vec;
1308   gimple_seq switch_body;
1309   gimple x, eh_else;
1310   tree tmp;
1311   gimple switch_stmt;
1312   gimple_seq finally;
1313   struct pointer_map_t *cont_map = NULL;
1314   /* The location of the TRY_FINALLY stmt.  */
1315   location_t tf_loc = gimple_location (tf->try_finally_expr);
1316   /* The location of the finally block.  */
1317   location_t finally_loc;
1318 
1319   switch_body = gimple_seq_alloc ();
1320   finally = gimple_try_cleanup (tf->top_p);
1321   eh_else = get_eh_else (finally);
1322 
1323   /* Mash the TRY block to the head of the chain.  */
1324   tf->top_p_seq = gimple_try_eval (tf->top_p);
1325 
1326   /* The location of the finally is either the last stmt in the finally
1327      block or the location of the TRY_FINALLY itself.  */
1328   x = gimple_seq_last_stmt (finally);
1329   finally_loc = x ? gimple_location (x) : tf_loc;
1330 
1331   /* Prepare for switch statement generation.  */
1332   nlabels = VEC_length (tree, tf->dest_array);
1333   return_index = nlabels;
1334   eh_index = return_index + tf->may_return;
1335   fallthru_index = eh_index + (tf->may_throw && !eh_else);
1336   ndests = fallthru_index + tf->may_fallthru;
1337 
1338   finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1339   finally_label = create_artificial_label (finally_loc);
1340 
1341   /* We use VEC_quick_push on case_label_vec throughout this function,
1342      since we know the size in advance and allocate precisely as muce
1343      space as needed.  */
1344   case_label_vec = VEC_alloc (tree, heap, ndests);
1345   last_case = NULL;
1346   last_case_index = 0;
1347 
1348   /* Begin inserting code for getting to the finally block.  Things
1349      are done in this order to correspond to the sequence the code is
1350      layed out.  */
1351 
1352   if (tf->may_fallthru)
1353     {
1354       x = gimple_build_assign (finally_tmp,
1355 			       build_int_cst (integer_type_node,
1356 					      fallthru_index));
1357       gimple_seq_add_stmt (&tf->top_p_seq, x);
1358 
1359       tmp = build_int_cst (integer_type_node, fallthru_index);
1360       last_case = build_case_label (tmp, NULL,
1361 				    create_artificial_label (tf_loc));
1362       VEC_quick_push (tree, case_label_vec, last_case);
1363       last_case_index++;
1364 
1365       x = gimple_build_label (CASE_LABEL (last_case));
1366       gimple_seq_add_stmt (&switch_body, x);
1367 
1368       tmp = lower_try_finally_fallthru_label (tf);
1369       x = gimple_build_goto (tmp);
1370       gimple_seq_add_stmt (&switch_body, x);
1371     }
1372 
1373   /* For EH_ELSE, emit the exception path (plus resx) now, then
1374      subsequently we only need consider the normal path.  */
1375   if (eh_else)
1376     {
1377       if (tf->may_throw)
1378 	{
1379 	  finally = gimple_eh_else_e_body (eh_else);
1380 	  lower_eh_constructs_1 (state, finally);
1381 
1382 	  emit_post_landing_pad (&eh_seq, tf->region);
1383 	  gimple_seq_add_seq (&eh_seq, finally);
1384 	  emit_resx (&eh_seq, tf->region);
1385 	}
1386 
1387       finally = gimple_eh_else_n_body (eh_else);
1388     }
1389   else if (tf->may_throw)
1390     {
1391       emit_post_landing_pad (&eh_seq, tf->region);
1392 
1393       x = gimple_build_assign (finally_tmp,
1394 			       build_int_cst (integer_type_node, eh_index));
1395       gimple_seq_add_stmt (&eh_seq, x);
1396 
1397       x = gimple_build_goto (finally_label);
1398       gimple_seq_add_stmt (&eh_seq, x);
1399 
1400       tmp = build_int_cst (integer_type_node, eh_index);
1401       last_case = build_case_label (tmp, NULL,
1402 				    create_artificial_label (tf_loc));
1403       VEC_quick_push (tree, case_label_vec, last_case);
1404       last_case_index++;
1405 
1406       x = gimple_build_label (CASE_LABEL (last_case));
1407       gimple_seq_add_stmt (&eh_seq, x);
1408       emit_resx (&eh_seq, tf->region);
1409     }
1410 
1411   x = gimple_build_label (finally_label);
1412   gimple_seq_add_stmt (&tf->top_p_seq, x);
1413 
1414   lower_eh_constructs_1 (state, finally);
1415   gimple_seq_add_seq (&tf->top_p_seq, finally);
1416 
1417   /* Redirect each incoming goto edge.  */
1418   q = tf->goto_queue;
1419   qe = q + tf->goto_queue_active;
1420   j = last_case_index + tf->may_return;
1421   /* Prepare the assignments to finally_tmp that are executed upon the
1422      entrance through a particular edge. */
1423   for (; q < qe; ++q)
1424     {
1425       gimple_seq mod;
1426       int switch_id;
1427       unsigned int case_index;
1428 
1429       mod = gimple_seq_alloc ();
1430 
1431       if (q->index < 0)
1432 	{
1433 	  x = gimple_build_assign (finally_tmp,
1434 				   build_int_cst (integer_type_node,
1435 						  return_index));
1436 	  gimple_seq_add_stmt (&mod, x);
1437 	  do_return_redirection (q, finally_label, mod);
1438 	  switch_id = return_index;
1439 	}
1440       else
1441 	{
1442 	  x = gimple_build_assign (finally_tmp,
1443 				   build_int_cst (integer_type_node, q->index));
1444 	  gimple_seq_add_stmt (&mod, x);
1445 	  do_goto_redirection (q, finally_label, mod, tf);
1446 	  switch_id = q->index;
1447 	}
1448 
1449       case_index = j + q->index;
1450       if (VEC_length (tree, case_label_vec) <= case_index
1451           || !VEC_index (tree, case_label_vec, case_index))
1452         {
1453           tree case_lab;
1454           void **slot;
1455 	  tmp = build_int_cst (integer_type_node, switch_id);
1456           case_lab = build_case_label (tmp, NULL,
1457 				       create_artificial_label (tf_loc));
1458           /* We store the cont_stmt in the pointer map, so that we can recover
1459              it in the loop below.  */
1460           if (!cont_map)
1461             cont_map = pointer_map_create ();
1462           slot = pointer_map_insert (cont_map, case_lab);
1463           *slot = q->cont_stmt;
1464           VEC_quick_push (tree, case_label_vec, case_lab);
1465         }
1466     }
1467   for (j = last_case_index; j < last_case_index + nlabels; j++)
1468     {
1469       gimple cont_stmt;
1470       void **slot;
1471 
1472       last_case = VEC_index (tree, case_label_vec, j);
1473 
1474       gcc_assert (last_case);
1475       gcc_assert (cont_map);
1476 
1477       slot = pointer_map_contains (cont_map, last_case);
1478       gcc_assert (slot);
1479       cont_stmt = *(gimple *) slot;
1480 
1481       x = gimple_build_label (CASE_LABEL (last_case));
1482       gimple_seq_add_stmt (&switch_body, x);
1483       gimple_seq_add_stmt (&switch_body, cont_stmt);
1484       maybe_record_in_goto_queue (state, cont_stmt);
1485     }
1486   if (cont_map)
1487     pointer_map_destroy (cont_map);
1488 
1489   replace_goto_queue (tf);
1490 
1491   /* Make sure that the last case is the default label, as one is required.
1492      Then sort the labels, which is also required in GIMPLE.  */
1493   CASE_LOW (last_case) = NULL;
1494   sort_case_labels (case_label_vec);
1495 
1496   /* Build the switch statement, setting last_case to be the default
1497      label.  */
1498   switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1499                                          case_label_vec);
1500   gimple_set_location (switch_stmt, finally_loc);
1501 
1502   /* Need to link SWITCH_STMT after running replace_goto_queue
1503      due to not wanting to process the same goto stmts twice.  */
1504   gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1505   gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1506 }
1507 
1508 /* Decide whether or not we are going to duplicate the finally block.
1509    There are several considerations.
1510 
1511    First, if this is Java, then the finally block contains code
1512    written by the user.  It has line numbers associated with it,
1513    so duplicating the block means it's difficult to set a breakpoint.
1514    Since controlling code generation via -g is verboten, we simply
1515    never duplicate code without optimization.
1516 
1517    Second, we'd like to prevent egregious code growth.  One way to
1518    do this is to estimate the size of the finally block, multiply
1519    that by the number of copies we'd need to make, and compare against
1520    the estimate of the size of the switch machinery we'd have to add.  */
1521 
1522 static bool
1523 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1524 {
1525   int f_estimate, sw_estimate;
1526   gimple eh_else;
1527 
1528   /* If there's an EH_ELSE involved, the exception path is separate
1529      and really doesn't come into play for this computation.  */
1530   eh_else = get_eh_else (finally);
1531   if (eh_else)
1532     {
1533       ndests -= may_throw;
1534       finally = gimple_eh_else_n_body (eh_else);
1535     }
1536 
1537   if (!optimize)
1538     {
1539       gimple_stmt_iterator gsi;
1540 
1541       if (ndests == 1)
1542         return true;
1543 
1544       for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1545 	{
1546 	  gimple stmt = gsi_stmt (gsi);
1547 	  if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1548 	    return false;
1549 	}
1550       return true;
1551     }
1552 
1553   /* Finally estimate N times, plus N gotos.  */
1554   f_estimate = count_insns_seq (finally, &eni_size_weights);
1555   f_estimate = (f_estimate + 1) * ndests;
1556 
1557   /* Switch statement (cost 10), N variable assignments, N gotos.  */
1558   sw_estimate = 10 + 2 * ndests;
1559 
1560   /* Optimize for size clearly wants our best guess.  */
1561   if (optimize_function_for_size_p (cfun))
1562     return f_estimate < sw_estimate;
1563 
1564   /* ??? These numbers are completely made up so far.  */
1565   if (optimize > 1)
1566     return f_estimate < 100 || f_estimate < sw_estimate * 2;
1567   else
1568     return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1569 }
1570 
1571 /* REG is the enclosing region for a possible cleanup region, or the region
1572    itself.  Returns TRUE if such a region would be unreachable.
1573 
1574    Cleanup regions within a must-not-throw region aren't actually reachable
1575    even if there are throwing stmts within them, because the personality
1576    routine will call terminate before unwinding.  */
1577 
1578 static bool
1579 cleanup_is_dead_in (eh_region reg)
1580 {
1581   while (reg && reg->type == ERT_CLEANUP)
1582     reg = reg->outer;
1583   return (reg && reg->type == ERT_MUST_NOT_THROW);
1584 }
1585 
1586 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_FINALLY nodes
1587    to a sequence of labels and blocks, plus the exception region trees
1588    that record all the magic.  This is complicated by the need to
1589    arrange for the FINALLY block to be executed on all exits.  */
1590 
1591 static gimple_seq
1592 lower_try_finally (struct leh_state *state, gimple tp)
1593 {
1594   struct leh_tf_state this_tf;
1595   struct leh_state this_state;
1596   int ndests;
1597   gimple_seq old_eh_seq;
1598 
1599   /* Process the try block.  */
1600 
1601   memset (&this_tf, 0, sizeof (this_tf));
1602   this_tf.try_finally_expr = tp;
1603   this_tf.top_p = tp;
1604   this_tf.outer = state;
1605   if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1606     {
1607       this_tf.region = gen_eh_region_cleanup (state->cur_region);
1608       this_state.cur_region = this_tf.region;
1609     }
1610   else
1611     {
1612       this_tf.region = NULL;
1613       this_state.cur_region = state->cur_region;
1614     }
1615 
1616   this_state.ehp_region = state->ehp_region;
1617   this_state.tf = &this_tf;
1618 
1619   old_eh_seq = eh_seq;
1620   eh_seq = NULL;
1621 
1622   lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1623 
1624   /* Determine if the try block is escaped through the bottom.  */
1625   this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1626 
1627   /* Determine if any exceptions are possible within the try block.  */
1628   if (this_tf.region)
1629     this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1630   if (this_tf.may_throw)
1631     honor_protect_cleanup_actions (state, &this_state, &this_tf);
1632 
1633   /* Determine how many edges (still) reach the finally block.  Or rather,
1634      how many destinations are reached by the finally block.  Use this to
1635      determine how we process the finally block itself.  */
1636 
1637   ndests = VEC_length (tree, this_tf.dest_array);
1638   ndests += this_tf.may_fallthru;
1639   ndests += this_tf.may_return;
1640   ndests += this_tf.may_throw;
1641 
1642   /* If the FINALLY block is not reachable, dike it out.  */
1643   if (ndests == 0)
1644     {
1645       gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1646       gimple_try_set_cleanup (tp, NULL);
1647     }
1648   /* If the finally block doesn't fall through, then any destination
1649      we might try to impose there isn't reached either.  There may be
1650      some minor amount of cleanup and redirection still needed.  */
1651   else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1652     lower_try_finally_nofallthru (state, &this_tf);
1653 
1654   /* We can easily special-case redirection to a single destination.  */
1655   else if (ndests == 1)
1656     lower_try_finally_onedest (state, &this_tf);
1657   else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1658 				    gimple_try_cleanup (tp)))
1659     lower_try_finally_copy (state, &this_tf);
1660   else
1661     lower_try_finally_switch (state, &this_tf);
1662 
1663   /* If someone requested we add a label at the end of the transformed
1664      block, do so.  */
1665   if (this_tf.fallthru_label)
1666     {
1667       /* This must be reached only if ndests == 0. */
1668       gimple x = gimple_build_label (this_tf.fallthru_label);
1669       gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1670     }
1671 
1672   VEC_free (tree, heap, this_tf.dest_array);
1673   free (this_tf.goto_queue);
1674   if (this_tf.goto_queue_map)
1675     pointer_map_destroy (this_tf.goto_queue_map);
1676 
1677   /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1678      If there was no old eh_seq, then the append is trivially already done.  */
1679   if (old_eh_seq)
1680     {
1681       if (eh_seq == NULL)
1682 	eh_seq = old_eh_seq;
1683       else
1684 	{
1685 	  gimple_seq new_eh_seq = eh_seq;
1686 	  eh_seq = old_eh_seq;
1687 	  gimple_seq_add_seq(&eh_seq, new_eh_seq);
1688 	}
1689     }
1690 
1691   return this_tf.top_p_seq;
1692 }
1693 
1694 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_CATCH with a
1695    list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1696    exception region trees that records all the magic.  */
1697 
1698 static gimple_seq
1699 lower_catch (struct leh_state *state, gimple tp)
1700 {
1701   eh_region try_region = NULL;
1702   struct leh_state this_state = *state;
1703   gimple_stmt_iterator gsi;
1704   tree out_label;
1705   gimple_seq new_seq;
1706   gimple x;
1707   location_t try_catch_loc = gimple_location (tp);
1708 
1709   if (flag_exceptions)
1710     {
1711       try_region = gen_eh_region_try (state->cur_region);
1712       this_state.cur_region = try_region;
1713     }
1714 
1715   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1716 
1717   if (!eh_region_may_contain_throw (try_region))
1718     return gimple_try_eval (tp);
1719 
1720   new_seq = NULL;
1721   emit_eh_dispatch (&new_seq, try_region);
1722   emit_resx (&new_seq, try_region);
1723 
1724   this_state.cur_region = state->cur_region;
1725   this_state.ehp_region = try_region;
1726 
1727   out_label = NULL;
1728   for (gsi = gsi_start (gimple_try_cleanup (tp));
1729        !gsi_end_p (gsi);
1730        gsi_next (&gsi))
1731     {
1732       eh_catch c;
1733       gimple gcatch;
1734       gimple_seq handler;
1735 
1736       gcatch = gsi_stmt (gsi);
1737       c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1738 
1739       handler = gimple_catch_handler (gcatch);
1740       lower_eh_constructs_1 (&this_state, handler);
1741 
1742       c->label = create_artificial_label (UNKNOWN_LOCATION);
1743       x = gimple_build_label (c->label);
1744       gimple_seq_add_stmt (&new_seq, x);
1745 
1746       gimple_seq_add_seq (&new_seq, handler);
1747 
1748       if (gimple_seq_may_fallthru (new_seq))
1749 	{
1750 	  if (!out_label)
1751 	    out_label = create_artificial_label (try_catch_loc);
1752 
1753 	  x = gimple_build_goto (out_label);
1754 	  gimple_seq_add_stmt (&new_seq, x);
1755 	}
1756       if (!c->type_list)
1757 	break;
1758     }
1759 
1760   gimple_try_set_cleanup (tp, new_seq);
1761 
1762   return frob_into_branch_around (tp, try_region, out_label);
1763 }
1764 
1765 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with a
1766    GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1767    region trees that record all the magic.  */
1768 
1769 static gimple_seq
1770 lower_eh_filter (struct leh_state *state, gimple tp)
1771 {
1772   struct leh_state this_state = *state;
1773   eh_region this_region = NULL;
1774   gimple inner, x;
1775   gimple_seq new_seq;
1776 
1777   inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1778 
1779   if (flag_exceptions)
1780     {
1781       this_region = gen_eh_region_allowed (state->cur_region,
1782 				           gimple_eh_filter_types (inner));
1783       this_state.cur_region = this_region;
1784     }
1785 
1786   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1787 
1788   if (!eh_region_may_contain_throw (this_region))
1789     return gimple_try_eval (tp);
1790 
1791   new_seq = NULL;
1792   this_state.cur_region = state->cur_region;
1793   this_state.ehp_region = this_region;
1794 
1795   emit_eh_dispatch (&new_seq, this_region);
1796   emit_resx (&new_seq, this_region);
1797 
1798   this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1799   x = gimple_build_label (this_region->u.allowed.label);
1800   gimple_seq_add_stmt (&new_seq, x);
1801 
1802   lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1803   gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1804 
1805   gimple_try_set_cleanup (tp, new_seq);
1806 
1807   return frob_into_branch_around (tp, this_region, NULL);
1808 }
1809 
1810 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with
1811    an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1812    plus the exception region trees that record all the magic.  */
1813 
1814 static gimple_seq
1815 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1816 {
1817   struct leh_state this_state = *state;
1818 
1819   if (flag_exceptions)
1820     {
1821       gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1822       eh_region this_region;
1823 
1824       this_region = gen_eh_region_must_not_throw (state->cur_region);
1825       this_region->u.must_not_throw.failure_decl
1826 	= gimple_eh_must_not_throw_fndecl (inner);
1827       this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1828 
1829       /* In order to get mangling applied to this decl, we must mark it
1830 	 used now.  Otherwise, pass_ipa_free_lang_data won't think it
1831 	 needs to happen.  */
1832       TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1833 
1834       this_state.cur_region = this_region;
1835     }
1836 
1837   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1838 
1839   return gimple_try_eval (tp);
1840 }
1841 
1842 /* Implement a cleanup expression.  This is similar to try-finally,
1843    except that we only execute the cleanup block for exception edges.  */
1844 
1845 static gimple_seq
1846 lower_cleanup (struct leh_state *state, gimple tp)
1847 {
1848   struct leh_state this_state = *state;
1849   eh_region this_region = NULL;
1850   struct leh_tf_state fake_tf;
1851   gimple_seq result;
1852   bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1853 
1854   if (flag_exceptions && !cleanup_dead)
1855     {
1856       this_region = gen_eh_region_cleanup (state->cur_region);
1857       this_state.cur_region = this_region;
1858     }
1859 
1860   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1861 
1862   if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1863     return gimple_try_eval (tp);
1864 
1865   /* Build enough of a try-finally state so that we can reuse
1866      honor_protect_cleanup_actions.  */
1867   memset (&fake_tf, 0, sizeof (fake_tf));
1868   fake_tf.top_p = fake_tf.try_finally_expr = tp;
1869   fake_tf.outer = state;
1870   fake_tf.region = this_region;
1871   fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1872   fake_tf.may_throw = true;
1873 
1874   honor_protect_cleanup_actions (state, NULL, &fake_tf);
1875 
1876   if (fake_tf.may_throw)
1877     {
1878       /* In this case honor_protect_cleanup_actions had nothing to do,
1879 	 and we should process this normally.  */
1880       lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1881       result = frob_into_branch_around (tp, this_region,
1882                                         fake_tf.fallthru_label);
1883     }
1884   else
1885     {
1886       /* In this case honor_protect_cleanup_actions did nearly all of
1887 	 the work.  All we have left is to append the fallthru_label.  */
1888 
1889       result = gimple_try_eval (tp);
1890       if (fake_tf.fallthru_label)
1891 	{
1892 	  gimple x = gimple_build_label (fake_tf.fallthru_label);
1893 	  gimple_seq_add_stmt (&result, x);
1894 	}
1895     }
1896   return result;
1897 }
1898 
1899 /* Main loop for lowering eh constructs. Also moves gsi to the next
1900    statement. */
1901 
1902 static void
1903 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1904 {
1905   gimple_seq replace;
1906   gimple x;
1907   gimple stmt = gsi_stmt (*gsi);
1908 
1909   switch (gimple_code (stmt))
1910     {
1911     case GIMPLE_CALL:
1912       {
1913 	tree fndecl = gimple_call_fndecl (stmt);
1914 	tree rhs, lhs;
1915 
1916 	if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1917 	  switch (DECL_FUNCTION_CODE (fndecl))
1918 	    {
1919 	    case BUILT_IN_EH_POINTER:
1920 	      /* The front end may have generated a call to
1921 		 __builtin_eh_pointer (0) within a catch region.  Replace
1922 		 this zero argument with the current catch region number.  */
1923 	      if (state->ehp_region)
1924 		{
1925 		  tree nr = build_int_cst (integer_type_node,
1926 					   state->ehp_region->index);
1927 		  gimple_call_set_arg (stmt, 0, nr);
1928 		}
1929 	      else
1930 		{
1931 		  /* The user has dome something silly.  Remove it.  */
1932 		  rhs = null_pointer_node;
1933 		  goto do_replace;
1934 		}
1935 	      break;
1936 
1937 	    case BUILT_IN_EH_FILTER:
1938 	      /* ??? This should never appear, but since it's a builtin it
1939 		 is accessible to abuse by users.  Just remove it and
1940 		 replace the use with the arbitrary value zero.  */
1941 	      rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1942 	    do_replace:
1943 	      lhs = gimple_call_lhs (stmt);
1944 	      x = gimple_build_assign (lhs, rhs);
1945 	      gsi_insert_before (gsi, x, GSI_SAME_STMT);
1946 	      /* FALLTHRU */
1947 
1948 	    case BUILT_IN_EH_COPY_VALUES:
1949 	      /* Likewise this should not appear.  Remove it.  */
1950 	      gsi_remove (gsi, true);
1951 	      return;
1952 
1953 	    default:
1954 	      break;
1955 	    }
1956       }
1957       /* FALLTHRU */
1958 
1959     case GIMPLE_ASSIGN:
1960       /* If the stmt can throw use a new temporary for the assignment
1961          to a LHS.  This makes sure the old value of the LHS is
1962 	 available on the EH edge.  Only do so for statements that
1963 	 potentially fall thru (no noreturn calls e.g.), otherwise
1964 	 this new assignment might create fake fallthru regions.  */
1965       if (stmt_could_throw_p (stmt)
1966 	  && gimple_has_lhs (stmt)
1967 	  && gimple_stmt_may_fallthru (stmt)
1968 	  && !tree_could_throw_p (gimple_get_lhs (stmt))
1969 	  && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1970 	{
1971 	  tree lhs = gimple_get_lhs (stmt);
1972 	  tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1973 	  gimple s = gimple_build_assign (lhs, tmp);
1974 	  gimple_set_location (s, gimple_location (stmt));
1975 	  gimple_set_block (s, gimple_block (stmt));
1976 	  gimple_set_lhs (stmt, tmp);
1977 	  if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1978 	      || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1979 	    DECL_GIMPLE_REG_P (tmp) = 1;
1980 	  gsi_insert_after (gsi, s, GSI_SAME_STMT);
1981 	}
1982       /* Look for things that can throw exceptions, and record them.  */
1983       if (state->cur_region && stmt_could_throw_p (stmt))
1984 	{
1985 	  record_stmt_eh_region (state->cur_region, stmt);
1986 	  note_eh_region_may_contain_throw (state->cur_region);
1987 	}
1988       break;
1989 
1990     case GIMPLE_COND:
1991     case GIMPLE_GOTO:
1992     case GIMPLE_RETURN:
1993       maybe_record_in_goto_queue (state, stmt);
1994       break;
1995 
1996     case GIMPLE_SWITCH:
1997       verify_norecord_switch_expr (state, stmt);
1998       break;
1999 
2000     case GIMPLE_TRY:
2001       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2002 	replace = lower_try_finally (state, stmt);
2003       else
2004 	{
2005 	  x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2006 	  if (!x)
2007 	    {
2008 	      replace = gimple_try_eval (stmt);
2009 	      lower_eh_constructs_1 (state, replace);
2010 	    }
2011 	  else
2012 	    switch (gimple_code (x))
2013 	      {
2014 		case GIMPLE_CATCH:
2015 		    replace = lower_catch (state, stmt);
2016 		    break;
2017 		case GIMPLE_EH_FILTER:
2018 		    replace = lower_eh_filter (state, stmt);
2019 		    break;
2020 		case GIMPLE_EH_MUST_NOT_THROW:
2021 		    replace = lower_eh_must_not_throw (state, stmt);
2022 		    break;
2023 		case GIMPLE_EH_ELSE:
2024 		    /* This code is only valid with GIMPLE_TRY_FINALLY.  */
2025 		    gcc_unreachable ();
2026 		default:
2027 		    replace = lower_cleanup (state, stmt);
2028 		    break;
2029 	      }
2030 	}
2031 
2032       /* Remove the old stmt and insert the transformed sequence
2033 	 instead. */
2034       gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2035       gsi_remove (gsi, true);
2036 
2037       /* Return since we don't want gsi_next () */
2038       return;
2039 
2040     case GIMPLE_EH_ELSE:
2041       /* We should be eliminating this in lower_try_finally et al.  */
2042       gcc_unreachable ();
2043 
2044     default:
2045       /* A type, a decl, or some kind of statement that we're not
2046 	 interested in.  Don't walk them.  */
2047       break;
2048     }
2049 
2050   gsi_next (gsi);
2051 }
2052 
2053 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2054 
2055 static void
2056 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
2057 {
2058   gimple_stmt_iterator gsi;
2059   for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
2060     lower_eh_constructs_2 (state, &gsi);
2061 }
2062 
2063 static unsigned int
2064 lower_eh_constructs (void)
2065 {
2066   struct leh_state null_state;
2067   gimple_seq bodyp;
2068 
2069   bodyp = gimple_body (current_function_decl);
2070   if (bodyp == NULL)
2071     return 0;
2072 
2073   finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2074   eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2075   memset (&null_state, 0, sizeof (null_state));
2076 
2077   collect_finally_tree_1 (bodyp, NULL);
2078   lower_eh_constructs_1 (&null_state, bodyp);
2079 
2080   /* We assume there's a return statement, or something, at the end of
2081      the function, and thus ploping the EH sequence afterward won't
2082      change anything.  */
2083   gcc_assert (!gimple_seq_may_fallthru (bodyp));
2084   gimple_seq_add_seq (&bodyp, eh_seq);
2085 
2086   /* We assume that since BODYP already existed, adding EH_SEQ to it
2087      didn't change its value, and we don't have to re-set the function.  */
2088   gcc_assert (bodyp == gimple_body (current_function_decl));
2089 
2090   htab_delete (finally_tree);
2091   BITMAP_FREE (eh_region_may_contain_throw_map);
2092   eh_seq = NULL;
2093 
2094   /* If this function needs a language specific EH personality routine
2095      and the frontend didn't already set one do so now.  */
2096   if (function_needs_eh_personality (cfun) == eh_personality_lang
2097       && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2098     DECL_FUNCTION_PERSONALITY (current_function_decl)
2099       = lang_hooks.eh_personality ();
2100 
2101   return 0;
2102 }
2103 
2104 struct gimple_opt_pass pass_lower_eh =
2105 {
2106  {
2107   GIMPLE_PASS,
2108   "eh",					/* name */
2109   NULL,					/* gate */
2110   lower_eh_constructs,			/* execute */
2111   NULL,					/* sub */
2112   NULL,					/* next */
2113   0,					/* static_pass_number */
2114   TV_TREE_EH,				/* tv_id */
2115   PROP_gimple_lcf,			/* properties_required */
2116   PROP_gimple_leh,			/* properties_provided */
2117   0,					/* properties_destroyed */
2118   0,					/* todo_flags_start */
2119   0             			/* todo_flags_finish */
2120  }
2121 };
2122 
2123 /* Create the multiple edges from an EH_DISPATCH statement to all of
2124    the possible handlers for its EH region.  Return true if there's
2125    no fallthru edge; false if there is.  */
2126 
2127 bool
2128 make_eh_dispatch_edges (gimple stmt)
2129 {
2130   eh_region r;
2131   eh_catch c;
2132   basic_block src, dst;
2133 
2134   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2135   src = gimple_bb (stmt);
2136 
2137   switch (r->type)
2138     {
2139     case ERT_TRY:
2140       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2141 	{
2142 	  dst = label_to_block (c->label);
2143 	  make_edge (src, dst, 0);
2144 
2145 	  /* A catch-all handler doesn't have a fallthru.  */
2146 	  if (c->type_list == NULL)
2147 	    return false;
2148 	}
2149       break;
2150 
2151     case ERT_ALLOWED_EXCEPTIONS:
2152       dst = label_to_block (r->u.allowed.label);
2153       make_edge (src, dst, 0);
2154       break;
2155 
2156     default:
2157       gcc_unreachable ();
2158     }
2159 
2160   return true;
2161 }
2162 
2163 /* Create the single EH edge from STMT to its nearest landing pad,
2164    if there is such a landing pad within the current function.  */
2165 
2166 void
2167 make_eh_edges (gimple stmt)
2168 {
2169   basic_block src, dst;
2170   eh_landing_pad lp;
2171   int lp_nr;
2172 
2173   lp_nr = lookup_stmt_eh_lp (stmt);
2174   if (lp_nr <= 0)
2175     return;
2176 
2177   lp = get_eh_landing_pad_from_number (lp_nr);
2178   gcc_assert (lp != NULL);
2179 
2180   src = gimple_bb (stmt);
2181   dst = label_to_block (lp->post_landing_pad);
2182   make_edge (src, dst, EDGE_EH);
2183 }
2184 
2185 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2186    do not actually perform the final edge redirection.
2187 
2188    CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2189    we intend to change the destination EH region as well; this means
2190    EH_LANDING_PAD_NR must already be set on the destination block label.
2191    If false, we're being called from generic cfg manipulation code and we
2192    should preserve our place within the region tree.  */
2193 
2194 static void
2195 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2196 {
2197   eh_landing_pad old_lp, new_lp;
2198   basic_block old_bb;
2199   gimple throw_stmt;
2200   int old_lp_nr, new_lp_nr;
2201   tree old_label, new_label;
2202   edge_iterator ei;
2203   edge e;
2204 
2205   old_bb = edge_in->dest;
2206   old_label = gimple_block_label (old_bb);
2207   old_lp_nr = EH_LANDING_PAD_NR (old_label);
2208   gcc_assert (old_lp_nr > 0);
2209   old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2210 
2211   throw_stmt = last_stmt (edge_in->src);
2212   gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2213 
2214   new_label = gimple_block_label (new_bb);
2215 
2216   /* Look for an existing region that might be using NEW_BB already.  */
2217   new_lp_nr = EH_LANDING_PAD_NR (new_label);
2218   if (new_lp_nr)
2219     {
2220       new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2221       gcc_assert (new_lp);
2222 
2223       /* Unless CHANGE_REGION is true, the new and old landing pad
2224 	 had better be associated with the same EH region.  */
2225       gcc_assert (change_region || new_lp->region == old_lp->region);
2226     }
2227   else
2228     {
2229       new_lp = NULL;
2230       gcc_assert (!change_region);
2231     }
2232 
2233   /* Notice when we redirect the last EH edge away from OLD_BB.  */
2234   FOR_EACH_EDGE (e, ei, old_bb->preds)
2235     if (e != edge_in && (e->flags & EDGE_EH))
2236       break;
2237 
2238   if (new_lp)
2239     {
2240       /* NEW_LP already exists.  If there are still edges into OLD_LP,
2241 	 there's nothing to do with the EH tree.  If there are no more
2242 	 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2243 	 If CHANGE_REGION is true, then our caller is expecting to remove
2244 	 the landing pad.  */
2245       if (e == NULL && !change_region)
2246 	remove_eh_landing_pad (old_lp);
2247     }
2248   else
2249     {
2250       /* No correct landing pad exists.  If there are no more edges
2251 	 into OLD_LP, then we can simply re-use the existing landing pad.
2252 	 Otherwise, we have to create a new landing pad.  */
2253       if (e == NULL)
2254 	{
2255 	  EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2256 	  new_lp = old_lp;
2257 	}
2258       else
2259 	new_lp = gen_eh_landing_pad (old_lp->region);
2260       new_lp->post_landing_pad = new_label;
2261       EH_LANDING_PAD_NR (new_label) = new_lp->index;
2262     }
2263 
2264   /* Maybe move the throwing statement to the new region.  */
2265   if (old_lp != new_lp)
2266     {
2267       remove_stmt_from_eh_lp (throw_stmt);
2268       add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2269     }
2270 }
2271 
2272 /* Redirect EH edge E to NEW_BB.  */
2273 
2274 edge
2275 redirect_eh_edge (edge edge_in, basic_block new_bb)
2276 {
2277   redirect_eh_edge_1 (edge_in, new_bb, false);
2278   return ssa_redirect_edge (edge_in, new_bb);
2279 }
2280 
2281 /* This is a subroutine of gimple_redirect_edge_and_branch.  Update the
2282    labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2283    The actual edge update will happen in the caller.  */
2284 
2285 void
2286 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2287 {
2288   tree new_lab = gimple_block_label (new_bb);
2289   bool any_changed = false;
2290   basic_block old_bb;
2291   eh_region r;
2292   eh_catch c;
2293 
2294   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2295   switch (r->type)
2296     {
2297     case ERT_TRY:
2298       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2299 	{
2300 	  old_bb = label_to_block (c->label);
2301 	  if (old_bb == e->dest)
2302 	    {
2303 	      c->label = new_lab;
2304 	      any_changed = true;
2305 	    }
2306 	}
2307       break;
2308 
2309     case ERT_ALLOWED_EXCEPTIONS:
2310       old_bb = label_to_block (r->u.allowed.label);
2311       gcc_assert (old_bb == e->dest);
2312       r->u.allowed.label = new_lab;
2313       any_changed = true;
2314       break;
2315 
2316     default:
2317       gcc_unreachable ();
2318     }
2319 
2320   gcc_assert (any_changed);
2321 }
2322 
2323 /* Helper function for operation_could_trap_p and stmt_could_throw_p.  */
2324 
2325 bool
2326 operation_could_trap_helper_p (enum tree_code op,
2327 			       bool fp_operation,
2328 			       bool honor_trapv,
2329 			       bool honor_nans,
2330 			       bool honor_snans,
2331 			       tree divisor,
2332 			       bool *handled)
2333 {
2334   *handled = true;
2335   switch (op)
2336     {
2337     case TRUNC_DIV_EXPR:
2338     case CEIL_DIV_EXPR:
2339     case FLOOR_DIV_EXPR:
2340     case ROUND_DIV_EXPR:
2341     case EXACT_DIV_EXPR:
2342     case CEIL_MOD_EXPR:
2343     case FLOOR_MOD_EXPR:
2344     case ROUND_MOD_EXPR:
2345     case TRUNC_MOD_EXPR:
2346     case RDIV_EXPR:
2347       if (honor_snans || honor_trapv)
2348 	return true;
2349       if (fp_operation)
2350 	return flag_trapping_math;
2351       if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2352         return true;
2353       return false;
2354 
2355     case LT_EXPR:
2356     case LE_EXPR:
2357     case GT_EXPR:
2358     case GE_EXPR:
2359     case LTGT_EXPR:
2360       /* Some floating point comparisons may trap.  */
2361       return honor_nans;
2362 
2363     case EQ_EXPR:
2364     case NE_EXPR:
2365     case UNORDERED_EXPR:
2366     case ORDERED_EXPR:
2367     case UNLT_EXPR:
2368     case UNLE_EXPR:
2369     case UNGT_EXPR:
2370     case UNGE_EXPR:
2371     case UNEQ_EXPR:
2372       return honor_snans;
2373 
2374     case CONVERT_EXPR:
2375     case FIX_TRUNC_EXPR:
2376       /* Conversion of floating point might trap.  */
2377       return honor_nans;
2378 
2379     case NEGATE_EXPR:
2380     case ABS_EXPR:
2381     case CONJ_EXPR:
2382       /* These operations don't trap with floating point.  */
2383       if (honor_trapv)
2384 	return true;
2385       return false;
2386 
2387     case PLUS_EXPR:
2388     case MINUS_EXPR:
2389     case MULT_EXPR:
2390       /* Any floating arithmetic may trap.  */
2391       if (fp_operation && flag_trapping_math)
2392 	return true;
2393       if (honor_trapv)
2394 	return true;
2395       return false;
2396 
2397     case COMPLEX_EXPR:
2398     case CONSTRUCTOR:
2399       /* Constructing an object cannot trap.  */
2400       return false;
2401 
2402     default:
2403       /* Any floating arithmetic may trap.  */
2404       if (fp_operation && flag_trapping_math)
2405 	return true;
2406 
2407       *handled = false;
2408       return false;
2409     }
2410 }
2411 
2412 /* Return true if operation OP may trap.  FP_OPERATION is true if OP is applied
2413    on floating-point values.  HONOR_TRAPV is true if OP is applied on integer
2414    type operands that may trap.  If OP is a division operator, DIVISOR contains
2415    the value of the divisor.  */
2416 
2417 bool
2418 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2419 			tree divisor)
2420 {
2421   bool honor_nans = (fp_operation && flag_trapping_math
2422 		     && !flag_finite_math_only);
2423   bool honor_snans = fp_operation && flag_signaling_nans != 0;
2424   bool handled;
2425 
2426   if (TREE_CODE_CLASS (op) != tcc_comparison
2427       && TREE_CODE_CLASS (op) != tcc_unary
2428       && TREE_CODE_CLASS (op) != tcc_binary)
2429     return false;
2430 
2431   return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2432 					honor_nans, honor_snans, divisor,
2433 					&handled);
2434 }
2435 
2436 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2437    location or floating point arithmetic.  C.f. the rtl version, may_trap_p.
2438    This routine expects only GIMPLE lhs or rhs input.  */
2439 
2440 bool
2441 tree_could_trap_p (tree expr)
2442 {
2443   enum tree_code code;
2444   bool fp_operation = false;
2445   bool honor_trapv = false;
2446   tree t, base, div = NULL_TREE;
2447 
2448   if (!expr)
2449     return false;
2450 
2451   code = TREE_CODE (expr);
2452   t = TREE_TYPE (expr);
2453 
2454   if (t)
2455     {
2456       if (COMPARISON_CLASS_P (expr))
2457 	fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2458       else
2459 	fp_operation = FLOAT_TYPE_P (t);
2460       honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2461     }
2462 
2463   if (TREE_CODE_CLASS (code) == tcc_binary)
2464     div = TREE_OPERAND (expr, 1);
2465   if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2466     return true;
2467 
2468  restart:
2469   switch (code)
2470     {
2471     case TARGET_MEM_REF:
2472       if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2473 	  && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2474 	return false;
2475       return !TREE_THIS_NOTRAP (expr);
2476 
2477     case COMPONENT_REF:
2478     case REALPART_EXPR:
2479     case IMAGPART_EXPR:
2480     case BIT_FIELD_REF:
2481     case VIEW_CONVERT_EXPR:
2482     case WITH_SIZE_EXPR:
2483       expr = TREE_OPERAND (expr, 0);
2484       code = TREE_CODE (expr);
2485       goto restart;
2486 
2487     case ARRAY_RANGE_REF:
2488       base = TREE_OPERAND (expr, 0);
2489       if (tree_could_trap_p (base))
2490 	return true;
2491       if (TREE_THIS_NOTRAP (expr))
2492 	return false;
2493       return !range_in_array_bounds_p (expr);
2494 
2495     case ARRAY_REF:
2496       base = TREE_OPERAND (expr, 0);
2497       if (tree_could_trap_p (base))
2498 	return true;
2499       if (TREE_THIS_NOTRAP (expr))
2500 	return false;
2501       return !in_array_bounds_p (expr);
2502 
2503     case MEM_REF:
2504       if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2505 	return false;
2506       /* Fallthru.  */
2507     case INDIRECT_REF:
2508       return !TREE_THIS_NOTRAP (expr);
2509 
2510     case ASM_EXPR:
2511       return TREE_THIS_VOLATILE (expr);
2512 
2513     case CALL_EXPR:
2514       t = get_callee_fndecl (expr);
2515       /* Assume that calls to weak functions may trap.  */
2516       if (!t || !DECL_P (t))
2517 	return true;
2518       if (DECL_WEAK (t))
2519 	return tree_could_trap_p (t);
2520       return false;
2521 
2522     case FUNCTION_DECL:
2523       /* Assume that accesses to weak functions may trap, unless we know
2524 	 they are certainly defined in current TU or in some other
2525 	 LTO partition.  */
2526       if (DECL_WEAK (expr))
2527 	{
2528 	  struct cgraph_node *node;
2529 	  if (!DECL_EXTERNAL (expr))
2530 	    return false;
2531 	  node = cgraph_function_node (cgraph_get_node (expr), NULL);
2532 	  if (node && node->in_other_partition)
2533 	    return false;
2534 	  return true;
2535 	}
2536       return false;
2537 
2538     case VAR_DECL:
2539       /* Assume that accesses to weak vars may trap, unless we know
2540 	 they are certainly defined in current TU or in some other
2541 	 LTO partition.  */
2542       if (DECL_WEAK (expr))
2543 	{
2544 	  struct varpool_node *node;
2545 	  if (!DECL_EXTERNAL (expr))
2546 	    return false;
2547 	  node = varpool_variable_node (varpool_get_node (expr), NULL);
2548 	  if (node && node->in_other_partition)
2549 	    return false;
2550 	  return true;
2551 	}
2552       return false;
2553 
2554     default:
2555       return false;
2556     }
2557 }
2558 
2559 
2560 /* Helper for stmt_could_throw_p.  Return true if STMT (assumed to be a
2561    an assignment or a conditional) may throw.  */
2562 
2563 static bool
2564 stmt_could_throw_1_p (gimple stmt)
2565 {
2566   enum tree_code code = gimple_expr_code (stmt);
2567   bool honor_nans = false;
2568   bool honor_snans = false;
2569   bool fp_operation = false;
2570   bool honor_trapv = false;
2571   tree t;
2572   size_t i;
2573   bool handled, ret;
2574 
2575   if (TREE_CODE_CLASS (code) == tcc_comparison
2576       || TREE_CODE_CLASS (code) == tcc_unary
2577       || TREE_CODE_CLASS (code) == tcc_binary)
2578     {
2579       if (is_gimple_assign (stmt)
2580 	  && TREE_CODE_CLASS (code) == tcc_comparison)
2581 	t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2582       else if (gimple_code (stmt) == GIMPLE_COND)
2583 	t = TREE_TYPE (gimple_cond_lhs (stmt));
2584       else
2585 	t = gimple_expr_type (stmt);
2586       fp_operation = FLOAT_TYPE_P (t);
2587       if (fp_operation)
2588 	{
2589 	  honor_nans = flag_trapping_math && !flag_finite_math_only;
2590 	  honor_snans = flag_signaling_nans != 0;
2591 	}
2592       else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2593 	honor_trapv = true;
2594     }
2595 
2596   /* Check if the main expression may trap.  */
2597   t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2598   ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2599 				       honor_nans, honor_snans, t,
2600 				       &handled);
2601   if (handled)
2602     return ret;
2603 
2604   /* If the expression does not trap, see if any of the individual operands may
2605      trap.  */
2606   for (i = 0; i < gimple_num_ops (stmt); i++)
2607     if (tree_could_trap_p (gimple_op (stmt, i)))
2608       return true;
2609 
2610   return false;
2611 }
2612 
2613 
2614 /* Return true if statement STMT could throw an exception.  */
2615 
2616 bool
2617 stmt_could_throw_p (gimple stmt)
2618 {
2619   if (!flag_exceptions)
2620     return false;
2621 
2622   /* The only statements that can throw an exception are assignments,
2623      conditionals, calls, resx, and asms.  */
2624   switch (gimple_code (stmt))
2625     {
2626     case GIMPLE_RESX:
2627       return true;
2628 
2629     case GIMPLE_CALL:
2630       return !gimple_call_nothrow_p (stmt);
2631 
2632     case GIMPLE_ASSIGN:
2633     case GIMPLE_COND:
2634       if (!cfun->can_throw_non_call_exceptions)
2635         return false;
2636       return stmt_could_throw_1_p (stmt);
2637 
2638     case GIMPLE_ASM:
2639       if (!cfun->can_throw_non_call_exceptions)
2640         return false;
2641       return gimple_asm_volatile_p (stmt);
2642 
2643     default:
2644       return false;
2645     }
2646 }
2647 
2648 
2649 /* Return true if expression T could throw an exception.  */
2650 
2651 bool
2652 tree_could_throw_p (tree t)
2653 {
2654   if (!flag_exceptions)
2655     return false;
2656   if (TREE_CODE (t) == MODIFY_EXPR)
2657     {
2658       if (cfun->can_throw_non_call_exceptions
2659           && tree_could_trap_p (TREE_OPERAND (t, 0)))
2660         return true;
2661       t = TREE_OPERAND (t, 1);
2662     }
2663 
2664   if (TREE_CODE (t) == WITH_SIZE_EXPR)
2665     t = TREE_OPERAND (t, 0);
2666   if (TREE_CODE (t) == CALL_EXPR)
2667     return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2668   if (cfun->can_throw_non_call_exceptions)
2669     return tree_could_trap_p (t);
2670   return false;
2671 }
2672 
2673 /* Return true if STMT can throw an exception that is not caught within
2674    the current function (CFUN).  */
2675 
2676 bool
2677 stmt_can_throw_external (gimple stmt)
2678 {
2679   int lp_nr;
2680 
2681   if (!stmt_could_throw_p (stmt))
2682     return false;
2683 
2684   lp_nr = lookup_stmt_eh_lp (stmt);
2685   return lp_nr == 0;
2686 }
2687 
2688 /* Return true if STMT can throw an exception that is caught within
2689    the current function (CFUN).  */
2690 
2691 bool
2692 stmt_can_throw_internal (gimple stmt)
2693 {
2694   int lp_nr;
2695 
2696   if (!stmt_could_throw_p (stmt))
2697     return false;
2698 
2699   lp_nr = lookup_stmt_eh_lp (stmt);
2700   return lp_nr > 0;
2701 }
2702 
2703 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2704    remove any entry it might have from the EH table.  Return true if
2705    any change was made.  */
2706 
2707 bool
2708 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2709 {
2710   if (stmt_could_throw_p (stmt))
2711     return false;
2712   return remove_stmt_from_eh_lp_fn (ifun, stmt);
2713 }
2714 
2715 /* Likewise, but always use the current function.  */
2716 
2717 bool
2718 maybe_clean_eh_stmt (gimple stmt)
2719 {
2720   return maybe_clean_eh_stmt_fn (cfun, stmt);
2721 }
2722 
2723 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2724    OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2725    in the table if it should be in there.  Return TRUE if a replacement was
2726    done that my require an EH edge purge.  */
2727 
2728 bool
2729 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2730 {
2731   int lp_nr = lookup_stmt_eh_lp (old_stmt);
2732 
2733   if (lp_nr != 0)
2734     {
2735       bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2736 
2737       if (new_stmt == old_stmt && new_stmt_could_throw)
2738 	return false;
2739 
2740       remove_stmt_from_eh_lp (old_stmt);
2741       if (new_stmt_could_throw)
2742 	{
2743 	  add_stmt_to_eh_lp (new_stmt, lp_nr);
2744 	  return false;
2745 	}
2746       else
2747 	return true;
2748     }
2749 
2750   return false;
2751 }
2752 
2753 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2754    in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT.  The MAP
2755    operand is the return value of duplicate_eh_regions.  */
2756 
2757 bool
2758 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2759 			    struct function *old_fun, gimple old_stmt,
2760 			    struct pointer_map_t *map, int default_lp_nr)
2761 {
2762   int old_lp_nr, new_lp_nr;
2763   void **slot;
2764 
2765   if (!stmt_could_throw_p (new_stmt))
2766     return false;
2767 
2768   old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2769   if (old_lp_nr == 0)
2770     {
2771       if (default_lp_nr == 0)
2772 	return false;
2773       new_lp_nr = default_lp_nr;
2774     }
2775   else if (old_lp_nr > 0)
2776     {
2777       eh_landing_pad old_lp, new_lp;
2778 
2779       old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2780       slot = pointer_map_contains (map, old_lp);
2781       new_lp = (eh_landing_pad) *slot;
2782       new_lp_nr = new_lp->index;
2783     }
2784   else
2785     {
2786       eh_region old_r, new_r;
2787 
2788       old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2789       slot = pointer_map_contains (map, old_r);
2790       new_r = (eh_region) *slot;
2791       new_lp_nr = -new_r->index;
2792     }
2793 
2794   add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2795   return true;
2796 }
2797 
2798 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2799    and thus no remapping is required.  */
2800 
2801 bool
2802 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2803 {
2804   int lp_nr;
2805 
2806   if (!stmt_could_throw_p (new_stmt))
2807     return false;
2808 
2809   lp_nr = lookup_stmt_eh_lp (old_stmt);
2810   if (lp_nr == 0)
2811     return false;
2812 
2813   add_stmt_to_eh_lp (new_stmt, lp_nr);
2814   return true;
2815 }
2816 
2817 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2818    GIMPLE_TRY) that are similar enough to be considered the same.  Currently
2819    this only handles handlers consisting of a single call, as that's the
2820    important case for C++: a destructor call for a particular object showing
2821    up in multiple handlers.  */
2822 
2823 static bool
2824 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2825 {
2826   gimple_stmt_iterator gsi;
2827   gimple ones, twos;
2828   unsigned int ai;
2829 
2830   gsi = gsi_start (oneh);
2831   if (!gsi_one_before_end_p (gsi))
2832     return false;
2833   ones = gsi_stmt (gsi);
2834 
2835   gsi = gsi_start (twoh);
2836   if (!gsi_one_before_end_p (gsi))
2837     return false;
2838   twos = gsi_stmt (gsi);
2839 
2840   if (!is_gimple_call (ones)
2841       || !is_gimple_call (twos)
2842       || gimple_call_lhs (ones)
2843       || gimple_call_lhs (twos)
2844       || gimple_call_chain (ones)
2845       || gimple_call_chain (twos)
2846       || !gimple_call_same_target_p (ones, twos)
2847       || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2848     return false;
2849 
2850   for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2851     if (!operand_equal_p (gimple_call_arg (ones, ai),
2852                           gimple_call_arg (twos, ai), 0))
2853       return false;
2854 
2855   return true;
2856 }
2857 
2858 /* Optimize
2859     try { A() } finally { try { ~B() } catch { ~A() } }
2860     try { ... } finally { ~A() }
2861    into
2862     try { A() } catch { ~B() }
2863     try { ~B() ... } finally { ~A() }
2864 
2865    This occurs frequently in C++, where A is a local variable and B is a
2866    temporary used in the initializer for A.  */
2867 
2868 static void
2869 optimize_double_finally (gimple one, gimple two)
2870 {
2871   gimple oneh;
2872   gimple_stmt_iterator gsi;
2873 
2874   gsi = gsi_start (gimple_try_cleanup (one));
2875   if (!gsi_one_before_end_p (gsi))
2876     return;
2877 
2878   oneh = gsi_stmt (gsi);
2879   if (gimple_code (oneh) != GIMPLE_TRY
2880       || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2881     return;
2882 
2883   if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2884     {
2885       gimple_seq seq = gimple_try_eval (oneh);
2886 
2887       gimple_try_set_cleanup (one, seq);
2888       gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2889       seq = copy_gimple_seq_and_replace_locals (seq);
2890       gimple_seq_add_seq (&seq, gimple_try_eval (two));
2891       gimple_try_set_eval (two, seq);
2892     }
2893 }
2894 
2895 /* Perform EH refactoring optimizations that are simpler to do when code
2896    flow has been lowered but EH structures haven't.  */
2897 
2898 static void
2899 refactor_eh_r (gimple_seq seq)
2900 {
2901   gimple_stmt_iterator gsi;
2902   gimple one, two;
2903 
2904   one = NULL;
2905   two = NULL;
2906   gsi = gsi_start (seq);
2907   while (1)
2908     {
2909       one = two;
2910       if (gsi_end_p (gsi))
2911 	two = NULL;
2912       else
2913 	two = gsi_stmt (gsi);
2914       if (one
2915 	  && two
2916 	  && gimple_code (one) == GIMPLE_TRY
2917 	  && gimple_code (two) == GIMPLE_TRY
2918 	  && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2919 	  && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2920 	optimize_double_finally (one, two);
2921       if (one)
2922 	switch (gimple_code (one))
2923 	  {
2924 	  case GIMPLE_TRY:
2925 	    refactor_eh_r (gimple_try_eval (one));
2926 	    refactor_eh_r (gimple_try_cleanup (one));
2927 	    break;
2928 	  case GIMPLE_CATCH:
2929 	    refactor_eh_r (gimple_catch_handler (one));
2930 	    break;
2931 	  case GIMPLE_EH_FILTER:
2932 	    refactor_eh_r (gimple_eh_filter_failure (one));
2933 	    break;
2934 	  case GIMPLE_EH_ELSE:
2935 	    refactor_eh_r (gimple_eh_else_n_body (one));
2936 	    refactor_eh_r (gimple_eh_else_e_body (one));
2937 	    break;
2938 	  default:
2939 	    break;
2940 	  }
2941       if (two)
2942 	gsi_next (&gsi);
2943       else
2944 	break;
2945     }
2946 }
2947 
2948 static unsigned
2949 refactor_eh (void)
2950 {
2951   refactor_eh_r (gimple_body (current_function_decl));
2952   return 0;
2953 }
2954 
2955 static bool
2956 gate_refactor_eh (void)
2957 {
2958   return flag_exceptions != 0;
2959 }
2960 
2961 struct gimple_opt_pass pass_refactor_eh =
2962 {
2963  {
2964   GIMPLE_PASS,
2965   "ehopt",				/* name */
2966   gate_refactor_eh,			/* gate */
2967   refactor_eh,				/* execute */
2968   NULL,					/* sub */
2969   NULL,					/* next */
2970   0,					/* static_pass_number */
2971   TV_TREE_EH,				/* tv_id */
2972   PROP_gimple_lcf,			/* properties_required */
2973   0,					/* properties_provided */
2974   0,					/* properties_destroyed */
2975   0,					/* todo_flags_start */
2976   0             			/* todo_flags_finish */
2977  }
2978 };
2979 
2980 /* At the end of gimple optimization, we can lower RESX.  */
2981 
2982 static bool
2983 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2984 {
2985   int lp_nr;
2986   eh_region src_r, dst_r;
2987   gimple_stmt_iterator gsi;
2988   gimple x;
2989   tree fn, src_nr;
2990   bool ret = false;
2991 
2992   lp_nr = lookup_stmt_eh_lp (stmt);
2993   if (lp_nr != 0)
2994     dst_r = get_eh_region_from_lp_number (lp_nr);
2995   else
2996     dst_r = NULL;
2997 
2998   src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2999   gsi = gsi_last_bb (bb);
3000 
3001   if (src_r == NULL)
3002     {
3003       /* We can wind up with no source region when pass_cleanup_eh shows
3004 	 that there are no entries into an eh region and deletes it, but
3005 	 then the block that contains the resx isn't removed.  This can
3006 	 happen without optimization when the switch statement created by
3007 	 lower_try_finally_switch isn't simplified to remove the eh case.
3008 
3009 	 Resolve this by expanding the resx node to an abort.  */
3010 
3011       fn = builtin_decl_implicit (BUILT_IN_TRAP);
3012       x = gimple_build_call (fn, 0);
3013       gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3014 
3015       while (EDGE_COUNT (bb->succs) > 0)
3016 	remove_edge (EDGE_SUCC (bb, 0));
3017     }
3018   else if (dst_r)
3019     {
3020       /* When we have a destination region, we resolve this by copying
3021 	 the excptr and filter values into place, and changing the edge
3022 	 to immediately after the landing pad.  */
3023       edge e;
3024 
3025       if (lp_nr < 0)
3026 	{
3027 	  basic_block new_bb;
3028 	  void **slot;
3029 	  tree lab;
3030 
3031 	  /* We are resuming into a MUST_NOT_CALL region.  Expand a call to
3032 	     the failure decl into a new block, if needed.  */
3033 	  gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3034 
3035 	  slot = pointer_map_contains (mnt_map, dst_r);
3036 	  if (slot == NULL)
3037 	    {
3038 	      gimple_stmt_iterator gsi2;
3039 
3040 	      new_bb = create_empty_bb (bb);
3041 	      lab = gimple_block_label (new_bb);
3042 	      gsi2 = gsi_start_bb (new_bb);
3043 
3044 	      fn = dst_r->u.must_not_throw.failure_decl;
3045 	      x = gimple_build_call (fn, 0);
3046 	      gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3047 	      gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3048 
3049 	      slot = pointer_map_insert (mnt_map, dst_r);
3050 	      *slot = lab;
3051 	    }
3052 	  else
3053 	    {
3054 	      lab = (tree) *slot;
3055 	      new_bb = label_to_block (lab);
3056 	    }
3057 
3058 	  gcc_assert (EDGE_COUNT (bb->succs) == 0);
3059 	  e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3060 	  e->count = bb->count;
3061 	  e->probability = REG_BR_PROB_BASE;
3062 	}
3063       else
3064 	{
3065 	  edge_iterator ei;
3066 	  tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3067 
3068 	  fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3069 	  src_nr = build_int_cst (integer_type_node, src_r->index);
3070 	  x = gimple_build_call (fn, 2, dst_nr, src_nr);
3071 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3072 
3073 	  /* Update the flags for the outgoing edge.  */
3074 	  e = single_succ_edge (bb);
3075 	  gcc_assert (e->flags & EDGE_EH);
3076 	  e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3077 
3078 	  /* If there are no more EH users of the landing pad, delete it.  */
3079 	  FOR_EACH_EDGE (e, ei, e->dest->preds)
3080 	    if (e->flags & EDGE_EH)
3081 	      break;
3082 	  if (e == NULL)
3083 	    {
3084 	      eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3085 	      remove_eh_landing_pad (lp);
3086 	    }
3087 	}
3088 
3089       ret = true;
3090     }
3091   else
3092     {
3093       tree var;
3094 
3095       /* When we don't have a destination region, this exception escapes
3096 	 up the call chain.  We resolve this by generating a call to the
3097 	 _Unwind_Resume library function.  */
3098 
3099       /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3100 	 with no arguments for C++ and Java.  Check for that.  */
3101       if (src_r->use_cxa_end_cleanup)
3102 	{
3103 	  fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3104 	  x = gimple_build_call (fn, 0);
3105 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3106 	}
3107       else
3108 	{
3109 	  fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3110 	  src_nr = build_int_cst (integer_type_node, src_r->index);
3111 	  x = gimple_build_call (fn, 1, src_nr);
3112 	  var = create_tmp_var (ptr_type_node, NULL);
3113 	  var = make_ssa_name (var, x);
3114 	  gimple_call_set_lhs (x, var);
3115 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3116 
3117 	  fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3118 	  x = gimple_build_call (fn, 1, var);
3119 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3120 	}
3121 
3122       gcc_assert (EDGE_COUNT (bb->succs) == 0);
3123     }
3124 
3125   gsi_remove (&gsi, true);
3126 
3127   return ret;
3128 }
3129 
3130 static unsigned
3131 execute_lower_resx (void)
3132 {
3133   basic_block bb;
3134   struct pointer_map_t *mnt_map;
3135   bool dominance_invalidated = false;
3136   bool any_rewritten = false;
3137 
3138   mnt_map = pointer_map_create ();
3139 
3140   FOR_EACH_BB (bb)
3141     {
3142       gimple last = last_stmt (bb);
3143       if (last && is_gimple_resx (last))
3144 	{
3145 	  dominance_invalidated |= lower_resx (bb, last, mnt_map);
3146 	  any_rewritten = true;
3147 	}
3148     }
3149 
3150   pointer_map_destroy (mnt_map);
3151 
3152   if (dominance_invalidated)
3153     {
3154       free_dominance_info (CDI_DOMINATORS);
3155       free_dominance_info (CDI_POST_DOMINATORS);
3156     }
3157 
3158   return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3159 }
3160 
3161 static bool
3162 gate_lower_resx (void)
3163 {
3164   return flag_exceptions != 0;
3165 }
3166 
3167 struct gimple_opt_pass pass_lower_resx =
3168 {
3169  {
3170   GIMPLE_PASS,
3171   "resx",				/* name */
3172   gate_lower_resx,			/* gate */
3173   execute_lower_resx,			/* execute */
3174   NULL,					/* sub */
3175   NULL,					/* next */
3176   0,					/* static_pass_number */
3177   TV_TREE_EH,				/* tv_id */
3178   PROP_gimple_lcf,			/* properties_required */
3179   0,					/* properties_provided */
3180   0,					/* properties_destroyed */
3181   0,					/* todo_flags_start */
3182   TODO_verify_flow	                /* todo_flags_finish */
3183  }
3184 };
3185 
3186 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3187    external throw.  */
3188 
3189 static void
3190 optimize_clobbers (basic_block bb)
3191 {
3192   gimple_stmt_iterator gsi = gsi_last_bb (bb);
3193   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3194     {
3195       gimple stmt = gsi_stmt (gsi);
3196       if (is_gimple_debug (stmt))
3197 	continue;
3198       if (!gimple_clobber_p (stmt)
3199 	  || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3200 	return;
3201       unlink_stmt_vdef (stmt);
3202       gsi_remove (&gsi, true);
3203       release_defs (stmt);
3204     }
3205 }
3206 
3207 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3208    internal throw to successor BB.  */
3209 
3210 static int
3211 sink_clobbers (basic_block bb)
3212 {
3213   edge e;
3214   edge_iterator ei;
3215   gimple_stmt_iterator gsi, dgsi;
3216   basic_block succbb;
3217   bool any_clobbers = false;
3218 
3219   /* Only optimize if BB has a single EH successor and
3220      all predecessor edges are EH too.  */
3221   if (!single_succ_p (bb)
3222       || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3223     return 0;
3224 
3225   FOR_EACH_EDGE (e, ei, bb->preds)
3226     {
3227       if ((e->flags & EDGE_EH) == 0)
3228 	return 0;
3229     }
3230 
3231   /* And BB contains only CLOBBER stmts before the final
3232      RESX.  */
3233   gsi = gsi_last_bb (bb);
3234   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3235     {
3236       gimple stmt = gsi_stmt (gsi);
3237       if (is_gimple_debug (stmt))
3238 	continue;
3239       if (gimple_code (stmt) == GIMPLE_LABEL)
3240 	break;
3241       if (!gimple_clobber_p (stmt)
3242 	  || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3243 	return 0;
3244       any_clobbers = true;
3245     }
3246   if (!any_clobbers)
3247     return 0;
3248 
3249   succbb = single_succ (bb);
3250   dgsi = gsi_after_labels (succbb);
3251   gsi = gsi_last_bb (bb);
3252   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3253     {
3254       gimple stmt = gsi_stmt (gsi);
3255       tree vdef;
3256       if (is_gimple_debug (stmt))
3257 	continue;
3258       if (gimple_code (stmt) == GIMPLE_LABEL)
3259 	break;
3260       unlink_stmt_vdef (stmt);
3261       gsi_remove (&gsi, false);
3262       vdef = gimple_vdef (stmt);
3263       if (vdef && TREE_CODE (vdef) == SSA_NAME)
3264 	{
3265 	  vdef = SSA_NAME_VAR (vdef);
3266 	  mark_sym_for_renaming (vdef);
3267 	  gimple_set_vdef (stmt, vdef);
3268 	  gimple_set_vuse (stmt, vdef);
3269 	}
3270       release_defs (stmt);
3271       gsi_insert_before (&dgsi, stmt, GSI_SAME_STMT);
3272     }
3273 
3274   return TODO_update_ssa_only_virtuals;
3275 }
3276 
3277 /* At the end of inlining, we can lower EH_DISPATCH.  Return true when
3278    we have found some duplicate labels and removed some edges.  */
3279 
3280 static bool
3281 lower_eh_dispatch (basic_block src, gimple stmt)
3282 {
3283   gimple_stmt_iterator gsi;
3284   int region_nr;
3285   eh_region r;
3286   tree filter, fn;
3287   gimple x;
3288   bool redirected = false;
3289 
3290   region_nr = gimple_eh_dispatch_region (stmt);
3291   r = get_eh_region_from_number (region_nr);
3292 
3293   gsi = gsi_last_bb (src);
3294 
3295   switch (r->type)
3296     {
3297     case ERT_TRY:
3298       {
3299 	VEC (tree, heap) *labels = NULL;
3300 	tree default_label = NULL;
3301 	eh_catch c;
3302 	edge_iterator ei;
3303 	edge e;
3304 	struct pointer_set_t *seen_values = pointer_set_create ();
3305 
3306 	/* Collect the labels for a switch.  Zero the post_landing_pad
3307 	   field becase we'll no longer have anything keeping these labels
3308 	   in existance and the optimizer will be free to merge these
3309 	   blocks at will.  */
3310 	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3311 	  {
3312 	    tree tp_node, flt_node, lab = c->label;
3313 	    bool have_label = false;
3314 
3315 	    c->label = NULL;
3316 	    tp_node = c->type_list;
3317 	    flt_node = c->filter_list;
3318 
3319 	    if (tp_node == NULL)
3320 	      {
3321 	        default_label = lab;
3322 		break;
3323 	      }
3324 	    do
3325 	      {
3326 		/* Filter out duplicate labels that arise when this handler
3327 		   is shadowed by an earlier one.  When no labels are
3328 		   attached to the handler anymore, we remove
3329 		   the corresponding edge and then we delete unreachable
3330 		   blocks at the end of this pass.  */
3331 		if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3332 		  {
3333 		    tree t = build_case_label (TREE_VALUE (flt_node),
3334 					       NULL, lab);
3335 		    VEC_safe_push (tree, heap, labels, t);
3336 		    pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3337 		    have_label = true;
3338 		  }
3339 
3340 		tp_node = TREE_CHAIN (tp_node);
3341 		flt_node = TREE_CHAIN (flt_node);
3342 	      }
3343 	    while (tp_node);
3344 	    if (! have_label)
3345 	      {
3346 	        remove_edge (find_edge (src, label_to_block (lab)));
3347 	        redirected = true;
3348 	      }
3349 	  }
3350 
3351 	/* Clean up the edge flags.  */
3352 	FOR_EACH_EDGE (e, ei, src->succs)
3353 	  {
3354 	    if (e->flags & EDGE_FALLTHRU)
3355 	      {
3356 		/* If there was no catch-all, use the fallthru edge.  */
3357 		if (default_label == NULL)
3358 		  default_label = gimple_block_label (e->dest);
3359 		e->flags &= ~EDGE_FALLTHRU;
3360 	      }
3361 	  }
3362 	gcc_assert (default_label != NULL);
3363 
3364 	/* Don't generate a switch if there's only a default case.
3365 	   This is common in the form of try { A; } catch (...) { B; }.  */
3366 	if (labels == NULL)
3367 	  {
3368 	    e = single_succ_edge (src);
3369 	    e->flags |= EDGE_FALLTHRU;
3370 	  }
3371 	else
3372 	  {
3373 	    fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3374 	    x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3375 							 region_nr));
3376 	    filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3377 	    filter = make_ssa_name (filter, x);
3378 	    gimple_call_set_lhs (x, filter);
3379 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3380 
3381 	    /* Turn the default label into a default case.  */
3382 	    default_label = build_case_label (NULL, NULL, default_label);
3383 	    sort_case_labels (labels);
3384 
3385 	    x = gimple_build_switch_vec (filter, default_label, labels);
3386 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3387 
3388 	    VEC_free (tree, heap, labels);
3389 	  }
3390 	pointer_set_destroy (seen_values);
3391       }
3392       break;
3393 
3394     case ERT_ALLOWED_EXCEPTIONS:
3395       {
3396 	edge b_e = BRANCH_EDGE (src);
3397 	edge f_e = FALLTHRU_EDGE (src);
3398 
3399 	fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3400 	x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3401 						     region_nr));
3402 	filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3403 	filter = make_ssa_name (filter, x);
3404 	gimple_call_set_lhs (x, filter);
3405 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3406 
3407 	r->u.allowed.label = NULL;
3408 	x = gimple_build_cond (EQ_EXPR, filter,
3409 			       build_int_cst (TREE_TYPE (filter),
3410 					      r->u.allowed.filter),
3411 			       NULL_TREE, NULL_TREE);
3412 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3413 
3414 	b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3415         f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3416       }
3417       break;
3418 
3419     default:
3420       gcc_unreachable ();
3421     }
3422 
3423   /* Replace the EH_DISPATCH with the SWITCH or COND generated above.  */
3424   gsi_remove (&gsi, true);
3425   return redirected;
3426 }
3427 
3428 static unsigned
3429 execute_lower_eh_dispatch (void)
3430 {
3431   basic_block bb;
3432   int flags = 0;
3433   bool redirected = false;
3434 
3435   assign_filter_values ();
3436 
3437   FOR_EACH_BB (bb)
3438     {
3439       gimple last = last_stmt (bb);
3440       if (last == NULL)
3441 	continue;
3442       if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3443 	{
3444 	  redirected |= lower_eh_dispatch (bb, last);
3445 	  flags |= TODO_update_ssa_only_virtuals;
3446 	}
3447       else if (gimple_code (last) == GIMPLE_RESX)
3448 	{
3449 	  if (stmt_can_throw_external (last))
3450 	    optimize_clobbers (bb);
3451 	  else
3452 	    flags |= sink_clobbers (bb);
3453 	}
3454     }
3455 
3456   if (redirected)
3457     delete_unreachable_blocks ();
3458   return flags;
3459 }
3460 
3461 static bool
3462 gate_lower_eh_dispatch (void)
3463 {
3464   return cfun->eh->region_tree != NULL;
3465 }
3466 
3467 struct gimple_opt_pass pass_lower_eh_dispatch =
3468 {
3469  {
3470   GIMPLE_PASS,
3471   "ehdisp",				/* name */
3472   gate_lower_eh_dispatch,		/* gate */
3473   execute_lower_eh_dispatch,		/* execute */
3474   NULL,					/* sub */
3475   NULL,					/* next */
3476   0,					/* static_pass_number */
3477   TV_TREE_EH,				/* tv_id */
3478   PROP_gimple_lcf,			/* properties_required */
3479   0,					/* properties_provided */
3480   0,					/* properties_destroyed */
3481   0,					/* todo_flags_start */
3482   TODO_verify_flow	                /* todo_flags_finish */
3483  }
3484 };
3485 
3486 /* Walk statements, see what regions are really referenced and remove
3487    those that are unused.  */
3488 
3489 static void
3490 remove_unreachable_handlers (void)
3491 {
3492   sbitmap r_reachable, lp_reachable;
3493   eh_region region;
3494   eh_landing_pad lp;
3495   basic_block bb;
3496   int lp_nr, r_nr;
3497 
3498   r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3499   lp_reachable
3500     = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3501   sbitmap_zero (r_reachable);
3502   sbitmap_zero (lp_reachable);
3503 
3504   FOR_EACH_BB (bb)
3505     {
3506       gimple_stmt_iterator gsi;
3507 
3508       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3509 	{
3510 	  gimple stmt = gsi_stmt (gsi);
3511 	  lp_nr = lookup_stmt_eh_lp (stmt);
3512 
3513 	  /* Negative LP numbers are MUST_NOT_THROW regions which
3514 	     are not considered BB enders.  */
3515 	  if (lp_nr < 0)
3516 	    SET_BIT (r_reachable, -lp_nr);
3517 
3518 	  /* Positive LP numbers are real landing pads, are are BB enders.  */
3519 	  else if (lp_nr > 0)
3520 	    {
3521 	      gcc_assert (gsi_one_before_end_p (gsi));
3522 	      region = get_eh_region_from_lp_number (lp_nr);
3523 	      SET_BIT (r_reachable, region->index);
3524 	      SET_BIT (lp_reachable, lp_nr);
3525 	    }
3526 
3527 	  /* Avoid removing regions referenced from RESX/EH_DISPATCH.  */
3528 	  switch (gimple_code (stmt))
3529 	    {
3530 	    case GIMPLE_RESX:
3531 	      SET_BIT (r_reachable, gimple_resx_region (stmt));
3532 	      break;
3533 	    case GIMPLE_EH_DISPATCH:
3534 	      SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3535 	      break;
3536 	    default:
3537 	      break;
3538 	    }
3539 	}
3540     }
3541 
3542   if (dump_file)
3543     {
3544       fprintf (dump_file, "Before removal of unreachable regions:\n");
3545       dump_eh_tree (dump_file, cfun);
3546       fprintf (dump_file, "Reachable regions: ");
3547       dump_sbitmap_file (dump_file, r_reachable);
3548       fprintf (dump_file, "Reachable landing pads: ");
3549       dump_sbitmap_file (dump_file, lp_reachable);
3550     }
3551 
3552   for (r_nr = 1;
3553        VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3554     if (region && !TEST_BIT (r_reachable, r_nr))
3555       {
3556 	if (dump_file)
3557 	  fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3558 	remove_eh_handler (region);
3559       }
3560 
3561   for (lp_nr = 1;
3562        VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3563     if (lp && !TEST_BIT (lp_reachable, lp_nr))
3564       {
3565 	if (dump_file)
3566 	  fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3567 	remove_eh_landing_pad (lp);
3568       }
3569 
3570   if (dump_file)
3571     {
3572       fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3573       dump_eh_tree (dump_file, cfun);
3574       fprintf (dump_file, "\n\n");
3575     }
3576 
3577   sbitmap_free (r_reachable);
3578   sbitmap_free (lp_reachable);
3579 
3580 #ifdef ENABLE_CHECKING
3581   verify_eh_tree (cfun);
3582 #endif
3583 }
3584 
3585 /* Remove unreachable handlers if any landing pads have been removed after
3586    last ehcleanup pass (due to gimple_purge_dead_eh_edges).  */
3587 
3588 void
3589 maybe_remove_unreachable_handlers (void)
3590 {
3591   eh_landing_pad lp;
3592   int i;
3593 
3594   if (cfun->eh == NULL)
3595     return;
3596 
3597   for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3598     if (lp && lp->post_landing_pad)
3599       {
3600 	if (label_to_block (lp->post_landing_pad) == NULL)
3601 	  {
3602 	    remove_unreachable_handlers ();
3603 	    return;
3604 	  }
3605       }
3606 }
3607 
3608 /* Remove regions that do not have landing pads.  This assumes
3609    that remove_unreachable_handlers has already been run, and
3610    that we've just manipulated the landing pads since then.  */
3611 
3612 static void
3613 remove_unreachable_handlers_no_lp (void)
3614 {
3615   eh_region r;
3616   int i;
3617   sbitmap r_reachable;
3618   basic_block bb;
3619 
3620   r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3621   sbitmap_zero (r_reachable);
3622 
3623   FOR_EACH_BB (bb)
3624     {
3625       gimple stmt = last_stmt (bb);
3626       if (stmt)
3627 	/* Avoid removing regions referenced from RESX/EH_DISPATCH.  */
3628 	switch (gimple_code (stmt))
3629 	  {
3630 	  case GIMPLE_RESX:
3631 	    SET_BIT (r_reachable, gimple_resx_region (stmt));
3632 	    break;
3633 	  case GIMPLE_EH_DISPATCH:
3634 	    SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3635 	    break;
3636 	  default:
3637 	    break;
3638 	  }
3639     }
3640 
3641   for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3642     if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW
3643 	&& !TEST_BIT (r_reachable, i))
3644       {
3645 	if (dump_file)
3646 	  fprintf (dump_file, "Removing unreachable region %d\n", i);
3647 	remove_eh_handler (r);
3648       }
3649 
3650   sbitmap_free (r_reachable);
3651 }
3652 
3653 /* Undo critical edge splitting on an EH landing pad.  Earlier, we
3654    optimisticaly split all sorts of edges, including EH edges.  The
3655    optimization passes in between may not have needed them; if not,
3656    we should undo the split.
3657 
3658    Recognize this case by having one EH edge incoming to the BB and
3659    one normal edge outgoing; BB should be empty apart from the
3660    post_landing_pad label.
3661 
3662    Note that this is slightly different from the empty handler case
3663    handled by cleanup_empty_eh, in that the actual handler may yet
3664    have actual code but the landing pad has been separated from the
3665    handler.  As such, cleanup_empty_eh relies on this transformation
3666    having been done first.  */
3667 
3668 static bool
3669 unsplit_eh (eh_landing_pad lp)
3670 {
3671   basic_block bb = label_to_block (lp->post_landing_pad);
3672   gimple_stmt_iterator gsi;
3673   edge e_in, e_out;
3674 
3675   /* Quickly check the edge counts on BB for singularity.  */
3676   if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3677     return false;
3678   e_in = EDGE_PRED (bb, 0);
3679   e_out = EDGE_SUCC (bb, 0);
3680 
3681   /* Input edge must be EH and output edge must be normal.  */
3682   if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3683     return false;
3684 
3685   /* The block must be empty except for the labels and debug insns.  */
3686   gsi = gsi_after_labels (bb);
3687   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3688     gsi_next_nondebug (&gsi);
3689   if (!gsi_end_p (gsi))
3690     return false;
3691 
3692   /* The destination block must not already have a landing pad
3693      for a different region.  */
3694   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3695     {
3696       gimple stmt = gsi_stmt (gsi);
3697       tree lab;
3698       int lp_nr;
3699 
3700       if (gimple_code (stmt) != GIMPLE_LABEL)
3701 	break;
3702       lab = gimple_label_label (stmt);
3703       lp_nr = EH_LANDING_PAD_NR (lab);
3704       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3705 	return false;
3706     }
3707 
3708   /* The new destination block must not already be a destination of
3709      the source block, lest we merge fallthru and eh edges and get
3710      all sorts of confused.  */
3711   if (find_edge (e_in->src, e_out->dest))
3712     return false;
3713 
3714   /* ??? We can get degenerate phis due to cfg cleanups.  I would have
3715      thought this should have been cleaned up by a phicprop pass, but
3716      that doesn't appear to handle virtuals.  Propagate by hand.  */
3717   if (!gimple_seq_empty_p (phi_nodes (bb)))
3718     {
3719       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3720 	{
3721 	  gimple use_stmt, phi = gsi_stmt (gsi);
3722 	  tree lhs = gimple_phi_result (phi);
3723 	  tree rhs = gimple_phi_arg_def (phi, 0);
3724 	  use_operand_p use_p;
3725 	  imm_use_iterator iter;
3726 
3727 	  FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3728 	    {
3729 	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3730 		SET_USE (use_p, rhs);
3731 	    }
3732 
3733 	  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3734 	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3735 
3736 	  remove_phi_node (&gsi, true);
3737 	}
3738     }
3739 
3740   if (dump_file && (dump_flags & TDF_DETAILS))
3741     fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3742 	     lp->index, e_out->dest->index);
3743 
3744   /* Redirect the edge.  Since redirect_eh_edge_1 expects to be moving
3745      a successor edge, humor it.  But do the real CFG change with the
3746      predecessor of E_OUT in order to preserve the ordering of arguments
3747      to the PHI nodes in E_OUT->DEST.  */
3748   redirect_eh_edge_1 (e_in, e_out->dest, false);
3749   redirect_edge_pred (e_out, e_in->src);
3750   e_out->flags = e_in->flags;
3751   e_out->probability = e_in->probability;
3752   e_out->count = e_in->count;
3753   remove_edge (e_in);
3754 
3755   return true;
3756 }
3757 
3758 /* Examine each landing pad block and see if it matches unsplit_eh.  */
3759 
3760 static bool
3761 unsplit_all_eh (void)
3762 {
3763   bool changed = false;
3764   eh_landing_pad lp;
3765   int i;
3766 
3767   for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3768     if (lp)
3769       changed |= unsplit_eh (lp);
3770 
3771   return changed;
3772 }
3773 
3774 /* A subroutine of cleanup_empty_eh.  Redirect all EH edges incoming
3775    to OLD_BB to NEW_BB; return true on success, false on failure.
3776 
3777    OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3778    PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3779    Virtual PHIs may be deleted and marked for renaming.  */
3780 
3781 static bool
3782 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3783 			     edge old_bb_out, bool change_region)
3784 {
3785   gimple_stmt_iterator ngsi, ogsi;
3786   edge_iterator ei;
3787   edge e;
3788   bitmap rename_virts;
3789   bitmap ophi_handled;
3790 
3791   /* The destination block must not be a regular successor for any
3792      of the preds of the landing pad.  Thus, avoid turning
3793         <..>
3794 	 |  \ EH
3795 	 |  <..>
3796 	 |  /
3797 	<..>
3798      into
3799         <..>
3800 	|  | EH
3801 	<..>
3802      which CFG verification would choke on.  See PR45172 and PR51089.  */
3803   FOR_EACH_EDGE (e, ei, old_bb->preds)
3804     if (find_edge (e->src, new_bb))
3805       return false;
3806 
3807   FOR_EACH_EDGE (e, ei, old_bb->preds)
3808     redirect_edge_var_map_clear (e);
3809 
3810   ophi_handled = BITMAP_ALLOC (NULL);
3811   rename_virts = BITMAP_ALLOC (NULL);
3812 
3813   /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3814      for the edges we're going to move.  */
3815   for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3816     {
3817       gimple ophi, nphi = gsi_stmt (ngsi);
3818       tree nresult, nop;
3819 
3820       nresult = gimple_phi_result (nphi);
3821       nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3822 
3823       /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3824 	 the source ssa_name.  */
3825       ophi = NULL;
3826       for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3827 	{
3828 	  ophi = gsi_stmt (ogsi);
3829 	  if (gimple_phi_result (ophi) == nop)
3830 	    break;
3831 	  ophi = NULL;
3832 	}
3833 
3834       /* If we did find the corresponding PHI, copy those inputs.  */
3835       if (ophi)
3836 	{
3837 	  /* If NOP is used somewhere else beyond phis in new_bb, give up.  */
3838 	  if (!has_single_use (nop))
3839 	    {
3840 	      imm_use_iterator imm_iter;
3841 	      use_operand_p use_p;
3842 
3843 	      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3844 		{
3845 		  if (!gimple_debug_bind_p (USE_STMT (use_p))
3846 		      && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3847 			  || gimple_bb (USE_STMT (use_p)) != new_bb))
3848 		    goto fail;
3849 		}
3850 	    }
3851 	  bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3852 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3853 	    {
3854 	      location_t oloc;
3855 	      tree oop;
3856 
3857 	      if ((e->flags & EDGE_EH) == 0)
3858 		continue;
3859 	      oop = gimple_phi_arg_def (ophi, e->dest_idx);
3860 	      oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3861 	      redirect_edge_var_map_add (e, nresult, oop, oloc);
3862 	    }
3863 	}
3864       /* If we didn't find the PHI, but it's a VOP, remember to rename
3865 	 it later, assuming all other tests succeed.  */
3866       else if (!is_gimple_reg (nresult))
3867 	bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3868       /* If we didn't find the PHI, and it's a real variable, we know
3869 	 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3870 	 variable is unchanged from input to the block and we can simply
3871 	 re-use the input to NEW_BB from the OLD_BB_OUT edge.  */
3872       else
3873 	{
3874 	  location_t nloc
3875 	    = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3876 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3877 	    redirect_edge_var_map_add (e, nresult, nop, nloc);
3878 	}
3879     }
3880 
3881   /* Second, verify that all PHIs from OLD_BB have been handled.  If not,
3882      we don't know what values from the other edges into NEW_BB to use.  */
3883   for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3884     {
3885       gimple ophi = gsi_stmt (ogsi);
3886       tree oresult = gimple_phi_result (ophi);
3887       if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3888 	goto fail;
3889     }
3890 
3891   /* At this point we know that the merge will succeed.  Remove the PHI
3892      nodes for the virtuals that we want to rename.  */
3893   if (!bitmap_empty_p (rename_virts))
3894     {
3895       for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3896 	{
3897 	  gimple nphi = gsi_stmt (ngsi);
3898 	  tree nresult = gimple_phi_result (nphi);
3899 	  if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3900 	    {
3901 	      mark_virtual_phi_result_for_renaming (nphi);
3902 	      remove_phi_node (&ngsi, true);
3903 	    }
3904 	  else
3905 	    gsi_next (&ngsi);
3906 	}
3907     }
3908 
3909   /* Finally, move the edges and update the PHIs.  */
3910   for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3911     if (e->flags & EDGE_EH)
3912       {
3913 	redirect_eh_edge_1 (e, new_bb, change_region);
3914 	redirect_edge_succ (e, new_bb);
3915 	flush_pending_stmts (e);
3916       }
3917     else
3918       ei_next (&ei);
3919 
3920   BITMAP_FREE (ophi_handled);
3921   BITMAP_FREE (rename_virts);
3922   return true;
3923 
3924  fail:
3925   FOR_EACH_EDGE (e, ei, old_bb->preds)
3926     redirect_edge_var_map_clear (e);
3927   BITMAP_FREE (ophi_handled);
3928   BITMAP_FREE (rename_virts);
3929   return false;
3930 }
3931 
3932 /* A subroutine of cleanup_empty_eh.  Move a landing pad LP from its
3933    old region to NEW_REGION at BB.  */
3934 
3935 static void
3936 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3937 			  eh_landing_pad lp, eh_region new_region)
3938 {
3939   gimple_stmt_iterator gsi;
3940   eh_landing_pad *pp;
3941 
3942   for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3943     continue;
3944   *pp = lp->next_lp;
3945 
3946   lp->region = new_region;
3947   lp->next_lp = new_region->landing_pads;
3948   new_region->landing_pads = lp;
3949 
3950   /* Delete the RESX that was matched within the empty handler block.  */
3951   gsi = gsi_last_bb (bb);
3952   mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3953   gsi_remove (&gsi, true);
3954 
3955   /* Clean up E_OUT for the fallthru.  */
3956   e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3957   e_out->probability = REG_BR_PROB_BASE;
3958 }
3959 
3960 /* A subroutine of cleanup_empty_eh.  Handle more complex cases of
3961    unsplitting than unsplit_eh was prepared to handle, e.g. when
3962    multiple incoming edges and phis are involved.  */
3963 
3964 static bool
3965 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3966 {
3967   gimple_stmt_iterator gsi;
3968   tree lab;
3969 
3970   /* We really ought not have totally lost everything following
3971      a landing pad label.  Given that BB is empty, there had better
3972      be a successor.  */
3973   gcc_assert (e_out != NULL);
3974 
3975   /* The destination block must not already have a landing pad
3976      for a different region.  */
3977   lab = NULL;
3978   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3979     {
3980       gimple stmt = gsi_stmt (gsi);
3981       int lp_nr;
3982 
3983       if (gimple_code (stmt) != GIMPLE_LABEL)
3984 	break;
3985       lab = gimple_label_label (stmt);
3986       lp_nr = EH_LANDING_PAD_NR (lab);
3987       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3988 	return false;
3989     }
3990 
3991   /* Attempt to move the PHIs into the successor block.  */
3992   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3993     {
3994       if (dump_file && (dump_flags & TDF_DETAILS))
3995 	fprintf (dump_file,
3996 		 "Unsplit EH landing pad %d to block %i "
3997 		 "(via cleanup_empty_eh).\n",
3998 		 lp->index, e_out->dest->index);
3999       return true;
4000     }
4001 
4002   return false;
4003 }
4004 
4005 /* Return true if edge E_FIRST is part of an empty infinite loop
4006    or leads to such a loop through a series of single successor
4007    empty bbs.  */
4008 
4009 static bool
4010 infinite_empty_loop_p (edge e_first)
4011 {
4012   bool inf_loop = false;
4013   edge e;
4014 
4015   if (e_first->dest == e_first->src)
4016     return true;
4017 
4018   e_first->src->aux = (void *) 1;
4019   for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4020     {
4021       gimple_stmt_iterator gsi;
4022       if (e->dest->aux)
4023 	{
4024 	  inf_loop = true;
4025 	  break;
4026 	}
4027       e->dest->aux = (void *) 1;
4028       gsi = gsi_after_labels (e->dest);
4029       if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4030 	gsi_next_nondebug (&gsi);
4031       if (!gsi_end_p (gsi))
4032 	break;
4033     }
4034   e_first->src->aux = NULL;
4035   for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4036     e->dest->aux = NULL;
4037 
4038   return inf_loop;
4039 }
4040 
4041 /* Examine the block associated with LP to determine if it's an empty
4042    handler for its EH region.  If so, attempt to redirect EH edges to
4043    an outer region.  Return true the CFG was updated in any way.  This
4044    is similar to jump forwarding, just across EH edges.  */
4045 
4046 static bool
4047 cleanup_empty_eh (eh_landing_pad lp)
4048 {
4049   basic_block bb = label_to_block (lp->post_landing_pad);
4050   gimple_stmt_iterator gsi;
4051   gimple resx;
4052   eh_region new_region;
4053   edge_iterator ei;
4054   edge e, e_out;
4055   bool has_non_eh_pred;
4056   bool ret = false;
4057   int new_lp_nr;
4058 
4059   /* There can be zero or one edges out of BB.  This is the quickest test.  */
4060   switch (EDGE_COUNT (bb->succs))
4061     {
4062     case 0:
4063       e_out = NULL;
4064       break;
4065     case 1:
4066       e_out = EDGE_SUCC (bb, 0);
4067       break;
4068     default:
4069       return false;
4070     }
4071 
4072   resx = last_stmt (bb);
4073   if (resx && is_gimple_resx (resx))
4074     {
4075       if (stmt_can_throw_external (resx))
4076 	optimize_clobbers (bb);
4077       else if (sink_clobbers (bb))
4078 	ret = true;
4079     }
4080 
4081   gsi = gsi_after_labels (bb);
4082 
4083   /* Make sure to skip debug statements.  */
4084   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4085     gsi_next_nondebug (&gsi);
4086 
4087   /* If the block is totally empty, look for more unsplitting cases.  */
4088   if (gsi_end_p (gsi))
4089     {
4090       /* For the degenerate case of an infinite loop bail out.  */
4091       if (infinite_empty_loop_p (e_out))
4092 	return ret;
4093 
4094       return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4095     }
4096 
4097   /* The block should consist only of a single RESX statement, modulo a
4098      preceding call to __builtin_stack_restore if there is no outgoing
4099      edge, since the call can be eliminated in this case.  */
4100   resx = gsi_stmt (gsi);
4101   if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4102     {
4103       gsi_next (&gsi);
4104       resx = gsi_stmt (gsi);
4105     }
4106   if (!is_gimple_resx (resx))
4107     return ret;
4108   gcc_assert (gsi_one_before_end_p (gsi));
4109 
4110   /* Determine if there are non-EH edges, or resx edges into the handler.  */
4111   has_non_eh_pred = false;
4112   FOR_EACH_EDGE (e, ei, bb->preds)
4113     if (!(e->flags & EDGE_EH))
4114       has_non_eh_pred = true;
4115 
4116   /* Find the handler that's outer of the empty handler by looking at
4117      where the RESX instruction was vectored.  */
4118   new_lp_nr = lookup_stmt_eh_lp (resx);
4119   new_region = get_eh_region_from_lp_number (new_lp_nr);
4120 
4121   /* If there's no destination region within the current function,
4122      redirection is trivial via removing the throwing statements from
4123      the EH region, removing the EH edges, and allowing the block
4124      to go unreachable.  */
4125   if (new_region == NULL)
4126     {
4127       gcc_assert (e_out == NULL);
4128       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4129 	if (e->flags & EDGE_EH)
4130 	  {
4131 	    gimple stmt = last_stmt (e->src);
4132 	    remove_stmt_from_eh_lp (stmt);
4133 	    remove_edge (e);
4134 	  }
4135 	else
4136 	  ei_next (&ei);
4137       goto succeed;
4138     }
4139 
4140   /* If the destination region is a MUST_NOT_THROW, allow the runtime
4141      to handle the abort and allow the blocks to go unreachable.  */
4142   if (new_region->type == ERT_MUST_NOT_THROW)
4143     {
4144       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4145 	if (e->flags & EDGE_EH)
4146 	  {
4147 	    gimple stmt = last_stmt (e->src);
4148 	    remove_stmt_from_eh_lp (stmt);
4149 	    add_stmt_to_eh_lp (stmt, new_lp_nr);
4150 	    remove_edge (e);
4151 	  }
4152 	else
4153 	  ei_next (&ei);
4154       goto succeed;
4155     }
4156 
4157   /* Try to redirect the EH edges and merge the PHIs into the destination
4158      landing pad block.  If the merge succeeds, we'll already have redirected
4159      all the EH edges.  The handler itself will go unreachable if there were
4160      no normal edges.  */
4161   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4162     goto succeed;
4163 
4164   /* Finally, if all input edges are EH edges, then we can (potentially)
4165      reduce the number of transfers from the runtime by moving the landing
4166      pad from the original region to the new region.  This is a win when
4167      we remove the last CLEANUP region along a particular exception
4168      propagation path.  Since nothing changes except for the region with
4169      which the landing pad is associated, the PHI nodes do not need to be
4170      adjusted at all.  */
4171   if (!has_non_eh_pred)
4172     {
4173       cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4174       if (dump_file && (dump_flags & TDF_DETAILS))
4175 	fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4176 		 lp->index, new_region->index);
4177 
4178       /* ??? The CFG didn't change, but we may have rendered the
4179 	 old EH region unreachable.  Trigger a cleanup there.  */
4180       return true;
4181     }
4182 
4183   return ret;
4184 
4185  succeed:
4186   if (dump_file && (dump_flags & TDF_DETAILS))
4187     fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4188   remove_eh_landing_pad (lp);
4189   return true;
4190 }
4191 
4192 /* Do a post-order traversal of the EH region tree.  Examine each
4193    post_landing_pad block and see if we can eliminate it as empty.  */
4194 
4195 static bool
4196 cleanup_all_empty_eh (void)
4197 {
4198   bool changed = false;
4199   eh_landing_pad lp;
4200   int i;
4201 
4202   for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
4203     if (lp)
4204       changed |= cleanup_empty_eh (lp);
4205 
4206   return changed;
4207 }
4208 
4209 /* Perform cleanups and lowering of exception handling
4210     1) cleanups regions with handlers doing nothing are optimized out
4211     2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4212     3) Info about regions that are containing instructions, and regions
4213        reachable via local EH edges is collected
4214     4) Eh tree is pruned for regions no longer neccesary.
4215 
4216    TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4217 	 Unify those that have the same failure decl and locus.
4218 */
4219 
4220 static unsigned int
4221 execute_cleanup_eh_1 (void)
4222 {
4223   /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4224      looking up unreachable landing pads.  */
4225   remove_unreachable_handlers ();
4226 
4227   /* Watch out for the region tree vanishing due to all unreachable.  */
4228   if (cfun->eh->region_tree && optimize)
4229     {
4230       bool changed = false;
4231 
4232       changed |= unsplit_all_eh ();
4233       changed |= cleanup_all_empty_eh ();
4234 
4235       if (changed)
4236 	{
4237 	  free_dominance_info (CDI_DOMINATORS);
4238 	  free_dominance_info (CDI_POST_DOMINATORS);
4239 
4240           /* We delayed all basic block deletion, as we may have performed
4241 	     cleanups on EH edges while non-EH edges were still present.  */
4242 	  delete_unreachable_blocks ();
4243 
4244 	  /* We manipulated the landing pads.  Remove any region that no
4245 	     longer has a landing pad.  */
4246 	  remove_unreachable_handlers_no_lp ();
4247 
4248 	  return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4249 	}
4250     }
4251 
4252   return 0;
4253 }
4254 
4255 static unsigned int
4256 execute_cleanup_eh (void)
4257 {
4258   int ret = execute_cleanup_eh_1 ();
4259 
4260   /* If the function no longer needs an EH personality routine
4261      clear it.  This exposes cross-language inlining opportunities
4262      and avoids references to a never defined personality routine.  */
4263   if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4264       && function_needs_eh_personality (cfun) != eh_personality_lang)
4265     DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4266 
4267   return ret;
4268 }
4269 
4270 static bool
4271 gate_cleanup_eh (void)
4272 {
4273   return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4274 }
4275 
4276 struct gimple_opt_pass pass_cleanup_eh = {
4277   {
4278    GIMPLE_PASS,
4279    "ehcleanup",			/* name */
4280    gate_cleanup_eh,		/* gate */
4281    execute_cleanup_eh,		/* execute */
4282    NULL,			/* sub */
4283    NULL,			/* next */
4284    0,				/* static_pass_number */
4285    TV_TREE_EH,			/* tv_id */
4286    PROP_gimple_lcf,		/* properties_required */
4287    0,				/* properties_provided */
4288    0,				/* properties_destroyed */
4289    0,				/* todo_flags_start */
4290    0             		/* todo_flags_finish */
4291    }
4292 };
4293 
4294 /* Verify that BB containing STMT as the last statement, has precisely the
4295    edge that make_eh_edges would create.  */
4296 
4297 DEBUG_FUNCTION bool
4298 verify_eh_edges (gimple stmt)
4299 {
4300   basic_block bb = gimple_bb (stmt);
4301   eh_landing_pad lp = NULL;
4302   int lp_nr;
4303   edge_iterator ei;
4304   edge e, eh_edge;
4305 
4306   lp_nr = lookup_stmt_eh_lp (stmt);
4307   if (lp_nr > 0)
4308     lp = get_eh_landing_pad_from_number (lp_nr);
4309 
4310   eh_edge = NULL;
4311   FOR_EACH_EDGE (e, ei, bb->succs)
4312     {
4313       if (e->flags & EDGE_EH)
4314 	{
4315 	  if (eh_edge)
4316 	    {
4317 	      error ("BB %i has multiple EH edges", bb->index);
4318 	      return true;
4319 	    }
4320 	  else
4321 	    eh_edge = e;
4322 	}
4323     }
4324 
4325   if (lp == NULL)
4326     {
4327       if (eh_edge)
4328 	{
4329 	  error ("BB %i can not throw but has an EH edge", bb->index);
4330 	  return true;
4331 	}
4332       return false;
4333     }
4334 
4335   if (!stmt_could_throw_p (stmt))
4336     {
4337       error ("BB %i last statement has incorrectly set lp", bb->index);
4338       return true;
4339     }
4340 
4341   if (eh_edge == NULL)
4342     {
4343       error ("BB %i is missing an EH edge", bb->index);
4344       return true;
4345     }
4346 
4347   if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4348     {
4349       error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4350       return true;
4351     }
4352 
4353   return false;
4354 }
4355 
4356 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically.  */
4357 
4358 DEBUG_FUNCTION bool
4359 verify_eh_dispatch_edge (gimple stmt)
4360 {
4361   eh_region r;
4362   eh_catch c;
4363   basic_block src, dst;
4364   bool want_fallthru = true;
4365   edge_iterator ei;
4366   edge e, fall_edge;
4367 
4368   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4369   src = gimple_bb (stmt);
4370 
4371   FOR_EACH_EDGE (e, ei, src->succs)
4372     gcc_assert (e->aux == NULL);
4373 
4374   switch (r->type)
4375     {
4376     case ERT_TRY:
4377       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4378 	{
4379 	  dst = label_to_block (c->label);
4380 	  e = find_edge (src, dst);
4381 	  if (e == NULL)
4382 	    {
4383 	      error ("BB %i is missing an edge", src->index);
4384 	      return true;
4385 	    }
4386 	  e->aux = (void *)e;
4387 
4388 	  /* A catch-all handler doesn't have a fallthru.  */
4389 	  if (c->type_list == NULL)
4390 	    {
4391 	      want_fallthru = false;
4392 	      break;
4393 	    }
4394 	}
4395       break;
4396 
4397     case ERT_ALLOWED_EXCEPTIONS:
4398       dst = label_to_block (r->u.allowed.label);
4399       e = find_edge (src, dst);
4400       if (e == NULL)
4401 	{
4402 	  error ("BB %i is missing an edge", src->index);
4403 	  return true;
4404 	}
4405       e->aux = (void *)e;
4406       break;
4407 
4408     default:
4409       gcc_unreachable ();
4410     }
4411 
4412   fall_edge = NULL;
4413   FOR_EACH_EDGE (e, ei, src->succs)
4414     {
4415       if (e->flags & EDGE_FALLTHRU)
4416 	{
4417 	  if (fall_edge != NULL)
4418 	    {
4419 	      error ("BB %i too many fallthru edges", src->index);
4420 	      return true;
4421 	    }
4422 	  fall_edge = e;
4423 	}
4424       else if (e->aux)
4425 	e->aux = NULL;
4426       else
4427 	{
4428 	  error ("BB %i has incorrect edge", src->index);
4429 	  return true;
4430 	}
4431     }
4432   if ((fall_edge != NULL) ^ want_fallthru)
4433     {
4434       error ("BB %i has incorrect fallthru edge", src->index);
4435       return true;
4436     }
4437 
4438   return false;
4439 }
4440