1 /* Inline functions for tree-flow.h
2    Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008, 2010
3    Free Software Foundation, Inc.
4    Contributed by Diego Novillo <dnovillo@redhat.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
24 
25 /* Inline functions for manipulating various data structures defined in
26    tree-flow.h.  See tree-flow.h for documentation.  */
27 
28 /* Return true when gimple SSA form was built.
29    gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30    infrastructure is initialized.  Check for presence of the datastructures
31    at first place.  */
32 static inline bool
33 gimple_in_ssa_p (const struct function *fun)
34 {
35   return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
36 }
37 
38 /* Array of all variables referenced in the function.  */
39 static inline htab_t
40 gimple_referenced_vars (const struct function *fun)
41 {
42   if (!fun->gimple_df)
43     return NULL;
44   return fun->gimple_df->referenced_vars;
45 }
46 
47 /* Artificial variable used for the virtual operand FUD chain.  */
48 static inline tree
49 gimple_vop (const struct function *fun)
50 {
51   gcc_checking_assert (fun && fun->gimple_df);
52   return fun->gimple_df->vop;
53 }
54 
55 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
56 
57 static inline void *
58 first_htab_element (htab_iterator *hti, htab_t table)
59 {
60   hti->htab = table;
61   hti->slot = table->entries;
62   hti->limit = hti->slot + htab_size (table);
63   do
64     {
65       PTR x = *(hti->slot);
66       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
67 	break;
68     } while (++(hti->slot) < hti->limit);
69 
70   if (hti->slot < hti->limit)
71     return *(hti->slot);
72   return NULL;
73 }
74 
75 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
76    or NULL if we have  reached the end.  */
77 
78 static inline bool
79 end_htab_p (const htab_iterator *hti)
80 {
81   if (hti->slot >= hti->limit)
82     return true;
83   return false;
84 }
85 
86 /* Advance the hashtable iterator pointed to by HTI to the next element of the
87    hashtable.  */
88 
89 static inline void *
90 next_htab_element (htab_iterator *hti)
91 {
92   while (++(hti->slot) < hti->limit)
93     {
94       PTR x = *(hti->slot);
95       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
96 	return x;
97     };
98   return NULL;
99 }
100 
101 /* Get the variable with uid UID from the list of referenced vars.  */
102 
103 static inline tree
104 referenced_var (unsigned int uid)
105 {
106   tree var = referenced_var_lookup (cfun, uid);
107   gcc_assert (var || uid == 0);
108   return var;
109 }
110 
111 /* Initialize ITER to point to the first referenced variable in the
112    referenced_vars hashtable, and return that variable.  */
113 
114 static inline tree
115 first_referenced_var (struct function *fn, referenced_var_iterator *iter)
116 {
117   return (tree) first_htab_element (&iter->hti,
118 				    gimple_referenced_vars (fn));
119 }
120 
121 /* Return true if we have hit the end of the referenced variables ITER is
122    iterating through.  */
123 
124 static inline bool
125 end_referenced_vars_p (const referenced_var_iterator *iter)
126 {
127   return end_htab_p (&iter->hti);
128 }
129 
130 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
131    and return that variable.  */
132 
133 static inline tree
134 next_referenced_var (referenced_var_iterator *iter)
135 {
136   return (tree) next_htab_element (&iter->hti);
137 }
138 
139 /* Return the variable annotation for T, which must be a _DECL node.
140    Return NULL if the variable annotation doesn't already exist.  */
141 static inline var_ann_t
142 var_ann (const_tree t)
143 {
144   const var_ann_t *p = DECL_VAR_ANN_PTR (t);
145   return p ? *p : NULL;
146 }
147 
148 /* Get the number of the next statement uid to be allocated.  */
149 static inline unsigned int
150 gimple_stmt_max_uid (struct function *fn)
151 {
152   return fn->last_stmt_uid;
153 }
154 
155 /* Set the number of the next statement uid to be allocated.  */
156 static inline void
157 set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
158 {
159   fn->last_stmt_uid = maxid;
160 }
161 
162 /* Set the number of the next statement uid to be allocated.  */
163 static inline unsigned int
164 inc_gimple_stmt_max_uid (struct function *fn)
165 {
166   return fn->last_stmt_uid++;
167 }
168 
169 /* Return the line number for EXPR, or return -1 if we have no line
170    number information for it.  */
171 static inline int
172 get_lineno (const_gimple stmt)
173 {
174   location_t loc;
175 
176   if (!stmt)
177     return -1;
178 
179   loc = gimple_location (stmt);
180   if (loc == UNKNOWN_LOCATION)
181     return -1;
182 
183   return LOCATION_LINE (loc);
184 }
185 
186 /* Delink an immediate_uses node from its chain.  */
187 static inline void
188 delink_imm_use (ssa_use_operand_t *linknode)
189 {
190   /* Return if this node is not in a list.  */
191   if (linknode->prev == NULL)
192     return;
193 
194   linknode->prev->next = linknode->next;
195   linknode->next->prev = linknode->prev;
196   linknode->prev = NULL;
197   linknode->next = NULL;
198 }
199 
200 /* Link ssa_imm_use node LINKNODE into the chain for LIST.  */
201 static inline void
202 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
203 {
204   /* Link the new node at the head of the list.  If we are in the process of
205      traversing the list, we won't visit any new nodes added to it.  */
206   linknode->prev = list;
207   linknode->next = list->next;
208   list->next->prev = linknode;
209   list->next = linknode;
210 }
211 
212 /* Link ssa_imm_use node LINKNODE into the chain for DEF.  */
213 static inline void
214 link_imm_use (ssa_use_operand_t *linknode, tree def)
215 {
216   ssa_use_operand_t *root;
217 
218   if (!def || TREE_CODE (def) != SSA_NAME)
219     linknode->prev = NULL;
220   else
221     {
222       root = &(SSA_NAME_IMM_USE_NODE (def));
223       if (linknode->use)
224         gcc_checking_assert (*(linknode->use) == def);
225       link_imm_use_to_list (linknode, root);
226     }
227 }
228 
229 /* Set the value of a use pointed to by USE to VAL.  */
230 static inline void
231 set_ssa_use_from_ptr (use_operand_p use, tree val)
232 {
233   delink_imm_use (use);
234   *(use->use) = val;
235   link_imm_use (use, val);
236 }
237 
238 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
239    in STMT.  */
240 static inline void
241 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt)
242 {
243   if (stmt)
244     link_imm_use (linknode, def);
245   else
246     link_imm_use (linknode, NULL);
247   linknode->loc.stmt = stmt;
248 }
249 
250 /* Relink a new node in place of an old node in the list.  */
251 static inline void
252 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
253 {
254   /* The node one had better be in the same list.  */
255   gcc_checking_assert (*(old->use) == *(node->use));
256   node->prev = old->prev;
257   node->next = old->next;
258   if (old->prev)
259     {
260       old->prev->next = node;
261       old->next->prev = node;
262       /* Remove the old node from the list.  */
263       old->prev = NULL;
264     }
265 }
266 
267 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
268    in STMT.  */
269 static inline void
270 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
271 		     gimple stmt)
272 {
273   if (stmt)
274     relink_imm_use (linknode, old);
275   else
276     link_imm_use (linknode, NULL);
277   linknode->loc.stmt = stmt;
278 }
279 
280 
281 /* Return true is IMM has reached the end of the immediate use list.  */
282 static inline bool
283 end_readonly_imm_use_p (const imm_use_iterator *imm)
284 {
285   return (imm->imm_use == imm->end_p);
286 }
287 
288 /* Initialize iterator IMM to process the list for VAR.  */
289 static inline use_operand_p
290 first_readonly_imm_use (imm_use_iterator *imm, tree var)
291 {
292   imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
293   imm->imm_use = imm->end_p->next;
294 #ifdef ENABLE_CHECKING
295   imm->iter_node.next = imm->imm_use->next;
296 #endif
297   if (end_readonly_imm_use_p (imm))
298     return NULL_USE_OPERAND_P;
299   return imm->imm_use;
300 }
301 
302 /* Bump IMM to the next use in the list.  */
303 static inline use_operand_p
304 next_readonly_imm_use (imm_use_iterator *imm)
305 {
306   use_operand_p old = imm->imm_use;
307 
308 #ifdef ENABLE_CHECKING
309   /* If this assertion fails, it indicates the 'next' pointer has changed
310      since the last bump.  This indicates that the list is being modified
311      via stmt changes, or SET_USE, or somesuch thing, and you need to be
312      using the SAFE version of the iterator.  */
313   gcc_assert (imm->iter_node.next == old->next);
314   imm->iter_node.next = old->next->next;
315 #endif
316 
317   imm->imm_use = old->next;
318   if (end_readonly_imm_use_p (imm))
319     return NULL_USE_OPERAND_P;
320   return imm->imm_use;
321 }
322 
323 /* tree-cfg.c */
324 extern bool has_zero_uses_1 (const ssa_use_operand_t *head);
325 extern bool single_imm_use_1 (const ssa_use_operand_t *head,
326 			      use_operand_p *use_p, gimple *stmt);
327 
328 /* Return true if VAR has no nondebug uses.  */
329 static inline bool
330 has_zero_uses (const_tree var)
331 {
332   const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
333 
334   /* A single use_operand means there is no items in the list.  */
335   if (ptr == ptr->next)
336     return true;
337 
338   /* If there are debug stmts, we have to look at each use and see
339      whether there are any nondebug uses.  */
340   if (!MAY_HAVE_DEBUG_STMTS)
341     return false;
342 
343   return has_zero_uses_1 (ptr);
344 }
345 
346 /* Return true if VAR has a single nondebug use.  */
347 static inline bool
348 has_single_use (const_tree var)
349 {
350   const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
351 
352   /* If there aren't any uses whatsoever, we're done.  */
353   if (ptr == ptr->next)
354     return false;
355 
356   /* If there's a single use, check that it's not a debug stmt.  */
357   if (ptr == ptr->next->next)
358     return !is_gimple_debug (USE_STMT (ptr->next));
359 
360   /* If there are debug stmts, we have to look at each of them.  */
361   if (!MAY_HAVE_DEBUG_STMTS)
362     return false;
363 
364   return single_imm_use_1 (ptr, NULL, NULL);
365 }
366 
367 
368 /* If VAR has only a single immediate nondebug use, return true, and
369    set USE_P and STMT to the use pointer and stmt of occurrence.  */
370 static inline bool
371 single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt)
372 {
373   const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
374 
375   /* If there aren't any uses whatsoever, we're done.  */
376   if (ptr == ptr->next)
377     {
378     return_false:
379       *use_p = NULL_USE_OPERAND_P;
380       *stmt = NULL;
381       return false;
382     }
383 
384   /* If there's a single use, check that it's not a debug stmt.  */
385   if (ptr == ptr->next->next)
386     {
387       if (!is_gimple_debug (USE_STMT (ptr->next)))
388 	{
389 	  *use_p = ptr->next;
390 	  *stmt = ptr->next->loc.stmt;
391 	  return true;
392 	}
393       else
394 	goto return_false;
395     }
396 
397   /* If there are debug stmts, we have to look at each of them.  */
398   if (!MAY_HAVE_DEBUG_STMTS)
399     goto return_false;
400 
401   return single_imm_use_1 (ptr, use_p, stmt);
402 }
403 
404 /* Return the number of nondebug immediate uses of VAR.  */
405 static inline unsigned int
406 num_imm_uses (const_tree var)
407 {
408   const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
409   const ssa_use_operand_t *ptr;
410   unsigned int num = 0;
411 
412   if (!MAY_HAVE_DEBUG_STMTS)
413     for (ptr = start->next; ptr != start; ptr = ptr->next)
414       num++;
415   else
416     for (ptr = start->next; ptr != start; ptr = ptr->next)
417       if (!is_gimple_debug (USE_STMT (ptr)))
418 	num++;
419 
420   return num;
421 }
422 
423 /* Return the tree pointed-to by USE.  */
424 static inline tree
425 get_use_from_ptr (use_operand_p use)
426 {
427   return *(use->use);
428 }
429 
430 /* Return the tree pointed-to by DEF.  */
431 static inline tree
432 get_def_from_ptr (def_operand_p def)
433 {
434   return *def;
435 }
436 
437 /* Return a use_operand_p pointer for argument I of PHI node GS.  */
438 
439 static inline use_operand_p
440 gimple_phi_arg_imm_use_ptr (gimple gs, int i)
441 {
442   return &gimple_phi_arg (gs, i)->imm_use;
443 }
444 
445 /* Return the tree operand for argument I of PHI node GS.  */
446 
447 static inline tree
448 gimple_phi_arg_def (gimple gs, size_t index)
449 {
450   struct phi_arg_d *pd = gimple_phi_arg (gs, index);
451   return get_use_from_ptr (&pd->imm_use);
452 }
453 
454 /* Return a pointer to the tree operand for argument I of PHI node GS.  */
455 
456 static inline tree *
457 gimple_phi_arg_def_ptr (gimple gs, size_t index)
458 {
459   return &gimple_phi_arg (gs, index)->def;
460 }
461 
462 /* Return the edge associated with argument I of phi node GS.  */
463 
464 static inline edge
465 gimple_phi_arg_edge (gimple gs, size_t i)
466 {
467   return EDGE_PRED (gimple_bb (gs), i);
468 }
469 
470 /* Return the source location of gimple argument I of phi node GS.  */
471 
472 static inline source_location
473 gimple_phi_arg_location (gimple gs, size_t i)
474 {
475   return gimple_phi_arg (gs, i)->locus;
476 }
477 
478 /* Return the source location of the argument on edge E of phi node GS.  */
479 
480 static inline source_location
481 gimple_phi_arg_location_from_edge (gimple gs, edge e)
482 {
483   return gimple_phi_arg (gs, e->dest_idx)->locus;
484 }
485 
486 /* Set the source location of gimple argument I of phi node GS to LOC.  */
487 
488 static inline void
489 gimple_phi_arg_set_location (gimple gs, size_t i, source_location loc)
490 {
491   gimple_phi_arg (gs, i)->locus = loc;
492 }
493 
494 /* Return TRUE if argument I of phi node GS has a location record.  */
495 
496 static inline bool
497 gimple_phi_arg_has_location (gimple gs, size_t i)
498 {
499   return gimple_phi_arg_location (gs, i) != UNKNOWN_LOCATION;
500 }
501 
502 
503 /* Return the PHI nodes for basic block BB, or NULL if there are no
504    PHI nodes.  */
505 static inline gimple_seq
506 phi_nodes (const_basic_block bb)
507 {
508   gcc_checking_assert (!(bb->flags & BB_RTL));
509   if (!bb->il.gimple)
510     return NULL;
511   return bb->il.gimple->phi_nodes;
512 }
513 
514 /* Set PHI nodes of a basic block BB to SEQ.  */
515 
516 static inline void
517 set_phi_nodes (basic_block bb, gimple_seq seq)
518 {
519   gimple_stmt_iterator i;
520 
521   gcc_checking_assert (!(bb->flags & BB_RTL));
522   bb->il.gimple->phi_nodes = seq;
523   if (seq)
524     for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
525       gimple_set_bb (gsi_stmt (i), bb);
526 }
527 
528 /* Return the phi argument which contains the specified use.  */
529 
530 static inline int
531 phi_arg_index_from_use (use_operand_p use)
532 {
533   struct phi_arg_d *element, *root;
534   size_t index;
535   gimple phi;
536 
537   /* Since the use is the first thing in a PHI argument element, we can
538      calculate its index based on casting it to an argument, and performing
539      pointer arithmetic.  */
540 
541   phi = USE_STMT (use);
542 
543   element = (struct phi_arg_d *)use;
544   root = gimple_phi_arg (phi, 0);
545   index = element - root;
546 
547   /* Make sure the calculation doesn't have any leftover bytes.  If it does,
548      then imm_use is likely not the first element in phi_arg_d.  */
549   gcc_checking_assert ((((char *)element - (char *)root)
550 			% sizeof (struct phi_arg_d)) == 0
551 		       && index < gimple_phi_capacity (phi));
552 
553  return index;
554 }
555 
556 /* Mark VAR as used, so that it'll be preserved during rtl expansion.  */
557 
558 static inline void
559 set_is_used (tree var)
560 {
561   var_ann_t ann = var_ann (var);
562   ann->used = true;
563 }
564 
565 /* Clear VAR's used flag.  */
566 
567 static inline void
568 clear_is_used (tree var)
569 {
570   var_ann_t ann = var_ann (var);
571   ann->used = false;
572 }
573 
574 /* Return true if VAR is marked as used.  */
575 
576 static inline bool
577 is_used_p (tree var)
578 {
579   var_ann_t ann = var_ann (var);
580   return ann->used;
581 }
582 
583 /* Return true if T (assumed to be a DECL) is a global variable.
584    A variable is considered global if its storage is not automatic.  */
585 
586 static inline bool
587 is_global_var (const_tree t)
588 {
589   return (TREE_STATIC (t) || DECL_EXTERNAL (t));
590 }
591 
592 
593 /* Return true if VAR may be aliased.  A variable is considered as
594    maybe aliased if it has its address taken by the local TU
595    or possibly by another TU and might be modified through a pointer.  */
596 
597 static inline bool
598 may_be_aliased (const_tree var)
599 {
600   return (TREE_CODE (var) != CONST_DECL
601 	  && !((TREE_STATIC (var) || TREE_PUBLIC (var) || DECL_EXTERNAL (var))
602 	       && TREE_READONLY (var)
603 	       && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var)))
604 	  && (TREE_PUBLIC (var)
605 	      || DECL_EXTERNAL (var)
606 	      || TREE_ADDRESSABLE (var)));
607 }
608 
609 
610 /* PHI nodes should contain only ssa_names and invariants.  A test
611    for ssa_name is definitely simpler; don't let invalid contents
612    slip in in the meantime.  */
613 
614 static inline bool
615 phi_ssa_name_p (const_tree t)
616 {
617   if (TREE_CODE (t) == SSA_NAME)
618     return true;
619   gcc_checking_assert (is_gimple_min_invariant (t));
620   return false;
621 }
622 
623 
624 /* Returns the loop of the statement STMT.  */
625 
626 static inline struct loop *
627 loop_containing_stmt (gimple stmt)
628 {
629   basic_block bb = gimple_bb (stmt);
630   if (!bb)
631     return NULL;
632 
633   return bb->loop_father;
634 }
635 
636 
637 /*  -----------------------------------------------------------------------  */
638 
639 /* The following set of routines are used to iterator over various type of
640    SSA operands.  */
641 
642 /* Return true if PTR is finished iterating.  */
643 static inline bool
644 op_iter_done (const ssa_op_iter *ptr)
645 {
646   return ptr->done;
647 }
648 
649 /* Get the next iterator use value for PTR.  */
650 static inline use_operand_p
651 op_iter_next_use (ssa_op_iter *ptr)
652 {
653   use_operand_p use_p;
654   gcc_checking_assert (ptr->iter_type == ssa_op_iter_use);
655   if (ptr->uses)
656     {
657       use_p = USE_OP_PTR (ptr->uses);
658       ptr->uses = ptr->uses->next;
659       return use_p;
660     }
661   if (ptr->phi_i < ptr->num_phi)
662     {
663       return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
664     }
665   ptr->done = true;
666   return NULL_USE_OPERAND_P;
667 }
668 
669 /* Get the next iterator def value for PTR.  */
670 static inline def_operand_p
671 op_iter_next_def (ssa_op_iter *ptr)
672 {
673   def_operand_p def_p;
674   gcc_checking_assert (ptr->iter_type == ssa_op_iter_def);
675   if (ptr->defs)
676     {
677       def_p = DEF_OP_PTR (ptr->defs);
678       ptr->defs = ptr->defs->next;
679       return def_p;
680     }
681   ptr->done = true;
682   return NULL_DEF_OPERAND_P;
683 }
684 
685 /* Get the next iterator tree value for PTR.  */
686 static inline tree
687 op_iter_next_tree (ssa_op_iter *ptr)
688 {
689   tree val;
690   gcc_checking_assert (ptr->iter_type == ssa_op_iter_tree);
691   if (ptr->uses)
692     {
693       val = USE_OP (ptr->uses);
694       ptr->uses = ptr->uses->next;
695       return val;
696     }
697   if (ptr->defs)
698     {
699       val = DEF_OP (ptr->defs);
700       ptr->defs = ptr->defs->next;
701       return val;
702     }
703 
704   ptr->done = true;
705   return NULL_TREE;
706 
707 }
708 
709 
710 /* This functions clears the iterator PTR, and marks it done.  This is normally
711    used to prevent warnings in the compile about might be uninitialized
712    components.  */
713 
714 static inline void
715 clear_and_done_ssa_iter (ssa_op_iter *ptr)
716 {
717   ptr->defs = NULL;
718   ptr->uses = NULL;
719   ptr->iter_type = ssa_op_iter_none;
720   ptr->phi_i = 0;
721   ptr->num_phi = 0;
722   ptr->phi_stmt = NULL;
723   ptr->done = true;
724 }
725 
726 /* Initialize the iterator PTR to the virtual defs in STMT.  */
727 static inline void
728 op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags)
729 {
730   /* PHI nodes require a different iterator initialization path.  We
731      do not support iterating over virtual defs or uses without
732      iterating over defs or uses at the same time.  */
733   gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI
734 		       && (!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF))
735 		       && (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE)));
736   ptr->defs = (flags & (SSA_OP_DEF|SSA_OP_VDEF)) ? gimple_def_ops (stmt) : NULL;
737   if (!(flags & SSA_OP_VDEF)
738       && ptr->defs
739       && gimple_vdef (stmt) != NULL_TREE)
740     ptr->defs = ptr->defs->next;
741   ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL;
742   if (!(flags & SSA_OP_VUSE)
743       && ptr->uses
744       && gimple_vuse (stmt) != NULL_TREE)
745     ptr->uses = ptr->uses->next;
746   ptr->done = false;
747 
748   ptr->phi_i = 0;
749   ptr->num_phi = 0;
750   ptr->phi_stmt = NULL;
751 }
752 
753 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
754    the first use.  */
755 static inline use_operand_p
756 op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags)
757 {
758   gcc_checking_assert ((flags & SSA_OP_ALL_DEFS) == 0
759 		       && (flags & SSA_OP_USE));
760   op_iter_init (ptr, stmt, flags);
761   ptr->iter_type = ssa_op_iter_use;
762   return op_iter_next_use (ptr);
763 }
764 
765 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
766    the first def.  */
767 static inline def_operand_p
768 op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags)
769 {
770   gcc_checking_assert ((flags & SSA_OP_ALL_USES) == 0
771 		       && (flags & SSA_OP_DEF));
772   op_iter_init (ptr, stmt, flags);
773   ptr->iter_type = ssa_op_iter_def;
774   return op_iter_next_def (ptr);
775 }
776 
777 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
778    the first operand as a tree.  */
779 static inline tree
780 op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags)
781 {
782   op_iter_init (ptr, stmt, flags);
783   ptr->iter_type = ssa_op_iter_tree;
784   return op_iter_next_tree (ptr);
785 }
786 
787 
788 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
789    return NULL.  */
790 static inline tree
791 single_ssa_tree_operand (gimple stmt, int flags)
792 {
793   tree var;
794   ssa_op_iter iter;
795 
796   var = op_iter_init_tree (&iter, stmt, flags);
797   if (op_iter_done (&iter))
798     return NULL_TREE;
799   op_iter_next_tree (&iter);
800   if (op_iter_done (&iter))
801     return var;
802   return NULL_TREE;
803 }
804 
805 
806 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
807    return NULL.  */
808 static inline use_operand_p
809 single_ssa_use_operand (gimple stmt, int flags)
810 {
811   use_operand_p var;
812   ssa_op_iter iter;
813 
814   var = op_iter_init_use (&iter, stmt, flags);
815   if (op_iter_done (&iter))
816     return NULL_USE_OPERAND_P;
817   op_iter_next_use (&iter);
818   if (op_iter_done (&iter))
819     return var;
820   return NULL_USE_OPERAND_P;
821 }
822 
823 
824 
825 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
826    return NULL.  */
827 static inline def_operand_p
828 single_ssa_def_operand (gimple stmt, int flags)
829 {
830   def_operand_p var;
831   ssa_op_iter iter;
832 
833   var = op_iter_init_def (&iter, stmt, flags);
834   if (op_iter_done (&iter))
835     return NULL_DEF_OPERAND_P;
836   op_iter_next_def (&iter);
837   if (op_iter_done (&iter))
838     return var;
839   return NULL_DEF_OPERAND_P;
840 }
841 
842 
843 /* Return true if there are zero operands in STMT matching the type
844    given in FLAGS.  */
845 static inline bool
846 zero_ssa_operands (gimple stmt, int flags)
847 {
848   ssa_op_iter iter;
849 
850   op_iter_init_tree (&iter, stmt, flags);
851   return op_iter_done (&iter);
852 }
853 
854 
855 /* Return the number of operands matching FLAGS in STMT.  */
856 static inline int
857 num_ssa_operands (gimple stmt, int flags)
858 {
859   ssa_op_iter iter;
860   tree t;
861   int num = 0;
862 
863   gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI);
864   FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
865     num++;
866   return num;
867 }
868 
869 static inline use_operand_p
870 op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags);
871 
872 /* Delink all immediate_use information for STMT.  */
873 static inline void
874 delink_stmt_imm_use (gimple stmt)
875 {
876    ssa_op_iter iter;
877    use_operand_p use_p;
878 
879    if (ssa_operands_active ())
880      FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_ALL_USES)
881        delink_imm_use (use_p);
882 }
883 
884 
885 /* If there is a single DEF in the PHI node which matches FLAG, return it.
886    Otherwise return NULL_DEF_OPERAND_P.  */
887 static inline tree
888 single_phi_def (gimple stmt, int flags)
889 {
890   tree def = PHI_RESULT (stmt);
891   if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
892     return def;
893   if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
894     return def;
895   return NULL_TREE;
896 }
897 
898 /* Initialize the iterator PTR for uses matching FLAGS in PHI.  FLAGS should
899    be either SSA_OP_USES or SSA_OP_VIRTUAL_USES.  */
900 static inline use_operand_p
901 op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags)
902 {
903   tree phi_def = gimple_phi_result (phi);
904   int comp;
905 
906   clear_and_done_ssa_iter (ptr);
907   ptr->done = false;
908 
909   gcc_checking_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
910 
911   comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
912 
913   /* If the PHI node doesn't the operand type we care about, we're done.  */
914   if ((flags & comp) == 0)
915     {
916       ptr->done = true;
917       return NULL_USE_OPERAND_P;
918     }
919 
920   ptr->phi_stmt = phi;
921   ptr->num_phi = gimple_phi_num_args (phi);
922   ptr->iter_type = ssa_op_iter_use;
923   return op_iter_next_use (ptr);
924 }
925 
926 
927 /* Start an iterator for a PHI definition.  */
928 
929 static inline def_operand_p
930 op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags)
931 {
932   tree phi_def = PHI_RESULT (phi);
933   int comp;
934 
935   clear_and_done_ssa_iter (ptr);
936   ptr->done = false;
937 
938   gcc_checking_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
939 
940   comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
941 
942   /* If the PHI node doesn't have the operand type we care about,
943      we're done.  */
944   if ((flags & comp) == 0)
945     {
946       ptr->done = true;
947       return NULL_DEF_OPERAND_P;
948     }
949 
950   ptr->iter_type = ssa_op_iter_def;
951   /* The first call to op_iter_next_def will terminate the iterator since
952      all the fields are NULL.  Simply return the result here as the first and
953      therefore only result.  */
954   return PHI_RESULT_PTR (phi);
955 }
956 
957 /* Return true is IMM has reached the end of the immediate use stmt list.  */
958 
959 static inline bool
960 end_imm_use_stmt_p (const imm_use_iterator *imm)
961 {
962   return (imm->imm_use == imm->end_p);
963 }
964 
965 /* Finished the traverse of an immediate use stmt list IMM by removing the
966    placeholder node from the list.  */
967 
968 static inline void
969 end_imm_use_stmt_traverse (imm_use_iterator *imm)
970 {
971   delink_imm_use (&(imm->iter_node));
972 }
973 
974 /* Immediate use traversal of uses within a stmt require that all the
975    uses on a stmt be sequentially listed.  This routine is used to build up
976    this sequential list by adding USE_P to the end of the current list
977    currently delimited by HEAD and LAST_P.  The new LAST_P value is
978    returned.  */
979 
980 static inline use_operand_p
981 move_use_after_head (use_operand_p use_p, use_operand_p head,
982 		      use_operand_p last_p)
983 {
984   gcc_checking_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
985   /* Skip head when we find it.  */
986   if (use_p != head)
987     {
988       /* If use_p is already linked in after last_p, continue.  */
989       if (last_p->next == use_p)
990 	last_p = use_p;
991       else
992 	{
993 	  /* Delink from current location, and link in at last_p.  */
994 	  delink_imm_use (use_p);
995 	  link_imm_use_to_list (use_p, last_p);
996 	  last_p = use_p;
997 	}
998     }
999   return last_p;
1000 }
1001 
1002 
1003 /* This routine will relink all uses with the same stmt as HEAD into the list
1004    immediately following HEAD for iterator IMM.  */
1005 
1006 static inline void
1007 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1008 {
1009   use_operand_p use_p;
1010   use_operand_p last_p = head;
1011   gimple head_stmt = USE_STMT (head);
1012   tree use = USE_FROM_PTR (head);
1013   ssa_op_iter op_iter;
1014   int flag;
1015 
1016   /* Only look at virtual or real uses, depending on the type of HEAD.  */
1017   flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1018 
1019   if (gimple_code (head_stmt) == GIMPLE_PHI)
1020     {
1021       FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1022 	if (USE_FROM_PTR (use_p) == use)
1023 	  last_p = move_use_after_head (use_p, head, last_p);
1024     }
1025   else
1026     {
1027       if (flag == SSA_OP_USE)
1028 	{
1029 	  FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1030 	    if (USE_FROM_PTR (use_p) == use)
1031 	      last_p = move_use_after_head (use_p, head, last_p);
1032 	}
1033       else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P)
1034 	{
1035 	  if (USE_FROM_PTR (use_p) == use)
1036 	    last_p = move_use_after_head (use_p, head, last_p);
1037 	}
1038     }
1039   /* Link iter node in after last_p.  */
1040   if (imm->iter_node.prev != NULL)
1041     delink_imm_use (&imm->iter_node);
1042   link_imm_use_to_list (&(imm->iter_node), last_p);
1043 }
1044 
1045 /* Initialize IMM to traverse over uses of VAR.  Return the first statement.  */
1046 static inline gimple
1047 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1048 {
1049   imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1050   imm->imm_use = imm->end_p->next;
1051   imm->next_imm_name = NULL_USE_OPERAND_P;
1052 
1053   /* iter_node is used as a marker within the immediate use list to indicate
1054      where the end of the current stmt's uses are.  Initialize it to NULL
1055      stmt and use, which indicates a marker node.  */
1056   imm->iter_node.prev = NULL_USE_OPERAND_P;
1057   imm->iter_node.next = NULL_USE_OPERAND_P;
1058   imm->iter_node.loc.stmt = NULL;
1059   imm->iter_node.use = NULL;
1060 
1061   if (end_imm_use_stmt_p (imm))
1062     return NULL;
1063 
1064   link_use_stmts_after (imm->imm_use, imm);
1065 
1066   return USE_STMT (imm->imm_use);
1067 }
1068 
1069 /* Bump IMM to the next stmt which has a use of var.  */
1070 
1071 static inline gimple
1072 next_imm_use_stmt (imm_use_iterator *imm)
1073 {
1074   imm->imm_use = imm->iter_node.next;
1075   if (end_imm_use_stmt_p (imm))
1076     {
1077       if (imm->iter_node.prev != NULL)
1078 	delink_imm_use (&imm->iter_node);
1079       return NULL;
1080     }
1081 
1082   link_use_stmts_after (imm->imm_use, imm);
1083   return USE_STMT (imm->imm_use);
1084 }
1085 
1086 /* This routine will return the first use on the stmt IMM currently refers
1087    to.  */
1088 
1089 static inline use_operand_p
1090 first_imm_use_on_stmt (imm_use_iterator *imm)
1091 {
1092   imm->next_imm_name = imm->imm_use->next;
1093   return imm->imm_use;
1094 }
1095 
1096 /*  Return TRUE if the last use on the stmt IMM refers to has been visited.  */
1097 
1098 static inline bool
1099 end_imm_use_on_stmt_p (const imm_use_iterator *imm)
1100 {
1101   return (imm->imm_use == &(imm->iter_node));
1102 }
1103 
1104 /* Bump to the next use on the stmt IMM refers to, return NULL if done.  */
1105 
1106 static inline use_operand_p
1107 next_imm_use_on_stmt (imm_use_iterator *imm)
1108 {
1109   imm->imm_use = imm->next_imm_name;
1110   if (end_imm_use_on_stmt_p (imm))
1111     return NULL_USE_OPERAND_P;
1112   else
1113     {
1114       imm->next_imm_name = imm->imm_use->next;
1115       return imm->imm_use;
1116     }
1117 }
1118 
1119 /* Return true if VAR cannot be modified by the program.  */
1120 
1121 static inline bool
1122 unmodifiable_var_p (const_tree var)
1123 {
1124   if (TREE_CODE (var) == SSA_NAME)
1125     var = SSA_NAME_VAR (var);
1126 
1127   return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1128 }
1129 
1130 /* Return true if REF, a handled component reference, has an ARRAY_REF
1131    somewhere in it.  */
1132 
1133 static inline bool
1134 ref_contains_array_ref (const_tree ref)
1135 {
1136   gcc_checking_assert (handled_component_p (ref));
1137 
1138   do {
1139     if (TREE_CODE (ref) == ARRAY_REF)
1140       return true;
1141     ref = TREE_OPERAND (ref, 0);
1142   } while (handled_component_p (ref));
1143 
1144   return false;
1145 }
1146 
1147 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it.  */
1148 
1149 static inline bool
1150 contains_view_convert_expr_p (const_tree ref)
1151 {
1152   while (handled_component_p (ref))
1153     {
1154       if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
1155 	return true;
1156       ref = TREE_OPERAND (ref, 0);
1157     }
1158 
1159   return false;
1160 }
1161 
1162 /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
1163    overlap.  SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
1164    range is open-ended.  Otherwise return false.  */
1165 
1166 static inline bool
1167 ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
1168 		  unsigned HOST_WIDE_INT size1,
1169 		  unsigned HOST_WIDE_INT pos2,
1170 		  unsigned HOST_WIDE_INT size2)
1171 {
1172   if (pos1 >= pos2
1173       && (size2 == (unsigned HOST_WIDE_INT)-1
1174 	  || pos1 < (pos2 + size2)))
1175     return true;
1176   if (pos2 >= pos1
1177       && (size1 == (unsigned HOST_WIDE_INT)-1
1178 	  || pos2 < (pos1 + size1)))
1179     return true;
1180 
1181   return false;
1182 }
1183 
1184 /* Accessor to tree-ssa-operands.c caches.  */
1185 static inline struct ssa_operands *
1186 gimple_ssa_operands (const struct function *fun)
1187 {
1188   return &fun->gimple_df->ssa_operands;
1189 }
1190 
1191 /* Given an edge_var_map V, return the PHI arg definition.  */
1192 
1193 static inline tree
1194 redirect_edge_var_map_def (edge_var_map *v)
1195 {
1196   return v->def;
1197 }
1198 
1199 /* Given an edge_var_map V, return the PHI result.  */
1200 
1201 static inline tree
1202 redirect_edge_var_map_result (edge_var_map *v)
1203 {
1204   return v->result;
1205 }
1206 
1207 /* Given an edge_var_map V, return the PHI arg location.  */
1208 
1209 static inline source_location
1210 redirect_edge_var_map_location (edge_var_map *v)
1211 {
1212   return v->locus;
1213 }
1214 
1215 
1216 /* Return an SSA_NAME node for variable VAR defined in statement STMT
1217    in function cfun.  */
1218 
1219 static inline tree
1220 make_ssa_name (tree var, gimple stmt)
1221 {
1222   return make_ssa_name_fn (cfun, var, stmt);
1223 }
1224 
1225 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
1226    denotes the starting address of the memory access EXP.
1227    Returns NULL_TREE if the offset is not constant or any component
1228    is not BITS_PER_UNIT-aligned.
1229    VALUEIZE if non-NULL is used to valueize SSA names.  It should return
1230    its argument or a constant if the argument is known to be constant.  */
1231 
1232 static inline tree
1233 get_addr_base_and_unit_offset_1 (tree exp, HOST_WIDE_INT *poffset,
1234 				 tree (*valueize) (tree))
1235 {
1236   HOST_WIDE_INT byte_offset = 0;
1237 
1238   /* Compute cumulative byte-offset for nested component-refs and array-refs,
1239      and find the ultimate containing object.  */
1240   while (1)
1241     {
1242       switch (TREE_CODE (exp))
1243 	{
1244 	case BIT_FIELD_REF:
1245 	  return NULL_TREE;
1246 
1247 	case COMPONENT_REF:
1248 	  {
1249 	    tree field = TREE_OPERAND (exp, 1);
1250 	    tree this_offset = component_ref_field_offset (exp);
1251 	    HOST_WIDE_INT hthis_offset;
1252 
1253 	    if (!this_offset
1254 		|| TREE_CODE (this_offset) != INTEGER_CST
1255 		|| (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
1256 		    % BITS_PER_UNIT))
1257 	      return NULL_TREE;
1258 
1259 	    hthis_offset = TREE_INT_CST_LOW (this_offset);
1260 	    hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
1261 			     / BITS_PER_UNIT);
1262 	    byte_offset += hthis_offset;
1263 	  }
1264 	  break;
1265 
1266 	case ARRAY_REF:
1267 	case ARRAY_RANGE_REF:
1268 	  {
1269 	    tree index = TREE_OPERAND (exp, 1);
1270 	    tree low_bound, unit_size;
1271 
1272 	    if (valueize
1273 		&& TREE_CODE (index) == SSA_NAME)
1274 	      index = (*valueize) (index);
1275 
1276 	    /* If the resulting bit-offset is constant, track it.  */
1277 	    if (TREE_CODE (index) == INTEGER_CST
1278 		&& (low_bound = array_ref_low_bound (exp),
1279 		    TREE_CODE (low_bound) == INTEGER_CST)
1280 		&& (unit_size = array_ref_element_size (exp),
1281 		    TREE_CODE (unit_size) == INTEGER_CST))
1282 	      {
1283 		HOST_WIDE_INT hindex = TREE_INT_CST_LOW (index);
1284 
1285 		hindex -= TREE_INT_CST_LOW (low_bound);
1286 		hindex *= TREE_INT_CST_LOW (unit_size);
1287 		byte_offset += hindex;
1288 	      }
1289 	    else
1290 	      return NULL_TREE;
1291 	  }
1292 	  break;
1293 
1294 	case REALPART_EXPR:
1295 	  break;
1296 
1297 	case IMAGPART_EXPR:
1298 	  byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
1299 	  break;
1300 
1301 	case VIEW_CONVERT_EXPR:
1302 	  break;
1303 
1304 	case MEM_REF:
1305 	  {
1306 	    tree base = TREE_OPERAND (exp, 0);
1307 	    if (valueize
1308 		&& TREE_CODE (base) == SSA_NAME)
1309 	      base = (*valueize) (base);
1310 
1311 	    /* Hand back the decl for MEM[&decl, off].  */
1312 	    if (TREE_CODE (base) == ADDR_EXPR)
1313 	      {
1314 		if (!integer_zerop (TREE_OPERAND (exp, 1)))
1315 		  {
1316 		    double_int off = mem_ref_offset (exp);
1317 		    gcc_assert (off.high == -1 || off.high == 0);
1318 		    byte_offset += double_int_to_shwi (off);
1319 		  }
1320 		exp = TREE_OPERAND (base, 0);
1321 	      }
1322 	    goto done;
1323 	  }
1324 
1325 	case TARGET_MEM_REF:
1326 	  {
1327 	    tree base = TREE_OPERAND (exp, 0);
1328 	    if (valueize
1329 		&& TREE_CODE (base) == SSA_NAME)
1330 	      base = (*valueize) (base);
1331 
1332 	    /* Hand back the decl for MEM[&decl, off].  */
1333 	    if (TREE_CODE (base) == ADDR_EXPR)
1334 	      {
1335 		if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
1336 		  return NULL_TREE;
1337 		if (!integer_zerop (TMR_OFFSET (exp)))
1338 		  {
1339 		    double_int off = mem_ref_offset (exp);
1340 		    gcc_assert (off.high == -1 || off.high == 0);
1341 		    byte_offset += double_int_to_shwi (off);
1342 		  }
1343 		exp = TREE_OPERAND (base, 0);
1344 	      }
1345 	    goto done;
1346 	  }
1347 
1348 	default:
1349 	  goto done;
1350 	}
1351 
1352       exp = TREE_OPERAND (exp, 0);
1353     }
1354 done:
1355 
1356   *poffset = byte_offset;
1357   return exp;
1358 }
1359 
1360 #endif /* _TREE_FLOW_INLINE_H  */
1361