xref: /dragonfly/contrib/gcc-4.7/gcc/tree-eh.c (revision cfd1aba3)
1 /* Exception handling semantics and decomposition for trees.
2    Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
35 #include "timevar.h"
36 #include "langhooks.h"
37 #include "ggc.h"
38 #include "diagnostic-core.h"
39 #include "gimple.h"
40 #include "target.h"
41 
42 /* In some instances a tree and a gimple need to be stored in a same table,
43    i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree *tp; tree t; gimple g;} treemple;
45 
46 /* Nonzero if we are using EH to handle cleanups.  */
47 static int using_eh_for_cleanups_p = 0;
48 
49 void
50 using_eh_for_cleanups (void)
51 {
52   using_eh_for_cleanups_p = 1;
53 }
54 
55 /* Misc functions used in this file.  */
56 
57 /* Remember and lookup EH landing pad data for arbitrary statements.
58    Really this means any statement that could_throw_p.  We could
59    stuff this information into the stmt_ann data structure, but:
60 
61    (1) We absolutely rely on this information being kept until
62    we get to rtl.  Once we're done with lowering here, if we lose
63    the information there's no way to recover it!
64 
65    (2) There are many more statements that *cannot* throw as
66    compared to those that can.  We should be saving some amount
67    of space by only allocating memory for those that can throw.  */
68 
69 /* Add statement T in function IFUN to landing pad NUM.  */
70 
71 void
72 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
73 {
74   struct throw_stmt_node *n;
75   void **slot;
76 
77   gcc_assert (num != 0);
78 
79   n = ggc_alloc_throw_stmt_node ();
80   n->stmt = t;
81   n->lp_nr = num;
82 
83   if (!get_eh_throw_stmt_table (ifun))
84     set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
85 						    struct_ptr_eq,
86 						    ggc_free));
87 
88   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
89   gcc_assert (!*slot);
90   *slot = n;
91 }
92 
93 /* Add statement T in the current function (cfun) to EH landing pad NUM.  */
94 
95 void
96 add_stmt_to_eh_lp (gimple t, int num)
97 {
98   add_stmt_to_eh_lp_fn (cfun, t, num);
99 }
100 
101 /* Add statement T to the single EH landing pad in REGION.  */
102 
103 static void
104 record_stmt_eh_region (eh_region region, gimple t)
105 {
106   if (region == NULL)
107     return;
108   if (region->type == ERT_MUST_NOT_THROW)
109     add_stmt_to_eh_lp_fn (cfun, t, -region->index);
110   else
111     {
112       eh_landing_pad lp = region->landing_pads;
113       if (lp == NULL)
114 	lp = gen_eh_landing_pad (region);
115       else
116 	gcc_assert (lp->next_lp == NULL);
117       add_stmt_to_eh_lp_fn (cfun, t, lp->index);
118     }
119 }
120 
121 
122 /* Remove statement T in function IFUN from its EH landing pad.  */
123 
124 bool
125 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
126 {
127   struct throw_stmt_node dummy;
128   void **slot;
129 
130   if (!get_eh_throw_stmt_table (ifun))
131     return false;
132 
133   dummy.stmt = t;
134   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
135                         NO_INSERT);
136   if (slot)
137     {
138       htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
139       return true;
140     }
141   else
142     return false;
143 }
144 
145 
146 /* Remove statement T in the current function (cfun) from its
147    EH landing pad.  */
148 
149 bool
150 remove_stmt_from_eh_lp (gimple t)
151 {
152   return remove_stmt_from_eh_lp_fn (cfun, t);
153 }
154 
155 /* Determine if statement T is inside an EH region in function IFUN.
156    Positive numbers indicate a landing pad index; negative numbers
157    indicate a MUST_NOT_THROW region index; zero indicates that the
158    statement is not recorded in the region table.  */
159 
160 int
161 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
162 {
163   struct throw_stmt_node *p, n;
164 
165   if (ifun->eh->throw_stmt_table == NULL)
166     return 0;
167 
168   n.stmt = t;
169   p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
170   return p ? p->lp_nr : 0;
171 }
172 
173 /* Likewise, but always use the current function.  */
174 
175 int
176 lookup_stmt_eh_lp (gimple t)
177 {
178   /* We can get called from initialized data when -fnon-call-exceptions
179      is on; prevent crash.  */
180   if (!cfun)
181     return 0;
182   return lookup_stmt_eh_lp_fn (cfun, t);
183 }
184 
185 /* First pass of EH node decomposition.  Build up a tree of GIMPLE_TRY_FINALLY
186    nodes and LABEL_DECL nodes.  We will use this during the second phase to
187    determine if a goto leaves the body of a TRY_FINALLY_EXPR node.  */
188 
189 struct finally_tree_node
190 {
191   /* When storing a GIMPLE_TRY, we have to record a gimple.  However
192      when deciding whether a GOTO to a certain LABEL_DECL (which is a
193      tree) leaves the TRY block, its necessary to record a tree in
194      this field.  Thus a treemple is used. */
195   treemple child;
196   gimple parent;
197 };
198 
199 /* Note that this table is *not* marked GTY.  It is short-lived.  */
200 static htab_t finally_tree;
201 
202 static void
203 record_in_finally_tree (treemple child, gimple parent)
204 {
205   struct finally_tree_node *n;
206   void **slot;
207 
208   n = XNEW (struct finally_tree_node);
209   n->child = child;
210   n->parent = parent;
211 
212   slot = htab_find_slot (finally_tree, n, INSERT);
213   gcc_assert (!*slot);
214   *slot = n;
215 }
216 
217 static void
218 collect_finally_tree (gimple stmt, gimple region);
219 
220 /* Go through the gimple sequence.  Works with collect_finally_tree to
221    record all GIMPLE_LABEL and GIMPLE_TRY statements. */
222 
223 static void
224 collect_finally_tree_1 (gimple_seq seq, gimple region)
225 {
226   gimple_stmt_iterator gsi;
227 
228   for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
229     collect_finally_tree (gsi_stmt (gsi), region);
230 }
231 
232 static void
233 collect_finally_tree (gimple stmt, gimple region)
234 {
235   treemple temp;
236 
237   switch (gimple_code (stmt))
238     {
239     case GIMPLE_LABEL:
240       temp.t = gimple_label_label (stmt);
241       record_in_finally_tree (temp, region);
242       break;
243 
244     case GIMPLE_TRY:
245       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
246         {
247           temp.g = stmt;
248           record_in_finally_tree (temp, region);
249           collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
250 	  collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
251         }
252       else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
253         {
254           collect_finally_tree_1 (gimple_try_eval (stmt), region);
255           collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
256         }
257       break;
258 
259     case GIMPLE_CATCH:
260       collect_finally_tree_1 (gimple_catch_handler (stmt), region);
261       break;
262 
263     case GIMPLE_EH_FILTER:
264       collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
265       break;
266 
267     case GIMPLE_EH_ELSE:
268       collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
269       collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
270       break;
271 
272     default:
273       /* A type, a decl, or some kind of statement that we're not
274 	 interested in.  Don't walk them.  */
275       break;
276     }
277 }
278 
279 
280 /* Use the finally tree to determine if a jump from START to TARGET
281    would leave the try_finally node that START lives in.  */
282 
283 static bool
284 outside_finally_tree (treemple start, gimple target)
285 {
286   struct finally_tree_node n, *p;
287 
288   do
289     {
290       n.child = start;
291       p = (struct finally_tree_node *) htab_find (finally_tree, &n);
292       if (!p)
293 	return true;
294       start.g = p->parent;
295     }
296   while (start.g != target);
297 
298   return false;
299 }
300 
301 /* Second pass of EH node decomposition.  Actually transform the GIMPLE_TRY
302    nodes into a set of gotos, magic labels, and eh regions.
303    The eh region creation is straight-forward, but frobbing all the gotos
304    and such into shape isn't.  */
305 
306 /* The sequence into which we record all EH stuff.  This will be
307    placed at the end of the function when we're all done.  */
308 static gimple_seq eh_seq;
309 
310 /* Record whether an EH region contains something that can throw,
311    indexed by EH region number.  */
312 static bitmap eh_region_may_contain_throw_map;
313 
314 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
315    statements that are seen to escape this GIMPLE_TRY_FINALLY node.
316    The idea is to record a gimple statement for everything except for
317    the conditionals, which get their labels recorded. Since labels are
318    of type 'tree', we need this node to store both gimple and tree
319    objects.  REPL_STMT is the sequence used to replace the goto/return
320    statement.  CONT_STMT is used to store the statement that allows
321    the return/goto to jump to the original destination. */
322 
323 struct goto_queue_node
324 {
325   treemple stmt;
326   gimple_seq repl_stmt;
327   gimple cont_stmt;
328   int index;
329   /* This is used when index >= 0 to indicate that stmt is a label (as
330      opposed to a goto stmt).  */
331   int is_label;
332 };
333 
334 /* State of the world while lowering.  */
335 
336 struct leh_state
337 {
338   /* What's "current" while constructing the eh region tree.  These
339      correspond to variables of the same name in cfun->eh, which we
340      don't have easy access to.  */
341   eh_region cur_region;
342 
343   /* What's "current" for the purposes of __builtin_eh_pointer.  For
344      a CATCH, this is the associated TRY.  For an EH_FILTER, this is
345      the associated ALLOWED_EXCEPTIONS, etc.  */
346   eh_region ehp_region;
347 
348   /* Processing of TRY_FINALLY requires a bit more state.  This is
349      split out into a separate structure so that we don't have to
350      copy so much when processing other nodes.  */
351   struct leh_tf_state *tf;
352 };
353 
354 struct leh_tf_state
355 {
356   /* Pointer to the GIMPLE_TRY_FINALLY node under discussion.  The
357      try_finally_expr is the original GIMPLE_TRY_FINALLY.  We need to retain
358      this so that outside_finally_tree can reliably reference the tree used
359      in the collect_finally_tree data structures.  */
360   gimple try_finally_expr;
361   gimple top_p;
362 
363   /* While lowering a top_p usually it is expanded into multiple statements,
364      thus we need the following field to store them. */
365   gimple_seq top_p_seq;
366 
367   /* The state outside this try_finally node.  */
368   struct leh_state *outer;
369 
370   /* The exception region created for it.  */
371   eh_region region;
372 
373   /* The goto queue.  */
374   struct goto_queue_node *goto_queue;
375   size_t goto_queue_size;
376   size_t goto_queue_active;
377 
378   /* Pointer map to help in searching goto_queue when it is large.  */
379   struct pointer_map_t *goto_queue_map;
380 
381   /* The set of unique labels seen as entries in the goto queue.  */
382   VEC(tree,heap) *dest_array;
383 
384   /* A label to be added at the end of the completed transformed
385      sequence.  It will be set if may_fallthru was true *at one time*,
386      though subsequent transformations may have cleared that flag.  */
387   tree fallthru_label;
388 
389   /* True if it is possible to fall out the bottom of the try block.
390      Cleared if the fallthru is converted to a goto.  */
391   bool may_fallthru;
392 
393   /* True if any entry in goto_queue is a GIMPLE_RETURN.  */
394   bool may_return;
395 
396   /* True if the finally block can receive an exception edge.
397      Cleared if the exception case is handled by code duplication.  */
398   bool may_throw;
399 };
400 
401 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
402 
403 /* Search for STMT in the goto queue.  Return the replacement,
404    or null if the statement isn't in the queue.  */
405 
406 #define LARGE_GOTO_QUEUE 20
407 
408 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
409 
410 static gimple_seq
411 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
412 {
413   unsigned int i;
414   void **slot;
415 
416   if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
417     {
418       for (i = 0; i < tf->goto_queue_active; i++)
419 	if ( tf->goto_queue[i].stmt.g == stmt.g)
420 	  return tf->goto_queue[i].repl_stmt;
421       return NULL;
422     }
423 
424   /* If we have a large number of entries in the goto_queue, create a
425      pointer map and use that for searching.  */
426 
427   if (!tf->goto_queue_map)
428     {
429       tf->goto_queue_map = pointer_map_create ();
430       for (i = 0; i < tf->goto_queue_active; i++)
431 	{
432 	  slot = pointer_map_insert (tf->goto_queue_map,
433                                      tf->goto_queue[i].stmt.g);
434           gcc_assert (*slot == NULL);
435 	  *slot = &tf->goto_queue[i];
436 	}
437     }
438 
439   slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
440   if (slot != NULL)
441     return (((struct goto_queue_node *) *slot)->repl_stmt);
442 
443   return NULL;
444 }
445 
446 /* A subroutine of replace_goto_queue_1.  Handles the sub-clauses of a
447    lowered GIMPLE_COND.  If, by chance, the replacement is a simple goto,
448    then we can just splat it in, otherwise we add the new stmts immediately
449    after the GIMPLE_COND and redirect.  */
450 
451 static void
452 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
453 				gimple_stmt_iterator *gsi)
454 {
455   tree label;
456   gimple_seq new_seq;
457   treemple temp;
458   location_t loc = gimple_location (gsi_stmt (*gsi));
459 
460   temp.tp = tp;
461   new_seq = find_goto_replacement (tf, temp);
462   if (!new_seq)
463     return;
464 
465   if (gimple_seq_singleton_p (new_seq)
466       && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
467     {
468       *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
469       return;
470     }
471 
472   label = create_artificial_label (loc);
473   /* Set the new label for the GIMPLE_COND */
474   *tp = label;
475 
476   gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
477   gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
478 }
479 
480 /* The real work of replace_goto_queue.  Returns with TSI updated to
481    point to the next statement.  */
482 
483 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
484 
485 static void
486 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
487 		      gimple_stmt_iterator *gsi)
488 {
489   gimple_seq seq;
490   treemple temp;
491   temp.g = NULL;
492 
493   switch (gimple_code (stmt))
494     {
495     case GIMPLE_GOTO:
496     case GIMPLE_RETURN:
497       temp.g = stmt;
498       seq = find_goto_replacement (tf, temp);
499       if (seq)
500 	{
501 	  gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
502 	  gsi_remove (gsi, false);
503 	  return;
504 	}
505       break;
506 
507     case GIMPLE_COND:
508       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
509       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
510       break;
511 
512     case GIMPLE_TRY:
513       replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
514       replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
515       break;
516     case GIMPLE_CATCH:
517       replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
518       break;
519     case GIMPLE_EH_FILTER:
520       replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
521       break;
522     case GIMPLE_EH_ELSE:
523       replace_goto_queue_stmt_list (gimple_eh_else_n_body (stmt), tf);
524       replace_goto_queue_stmt_list (gimple_eh_else_e_body (stmt), tf);
525       break;
526 
527     default:
528       /* These won't have gotos in them.  */
529       break;
530     }
531 
532   gsi_next (gsi);
533 }
534 
535 /* A subroutine of replace_goto_queue.  Handles GIMPLE_SEQ.  */
536 
537 static void
538 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
539 {
540   gimple_stmt_iterator gsi = gsi_start (seq);
541 
542   while (!gsi_end_p (gsi))
543     replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
544 }
545 
546 /* Replace all goto queue members.  */
547 
548 static void
549 replace_goto_queue (struct leh_tf_state *tf)
550 {
551   if (tf->goto_queue_active == 0)
552     return;
553   replace_goto_queue_stmt_list (tf->top_p_seq, tf);
554   replace_goto_queue_stmt_list (eh_seq, tf);
555 }
556 
557 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
558    data to be added, IS_LABEL indicates whether NEW_STMT is a label or
559    a gimple return. */
560 
561 static void
562 record_in_goto_queue (struct leh_tf_state *tf,
563                       treemple new_stmt,
564                       int index,
565                       bool is_label)
566 {
567   size_t active, size;
568   struct goto_queue_node *q;
569 
570   gcc_assert (!tf->goto_queue_map);
571 
572   active = tf->goto_queue_active;
573   size = tf->goto_queue_size;
574   if (active >= size)
575     {
576       size = (size ? size * 2 : 32);
577       tf->goto_queue_size = size;
578       tf->goto_queue
579          = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
580     }
581 
582   q = &tf->goto_queue[active];
583   tf->goto_queue_active = active + 1;
584 
585   memset (q, 0, sizeof (*q));
586   q->stmt = new_stmt;
587   q->index = index;
588   q->is_label = is_label;
589 }
590 
591 /* Record the LABEL label in the goto queue contained in TF.
592    TF is not null.  */
593 
594 static void
595 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
596 {
597   int index;
598   treemple temp, new_stmt;
599 
600   if (!label)
601     return;
602 
603   /* Computed and non-local gotos do not get processed.  Given
604      their nature we can neither tell whether we've escaped the
605      finally block nor redirect them if we knew.  */
606   if (TREE_CODE (label) != LABEL_DECL)
607     return;
608 
609   /* No need to record gotos that don't leave the try block.  */
610   temp.t = label;
611   if (!outside_finally_tree (temp, tf->try_finally_expr))
612     return;
613 
614   if (! tf->dest_array)
615     {
616       tf->dest_array = VEC_alloc (tree, heap, 10);
617       VEC_quick_push (tree, tf->dest_array, label);
618       index = 0;
619     }
620   else
621     {
622       int n = VEC_length (tree, tf->dest_array);
623       for (index = 0; index < n; ++index)
624         if (VEC_index (tree, tf->dest_array, index) == label)
625           break;
626       if (index == n)
627         VEC_safe_push (tree, heap, tf->dest_array, label);
628     }
629 
630   /* In the case of a GOTO we want to record the destination label,
631      since with a GIMPLE_COND we have an easy access to the then/else
632      labels. */
633   new_stmt = stmt;
634   record_in_goto_queue (tf, new_stmt, index, true);
635 }
636 
637 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
638    node, and if so record that fact in the goto queue associated with that
639    try_finally node.  */
640 
641 static void
642 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
643 {
644   struct leh_tf_state *tf = state->tf;
645   treemple new_stmt;
646 
647   if (!tf)
648     return;
649 
650   switch (gimple_code (stmt))
651     {
652     case GIMPLE_COND:
653       new_stmt.tp = gimple_op_ptr (stmt, 2);
654       record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
655       new_stmt.tp = gimple_op_ptr (stmt, 3);
656       record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
657       break;
658     case GIMPLE_GOTO:
659       new_stmt.g = stmt;
660       record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
661       break;
662 
663     case GIMPLE_RETURN:
664       tf->may_return = true;
665       new_stmt.g = stmt;
666       record_in_goto_queue (tf, new_stmt, -1, false);
667       break;
668 
669     default:
670       gcc_unreachable ();
671     }
672 }
673 
674 
675 #ifdef ENABLE_CHECKING
676 /* We do not process GIMPLE_SWITCHes for now.  As long as the original source
677    was in fact structured, and we've not yet done jump threading, then none
678    of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this.  */
679 
680 static void
681 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
682 {
683   struct leh_tf_state *tf = state->tf;
684   size_t i, n;
685 
686   if (!tf)
687     return;
688 
689   n = gimple_switch_num_labels (switch_expr);
690 
691   for (i = 0; i < n; ++i)
692     {
693       treemple temp;
694       tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
695       temp.t = lab;
696       gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
697     }
698 }
699 #else
700 #define verify_norecord_switch_expr(state, switch_expr)
701 #endif
702 
703 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB.  If MOD is
704    non-null, insert it before the new branch.  */
705 
706 static void
707 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
708 {
709   gimple x;
710 
711   /* In the case of a return, the queue node must be a gimple statement.  */
712   gcc_assert (!q->is_label);
713 
714   /* Note that the return value may have already been computed, e.g.,
715 
716 	int x;
717 	int foo (void)
718 	{
719 	  x = 0;
720 	  try {
721 	    return x;
722 	  } finally {
723 	    x++;
724 	  }
725 	}
726 
727      should return 0, not 1.  We don't have to do anything to make
728      this happens because the return value has been placed in the
729      RESULT_DECL already.  */
730 
731   q->cont_stmt = q->stmt.g;
732 
733   if (!q->repl_stmt)
734     q->repl_stmt = gimple_seq_alloc ();
735 
736   if (mod)
737     gimple_seq_add_seq (&q->repl_stmt, mod);
738 
739   x = gimple_build_goto (finlab);
740   gimple_seq_add_stmt (&q->repl_stmt, x);
741 }
742 
743 /* Similar, but easier, for GIMPLE_GOTO.  */
744 
745 static void
746 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
747 		     struct leh_tf_state *tf)
748 {
749   gimple x;
750 
751   gcc_assert (q->is_label);
752   if (!q->repl_stmt)
753     q->repl_stmt = gimple_seq_alloc ();
754 
755   q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
756 
757   if (mod)
758     gimple_seq_add_seq (&q->repl_stmt, mod);
759 
760   x = gimple_build_goto (finlab);
761   gimple_seq_add_stmt (&q->repl_stmt, x);
762 }
763 
764 /* Emit a standard landing pad sequence into SEQ for REGION.  */
765 
766 static void
767 emit_post_landing_pad (gimple_seq *seq, eh_region region)
768 {
769   eh_landing_pad lp = region->landing_pads;
770   gimple x;
771 
772   if (lp == NULL)
773     lp = gen_eh_landing_pad (region);
774 
775   lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
776   EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
777 
778   x = gimple_build_label (lp->post_landing_pad);
779   gimple_seq_add_stmt (seq, x);
780 }
781 
782 /* Emit a RESX statement into SEQ for REGION.  */
783 
784 static void
785 emit_resx (gimple_seq *seq, eh_region region)
786 {
787   gimple x = gimple_build_resx (region->index);
788   gimple_seq_add_stmt (seq, x);
789   if (region->outer)
790     record_stmt_eh_region (region->outer, x);
791 }
792 
793 /* Emit an EH_DISPATCH statement into SEQ for REGION.  */
794 
795 static void
796 emit_eh_dispatch (gimple_seq *seq, eh_region region)
797 {
798   gimple x = gimple_build_eh_dispatch (region->index);
799   gimple_seq_add_stmt (seq, x);
800 }
801 
802 /* Note that the current EH region may contain a throw, or a
803    call to a function which itself may contain a throw.  */
804 
805 static void
806 note_eh_region_may_contain_throw (eh_region region)
807 {
808   while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
809     {
810       if (region->type == ERT_MUST_NOT_THROW)
811 	break;
812       region = region->outer;
813       if (region == NULL)
814 	break;
815     }
816 }
817 
818 /* Check if REGION has been marked as containing a throw.  If REGION is
819    NULL, this predicate is false.  */
820 
821 static inline bool
822 eh_region_may_contain_throw (eh_region r)
823 {
824   return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
825 }
826 
827 /* We want to transform
828 	try { body; } catch { stuff; }
829    to
830 	normal_seqence:
831 	  body;
832 	  over:
833 	eh_seqence:
834 	  landing_pad:
835 	  stuff;
836 	  goto over;
837 
838    TP is a GIMPLE_TRY node.  REGION is the region whose post_landing_pad
839    should be placed before the second operand, or NULL.  OVER is
840    an existing label that should be put at the exit, or NULL.  */
841 
842 static gimple_seq
843 frob_into_branch_around (gimple tp, eh_region region, tree over)
844 {
845   gimple x;
846   gimple_seq cleanup, result;
847   location_t loc = gimple_location (tp);
848 
849   cleanup = gimple_try_cleanup (tp);
850   result = gimple_try_eval (tp);
851 
852   if (region)
853     emit_post_landing_pad (&eh_seq, region);
854 
855   if (gimple_seq_may_fallthru (cleanup))
856     {
857       if (!over)
858 	over = create_artificial_label (loc);
859       x = gimple_build_goto (over);
860       gimple_seq_add_stmt (&cleanup, x);
861     }
862   gimple_seq_add_seq (&eh_seq, cleanup);
863 
864   if (over)
865     {
866       x = gimple_build_label (over);
867       gimple_seq_add_stmt (&result, x);
868     }
869   return result;
870 }
871 
872 /* A subroutine of lower_try_finally.  Duplicate the tree rooted at T.
873    Make sure to record all new labels found.  */
874 
875 static gimple_seq
876 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
877 {
878   gimple region = NULL;
879   gimple_seq new_seq;
880 
881   new_seq = copy_gimple_seq_and_replace_locals (seq);
882 
883   if (outer_state->tf)
884     region = outer_state->tf->try_finally_expr;
885   collect_finally_tree_1 (new_seq, region);
886 
887   return new_seq;
888 }
889 
890 /* A subroutine of lower_try_finally.  Create a fallthru label for
891    the given try_finally state.  The only tricky bit here is that
892    we have to make sure to record the label in our outer context.  */
893 
894 static tree
895 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
896 {
897   tree label = tf->fallthru_label;
898   treemple temp;
899 
900   if (!label)
901     {
902       label = create_artificial_label (gimple_location (tf->try_finally_expr));
903       tf->fallthru_label = label;
904       if (tf->outer->tf)
905         {
906           temp.t = label;
907           record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
908         }
909     }
910   return label;
911 }
912 
913 /* A subroutine of lower_try_finally.  If FINALLY consits of a
914    GIMPLE_EH_ELSE node, return it.  */
915 
916 static inline gimple
917 get_eh_else (gimple_seq finally)
918 {
919   gimple x = gimple_seq_first_stmt (finally);
920   if (gimple_code (x) == GIMPLE_EH_ELSE)
921     {
922       gcc_assert (gimple_seq_singleton_p (finally));
923       return x;
924     }
925   return NULL;
926 }
927 
928 /* A subroutine of lower_try_finally.  If the eh_protect_cleanup_actions
929    langhook returns non-null, then the language requires that the exception
930    path out of a try_finally be treated specially.  To wit: the code within
931    the finally block may not itself throw an exception.  We have two choices
932    here. First we can duplicate the finally block and wrap it in a
933    must_not_throw region.  Second, we can generate code like
934 
935 	try {
936 	  finally_block;
937 	} catch {
938 	  if (fintmp == eh_edge)
939 	    protect_cleanup_actions;
940 	}
941 
942    where "fintmp" is the temporary used in the switch statement generation
943    alternative considered below.  For the nonce, we always choose the first
944    option.
945 
946    THIS_STATE may be null if this is a try-cleanup, not a try-finally.  */
947 
948 static void
949 honor_protect_cleanup_actions (struct leh_state *outer_state,
950 			       struct leh_state *this_state,
951 			       struct leh_tf_state *tf)
952 {
953   tree protect_cleanup_actions;
954   gimple_stmt_iterator gsi;
955   bool finally_may_fallthru;
956   gimple_seq finally;
957   gimple x, eh_else;
958 
959   /* First check for nothing to do.  */
960   if (lang_hooks.eh_protect_cleanup_actions == NULL)
961     return;
962   protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
963   if (protect_cleanup_actions == NULL)
964     return;
965 
966   finally = gimple_try_cleanup (tf->top_p);
967   eh_else = get_eh_else (finally);
968 
969   /* Duplicate the FINALLY block.  Only need to do this for try-finally,
970      and not for cleanups.  If we've got an EH_ELSE, extract it now.  */
971   if (eh_else)
972     {
973       finally = gimple_eh_else_e_body (eh_else);
974       gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
975     }
976   else if (this_state)
977     finally = lower_try_finally_dup_block (finally, outer_state);
978   finally_may_fallthru = gimple_seq_may_fallthru (finally);
979 
980   /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
981      set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
982      to be in an enclosing scope, but needs to be implemented at this level
983      to avoid a nesting violation (see wrap_temporary_cleanups in
984      cp/decl.c).  Since it's logically at an outer level, we should call
985      terminate before we get to it, so strip it away before adding the
986      MUST_NOT_THROW filter.  */
987   gsi = gsi_start (finally);
988   x = gsi_stmt (gsi);
989   if (gimple_code (x) == GIMPLE_TRY
990       && gimple_try_kind (x) == GIMPLE_TRY_CATCH
991       && gimple_try_catch_is_cleanup (x))
992     {
993       gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
994       gsi_remove (&gsi, false);
995     }
996 
997   /* Wrap the block with protect_cleanup_actions as the action.  */
998   x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
999   x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1000 			GIMPLE_TRY_CATCH);
1001   finally = lower_eh_must_not_throw (outer_state, x);
1002 
1003   /* Drop all of this into the exception sequence.  */
1004   emit_post_landing_pad (&eh_seq, tf->region);
1005   gimple_seq_add_seq (&eh_seq, finally);
1006   if (finally_may_fallthru)
1007     emit_resx (&eh_seq, tf->region);
1008 
1009   /* Having now been handled, EH isn't to be considered with
1010      the rest of the outgoing edges.  */
1011   tf->may_throw = false;
1012 }
1013 
1014 /* A subroutine of lower_try_finally.  We have determined that there is
1015    no fallthru edge out of the finally block.  This means that there is
1016    no outgoing edge corresponding to any incoming edge.  Restructure the
1017    try_finally node for this special case.  */
1018 
1019 static void
1020 lower_try_finally_nofallthru (struct leh_state *state,
1021 			      struct leh_tf_state *tf)
1022 {
1023   tree lab;
1024   gimple x, eh_else;
1025   gimple_seq finally;
1026   struct goto_queue_node *q, *qe;
1027 
1028   lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1029 
1030   /* We expect that tf->top_p is a GIMPLE_TRY. */
1031   finally = gimple_try_cleanup (tf->top_p);
1032   tf->top_p_seq = gimple_try_eval (tf->top_p);
1033 
1034   x = gimple_build_label (lab);
1035   gimple_seq_add_stmt (&tf->top_p_seq, x);
1036 
1037   q = tf->goto_queue;
1038   qe = q + tf->goto_queue_active;
1039   for (; q < qe; ++q)
1040     if (q->index < 0)
1041       do_return_redirection (q, lab, NULL);
1042     else
1043       do_goto_redirection (q, lab, NULL, tf);
1044 
1045   replace_goto_queue (tf);
1046 
1047   /* Emit the finally block into the stream.  Lower EH_ELSE at this time.  */
1048   eh_else = get_eh_else (finally);
1049   if (eh_else)
1050     {
1051       finally = gimple_eh_else_n_body (eh_else);
1052       lower_eh_constructs_1 (state, finally);
1053       gimple_seq_add_seq (&tf->top_p_seq, finally);
1054 
1055       if (tf->may_throw)
1056 	{
1057 	  finally = gimple_eh_else_e_body (eh_else);
1058 	  lower_eh_constructs_1 (state, finally);
1059 
1060 	  emit_post_landing_pad (&eh_seq, tf->region);
1061 	  gimple_seq_add_seq (&eh_seq, finally);
1062 	}
1063     }
1064   else
1065     {
1066       lower_eh_constructs_1 (state, finally);
1067       gimple_seq_add_seq (&tf->top_p_seq, finally);
1068 
1069       if (tf->may_throw)
1070 	{
1071 	  emit_post_landing_pad (&eh_seq, tf->region);
1072 
1073 	  x = gimple_build_goto (lab);
1074 	  gimple_seq_add_stmt (&eh_seq, x);
1075 	}
1076     }
1077 }
1078 
1079 /* A subroutine of lower_try_finally.  We have determined that there is
1080    exactly one destination of the finally block.  Restructure the
1081    try_finally node for this special case.  */
1082 
1083 static void
1084 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1085 {
1086   struct goto_queue_node *q, *qe;
1087   gimple x;
1088   gimple_seq finally;
1089   tree finally_label;
1090   location_t loc = gimple_location (tf->try_finally_expr);
1091 
1092   finally = gimple_try_cleanup (tf->top_p);
1093   tf->top_p_seq = gimple_try_eval (tf->top_p);
1094 
1095   /* Since there's only one destination, and the destination edge can only
1096      either be EH or non-EH, that implies that all of our incoming edges
1097      are of the same type.  Therefore we can lower EH_ELSE immediately.  */
1098   x = get_eh_else (finally);
1099   if (x)
1100     {
1101       if (tf->may_throw)
1102 	finally = gimple_eh_else_e_body (x);
1103       else
1104 	finally = gimple_eh_else_n_body (x);
1105     }
1106 
1107   lower_eh_constructs_1 (state, finally);
1108 
1109   if (tf->may_throw)
1110     {
1111       /* Only reachable via the exception edge.  Add the given label to
1112          the head of the FINALLY block.  Append a RESX at the end.  */
1113       emit_post_landing_pad (&eh_seq, tf->region);
1114       gimple_seq_add_seq (&eh_seq, finally);
1115       emit_resx (&eh_seq, tf->region);
1116       return;
1117     }
1118 
1119   if (tf->may_fallthru)
1120     {
1121       /* Only reachable via the fallthru edge.  Do nothing but let
1122 	 the two blocks run together; we'll fall out the bottom.  */
1123       gimple_seq_add_seq (&tf->top_p_seq, finally);
1124       return;
1125     }
1126 
1127   finally_label = create_artificial_label (loc);
1128   x = gimple_build_label (finally_label);
1129   gimple_seq_add_stmt (&tf->top_p_seq, x);
1130 
1131   gimple_seq_add_seq (&tf->top_p_seq, finally);
1132 
1133   q = tf->goto_queue;
1134   qe = q + tf->goto_queue_active;
1135 
1136   if (tf->may_return)
1137     {
1138       /* Reachable by return expressions only.  Redirect them.  */
1139       for (; q < qe; ++q)
1140 	do_return_redirection (q, finally_label, NULL);
1141       replace_goto_queue (tf);
1142     }
1143   else
1144     {
1145       /* Reachable by goto expressions only.  Redirect them.  */
1146       for (; q < qe; ++q)
1147 	do_goto_redirection (q, finally_label, NULL, tf);
1148       replace_goto_queue (tf);
1149 
1150       if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1151 	{
1152 	  /* Reachable by goto to fallthru label only.  Redirect it
1153 	     to the new label (already created, sadly), and do not
1154 	     emit the final branch out, or the fallthru label.  */
1155 	  tf->fallthru_label = NULL;
1156 	  return;
1157 	}
1158     }
1159 
1160   /* Place the original return/goto to the original destination
1161      immediately after the finally block. */
1162   x = tf->goto_queue[0].cont_stmt;
1163   gimple_seq_add_stmt (&tf->top_p_seq, x);
1164   maybe_record_in_goto_queue (state, x);
1165 }
1166 
1167 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1168    and outgoing from the finally block.  Implement this by duplicating the
1169    finally block for every destination.  */
1170 
1171 static void
1172 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1173 {
1174   gimple_seq finally;
1175   gimple_seq new_stmt;
1176   gimple_seq seq;
1177   gimple x, eh_else;
1178   tree tmp;
1179   location_t tf_loc = gimple_location (tf->try_finally_expr);
1180 
1181   finally = gimple_try_cleanup (tf->top_p);
1182 
1183   /* Notice EH_ELSE, and simplify some of the remaining code
1184      by considering FINALLY to be the normal return path only.  */
1185   eh_else = get_eh_else (finally);
1186   if (eh_else)
1187     finally = gimple_eh_else_n_body (eh_else);
1188 
1189   tf->top_p_seq = gimple_try_eval (tf->top_p);
1190   new_stmt = NULL;
1191 
1192   if (tf->may_fallthru)
1193     {
1194       seq = lower_try_finally_dup_block (finally, state);
1195       lower_eh_constructs_1 (state, seq);
1196       gimple_seq_add_seq (&new_stmt, seq);
1197 
1198       tmp = lower_try_finally_fallthru_label (tf);
1199       x = gimple_build_goto (tmp);
1200       gimple_seq_add_stmt (&new_stmt, x);
1201     }
1202 
1203   if (tf->may_throw)
1204     {
1205       /* We don't need to copy the EH path of EH_ELSE,
1206 	 since it is only emitted once.  */
1207       if (eh_else)
1208 	seq = gimple_eh_else_e_body (eh_else);
1209       else
1210 	seq = lower_try_finally_dup_block (finally, state);
1211       lower_eh_constructs_1 (state, seq);
1212 
1213       emit_post_landing_pad (&eh_seq, tf->region);
1214       gimple_seq_add_seq (&eh_seq, seq);
1215       emit_resx (&eh_seq, tf->region);
1216     }
1217 
1218   if (tf->goto_queue)
1219     {
1220       struct goto_queue_node *q, *qe;
1221       int return_index, index;
1222       struct labels_s
1223       {
1224 	struct goto_queue_node *q;
1225 	tree label;
1226       } *labels;
1227 
1228       return_index = VEC_length (tree, tf->dest_array);
1229       labels = XCNEWVEC (struct labels_s, return_index + 1);
1230 
1231       q = tf->goto_queue;
1232       qe = q + tf->goto_queue_active;
1233       for (; q < qe; q++)
1234 	{
1235 	  index = q->index < 0 ? return_index : q->index;
1236 
1237 	  if (!labels[index].q)
1238 	    labels[index].q = q;
1239 	}
1240 
1241       for (index = 0; index < return_index + 1; index++)
1242 	{
1243 	  tree lab;
1244 
1245 	  q = labels[index].q;
1246 	  if (! q)
1247 	    continue;
1248 
1249 	  lab = labels[index].label
1250 	    = create_artificial_label (tf_loc);
1251 
1252 	  if (index == return_index)
1253 	    do_return_redirection (q, lab, NULL);
1254 	  else
1255 	    do_goto_redirection (q, lab, NULL, tf);
1256 
1257 	  x = gimple_build_label (lab);
1258           gimple_seq_add_stmt (&new_stmt, x);
1259 
1260 	  seq = lower_try_finally_dup_block (finally, state);
1261 	  lower_eh_constructs_1 (state, seq);
1262           gimple_seq_add_seq (&new_stmt, seq);
1263 
1264           gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1265 	  maybe_record_in_goto_queue (state, q->cont_stmt);
1266 	}
1267 
1268       for (q = tf->goto_queue; q < qe; q++)
1269 	{
1270 	  tree lab;
1271 
1272 	  index = q->index < 0 ? return_index : q->index;
1273 
1274 	  if (labels[index].q == q)
1275 	    continue;
1276 
1277 	  lab = labels[index].label;
1278 
1279 	  if (index == return_index)
1280 	    do_return_redirection (q, lab, NULL);
1281 	  else
1282 	    do_goto_redirection (q, lab, NULL, tf);
1283 	}
1284 
1285       replace_goto_queue (tf);
1286       free (labels);
1287     }
1288 
1289   /* Need to link new stmts after running replace_goto_queue due
1290      to not wanting to process the same goto stmts twice.  */
1291   gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1292 }
1293 
1294 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1295    and outgoing from the finally block.  Implement this by instrumenting
1296    each incoming edge and creating a switch statement at the end of the
1297    finally block that branches to the appropriate destination.  */
1298 
1299 static void
1300 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1301 {
1302   struct goto_queue_node *q, *qe;
1303   tree finally_tmp, finally_label;
1304   int return_index, eh_index, fallthru_index;
1305   int nlabels, ndests, j, last_case_index;
1306   tree last_case;
1307   VEC (tree,heap) *case_label_vec;
1308   gimple_seq switch_body;
1309   gimple x, eh_else;
1310   tree tmp;
1311   gimple switch_stmt;
1312   gimple_seq finally;
1313   struct pointer_map_t *cont_map = NULL;
1314   /* The location of the TRY_FINALLY stmt.  */
1315   location_t tf_loc = gimple_location (tf->try_finally_expr);
1316   /* The location of the finally block.  */
1317   location_t finally_loc;
1318 
1319   switch_body = gimple_seq_alloc ();
1320   finally = gimple_try_cleanup (tf->top_p);
1321   eh_else = get_eh_else (finally);
1322 
1323   /* Mash the TRY block to the head of the chain.  */
1324   tf->top_p_seq = gimple_try_eval (tf->top_p);
1325 
1326   /* The location of the finally is either the last stmt in the finally
1327      block or the location of the TRY_FINALLY itself.  */
1328   x = gimple_seq_last_stmt (finally);
1329   finally_loc = x ? gimple_location (x) : tf_loc;
1330 
1331   /* Lower the finally block itself.  */
1332   lower_eh_constructs_1 (state, finally);
1333 
1334   /* Prepare for switch statement generation.  */
1335   nlabels = VEC_length (tree, tf->dest_array);
1336   return_index = nlabels;
1337   eh_index = return_index + tf->may_return;
1338   fallthru_index = eh_index + (tf->may_throw && !eh_else);
1339   ndests = fallthru_index + tf->may_fallthru;
1340 
1341   finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1342   finally_label = create_artificial_label (finally_loc);
1343 
1344   /* We use VEC_quick_push on case_label_vec throughout this function,
1345      since we know the size in advance and allocate precisely as muce
1346      space as needed.  */
1347   case_label_vec = VEC_alloc (tree, heap, ndests);
1348   last_case = NULL;
1349   last_case_index = 0;
1350 
1351   /* Begin inserting code for getting to the finally block.  Things
1352      are done in this order to correspond to the sequence the code is
1353      layed out.  */
1354 
1355   if (tf->may_fallthru)
1356     {
1357       x = gimple_build_assign (finally_tmp,
1358 			       build_int_cst (integer_type_node,
1359 					      fallthru_index));
1360       gimple_seq_add_stmt (&tf->top_p_seq, x);
1361 
1362       tmp = build_int_cst (integer_type_node, fallthru_index);
1363       last_case = build_case_label (tmp, NULL,
1364 				    create_artificial_label (tf_loc));
1365       VEC_quick_push (tree, case_label_vec, last_case);
1366       last_case_index++;
1367 
1368       x = gimple_build_label (CASE_LABEL (last_case));
1369       gimple_seq_add_stmt (&switch_body, x);
1370 
1371       tmp = lower_try_finally_fallthru_label (tf);
1372       x = gimple_build_goto (tmp);
1373       gimple_seq_add_stmt (&switch_body, x);
1374     }
1375 
1376   /* For EH_ELSE, emit the exception path (plus resx) now, then
1377      subsequently we only need consider the normal path.  */
1378   if (eh_else)
1379     {
1380       if (tf->may_throw)
1381 	{
1382 	  finally = gimple_eh_else_e_body (eh_else);
1383 	  lower_eh_constructs_1 (state, finally);
1384 
1385 	  emit_post_landing_pad (&eh_seq, tf->region);
1386 	  gimple_seq_add_seq (&eh_seq, finally);
1387 	  emit_resx (&eh_seq, tf->region);
1388 	}
1389 
1390       finally = gimple_eh_else_n_body (eh_else);
1391     }
1392   else if (tf->may_throw)
1393     {
1394       emit_post_landing_pad (&eh_seq, tf->region);
1395 
1396       x = gimple_build_assign (finally_tmp,
1397 			       build_int_cst (integer_type_node, eh_index));
1398       gimple_seq_add_stmt (&eh_seq, x);
1399 
1400       x = gimple_build_goto (finally_label);
1401       gimple_seq_add_stmt (&eh_seq, x);
1402 
1403       tmp = build_int_cst (integer_type_node, eh_index);
1404       last_case = build_case_label (tmp, NULL,
1405 				    create_artificial_label (tf_loc));
1406       VEC_quick_push (tree, case_label_vec, last_case);
1407       last_case_index++;
1408 
1409       x = gimple_build_label (CASE_LABEL (last_case));
1410       gimple_seq_add_stmt (&eh_seq, x);
1411       emit_resx (&eh_seq, tf->region);
1412     }
1413 
1414   x = gimple_build_label (finally_label);
1415   gimple_seq_add_stmt (&tf->top_p_seq, x);
1416 
1417   gimple_seq_add_seq (&tf->top_p_seq, finally);
1418 
1419   /* Redirect each incoming goto edge.  */
1420   q = tf->goto_queue;
1421   qe = q + tf->goto_queue_active;
1422   j = last_case_index + tf->may_return;
1423   /* Prepare the assignments to finally_tmp that are executed upon the
1424      entrance through a particular edge. */
1425   for (; q < qe; ++q)
1426     {
1427       gimple_seq mod;
1428       int switch_id;
1429       unsigned int case_index;
1430 
1431       mod = gimple_seq_alloc ();
1432 
1433       if (q->index < 0)
1434 	{
1435 	  x = gimple_build_assign (finally_tmp,
1436 				   build_int_cst (integer_type_node,
1437 						  return_index));
1438 	  gimple_seq_add_stmt (&mod, x);
1439 	  do_return_redirection (q, finally_label, mod);
1440 	  switch_id = return_index;
1441 	}
1442       else
1443 	{
1444 	  x = gimple_build_assign (finally_tmp,
1445 				   build_int_cst (integer_type_node, q->index));
1446 	  gimple_seq_add_stmt (&mod, x);
1447 	  do_goto_redirection (q, finally_label, mod, tf);
1448 	  switch_id = q->index;
1449 	}
1450 
1451       case_index = j + q->index;
1452       if (VEC_length (tree, case_label_vec) <= case_index
1453           || !VEC_index (tree, case_label_vec, case_index))
1454         {
1455           tree case_lab;
1456           void **slot;
1457 	  tmp = build_int_cst (integer_type_node, switch_id);
1458           case_lab = build_case_label (tmp, NULL,
1459 				       create_artificial_label (tf_loc));
1460           /* We store the cont_stmt in the pointer map, so that we can recover
1461              it in the loop below.  */
1462           if (!cont_map)
1463             cont_map = pointer_map_create ();
1464           slot = pointer_map_insert (cont_map, case_lab);
1465           *slot = q->cont_stmt;
1466           VEC_quick_push (tree, case_label_vec, case_lab);
1467         }
1468     }
1469   for (j = last_case_index; j < last_case_index + nlabels; j++)
1470     {
1471       gimple cont_stmt;
1472       void **slot;
1473 
1474       last_case = VEC_index (tree, case_label_vec, j);
1475 
1476       gcc_assert (last_case);
1477       gcc_assert (cont_map);
1478 
1479       slot = pointer_map_contains (cont_map, last_case);
1480       gcc_assert (slot);
1481       cont_stmt = *(gimple *) slot;
1482 
1483       x = gimple_build_label (CASE_LABEL (last_case));
1484       gimple_seq_add_stmt (&switch_body, x);
1485       gimple_seq_add_stmt (&switch_body, cont_stmt);
1486       maybe_record_in_goto_queue (state, cont_stmt);
1487     }
1488   if (cont_map)
1489     pointer_map_destroy (cont_map);
1490 
1491   replace_goto_queue (tf);
1492 
1493   /* Make sure that the last case is the default label, as one is required.
1494      Then sort the labels, which is also required in GIMPLE.  */
1495   CASE_LOW (last_case) = NULL;
1496   sort_case_labels (case_label_vec);
1497 
1498   /* Build the switch statement, setting last_case to be the default
1499      label.  */
1500   switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1501                                          case_label_vec);
1502   gimple_set_location (switch_stmt, finally_loc);
1503 
1504   /* Need to link SWITCH_STMT after running replace_goto_queue
1505      due to not wanting to process the same goto stmts twice.  */
1506   gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1507   gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1508 }
1509 
1510 /* Decide whether or not we are going to duplicate the finally block.
1511    There are several considerations.
1512 
1513    First, if this is Java, then the finally block contains code
1514    written by the user.  It has line numbers associated with it,
1515    so duplicating the block means it's difficult to set a breakpoint.
1516    Since controlling code generation via -g is verboten, we simply
1517    never duplicate code without optimization.
1518 
1519    Second, we'd like to prevent egregious code growth.  One way to
1520    do this is to estimate the size of the finally block, multiply
1521    that by the number of copies we'd need to make, and compare against
1522    the estimate of the size of the switch machinery we'd have to add.  */
1523 
1524 static bool
1525 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1526 {
1527   int f_estimate, sw_estimate;
1528   gimple eh_else;
1529 
1530   /* If there's an EH_ELSE involved, the exception path is separate
1531      and really doesn't come into play for this computation.  */
1532   eh_else = get_eh_else (finally);
1533   if (eh_else)
1534     {
1535       ndests -= may_throw;
1536       finally = gimple_eh_else_n_body (eh_else);
1537     }
1538 
1539   if (!optimize)
1540     {
1541       gimple_stmt_iterator gsi;
1542 
1543       if (ndests == 1)
1544         return true;
1545 
1546       for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1547 	{
1548 	  gimple stmt = gsi_stmt (gsi);
1549 	  if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1550 	    return false;
1551 	}
1552       return true;
1553     }
1554 
1555   /* Finally estimate N times, plus N gotos.  */
1556   f_estimate = count_insns_seq (finally, &eni_size_weights);
1557   f_estimate = (f_estimate + 1) * ndests;
1558 
1559   /* Switch statement (cost 10), N variable assignments, N gotos.  */
1560   sw_estimate = 10 + 2 * ndests;
1561 
1562   /* Optimize for size clearly wants our best guess.  */
1563   if (optimize_function_for_size_p (cfun))
1564     return f_estimate < sw_estimate;
1565 
1566   /* ??? These numbers are completely made up so far.  */
1567   if (optimize > 1)
1568     return f_estimate < 100 || f_estimate < sw_estimate * 2;
1569   else
1570     return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1571 }
1572 
1573 /* REG is the enclosing region for a possible cleanup region, or the region
1574    itself.  Returns TRUE if such a region would be unreachable.
1575 
1576    Cleanup regions within a must-not-throw region aren't actually reachable
1577    even if there are throwing stmts within them, because the personality
1578    routine will call terminate before unwinding.  */
1579 
1580 static bool
1581 cleanup_is_dead_in (eh_region reg)
1582 {
1583   while (reg && reg->type == ERT_CLEANUP)
1584     reg = reg->outer;
1585   return (reg && reg->type == ERT_MUST_NOT_THROW);
1586 }
1587 
1588 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_FINALLY nodes
1589    to a sequence of labels and blocks, plus the exception region trees
1590    that record all the magic.  This is complicated by the need to
1591    arrange for the FINALLY block to be executed on all exits.  */
1592 
1593 static gimple_seq
1594 lower_try_finally (struct leh_state *state, gimple tp)
1595 {
1596   struct leh_tf_state this_tf;
1597   struct leh_state this_state;
1598   int ndests;
1599   gimple_seq old_eh_seq;
1600 
1601   /* Process the try block.  */
1602 
1603   memset (&this_tf, 0, sizeof (this_tf));
1604   this_tf.try_finally_expr = tp;
1605   this_tf.top_p = tp;
1606   this_tf.outer = state;
1607   if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1608     {
1609       this_tf.region = gen_eh_region_cleanup (state->cur_region);
1610       this_state.cur_region = this_tf.region;
1611     }
1612   else
1613     {
1614       this_tf.region = NULL;
1615       this_state.cur_region = state->cur_region;
1616     }
1617 
1618   this_state.ehp_region = state->ehp_region;
1619   this_state.tf = &this_tf;
1620 
1621   old_eh_seq = eh_seq;
1622   eh_seq = NULL;
1623 
1624   lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1625 
1626   /* Determine if the try block is escaped through the bottom.  */
1627   this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1628 
1629   /* Determine if any exceptions are possible within the try block.  */
1630   if (this_tf.region)
1631     this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1632   if (this_tf.may_throw)
1633     honor_protect_cleanup_actions (state, &this_state, &this_tf);
1634 
1635   /* Determine how many edges (still) reach the finally block.  Or rather,
1636      how many destinations are reached by the finally block.  Use this to
1637      determine how we process the finally block itself.  */
1638 
1639   ndests = VEC_length (tree, this_tf.dest_array);
1640   ndests += this_tf.may_fallthru;
1641   ndests += this_tf.may_return;
1642   ndests += this_tf.may_throw;
1643 
1644   /* If the FINALLY block is not reachable, dike it out.  */
1645   if (ndests == 0)
1646     {
1647       gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1648       gimple_try_set_cleanup (tp, NULL);
1649     }
1650   /* If the finally block doesn't fall through, then any destination
1651      we might try to impose there isn't reached either.  There may be
1652      some minor amount of cleanup and redirection still needed.  */
1653   else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1654     lower_try_finally_nofallthru (state, &this_tf);
1655 
1656   /* We can easily special-case redirection to a single destination.  */
1657   else if (ndests == 1)
1658     lower_try_finally_onedest (state, &this_tf);
1659   else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1660 				    gimple_try_cleanup (tp)))
1661     lower_try_finally_copy (state, &this_tf);
1662   else
1663     lower_try_finally_switch (state, &this_tf);
1664 
1665   /* If someone requested we add a label at the end of the transformed
1666      block, do so.  */
1667   if (this_tf.fallthru_label)
1668     {
1669       /* This must be reached only if ndests == 0. */
1670       gimple x = gimple_build_label (this_tf.fallthru_label);
1671       gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1672     }
1673 
1674   VEC_free (tree, heap, this_tf.dest_array);
1675   free (this_tf.goto_queue);
1676   if (this_tf.goto_queue_map)
1677     pointer_map_destroy (this_tf.goto_queue_map);
1678 
1679   /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1680      If there was no old eh_seq, then the append is trivially already done.  */
1681   if (old_eh_seq)
1682     {
1683       if (eh_seq == NULL)
1684 	eh_seq = old_eh_seq;
1685       else
1686 	{
1687 	  gimple_seq new_eh_seq = eh_seq;
1688 	  eh_seq = old_eh_seq;
1689 	  gimple_seq_add_seq(&eh_seq, new_eh_seq);
1690 	}
1691     }
1692 
1693   return this_tf.top_p_seq;
1694 }
1695 
1696 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_CATCH with a
1697    list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1698    exception region trees that records all the magic.  */
1699 
1700 static gimple_seq
1701 lower_catch (struct leh_state *state, gimple tp)
1702 {
1703   eh_region try_region = NULL;
1704   struct leh_state this_state = *state;
1705   gimple_stmt_iterator gsi;
1706   tree out_label;
1707   gimple_seq new_seq;
1708   gimple x;
1709   location_t try_catch_loc = gimple_location (tp);
1710 
1711   if (flag_exceptions)
1712     {
1713       try_region = gen_eh_region_try (state->cur_region);
1714       this_state.cur_region = try_region;
1715     }
1716 
1717   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1718 
1719   if (!eh_region_may_contain_throw (try_region))
1720     return gimple_try_eval (tp);
1721 
1722   new_seq = NULL;
1723   emit_eh_dispatch (&new_seq, try_region);
1724   emit_resx (&new_seq, try_region);
1725 
1726   this_state.cur_region = state->cur_region;
1727   this_state.ehp_region = try_region;
1728 
1729   out_label = NULL;
1730   for (gsi = gsi_start (gimple_try_cleanup (tp));
1731        !gsi_end_p (gsi);
1732        gsi_next (&gsi))
1733     {
1734       eh_catch c;
1735       gimple gcatch;
1736       gimple_seq handler;
1737 
1738       gcatch = gsi_stmt (gsi);
1739       c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1740 
1741       handler = gimple_catch_handler (gcatch);
1742       lower_eh_constructs_1 (&this_state, handler);
1743 
1744       c->label = create_artificial_label (UNKNOWN_LOCATION);
1745       x = gimple_build_label (c->label);
1746       gimple_seq_add_stmt (&new_seq, x);
1747 
1748       gimple_seq_add_seq (&new_seq, handler);
1749 
1750       if (gimple_seq_may_fallthru (new_seq))
1751 	{
1752 	  if (!out_label)
1753 	    out_label = create_artificial_label (try_catch_loc);
1754 
1755 	  x = gimple_build_goto (out_label);
1756 	  gimple_seq_add_stmt (&new_seq, x);
1757 	}
1758       if (!c->type_list)
1759 	break;
1760     }
1761 
1762   gimple_try_set_cleanup (tp, new_seq);
1763 
1764   return frob_into_branch_around (tp, try_region, out_label);
1765 }
1766 
1767 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with a
1768    GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1769    region trees that record all the magic.  */
1770 
1771 static gimple_seq
1772 lower_eh_filter (struct leh_state *state, gimple tp)
1773 {
1774   struct leh_state this_state = *state;
1775   eh_region this_region = NULL;
1776   gimple inner, x;
1777   gimple_seq new_seq;
1778 
1779   inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1780 
1781   if (flag_exceptions)
1782     {
1783       this_region = gen_eh_region_allowed (state->cur_region,
1784 				           gimple_eh_filter_types (inner));
1785       this_state.cur_region = this_region;
1786     }
1787 
1788   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1789 
1790   if (!eh_region_may_contain_throw (this_region))
1791     return gimple_try_eval (tp);
1792 
1793   new_seq = NULL;
1794   this_state.cur_region = state->cur_region;
1795   this_state.ehp_region = this_region;
1796 
1797   emit_eh_dispatch (&new_seq, this_region);
1798   emit_resx (&new_seq, this_region);
1799 
1800   this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1801   x = gimple_build_label (this_region->u.allowed.label);
1802   gimple_seq_add_stmt (&new_seq, x);
1803 
1804   lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1805   gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1806 
1807   gimple_try_set_cleanup (tp, new_seq);
1808 
1809   return frob_into_branch_around (tp, this_region, NULL);
1810 }
1811 
1812 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with
1813    an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1814    plus the exception region trees that record all the magic.  */
1815 
1816 static gimple_seq
1817 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1818 {
1819   struct leh_state this_state = *state;
1820 
1821   if (flag_exceptions)
1822     {
1823       gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1824       eh_region this_region;
1825 
1826       this_region = gen_eh_region_must_not_throw (state->cur_region);
1827       this_region->u.must_not_throw.failure_decl
1828 	= gimple_eh_must_not_throw_fndecl (inner);
1829       this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1830 
1831       /* In order to get mangling applied to this decl, we must mark it
1832 	 used now.  Otherwise, pass_ipa_free_lang_data won't think it
1833 	 needs to happen.  */
1834       TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1835 
1836       this_state.cur_region = this_region;
1837     }
1838 
1839   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1840 
1841   return gimple_try_eval (tp);
1842 }
1843 
1844 /* Implement a cleanup expression.  This is similar to try-finally,
1845    except that we only execute the cleanup block for exception edges.  */
1846 
1847 static gimple_seq
1848 lower_cleanup (struct leh_state *state, gimple tp)
1849 {
1850   struct leh_state this_state = *state;
1851   eh_region this_region = NULL;
1852   struct leh_tf_state fake_tf;
1853   gimple_seq result;
1854   bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1855 
1856   if (flag_exceptions && !cleanup_dead)
1857     {
1858       this_region = gen_eh_region_cleanup (state->cur_region);
1859       this_state.cur_region = this_region;
1860     }
1861 
1862   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1863 
1864   if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1865     return gimple_try_eval (tp);
1866 
1867   /* Build enough of a try-finally state so that we can reuse
1868      honor_protect_cleanup_actions.  */
1869   memset (&fake_tf, 0, sizeof (fake_tf));
1870   fake_tf.top_p = fake_tf.try_finally_expr = tp;
1871   fake_tf.outer = state;
1872   fake_tf.region = this_region;
1873   fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1874   fake_tf.may_throw = true;
1875 
1876   honor_protect_cleanup_actions (state, NULL, &fake_tf);
1877 
1878   if (fake_tf.may_throw)
1879     {
1880       /* In this case honor_protect_cleanup_actions had nothing to do,
1881 	 and we should process this normally.  */
1882       lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1883       result = frob_into_branch_around (tp, this_region,
1884                                         fake_tf.fallthru_label);
1885     }
1886   else
1887     {
1888       /* In this case honor_protect_cleanup_actions did nearly all of
1889 	 the work.  All we have left is to append the fallthru_label.  */
1890 
1891       result = gimple_try_eval (tp);
1892       if (fake_tf.fallthru_label)
1893 	{
1894 	  gimple x = gimple_build_label (fake_tf.fallthru_label);
1895 	  gimple_seq_add_stmt (&result, x);
1896 	}
1897     }
1898   return result;
1899 }
1900 
1901 /* Main loop for lowering eh constructs. Also moves gsi to the next
1902    statement. */
1903 
1904 static void
1905 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1906 {
1907   gimple_seq replace;
1908   gimple x;
1909   gimple stmt = gsi_stmt (*gsi);
1910 
1911   switch (gimple_code (stmt))
1912     {
1913     case GIMPLE_CALL:
1914       {
1915 	tree fndecl = gimple_call_fndecl (stmt);
1916 	tree rhs, lhs;
1917 
1918 	if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1919 	  switch (DECL_FUNCTION_CODE (fndecl))
1920 	    {
1921 	    case BUILT_IN_EH_POINTER:
1922 	      /* The front end may have generated a call to
1923 		 __builtin_eh_pointer (0) within a catch region.  Replace
1924 		 this zero argument with the current catch region number.  */
1925 	      if (state->ehp_region)
1926 		{
1927 		  tree nr = build_int_cst (integer_type_node,
1928 					   state->ehp_region->index);
1929 		  gimple_call_set_arg (stmt, 0, nr);
1930 		}
1931 	      else
1932 		{
1933 		  /* The user has dome something silly.  Remove it.  */
1934 		  rhs = null_pointer_node;
1935 		  goto do_replace;
1936 		}
1937 	      break;
1938 
1939 	    case BUILT_IN_EH_FILTER:
1940 	      /* ??? This should never appear, but since it's a builtin it
1941 		 is accessible to abuse by users.  Just remove it and
1942 		 replace the use with the arbitrary value zero.  */
1943 	      rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1944 	    do_replace:
1945 	      lhs = gimple_call_lhs (stmt);
1946 	      x = gimple_build_assign (lhs, rhs);
1947 	      gsi_insert_before (gsi, x, GSI_SAME_STMT);
1948 	      /* FALLTHRU */
1949 
1950 	    case BUILT_IN_EH_COPY_VALUES:
1951 	      /* Likewise this should not appear.  Remove it.  */
1952 	      gsi_remove (gsi, true);
1953 	      return;
1954 
1955 	    default:
1956 	      break;
1957 	    }
1958       }
1959       /* FALLTHRU */
1960 
1961     case GIMPLE_ASSIGN:
1962       /* If the stmt can throw use a new temporary for the assignment
1963          to a LHS.  This makes sure the old value of the LHS is
1964 	 available on the EH edge.  Only do so for statements that
1965 	 potentially fall thru (no noreturn calls e.g.), otherwise
1966 	 this new assignment might create fake fallthru regions.  */
1967       if (stmt_could_throw_p (stmt)
1968 	  && gimple_has_lhs (stmt)
1969 	  && gimple_stmt_may_fallthru (stmt)
1970 	  && !tree_could_throw_p (gimple_get_lhs (stmt))
1971 	  && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1972 	{
1973 	  tree lhs = gimple_get_lhs (stmt);
1974 	  tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1975 	  gimple s = gimple_build_assign (lhs, tmp);
1976 	  gimple_set_location (s, gimple_location (stmt));
1977 	  gimple_set_block (s, gimple_block (stmt));
1978 	  gimple_set_lhs (stmt, tmp);
1979 	  if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1980 	      || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1981 	    DECL_GIMPLE_REG_P (tmp) = 1;
1982 	  gsi_insert_after (gsi, s, GSI_SAME_STMT);
1983 	}
1984       /* Look for things that can throw exceptions, and record them.  */
1985       if (state->cur_region && stmt_could_throw_p (stmt))
1986 	{
1987 	  record_stmt_eh_region (state->cur_region, stmt);
1988 	  note_eh_region_may_contain_throw (state->cur_region);
1989 	}
1990       break;
1991 
1992     case GIMPLE_COND:
1993     case GIMPLE_GOTO:
1994     case GIMPLE_RETURN:
1995       maybe_record_in_goto_queue (state, stmt);
1996       break;
1997 
1998     case GIMPLE_SWITCH:
1999       verify_norecord_switch_expr (state, stmt);
2000       break;
2001 
2002     case GIMPLE_TRY:
2003       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2004 	replace = lower_try_finally (state, stmt);
2005       else
2006 	{
2007 	  x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2008 	  if (!x)
2009 	    {
2010 	      replace = gimple_try_eval (stmt);
2011 	      lower_eh_constructs_1 (state, replace);
2012 	    }
2013 	  else
2014 	    switch (gimple_code (x))
2015 	      {
2016 		case GIMPLE_CATCH:
2017 		    replace = lower_catch (state, stmt);
2018 		    break;
2019 		case GIMPLE_EH_FILTER:
2020 		    replace = lower_eh_filter (state, stmt);
2021 		    break;
2022 		case GIMPLE_EH_MUST_NOT_THROW:
2023 		    replace = lower_eh_must_not_throw (state, stmt);
2024 		    break;
2025 		case GIMPLE_EH_ELSE:
2026 		    /* This code is only valid with GIMPLE_TRY_FINALLY.  */
2027 		    gcc_unreachable ();
2028 		default:
2029 		    replace = lower_cleanup (state, stmt);
2030 		    break;
2031 	      }
2032 	}
2033 
2034       /* Remove the old stmt and insert the transformed sequence
2035 	 instead. */
2036       gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2037       gsi_remove (gsi, true);
2038 
2039       /* Return since we don't want gsi_next () */
2040       return;
2041 
2042     case GIMPLE_EH_ELSE:
2043       /* We should be eliminating this in lower_try_finally et al.  */
2044       gcc_unreachable ();
2045 
2046     default:
2047       /* A type, a decl, or some kind of statement that we're not
2048 	 interested in.  Don't walk them.  */
2049       break;
2050     }
2051 
2052   gsi_next (gsi);
2053 }
2054 
2055 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2056 
2057 static void
2058 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
2059 {
2060   gimple_stmt_iterator gsi;
2061   for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
2062     lower_eh_constructs_2 (state, &gsi);
2063 }
2064 
2065 static unsigned int
2066 lower_eh_constructs (void)
2067 {
2068   struct leh_state null_state;
2069   gimple_seq bodyp;
2070 
2071   bodyp = gimple_body (current_function_decl);
2072   if (bodyp == NULL)
2073     return 0;
2074 
2075   finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2076   eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2077   memset (&null_state, 0, sizeof (null_state));
2078 
2079   collect_finally_tree_1 (bodyp, NULL);
2080   lower_eh_constructs_1 (&null_state, bodyp);
2081 
2082   /* We assume there's a return statement, or something, at the end of
2083      the function, and thus ploping the EH sequence afterward won't
2084      change anything.  */
2085   gcc_assert (!gimple_seq_may_fallthru (bodyp));
2086   gimple_seq_add_seq (&bodyp, eh_seq);
2087 
2088   /* We assume that since BODYP already existed, adding EH_SEQ to it
2089      didn't change its value, and we don't have to re-set the function.  */
2090   gcc_assert (bodyp == gimple_body (current_function_decl));
2091 
2092   htab_delete (finally_tree);
2093   BITMAP_FREE (eh_region_may_contain_throw_map);
2094   eh_seq = NULL;
2095 
2096   /* If this function needs a language specific EH personality routine
2097      and the frontend didn't already set one do so now.  */
2098   if (function_needs_eh_personality (cfun) == eh_personality_lang
2099       && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2100     DECL_FUNCTION_PERSONALITY (current_function_decl)
2101       = lang_hooks.eh_personality ();
2102 
2103   return 0;
2104 }
2105 
2106 struct gimple_opt_pass pass_lower_eh =
2107 {
2108  {
2109   GIMPLE_PASS,
2110   "eh",					/* name */
2111   NULL,					/* gate */
2112   lower_eh_constructs,			/* execute */
2113   NULL,					/* sub */
2114   NULL,					/* next */
2115   0,					/* static_pass_number */
2116   TV_TREE_EH,				/* tv_id */
2117   PROP_gimple_lcf,			/* properties_required */
2118   PROP_gimple_leh,			/* properties_provided */
2119   0,					/* properties_destroyed */
2120   0,					/* todo_flags_start */
2121   0             			/* todo_flags_finish */
2122  }
2123 };
2124 
2125 /* Create the multiple edges from an EH_DISPATCH statement to all of
2126    the possible handlers for its EH region.  Return true if there's
2127    no fallthru edge; false if there is.  */
2128 
2129 bool
2130 make_eh_dispatch_edges (gimple stmt)
2131 {
2132   eh_region r;
2133   eh_catch c;
2134   basic_block src, dst;
2135 
2136   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2137   src = gimple_bb (stmt);
2138 
2139   switch (r->type)
2140     {
2141     case ERT_TRY:
2142       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2143 	{
2144 	  dst = label_to_block (c->label);
2145 	  make_edge (src, dst, 0);
2146 
2147 	  /* A catch-all handler doesn't have a fallthru.  */
2148 	  if (c->type_list == NULL)
2149 	    return false;
2150 	}
2151       break;
2152 
2153     case ERT_ALLOWED_EXCEPTIONS:
2154       dst = label_to_block (r->u.allowed.label);
2155       make_edge (src, dst, 0);
2156       break;
2157 
2158     default:
2159       gcc_unreachable ();
2160     }
2161 
2162   return true;
2163 }
2164 
2165 /* Create the single EH edge from STMT to its nearest landing pad,
2166    if there is such a landing pad within the current function.  */
2167 
2168 void
2169 make_eh_edges (gimple stmt)
2170 {
2171   basic_block src, dst;
2172   eh_landing_pad lp;
2173   int lp_nr;
2174 
2175   lp_nr = lookup_stmt_eh_lp (stmt);
2176   if (lp_nr <= 0)
2177     return;
2178 
2179   lp = get_eh_landing_pad_from_number (lp_nr);
2180   gcc_assert (lp != NULL);
2181 
2182   src = gimple_bb (stmt);
2183   dst = label_to_block (lp->post_landing_pad);
2184   make_edge (src, dst, EDGE_EH);
2185 }
2186 
2187 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2188    do not actually perform the final edge redirection.
2189 
2190    CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2191    we intend to change the destination EH region as well; this means
2192    EH_LANDING_PAD_NR must already be set on the destination block label.
2193    If false, we're being called from generic cfg manipulation code and we
2194    should preserve our place within the region tree.  */
2195 
2196 static void
2197 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2198 {
2199   eh_landing_pad old_lp, new_lp;
2200   basic_block old_bb;
2201   gimple throw_stmt;
2202   int old_lp_nr, new_lp_nr;
2203   tree old_label, new_label;
2204   edge_iterator ei;
2205   edge e;
2206 
2207   old_bb = edge_in->dest;
2208   old_label = gimple_block_label (old_bb);
2209   old_lp_nr = EH_LANDING_PAD_NR (old_label);
2210   gcc_assert (old_lp_nr > 0);
2211   old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2212 
2213   throw_stmt = last_stmt (edge_in->src);
2214   gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2215 
2216   new_label = gimple_block_label (new_bb);
2217 
2218   /* Look for an existing region that might be using NEW_BB already.  */
2219   new_lp_nr = EH_LANDING_PAD_NR (new_label);
2220   if (new_lp_nr)
2221     {
2222       new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2223       gcc_assert (new_lp);
2224 
2225       /* Unless CHANGE_REGION is true, the new and old landing pad
2226 	 had better be associated with the same EH region.  */
2227       gcc_assert (change_region || new_lp->region == old_lp->region);
2228     }
2229   else
2230     {
2231       new_lp = NULL;
2232       gcc_assert (!change_region);
2233     }
2234 
2235   /* Notice when we redirect the last EH edge away from OLD_BB.  */
2236   FOR_EACH_EDGE (e, ei, old_bb->preds)
2237     if (e != edge_in && (e->flags & EDGE_EH))
2238       break;
2239 
2240   if (new_lp)
2241     {
2242       /* NEW_LP already exists.  If there are still edges into OLD_LP,
2243 	 there's nothing to do with the EH tree.  If there are no more
2244 	 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2245 	 If CHANGE_REGION is true, then our caller is expecting to remove
2246 	 the landing pad.  */
2247       if (e == NULL && !change_region)
2248 	remove_eh_landing_pad (old_lp);
2249     }
2250   else
2251     {
2252       /* No correct landing pad exists.  If there are no more edges
2253 	 into OLD_LP, then we can simply re-use the existing landing pad.
2254 	 Otherwise, we have to create a new landing pad.  */
2255       if (e == NULL)
2256 	{
2257 	  EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2258 	  new_lp = old_lp;
2259 	}
2260       else
2261 	new_lp = gen_eh_landing_pad (old_lp->region);
2262       new_lp->post_landing_pad = new_label;
2263       EH_LANDING_PAD_NR (new_label) = new_lp->index;
2264     }
2265 
2266   /* Maybe move the throwing statement to the new region.  */
2267   if (old_lp != new_lp)
2268     {
2269       remove_stmt_from_eh_lp (throw_stmt);
2270       add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2271     }
2272 }
2273 
2274 /* Redirect EH edge E to NEW_BB.  */
2275 
2276 edge
2277 redirect_eh_edge (edge edge_in, basic_block new_bb)
2278 {
2279   redirect_eh_edge_1 (edge_in, new_bb, false);
2280   return ssa_redirect_edge (edge_in, new_bb);
2281 }
2282 
2283 /* This is a subroutine of gimple_redirect_edge_and_branch.  Update the
2284    labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2285    The actual edge update will happen in the caller.  */
2286 
2287 void
2288 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2289 {
2290   tree new_lab = gimple_block_label (new_bb);
2291   bool any_changed = false;
2292   basic_block old_bb;
2293   eh_region r;
2294   eh_catch c;
2295 
2296   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2297   switch (r->type)
2298     {
2299     case ERT_TRY:
2300       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2301 	{
2302 	  old_bb = label_to_block (c->label);
2303 	  if (old_bb == e->dest)
2304 	    {
2305 	      c->label = new_lab;
2306 	      any_changed = true;
2307 	    }
2308 	}
2309       break;
2310 
2311     case ERT_ALLOWED_EXCEPTIONS:
2312       old_bb = label_to_block (r->u.allowed.label);
2313       gcc_assert (old_bb == e->dest);
2314       r->u.allowed.label = new_lab;
2315       any_changed = true;
2316       break;
2317 
2318     default:
2319       gcc_unreachable ();
2320     }
2321 
2322   gcc_assert (any_changed);
2323 }
2324 
2325 /* Helper function for operation_could_trap_p and stmt_could_throw_p.  */
2326 
2327 bool
2328 operation_could_trap_helper_p (enum tree_code op,
2329 			       bool fp_operation,
2330 			       bool honor_trapv,
2331 			       bool honor_nans,
2332 			       bool honor_snans,
2333 			       tree divisor,
2334 			       bool *handled)
2335 {
2336   *handled = true;
2337   switch (op)
2338     {
2339     case TRUNC_DIV_EXPR:
2340     case CEIL_DIV_EXPR:
2341     case FLOOR_DIV_EXPR:
2342     case ROUND_DIV_EXPR:
2343     case EXACT_DIV_EXPR:
2344     case CEIL_MOD_EXPR:
2345     case FLOOR_MOD_EXPR:
2346     case ROUND_MOD_EXPR:
2347     case TRUNC_MOD_EXPR:
2348     case RDIV_EXPR:
2349       if (honor_snans || honor_trapv)
2350 	return true;
2351       if (fp_operation)
2352 	return flag_trapping_math;
2353       if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2354         return true;
2355       return false;
2356 
2357     case LT_EXPR:
2358     case LE_EXPR:
2359     case GT_EXPR:
2360     case GE_EXPR:
2361     case LTGT_EXPR:
2362       /* Some floating point comparisons may trap.  */
2363       return honor_nans;
2364 
2365     case EQ_EXPR:
2366     case NE_EXPR:
2367     case UNORDERED_EXPR:
2368     case ORDERED_EXPR:
2369     case UNLT_EXPR:
2370     case UNLE_EXPR:
2371     case UNGT_EXPR:
2372     case UNGE_EXPR:
2373     case UNEQ_EXPR:
2374       return honor_snans;
2375 
2376     case CONVERT_EXPR:
2377     case FIX_TRUNC_EXPR:
2378       /* Conversion of floating point might trap.  */
2379       return honor_nans;
2380 
2381     case NEGATE_EXPR:
2382     case ABS_EXPR:
2383     case CONJ_EXPR:
2384       /* These operations don't trap with floating point.  */
2385       if (honor_trapv)
2386 	return true;
2387       return false;
2388 
2389     case PLUS_EXPR:
2390     case MINUS_EXPR:
2391     case MULT_EXPR:
2392       /* Any floating arithmetic may trap.  */
2393       if (fp_operation && flag_trapping_math)
2394 	return true;
2395       if (honor_trapv)
2396 	return true;
2397       return false;
2398 
2399     case COMPLEX_EXPR:
2400     case CONSTRUCTOR:
2401       /* Constructing an object cannot trap.  */
2402       return false;
2403 
2404     default:
2405       /* Any floating arithmetic may trap.  */
2406       if (fp_operation && flag_trapping_math)
2407 	return true;
2408 
2409       *handled = false;
2410       return false;
2411     }
2412 }
2413 
2414 /* Return true if operation OP may trap.  FP_OPERATION is true if OP is applied
2415    on floating-point values.  HONOR_TRAPV is true if OP is applied on integer
2416    type operands that may trap.  If OP is a division operator, DIVISOR contains
2417    the value of the divisor.  */
2418 
2419 bool
2420 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2421 			tree divisor)
2422 {
2423   bool honor_nans = (fp_operation && flag_trapping_math
2424 		     && !flag_finite_math_only);
2425   bool honor_snans = fp_operation && flag_signaling_nans != 0;
2426   bool handled;
2427 
2428   if (TREE_CODE_CLASS (op) != tcc_comparison
2429       && TREE_CODE_CLASS (op) != tcc_unary
2430       && TREE_CODE_CLASS (op) != tcc_binary)
2431     return false;
2432 
2433   return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2434 					honor_nans, honor_snans, divisor,
2435 					&handled);
2436 }
2437 
2438 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2439    location or floating point arithmetic.  C.f. the rtl version, may_trap_p.
2440    This routine expects only GIMPLE lhs or rhs input.  */
2441 
2442 bool
2443 tree_could_trap_p (tree expr)
2444 {
2445   enum tree_code code;
2446   bool fp_operation = false;
2447   bool honor_trapv = false;
2448   tree t, base, div = NULL_TREE;
2449 
2450   if (!expr)
2451     return false;
2452 
2453   code = TREE_CODE (expr);
2454   t = TREE_TYPE (expr);
2455 
2456   if (t)
2457     {
2458       if (COMPARISON_CLASS_P (expr))
2459 	fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2460       else
2461 	fp_operation = FLOAT_TYPE_P (t);
2462       honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2463     }
2464 
2465   if (TREE_CODE_CLASS (code) == tcc_binary)
2466     div = TREE_OPERAND (expr, 1);
2467   if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2468     return true;
2469 
2470  restart:
2471   switch (code)
2472     {
2473     case TARGET_MEM_REF:
2474       if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2475 	  && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2476 	return false;
2477       return !TREE_THIS_NOTRAP (expr);
2478 
2479     case COMPONENT_REF:
2480     case REALPART_EXPR:
2481     case IMAGPART_EXPR:
2482     case BIT_FIELD_REF:
2483     case VIEW_CONVERT_EXPR:
2484     case WITH_SIZE_EXPR:
2485       expr = TREE_OPERAND (expr, 0);
2486       code = TREE_CODE (expr);
2487       goto restart;
2488 
2489     case ARRAY_RANGE_REF:
2490       base = TREE_OPERAND (expr, 0);
2491       if (tree_could_trap_p (base))
2492 	return true;
2493       if (TREE_THIS_NOTRAP (expr))
2494 	return false;
2495       return !range_in_array_bounds_p (expr);
2496 
2497     case ARRAY_REF:
2498       base = TREE_OPERAND (expr, 0);
2499       if (tree_could_trap_p (base))
2500 	return true;
2501       if (TREE_THIS_NOTRAP (expr))
2502 	return false;
2503       return !in_array_bounds_p (expr);
2504 
2505     case MEM_REF:
2506       if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2507 	return false;
2508       /* Fallthru.  */
2509     case INDIRECT_REF:
2510       return !TREE_THIS_NOTRAP (expr);
2511 
2512     case ASM_EXPR:
2513       return TREE_THIS_VOLATILE (expr);
2514 
2515     case CALL_EXPR:
2516       t = get_callee_fndecl (expr);
2517       /* Assume that calls to weak functions may trap.  */
2518       if (!t || !DECL_P (t))
2519 	return true;
2520       if (DECL_WEAK (t))
2521 	return tree_could_trap_p (t);
2522       return false;
2523 
2524     case FUNCTION_DECL:
2525       /* Assume that accesses to weak functions may trap, unless we know
2526 	 they are certainly defined in current TU or in some other
2527 	 LTO partition.  */
2528       if (DECL_WEAK (expr))
2529 	{
2530 	  struct cgraph_node *node;
2531 	  if (!DECL_EXTERNAL (expr))
2532 	    return false;
2533 	  node = cgraph_function_node (cgraph_get_node (expr), NULL);
2534 	  if (node && node->in_other_partition)
2535 	    return false;
2536 	  return true;
2537 	}
2538       return false;
2539 
2540     case VAR_DECL:
2541       /* Assume that accesses to weak vars may trap, unless we know
2542 	 they are certainly defined in current TU or in some other
2543 	 LTO partition.  */
2544       if (DECL_WEAK (expr))
2545 	{
2546 	  struct varpool_node *node;
2547 	  if (!DECL_EXTERNAL (expr))
2548 	    return false;
2549 	  node = varpool_variable_node (varpool_get_node (expr), NULL);
2550 	  if (node && node->in_other_partition)
2551 	    return false;
2552 	  return true;
2553 	}
2554       return false;
2555 
2556     default:
2557       return false;
2558     }
2559 }
2560 
2561 
2562 /* Helper for stmt_could_throw_p.  Return true if STMT (assumed to be a
2563    an assignment or a conditional) may throw.  */
2564 
2565 static bool
2566 stmt_could_throw_1_p (gimple stmt)
2567 {
2568   enum tree_code code = gimple_expr_code (stmt);
2569   bool honor_nans = false;
2570   bool honor_snans = false;
2571   bool fp_operation = false;
2572   bool honor_trapv = false;
2573   tree t;
2574   size_t i;
2575   bool handled, ret;
2576 
2577   if (TREE_CODE_CLASS (code) == tcc_comparison
2578       || TREE_CODE_CLASS (code) == tcc_unary
2579       || TREE_CODE_CLASS (code) == tcc_binary)
2580     {
2581       if (is_gimple_assign (stmt)
2582 	  && TREE_CODE_CLASS (code) == tcc_comparison)
2583 	t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2584       else if (gimple_code (stmt) == GIMPLE_COND)
2585 	t = TREE_TYPE (gimple_cond_lhs (stmt));
2586       else
2587 	t = gimple_expr_type (stmt);
2588       fp_operation = FLOAT_TYPE_P (t);
2589       if (fp_operation)
2590 	{
2591 	  honor_nans = flag_trapping_math && !flag_finite_math_only;
2592 	  honor_snans = flag_signaling_nans != 0;
2593 	}
2594       else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2595 	honor_trapv = true;
2596     }
2597 
2598   /* Check if the main expression may trap.  */
2599   t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2600   ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2601 				       honor_nans, honor_snans, t,
2602 				       &handled);
2603   if (handled)
2604     return ret;
2605 
2606   /* If the expression does not trap, see if any of the individual operands may
2607      trap.  */
2608   for (i = 0; i < gimple_num_ops (stmt); i++)
2609     if (tree_could_trap_p (gimple_op (stmt, i)))
2610       return true;
2611 
2612   return false;
2613 }
2614 
2615 
2616 /* Return true if statement STMT could throw an exception.  */
2617 
2618 bool
2619 stmt_could_throw_p (gimple stmt)
2620 {
2621   if (!flag_exceptions)
2622     return false;
2623 
2624   /* The only statements that can throw an exception are assignments,
2625      conditionals, calls, resx, and asms.  */
2626   switch (gimple_code (stmt))
2627     {
2628     case GIMPLE_RESX:
2629       return true;
2630 
2631     case GIMPLE_CALL:
2632       return !gimple_call_nothrow_p (stmt);
2633 
2634     case GIMPLE_ASSIGN:
2635     case GIMPLE_COND:
2636       if (!cfun->can_throw_non_call_exceptions)
2637         return false;
2638       return stmt_could_throw_1_p (stmt);
2639 
2640     case GIMPLE_ASM:
2641       if (!cfun->can_throw_non_call_exceptions)
2642         return false;
2643       return gimple_asm_volatile_p (stmt);
2644 
2645     default:
2646       return false;
2647     }
2648 }
2649 
2650 
2651 /* Return true if expression T could throw an exception.  */
2652 
2653 bool
2654 tree_could_throw_p (tree t)
2655 {
2656   if (!flag_exceptions)
2657     return false;
2658   if (TREE_CODE (t) == MODIFY_EXPR)
2659     {
2660       if (cfun->can_throw_non_call_exceptions
2661           && tree_could_trap_p (TREE_OPERAND (t, 0)))
2662         return true;
2663       t = TREE_OPERAND (t, 1);
2664     }
2665 
2666   if (TREE_CODE (t) == WITH_SIZE_EXPR)
2667     t = TREE_OPERAND (t, 0);
2668   if (TREE_CODE (t) == CALL_EXPR)
2669     return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2670   if (cfun->can_throw_non_call_exceptions)
2671     return tree_could_trap_p (t);
2672   return false;
2673 }
2674 
2675 /* Return true if STMT can throw an exception that is not caught within
2676    the current function (CFUN).  */
2677 
2678 bool
2679 stmt_can_throw_external (gimple stmt)
2680 {
2681   int lp_nr;
2682 
2683   if (!stmt_could_throw_p (stmt))
2684     return false;
2685 
2686   lp_nr = lookup_stmt_eh_lp (stmt);
2687   return lp_nr == 0;
2688 }
2689 
2690 /* Return true if STMT can throw an exception that is caught within
2691    the current function (CFUN).  */
2692 
2693 bool
2694 stmt_can_throw_internal (gimple stmt)
2695 {
2696   int lp_nr;
2697 
2698   if (!stmt_could_throw_p (stmt))
2699     return false;
2700 
2701   lp_nr = lookup_stmt_eh_lp (stmt);
2702   return lp_nr > 0;
2703 }
2704 
2705 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2706    remove any entry it might have from the EH table.  Return true if
2707    any change was made.  */
2708 
2709 bool
2710 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2711 {
2712   if (stmt_could_throw_p (stmt))
2713     return false;
2714   return remove_stmt_from_eh_lp_fn (ifun, stmt);
2715 }
2716 
2717 /* Likewise, but always use the current function.  */
2718 
2719 bool
2720 maybe_clean_eh_stmt (gimple stmt)
2721 {
2722   return maybe_clean_eh_stmt_fn (cfun, stmt);
2723 }
2724 
2725 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2726    OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2727    in the table if it should be in there.  Return TRUE if a replacement was
2728    done that my require an EH edge purge.  */
2729 
2730 bool
2731 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2732 {
2733   int lp_nr = lookup_stmt_eh_lp (old_stmt);
2734 
2735   if (lp_nr != 0)
2736     {
2737       bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2738 
2739       if (new_stmt == old_stmt && new_stmt_could_throw)
2740 	return false;
2741 
2742       remove_stmt_from_eh_lp (old_stmt);
2743       if (new_stmt_could_throw)
2744 	{
2745 	  add_stmt_to_eh_lp (new_stmt, lp_nr);
2746 	  return false;
2747 	}
2748       else
2749 	return true;
2750     }
2751 
2752   return false;
2753 }
2754 
2755 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2756    in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT.  The MAP
2757    operand is the return value of duplicate_eh_regions.  */
2758 
2759 bool
2760 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2761 			    struct function *old_fun, gimple old_stmt,
2762 			    struct pointer_map_t *map, int default_lp_nr)
2763 {
2764   int old_lp_nr, new_lp_nr;
2765   void **slot;
2766 
2767   if (!stmt_could_throw_p (new_stmt))
2768     return false;
2769 
2770   old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2771   if (old_lp_nr == 0)
2772     {
2773       if (default_lp_nr == 0)
2774 	return false;
2775       new_lp_nr = default_lp_nr;
2776     }
2777   else if (old_lp_nr > 0)
2778     {
2779       eh_landing_pad old_lp, new_lp;
2780 
2781       old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2782       slot = pointer_map_contains (map, old_lp);
2783       new_lp = (eh_landing_pad) *slot;
2784       new_lp_nr = new_lp->index;
2785     }
2786   else
2787     {
2788       eh_region old_r, new_r;
2789 
2790       old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2791       slot = pointer_map_contains (map, old_r);
2792       new_r = (eh_region) *slot;
2793       new_lp_nr = -new_r->index;
2794     }
2795 
2796   add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2797   return true;
2798 }
2799 
2800 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2801    and thus no remapping is required.  */
2802 
2803 bool
2804 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2805 {
2806   int lp_nr;
2807 
2808   if (!stmt_could_throw_p (new_stmt))
2809     return false;
2810 
2811   lp_nr = lookup_stmt_eh_lp (old_stmt);
2812   if (lp_nr == 0)
2813     return false;
2814 
2815   add_stmt_to_eh_lp (new_stmt, lp_nr);
2816   return true;
2817 }
2818 
2819 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2820    GIMPLE_TRY) that are similar enough to be considered the same.  Currently
2821    this only handles handlers consisting of a single call, as that's the
2822    important case for C++: a destructor call for a particular object showing
2823    up in multiple handlers.  */
2824 
2825 static bool
2826 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2827 {
2828   gimple_stmt_iterator gsi;
2829   gimple ones, twos;
2830   unsigned int ai;
2831 
2832   gsi = gsi_start (oneh);
2833   if (!gsi_one_before_end_p (gsi))
2834     return false;
2835   ones = gsi_stmt (gsi);
2836 
2837   gsi = gsi_start (twoh);
2838   if (!gsi_one_before_end_p (gsi))
2839     return false;
2840   twos = gsi_stmt (gsi);
2841 
2842   if (!is_gimple_call (ones)
2843       || !is_gimple_call (twos)
2844       || gimple_call_lhs (ones)
2845       || gimple_call_lhs (twos)
2846       || gimple_call_chain (ones)
2847       || gimple_call_chain (twos)
2848       || !gimple_call_same_target_p (ones, twos)
2849       || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2850     return false;
2851 
2852   for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2853     if (!operand_equal_p (gimple_call_arg (ones, ai),
2854                           gimple_call_arg (twos, ai), 0))
2855       return false;
2856 
2857   return true;
2858 }
2859 
2860 /* Optimize
2861     try { A() } finally { try { ~B() } catch { ~A() } }
2862     try { ... } finally { ~A() }
2863    into
2864     try { A() } catch { ~B() }
2865     try { ~B() ... } finally { ~A() }
2866 
2867    This occurs frequently in C++, where A is a local variable and B is a
2868    temporary used in the initializer for A.  */
2869 
2870 static void
2871 optimize_double_finally (gimple one, gimple two)
2872 {
2873   gimple oneh;
2874   gimple_stmt_iterator gsi;
2875 
2876   gsi = gsi_start (gimple_try_cleanup (one));
2877   if (!gsi_one_before_end_p (gsi))
2878     return;
2879 
2880   oneh = gsi_stmt (gsi);
2881   if (gimple_code (oneh) != GIMPLE_TRY
2882       || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2883     return;
2884 
2885   if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2886     {
2887       gimple_seq seq = gimple_try_eval (oneh);
2888 
2889       gimple_try_set_cleanup (one, seq);
2890       gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2891       seq = copy_gimple_seq_and_replace_locals (seq);
2892       gimple_seq_add_seq (&seq, gimple_try_eval (two));
2893       gimple_try_set_eval (two, seq);
2894     }
2895 }
2896 
2897 /* Perform EH refactoring optimizations that are simpler to do when code
2898    flow has been lowered but EH structures haven't.  */
2899 
2900 static void
2901 refactor_eh_r (gimple_seq seq)
2902 {
2903   gimple_stmt_iterator gsi;
2904   gimple one, two;
2905 
2906   one = NULL;
2907   two = NULL;
2908   gsi = gsi_start (seq);
2909   while (1)
2910     {
2911       one = two;
2912       if (gsi_end_p (gsi))
2913 	two = NULL;
2914       else
2915 	two = gsi_stmt (gsi);
2916       if (one
2917 	  && two
2918 	  && gimple_code (one) == GIMPLE_TRY
2919 	  && gimple_code (two) == GIMPLE_TRY
2920 	  && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2921 	  && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2922 	optimize_double_finally (one, two);
2923       if (one)
2924 	switch (gimple_code (one))
2925 	  {
2926 	  case GIMPLE_TRY:
2927 	    refactor_eh_r (gimple_try_eval (one));
2928 	    refactor_eh_r (gimple_try_cleanup (one));
2929 	    break;
2930 	  case GIMPLE_CATCH:
2931 	    refactor_eh_r (gimple_catch_handler (one));
2932 	    break;
2933 	  case GIMPLE_EH_FILTER:
2934 	    refactor_eh_r (gimple_eh_filter_failure (one));
2935 	    break;
2936 	  case GIMPLE_EH_ELSE:
2937 	    refactor_eh_r (gimple_eh_else_n_body (one));
2938 	    refactor_eh_r (gimple_eh_else_e_body (one));
2939 	    break;
2940 	  default:
2941 	    break;
2942 	  }
2943       if (two)
2944 	gsi_next (&gsi);
2945       else
2946 	break;
2947     }
2948 }
2949 
2950 static unsigned
2951 refactor_eh (void)
2952 {
2953   refactor_eh_r (gimple_body (current_function_decl));
2954   return 0;
2955 }
2956 
2957 static bool
2958 gate_refactor_eh (void)
2959 {
2960   return flag_exceptions != 0;
2961 }
2962 
2963 struct gimple_opt_pass pass_refactor_eh =
2964 {
2965  {
2966   GIMPLE_PASS,
2967   "ehopt",				/* name */
2968   gate_refactor_eh,			/* gate */
2969   refactor_eh,				/* execute */
2970   NULL,					/* sub */
2971   NULL,					/* next */
2972   0,					/* static_pass_number */
2973   TV_TREE_EH,				/* tv_id */
2974   PROP_gimple_lcf,			/* properties_required */
2975   0,					/* properties_provided */
2976   0,					/* properties_destroyed */
2977   0,					/* todo_flags_start */
2978   0             			/* todo_flags_finish */
2979  }
2980 };
2981 
2982 /* At the end of gimple optimization, we can lower RESX.  */
2983 
2984 static bool
2985 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2986 {
2987   int lp_nr;
2988   eh_region src_r, dst_r;
2989   gimple_stmt_iterator gsi;
2990   gimple x;
2991   tree fn, src_nr;
2992   bool ret = false;
2993 
2994   lp_nr = lookup_stmt_eh_lp (stmt);
2995   if (lp_nr != 0)
2996     dst_r = get_eh_region_from_lp_number (lp_nr);
2997   else
2998     dst_r = NULL;
2999 
3000   src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3001   gsi = gsi_last_bb (bb);
3002 
3003   if (src_r == NULL)
3004     {
3005       /* We can wind up with no source region when pass_cleanup_eh shows
3006 	 that there are no entries into an eh region and deletes it, but
3007 	 then the block that contains the resx isn't removed.  This can
3008 	 happen without optimization when the switch statement created by
3009 	 lower_try_finally_switch isn't simplified to remove the eh case.
3010 
3011 	 Resolve this by expanding the resx node to an abort.  */
3012 
3013       fn = builtin_decl_implicit (BUILT_IN_TRAP);
3014       x = gimple_build_call (fn, 0);
3015       gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3016 
3017       while (EDGE_COUNT (bb->succs) > 0)
3018 	remove_edge (EDGE_SUCC (bb, 0));
3019     }
3020   else if (dst_r)
3021     {
3022       /* When we have a destination region, we resolve this by copying
3023 	 the excptr and filter values into place, and changing the edge
3024 	 to immediately after the landing pad.  */
3025       edge e;
3026 
3027       if (lp_nr < 0)
3028 	{
3029 	  basic_block new_bb;
3030 	  void **slot;
3031 	  tree lab;
3032 
3033 	  /* We are resuming into a MUST_NOT_CALL region.  Expand a call to
3034 	     the failure decl into a new block, if needed.  */
3035 	  gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3036 
3037 	  slot = pointer_map_contains (mnt_map, dst_r);
3038 	  if (slot == NULL)
3039 	    {
3040 	      gimple_stmt_iterator gsi2;
3041 
3042 	      new_bb = create_empty_bb (bb);
3043 	      lab = gimple_block_label (new_bb);
3044 	      gsi2 = gsi_start_bb (new_bb);
3045 
3046 	      fn = dst_r->u.must_not_throw.failure_decl;
3047 	      x = gimple_build_call (fn, 0);
3048 	      gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3049 	      gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3050 
3051 	      slot = pointer_map_insert (mnt_map, dst_r);
3052 	      *slot = lab;
3053 	    }
3054 	  else
3055 	    {
3056 	      lab = (tree) *slot;
3057 	      new_bb = label_to_block (lab);
3058 	    }
3059 
3060 	  gcc_assert (EDGE_COUNT (bb->succs) == 0);
3061 	  e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3062 	  e->count = bb->count;
3063 	  e->probability = REG_BR_PROB_BASE;
3064 	}
3065       else
3066 	{
3067 	  edge_iterator ei;
3068 	  tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3069 
3070 	  fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3071 	  src_nr = build_int_cst (integer_type_node, src_r->index);
3072 	  x = gimple_build_call (fn, 2, dst_nr, src_nr);
3073 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3074 
3075 	  /* Update the flags for the outgoing edge.  */
3076 	  e = single_succ_edge (bb);
3077 	  gcc_assert (e->flags & EDGE_EH);
3078 	  e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3079 
3080 	  /* If there are no more EH users of the landing pad, delete it.  */
3081 	  FOR_EACH_EDGE (e, ei, e->dest->preds)
3082 	    if (e->flags & EDGE_EH)
3083 	      break;
3084 	  if (e == NULL)
3085 	    {
3086 	      eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3087 	      remove_eh_landing_pad (lp);
3088 	    }
3089 	}
3090 
3091       ret = true;
3092     }
3093   else
3094     {
3095       tree var;
3096 
3097       /* When we don't have a destination region, this exception escapes
3098 	 up the call chain.  We resolve this by generating a call to the
3099 	 _Unwind_Resume library function.  */
3100 
3101       /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3102 	 with no arguments for C++ and Java.  Check for that.  */
3103       if (src_r->use_cxa_end_cleanup)
3104 	{
3105 	  fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3106 	  x = gimple_build_call (fn, 0);
3107 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3108 	}
3109       else
3110 	{
3111 	  fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3112 	  src_nr = build_int_cst (integer_type_node, src_r->index);
3113 	  x = gimple_build_call (fn, 1, src_nr);
3114 	  var = create_tmp_var (ptr_type_node, NULL);
3115 	  var = make_ssa_name (var, x);
3116 	  gimple_call_set_lhs (x, var);
3117 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3118 
3119 	  fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3120 	  x = gimple_build_call (fn, 1, var);
3121 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3122 	}
3123 
3124       gcc_assert (EDGE_COUNT (bb->succs) == 0);
3125     }
3126 
3127   gsi_remove (&gsi, true);
3128 
3129   return ret;
3130 }
3131 
3132 static unsigned
3133 execute_lower_resx (void)
3134 {
3135   basic_block bb;
3136   struct pointer_map_t *mnt_map;
3137   bool dominance_invalidated = false;
3138   bool any_rewritten = false;
3139 
3140   mnt_map = pointer_map_create ();
3141 
3142   FOR_EACH_BB (bb)
3143     {
3144       gimple last = last_stmt (bb);
3145       if (last && is_gimple_resx (last))
3146 	{
3147 	  dominance_invalidated |= lower_resx (bb, last, mnt_map);
3148 	  any_rewritten = true;
3149 	}
3150     }
3151 
3152   pointer_map_destroy (mnt_map);
3153 
3154   if (dominance_invalidated)
3155     {
3156       free_dominance_info (CDI_DOMINATORS);
3157       free_dominance_info (CDI_POST_DOMINATORS);
3158     }
3159 
3160   return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3161 }
3162 
3163 static bool
3164 gate_lower_resx (void)
3165 {
3166   return flag_exceptions != 0;
3167 }
3168 
3169 struct gimple_opt_pass pass_lower_resx =
3170 {
3171  {
3172   GIMPLE_PASS,
3173   "resx",				/* name */
3174   gate_lower_resx,			/* gate */
3175   execute_lower_resx,			/* execute */
3176   NULL,					/* sub */
3177   NULL,					/* next */
3178   0,					/* static_pass_number */
3179   TV_TREE_EH,				/* tv_id */
3180   PROP_gimple_lcf,			/* properties_required */
3181   0,					/* properties_provided */
3182   0,					/* properties_destroyed */
3183   0,					/* todo_flags_start */
3184   TODO_verify_flow	                /* todo_flags_finish */
3185  }
3186 };
3187 
3188 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3189    external throw.  */
3190 
3191 static void
3192 optimize_clobbers (basic_block bb)
3193 {
3194   gimple_stmt_iterator gsi = gsi_last_bb (bb);
3195   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3196     {
3197       gimple stmt = gsi_stmt (gsi);
3198       if (is_gimple_debug (stmt))
3199 	continue;
3200       if (!gimple_clobber_p (stmt)
3201 	  || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3202 	return;
3203       unlink_stmt_vdef (stmt);
3204       gsi_remove (&gsi, true);
3205       release_defs (stmt);
3206     }
3207 }
3208 
3209 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3210    internal throw to successor BB.  */
3211 
3212 static int
3213 sink_clobbers (basic_block bb)
3214 {
3215   edge e;
3216   edge_iterator ei;
3217   gimple_stmt_iterator gsi, dgsi;
3218   basic_block succbb;
3219   bool any_clobbers = false;
3220 
3221   /* Only optimize if BB has a single EH successor and
3222      all predecessor edges are EH too.  */
3223   if (!single_succ_p (bb)
3224       || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3225     return 0;
3226 
3227   FOR_EACH_EDGE (e, ei, bb->preds)
3228     {
3229       if ((e->flags & EDGE_EH) == 0)
3230 	return 0;
3231     }
3232 
3233   /* And BB contains only CLOBBER stmts before the final
3234      RESX.  */
3235   gsi = gsi_last_bb (bb);
3236   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3237     {
3238       gimple stmt = gsi_stmt (gsi);
3239       if (is_gimple_debug (stmt))
3240 	continue;
3241       if (gimple_code (stmt) == GIMPLE_LABEL)
3242 	break;
3243       if (!gimple_clobber_p (stmt)
3244 	  || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3245 	return 0;
3246       any_clobbers = true;
3247     }
3248   if (!any_clobbers)
3249     return 0;
3250 
3251   succbb = single_succ (bb);
3252   dgsi = gsi_after_labels (succbb);
3253   gsi = gsi_last_bb (bb);
3254   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3255     {
3256       gimple stmt = gsi_stmt (gsi);
3257       tree vdef;
3258       if (is_gimple_debug (stmt))
3259 	continue;
3260       if (gimple_code (stmt) == GIMPLE_LABEL)
3261 	break;
3262       unlink_stmt_vdef (stmt);
3263       gsi_remove (&gsi, false);
3264       vdef = gimple_vdef (stmt);
3265       if (vdef && TREE_CODE (vdef) == SSA_NAME)
3266 	{
3267 	  vdef = SSA_NAME_VAR (vdef);
3268 	  mark_sym_for_renaming (vdef);
3269 	  gimple_set_vdef (stmt, vdef);
3270 	  gimple_set_vuse (stmt, vdef);
3271 	}
3272       release_defs (stmt);
3273       gsi_insert_before (&dgsi, stmt, GSI_SAME_STMT);
3274     }
3275 
3276   return TODO_update_ssa_only_virtuals;
3277 }
3278 
3279 /* At the end of inlining, we can lower EH_DISPATCH.  Return true when
3280    we have found some duplicate labels and removed some edges.  */
3281 
3282 static bool
3283 lower_eh_dispatch (basic_block src, gimple stmt)
3284 {
3285   gimple_stmt_iterator gsi;
3286   int region_nr;
3287   eh_region r;
3288   tree filter, fn;
3289   gimple x;
3290   bool redirected = false;
3291 
3292   region_nr = gimple_eh_dispatch_region (stmt);
3293   r = get_eh_region_from_number (region_nr);
3294 
3295   gsi = gsi_last_bb (src);
3296 
3297   switch (r->type)
3298     {
3299     case ERT_TRY:
3300       {
3301 	VEC (tree, heap) *labels = NULL;
3302 	tree default_label = NULL;
3303 	eh_catch c;
3304 	edge_iterator ei;
3305 	edge e;
3306 	struct pointer_set_t *seen_values = pointer_set_create ();
3307 
3308 	/* Collect the labels for a switch.  Zero the post_landing_pad
3309 	   field becase we'll no longer have anything keeping these labels
3310 	   in existance and the optimizer will be free to merge these
3311 	   blocks at will.  */
3312 	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3313 	  {
3314 	    tree tp_node, flt_node, lab = c->label;
3315 	    bool have_label = false;
3316 
3317 	    c->label = NULL;
3318 	    tp_node = c->type_list;
3319 	    flt_node = c->filter_list;
3320 
3321 	    if (tp_node == NULL)
3322 	      {
3323 	        default_label = lab;
3324 		break;
3325 	      }
3326 	    do
3327 	      {
3328 		/* Filter out duplicate labels that arise when this handler
3329 		   is shadowed by an earlier one.  When no labels are
3330 		   attached to the handler anymore, we remove
3331 		   the corresponding edge and then we delete unreachable
3332 		   blocks at the end of this pass.  */
3333 		if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3334 		  {
3335 		    tree t = build_case_label (TREE_VALUE (flt_node),
3336 					       NULL, lab);
3337 		    VEC_safe_push (tree, heap, labels, t);
3338 		    pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3339 		    have_label = true;
3340 		  }
3341 
3342 		tp_node = TREE_CHAIN (tp_node);
3343 		flt_node = TREE_CHAIN (flt_node);
3344 	      }
3345 	    while (tp_node);
3346 	    if (! have_label)
3347 	      {
3348 	        remove_edge (find_edge (src, label_to_block (lab)));
3349 	        redirected = true;
3350 	      }
3351 	  }
3352 
3353 	/* Clean up the edge flags.  */
3354 	FOR_EACH_EDGE (e, ei, src->succs)
3355 	  {
3356 	    if (e->flags & EDGE_FALLTHRU)
3357 	      {
3358 		/* If there was no catch-all, use the fallthru edge.  */
3359 		if (default_label == NULL)
3360 		  default_label = gimple_block_label (e->dest);
3361 		e->flags &= ~EDGE_FALLTHRU;
3362 	      }
3363 	  }
3364 	gcc_assert (default_label != NULL);
3365 
3366 	/* Don't generate a switch if there's only a default case.
3367 	   This is common in the form of try { A; } catch (...) { B; }.  */
3368 	if (labels == NULL)
3369 	  {
3370 	    e = single_succ_edge (src);
3371 	    e->flags |= EDGE_FALLTHRU;
3372 	  }
3373 	else
3374 	  {
3375 	    fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3376 	    x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3377 							 region_nr));
3378 	    filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3379 	    filter = make_ssa_name (filter, x);
3380 	    gimple_call_set_lhs (x, filter);
3381 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3382 
3383 	    /* Turn the default label into a default case.  */
3384 	    default_label = build_case_label (NULL, NULL, default_label);
3385 	    sort_case_labels (labels);
3386 
3387 	    x = gimple_build_switch_vec (filter, default_label, labels);
3388 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3389 
3390 	    VEC_free (tree, heap, labels);
3391 	  }
3392 	pointer_set_destroy (seen_values);
3393       }
3394       break;
3395 
3396     case ERT_ALLOWED_EXCEPTIONS:
3397       {
3398 	edge b_e = BRANCH_EDGE (src);
3399 	edge f_e = FALLTHRU_EDGE (src);
3400 
3401 	fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3402 	x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3403 						     region_nr));
3404 	filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3405 	filter = make_ssa_name (filter, x);
3406 	gimple_call_set_lhs (x, filter);
3407 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3408 
3409 	r->u.allowed.label = NULL;
3410 	x = gimple_build_cond (EQ_EXPR, filter,
3411 			       build_int_cst (TREE_TYPE (filter),
3412 					      r->u.allowed.filter),
3413 			       NULL_TREE, NULL_TREE);
3414 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3415 
3416 	b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3417         f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3418       }
3419       break;
3420 
3421     default:
3422       gcc_unreachable ();
3423     }
3424 
3425   /* Replace the EH_DISPATCH with the SWITCH or COND generated above.  */
3426   gsi_remove (&gsi, true);
3427   return redirected;
3428 }
3429 
3430 static unsigned
3431 execute_lower_eh_dispatch (void)
3432 {
3433   basic_block bb;
3434   int flags = 0;
3435   bool redirected = false;
3436 
3437   assign_filter_values ();
3438 
3439   FOR_EACH_BB (bb)
3440     {
3441       gimple last = last_stmt (bb);
3442       if (last == NULL)
3443 	continue;
3444       if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3445 	{
3446 	  redirected |= lower_eh_dispatch (bb, last);
3447 	  flags |= TODO_update_ssa_only_virtuals;
3448 	}
3449       else if (gimple_code (last) == GIMPLE_RESX)
3450 	{
3451 	  if (stmt_can_throw_external (last))
3452 	    optimize_clobbers (bb);
3453 	  else
3454 	    flags |= sink_clobbers (bb);
3455 	}
3456     }
3457 
3458   if (redirected)
3459     delete_unreachable_blocks ();
3460   return flags;
3461 }
3462 
3463 static bool
3464 gate_lower_eh_dispatch (void)
3465 {
3466   return cfun->eh->region_tree != NULL;
3467 }
3468 
3469 struct gimple_opt_pass pass_lower_eh_dispatch =
3470 {
3471  {
3472   GIMPLE_PASS,
3473   "ehdisp",				/* name */
3474   gate_lower_eh_dispatch,		/* gate */
3475   execute_lower_eh_dispatch,		/* execute */
3476   NULL,					/* sub */
3477   NULL,					/* next */
3478   0,					/* static_pass_number */
3479   TV_TREE_EH,				/* tv_id */
3480   PROP_gimple_lcf,			/* properties_required */
3481   0,					/* properties_provided */
3482   0,					/* properties_destroyed */
3483   0,					/* todo_flags_start */
3484   TODO_verify_flow	                /* todo_flags_finish */
3485  }
3486 };
3487 
3488 /* Walk statements, see what regions are really referenced and remove
3489    those that are unused.  */
3490 
3491 static void
3492 remove_unreachable_handlers (void)
3493 {
3494   sbitmap r_reachable, lp_reachable;
3495   eh_region region;
3496   eh_landing_pad lp;
3497   basic_block bb;
3498   int lp_nr, r_nr;
3499 
3500   r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3501   lp_reachable
3502     = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3503   sbitmap_zero (r_reachable);
3504   sbitmap_zero (lp_reachable);
3505 
3506   FOR_EACH_BB (bb)
3507     {
3508       gimple_stmt_iterator gsi;
3509 
3510       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3511 	{
3512 	  gimple stmt = gsi_stmt (gsi);
3513 	  lp_nr = lookup_stmt_eh_lp (stmt);
3514 
3515 	  /* Negative LP numbers are MUST_NOT_THROW regions which
3516 	     are not considered BB enders.  */
3517 	  if (lp_nr < 0)
3518 	    SET_BIT (r_reachable, -lp_nr);
3519 
3520 	  /* Positive LP numbers are real landing pads, are are BB enders.  */
3521 	  else if (lp_nr > 0)
3522 	    {
3523 	      gcc_assert (gsi_one_before_end_p (gsi));
3524 	      region = get_eh_region_from_lp_number (lp_nr);
3525 	      SET_BIT (r_reachable, region->index);
3526 	      SET_BIT (lp_reachable, lp_nr);
3527 	    }
3528 
3529 	  /* Avoid removing regions referenced from RESX/EH_DISPATCH.  */
3530 	  switch (gimple_code (stmt))
3531 	    {
3532 	    case GIMPLE_RESX:
3533 	      SET_BIT (r_reachable, gimple_resx_region (stmt));
3534 	      break;
3535 	    case GIMPLE_EH_DISPATCH:
3536 	      SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3537 	      break;
3538 	    default:
3539 	      break;
3540 	    }
3541 	}
3542     }
3543 
3544   if (dump_file)
3545     {
3546       fprintf (dump_file, "Before removal of unreachable regions:\n");
3547       dump_eh_tree (dump_file, cfun);
3548       fprintf (dump_file, "Reachable regions: ");
3549       dump_sbitmap_file (dump_file, r_reachable);
3550       fprintf (dump_file, "Reachable landing pads: ");
3551       dump_sbitmap_file (dump_file, lp_reachable);
3552     }
3553 
3554   for (r_nr = 1;
3555        VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3556     if (region && !TEST_BIT (r_reachable, r_nr))
3557       {
3558 	if (dump_file)
3559 	  fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3560 	remove_eh_handler (region);
3561       }
3562 
3563   for (lp_nr = 1;
3564        VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3565     if (lp && !TEST_BIT (lp_reachable, lp_nr))
3566       {
3567 	if (dump_file)
3568 	  fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3569 	remove_eh_landing_pad (lp);
3570       }
3571 
3572   if (dump_file)
3573     {
3574       fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3575       dump_eh_tree (dump_file, cfun);
3576       fprintf (dump_file, "\n\n");
3577     }
3578 
3579   sbitmap_free (r_reachable);
3580   sbitmap_free (lp_reachable);
3581 
3582 #ifdef ENABLE_CHECKING
3583   verify_eh_tree (cfun);
3584 #endif
3585 }
3586 
3587 /* Remove unreachable handlers if any landing pads have been removed after
3588    last ehcleanup pass (due to gimple_purge_dead_eh_edges).  */
3589 
3590 void
3591 maybe_remove_unreachable_handlers (void)
3592 {
3593   eh_landing_pad lp;
3594   int i;
3595 
3596   if (cfun->eh == NULL)
3597     return;
3598 
3599   for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3600     if (lp && lp->post_landing_pad)
3601       {
3602 	if (label_to_block (lp->post_landing_pad) == NULL)
3603 	  {
3604 	    remove_unreachable_handlers ();
3605 	    return;
3606 	  }
3607       }
3608 }
3609 
3610 /* Remove regions that do not have landing pads.  This assumes
3611    that remove_unreachable_handlers has already been run, and
3612    that we've just manipulated the landing pads since then.  */
3613 
3614 static void
3615 remove_unreachable_handlers_no_lp (void)
3616 {
3617   eh_region r;
3618   int i;
3619   sbitmap r_reachable;
3620   basic_block bb;
3621 
3622   r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3623   sbitmap_zero (r_reachable);
3624 
3625   FOR_EACH_BB (bb)
3626     {
3627       gimple stmt = last_stmt (bb);
3628       if (stmt)
3629 	/* Avoid removing regions referenced from RESX/EH_DISPATCH.  */
3630 	switch (gimple_code (stmt))
3631 	  {
3632 	  case GIMPLE_RESX:
3633 	    SET_BIT (r_reachable, gimple_resx_region (stmt));
3634 	    break;
3635 	  case GIMPLE_EH_DISPATCH:
3636 	    SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3637 	    break;
3638 	  default:
3639 	    break;
3640 	  }
3641     }
3642 
3643   for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3644     if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW
3645 	&& !TEST_BIT (r_reachable, i))
3646       {
3647 	if (dump_file)
3648 	  fprintf (dump_file, "Removing unreachable region %d\n", i);
3649 	remove_eh_handler (r);
3650       }
3651 
3652   sbitmap_free (r_reachable);
3653 }
3654 
3655 /* Undo critical edge splitting on an EH landing pad.  Earlier, we
3656    optimisticaly split all sorts of edges, including EH edges.  The
3657    optimization passes in between may not have needed them; if not,
3658    we should undo the split.
3659 
3660    Recognize this case by having one EH edge incoming to the BB and
3661    one normal edge outgoing; BB should be empty apart from the
3662    post_landing_pad label.
3663 
3664    Note that this is slightly different from the empty handler case
3665    handled by cleanup_empty_eh, in that the actual handler may yet
3666    have actual code but the landing pad has been separated from the
3667    handler.  As such, cleanup_empty_eh relies on this transformation
3668    having been done first.  */
3669 
3670 static bool
3671 unsplit_eh (eh_landing_pad lp)
3672 {
3673   basic_block bb = label_to_block (lp->post_landing_pad);
3674   gimple_stmt_iterator gsi;
3675   edge e_in, e_out;
3676 
3677   /* Quickly check the edge counts on BB for singularity.  */
3678   if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3679     return false;
3680   e_in = EDGE_PRED (bb, 0);
3681   e_out = EDGE_SUCC (bb, 0);
3682 
3683   /* Input edge must be EH and output edge must be normal.  */
3684   if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3685     return false;
3686 
3687   /* The block must be empty except for the labels and debug insns.  */
3688   gsi = gsi_after_labels (bb);
3689   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3690     gsi_next_nondebug (&gsi);
3691   if (!gsi_end_p (gsi))
3692     return false;
3693 
3694   /* The destination block must not already have a landing pad
3695      for a different region.  */
3696   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3697     {
3698       gimple stmt = gsi_stmt (gsi);
3699       tree lab;
3700       int lp_nr;
3701 
3702       if (gimple_code (stmt) != GIMPLE_LABEL)
3703 	break;
3704       lab = gimple_label_label (stmt);
3705       lp_nr = EH_LANDING_PAD_NR (lab);
3706       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3707 	return false;
3708     }
3709 
3710   /* The new destination block must not already be a destination of
3711      the source block, lest we merge fallthru and eh edges and get
3712      all sorts of confused.  */
3713   if (find_edge (e_in->src, e_out->dest))
3714     return false;
3715 
3716   /* ??? We can get degenerate phis due to cfg cleanups.  I would have
3717      thought this should have been cleaned up by a phicprop pass, but
3718      that doesn't appear to handle virtuals.  Propagate by hand.  */
3719   if (!gimple_seq_empty_p (phi_nodes (bb)))
3720     {
3721       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3722 	{
3723 	  gimple use_stmt, phi = gsi_stmt (gsi);
3724 	  tree lhs = gimple_phi_result (phi);
3725 	  tree rhs = gimple_phi_arg_def (phi, 0);
3726 	  use_operand_p use_p;
3727 	  imm_use_iterator iter;
3728 
3729 	  FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3730 	    {
3731 	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3732 		SET_USE (use_p, rhs);
3733 	    }
3734 
3735 	  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3736 	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3737 
3738 	  remove_phi_node (&gsi, true);
3739 	}
3740     }
3741 
3742   if (dump_file && (dump_flags & TDF_DETAILS))
3743     fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3744 	     lp->index, e_out->dest->index);
3745 
3746   /* Redirect the edge.  Since redirect_eh_edge_1 expects to be moving
3747      a successor edge, humor it.  But do the real CFG change with the
3748      predecessor of E_OUT in order to preserve the ordering of arguments
3749      to the PHI nodes in E_OUT->DEST.  */
3750   redirect_eh_edge_1 (e_in, e_out->dest, false);
3751   redirect_edge_pred (e_out, e_in->src);
3752   e_out->flags = e_in->flags;
3753   e_out->probability = e_in->probability;
3754   e_out->count = e_in->count;
3755   remove_edge (e_in);
3756 
3757   return true;
3758 }
3759 
3760 /* Examine each landing pad block and see if it matches unsplit_eh.  */
3761 
3762 static bool
3763 unsplit_all_eh (void)
3764 {
3765   bool changed = false;
3766   eh_landing_pad lp;
3767   int i;
3768 
3769   for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3770     if (lp)
3771       changed |= unsplit_eh (lp);
3772 
3773   return changed;
3774 }
3775 
3776 /* A subroutine of cleanup_empty_eh.  Redirect all EH edges incoming
3777    to OLD_BB to NEW_BB; return true on success, false on failure.
3778 
3779    OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3780    PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3781    Virtual PHIs may be deleted and marked for renaming.  */
3782 
3783 static bool
3784 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3785 			     edge old_bb_out, bool change_region)
3786 {
3787   gimple_stmt_iterator ngsi, ogsi;
3788   edge_iterator ei;
3789   edge e;
3790   bitmap rename_virts;
3791   bitmap ophi_handled;
3792 
3793   /* The destination block must not be a regular successor for any
3794      of the preds of the landing pad.  Thus, avoid turning
3795         <..>
3796 	 |  \ EH
3797 	 |  <..>
3798 	 |  /
3799 	<..>
3800      into
3801         <..>
3802 	|  | EH
3803 	<..>
3804      which CFG verification would choke on.  See PR45172 and PR51089.  */
3805   FOR_EACH_EDGE (e, ei, old_bb->preds)
3806     if (find_edge (e->src, new_bb))
3807       return false;
3808 
3809   FOR_EACH_EDGE (e, ei, old_bb->preds)
3810     redirect_edge_var_map_clear (e);
3811 
3812   ophi_handled = BITMAP_ALLOC (NULL);
3813   rename_virts = BITMAP_ALLOC (NULL);
3814 
3815   /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3816      for the edges we're going to move.  */
3817   for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3818     {
3819       gimple ophi, nphi = gsi_stmt (ngsi);
3820       tree nresult, nop;
3821 
3822       nresult = gimple_phi_result (nphi);
3823       nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3824 
3825       /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3826 	 the source ssa_name.  */
3827       ophi = NULL;
3828       for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3829 	{
3830 	  ophi = gsi_stmt (ogsi);
3831 	  if (gimple_phi_result (ophi) == nop)
3832 	    break;
3833 	  ophi = NULL;
3834 	}
3835 
3836       /* If we did find the corresponding PHI, copy those inputs.  */
3837       if (ophi)
3838 	{
3839 	  /* If NOP is used somewhere else beyond phis in new_bb, give up.  */
3840 	  if (!has_single_use (nop))
3841 	    {
3842 	      imm_use_iterator imm_iter;
3843 	      use_operand_p use_p;
3844 
3845 	      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3846 		{
3847 		  if (!gimple_debug_bind_p (USE_STMT (use_p))
3848 		      && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3849 			  || gimple_bb (USE_STMT (use_p)) != new_bb))
3850 		    goto fail;
3851 		}
3852 	    }
3853 	  bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3854 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3855 	    {
3856 	      location_t oloc;
3857 	      tree oop;
3858 
3859 	      if ((e->flags & EDGE_EH) == 0)
3860 		continue;
3861 	      oop = gimple_phi_arg_def (ophi, e->dest_idx);
3862 	      oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3863 	      redirect_edge_var_map_add (e, nresult, oop, oloc);
3864 	    }
3865 	}
3866       /* If we didn't find the PHI, but it's a VOP, remember to rename
3867 	 it later, assuming all other tests succeed.  */
3868       else if (!is_gimple_reg (nresult))
3869 	bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3870       /* If we didn't find the PHI, and it's a real variable, we know
3871 	 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3872 	 variable is unchanged from input to the block and we can simply
3873 	 re-use the input to NEW_BB from the OLD_BB_OUT edge.  */
3874       else
3875 	{
3876 	  location_t nloc
3877 	    = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3878 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3879 	    redirect_edge_var_map_add (e, nresult, nop, nloc);
3880 	}
3881     }
3882 
3883   /* Second, verify that all PHIs from OLD_BB have been handled.  If not,
3884      we don't know what values from the other edges into NEW_BB to use.  */
3885   for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3886     {
3887       gimple ophi = gsi_stmt (ogsi);
3888       tree oresult = gimple_phi_result (ophi);
3889       if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3890 	goto fail;
3891     }
3892 
3893   /* At this point we know that the merge will succeed.  Remove the PHI
3894      nodes for the virtuals that we want to rename.  */
3895   if (!bitmap_empty_p (rename_virts))
3896     {
3897       for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3898 	{
3899 	  gimple nphi = gsi_stmt (ngsi);
3900 	  tree nresult = gimple_phi_result (nphi);
3901 	  if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3902 	    {
3903 	      mark_virtual_phi_result_for_renaming (nphi);
3904 	      remove_phi_node (&ngsi, true);
3905 	    }
3906 	  else
3907 	    gsi_next (&ngsi);
3908 	}
3909     }
3910 
3911   /* Finally, move the edges and update the PHIs.  */
3912   for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3913     if (e->flags & EDGE_EH)
3914       {
3915 	redirect_eh_edge_1 (e, new_bb, change_region);
3916 	redirect_edge_succ (e, new_bb);
3917 	flush_pending_stmts (e);
3918       }
3919     else
3920       ei_next (&ei);
3921 
3922   BITMAP_FREE (ophi_handled);
3923   BITMAP_FREE (rename_virts);
3924   return true;
3925 
3926  fail:
3927   FOR_EACH_EDGE (e, ei, old_bb->preds)
3928     redirect_edge_var_map_clear (e);
3929   BITMAP_FREE (ophi_handled);
3930   BITMAP_FREE (rename_virts);
3931   return false;
3932 }
3933 
3934 /* A subroutine of cleanup_empty_eh.  Move a landing pad LP from its
3935    old region to NEW_REGION at BB.  */
3936 
3937 static void
3938 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3939 			  eh_landing_pad lp, eh_region new_region)
3940 {
3941   gimple_stmt_iterator gsi;
3942   eh_landing_pad *pp;
3943 
3944   for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3945     continue;
3946   *pp = lp->next_lp;
3947 
3948   lp->region = new_region;
3949   lp->next_lp = new_region->landing_pads;
3950   new_region->landing_pads = lp;
3951 
3952   /* Delete the RESX that was matched within the empty handler block.  */
3953   gsi = gsi_last_bb (bb);
3954   mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3955   gsi_remove (&gsi, true);
3956 
3957   /* Clean up E_OUT for the fallthru.  */
3958   e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3959   e_out->probability = REG_BR_PROB_BASE;
3960 }
3961 
3962 /* A subroutine of cleanup_empty_eh.  Handle more complex cases of
3963    unsplitting than unsplit_eh was prepared to handle, e.g. when
3964    multiple incoming edges and phis are involved.  */
3965 
3966 static bool
3967 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3968 {
3969   gimple_stmt_iterator gsi;
3970   tree lab;
3971 
3972   /* We really ought not have totally lost everything following
3973      a landing pad label.  Given that BB is empty, there had better
3974      be a successor.  */
3975   gcc_assert (e_out != NULL);
3976 
3977   /* The destination block must not already have a landing pad
3978      for a different region.  */
3979   lab = NULL;
3980   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3981     {
3982       gimple stmt = gsi_stmt (gsi);
3983       int lp_nr;
3984 
3985       if (gimple_code (stmt) != GIMPLE_LABEL)
3986 	break;
3987       lab = gimple_label_label (stmt);
3988       lp_nr = EH_LANDING_PAD_NR (lab);
3989       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3990 	return false;
3991     }
3992 
3993   /* Attempt to move the PHIs into the successor block.  */
3994   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3995     {
3996       if (dump_file && (dump_flags & TDF_DETAILS))
3997 	fprintf (dump_file,
3998 		 "Unsplit EH landing pad %d to block %i "
3999 		 "(via cleanup_empty_eh).\n",
4000 		 lp->index, e_out->dest->index);
4001       return true;
4002     }
4003 
4004   return false;
4005 }
4006 
4007 /* Return true if edge E_FIRST is part of an empty infinite loop
4008    or leads to such a loop through a series of single successor
4009    empty bbs.  */
4010 
4011 static bool
4012 infinite_empty_loop_p (edge e_first)
4013 {
4014   bool inf_loop = false;
4015   edge e;
4016 
4017   if (e_first->dest == e_first->src)
4018     return true;
4019 
4020   e_first->src->aux = (void *) 1;
4021   for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4022     {
4023       gimple_stmt_iterator gsi;
4024       if (e->dest->aux)
4025 	{
4026 	  inf_loop = true;
4027 	  break;
4028 	}
4029       e->dest->aux = (void *) 1;
4030       gsi = gsi_after_labels (e->dest);
4031       if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4032 	gsi_next_nondebug (&gsi);
4033       if (!gsi_end_p (gsi))
4034 	break;
4035     }
4036   e_first->src->aux = NULL;
4037   for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4038     e->dest->aux = NULL;
4039 
4040   return inf_loop;
4041 }
4042 
4043 /* Examine the block associated with LP to determine if it's an empty
4044    handler for its EH region.  If so, attempt to redirect EH edges to
4045    an outer region.  Return true the CFG was updated in any way.  This
4046    is similar to jump forwarding, just across EH edges.  */
4047 
4048 static bool
4049 cleanup_empty_eh (eh_landing_pad lp)
4050 {
4051   basic_block bb = label_to_block (lp->post_landing_pad);
4052   gimple_stmt_iterator gsi;
4053   gimple resx;
4054   eh_region new_region;
4055   edge_iterator ei;
4056   edge e, e_out;
4057   bool has_non_eh_pred;
4058   bool ret = false;
4059   int new_lp_nr;
4060 
4061   /* There can be zero or one edges out of BB.  This is the quickest test.  */
4062   switch (EDGE_COUNT (bb->succs))
4063     {
4064     case 0:
4065       e_out = NULL;
4066       break;
4067     case 1:
4068       e_out = EDGE_SUCC (bb, 0);
4069       break;
4070     default:
4071       return false;
4072     }
4073 
4074   resx = last_stmt (bb);
4075   if (resx && is_gimple_resx (resx))
4076     {
4077       if (stmt_can_throw_external (resx))
4078 	optimize_clobbers (bb);
4079       else if (sink_clobbers (bb))
4080 	ret = true;
4081     }
4082 
4083   gsi = gsi_after_labels (bb);
4084 
4085   /* Make sure to skip debug statements.  */
4086   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4087     gsi_next_nondebug (&gsi);
4088 
4089   /* If the block is totally empty, look for more unsplitting cases.  */
4090   if (gsi_end_p (gsi))
4091     {
4092       /* For the degenerate case of an infinite loop bail out.  */
4093       if (infinite_empty_loop_p (e_out))
4094 	return ret;
4095 
4096       return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4097     }
4098 
4099   /* The block should consist only of a single RESX statement, modulo a
4100      preceding call to __builtin_stack_restore if there is no outgoing
4101      edge, since the call can be eliminated in this case.  */
4102   resx = gsi_stmt (gsi);
4103   if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4104     {
4105       gsi_next (&gsi);
4106       resx = gsi_stmt (gsi);
4107     }
4108   if (!is_gimple_resx (resx))
4109     return ret;
4110   gcc_assert (gsi_one_before_end_p (gsi));
4111 
4112   /* Determine if there are non-EH edges, or resx edges into the handler.  */
4113   has_non_eh_pred = false;
4114   FOR_EACH_EDGE (e, ei, bb->preds)
4115     if (!(e->flags & EDGE_EH))
4116       has_non_eh_pred = true;
4117 
4118   /* Find the handler that's outer of the empty handler by looking at
4119      where the RESX instruction was vectored.  */
4120   new_lp_nr = lookup_stmt_eh_lp (resx);
4121   new_region = get_eh_region_from_lp_number (new_lp_nr);
4122 
4123   /* If there's no destination region within the current function,
4124      redirection is trivial via removing the throwing statements from
4125      the EH region, removing the EH edges, and allowing the block
4126      to go unreachable.  */
4127   if (new_region == NULL)
4128     {
4129       gcc_assert (e_out == NULL);
4130       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4131 	if (e->flags & EDGE_EH)
4132 	  {
4133 	    gimple stmt = last_stmt (e->src);
4134 	    remove_stmt_from_eh_lp (stmt);
4135 	    remove_edge (e);
4136 	  }
4137 	else
4138 	  ei_next (&ei);
4139       goto succeed;
4140     }
4141 
4142   /* If the destination region is a MUST_NOT_THROW, allow the runtime
4143      to handle the abort and allow the blocks to go unreachable.  */
4144   if (new_region->type == ERT_MUST_NOT_THROW)
4145     {
4146       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4147 	if (e->flags & EDGE_EH)
4148 	  {
4149 	    gimple stmt = last_stmt (e->src);
4150 	    remove_stmt_from_eh_lp (stmt);
4151 	    add_stmt_to_eh_lp (stmt, new_lp_nr);
4152 	    remove_edge (e);
4153 	  }
4154 	else
4155 	  ei_next (&ei);
4156       goto succeed;
4157     }
4158 
4159   /* Try to redirect the EH edges and merge the PHIs into the destination
4160      landing pad block.  If the merge succeeds, we'll already have redirected
4161      all the EH edges.  The handler itself will go unreachable if there were
4162      no normal edges.  */
4163   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4164     goto succeed;
4165 
4166   /* Finally, if all input edges are EH edges, then we can (potentially)
4167      reduce the number of transfers from the runtime by moving the landing
4168      pad from the original region to the new region.  This is a win when
4169      we remove the last CLEANUP region along a particular exception
4170      propagation path.  Since nothing changes except for the region with
4171      which the landing pad is associated, the PHI nodes do not need to be
4172      adjusted at all.  */
4173   if (!has_non_eh_pred)
4174     {
4175       cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4176       if (dump_file && (dump_flags & TDF_DETAILS))
4177 	fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4178 		 lp->index, new_region->index);
4179 
4180       /* ??? The CFG didn't change, but we may have rendered the
4181 	 old EH region unreachable.  Trigger a cleanup there.  */
4182       return true;
4183     }
4184 
4185   return ret;
4186 
4187  succeed:
4188   if (dump_file && (dump_flags & TDF_DETAILS))
4189     fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4190   remove_eh_landing_pad (lp);
4191   return true;
4192 }
4193 
4194 /* Do a post-order traversal of the EH region tree.  Examine each
4195    post_landing_pad block and see if we can eliminate it as empty.  */
4196 
4197 static bool
4198 cleanup_all_empty_eh (void)
4199 {
4200   bool changed = false;
4201   eh_landing_pad lp;
4202   int i;
4203 
4204   for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
4205     if (lp)
4206       changed |= cleanup_empty_eh (lp);
4207 
4208   return changed;
4209 }
4210 
4211 /* Perform cleanups and lowering of exception handling
4212     1) cleanups regions with handlers doing nothing are optimized out
4213     2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4214     3) Info about regions that are containing instructions, and regions
4215        reachable via local EH edges is collected
4216     4) Eh tree is pruned for regions no longer neccesary.
4217 
4218    TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4219 	 Unify those that have the same failure decl and locus.
4220 */
4221 
4222 static unsigned int
4223 execute_cleanup_eh_1 (void)
4224 {
4225   /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4226      looking up unreachable landing pads.  */
4227   remove_unreachable_handlers ();
4228 
4229   /* Watch out for the region tree vanishing due to all unreachable.  */
4230   if (cfun->eh->region_tree && optimize)
4231     {
4232       bool changed = false;
4233 
4234       changed |= unsplit_all_eh ();
4235       changed |= cleanup_all_empty_eh ();
4236 
4237       if (changed)
4238 	{
4239 	  free_dominance_info (CDI_DOMINATORS);
4240 	  free_dominance_info (CDI_POST_DOMINATORS);
4241 
4242           /* We delayed all basic block deletion, as we may have performed
4243 	     cleanups on EH edges while non-EH edges were still present.  */
4244 	  delete_unreachable_blocks ();
4245 
4246 	  /* We manipulated the landing pads.  Remove any region that no
4247 	     longer has a landing pad.  */
4248 	  remove_unreachable_handlers_no_lp ();
4249 
4250 	  return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4251 	}
4252     }
4253 
4254   return 0;
4255 }
4256 
4257 static unsigned int
4258 execute_cleanup_eh (void)
4259 {
4260   int ret = execute_cleanup_eh_1 ();
4261 
4262   /* If the function no longer needs an EH personality routine
4263      clear it.  This exposes cross-language inlining opportunities
4264      and avoids references to a never defined personality routine.  */
4265   if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4266       && function_needs_eh_personality (cfun) != eh_personality_lang)
4267     DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4268 
4269   return ret;
4270 }
4271 
4272 static bool
4273 gate_cleanup_eh (void)
4274 {
4275   return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4276 }
4277 
4278 struct gimple_opt_pass pass_cleanup_eh = {
4279   {
4280    GIMPLE_PASS,
4281    "ehcleanup",			/* name */
4282    gate_cleanup_eh,		/* gate */
4283    execute_cleanup_eh,		/* execute */
4284    NULL,			/* sub */
4285    NULL,			/* next */
4286    0,				/* static_pass_number */
4287    TV_TREE_EH,			/* tv_id */
4288    PROP_gimple_lcf,		/* properties_required */
4289    0,				/* properties_provided */
4290    0,				/* properties_destroyed */
4291    0,				/* todo_flags_start */
4292    0             		/* todo_flags_finish */
4293    }
4294 };
4295 
4296 /* Verify that BB containing STMT as the last statement, has precisely the
4297    edge that make_eh_edges would create.  */
4298 
4299 DEBUG_FUNCTION bool
4300 verify_eh_edges (gimple stmt)
4301 {
4302   basic_block bb = gimple_bb (stmt);
4303   eh_landing_pad lp = NULL;
4304   int lp_nr;
4305   edge_iterator ei;
4306   edge e, eh_edge;
4307 
4308   lp_nr = lookup_stmt_eh_lp (stmt);
4309   if (lp_nr > 0)
4310     lp = get_eh_landing_pad_from_number (lp_nr);
4311 
4312   eh_edge = NULL;
4313   FOR_EACH_EDGE (e, ei, bb->succs)
4314     {
4315       if (e->flags & EDGE_EH)
4316 	{
4317 	  if (eh_edge)
4318 	    {
4319 	      error ("BB %i has multiple EH edges", bb->index);
4320 	      return true;
4321 	    }
4322 	  else
4323 	    eh_edge = e;
4324 	}
4325     }
4326 
4327   if (lp == NULL)
4328     {
4329       if (eh_edge)
4330 	{
4331 	  error ("BB %i can not throw but has an EH edge", bb->index);
4332 	  return true;
4333 	}
4334       return false;
4335     }
4336 
4337   if (!stmt_could_throw_p (stmt))
4338     {
4339       error ("BB %i last statement has incorrectly set lp", bb->index);
4340       return true;
4341     }
4342 
4343   if (eh_edge == NULL)
4344     {
4345       error ("BB %i is missing an EH edge", bb->index);
4346       return true;
4347     }
4348 
4349   if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4350     {
4351       error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4352       return true;
4353     }
4354 
4355   return false;
4356 }
4357 
4358 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically.  */
4359 
4360 DEBUG_FUNCTION bool
4361 verify_eh_dispatch_edge (gimple stmt)
4362 {
4363   eh_region r;
4364   eh_catch c;
4365   basic_block src, dst;
4366   bool want_fallthru = true;
4367   edge_iterator ei;
4368   edge e, fall_edge;
4369 
4370   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4371   src = gimple_bb (stmt);
4372 
4373   FOR_EACH_EDGE (e, ei, src->succs)
4374     gcc_assert (e->aux == NULL);
4375 
4376   switch (r->type)
4377     {
4378     case ERT_TRY:
4379       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4380 	{
4381 	  dst = label_to_block (c->label);
4382 	  e = find_edge (src, dst);
4383 	  if (e == NULL)
4384 	    {
4385 	      error ("BB %i is missing an edge", src->index);
4386 	      return true;
4387 	    }
4388 	  e->aux = (void *)e;
4389 
4390 	  /* A catch-all handler doesn't have a fallthru.  */
4391 	  if (c->type_list == NULL)
4392 	    {
4393 	      want_fallthru = false;
4394 	      break;
4395 	    }
4396 	}
4397       break;
4398 
4399     case ERT_ALLOWED_EXCEPTIONS:
4400       dst = label_to_block (r->u.allowed.label);
4401       e = find_edge (src, dst);
4402       if (e == NULL)
4403 	{
4404 	  error ("BB %i is missing an edge", src->index);
4405 	  return true;
4406 	}
4407       e->aux = (void *)e;
4408       break;
4409 
4410     default:
4411       gcc_unreachable ();
4412     }
4413 
4414   fall_edge = NULL;
4415   FOR_EACH_EDGE (e, ei, src->succs)
4416     {
4417       if (e->flags & EDGE_FALLTHRU)
4418 	{
4419 	  if (fall_edge != NULL)
4420 	    {
4421 	      error ("BB %i too many fallthru edges", src->index);
4422 	      return true;
4423 	    }
4424 	  fall_edge = e;
4425 	}
4426       else if (e->aux)
4427 	e->aux = NULL;
4428       else
4429 	{
4430 	  error ("BB %i has incorrect edge", src->index);
4431 	  return true;
4432 	}
4433     }
4434   if ((fall_edge != NULL) ^ want_fallthru)
4435     {
4436       error ("BB %i has incorrect fallthru edge", src->index);
4437       return true;
4438     }
4439 
4440   return false;
4441 }
4442