1 /* If-conversion for vectorizer.
2    Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4    Contributed by Devang Patel <dpatel@apple.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* This pass implements a tree level if-conversion of loops.  Its
23    initial goal is to help the vectorizer to vectorize loops with
24    conditions.
25 
26    A short description of if-conversion:
27 
28      o Decide if a loop is if-convertible or not.
29      o Walk all loop basic blocks in breadth first order (BFS order).
30        o Remove conditional statements (at the end of basic block)
31          and propagate condition into destination basic blocks'
32 	 predicate list.
33        o Replace modify expression with conditional modify expression
34          using current basic block's condition.
35      o Merge all basic blocks
36        o Replace phi nodes with conditional modify expr
37        o Merge all basic blocks into header
38 
39      Sample transformation:
40 
41      INPUT
42      -----
43 
44      # i_23 = PHI <0(0), i_18(10)>;
45      <L0>:;
46      j_15 = A[i_23];
47      if (j_15 > 41) goto <L1>; else goto <L17>;
48 
49      <L17>:;
50      goto <bb 3> (<L3>);
51 
52      <L1>:;
53 
54      # iftmp.2_4 = PHI <0(8), 42(2)>;
55      <L3>:;
56      A[i_23] = iftmp.2_4;
57      i_18 = i_23 + 1;
58      if (i_18 <= 15) goto <L19>; else goto <L18>;
59 
60      <L19>:;
61      goto <bb 1> (<L0>);
62 
63      <L18>:;
64 
65      OUTPUT
66      ------
67 
68      # i_23 = PHI <0(0), i_18(10)>;
69      <L0>:;
70      j_15 = A[i_23];
71 
72      <L3>:;
73      iftmp.2_4 = j_15 > 41 ? 42 : 0;
74      A[i_23] = iftmp.2_4;
75      i_18 = i_23 + 1;
76      if (i_18 <= 15) goto <L19>; else goto <L18>;
77 
78      <L19>:;
79      goto <bb 1> (<L0>);
80 
81      <L18>:;
82 */
83 
84 #include "config.h"
85 #include "system.h"
86 #include "coretypes.h"
87 #include "tm.h"
88 #include "tree.h"
89 #include "flags.h"
90 #include "timevar.h"
91 #include "basic-block.h"
92 #include "tree-pretty-print.h"
93 #include "gimple-pretty-print.h"
94 #include "tree-flow.h"
95 #include "tree-dump.h"
96 #include "cfgloop.h"
97 #include "tree-chrec.h"
98 #include "tree-data-ref.h"
99 #include "tree-scalar-evolution.h"
100 #include "tree-pass.h"
101 #include "dbgcnt.h"
102 
103 /* List of basic blocks in if-conversion-suitable order.  */
104 static basic_block *ifc_bbs;
105 
106 /* Structure used to predicate basic blocks.  This is attached to the
107    ->aux field of the BBs in the loop to be if-converted.  */
108 typedef struct bb_predicate_s {
109 
110   /* The condition under which this basic block is executed.  */
111   tree predicate;
112 
113   /* PREDICATE is gimplified, and the sequence of statements is
114      recorded here, in order to avoid the duplication of computations
115      that occur in previous conditions.  See PR44483.  */
116   gimple_seq predicate_gimplified_stmts;
117 } *bb_predicate_p;
118 
119 /* Returns true when the basic block BB has a predicate.  */
120 
121 static inline bool
122 bb_has_predicate (basic_block bb)
123 {
124   return bb->aux != NULL;
125 }
126 
127 /* Returns the gimplified predicate for basic block BB.  */
128 
129 static inline tree
130 bb_predicate (basic_block bb)
131 {
132   return ((bb_predicate_p) bb->aux)->predicate;
133 }
134 
135 /* Sets the gimplified predicate COND for basic block BB.  */
136 
137 static inline void
138 set_bb_predicate (basic_block bb, tree cond)
139 {
140   gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
141 	       && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
142 	      || is_gimple_condexpr (cond));
143   ((bb_predicate_p) bb->aux)->predicate = cond;
144 }
145 
146 /* Returns the sequence of statements of the gimplification of the
147    predicate for basic block BB.  */
148 
149 static inline gimple_seq
150 bb_predicate_gimplified_stmts (basic_block bb)
151 {
152   return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
153 }
154 
155 /* Sets the sequence of statements STMTS of the gimplification of the
156    predicate for basic block BB.  */
157 
158 static inline void
159 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
160 {
161   ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
162 }
163 
164 /* Adds the sequence of statements STMTS to the sequence of statements
165    of the predicate for basic block BB.  */
166 
167 static inline void
168 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
169 {
170   gimple_seq_add_seq
171     (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
172 }
173 
174 /* Initializes to TRUE the predicate of basic block BB.  */
175 
176 static inline void
177 init_bb_predicate (basic_block bb)
178 {
179   bb->aux = XNEW (struct bb_predicate_s);
180   set_bb_predicate_gimplified_stmts (bb, NULL);
181   set_bb_predicate (bb, boolean_true_node);
182 }
183 
184 /* Free the predicate of basic block BB.  */
185 
186 static inline void
187 free_bb_predicate (basic_block bb)
188 {
189   gimple_seq stmts;
190 
191   if (!bb_has_predicate (bb))
192     return;
193 
194   /* Release the SSA_NAMEs created for the gimplification of the
195      predicate.  */
196   stmts = bb_predicate_gimplified_stmts (bb);
197   if (stmts)
198     {
199       gimple_stmt_iterator i;
200 
201       for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
202 	free_stmt_operands (gsi_stmt (i));
203     }
204 
205   free (bb->aux);
206   bb->aux = NULL;
207 }
208 
209 /* Free the predicate of BB and reinitialize it with the true
210    predicate.  */
211 
212 static inline void
213 reset_bb_predicate (basic_block bb)
214 {
215   free_bb_predicate (bb);
216   init_bb_predicate (bb);
217 }
218 
219 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
220    the expression EXPR.  Inserts the statement created for this
221    computation before GSI and leaves the iterator GSI at the same
222    statement.  */
223 
224 static tree
225 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
226 {
227   const char *name = "_ifc_";
228   tree var, new_name;
229   gimple stmt;
230 
231   /* Create new temporary variable.  */
232   var = create_tmp_var (type, name);
233   add_referenced_var (var);
234 
235   /* Build new statement to assign EXPR to new variable.  */
236   stmt = gimple_build_assign (var, expr);
237 
238   /* Get SSA name for the new variable and set make new statement
239      its definition statement.  */
240   new_name = make_ssa_name (var, stmt);
241   gimple_assign_set_lhs (stmt, new_name);
242   SSA_NAME_DEF_STMT (new_name) = stmt;
243   update_stmt (stmt);
244 
245   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
246   return gimple_assign_lhs (stmt);
247 }
248 
249 /* Return true when COND is a true predicate.  */
250 
251 static inline bool
252 is_true_predicate (tree cond)
253 {
254   return (cond == NULL_TREE
255 	  || cond == boolean_true_node
256 	  || integer_onep (cond));
257 }
258 
259 /* Returns true when BB has a predicate that is not trivial: true or
260    NULL_TREE.  */
261 
262 static inline bool
263 is_predicated (basic_block bb)
264 {
265   return !is_true_predicate (bb_predicate (bb));
266 }
267 
268 /* Parses the predicate COND and returns its comparison code and
269    operands OP0 and OP1.  */
270 
271 static enum tree_code
272 parse_predicate (tree cond, tree *op0, tree *op1)
273 {
274   gimple s;
275 
276   if (TREE_CODE (cond) == SSA_NAME
277       && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
278     {
279       if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
280 	{
281 	  *op0 = gimple_assign_rhs1 (s);
282 	  *op1 = gimple_assign_rhs2 (s);
283 	  return gimple_assign_rhs_code (s);
284 	}
285 
286       else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
287 	{
288 	  tree op = gimple_assign_rhs1 (s);
289 	  tree type = TREE_TYPE (op);
290 	  enum tree_code code = parse_predicate (op, op0, op1);
291 
292 	  return code == ERROR_MARK ? ERROR_MARK
293 	    : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
294 	}
295 
296       return ERROR_MARK;
297     }
298 
299   if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
300     {
301       *op0 = TREE_OPERAND (cond, 0);
302       *op1 = TREE_OPERAND (cond, 1);
303       return TREE_CODE (cond);
304     }
305 
306   return ERROR_MARK;
307 }
308 
309 /* Returns the fold of predicate C1 OR C2 at location LOC.  */
310 
311 static tree
312 fold_or_predicates (location_t loc, tree c1, tree c2)
313 {
314   tree op1a, op1b, op2a, op2b;
315   enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
316   enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
317 
318   if (code1 != ERROR_MARK && code2 != ERROR_MARK)
319     {
320       tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
321 					  code2, op2a, op2b);
322       if (t)
323 	return t;
324     }
325 
326   return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
327 }
328 
329 /* Add condition NC to the predicate list of basic block BB.  */
330 
331 static inline void
332 add_to_predicate_list (basic_block bb, tree nc)
333 {
334   tree bc, *tp;
335 
336   if (is_true_predicate (nc))
337     return;
338 
339   if (!is_predicated (bb))
340     bc = nc;
341   else
342     {
343       bc = bb_predicate (bb);
344       bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
345       if (is_true_predicate (bc))
346 	{
347 	  reset_bb_predicate (bb);
348 	  return;
349 	}
350     }
351 
352   /* Allow a TRUTH_NOT_EXPR around the main predicate.  */
353   if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
354     tp = &TREE_OPERAND (bc, 0);
355   else
356     tp = &bc;
357   if (!is_gimple_condexpr (*tp))
358     {
359       gimple_seq stmts;
360       *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
361       add_bb_predicate_gimplified_stmts (bb, stmts);
362     }
363   set_bb_predicate (bb, bc);
364 }
365 
366 /* Add the condition COND to the previous condition PREV_COND, and add
367    this to the predicate list of the destination of edge E.  LOOP is
368    the loop to be if-converted.  */
369 
370 static void
371 add_to_dst_predicate_list (struct loop *loop, edge e,
372 			   tree prev_cond, tree cond)
373 {
374   if (!flow_bb_inside_loop_p (loop, e->dest))
375     return;
376 
377   if (!is_true_predicate (prev_cond))
378     cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
379 			prev_cond, cond);
380 
381   add_to_predicate_list (e->dest, cond);
382 }
383 
384 /* Return true if one of the successor edges of BB exits LOOP.  */
385 
386 static bool
387 bb_with_exit_edge_p (struct loop *loop, basic_block bb)
388 {
389   edge e;
390   edge_iterator ei;
391 
392   FOR_EACH_EDGE (e, ei, bb->succs)
393     if (loop_exit_edge_p (loop, e))
394       return true;
395 
396   return false;
397 }
398 
399 /* Return true when PHI is if-convertible.  PHI is part of loop LOOP
400    and it belongs to basic block BB.
401 
402    PHI is not if-convertible if:
403    - it has more than 2 arguments.
404 
405    When the flag_tree_loop_if_convert_stores is not set, PHI is not
406    if-convertible if:
407    - a virtual PHI is immediately used in another PHI node,
408    - there is a virtual PHI in a BB other than the loop->header.  */
409 
410 static bool
411 if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi)
412 {
413   if (dump_file && (dump_flags & TDF_DETAILS))
414     {
415       fprintf (dump_file, "-------------------------\n");
416       print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
417     }
418 
419   if (bb != loop->header && gimple_phi_num_args (phi) != 2)
420     {
421       if (dump_file && (dump_flags & TDF_DETAILS))
422 	fprintf (dump_file, "More than two phi node args.\n");
423       return false;
424     }
425 
426   if (flag_tree_loop_if_convert_stores)
427     return true;
428 
429   /* When the flag_tree_loop_if_convert_stores is not set, check
430      that there are no memory writes in the branches of the loop to be
431      if-converted.  */
432   if (!is_gimple_reg (SSA_NAME_VAR (gimple_phi_result (phi))))
433     {
434       imm_use_iterator imm_iter;
435       use_operand_p use_p;
436 
437       if (bb != loop->header)
438 	{
439 	  if (dump_file && (dump_flags & TDF_DETAILS))
440 	    fprintf (dump_file, "Virtual phi not on loop->header.\n");
441 	  return false;
442 	}
443 
444       FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
445 	{
446 	  if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
447 	    {
448 	      if (dump_file && (dump_flags & TDF_DETAILS))
449 		fprintf (dump_file, "Difficult to handle this virtual phi.\n");
450 	      return false;
451 	    }
452 	}
453     }
454 
455   return true;
456 }
457 
458 /* Records the status of a data reference.  This struct is attached to
459    each DR->aux field.  */
460 
461 struct ifc_dr {
462   /* -1 when not initialized, 0 when false, 1 when true.  */
463   int written_at_least_once;
464 
465   /* -1 when not initialized, 0 when false, 1 when true.  */
466   int rw_unconditionally;
467 };
468 
469 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
470 #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
471 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
472 
473 /* Returns true when the memory references of STMT are read or written
474    unconditionally.  In other words, this function returns true when
475    for every data reference A in STMT there exist other accesses to
476    a data reference with the same base with predicates that add up (OR-up) to
477    the true predicate: this ensures that the data reference A is touched
478    (read or written) on every iteration of the if-converted loop.  */
479 
480 static bool
481 memrefs_read_or_written_unconditionally (gimple stmt,
482 					 VEC (data_reference_p, heap) *drs)
483 {
484   int i, j;
485   data_reference_p a, b;
486   tree ca = bb_predicate (gimple_bb (stmt));
487 
488   for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
489     if (DR_STMT (a) == stmt)
490       {
491 	bool found = false;
492 	int x = DR_RW_UNCONDITIONALLY (a);
493 
494 	if (x == 0)
495 	  return false;
496 
497 	if (x == 1)
498 	  continue;
499 
500 	for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
501           {
502             tree ref_base_a = DR_REF (a);
503             tree ref_base_b = DR_REF (b);
504 
505             if (DR_STMT (b) == stmt)
506               continue;
507 
508             while (TREE_CODE (ref_base_a) == COMPONENT_REF
509                    || TREE_CODE (ref_base_a) == IMAGPART_EXPR
510                    || TREE_CODE (ref_base_a) == REALPART_EXPR)
511               ref_base_a = TREE_OPERAND (ref_base_a, 0);
512 
513             while (TREE_CODE (ref_base_b) == COMPONENT_REF
514                    || TREE_CODE (ref_base_b) == IMAGPART_EXPR
515                    || TREE_CODE (ref_base_b) == REALPART_EXPR)
516               ref_base_b = TREE_OPERAND (ref_base_b, 0);
517 
518   	    if (!operand_equal_p (ref_base_a, ref_base_b, 0))
519 	      {
520 	        tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
521 
522 	        if (DR_RW_UNCONDITIONALLY (b) == 1
523 		    || is_true_predicate (cb)
524 		    || is_true_predicate (ca
525                         = fold_or_predicates (EXPR_LOCATION (cb), ca, cb)))
526 		  {
527 		    DR_RW_UNCONDITIONALLY (a) = 1;
528   		    DR_RW_UNCONDITIONALLY (b) = 1;
529 		    found = true;
530 		    break;
531 		  }
532                }
533 	    }
534 
535 	if (!found)
536 	  {
537 	    DR_RW_UNCONDITIONALLY (a) = 0;
538 	    return false;
539 	  }
540       }
541 
542   return true;
543 }
544 
545 /* Returns true when the memory references of STMT are unconditionally
546    written.  In other words, this function returns true when for every
547    data reference A written in STMT, there exist other writes to the
548    same data reference with predicates that add up (OR-up) to the true
549    predicate: this ensures that the data reference A is written on
550    every iteration of the if-converted loop.  */
551 
552 static bool
553 write_memrefs_written_at_least_once (gimple stmt,
554 				     VEC (data_reference_p, heap) *drs)
555 {
556   int i, j;
557   data_reference_p a, b;
558   tree ca = bb_predicate (gimple_bb (stmt));
559 
560   for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
561     if (DR_STMT (a) == stmt
562 	&& DR_IS_WRITE (a))
563       {
564 	bool found = false;
565 	int x = DR_WRITTEN_AT_LEAST_ONCE (a);
566 
567 	if (x == 0)
568 	  return false;
569 
570 	if (x == 1)
571 	  continue;
572 
573 	for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
574 	  if (DR_STMT (b) != stmt
575 	      && DR_IS_WRITE (b)
576 	      && same_data_refs_base_objects (a, b))
577 	    {
578 	      tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
579 
580 	      if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
581 		  || is_true_predicate (cb)
582 		  || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
583 								 ca, cb)))
584 		{
585 		  DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
586 		  DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
587 		  found = true;
588 		  break;
589 		}
590 	    }
591 
592 	if (!found)
593 	  {
594 	    DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
595 	    return false;
596 	  }
597       }
598 
599   return true;
600 }
601 
602 /* Return true when the memory references of STMT won't trap in the
603    if-converted code.  There are two things that we have to check for:
604 
605    - writes to memory occur to writable memory: if-conversion of
606    memory writes transforms the conditional memory writes into
607    unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
608    into "A[i] = cond ? foo : A[i]", and as the write to memory may not
609    be executed at all in the original code, it may be a readonly
610    memory.  To check that A is not const-qualified, we check that
611    there exists at least an unconditional write to A in the current
612    function.
613 
614    - reads or writes to memory are valid memory accesses for every
615    iteration.  To check that the memory accesses are correctly formed
616    and that we are allowed to read and write in these locations, we
617    check that the memory accesses to be if-converted occur at every
618    iteration unconditionally.  */
619 
620 static bool
621 ifcvt_memrefs_wont_trap (gimple stmt, VEC (data_reference_p, heap) *refs)
622 {
623   return write_memrefs_written_at_least_once (stmt, refs)
624     && memrefs_read_or_written_unconditionally (stmt, refs);
625 }
626 
627 /* Wrapper around gimple_could_trap_p refined for the needs of the
628    if-conversion.  Try to prove that the memory accesses of STMT could
629    not trap in the innermost loop containing STMT.  */
630 
631 static bool
632 ifcvt_could_trap_p (gimple stmt, VEC (data_reference_p, heap) *refs)
633 {
634   if (gimple_vuse (stmt)
635       && !gimple_could_trap_p_1 (stmt, false, false)
636       && ifcvt_memrefs_wont_trap (stmt, refs))
637     return false;
638 
639   return gimple_could_trap_p (stmt);
640 }
641 
642 /* Return true when STMT is if-convertible.
643 
644    GIMPLE_ASSIGN statement is not if-convertible if,
645    - it is not movable,
646    - it could trap,
647    - LHS is not var decl.  */
648 
649 static bool
650 if_convertible_gimple_assign_stmt_p (gimple stmt,
651 				     VEC (data_reference_p, heap) *refs)
652 {
653   tree lhs = gimple_assign_lhs (stmt);
654   basic_block bb;
655 
656   if (dump_file && (dump_flags & TDF_DETAILS))
657     {
658       fprintf (dump_file, "-------------------------\n");
659       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
660     }
661 
662   if (!is_gimple_reg_type (TREE_TYPE (lhs)))
663     return false;
664 
665   /* Some of these constrains might be too conservative.  */
666   if (stmt_ends_bb_p (stmt)
667       || gimple_has_volatile_ops (stmt)
668       || (TREE_CODE (lhs) == SSA_NAME
669           && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
670       || gimple_has_side_effects (stmt))
671     {
672       if (dump_file && (dump_flags & TDF_DETAILS))
673         fprintf (dump_file, "stmt not suitable for ifcvt\n");
674       return false;
675     }
676 
677   if (flag_tree_loop_if_convert_stores)
678     {
679       if (ifcvt_could_trap_p (stmt, refs))
680 	{
681 	  if (dump_file && (dump_flags & TDF_DETAILS))
682 	    fprintf (dump_file, "tree could trap...\n");
683 	  return false;
684 	}
685       return true;
686     }
687 
688   if (gimple_assign_rhs_could_trap_p (stmt))
689     {
690       if (dump_file && (dump_flags & TDF_DETAILS))
691 	fprintf (dump_file, "tree could trap...\n");
692       return false;
693     }
694 
695   bb = gimple_bb (stmt);
696 
697   if (TREE_CODE (lhs) != SSA_NAME
698       && bb != bb->loop_father->header
699       && !bb_with_exit_edge_p (bb->loop_father, bb))
700     {
701       if (dump_file && (dump_flags & TDF_DETAILS))
702 	{
703 	  fprintf (dump_file, "LHS is not var\n");
704 	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
705 	}
706       return false;
707     }
708 
709   return true;
710 }
711 
712 /* Return true when STMT is if-convertible.
713 
714    A statement is if-convertible if:
715    - it is an if-convertible GIMPLE_ASSGIN,
716    - it is a GIMPLE_LABEL or a GIMPLE_COND.  */
717 
718 static bool
719 if_convertible_stmt_p (gimple stmt, VEC (data_reference_p, heap) *refs)
720 {
721   switch (gimple_code (stmt))
722     {
723     case GIMPLE_LABEL:
724     case GIMPLE_DEBUG:
725     case GIMPLE_COND:
726       return true;
727 
728     case GIMPLE_ASSIGN:
729       return if_convertible_gimple_assign_stmt_p (stmt, refs);
730 
731     case GIMPLE_CALL:
732       {
733 	tree fndecl = gimple_call_fndecl (stmt);
734 	if (fndecl)
735 	  {
736 	    int flags = gimple_call_flags (stmt);
737 	    if ((flags & ECF_CONST)
738 		&& !(flags & ECF_LOOPING_CONST_OR_PURE)
739 		/* We can only vectorize some builtins at the moment,
740 		   so restrict if-conversion to those.  */
741 		&& DECL_BUILT_IN (fndecl))
742 	      return true;
743 	  }
744 	return false;
745       }
746 
747     default:
748       /* Don't know what to do with 'em so don't do anything.  */
749       if (dump_file && (dump_flags & TDF_DETAILS))
750 	{
751 	  fprintf (dump_file, "don't know what to do\n");
752 	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
753 	}
754       return false;
755       break;
756     }
757 
758   return true;
759 }
760 
761 /* Return true when BB is if-convertible.  This routine does not check
762    basic block's statements and phis.
763 
764    A basic block is not if-convertible if:
765    - it is non-empty and it is after the exit block (in BFS order),
766    - it is after the exit block but before the latch,
767    - its edges are not normal.
768 
769    EXIT_BB is the basic block containing the exit of the LOOP.  BB is
770    inside LOOP.  */
771 
772 static bool
773 if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
774 {
775   edge e;
776   edge_iterator ei;
777 
778   if (dump_file && (dump_flags & TDF_DETAILS))
779     fprintf (dump_file, "----------[%d]-------------\n", bb->index);
780 
781   if (EDGE_COUNT (bb->preds) > 2
782       || EDGE_COUNT (bb->succs) > 2)
783     return false;
784 
785   if (exit_bb)
786     {
787       if (bb != loop->latch)
788 	{
789 	  if (dump_file && (dump_flags & TDF_DETAILS))
790 	    fprintf (dump_file, "basic block after exit bb but before latch\n");
791 	  return false;
792 	}
793       else if (!empty_block_p (bb))
794 	{
795 	  if (dump_file && (dump_flags & TDF_DETAILS))
796 	    fprintf (dump_file, "non empty basic block after exit bb\n");
797 	  return false;
798 	}
799       else if (bb == loop->latch
800 	       && bb != exit_bb
801 	       && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
802 	  {
803 	    if (dump_file && (dump_flags & TDF_DETAILS))
804 	      fprintf (dump_file, "latch is not dominated by exit_block\n");
805 	    return false;
806 	  }
807     }
808 
809   /* Be less adventurous and handle only normal edges.  */
810   FOR_EACH_EDGE (e, ei, bb->succs)
811     if (e->flags &
812 	(EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
813       {
814 	if (dump_file && (dump_flags & TDF_DETAILS))
815 	  fprintf (dump_file, "Difficult to handle edges\n");
816 	return false;
817       }
818 
819   /* At least one incoming edge has to be non-critical as otherwise edge
820      predicates are not equal to basic-block predicates of the edge
821      source.  */
822   if (EDGE_COUNT (bb->preds) > 1
823       && bb != loop->header)
824     {
825       bool found = false;
826       FOR_EACH_EDGE (e, ei, bb->preds)
827 	if (EDGE_COUNT (e->src->succs) == 1)
828 	  found = true;
829       if (!found)
830 	{
831 	  if (dump_file && (dump_flags & TDF_DETAILS))
832 	    fprintf (dump_file, "only critical predecessors\n");
833 	  return false;
834 	}
835     }
836 
837   return true;
838 }
839 
840 /* Return true when all predecessor blocks of BB are visited.  The
841    VISITED bitmap keeps track of the visited blocks.  */
842 
843 static bool
844 pred_blocks_visited_p (basic_block bb, bitmap *visited)
845 {
846   edge e;
847   edge_iterator ei;
848   FOR_EACH_EDGE (e, ei, bb->preds)
849     if (!bitmap_bit_p (*visited, e->src->index))
850       return false;
851 
852   return true;
853 }
854 
855 /* Get body of a LOOP in suitable order for if-conversion.  It is
856    caller's responsibility to deallocate basic block list.
857    If-conversion suitable order is, breadth first sort (BFS) order
858    with an additional constraint: select a block only if all its
859    predecessors are already selected.  */
860 
861 static basic_block *
862 get_loop_body_in_if_conv_order (const struct loop *loop)
863 {
864   basic_block *blocks, *blocks_in_bfs_order;
865   basic_block bb;
866   bitmap visited;
867   unsigned int index = 0;
868   unsigned int visited_count = 0;
869 
870   gcc_assert (loop->num_nodes);
871   gcc_assert (loop->latch != EXIT_BLOCK_PTR);
872 
873   blocks = XCNEWVEC (basic_block, loop->num_nodes);
874   visited = BITMAP_ALLOC (NULL);
875 
876   blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
877 
878   index = 0;
879   while (index < loop->num_nodes)
880     {
881       bb = blocks_in_bfs_order [index];
882 
883       if (bb->flags & BB_IRREDUCIBLE_LOOP)
884 	{
885 	  free (blocks_in_bfs_order);
886 	  BITMAP_FREE (visited);
887 	  free (blocks);
888 	  return NULL;
889 	}
890 
891       if (!bitmap_bit_p (visited, bb->index))
892 	{
893 	  if (pred_blocks_visited_p (bb, &visited)
894 	      || bb == loop->header)
895 	    {
896 	      /* This block is now visited.  */
897 	      bitmap_set_bit (visited, bb->index);
898 	      blocks[visited_count++] = bb;
899 	    }
900 	}
901 
902       index++;
903 
904       if (index == loop->num_nodes
905 	  && visited_count != loop->num_nodes)
906 	/* Not done yet.  */
907 	index = 0;
908     }
909   free (blocks_in_bfs_order);
910   BITMAP_FREE (visited);
911   return blocks;
912 }
913 
914 /* Returns true when the analysis of the predicates for all the basic
915    blocks in LOOP succeeded.
916 
917    predicate_bbs first allocates the predicates of the basic blocks.
918    These fields are then initialized with the tree expressions
919    representing the predicates under which a basic block is executed
920    in the LOOP.  As the loop->header is executed at each iteration, it
921    has the "true" predicate.  Other statements executed under a
922    condition are predicated with that condition, for example
923 
924    | if (x)
925    |   S1;
926    | else
927    |   S2;
928 
929    S1 will be predicated with "x", and
930    S2 will be predicated with "!x".  */
931 
932 static bool
933 predicate_bbs (loop_p loop)
934 {
935   unsigned int i;
936 
937   for (i = 0; i < loop->num_nodes; i++)
938     init_bb_predicate (ifc_bbs[i]);
939 
940   for (i = 0; i < loop->num_nodes; i++)
941     {
942       basic_block bb = ifc_bbs[i];
943       tree cond;
944       gimple_stmt_iterator itr;
945 
946       /* The loop latch is always executed and has no extra conditions
947 	 to be processed: skip it.  */
948       if (bb == loop->latch)
949 	{
950 	  reset_bb_predicate (loop->latch);
951 	  continue;
952 	}
953 
954       cond = bb_predicate (bb);
955 
956       for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
957 	{
958 	  gimple stmt = gsi_stmt (itr);
959 
960 	  switch (gimple_code (stmt))
961 	    {
962 	    case GIMPLE_LABEL:
963 	    case GIMPLE_ASSIGN:
964 	    case GIMPLE_CALL:
965 	    case GIMPLE_DEBUG:
966 	      break;
967 
968 	    case GIMPLE_COND:
969 	      {
970 		tree c2, tem;
971 		edge true_edge, false_edge;
972 		location_t loc = gimple_location (stmt);
973 		tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
974 					  boolean_type_node,
975 					  gimple_cond_lhs (stmt),
976 					  gimple_cond_rhs (stmt));
977 
978 		/* Add new condition into destination's predicate list.  */
979 		extract_true_false_edges_from_block (gimple_bb (stmt),
980 						     &true_edge, &false_edge);
981 
982 		/* If C is true, then TRUE_EDGE is taken.  */
983 		add_to_dst_predicate_list (loop, true_edge,
984 					   unshare_expr (cond),
985 					   unshare_expr (c));
986 
987 		/* If C is false, then FALSE_EDGE is taken.  */
988 		c2 = invert_truthvalue_loc (loc, unshare_expr (c));
989 		tem = canonicalize_cond_expr_cond (c2);
990 		if (tem)
991 		  c2 = tem;
992 		add_to_dst_predicate_list (loop, false_edge,
993 					   unshare_expr (cond), c2);
994 
995 		cond = NULL_TREE;
996 		break;
997 	      }
998 
999 	    default:
1000 	      /* Not handled yet in if-conversion.  */
1001 	      return false;
1002 	    }
1003 	}
1004 
1005       /* If current bb has only one successor, then consider it as an
1006 	 unconditional goto.  */
1007       if (single_succ_p (bb))
1008 	{
1009 	  basic_block bb_n = single_succ (bb);
1010 
1011 	  /* The successor bb inherits the predicate of its
1012 	     predecessor.  If there is no predicate in the predecessor
1013 	     bb, then consider the successor bb as always executed.  */
1014 	  if (cond == NULL_TREE)
1015 	    cond = boolean_true_node;
1016 
1017 	  add_to_predicate_list (bb_n, cond);
1018 	}
1019     }
1020 
1021   /* The loop header is always executed.  */
1022   reset_bb_predicate (loop->header);
1023   gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
1024 	      && bb_predicate_gimplified_stmts (loop->latch) == NULL);
1025 
1026   return true;
1027 }
1028 
1029 /* Return true when LOOP is if-convertible.  This is a helper function
1030    for if_convertible_loop_p.  REFS and DDRS are initialized and freed
1031    in if_convertible_loop_p.  */
1032 
1033 static bool
1034 if_convertible_loop_p_1 (struct loop *loop,
1035 			 VEC (loop_p, heap) **loop_nest,
1036 			 VEC (data_reference_p, heap) **refs,
1037 			 VEC (ddr_p, heap) **ddrs)
1038 {
1039   bool res;
1040   unsigned int i;
1041   basic_block exit_bb = NULL;
1042 
1043   /* Don't if-convert the loop when the data dependences cannot be
1044      computed: the loop won't be vectorized in that case.  */
1045   res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
1046   if (!res)
1047     return false;
1048 
1049   calculate_dominance_info (CDI_DOMINATORS);
1050 
1051   /* Allow statements that can be handled during if-conversion.  */
1052   ifc_bbs = get_loop_body_in_if_conv_order (loop);
1053   if (!ifc_bbs)
1054     {
1055       if (dump_file && (dump_flags & TDF_DETAILS))
1056 	fprintf (dump_file, "Irreducible loop\n");
1057       return false;
1058     }
1059 
1060   for (i = 0; i < loop->num_nodes; i++)
1061     {
1062       basic_block bb = ifc_bbs[i];
1063 
1064       if (!if_convertible_bb_p (loop, bb, exit_bb))
1065 	return false;
1066 
1067       if (bb_with_exit_edge_p (loop, bb))
1068 	exit_bb = bb;
1069     }
1070 
1071   res = predicate_bbs (loop);
1072   if (!res)
1073     return false;
1074 
1075   if (flag_tree_loop_if_convert_stores)
1076     {
1077       data_reference_p dr;
1078 
1079       for (i = 0; VEC_iterate (data_reference_p, *refs, i, dr); i++)
1080 	{
1081 	  dr->aux = XNEW (struct ifc_dr);
1082 	  DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
1083 	  DR_RW_UNCONDITIONALLY (dr) = -1;
1084 	}
1085     }
1086 
1087   for (i = 0; i < loop->num_nodes; i++)
1088     {
1089       basic_block bb = ifc_bbs[i];
1090       gimple_stmt_iterator itr;
1091 
1092       for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1093 	if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr)))
1094 	  return false;
1095 
1096       /* Check the if-convertibility of statements in predicated BBs.  */
1097       if (is_predicated (bb))
1098 	for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1099 	  if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
1100 	    return false;
1101     }
1102 
1103   if (dump_file)
1104     fprintf (dump_file, "Applying if-conversion\n");
1105 
1106   return true;
1107 }
1108 
1109 /* Return true when LOOP is if-convertible.
1110    LOOP is if-convertible if:
1111    - it is innermost,
1112    - it has two or more basic blocks,
1113    - it has only one exit,
1114    - loop header is not the exit edge,
1115    - if its basic blocks and phi nodes are if convertible.  */
1116 
1117 static bool
1118 if_convertible_loop_p (struct loop *loop)
1119 {
1120   edge e;
1121   edge_iterator ei;
1122   bool res = false;
1123   VEC (data_reference_p, heap) *refs;
1124   VEC (ddr_p, heap) *ddrs;
1125   VEC (loop_p, heap) *loop_nest;
1126 
1127   /* Handle only innermost loop.  */
1128   if (!loop || loop->inner)
1129     {
1130       if (dump_file && (dump_flags & TDF_DETAILS))
1131 	fprintf (dump_file, "not innermost loop\n");
1132       return false;
1133     }
1134 
1135   /* If only one block, no need for if-conversion.  */
1136   if (loop->num_nodes <= 2)
1137     {
1138       if (dump_file && (dump_flags & TDF_DETAILS))
1139 	fprintf (dump_file, "less than 2 basic blocks\n");
1140       return false;
1141     }
1142 
1143   /* More than one loop exit is too much to handle.  */
1144   if (!single_exit (loop))
1145     {
1146       if (dump_file && (dump_flags & TDF_DETAILS))
1147 	fprintf (dump_file, "multiple exits\n");
1148       return false;
1149     }
1150 
1151   /* If one of the loop header's edge is an exit edge then do not
1152      apply if-conversion.  */
1153   FOR_EACH_EDGE (e, ei, loop->header->succs)
1154     if (loop_exit_edge_p (loop, e))
1155       return false;
1156 
1157   refs = VEC_alloc (data_reference_p, heap, 5);
1158   ddrs = VEC_alloc (ddr_p, heap, 25);
1159   loop_nest = VEC_alloc (loop_p, heap, 3);
1160   res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs);
1161 
1162   if (flag_tree_loop_if_convert_stores)
1163     {
1164       data_reference_p dr;
1165       unsigned int i;
1166 
1167       for (i = 0; VEC_iterate (data_reference_p, refs, i, dr); i++)
1168 	free (dr->aux);
1169     }
1170 
1171   VEC_free (loop_p, heap, loop_nest);
1172   free_data_refs (refs);
1173   free_dependence_relations (ddrs);
1174   return res;
1175 }
1176 
1177 /* Basic block BB has two predecessors.  Using predecessor's bb
1178    predicate, set an appropriate condition COND for the PHI node
1179    replacement.  Return the true block whose phi arguments are
1180    selected when cond is true.  LOOP is the loop containing the
1181    if-converted region, GSI is the place to insert the code for the
1182    if-conversion.  */
1183 
1184 static basic_block
1185 find_phi_replacement_condition (basic_block bb, tree *cond,
1186 				gimple_stmt_iterator *gsi)
1187 {
1188   edge first_edge, second_edge;
1189   tree tmp_cond;
1190 
1191   gcc_assert (EDGE_COUNT (bb->preds) == 2);
1192   first_edge = EDGE_PRED (bb, 0);
1193   second_edge = EDGE_PRED (bb, 1);
1194 
1195   /* Prefer an edge with a not negated predicate.
1196      ???  That's a very weak cost model.  */
1197   tmp_cond = bb_predicate (first_edge->src);
1198   gcc_assert (tmp_cond);
1199   if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
1200     {
1201       edge tmp_edge;
1202 
1203       tmp_edge = first_edge;
1204       first_edge = second_edge;
1205       second_edge = tmp_edge;
1206     }
1207 
1208   /* Check if the edge we take the condition from is not critical.
1209      We know that at least one non-critical edge exists.  */
1210   if (EDGE_COUNT (first_edge->src->succs) > 1)
1211     {
1212       *cond = bb_predicate (second_edge->src);
1213 
1214       if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
1215 	*cond = TREE_OPERAND (*cond, 0);
1216       else
1217 	/* Select non loop header bb.  */
1218 	first_edge = second_edge;
1219     }
1220   else
1221     *cond = bb_predicate (first_edge->src);
1222 
1223   /* Gimplify the condition to a valid cond-expr conditonal operand.  */
1224   *cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (*cond),
1225 				      is_gimple_condexpr, NULL_TREE,
1226 				      true, GSI_SAME_STMT);
1227 
1228   return first_edge->src;
1229 }
1230 
1231 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1232    This routine does not handle PHI nodes with more than two
1233    arguments.
1234 
1235    For example,
1236      S1: A = PHI <x1(1), x2(5)>
1237    is converted into,
1238      S2: A = cond ? x1 : x2;
1239 
1240    The generated code is inserted at GSI that points to the top of
1241    basic block's statement list.  When COND is true, phi arg from
1242    TRUE_BB is selected.  */
1243 
1244 static void
1245 predicate_scalar_phi (gimple phi, tree cond,
1246 		      basic_block true_bb,
1247 		      gimple_stmt_iterator *gsi)
1248 {
1249   gimple new_stmt;
1250   basic_block bb;
1251   tree rhs, res, arg, scev;
1252 
1253   gcc_assert (gimple_code (phi) == GIMPLE_PHI
1254 	      && gimple_phi_num_args (phi) == 2);
1255 
1256   res = gimple_phi_result (phi);
1257   /* Do not handle virtual phi nodes.  */
1258   if (!is_gimple_reg (SSA_NAME_VAR (res)))
1259     return;
1260 
1261   bb = gimple_bb (phi);
1262 
1263   if ((arg = degenerate_phi_result (phi))
1264       || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1265 					    res))
1266 	  && !chrec_contains_undetermined (scev)
1267 	  && scev != res
1268 	  && (arg = gimple_phi_arg_def (phi, 0))))
1269     rhs = arg;
1270   else
1271     {
1272       tree arg_0, arg_1;
1273       /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr.  */
1274       if (EDGE_PRED (bb, 1)->src == true_bb)
1275 	{
1276 	  arg_0 = gimple_phi_arg_def (phi, 1);
1277 	  arg_1 = gimple_phi_arg_def (phi, 0);
1278 	}
1279       else
1280 	{
1281 	  arg_0 = gimple_phi_arg_def (phi, 0);
1282 	  arg_1 = gimple_phi_arg_def (phi, 1);
1283 	}
1284 
1285       /* Build new RHS using selected condition and arguments.  */
1286       rhs = build3 (COND_EXPR, TREE_TYPE (res),
1287 		    unshare_expr (cond), arg_0, arg_1);
1288     }
1289 
1290   new_stmt = gimple_build_assign (res, rhs);
1291   SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt;
1292   gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1293   update_stmt (new_stmt);
1294 
1295   if (dump_file && (dump_flags & TDF_DETAILS))
1296     {
1297       fprintf (dump_file, "new phi replacement stmt\n");
1298       print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1299     }
1300 }
1301 
1302 /* Replaces in LOOP all the scalar phi nodes other than those in the
1303    LOOP->header block with conditional modify expressions.  */
1304 
1305 static void
1306 predicate_all_scalar_phis (struct loop *loop)
1307 {
1308   basic_block bb;
1309   unsigned int orig_loop_num_nodes = loop->num_nodes;
1310   unsigned int i;
1311 
1312   for (i = 1; i < orig_loop_num_nodes; i++)
1313     {
1314       gimple phi;
1315       tree cond = NULL_TREE;
1316       gimple_stmt_iterator gsi, phi_gsi;
1317       basic_block true_bb = NULL;
1318       bb = ifc_bbs[i];
1319 
1320       if (bb == loop->header)
1321 	continue;
1322 
1323       phi_gsi = gsi_start_phis (bb);
1324       if (gsi_end_p (phi_gsi))
1325 	continue;
1326 
1327       /* BB has two predecessors.  Using predecessor's aux field, set
1328 	 appropriate condition for the PHI node replacement.  */
1329       gsi = gsi_after_labels (bb);
1330       true_bb = find_phi_replacement_condition (bb, &cond, &gsi);
1331 
1332       while (!gsi_end_p (phi_gsi))
1333 	{
1334 	  phi = gsi_stmt (phi_gsi);
1335 	  predicate_scalar_phi (phi, cond, true_bb, &gsi);
1336 	  release_phi_node (phi);
1337 	  gsi_next (&phi_gsi);
1338 	}
1339 
1340       set_phi_nodes (bb, NULL);
1341     }
1342 }
1343 
1344 /* Insert in each basic block of LOOP the statements produced by the
1345    gimplification of the predicates.  */
1346 
1347 static void
1348 insert_gimplified_predicates (loop_p loop)
1349 {
1350   unsigned int i;
1351 
1352   for (i = 0; i < loop->num_nodes; i++)
1353     {
1354       basic_block bb = ifc_bbs[i];
1355       gimple_seq stmts;
1356 
1357       if (!is_predicated (bb))
1358 	{
1359 	  /* Do not insert statements for a basic block that is not
1360 	     predicated.  Also make sure that the predicate of the
1361 	     basic block is set to true.  */
1362 	  reset_bb_predicate (bb);
1363 	  continue;
1364 	}
1365 
1366       stmts = bb_predicate_gimplified_stmts (bb);
1367       if (stmts)
1368 	{
1369 	  if (flag_tree_loop_if_convert_stores)
1370 	    {
1371 	      /* Insert the predicate of the BB just after the label,
1372 		 as the if-conversion of memory writes will use this
1373 		 predicate.  */
1374 	      gimple_stmt_iterator gsi = gsi_after_labels (bb);
1375 	      gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1376 	    }
1377 	  else
1378 	    {
1379 	      /* Insert the predicate of the BB at the end of the BB
1380 		 as this would reduce the register pressure: the only
1381 		 use of this predicate will be in successor BBs.  */
1382 	      gimple_stmt_iterator gsi = gsi_last_bb (bb);
1383 
1384 	      if (gsi_end_p (gsi)
1385 		  || stmt_ends_bb_p (gsi_stmt (gsi)))
1386 		gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1387 	      else
1388 		gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1389 	    }
1390 
1391 	  /* Once the sequence is code generated, set it to NULL.  */
1392 	  set_bb_predicate_gimplified_stmts (bb, NULL);
1393 	}
1394     }
1395 }
1396 
1397 /* Predicate each write to memory in LOOP.
1398 
1399    This function transforms control flow constructs containing memory
1400    writes of the form:
1401 
1402    | for (i = 0; i < N; i++)
1403    |   if (cond)
1404    |     A[i] = expr;
1405 
1406    into the following form that does not contain control flow:
1407 
1408    | for (i = 0; i < N; i++)
1409    |   A[i] = cond ? expr : A[i];
1410 
1411    The original CFG looks like this:
1412 
1413    | bb_0
1414    |   i = 0
1415    | end_bb_0
1416    |
1417    | bb_1
1418    |   if (i < N) goto bb_5 else goto bb_2
1419    | end_bb_1
1420    |
1421    | bb_2
1422    |   cond = some_computation;
1423    |   if (cond) goto bb_3 else goto bb_4
1424    | end_bb_2
1425    |
1426    | bb_3
1427    |   A[i] = expr;
1428    |   goto bb_4
1429    | end_bb_3
1430    |
1431    | bb_4
1432    |   goto bb_1
1433    | end_bb_4
1434 
1435    insert_gimplified_predicates inserts the computation of the COND
1436    expression at the beginning of the destination basic block:
1437 
1438    | bb_0
1439    |   i = 0
1440    | end_bb_0
1441    |
1442    | bb_1
1443    |   if (i < N) goto bb_5 else goto bb_2
1444    | end_bb_1
1445    |
1446    | bb_2
1447    |   cond = some_computation;
1448    |   if (cond) goto bb_3 else goto bb_4
1449    | end_bb_2
1450    |
1451    | bb_3
1452    |   cond = some_computation;
1453    |   A[i] = expr;
1454    |   goto bb_4
1455    | end_bb_3
1456    |
1457    | bb_4
1458    |   goto bb_1
1459    | end_bb_4
1460 
1461    predicate_mem_writes is then predicating the memory write as follows:
1462 
1463    | bb_0
1464    |   i = 0
1465    | end_bb_0
1466    |
1467    | bb_1
1468    |   if (i < N) goto bb_5 else goto bb_2
1469    | end_bb_1
1470    |
1471    | bb_2
1472    |   if (cond) goto bb_3 else goto bb_4
1473    | end_bb_2
1474    |
1475    | bb_3
1476    |   cond = some_computation;
1477    |   A[i] = cond ? expr : A[i];
1478    |   goto bb_4
1479    | end_bb_3
1480    |
1481    | bb_4
1482    |   goto bb_1
1483    | end_bb_4
1484 
1485    and finally combine_blocks removes the basic block boundaries making
1486    the loop vectorizable:
1487 
1488    | bb_0
1489    |   i = 0
1490    |   if (i < N) goto bb_5 else goto bb_1
1491    | end_bb_0
1492    |
1493    | bb_1
1494    |   cond = some_computation;
1495    |   A[i] = cond ? expr : A[i];
1496    |   if (i < N) goto bb_5 else goto bb_4
1497    | end_bb_1
1498    |
1499    | bb_4
1500    |   goto bb_1
1501    | end_bb_4
1502 */
1503 
1504 static void
1505 predicate_mem_writes (loop_p loop)
1506 {
1507   unsigned int i, orig_loop_num_nodes = loop->num_nodes;
1508 
1509   for (i = 1; i < orig_loop_num_nodes; i++)
1510     {
1511       gimple_stmt_iterator gsi;
1512       basic_block bb = ifc_bbs[i];
1513       tree cond = bb_predicate (bb);
1514       bool swap;
1515       gimple stmt;
1516 
1517       if (is_true_predicate (cond))
1518 	continue;
1519 
1520       swap = false;
1521       if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1522 	{
1523 	  swap = true;
1524 	  cond = TREE_OPERAND (cond, 0);
1525 	}
1526 
1527       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1528 	if ((stmt = gsi_stmt (gsi))
1529 	    && gimple_assign_single_p (stmt)
1530 	    && gimple_vdef (stmt))
1531 	  {
1532 	    tree lhs = gimple_assign_lhs (stmt);
1533 	    tree rhs = gimple_assign_rhs1 (stmt);
1534 	    tree type = TREE_TYPE (lhs);
1535 
1536 	    lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
1537 	    rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
1538 	    if (swap)
1539 	      {
1540 		tree tem = lhs;
1541 		lhs = rhs;
1542 		rhs = tem;
1543 	      }
1544 	    cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1545 					       is_gimple_condexpr, NULL_TREE,
1546 					       true, GSI_SAME_STMT);
1547 	    rhs = build3 (COND_EXPR, type, unshare_expr (cond), rhs, lhs);
1548 	    gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
1549 	    update_stmt (stmt);
1550 	  }
1551     }
1552 }
1553 
1554 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
1555    other than the exit and latch of the LOOP.  Also resets the
1556    GIMPLE_DEBUG information.  */
1557 
1558 static void
1559 remove_conditions_and_labels (loop_p loop)
1560 {
1561   gimple_stmt_iterator gsi;
1562   unsigned int i;
1563 
1564   for (i = 0; i < loop->num_nodes; i++)
1565     {
1566       basic_block bb = ifc_bbs[i];
1567 
1568       if (bb_with_exit_edge_p (loop, bb)
1569         || bb == loop->latch)
1570       continue;
1571 
1572       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1573 	switch (gimple_code (gsi_stmt (gsi)))
1574 	  {
1575 	  case GIMPLE_COND:
1576 	  case GIMPLE_LABEL:
1577 	    gsi_remove (&gsi, true);
1578 	    break;
1579 
1580 	  case GIMPLE_DEBUG:
1581 	    /* ??? Should there be conditional GIMPLE_DEBUG_BINDs?  */
1582 	    if (gimple_debug_bind_p (gsi_stmt (gsi)))
1583 	      {
1584 		gimple_debug_bind_reset_value (gsi_stmt (gsi));
1585 		update_stmt (gsi_stmt (gsi));
1586 	      }
1587 	    gsi_next (&gsi);
1588 	    break;
1589 
1590 	  default:
1591 	    gsi_next (&gsi);
1592 	  }
1593     }
1594 }
1595 
1596 /* Combine all the basic blocks from LOOP into one or two super basic
1597    blocks.  Replace PHI nodes with conditional modify expressions.  */
1598 
1599 static void
1600 combine_blocks (struct loop *loop)
1601 {
1602   basic_block bb, exit_bb, merge_target_bb;
1603   unsigned int orig_loop_num_nodes = loop->num_nodes;
1604   unsigned int i;
1605   edge e;
1606   edge_iterator ei;
1607 
1608   remove_conditions_and_labels (loop);
1609   insert_gimplified_predicates (loop);
1610   predicate_all_scalar_phis (loop);
1611 
1612   if (flag_tree_loop_if_convert_stores)
1613     predicate_mem_writes (loop);
1614 
1615   /* Merge basic blocks: first remove all the edges in the loop,
1616      except for those from the exit block.  */
1617   exit_bb = NULL;
1618   for (i = 0; i < orig_loop_num_nodes; i++)
1619     {
1620       bb = ifc_bbs[i];
1621       free_bb_predicate (bb);
1622       if (bb_with_exit_edge_p (loop, bb))
1623 	{
1624 	  exit_bb = bb;
1625 	  break;
1626 	}
1627     }
1628   gcc_assert (exit_bb != loop->latch);
1629 
1630   for (i = 1; i < orig_loop_num_nodes; i++)
1631     {
1632       bb = ifc_bbs[i];
1633 
1634       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
1635 	{
1636 	  if (e->src == exit_bb)
1637 	    ei_next (&ei);
1638 	  else
1639 	    remove_edge (e);
1640 	}
1641     }
1642 
1643   if (exit_bb != NULL)
1644     {
1645       if (exit_bb != loop->header)
1646 	{
1647 	  /* Connect this node to loop header.  */
1648 	  make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
1649 	  set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
1650 	}
1651 
1652       /* Redirect non-exit edges to loop->latch.  */
1653       FOR_EACH_EDGE (e, ei, exit_bb->succs)
1654 	{
1655 	  if (!loop_exit_edge_p (loop, e))
1656 	    redirect_edge_and_branch (e, loop->latch);
1657 	}
1658       set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
1659     }
1660   else
1661     {
1662       /* If the loop does not have an exit, reconnect header and latch.  */
1663       make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
1664       set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
1665     }
1666 
1667   merge_target_bb = loop->header;
1668   for (i = 1; i < orig_loop_num_nodes; i++)
1669     {
1670       gimple_stmt_iterator gsi;
1671       gimple_stmt_iterator last;
1672 
1673       bb = ifc_bbs[i];
1674 
1675       if (bb == exit_bb || bb == loop->latch)
1676 	continue;
1677 
1678       /* Make stmts member of loop->header.  */
1679       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1680 	gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
1681 
1682       /* Update stmt list.  */
1683       last = gsi_last_bb (merge_target_bb);
1684       gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
1685       set_bb_seq (bb, NULL);
1686 
1687       delete_basic_block (bb);
1688     }
1689 
1690   /* If possible, merge loop header to the block with the exit edge.
1691      This reduces the number of basic blocks to two, to please the
1692      vectorizer that handles only loops with two nodes.  */
1693   if (exit_bb
1694       && exit_bb != loop->header
1695       && can_merge_blocks_p (loop->header, exit_bb))
1696     merge_blocks (loop->header, exit_bb);
1697 
1698   free (ifc_bbs);
1699   ifc_bbs = NULL;
1700 }
1701 
1702 /* If-convert LOOP when it is legal.  For the moment this pass has no
1703    profitability analysis.  Returns true when something changed.  */
1704 
1705 static bool
1706 tree_if_conversion (struct loop *loop)
1707 {
1708   bool changed = false;
1709   ifc_bbs = NULL;
1710 
1711   if (!if_convertible_loop_p (loop)
1712       || !dbg_cnt (if_conversion_tree))
1713     goto cleanup;
1714 
1715   /* Now all statements are if-convertible.  Combine all the basic
1716      blocks into one huge basic block doing the if-conversion
1717      on-the-fly.  */
1718   combine_blocks (loop);
1719 
1720   if (flag_tree_loop_if_convert_stores)
1721     mark_sym_for_renaming (gimple_vop (cfun));
1722 
1723   changed = true;
1724 
1725  cleanup:
1726   if (ifc_bbs)
1727     {
1728       unsigned int i;
1729 
1730       for (i = 0; i < loop->num_nodes; i++)
1731 	free_bb_predicate (ifc_bbs[i]);
1732 
1733       free (ifc_bbs);
1734       ifc_bbs = NULL;
1735     }
1736 
1737   return changed;
1738 }
1739 
1740 /* Tree if-conversion pass management.  */
1741 
1742 static unsigned int
1743 main_tree_if_conversion (void)
1744 {
1745   loop_iterator li;
1746   struct loop *loop;
1747   bool changed = false;
1748   unsigned todo = 0;
1749 
1750   if (number_of_loops () <= 1)
1751     return 0;
1752 
1753   FOR_EACH_LOOP (li, loop, 0)
1754     changed |= tree_if_conversion (loop);
1755 
1756   if (changed)
1757     todo |= TODO_cleanup_cfg;
1758 
1759   if (changed && flag_tree_loop_if_convert_stores)
1760     todo |= TODO_update_ssa_only_virtuals;
1761 
1762   return todo;
1763 }
1764 
1765 /* Returns true when the if-conversion pass is enabled.  */
1766 
1767 static bool
1768 gate_tree_if_conversion (void)
1769 {
1770   return ((flag_tree_vectorize && flag_tree_loop_if_convert != 0)
1771 	  || flag_tree_loop_if_convert == 1
1772 	  || flag_tree_loop_if_convert_stores == 1);
1773 }
1774 
1775 struct gimple_opt_pass pass_if_conversion =
1776 {
1777  {
1778   GIMPLE_PASS,
1779   "ifcvt",				/* name */
1780   gate_tree_if_conversion,		/* gate */
1781   main_tree_if_conversion,		/* execute */
1782   NULL,					/* sub */
1783   NULL,					/* next */
1784   0,					/* static_pass_number */
1785   TV_NONE,				/* tv_id */
1786   PROP_cfg | PROP_ssa,			/* properties_required */
1787   0,					/* properties_provided */
1788   0,					/* properties_destroyed */
1789   0,					/* todo_flags_start */
1790   TODO_verify_stmts | TODO_verify_flow
1791                                         /* todo_flags_finish */
1792  }
1793 };
1794