1 /* Rewrite a program in Normal form into SSA.
2    Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4    Contributed by Diego Novillo <dnovillo@redhat.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "langhooks.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "function.h"
33 #include "tree-pretty-print.h"
34 #include "gimple-pretty-print.h"
35 #include "bitmap.h"
36 #include "tree-flow.h"
37 #include "gimple.h"
38 #include "tree-inline.h"
39 #include "timevar.h"
40 #include "hashtab.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "cfgloop.h"
44 #include "domwalk.h"
45 #include "params.h"
46 #include "vecprim.h"
47 
48 
49 /* This file builds the SSA form for a function as described in:
50    R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
51    Computing Static Single Assignment Form and the Control Dependence
52    Graph. ACM Transactions on Programming Languages and Systems,
53    13(4):451-490, October 1991.  */
54 
55 /* Structure to map a variable VAR to the set of blocks that contain
56    definitions for VAR.  */
57 struct def_blocks_d
58 {
59   /* The variable.  */
60   tree var;
61 
62   /* Blocks that contain definitions of VAR.  Bit I will be set if the
63      Ith block contains a definition of VAR.  */
64   bitmap def_blocks;
65 
66   /* Blocks that contain a PHI node for VAR.  */
67   bitmap phi_blocks;
68 
69   /* Blocks where VAR is live-on-entry.  Similar semantics as
70      DEF_BLOCKS.  */
71   bitmap livein_blocks;
72 };
73 
74 
75 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
76    DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
77    basic blocks where VAR is defined (assigned a new value).  It also
78    contains a bitmap of all the blocks where VAR is live-on-entry
79    (i.e., there is a use of VAR in block B without a preceding
80    definition in B).  The live-on-entry information is used when
81    computing PHI pruning heuristics.  */
82 static htab_t def_blocks;
83 
84 /* Stack of trees used to restore the global currdefs to its original
85    state after completing rewriting of a block and its dominator
86    children.  Its elements have the following properties:
87 
88    - An SSA_NAME (N) indicates that the current definition of the
89      underlying variable should be set to the given SSA_NAME.  If the
90      symbol associated with the SSA_NAME is not a GIMPLE register, the
91      next slot in the stack must be a _DECL node (SYM).  In this case,
92      the name N in the previous slot is the current reaching
93      definition for SYM.
94 
95    - A _DECL node indicates that the underlying variable has no
96      current definition.
97 
98    - A NULL node at the top entry is used to mark the last slot
99      associated with the current block.  */
100 static VEC(tree,heap) *block_defs_stack;
101 
102 
103 /* Set of existing SSA names being replaced by update_ssa.  */
104 static sbitmap old_ssa_names;
105 
106 /* Set of new SSA names being added by update_ssa.  Note that both
107    NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
108    the operations done on them are presence tests.  */
109 static sbitmap new_ssa_names;
110 
111 sbitmap interesting_blocks;
112 
113 /* Set of SSA names that have been marked to be released after they
114    were registered in the replacement table.  They will be finally
115    released after we finish updating the SSA web.  */
116 static bitmap names_to_release;
117 
118 static VEC(gimple_vec, heap) *phis_to_rewrite;
119 
120 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE.  */
121 static bitmap blocks_with_phis_to_rewrite;
122 
123 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES.  These sets need
124    to grow as the callers to register_new_name_mapping will typically
125    create new names on the fly.  FIXME.  Currently set to 1/3 to avoid
126    frequent reallocations but still need to find a reasonable growth
127    strategy.  */
128 #define NAME_SETS_GROWTH_FACTOR	(MAX (3, num_ssa_names / 3))
129 
130 /* Tuple used to represent replacement mappings.  */
131 struct repl_map_d
132 {
133   tree name;
134   bitmap set;
135 };
136 
137 
138 /* NEW -> OLD_SET replacement table.  If we are replacing several
139    existing SSA names O_1, O_2, ..., O_j with a new name N_i,
140    then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }.  */
141 static htab_t repl_tbl;
142 
143 /* The function the SSA updating data structures have been initialized for.
144    NULL if they need to be initialized by register_new_name_mapping.  */
145 static struct function *update_ssa_initialized_fn = NULL;
146 
147 /* Statistics kept by update_ssa to use in the virtual mapping
148    heuristic.  If the number of virtual mappings is beyond certain
149    threshold, the updater will switch from using the mappings into
150    renaming the virtual symbols from scratch.  In some cases, the
151    large number of name mappings for virtual names causes significant
152    slowdowns in the PHI insertion code.  */
153 struct update_ssa_stats_d
154 {
155   unsigned num_virtual_mappings;
156   unsigned num_total_mappings;
157   bitmap virtual_symbols;
158   unsigned num_virtual_symbols;
159 };
160 static struct update_ssa_stats_d update_ssa_stats;
161 
162 /* Global data to attach to the main dominator walk structure.  */
163 struct mark_def_sites_global_data
164 {
165   /* This bitmap contains the variables which are set before they
166      are used in a basic block.  */
167   bitmap kills;
168 };
169 
170 
171 /* Information stored for SSA names.  */
172 struct ssa_name_info
173 {
174   /* The current reaching definition replacing this SSA name.  */
175   tree current_def;
176 
177   /* This field indicates whether or not the variable may need PHI nodes.
178      See the enum's definition for more detailed information about the
179      states.  */
180   ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
181 
182   /* Age of this record (so that info_for_ssa_name table can be cleared
183      quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
184      are assumed to be null.  */
185   unsigned age;
186 };
187 
188 /* The information associated with names.  */
189 typedef struct ssa_name_info *ssa_name_info_p;
190 DEF_VEC_P (ssa_name_info_p);
191 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
192 
193 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
194 static unsigned current_info_for_ssa_name_age;
195 
196 /* The set of blocks affected by update_ssa.  */
197 static bitmap blocks_to_update;
198 
199 /* The main entry point to the SSA renamer (rewrite_blocks) may be
200    called several times to do different, but related, tasks.
201    Initially, we need it to rename the whole program into SSA form.
202    At other times, we may need it to only rename into SSA newly
203    exposed symbols.  Finally, we can also call it to incrementally fix
204    an already built SSA web.  */
205 enum rewrite_mode {
206     /* Convert the whole function into SSA form.  */
207     REWRITE_ALL,
208 
209     /* Incrementally update the SSA web by replacing existing SSA
210        names with new ones.  See update_ssa for details.  */
211     REWRITE_UPDATE
212 };
213 
214 
215 
216 
217 /* Prototypes for debugging functions.  */
218 extern void dump_tree_ssa (FILE *);
219 extern void debug_tree_ssa (void);
220 extern void debug_def_blocks (void);
221 extern void dump_tree_ssa_stats (FILE *);
222 extern void debug_tree_ssa_stats (void);
223 extern void dump_update_ssa (FILE *);
224 extern void debug_update_ssa (void);
225 extern void dump_names_replaced_by (FILE *, tree);
226 extern void debug_names_replaced_by (tree);
227 extern void dump_def_blocks (FILE *);
228 extern void debug_def_blocks (void);
229 extern void dump_defs_stack (FILE *, int);
230 extern void debug_defs_stack (int);
231 extern void dump_currdefs (FILE *);
232 extern void debug_currdefs (void);
233 
234 /* Return true if STMT needs to be rewritten.  When renaming a subset
235    of the variables, not all statements will be processed.  This is
236    decided in mark_def_sites.  */
237 
238 static inline bool
239 rewrite_uses_p (gimple stmt)
240 {
241   return gimple_visited_p (stmt);
242 }
243 
244 
245 /* Set the rewrite marker on STMT to the value given by REWRITE_P.  */
246 
247 static inline void
248 set_rewrite_uses (gimple stmt, bool rewrite_p)
249 {
250   gimple_set_visited (stmt, rewrite_p);
251 }
252 
253 
254 /* Return true if the DEFs created by statement STMT should be
255    registered when marking new definition sites.  This is slightly
256    different than rewrite_uses_p: it's used by update_ssa to
257    distinguish statements that need to have both uses and defs
258    processed from those that only need to have their defs processed.
259    Statements that define new SSA names only need to have their defs
260    registered, but they don't need to have their uses renamed.  */
261 
262 static inline bool
263 register_defs_p (gimple stmt)
264 {
265   return gimple_plf (stmt, GF_PLF_1) != 0;
266 }
267 
268 
269 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered.  */
270 
271 static inline void
272 set_register_defs (gimple stmt, bool register_defs_p)
273 {
274   gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
275 }
276 
277 
278 /* Get the information associated with NAME.  */
279 
280 static inline ssa_name_info_p
281 get_ssa_name_ann (tree name)
282 {
283   unsigned ver = SSA_NAME_VERSION (name);
284   unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
285   struct ssa_name_info *info;
286 
287   if (ver >= len)
288     {
289       unsigned new_len = num_ssa_names;
290 
291       VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
292       while (len++ < new_len)
293 	{
294 	  struct ssa_name_info *info = XCNEW (struct ssa_name_info);
295 	  info->age = current_info_for_ssa_name_age;
296 	  VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
297 	}
298     }
299 
300   info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
301   if (info->age < current_info_for_ssa_name_age)
302     {
303       info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
304       info->current_def = NULL_TREE;
305       info->age = current_info_for_ssa_name_age;
306     }
307 
308   return info;
309 }
310 
311 
312 /* Clears info for SSA names.  */
313 
314 static void
315 clear_ssa_name_info (void)
316 {
317   current_info_for_ssa_name_age++;
318 }
319 
320 
321 /* Get phi_state field for VAR.  */
322 
323 static inline enum need_phi_state
324 get_phi_state (tree var)
325 {
326   if (TREE_CODE (var) == SSA_NAME)
327     return get_ssa_name_ann (var)->need_phi_state;
328   else
329     return var_ann (var)->need_phi_state;
330 }
331 
332 
333 /* Sets phi_state field for VAR to STATE.  */
334 
335 static inline void
336 set_phi_state (tree var, enum need_phi_state state)
337 {
338   if (TREE_CODE (var) == SSA_NAME)
339     get_ssa_name_ann (var)->need_phi_state = state;
340   else
341     var_ann (var)->need_phi_state = state;
342 }
343 
344 
345 /* Return the current definition for VAR.  */
346 
347 tree
348 get_current_def (tree var)
349 {
350   if (TREE_CODE (var) == SSA_NAME)
351     return get_ssa_name_ann (var)->current_def;
352   else
353     return var_ann (var)->current_def;
354 }
355 
356 
357 /* Sets current definition of VAR to DEF.  */
358 
359 void
360 set_current_def (tree var, tree def)
361 {
362   if (TREE_CODE (var) == SSA_NAME)
363     get_ssa_name_ann (var)->current_def = def;
364   else
365     var_ann (var)->current_def = def;
366 }
367 
368 
369 /* Compute global livein information given the set of blocks where
370    an object is locally live at the start of the block (LIVEIN)
371    and the set of blocks where the object is defined (DEF_BLOCKS).
372 
373    Note: This routine augments the existing local livein information
374    to include global livein (i.e., it modifies the underlying bitmap
375    for LIVEIN).  */
376 
377 void
378 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
379 {
380   basic_block bb, *worklist, *tos;
381   unsigned i;
382   bitmap_iterator bi;
383 
384   tos = worklist
385     = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
386 
387   EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
388     *tos++ = BASIC_BLOCK (i);
389 
390   /* Iterate until the worklist is empty.  */
391   while (tos != worklist)
392     {
393       edge e;
394       edge_iterator ei;
395 
396       /* Pull a block off the worklist.  */
397       bb = *--tos;
398 
399       /* For each predecessor block.  */
400       FOR_EACH_EDGE (e, ei, bb->preds)
401 	{
402 	  basic_block pred = e->src;
403 	  int pred_index = pred->index;
404 
405 	  /* None of this is necessary for the entry block.  */
406 	  if (pred != ENTRY_BLOCK_PTR
407 	      && ! bitmap_bit_p (livein, pred_index)
408 	      && ! bitmap_bit_p (def_blocks, pred_index))
409 	    {
410 	      *tos++ = pred;
411 	      bitmap_set_bit (livein, pred_index);
412 	    }
413 	}
414     }
415 
416   free (worklist);
417 }
418 
419 
420 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
421    all statements in basic block BB.  */
422 
423 static void
424 initialize_flags_in_bb (basic_block bb)
425 {
426   gimple stmt;
427   gimple_stmt_iterator gsi;
428 
429   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
430     {
431       gimple phi = gsi_stmt (gsi);
432       set_rewrite_uses (phi, false);
433       set_register_defs (phi, false);
434     }
435 
436   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
437     {
438       stmt = gsi_stmt (gsi);
439 
440       /* We are going to use the operand cache API, such as
441 	 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST.  The operand
442 	 cache for each statement should be up-to-date.  */
443       gcc_assert (!gimple_modified_p (stmt));
444       set_rewrite_uses (stmt, false);
445       set_register_defs (stmt, false);
446     }
447 }
448 
449 /* Mark block BB as interesting for update_ssa.  */
450 
451 static void
452 mark_block_for_update (basic_block bb)
453 {
454   gcc_assert (blocks_to_update != NULL);
455   if (!bitmap_set_bit (blocks_to_update, bb->index))
456     return;
457   initialize_flags_in_bb (bb);
458 }
459 
460 /* Return the set of blocks where variable VAR is defined and the blocks
461    where VAR is live on entry (livein).  If no entry is found in
462    DEF_BLOCKS, a new one is created and returned.  */
463 
464 static inline struct def_blocks_d *
465 get_def_blocks_for (tree var)
466 {
467   struct def_blocks_d db, *db_p;
468   void **slot;
469 
470   db.var = var;
471   slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
472   if (*slot == NULL)
473     {
474       db_p = XNEW (struct def_blocks_d);
475       db_p->var = var;
476       db_p->def_blocks = BITMAP_ALLOC (NULL);
477       db_p->phi_blocks = BITMAP_ALLOC (NULL);
478       db_p->livein_blocks = BITMAP_ALLOC (NULL);
479       *slot = (void *) db_p;
480     }
481   else
482     db_p = (struct def_blocks_d *) *slot;
483 
484   return db_p;
485 }
486 
487 
488 /* Mark block BB as the definition site for variable VAR.  PHI_P is true if
489    VAR is defined by a PHI node.  */
490 
491 static void
492 set_def_block (tree var, basic_block bb, bool phi_p)
493 {
494   struct def_blocks_d *db_p;
495   enum need_phi_state state;
496 
497   state = get_phi_state (var);
498   db_p = get_def_blocks_for (var);
499 
500   /* Set the bit corresponding to the block where VAR is defined.  */
501   bitmap_set_bit (db_p->def_blocks, bb->index);
502   if (phi_p)
503     bitmap_set_bit (db_p->phi_blocks, bb->index);
504 
505   /* Keep track of whether or not we may need to insert PHI nodes.
506 
507      If we are in the UNKNOWN state, then this is the first definition
508      of VAR.  Additionally, we have not seen any uses of VAR yet, so
509      we do not need a PHI node for this variable at this time (i.e.,
510      transition to NEED_PHI_STATE_NO).
511 
512      If we are in any other state, then we either have multiple definitions
513      of this variable occurring in different blocks or we saw a use of the
514      variable which was not dominated by the block containing the
515      definition(s).  In this case we may need a PHI node, so enter
516      state NEED_PHI_STATE_MAYBE.  */
517   if (state == NEED_PHI_STATE_UNKNOWN)
518     set_phi_state (var, NEED_PHI_STATE_NO);
519   else
520     set_phi_state (var, NEED_PHI_STATE_MAYBE);
521 }
522 
523 
524 /* Mark block BB as having VAR live at the entry to BB.  */
525 
526 static void
527 set_livein_block (tree var, basic_block bb)
528 {
529   struct def_blocks_d *db_p;
530   enum need_phi_state state = get_phi_state (var);
531 
532   db_p = get_def_blocks_for (var);
533 
534   /* Set the bit corresponding to the block where VAR is live in.  */
535   bitmap_set_bit (db_p->livein_blocks, bb->index);
536 
537   /* Keep track of whether or not we may need to insert PHI nodes.
538 
539      If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
540      by the single block containing the definition(s) of this variable.  If
541      it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
542      NEED_PHI_STATE_MAYBE.  */
543   if (state == NEED_PHI_STATE_NO)
544     {
545       int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
546 
547       if (def_block_index == -1
548 	  || ! dominated_by_p (CDI_DOMINATORS, bb,
549 	                       BASIC_BLOCK (def_block_index)))
550 	set_phi_state (var, NEED_PHI_STATE_MAYBE);
551     }
552   else
553     set_phi_state (var, NEED_PHI_STATE_MAYBE);
554 }
555 
556 
557 /* Return true if symbol SYM is marked for renaming.  */
558 
559 bool
560 symbol_marked_for_renaming (tree sym)
561 {
562   return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
563 }
564 
565 
566 /* Return true if NAME is in OLD_SSA_NAMES.  */
567 
568 static inline bool
569 is_old_name (tree name)
570 {
571   unsigned ver = SSA_NAME_VERSION (name);
572   if (!new_ssa_names)
573     return false;
574   return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
575 }
576 
577 
578 /* Return true if NAME is in NEW_SSA_NAMES.  */
579 
580 static inline bool
581 is_new_name (tree name)
582 {
583   unsigned ver = SSA_NAME_VERSION (name);
584   if (!new_ssa_names)
585     return false;
586   return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
587 }
588 
589 
590 /* Hashing and equality functions for REPL_TBL.  */
591 
592 static hashval_t
593 repl_map_hash (const void *p)
594 {
595   return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
596 }
597 
598 static int
599 repl_map_eq (const void *p1, const void *p2)
600 {
601   return ((const struct repl_map_d *)p1)->name
602 	 == ((const struct repl_map_d *)p2)->name;
603 }
604 
605 static void
606 repl_map_free (void *p)
607 {
608   BITMAP_FREE (((struct repl_map_d *)p)->set);
609   free (p);
610 }
611 
612 
613 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET).  */
614 
615 static inline bitmap
616 names_replaced_by (tree new_tree)
617 {
618   struct repl_map_d m;
619   void **slot;
620 
621   m.name = new_tree;
622   slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
623 
624   /* If N was not registered in the replacement table, return NULL.  */
625   if (slot == NULL || *slot == NULL)
626     return NULL;
627 
628   return ((struct repl_map_d *) *slot)->set;
629 }
630 
631 
632 /* Add OLD to REPL_TBL[NEW_TREE].SET.  */
633 
634 static inline void
635 add_to_repl_tbl (tree new_tree, tree old)
636 {
637   struct repl_map_d m, *mp;
638   void **slot;
639 
640   m.name = new_tree;
641   slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
642   if (*slot == NULL)
643     {
644       mp = XNEW (struct repl_map_d);
645       mp->name = new_tree;
646       mp->set = BITMAP_ALLOC (NULL);
647       *slot = (void *) mp;
648     }
649   else
650     mp = (struct repl_map_d *) *slot;
651 
652   bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
653 }
654 
655 
656 /* Add a new mapping NEW_TREE -> OLD REPL_TBL.  Every entry N_i in REPL_TBL
657    represents the set of names O_1 ... O_j replaced by N_i.  This is
658    used by update_ssa and its helpers to introduce new SSA names in an
659    already formed SSA web.  */
660 
661 static void
662 add_new_name_mapping (tree new_tree, tree old)
663 {
664   timevar_push (TV_TREE_SSA_INCREMENTAL);
665 
666   /* OLD and NEW_TREE must be different SSA names for the same symbol.  */
667   gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
668 
669   /* If this mapping is for virtual names, we will need to update
670      virtual operands.  If this is a mapping for .MEM, then we gather
671      the symbols associated with each name.  */
672   if (!is_gimple_reg (new_tree))
673     {
674       tree sym;
675 
676       update_ssa_stats.num_virtual_mappings++;
677       update_ssa_stats.num_virtual_symbols++;
678 
679       /* Keep counts of virtual mappings and symbols to use in the
680 	 virtual mapping heuristic.  If we have large numbers of
681 	 virtual mappings for a relatively low number of symbols, it
682 	 will make more sense to rename the symbols from scratch.
683 	 Otherwise, the insertion of PHI nodes for each of the old
684 	 names in these mappings will be very slow.  */
685       sym = SSA_NAME_VAR (new_tree);
686       bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
687     }
688 
689   /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
690      caller may have created new names since the set was created.  */
691   if (new_ssa_names->n_bits <= num_ssa_names - 1)
692     {
693       unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
694       new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
695       old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
696     }
697 
698   /* Update the REPL_TBL table.  */
699   add_to_repl_tbl (new_tree, old);
700 
701   /* If OLD had already been registered as a new name, then all the
702      names that OLD replaces should also be replaced by NEW_TREE.  */
703   if (is_new_name (old))
704     bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
705 
706   /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
707      respectively.  */
708   SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
709   SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
710 
711   /* Update mapping counter to use in the virtual mapping heuristic.  */
712   update_ssa_stats.num_total_mappings++;
713 
714   timevar_pop (TV_TREE_SSA_INCREMENTAL);
715 }
716 
717 
718 /* Call back for walk_dominator_tree used to collect definition sites
719    for every variable in the function.  For every statement S in block
720    BB:
721 
722    1- Variables defined by S in the DEFS of S are marked in the bitmap
723       KILLS.
724 
725    2- If S uses a variable VAR and there is no preceding kill of VAR,
726       then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
727 
728    This information is used to determine which variables are live
729    across block boundaries to reduce the number of PHI nodes
730    we create.  */
731 
732 static void
733 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
734 {
735   tree def;
736   use_operand_p use_p;
737   ssa_op_iter iter;
738 
739   /* Since this is the first time that we rewrite the program into SSA
740      form, force an operand scan on every statement.  */
741   update_stmt (stmt);
742 
743   gcc_assert (blocks_to_update == NULL);
744   set_register_defs (stmt, false);
745   set_rewrite_uses (stmt, false);
746 
747   if (is_gimple_debug (stmt))
748     {
749       FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
750 	{
751 	  tree sym = USE_FROM_PTR (use_p);
752 	  gcc_assert (DECL_P (sym));
753 	  set_rewrite_uses (stmt, true);
754 	}
755       if (rewrite_uses_p (stmt))
756 	SET_BIT (interesting_blocks, bb->index);
757       return;
758     }
759 
760   /* If a variable is used before being set, then the variable is live
761      across a block boundary, so mark it live-on-entry to BB.  */
762   FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
763     {
764       tree sym = USE_FROM_PTR (use_p);
765       gcc_assert (DECL_P (sym));
766       if (!bitmap_bit_p (kills, DECL_UID (sym)))
767 	set_livein_block (sym, bb);
768       set_rewrite_uses (stmt, true);
769     }
770 
771   /* Now process the defs.  Mark BB as the definition block and add
772      each def to the set of killed symbols.  */
773   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
774     {
775       gcc_assert (DECL_P (def));
776       set_def_block (def, bb, false);
777       bitmap_set_bit (kills, DECL_UID (def));
778       set_register_defs (stmt, true);
779     }
780 
781   /* If we found the statement interesting then also mark the block BB
782      as interesting.  */
783   if (rewrite_uses_p (stmt) || register_defs_p (stmt))
784     SET_BIT (interesting_blocks, bb->index);
785 }
786 
787 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
788    in the dfs numbering of the dominance tree.  */
789 
790 struct dom_dfsnum
791 {
792   /* Basic block whose index this entry corresponds to.  */
793   unsigned bb_index;
794 
795   /* The dfs number of this node.  */
796   unsigned dfs_num;
797 };
798 
799 /* Compares two entries of type struct dom_dfsnum by dfs_num field.  Callback
800    for qsort.  */
801 
802 static int
803 cmp_dfsnum (const void *a, const void *b)
804 {
805   const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
806   const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
807 
808   return (int) da->dfs_num - (int) db->dfs_num;
809 }
810 
811 /* Among the intervals starting at the N points specified in DEFS, find
812    the one that contains S, and return its bb_index.  */
813 
814 static unsigned
815 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
816 {
817   unsigned f = 0, t = n, m;
818 
819   while (t > f + 1)
820     {
821       m = (f + t) / 2;
822       if (defs[m].dfs_num <= s)
823 	f = m;
824       else
825 	t = m;
826     }
827 
828   return defs[f].bb_index;
829 }
830 
831 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
832    KILLS is a bitmap of blocks where the value is defined before any use.  */
833 
834 static void
835 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
836 {
837   VEC(int, heap) *worklist;
838   bitmap_iterator bi;
839   unsigned i, b, p, u, top;
840   bitmap live_phis;
841   basic_block def_bb, use_bb;
842   edge e;
843   edge_iterator ei;
844   bitmap to_remove;
845   struct dom_dfsnum *defs;
846   unsigned n_defs, adef;
847 
848   if (bitmap_empty_p (uses))
849     {
850       bitmap_clear (phis);
851       return;
852     }
853 
854   /* The phi must dominate a use, or an argument of a live phi.  Also, we
855      do not create any phi nodes in def blocks, unless they are also livein.  */
856   to_remove = BITMAP_ALLOC (NULL);
857   bitmap_and_compl (to_remove, kills, uses);
858   bitmap_and_compl_into (phis, to_remove);
859   if (bitmap_empty_p (phis))
860     {
861       BITMAP_FREE (to_remove);
862       return;
863     }
864 
865   /* We want to remove the unnecessary phi nodes, but we do not want to compute
866      liveness information, as that may be linear in the size of CFG, and if
867      there are lot of different variables to rewrite, this may lead to quadratic
868      behavior.
869 
870      Instead, we basically emulate standard dce.  We put all uses to worklist,
871      then for each of them find the nearest def that dominates them.  If this
872      def is a phi node, we mark it live, and if it was not live before, we
873      add the predecessors of its basic block to the worklist.
874 
875      To quickly locate the nearest def that dominates use, we use dfs numbering
876      of the dominance tree (that is already available in order to speed up
877      queries).  For each def, we have the interval given by the dfs number on
878      entry to and on exit from the corresponding subtree in the dominance tree.
879      The nearest dominator for a given use is the smallest of these intervals
880      that contains entry and exit dfs numbers for the basic block with the use.
881      If we store the bounds for all the uses to an array and sort it, we can
882      locate the nearest dominating def in logarithmic time by binary search.*/
883   bitmap_ior (to_remove, kills, phis);
884   n_defs = bitmap_count_bits (to_remove);
885   defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
886   defs[0].bb_index = 1;
887   defs[0].dfs_num = 0;
888   adef = 1;
889   EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
890     {
891       def_bb = BASIC_BLOCK (i);
892       defs[adef].bb_index = i;
893       defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
894       defs[adef + 1].bb_index = i;
895       defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
896       adef += 2;
897     }
898   BITMAP_FREE (to_remove);
899   gcc_assert (adef == 2 * n_defs + 1);
900   qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
901   gcc_assert (defs[0].bb_index == 1);
902 
903   /* Now each DEFS entry contains the number of the basic block to that the
904      dfs number corresponds.  Change them to the number of basic block that
905      corresponds to the interval following the dfs number.  Also, for the
906      dfs_out numbers, increase the dfs number by one (so that it corresponds
907      to the start of the following interval, not to the end of the current
908      one).  We use WORKLIST as a stack.  */
909   worklist = VEC_alloc (int, heap, n_defs + 1);
910   VEC_quick_push (int, worklist, 1);
911   top = 1;
912   n_defs = 1;
913   for (i = 1; i < adef; i++)
914     {
915       b = defs[i].bb_index;
916       if (b == top)
917 	{
918 	  /* This is a closing element.  Interval corresponding to the top
919 	     of the stack after removing it follows.  */
920 	  VEC_pop (int, worklist);
921 	  top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
922 	  defs[n_defs].bb_index = top;
923 	  defs[n_defs].dfs_num = defs[i].dfs_num + 1;
924 	}
925       else
926 	{
927 	  /* Opening element.  Nothing to do, just push it to the stack and move
928 	     it to the correct position.  */
929 	  defs[n_defs].bb_index = defs[i].bb_index;
930 	  defs[n_defs].dfs_num = defs[i].dfs_num;
931 	  VEC_quick_push (int, worklist, b);
932 	  top = b;
933 	}
934 
935       /* If this interval starts at the same point as the previous one, cancel
936 	 the previous one.  */
937       if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
938 	defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
939       else
940 	n_defs++;
941     }
942   VEC_pop (int, worklist);
943   gcc_assert (VEC_empty (int, worklist));
944 
945   /* Now process the uses.  */
946   live_phis = BITMAP_ALLOC (NULL);
947   EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
948     {
949       VEC_safe_push (int, heap, worklist, i);
950     }
951 
952   while (!VEC_empty (int, worklist))
953     {
954       b = VEC_pop (int, worklist);
955       if (b == ENTRY_BLOCK)
956 	continue;
957 
958       /* If there is a phi node in USE_BB, it is made live.  Otherwise,
959 	 find the def that dominates the immediate dominator of USE_BB
960 	 (the kill in USE_BB does not dominate the use).  */
961       if (bitmap_bit_p (phis, b))
962 	p = b;
963       else
964 	{
965 	  use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
966 	  p = find_dfsnum_interval (defs, n_defs,
967 				    bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
968 	  if (!bitmap_bit_p (phis, p))
969 	    continue;
970 	}
971 
972       /* If the phi node is already live, there is nothing to do.  */
973       if (!bitmap_set_bit (live_phis, p))
974 	continue;
975 
976       /* Add the new uses to the worklist.  */
977       def_bb = BASIC_BLOCK (p);
978       FOR_EACH_EDGE (e, ei, def_bb->preds)
979 	{
980 	  u = e->src->index;
981 	  if (bitmap_bit_p (uses, u))
982 	    continue;
983 
984 	  /* In case there is a kill directly in the use block, do not record
985 	     the use (this is also necessary for correctness, as we assume that
986 	     uses dominated by a def directly in their block have been filtered
987 	     out before).  */
988 	  if (bitmap_bit_p (kills, u))
989 	    continue;
990 
991 	  bitmap_set_bit (uses, u);
992 	  VEC_safe_push (int, heap, worklist, u);
993 	}
994     }
995 
996   VEC_free (int, heap, worklist);
997   bitmap_copy (phis, live_phis);
998   BITMAP_FREE (live_phis);
999   free (defs);
1000 }
1001 
1002 /* Return the set of blocks where variable VAR is defined and the blocks
1003    where VAR is live on entry (livein).  Return NULL, if no entry is
1004    found in DEF_BLOCKS.  */
1005 
1006 static inline struct def_blocks_d *
1007 find_def_blocks_for (tree var)
1008 {
1009   struct def_blocks_d dm;
1010   dm.var = var;
1011   return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1012 }
1013 
1014 
1015 /* Retrieve or create a default definition for symbol SYM.  */
1016 
1017 static inline tree
1018 get_default_def_for (tree sym)
1019 {
1020   tree ddef = gimple_default_def (cfun, sym);
1021 
1022   if (ddef == NULL_TREE)
1023     {
1024       ddef = make_ssa_name (sym, gimple_build_nop ());
1025       set_default_def (sym, ddef);
1026     }
1027 
1028   return ddef;
1029 }
1030 
1031 
1032 /* Marks phi node PHI in basic block BB for rewrite.  */
1033 
1034 static void
1035 mark_phi_for_rewrite (basic_block bb, gimple phi)
1036 {
1037   gimple_vec phis;
1038   unsigned i, idx = bb->index;
1039 
1040   if (rewrite_uses_p (phi))
1041     return;
1042 
1043   set_rewrite_uses (phi, true);
1044 
1045   if (!blocks_with_phis_to_rewrite)
1046     return;
1047 
1048   bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1049   VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1050   for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1051     VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1052 
1053   phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1054   if (!phis)
1055     phis = VEC_alloc (gimple, heap, 10);
1056 
1057   VEC_safe_push (gimple, heap, phis, phi);
1058   VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1059 }
1060 
1061 /* Insert PHI nodes for variable VAR using the iterated dominance
1062    frontier given in PHI_INSERTION_POINTS.  If UPDATE_P is true, this
1063    function assumes that the caller is incrementally updating the
1064    existing SSA form, in which case VAR may be an SSA name instead of
1065    a symbol.
1066 
1067    PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1068    PHI node for VAR.  On exit, only the nodes that received a PHI node
1069    for VAR will be present in PHI_INSERTION_POINTS.  */
1070 
1071 static void
1072 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1073 {
1074   unsigned bb_index;
1075   edge e;
1076   gimple phi;
1077   basic_block bb;
1078   bitmap_iterator bi;
1079   struct def_blocks_d *def_map;
1080 
1081   def_map = find_def_blocks_for (var);
1082   gcc_assert (def_map);
1083 
1084   /* Remove the blocks where we already have PHI nodes for VAR.  */
1085   bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1086 
1087   /* Remove obviously useless phi nodes.  */
1088   prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1089 			  def_map->livein_blocks);
1090 
1091   /* And insert the PHI nodes.  */
1092   EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1093     {
1094       bb = BASIC_BLOCK (bb_index);
1095       if (update_p)
1096 	mark_block_for_update (bb);
1097 
1098       phi = NULL;
1099 
1100       if (TREE_CODE (var) == SSA_NAME)
1101 	{
1102 	  /* If we are rewriting SSA names, create the LHS of the PHI
1103 	     node by duplicating VAR.  This is useful in the case of
1104 	     pointers, to also duplicate pointer attributes (alias
1105 	     information, in particular).  */
1106 	  edge_iterator ei;
1107 	  tree new_lhs;
1108 
1109 	  gcc_assert (update_p);
1110 	  phi = create_phi_node (var, bb);
1111 
1112 	  new_lhs = duplicate_ssa_name (var, phi);
1113 	  gimple_phi_set_result (phi, new_lhs);
1114 	  add_new_name_mapping (new_lhs, var);
1115 
1116 	  /* Add VAR to every argument slot of PHI.  We need VAR in
1117 	     every argument so that rewrite_update_phi_arguments knows
1118 	     which name is this PHI node replacing.  If VAR is a
1119 	     symbol marked for renaming, this is not necessary, the
1120 	     renamer will use the symbol on the LHS to get its
1121 	     reaching definition.  */
1122 	  FOR_EACH_EDGE (e, ei, bb->preds)
1123 	    add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1124 	}
1125       else
1126 	{
1127 	  tree tracked_var;
1128 
1129 	  gcc_assert (DECL_P (var));
1130 	  phi = create_phi_node (var, bb);
1131 
1132 	  tracked_var = target_for_debug_bind (var);
1133 	  if (tracked_var)
1134 	    {
1135 	      gimple note = gimple_build_debug_bind (tracked_var,
1136 						     PHI_RESULT (phi),
1137 						     phi);
1138 	      gimple_stmt_iterator si = gsi_after_labels (bb);
1139 	      gsi_insert_before (&si, note, GSI_SAME_STMT);
1140 	    }
1141 	}
1142 
1143       /* Mark this PHI node as interesting for update_ssa.  */
1144       set_register_defs (phi, true);
1145       mark_phi_for_rewrite (bb, phi);
1146     }
1147 }
1148 
1149 
1150 /* Insert PHI nodes at the dominance frontier of blocks with variable
1151    definitions.  DFS contains the dominance frontier information for
1152    the flowgraph.  */
1153 
1154 static void
1155 insert_phi_nodes (bitmap_head *dfs)
1156 {
1157   referenced_var_iterator rvi;
1158   bitmap_iterator bi;
1159   tree var;
1160   bitmap vars;
1161   unsigned uid;
1162 
1163   timevar_push (TV_TREE_INSERT_PHI_NODES);
1164 
1165   /* Do two stages to avoid code generation differences for UID
1166      differences but no UID ordering differences.  */
1167 
1168   vars = BITMAP_ALLOC (NULL);
1169   FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1170     {
1171       struct def_blocks_d *def_map;
1172 
1173       def_map = find_def_blocks_for (var);
1174       if (def_map == NULL)
1175 	continue;
1176 
1177       if (get_phi_state (var) != NEED_PHI_STATE_NO)
1178 	bitmap_set_bit (vars, DECL_UID (var));
1179     }
1180 
1181   EXECUTE_IF_SET_IN_BITMAP (vars, 0, uid, bi)
1182     {
1183       tree var = referenced_var (uid);
1184       struct def_blocks_d *def_map;
1185       bitmap idf;
1186 
1187       def_map = find_def_blocks_for (var);
1188       idf = compute_idf (def_map->def_blocks, dfs);
1189       insert_phi_nodes_for (var, idf, false);
1190       BITMAP_FREE (idf);
1191     }
1192 
1193   BITMAP_FREE (vars);
1194 
1195   timevar_pop (TV_TREE_INSERT_PHI_NODES);
1196 }
1197 
1198 
1199 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1200    register DEF (an SSA_NAME) to be a new definition for SYM.  */
1201 
1202 static void
1203 register_new_def (tree def, tree sym)
1204 {
1205   tree currdef;
1206 
1207   /* If this variable is set in a single basic block and all uses are
1208      dominated by the set(s) in that single basic block, then there is
1209      no reason to record anything for this variable in the block local
1210      definition stacks.  Doing so just wastes time and memory.
1211 
1212      This is the same test to prune the set of variables which may
1213      need PHI nodes.  So we just use that information since it's already
1214      computed and available for us to use.  */
1215   if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1216     {
1217       set_current_def (sym, def);
1218       return;
1219     }
1220 
1221   currdef = get_current_def (sym);
1222 
1223   /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1224      SSA_NAME_VAR is not necessarily SYM.  In this case, also push SYM
1225      in the stack so that we know which symbol is being defined by
1226      this SSA name when we unwind the stack.  */
1227   if (currdef && !is_gimple_reg (sym))
1228     VEC_safe_push (tree, heap, block_defs_stack, sym);
1229 
1230   /* Push the current reaching definition into BLOCK_DEFS_STACK.  This
1231      stack is later used by the dominator tree callbacks to restore
1232      the reaching definitions for all the variables defined in the
1233      block after a recursive visit to all its immediately dominated
1234      blocks.  If there is no current reaching definition, then just
1235      record the underlying _DECL node.  */
1236   VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1237 
1238   /* Set the current reaching definition for SYM to be DEF.  */
1239   set_current_def (sym, def);
1240 }
1241 
1242 
1243 /* Perform a depth-first traversal of the dominator tree looking for
1244    variables to rename.  BB is the block where to start searching.
1245    Renaming is a five step process:
1246 
1247    1- Every definition made by PHI nodes at the start of the blocks is
1248       registered as the current definition for the corresponding variable.
1249 
1250    2- Every statement in BB is rewritten.  USE and VUSE operands are
1251       rewritten with their corresponding reaching definition.  DEF and
1252       VDEF targets are registered as new definitions.
1253 
1254    3- All the PHI nodes in successor blocks of BB are visited.  The
1255       argument corresponding to BB is replaced with its current reaching
1256       definition.
1257 
1258    4- Recursively rewrite every dominator child block of BB.
1259 
1260    5- Restore (in reverse order) the current reaching definition for every
1261       new definition introduced in this block.  This is done so that when
1262       we return from the recursive call, all the current reaching
1263       definitions are restored to the names that were valid in the
1264       dominator parent of BB.  */
1265 
1266 /* Return the current definition for variable VAR.  If none is found,
1267    create a new SSA name to act as the zeroth definition for VAR.  */
1268 
1269 static tree
1270 get_reaching_def (tree var)
1271 {
1272   tree currdef;
1273 
1274   /* Lookup the current reaching definition for VAR.  */
1275   currdef = get_current_def (var);
1276 
1277   /* If there is no reaching definition for VAR, create and register a
1278      default definition for it (if needed).  */
1279   if (currdef == NULL_TREE)
1280     {
1281       tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1282       currdef = get_default_def_for (sym);
1283       set_current_def (var, currdef);
1284     }
1285 
1286   /* Return the current reaching definition for VAR, or the default
1287      definition, if we had to create one.  */
1288   return currdef;
1289 }
1290 
1291 
1292 /* Helper function for rewrite_stmt.  Rewrite uses in a debug stmt.  */
1293 
1294 static void
1295 rewrite_debug_stmt_uses (gimple stmt)
1296 {
1297   use_operand_p use_p;
1298   ssa_op_iter iter;
1299   bool update = false;
1300 
1301   FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1302     {
1303       tree var = USE_FROM_PTR (use_p), def = NULL_TREE;
1304       gcc_assert (DECL_P (var));
1305       if (var_ann (var) == NULL)
1306 	{
1307 	  if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1308 	    {
1309 	      gimple_stmt_iterator gsi
1310 		= gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1311 	      int lim;
1312 	      /* Search a few source bind stmts at the start of first bb to
1313 		 see if a DEBUG_EXPR_DECL can't be reused.  */
1314 	      for (lim = 32;
1315 		   !gsi_end_p (gsi) && lim > 0;
1316 		   gsi_next (&gsi), lim--)
1317 		{
1318 		  gimple gstmt = gsi_stmt (gsi);
1319 		  if (!gimple_debug_source_bind_p (gstmt))
1320 		    break;
1321 		  if (gimple_debug_source_bind_get_value (gstmt) == var)
1322 		    {
1323 		      def = gimple_debug_source_bind_get_var (gstmt);
1324 		      if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1325 			break;
1326 		      else
1327 			def = NULL_TREE;
1328 		    }
1329 		}
1330 	      /* If not, add a new source bind stmt.  */
1331 	      if (def == NULL_TREE)
1332 		{
1333 		  gimple def_temp;
1334 		  def = make_node (DEBUG_EXPR_DECL);
1335 		  def_temp = gimple_build_debug_source_bind (def, var, NULL);
1336 		  DECL_ARTIFICIAL (def) = 1;
1337 		  TREE_TYPE (def) = TREE_TYPE (var);
1338 		  DECL_MODE (def) = DECL_MODE (var);
1339 		  gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1340 		  gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1341 		}
1342 	      update = true;
1343 	    }
1344 	}
1345       else
1346 	{
1347 	  def = get_current_def (var);
1348 	  /* Check if get_current_def can be trusted.  */
1349 	  if (def)
1350 	    {
1351 	      basic_block bb = gimple_bb (stmt);
1352 	      basic_block def_bb
1353 		= SSA_NAME_IS_DEFAULT_DEF (def)
1354 		  ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1355 
1356 	      /* If definition is in current bb, it is fine.  */
1357 	      if (bb == def_bb)
1358 		;
1359 	      /* If definition bb doesn't dominate the current bb,
1360 		 it can't be used.  */
1361 	      else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1362 		def = NULL;
1363 	      /* If there is just one definition and dominates the current
1364 		 bb, it is fine.  */
1365 	      else if (get_phi_state (var) == NEED_PHI_STATE_NO)
1366 		;
1367 	      else
1368 		{
1369 		  struct def_blocks_d *db_p = get_def_blocks_for (var);
1370 
1371 		  /* If there are some non-debug uses in the current bb,
1372 		     it is fine.  */
1373 		  if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1374 		    ;
1375 		  /* Otherwise give up for now.  */
1376 		  else
1377 		    def = NULL;
1378 		}
1379 	    }
1380 	}
1381       if (def == NULL)
1382 	{
1383 	  gimple_debug_bind_reset_value (stmt);
1384 	  update_stmt (stmt);
1385 	  return;
1386 	}
1387       SET_USE (use_p, def);
1388     }
1389   if (update)
1390     update_stmt (stmt);
1391 }
1392 
1393 /* SSA Rewriting Step 2.  Rewrite every variable used in each statement in
1394    the block with its immediate reaching definitions.  Update the current
1395    definition of a variable when a new real or virtual definition is found.  */
1396 
1397 static void
1398 rewrite_stmt (gimple_stmt_iterator si)
1399 {
1400   use_operand_p use_p;
1401   def_operand_p def_p;
1402   ssa_op_iter iter;
1403   gimple stmt = gsi_stmt (si);
1404 
1405   /* If mark_def_sites decided that we don't need to rewrite this
1406      statement, ignore it.  */
1407   gcc_assert (blocks_to_update == NULL);
1408   if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1409     return;
1410 
1411   if (dump_file && (dump_flags & TDF_DETAILS))
1412     {
1413       fprintf (dump_file, "Renaming statement ");
1414       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1415       fprintf (dump_file, "\n");
1416     }
1417 
1418   /* Step 1.  Rewrite USES in the statement.  */
1419   if (rewrite_uses_p (stmt))
1420     {
1421       if (is_gimple_debug (stmt))
1422 	rewrite_debug_stmt_uses (stmt);
1423       else
1424 	FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1425 	  {
1426 	    tree var = USE_FROM_PTR (use_p);
1427 	    gcc_assert (DECL_P (var));
1428 	    SET_USE (use_p, get_reaching_def (var));
1429 	  }
1430     }
1431 
1432   /* Step 2.  Register the statement's DEF operands.  */
1433   if (register_defs_p (stmt))
1434     FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1435       {
1436 	tree var = DEF_FROM_PTR (def_p);
1437 	tree name = make_ssa_name (var, stmt);
1438 	tree tracked_var;
1439 	gcc_assert (DECL_P (var));
1440 	SET_DEF (def_p, name);
1441 	register_new_def (DEF_FROM_PTR (def_p), var);
1442 
1443 	tracked_var = target_for_debug_bind (var);
1444 	if (tracked_var)
1445 	  {
1446 	    gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1447 	    gsi_insert_after (&si, note, GSI_SAME_STMT);
1448 	  }
1449       }
1450 }
1451 
1452 
1453 /* SSA Rewriting Step 3.  Visit all the successor blocks of BB looking for
1454    PHI nodes.  For every PHI node found, add a new argument containing the
1455    current reaching definition for the variable and the edge through which
1456    that definition is reaching the PHI node.  */
1457 
1458 static void
1459 rewrite_add_phi_arguments (basic_block bb)
1460 {
1461   edge e;
1462   edge_iterator ei;
1463 
1464   FOR_EACH_EDGE (e, ei, bb->succs)
1465     {
1466       gimple phi;
1467       gimple_stmt_iterator gsi;
1468 
1469       for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1470 	   gsi_next (&gsi))
1471 	{
1472 	  tree currdef;
1473 	  gimple stmt;
1474 
1475 	  phi = gsi_stmt (gsi);
1476 	  currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1477 	  stmt = SSA_NAME_DEF_STMT (currdef);
1478 	  add_phi_arg (phi, currdef, e, gimple_location (stmt));
1479 	}
1480     }
1481 }
1482 
1483 /* SSA Rewriting Step 1.  Initialization, create a block local stack
1484    of reaching definitions for new SSA names produced in this block
1485    (BLOCK_DEFS).  Register new definitions for every PHI node in the
1486    block.  */
1487 
1488 static void
1489 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1490 		     basic_block bb)
1491 {
1492   gimple phi;
1493   gimple_stmt_iterator gsi;
1494 
1495   if (dump_file && (dump_flags & TDF_DETAILS))
1496     fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1497 
1498   /* Mark the unwind point for this block.  */
1499   VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1500 
1501   /* Step 1.  Register new definitions for every PHI node in the block.
1502      Conceptually, all the PHI nodes are executed in parallel and each PHI
1503      node introduces a new version for the associated variable.  */
1504   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1505     {
1506       tree result;
1507 
1508       phi = gsi_stmt (gsi);
1509       result = gimple_phi_result (phi);
1510       gcc_assert (is_gimple_reg (result));
1511       register_new_def (result, SSA_NAME_VAR (result));
1512     }
1513 
1514   /* Step 2.  Rewrite every variable used in each statement in the block
1515      with its immediate reaching definitions.  Update the current definition
1516      of a variable when a new real or virtual definition is found.  */
1517   if (TEST_BIT (interesting_blocks, bb->index))
1518     for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1519       rewrite_stmt (gsi);
1520 
1521   /* Step 3.  Visit all the successor blocks of BB looking for PHI nodes.
1522      For every PHI node found, add a new argument containing the current
1523      reaching definition for the variable and the edge through which that
1524      definition is reaching the PHI node.  */
1525   rewrite_add_phi_arguments (bb);
1526 }
1527 
1528 
1529 
1530 /* Called after visiting all the statements in basic block BB and all
1531    of its dominator children.  Restore CURRDEFS to its original value.  */
1532 
1533 static void
1534 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1535 		     basic_block bb ATTRIBUTE_UNUSED)
1536 {
1537   /* Restore CURRDEFS to its original state.  */
1538   while (VEC_length (tree, block_defs_stack) > 0)
1539     {
1540       tree tmp = VEC_pop (tree, block_defs_stack);
1541       tree saved_def, var;
1542 
1543       if (tmp == NULL_TREE)
1544 	break;
1545 
1546       if (TREE_CODE (tmp) == SSA_NAME)
1547 	{
1548 	  /* If we recorded an SSA_NAME, then make the SSA_NAME the
1549 	     current definition of its underlying variable.  Note that
1550 	     if the SSA_NAME is not for a GIMPLE register, the symbol
1551 	     being defined is stored in the next slot in the stack.
1552 	     This mechanism is needed because an SSA name for a
1553 	     non-register symbol may be the definition for more than
1554 	     one symbol (e.g., SFTs, aliased variables, etc).  */
1555 	  saved_def = tmp;
1556 	  var = SSA_NAME_VAR (saved_def);
1557 	  if (!is_gimple_reg (var))
1558 	    var = VEC_pop (tree, block_defs_stack);
1559 	}
1560       else
1561 	{
1562 	  /* If we recorded anything else, it must have been a _DECL
1563 	     node and its current reaching definition must have been
1564 	     NULL.  */
1565 	  saved_def = NULL;
1566 	  var = tmp;
1567 	}
1568 
1569       set_current_def (var, saved_def);
1570     }
1571 }
1572 
1573 
1574 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE.  */
1575 
1576 void
1577 dump_decl_set (FILE *file, bitmap set)
1578 {
1579   if (set)
1580     {
1581       bitmap_iterator bi;
1582       unsigned i;
1583 
1584       fprintf (file, "{ ");
1585 
1586       EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1587 	{
1588 	  tree var = referenced_var_lookup (cfun, i);
1589 	  if (var)
1590 	    print_generic_expr (file, var, 0);
1591 	  else
1592 	    fprintf (file, "D.%u", i);
1593 	  fprintf (file, " ");
1594 	}
1595 
1596       fprintf (file, "}");
1597     }
1598   else
1599     fprintf (file, "NIL");
1600 }
1601 
1602 
1603 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE.  */
1604 
1605 DEBUG_FUNCTION void
1606 debug_decl_set (bitmap set)
1607 {
1608   dump_decl_set (stderr, set);
1609   fprintf (stderr, "\n");
1610 }
1611 
1612 
1613 /* Dump the renaming stack (block_defs_stack) to FILE.  Traverse the
1614    stack up to a maximum of N levels.  If N is -1, the whole stack is
1615    dumped.  New levels are created when the dominator tree traversal
1616    used for renaming enters a new sub-tree.  */
1617 
1618 void
1619 dump_defs_stack (FILE *file, int n)
1620 {
1621   int i, j;
1622 
1623   fprintf (file, "\n\nRenaming stack");
1624   if (n > 0)
1625     fprintf (file, " (up to %d levels)", n);
1626   fprintf (file, "\n\n");
1627 
1628   i = 1;
1629   fprintf (file, "Level %d (current level)\n", i);
1630   for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1631     {
1632       tree name, var;
1633 
1634       name = VEC_index (tree, block_defs_stack, j);
1635       if (name == NULL_TREE)
1636 	{
1637 	  i++;
1638 	  if (n > 0 && i > n)
1639 	    break;
1640 	  fprintf (file, "\nLevel %d\n", i);
1641 	  continue;
1642 	}
1643 
1644       if (DECL_P (name))
1645 	{
1646 	  var = name;
1647 	  name = NULL_TREE;
1648 	}
1649       else
1650 	{
1651 	  var = SSA_NAME_VAR (name);
1652 	  if (!is_gimple_reg (var))
1653 	    {
1654 	      j--;
1655 	      var = VEC_index (tree, block_defs_stack, j);
1656 	    }
1657 	}
1658 
1659       fprintf (file, "    Previous CURRDEF (");
1660       print_generic_expr (file, var, 0);
1661       fprintf (file, ") = ");
1662       if (name)
1663 	print_generic_expr (file, name, 0);
1664       else
1665 	fprintf (file, "<NIL>");
1666       fprintf (file, "\n");
1667     }
1668 }
1669 
1670 
1671 /* Dump the renaming stack (block_defs_stack) to stderr.  Traverse the
1672    stack up to a maximum of N levels.  If N is -1, the whole stack is
1673    dumped.  New levels are created when the dominator tree traversal
1674    used for renaming enters a new sub-tree.  */
1675 
1676 DEBUG_FUNCTION void
1677 debug_defs_stack (int n)
1678 {
1679   dump_defs_stack (stderr, n);
1680 }
1681 
1682 
1683 /* Dump the current reaching definition of every symbol to FILE.  */
1684 
1685 void
1686 dump_currdefs (FILE *file)
1687 {
1688   referenced_var_iterator i;
1689   tree var;
1690 
1691   fprintf (file, "\n\nCurrent reaching definitions\n\n");
1692   FOR_EACH_REFERENCED_VAR (cfun, var, i)
1693     if (SYMS_TO_RENAME (cfun) == NULL
1694 	|| bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
1695       {
1696 	fprintf (file, "CURRDEF (");
1697 	print_generic_expr (file, var, 0);
1698 	fprintf (file, ") = ");
1699 	if (get_current_def (var))
1700 	  print_generic_expr (file, get_current_def (var), 0);
1701 	else
1702 	  fprintf (file, "<NIL>");
1703 	fprintf (file, "\n");
1704       }
1705 }
1706 
1707 
1708 /* Dump the current reaching definition of every symbol to stderr.  */
1709 
1710 DEBUG_FUNCTION void
1711 debug_currdefs (void)
1712 {
1713   dump_currdefs (stderr);
1714 }
1715 
1716 
1717 /* Dump SSA information to FILE.  */
1718 
1719 void
1720 dump_tree_ssa (FILE *file)
1721 {
1722   const char *funcname
1723     = lang_hooks.decl_printable_name (current_function_decl, 2);
1724 
1725   fprintf (file, "SSA renaming information for %s\n\n", funcname);
1726 
1727   dump_def_blocks (file);
1728   dump_defs_stack (file, -1);
1729   dump_currdefs (file);
1730   dump_tree_ssa_stats (file);
1731 }
1732 
1733 
1734 /* Dump SSA information to stderr.  */
1735 
1736 DEBUG_FUNCTION void
1737 debug_tree_ssa (void)
1738 {
1739   dump_tree_ssa (stderr);
1740 }
1741 
1742 
1743 /* Dump statistics for the hash table HTAB.  */
1744 
1745 static void
1746 htab_statistics (FILE *file, htab_t htab)
1747 {
1748   fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1749 	   (long) htab_size (htab),
1750 	   (long) htab_elements (htab),
1751 	   htab_collisions (htab));
1752 }
1753 
1754 
1755 /* Dump SSA statistics on FILE.  */
1756 
1757 void
1758 dump_tree_ssa_stats (FILE *file)
1759 {
1760   if (def_blocks || repl_tbl)
1761     fprintf (file, "\nHash table statistics:\n");
1762 
1763   if (def_blocks)
1764     {
1765       fprintf (file, "    def_blocks:   ");
1766       htab_statistics (file, def_blocks);
1767     }
1768 
1769   if (repl_tbl)
1770     {
1771       fprintf (file, "    repl_tbl:     ");
1772       htab_statistics (file, repl_tbl);
1773     }
1774 
1775   if (def_blocks || repl_tbl)
1776     fprintf (file, "\n");
1777 }
1778 
1779 
1780 /* Dump SSA statistics on stderr.  */
1781 
1782 DEBUG_FUNCTION void
1783 debug_tree_ssa_stats (void)
1784 {
1785   dump_tree_ssa_stats (stderr);
1786 }
1787 
1788 
1789 /* Hashing and equality functions for DEF_BLOCKS.  */
1790 
1791 static hashval_t
1792 def_blocks_hash (const void *p)
1793 {
1794   return htab_hash_pointer
1795 	((const void *)((const struct def_blocks_d *)p)->var);
1796 }
1797 
1798 static int
1799 def_blocks_eq (const void *p1, const void *p2)
1800 {
1801   return ((const struct def_blocks_d *)p1)->var
1802 	 == ((const struct def_blocks_d *)p2)->var;
1803 }
1804 
1805 
1806 /* Free memory allocated by one entry in DEF_BLOCKS.  */
1807 
1808 static void
1809 def_blocks_free (void *p)
1810 {
1811   struct def_blocks_d *entry = (struct def_blocks_d *) p;
1812   BITMAP_FREE (entry->def_blocks);
1813   BITMAP_FREE (entry->phi_blocks);
1814   BITMAP_FREE (entry->livein_blocks);
1815   free (entry);
1816 }
1817 
1818 
1819 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table.  */
1820 
1821 static int
1822 debug_def_blocks_r (void **slot, void *data)
1823 {
1824   FILE *file = (FILE *) data;
1825   struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1826 
1827   fprintf (file, "VAR: ");
1828   print_generic_expr (file, db_p->var, dump_flags);
1829   bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1830   bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1831   bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1832 
1833   return 1;
1834 }
1835 
1836 
1837 /* Dump the DEF_BLOCKS hash table on FILE.  */
1838 
1839 void
1840 dump_def_blocks (FILE *file)
1841 {
1842   fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1843   if (def_blocks)
1844     htab_traverse (def_blocks, debug_def_blocks_r, file);
1845 }
1846 
1847 
1848 /* Dump the DEF_BLOCKS hash table on stderr.  */
1849 
1850 DEBUG_FUNCTION void
1851 debug_def_blocks (void)
1852 {
1853   dump_def_blocks (stderr);
1854 }
1855 
1856 
1857 /* Register NEW_NAME to be the new reaching definition for OLD_NAME.  */
1858 
1859 static inline void
1860 register_new_update_single (tree new_name, tree old_name)
1861 {
1862   tree currdef = get_current_def (old_name);
1863 
1864   /* Push the current reaching definition into BLOCK_DEFS_STACK.
1865      This stack is later used by the dominator tree callbacks to
1866      restore the reaching definitions for all the variables
1867      defined in the block after a recursive visit to all its
1868      immediately dominated blocks.  */
1869   VEC_reserve (tree, heap, block_defs_stack, 2);
1870   VEC_quick_push (tree, block_defs_stack, currdef);
1871   VEC_quick_push (tree, block_defs_stack, old_name);
1872 
1873   /* Set the current reaching definition for OLD_NAME to be
1874      NEW_NAME.  */
1875   set_current_def (old_name, new_name);
1876 }
1877 
1878 
1879 /* Register NEW_NAME to be the new reaching definition for all the
1880    names in OLD_NAMES.  Used by the incremental SSA update routines to
1881    replace old SSA names with new ones.  */
1882 
1883 static inline void
1884 register_new_update_set (tree new_name, bitmap old_names)
1885 {
1886   bitmap_iterator bi;
1887   unsigned i;
1888 
1889   EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1890     register_new_update_single (new_name, ssa_name (i));
1891 }
1892 
1893 
1894 
1895 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1896    it is a symbol marked for renaming, replace it with USE_P's current
1897    reaching definition.  */
1898 
1899 static inline void
1900 maybe_replace_use (use_operand_p use_p)
1901 {
1902   tree rdef = NULL_TREE;
1903   tree use = USE_FROM_PTR (use_p);
1904   tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1905 
1906   if (symbol_marked_for_renaming (sym))
1907     rdef = get_reaching_def (sym);
1908   else if (is_old_name (use))
1909     rdef = get_reaching_def (use);
1910 
1911   if (rdef && rdef != use)
1912     SET_USE (use_p, rdef);
1913 }
1914 
1915 
1916 /* Same as maybe_replace_use, but without introducing default stmts,
1917    returning false to indicate a need to do so.  */
1918 
1919 static inline bool
1920 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1921 {
1922   tree rdef = NULL_TREE;
1923   tree use = USE_FROM_PTR (use_p);
1924   tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1925 
1926   if (symbol_marked_for_renaming (sym))
1927     rdef = get_current_def (sym);
1928   else if (is_old_name (use))
1929     {
1930       rdef = get_current_def (use);
1931       /* We can't assume that, if there's no current definition, the
1932 	 default one should be used.  It could be the case that we've
1933 	 rearranged blocks so that the earlier definition no longer
1934 	 dominates the use.  */
1935       if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1936 	rdef = use;
1937     }
1938   else
1939     rdef = use;
1940 
1941   if (rdef && rdef != use)
1942     SET_USE (use_p, rdef);
1943 
1944   return rdef != NULL_TREE;
1945 }
1946 
1947 
1948 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1949    or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1950    register it as the current definition for the names replaced by
1951    DEF_P.  */
1952 
1953 static inline void
1954 maybe_register_def (def_operand_p def_p, gimple stmt,
1955 		    gimple_stmt_iterator gsi)
1956 {
1957   tree def = DEF_FROM_PTR (def_p);
1958   tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1959 
1960   /* If DEF is a naked symbol that needs renaming, create a new
1961      name for it.  */
1962   if (symbol_marked_for_renaming (sym))
1963     {
1964       if (DECL_P (def))
1965 	{
1966 	  tree tracked_var;
1967 
1968 	  def = make_ssa_name (def, stmt);
1969 	  SET_DEF (def_p, def);
1970 
1971 	  tracked_var = target_for_debug_bind (sym);
1972 	  if (tracked_var)
1973 	    {
1974 	      gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1975 	      /* If stmt ends the bb, insert the debug stmt on the single
1976 		 non-EH edge from the stmt.  */
1977 	      if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1978 		{
1979 		  basic_block bb = gsi_bb (gsi);
1980 		  edge_iterator ei;
1981 		  edge e, ef = NULL;
1982 		  FOR_EACH_EDGE (e, ei, bb->succs)
1983 		    if (!(e->flags & EDGE_EH))
1984 		      {
1985 			gcc_assert (!ef);
1986 			ef = e;
1987 		      }
1988 		  /* If there are other predecessors to ef->dest, then
1989 		     there must be PHI nodes for the modified
1990 		     variable, and therefore there will be debug bind
1991 		     stmts after the PHI nodes.  The debug bind notes
1992 		     we'd insert would force the creation of a new
1993 		     block (diverging codegen) and be redundant with
1994 		     the post-PHI bind stmts, so don't add them.
1995 
1996 		     As for the exit edge, there wouldn't be redundant
1997 		     bind stmts, but there wouldn't be a PC to bind
1998 		     them to either, so avoid diverging the CFG.  */
1999 		  if (ef && single_pred_p (ef->dest)
2000 		      && ef->dest != EXIT_BLOCK_PTR)
2001 		    {
2002 		      /* If there were PHI nodes in the node, we'd
2003 			 have to make sure the value we're binding
2004 			 doesn't need rewriting.  But there shouldn't
2005 			 be PHI nodes in a single-predecessor block,
2006 			 so we just add the note.  */
2007 		      gsi_insert_on_edge_immediate (ef, note);
2008 		    }
2009 		}
2010 	      else
2011 		gsi_insert_after (&gsi, note, GSI_SAME_STMT);
2012 	    }
2013 	}
2014 
2015       register_new_update_single (def, sym);
2016     }
2017   else
2018     {
2019       /* If DEF is a new name, register it as a new definition
2020 	 for all the names replaced by DEF.  */
2021       if (is_new_name (def))
2022 	register_new_update_set (def, names_replaced_by (def));
2023 
2024       /* If DEF is an old name, register DEF as a new
2025 	 definition for itself.  */
2026       if (is_old_name (def))
2027 	register_new_update_single (def, def);
2028     }
2029 }
2030 
2031 
2032 /* Update every variable used in the statement pointed-to by SI.  The
2033    statement is assumed to be in SSA form already.  Names in
2034    OLD_SSA_NAMES used by SI will be updated to their current reaching
2035    definition.  Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
2036    will be registered as a new definition for their corresponding name
2037    in OLD_SSA_NAMES.  */
2038 
2039 static void
2040 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
2041 {
2042   use_operand_p use_p;
2043   def_operand_p def_p;
2044   ssa_op_iter iter;
2045 
2046   /* Only update marked statements.  */
2047   if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
2048     return;
2049 
2050   if (dump_file && (dump_flags & TDF_DETAILS))
2051     {
2052       fprintf (dump_file, "Updating SSA information for statement ");
2053       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2054     }
2055 
2056   /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
2057      symbol is marked for renaming.  */
2058   if (rewrite_uses_p (stmt))
2059     {
2060       if (is_gimple_debug (stmt))
2061 	{
2062 	  bool failed = false;
2063 
2064 	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2065 	    if (!maybe_replace_use_in_debug_stmt (use_p))
2066 	      {
2067 		failed = true;
2068 		break;
2069 	      }
2070 
2071 	  if (failed)
2072 	    {
2073 	      /* DOM sometimes threads jumps in such a way that a
2074 		 debug stmt ends up referencing a SSA variable that no
2075 		 longer dominates the debug stmt, but such that all
2076 		 incoming definitions refer to the same definition in
2077 		 an earlier dominator.  We could try to recover that
2078 		 definition somehow, but this will have to do for now.
2079 
2080 		 Introducing a default definition, which is what
2081 		 maybe_replace_use() would do in such cases, may
2082 		 modify code generation, for the otherwise-unused
2083 		 default definition would never go away, modifying SSA
2084 		 version numbers all over.  */
2085 	      gimple_debug_bind_reset_value (stmt);
2086 	      update_stmt (stmt);
2087 	    }
2088 	}
2089       else
2090 	{
2091 	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
2092 	    maybe_replace_use (use_p);
2093 	}
2094     }
2095 
2096   /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
2097      Also register definitions for names whose underlying symbol is
2098      marked for renaming.  */
2099   if (register_defs_p (stmt))
2100     FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
2101       maybe_register_def (def_p, stmt, gsi);
2102 }
2103 
2104 
2105 /* Visit all the successor blocks of BB looking for PHI nodes.  For
2106    every PHI node found, check if any of its arguments is in
2107    OLD_SSA_NAMES.  If so, and if the argument has a current reaching
2108    definition, replace it.  */
2109 
2110 static void
2111 rewrite_update_phi_arguments (basic_block bb)
2112 {
2113   edge e;
2114   edge_iterator ei;
2115   unsigned i;
2116 
2117   FOR_EACH_EDGE (e, ei, bb->succs)
2118     {
2119       gimple phi;
2120       gimple_vec phis;
2121 
2122       if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2123 	continue;
2124 
2125       phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
2126       FOR_EACH_VEC_ELT (gimple, phis, i, phi)
2127 	{
2128 	  tree arg, lhs_sym, reaching_def = NULL;
2129 	  use_operand_p arg_p;
2130 
2131   	  gcc_assert (rewrite_uses_p (phi));
2132 
2133 	  arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2134 	  arg = USE_FROM_PTR (arg_p);
2135 
2136 	  if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2137 	    continue;
2138 
2139 	  lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2140 
2141 	  if (arg == NULL_TREE)
2142 	    {
2143 	      /* When updating a PHI node for a recently introduced
2144 		 symbol we may find NULL arguments.  That's why we
2145 		 take the symbol from the LHS of the PHI node.  */
2146 	      reaching_def = get_reaching_def (lhs_sym);
2147 
2148 	    }
2149 	  else
2150 	    {
2151 	      tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2152 
2153 	      if (symbol_marked_for_renaming (sym))
2154 		reaching_def = get_reaching_def (sym);
2155 	      else if (is_old_name (arg))
2156 		reaching_def = get_reaching_def (arg);
2157 	    }
2158 
2159           /* Update the argument if there is a reaching def.  */
2160 	  if (reaching_def)
2161 	    {
2162 	      gimple stmt;
2163 	      source_location locus;
2164 	      int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2165 
2166 	      SET_USE (arg_p, reaching_def);
2167 	      stmt = SSA_NAME_DEF_STMT (reaching_def);
2168 
2169 	      /* Single element PHI nodes  behave like copies, so get the
2170 		 location from the phi argument.  */
2171 	      if (gimple_code (stmt) == GIMPLE_PHI &&
2172 		  gimple_phi_num_args (stmt) == 1)
2173 		locus = gimple_phi_arg_location (stmt, 0);
2174 	      else
2175 		locus = gimple_location (stmt);
2176 
2177 	      gimple_phi_arg_set_location (phi, arg_i, locus);
2178 	    }
2179 
2180 
2181 	  if (e->flags & EDGE_ABNORMAL)
2182 	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2183 	}
2184     }
2185 }
2186 
2187 
2188 /* Initialization of block data structures for the incremental SSA
2189    update pass.  Create a block local stack of reaching definitions
2190    for new SSA names produced in this block (BLOCK_DEFS).  Register
2191    new definitions for every PHI node in the block.  */
2192 
2193 static void
2194 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2195 		            basic_block bb)
2196 {
2197   bool is_abnormal_phi;
2198   gimple_stmt_iterator gsi;
2199 
2200   if (dump_file && (dump_flags & TDF_DETAILS))
2201     fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2202 	     bb->index);
2203 
2204   /* Mark the unwind point for this block.  */
2205   VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2206 
2207   if (!bitmap_bit_p (blocks_to_update, bb->index))
2208     return;
2209 
2210   /* Mark the LHS if any of the arguments flows through an abnormal
2211      edge.  */
2212   is_abnormal_phi = bb_has_abnormal_pred (bb);
2213 
2214   /* If any of the PHI nodes is a replacement for a name in
2215      OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2216      register it as a new definition for its corresponding name.  Also
2217      register definitions for names whose underlying symbols are
2218      marked for renaming.  */
2219   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2220     {
2221       tree lhs, lhs_sym;
2222       gimple phi = gsi_stmt (gsi);
2223 
2224       if (!register_defs_p (phi))
2225 	continue;
2226 
2227       lhs = gimple_phi_result (phi);
2228       lhs_sym = SSA_NAME_VAR (lhs);
2229 
2230       if (symbol_marked_for_renaming (lhs_sym))
2231 	register_new_update_single (lhs, lhs_sym);
2232       else
2233 	{
2234 
2235 	  /* If LHS is a new name, register a new definition for all
2236 	     the names replaced by LHS.  */
2237 	  if (is_new_name (lhs))
2238 	    register_new_update_set (lhs, names_replaced_by (lhs));
2239 
2240 	  /* If LHS is an OLD name, register it as a new definition
2241 	     for itself.  */
2242 	  if (is_old_name (lhs))
2243 	    register_new_update_single (lhs, lhs);
2244 	}
2245 
2246       if (is_abnormal_phi)
2247 	SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2248     }
2249 
2250   /* Step 2.  Rewrite every variable used in each statement in the block.  */
2251   if (TEST_BIT (interesting_blocks, bb->index))
2252     {
2253       gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2254       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2255         rewrite_update_stmt (gsi_stmt (gsi), gsi);
2256     }
2257 
2258   /* Step 3.  Update PHI nodes.  */
2259   rewrite_update_phi_arguments (bb);
2260 }
2261 
2262 /* Called after visiting block BB.  Unwind BLOCK_DEFS_STACK to restore
2263    the current reaching definition of every name re-written in BB to
2264    the original reaching definition before visiting BB.  This
2265    unwinding must be done in the opposite order to what is done in
2266    register_new_update_set.  */
2267 
2268 static void
2269 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2270 			    basic_block bb ATTRIBUTE_UNUSED)
2271 {
2272   while (VEC_length (tree, block_defs_stack) > 0)
2273     {
2274       tree var = VEC_pop (tree, block_defs_stack);
2275       tree saved_def;
2276 
2277       /* NULL indicates the unwind stop point for this block (see
2278 	 rewrite_update_enter_block).  */
2279       if (var == NULL)
2280 	return;
2281 
2282       saved_def = VEC_pop (tree, block_defs_stack);
2283       set_current_def (var, saved_def);
2284     }
2285 }
2286 
2287 
2288 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2289    form.
2290 
2291    ENTRY indicates the block where to start.  Every block dominated by
2292       ENTRY will be rewritten.
2293 
2294    WHAT indicates what actions will be taken by the renamer (see enum
2295       rewrite_mode).
2296 
2297    BLOCKS are the set of interesting blocks for the dominator walker
2298       to process.  If this set is NULL, then all the nodes dominated
2299       by ENTRY are walked.  Otherwise, blocks dominated by ENTRY that
2300       are not present in BLOCKS are ignored.  */
2301 
2302 static void
2303 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2304 {
2305   struct dom_walk_data walk_data;
2306 
2307   /* Rewrite all the basic blocks in the program.  */
2308   timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2309 
2310   /* Setup callbacks for the generic dominator tree walker.  */
2311   memset (&walk_data, 0, sizeof (walk_data));
2312 
2313   walk_data.dom_direction = CDI_DOMINATORS;
2314 
2315   if (what == REWRITE_ALL)
2316     {
2317       walk_data.before_dom_children = rewrite_enter_block;
2318       walk_data.after_dom_children = rewrite_leave_block;
2319     }
2320   else if (what == REWRITE_UPDATE)
2321     {
2322       walk_data.before_dom_children = rewrite_update_enter_block;
2323       walk_data.after_dom_children = rewrite_update_leave_block;
2324     }
2325   else
2326     gcc_unreachable ();
2327 
2328   block_defs_stack = VEC_alloc (tree, heap, 10);
2329 
2330   /* Initialize the dominator walker.  */
2331   init_walk_dominator_tree (&walk_data);
2332 
2333   /* Recursively walk the dominator tree rewriting each statement in
2334      each basic block.  */
2335   walk_dominator_tree (&walk_data, entry);
2336 
2337   /* Finalize the dominator walker.  */
2338   fini_walk_dominator_tree (&walk_data);
2339 
2340   /* Debugging dumps.  */
2341   if (dump_file && (dump_flags & TDF_STATS))
2342     {
2343       dump_dfa_stats (dump_file);
2344       if (def_blocks)
2345 	dump_tree_ssa_stats (dump_file);
2346     }
2347 
2348   VEC_free (tree, heap, block_defs_stack);
2349 
2350   timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2351 }
2352 
2353 
2354 /* Block processing routine for mark_def_sites.  Clear the KILLS bitmap
2355    at the start of each block, and call mark_def_sites for each statement.  */
2356 
2357 static void
2358 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2359 {
2360   struct mark_def_sites_global_data *gd;
2361   bitmap kills;
2362   gimple_stmt_iterator gsi;
2363 
2364   gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2365   kills = gd->kills;
2366 
2367   bitmap_clear (kills);
2368   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2369     mark_def_sites (bb, gsi_stmt (gsi), kills);
2370 }
2371 
2372 
2373 /* Mark the definition site blocks for each variable, so that we know
2374    where the variable is actually live.
2375 
2376    The INTERESTING_BLOCKS global will be filled in with all the blocks
2377    that should be processed by the renamer.  It is assumed that the
2378    caller has already initialized and zeroed it.  */
2379 
2380 static void
2381 mark_def_site_blocks (void)
2382 {
2383   struct dom_walk_data walk_data;
2384   struct mark_def_sites_global_data mark_def_sites_global_data;
2385 
2386   /* Setup callbacks for the generic dominator tree walker to find and
2387      mark definition sites.  */
2388   walk_data.dom_direction = CDI_DOMINATORS;
2389   walk_data.initialize_block_local_data = NULL;
2390   walk_data.before_dom_children = mark_def_sites_block;
2391   walk_data.after_dom_children = NULL;
2392 
2393   /* Notice that this bitmap is indexed using variable UIDs, so it must be
2394      large enough to accommodate all the variables referenced in the
2395      function, not just the ones we are renaming.  */
2396   mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2397   walk_data.global_data = &mark_def_sites_global_data;
2398 
2399   /* We do not have any local data.  */
2400   walk_data.block_local_data_size = 0;
2401 
2402   /* Initialize the dominator walker.  */
2403   init_walk_dominator_tree (&walk_data);
2404 
2405   /* Recursively walk the dominator tree.  */
2406   walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2407 
2408   /* Finalize the dominator walker.  */
2409   fini_walk_dominator_tree (&walk_data);
2410 
2411   /* We no longer need this bitmap, clear and free it.  */
2412   BITMAP_FREE (mark_def_sites_global_data.kills);
2413 }
2414 
2415 
2416 /* Initialize internal data needed during renaming.  */
2417 
2418 static void
2419 init_ssa_renamer (void)
2420 {
2421   tree var;
2422   referenced_var_iterator rvi;
2423 
2424   cfun->gimple_df->in_ssa_p = false;
2425 
2426   /* Allocate memory for the DEF_BLOCKS hash table.  */
2427   gcc_assert (def_blocks == NULL);
2428   def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2429                             def_blocks_eq, def_blocks_free);
2430 
2431   FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
2432     set_current_def (var, NULL_TREE);
2433 }
2434 
2435 
2436 /* Deallocate internal data structures used by the renamer.  */
2437 
2438 static void
2439 fini_ssa_renamer (void)
2440 {
2441   if (def_blocks)
2442     {
2443       htab_delete (def_blocks);
2444       def_blocks = NULL;
2445     }
2446 
2447   cfun->gimple_df->in_ssa_p = true;
2448 }
2449 
2450 /* Main entry point into the SSA builder.  The renaming process
2451    proceeds in four main phases:
2452 
2453    1- Compute dominance frontier and immediate dominators, needed to
2454       insert PHI nodes and rename the function in dominator tree
2455       order.
2456 
2457    2- Find and mark all the blocks that define variables
2458       (mark_def_site_blocks).
2459 
2460    3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2461 
2462    4- Rename all the blocks (rewrite_blocks) and statements in the program.
2463 
2464    Steps 3 and 4 are done using the dominator tree walker
2465    (walk_dominator_tree).  */
2466 
2467 static unsigned int
2468 rewrite_into_ssa (void)
2469 {
2470   bitmap_head *dfs;
2471   basic_block bb;
2472 
2473   /* Initialize operand data structures.  */
2474   init_ssa_operands ();
2475 
2476   /* Initialize internal data needed by the renamer.  */
2477   init_ssa_renamer ();
2478 
2479   /* Initialize the set of interesting blocks.  The callback
2480      mark_def_sites will add to this set those blocks that the renamer
2481      should process.  */
2482   interesting_blocks = sbitmap_alloc (last_basic_block);
2483   sbitmap_zero (interesting_blocks);
2484 
2485   /* Initialize dominance frontier.  */
2486   dfs = XNEWVEC (bitmap_head, last_basic_block);
2487   FOR_EACH_BB (bb)
2488     bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2489 
2490   /* 1- Compute dominance frontiers.  */
2491   calculate_dominance_info (CDI_DOMINATORS);
2492   compute_dominance_frontiers (dfs);
2493 
2494   /* 2- Find and mark definition sites.  */
2495   mark_def_site_blocks ();
2496 
2497   /* 3- Insert PHI nodes at dominance frontiers of definition blocks.  */
2498   insert_phi_nodes (dfs);
2499 
2500   /* 4- Rename all the blocks.  */
2501   rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2502 
2503   /* Free allocated memory.  */
2504   FOR_EACH_BB (bb)
2505     bitmap_clear (&dfs[bb->index]);
2506   free (dfs);
2507 
2508   sbitmap_free (interesting_blocks);
2509 
2510   fini_ssa_renamer ();
2511 
2512   return 0;
2513 }
2514 
2515 
2516 struct gimple_opt_pass pass_build_ssa =
2517 {
2518  {
2519   GIMPLE_PASS,
2520   "ssa",				/* name */
2521   NULL,					/* gate */
2522   rewrite_into_ssa,			/* execute */
2523   NULL,					/* sub */
2524   NULL,					/* next */
2525   0,					/* static_pass_number */
2526   TV_TREE_SSA_OTHER,			/* tv_id */
2527   PROP_cfg | PROP_referenced_vars,	/* properties_required */
2528   PROP_ssa,				/* properties_provided */
2529   0,					/* properties_destroyed */
2530   0,					/* todo_flags_start */
2531   TODO_update_ssa_only_virtuals
2532     | TODO_verify_ssa
2533     | TODO_remove_unused_locals		/* todo_flags_finish */
2534  }
2535 };
2536 
2537 
2538 /* Mark the definition of VAR at STMT and BB as interesting for the
2539    renamer.  BLOCKS is the set of blocks that need updating.  */
2540 
2541 static void
2542 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2543 {
2544   gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2545   set_register_defs (stmt, true);
2546 
2547   if (insert_phi_p)
2548     {
2549       bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2550 
2551       set_def_block (var, bb, is_phi_p);
2552 
2553       /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2554 	 site for both itself and all the old names replaced by it.  */
2555       if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2556 	{
2557 	  bitmap_iterator bi;
2558 	  unsigned i;
2559 	  bitmap set = names_replaced_by (var);
2560 	  if (set)
2561 	    EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2562 	      set_def_block (ssa_name (i), bb, is_phi_p);
2563 	}
2564     }
2565 }
2566 
2567 
2568 /* Mark the use of VAR at STMT and BB as interesting for the
2569    renamer.  INSERT_PHI_P is true if we are going to insert new PHI
2570    nodes.  */
2571 
2572 static inline void
2573 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2574 {
2575   basic_block def_bb = gimple_bb (stmt);
2576 
2577   mark_block_for_update (def_bb);
2578   mark_block_for_update (bb);
2579 
2580   if (gimple_code (stmt) == GIMPLE_PHI)
2581     mark_phi_for_rewrite (def_bb, stmt);
2582   else
2583     {
2584       set_rewrite_uses (stmt, true);
2585 
2586       if (is_gimple_debug (stmt))
2587 	return;
2588     }
2589 
2590   /* If VAR has not been defined in BB, then it is live-on-entry
2591      to BB.  Note that we cannot just use the block holding VAR's
2592      definition because if VAR is one of the names in OLD_SSA_NAMES,
2593      it will have several definitions (itself and all the names that
2594      replace it).  */
2595   if (insert_phi_p)
2596     {
2597       struct def_blocks_d *db_p = get_def_blocks_for (var);
2598       if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2599 	set_livein_block (var, bb);
2600     }
2601 }
2602 
2603 
2604 /* Do a dominator walk starting at BB processing statements that
2605    reference symbols in SYMS_TO_RENAME.  This is very similar to
2606    mark_def_sites, but the scan handles statements whose operands may
2607    already be SSA names.
2608 
2609    If INSERT_PHI_P is true, mark those uses as live in the
2610    corresponding block.  This is later used by the PHI placement
2611    algorithm to make PHI pruning decisions.
2612 
2613    FIXME.  Most of this would be unnecessary if we could associate a
2614 	   symbol to all the SSA names that reference it.  But that
2615 	   sounds like it would be expensive to maintain.  Still, it
2616 	   would be interesting to see if it makes better sense to do
2617 	   that.  */
2618 
2619 static void
2620 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2621 {
2622   basic_block son;
2623   gimple_stmt_iterator si;
2624   edge e;
2625   edge_iterator ei;
2626 
2627   mark_block_for_update (bb);
2628 
2629   /* Process PHI nodes marking interesting those that define or use
2630      the symbols that we are interested in.  */
2631   for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2632     {
2633       gimple phi = gsi_stmt (si);
2634       tree lhs_sym, lhs = gimple_phi_result (phi);
2635 
2636       lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2637 
2638       if (!symbol_marked_for_renaming (lhs_sym))
2639 	continue;
2640 
2641       mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2642 
2643       /* Mark the uses in phi nodes as interesting.  It would be more correct
2644 	 to process the arguments of the phi nodes of the successor edges of
2645 	 BB at the end of prepare_block_for_update, however, that turns out
2646 	 to be significantly more expensive.  Doing it here is conservatively
2647 	 correct -- it may only cause us to believe a value to be live in a
2648 	 block that also contains its definition, and thus insert a few more
2649 	 phi nodes for it.  */
2650       FOR_EACH_EDGE (e, ei, bb->preds)
2651 	mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2652     }
2653 
2654   /* Process the statements.  */
2655   for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2656     {
2657       gimple stmt;
2658       ssa_op_iter i;
2659       use_operand_p use_p;
2660       def_operand_p def_p;
2661 
2662       stmt = gsi_stmt (si);
2663 
2664       FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2665 	{
2666 	  tree use = USE_FROM_PTR (use_p);
2667 	  tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2668 	  if (symbol_marked_for_renaming (sym))
2669 	    mark_use_interesting (sym, stmt, bb, insert_phi_p);
2670 	}
2671 
2672       FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2673 	{
2674 	  tree def = DEF_FROM_PTR (def_p);
2675 	  tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2676 	  if (symbol_marked_for_renaming (sym))
2677 	    mark_def_interesting (sym, stmt, bb, insert_phi_p);
2678 	}
2679     }
2680 
2681   /* Now visit all the blocks dominated by BB.  */
2682   for (son = first_dom_son (CDI_DOMINATORS, bb);
2683        son;
2684        son = next_dom_son (CDI_DOMINATORS, son))
2685     prepare_block_for_update (son, insert_phi_p);
2686 }
2687 
2688 
2689 /* Helper for prepare_names_to_update.  Mark all the use sites for
2690    NAME as interesting.  BLOCKS and INSERT_PHI_P are as in
2691    prepare_names_to_update.  */
2692 
2693 static void
2694 prepare_use_sites_for (tree name, bool insert_phi_p)
2695 {
2696   use_operand_p use_p;
2697   imm_use_iterator iter;
2698 
2699   FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2700     {
2701       gimple stmt = USE_STMT (use_p);
2702       basic_block bb = gimple_bb (stmt);
2703 
2704       if (gimple_code (stmt) == GIMPLE_PHI)
2705 	{
2706 	  int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2707 	  edge e = gimple_phi_arg_edge (stmt, ix);
2708 	  mark_use_interesting (name, stmt, e->src, insert_phi_p);
2709 	}
2710       else
2711 	{
2712 	  /* For regular statements, mark this as an interesting use
2713 	     for NAME.  */
2714 	  mark_use_interesting (name, stmt, bb, insert_phi_p);
2715 	}
2716     }
2717 }
2718 
2719 
2720 /* Helper for prepare_names_to_update.  Mark the definition site for
2721    NAME as interesting.  BLOCKS and INSERT_PHI_P are as in
2722    prepare_names_to_update.  */
2723 
2724 static void
2725 prepare_def_site_for (tree name, bool insert_phi_p)
2726 {
2727   gimple stmt;
2728   basic_block bb;
2729 
2730   gcc_assert (names_to_release == NULL
2731 	      || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2732 
2733   stmt = SSA_NAME_DEF_STMT (name);
2734   bb = gimple_bb (stmt);
2735   if (bb)
2736     {
2737       gcc_assert (bb->index < last_basic_block);
2738       mark_block_for_update (bb);
2739       mark_def_interesting (name, stmt, bb, insert_phi_p);
2740     }
2741 }
2742 
2743 
2744 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2745    OLD_SSA_NAMES.  INSERT_PHI_P is true if the caller wants to insert
2746    PHI nodes for newly created names.  */
2747 
2748 static void
2749 prepare_names_to_update (bool insert_phi_p)
2750 {
2751   unsigned i = 0;
2752   bitmap_iterator bi;
2753   sbitmap_iterator sbi;
2754 
2755   /* If a name N from NEW_SSA_NAMES is also marked to be released,
2756      remove it from NEW_SSA_NAMES so that we don't try to visit its
2757      defining basic block (which most likely doesn't exist).  Notice
2758      that we cannot do the same with names in OLD_SSA_NAMES because we
2759      want to replace existing instances.  */
2760   if (names_to_release)
2761     EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2762       RESET_BIT (new_ssa_names, i);
2763 
2764   /* First process names in NEW_SSA_NAMES.  Otherwise, uses of old
2765      names may be considered to be live-in on blocks that contain
2766      definitions for their replacements.  */
2767   EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2768     prepare_def_site_for (ssa_name (i), insert_phi_p);
2769 
2770   /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2771      OLD_SSA_NAMES, but we have to ignore its definition site.  */
2772   EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2773     {
2774       if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2775 	prepare_def_site_for (ssa_name (i), insert_phi_p);
2776       prepare_use_sites_for (ssa_name (i), insert_phi_p);
2777     }
2778 }
2779 
2780 
2781 /* Dump all the names replaced by NAME to FILE.  */
2782 
2783 void
2784 dump_names_replaced_by (FILE *file, tree name)
2785 {
2786   unsigned i;
2787   bitmap old_set;
2788   bitmap_iterator bi;
2789 
2790   print_generic_expr (file, name, 0);
2791   fprintf (file, " -> { ");
2792 
2793   old_set = names_replaced_by (name);
2794   EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2795     {
2796       print_generic_expr (file, ssa_name (i), 0);
2797       fprintf (file, " ");
2798     }
2799 
2800   fprintf (file, "}\n");
2801 }
2802 
2803 
2804 /* Dump all the names replaced by NAME to stderr.  */
2805 
2806 DEBUG_FUNCTION void
2807 debug_names_replaced_by (tree name)
2808 {
2809   dump_names_replaced_by (stderr, name);
2810 }
2811 
2812 
2813 /* Dump SSA update information to FILE.  */
2814 
2815 void
2816 dump_update_ssa (FILE *file)
2817 {
2818   unsigned i = 0;
2819   bitmap_iterator bi;
2820 
2821   if (!need_ssa_update_p (cfun))
2822     return;
2823 
2824   if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2825     {
2826       sbitmap_iterator sbi;
2827 
2828       fprintf (file, "\nSSA replacement table\n");
2829       fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2830 	             "O_1, ..., O_j\n\n");
2831 
2832       EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2833 	dump_names_replaced_by (file, ssa_name (i));
2834 
2835       fprintf (file, "\n");
2836       fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2837 	       update_ssa_stats.num_virtual_mappings);
2838       fprintf (file, "Number of real NEW -> OLD mappings:    %7u\n",
2839 	       update_ssa_stats.num_total_mappings
2840 	       - update_ssa_stats.num_virtual_mappings);
2841       fprintf (file, "Number of total NEW -> OLD mappings:   %7u\n",
2842 	       update_ssa_stats.num_total_mappings);
2843 
2844       fprintf (file, "\nNumber of virtual symbols: %u\n",
2845 	       update_ssa_stats.num_virtual_symbols);
2846     }
2847 
2848   if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
2849     {
2850       fprintf (file, "\nSymbols to be put in SSA form\n");
2851       dump_decl_set (file, SYMS_TO_RENAME (cfun));
2852       fprintf (file, "\n");
2853     }
2854 
2855   if (names_to_release && !bitmap_empty_p (names_to_release))
2856     {
2857       fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2858       EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2859 	{
2860 	  print_generic_expr (file, ssa_name (i), 0);
2861 	  fprintf (file, " ");
2862 	}
2863       fprintf (file, "\n");
2864     }
2865 }
2866 
2867 
2868 /* Dump SSA update information to stderr.  */
2869 
2870 DEBUG_FUNCTION void
2871 debug_update_ssa (void)
2872 {
2873   dump_update_ssa (stderr);
2874 }
2875 
2876 
2877 /* Initialize data structures used for incremental SSA updates.  */
2878 
2879 static void
2880 init_update_ssa (struct function *fn)
2881 {
2882   /* Reserve more space than the current number of names.  The calls to
2883      add_new_name_mapping are typically done after creating new SSA
2884      names, so we'll need to reallocate these arrays.  */
2885   old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2886   sbitmap_zero (old_ssa_names);
2887 
2888   new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2889   sbitmap_zero (new_ssa_names);
2890 
2891   repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2892   names_to_release = NULL;
2893   memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2894   update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2895   update_ssa_initialized_fn = fn;
2896 }
2897 
2898 
2899 /* Deallocate data structures used for incremental SSA updates.  */
2900 
2901 void
2902 delete_update_ssa (void)
2903 {
2904   unsigned i;
2905   bitmap_iterator bi;
2906 
2907   sbitmap_free (old_ssa_names);
2908   old_ssa_names = NULL;
2909 
2910   sbitmap_free (new_ssa_names);
2911   new_ssa_names = NULL;
2912 
2913   htab_delete (repl_tbl);
2914   repl_tbl = NULL;
2915 
2916   bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
2917   BITMAP_FREE (update_ssa_stats.virtual_symbols);
2918 
2919   if (names_to_release)
2920     {
2921       EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2922 	release_ssa_name (ssa_name (i));
2923       BITMAP_FREE (names_to_release);
2924     }
2925 
2926   clear_ssa_name_info ();
2927 
2928   fini_ssa_renamer ();
2929 
2930   if (blocks_with_phis_to_rewrite)
2931     EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2932       {
2933 	gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2934 
2935 	VEC_free (gimple, heap, phis);
2936 	VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2937       }
2938 
2939   BITMAP_FREE (blocks_with_phis_to_rewrite);
2940   BITMAP_FREE (blocks_to_update);
2941   update_ssa_initialized_fn = NULL;
2942 }
2943 
2944 
2945 /* Create a new name for OLD_NAME in statement STMT and replace the
2946    operand pointed to by DEF_P with the newly created name.  Return
2947    the new name and register the replacement mapping <NEW, OLD> in
2948    update_ssa's tables.  */
2949 
2950 tree
2951 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2952 {
2953   tree new_name = duplicate_ssa_name (old_name, stmt);
2954 
2955   SET_DEF (def, new_name);
2956 
2957   if (gimple_code (stmt) == GIMPLE_PHI)
2958     {
2959       basic_block bb = gimple_bb (stmt);
2960 
2961       /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2962       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2963     }
2964 
2965   register_new_name_mapping (new_name, old_name);
2966 
2967   /* For the benefit of passes that will be updating the SSA form on
2968      their own, set the current reaching definition of OLD_NAME to be
2969      NEW_NAME.  */
2970   set_current_def (old_name, new_name);
2971 
2972   return new_name;
2973 }
2974 
2975 
2976 /* Register name NEW to be a replacement for name OLD.  This function
2977    must be called for every replacement that should be performed by
2978    update_ssa.  */
2979 
2980 void
2981 register_new_name_mapping (tree new_tree, tree old)
2982 {
2983   if (!update_ssa_initialized_fn)
2984     init_update_ssa (cfun);
2985 
2986   gcc_assert (update_ssa_initialized_fn == cfun);
2987 
2988   add_new_name_mapping (new_tree, old);
2989 }
2990 
2991 
2992 /* Register symbol SYM to be renamed by update_ssa.  */
2993 
2994 void
2995 mark_sym_for_renaming (tree sym)
2996 {
2997   bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
2998 }
2999 
3000 
3001 /* Register all the symbols in SET to be renamed by update_ssa.  */
3002 
3003 void
3004 mark_set_for_renaming (bitmap set)
3005 {
3006   bitmap_iterator bi;
3007   unsigned i;
3008 
3009   if (set == NULL || bitmap_empty_p (set))
3010     return;
3011 
3012   EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
3013     mark_sym_for_renaming (referenced_var (i));
3014 }
3015 
3016 
3017 /* Return true if there is any work to be done by update_ssa
3018    for function FN.  */
3019 
3020 bool
3021 need_ssa_update_p (struct function *fn)
3022 {
3023   gcc_assert (fn != NULL);
3024   return (update_ssa_initialized_fn == fn
3025 	  || (fn->gimple_df
3026 	      && !bitmap_empty_p (SYMS_TO_RENAME (fn))));
3027 }
3028 
3029 /* Return true if SSA name mappings have been registered for SSA updating.  */
3030 
3031 bool
3032 name_mappings_registered_p (void)
3033 {
3034   if (!update_ssa_initialized_fn)
3035     return false;
3036 
3037   gcc_assert (update_ssa_initialized_fn == cfun);
3038 
3039   return repl_tbl && htab_elements (repl_tbl) > 0;
3040 }
3041 
3042 /* Return true if name N has been registered in the replacement table.  */
3043 
3044 bool
3045 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
3046 {
3047   if (!update_ssa_initialized_fn)
3048     return false;
3049 
3050   gcc_assert (update_ssa_initialized_fn == cfun);
3051 
3052   return is_new_name (n) || is_old_name (n);
3053 }
3054 
3055 
3056 /* Return the set of all the SSA names marked to be replaced.  */
3057 
3058 bitmap
3059 ssa_names_to_replace (void)
3060 {
3061   unsigned i = 0;
3062   bitmap ret;
3063   sbitmap_iterator sbi;
3064 
3065   gcc_assert (update_ssa_initialized_fn == NULL
3066 	      || update_ssa_initialized_fn == cfun);
3067 
3068   ret = BITMAP_ALLOC (NULL);
3069   EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3070     bitmap_set_bit (ret, i);
3071 
3072   return ret;
3073 }
3074 
3075 
3076 /* Mark NAME to be released after update_ssa has finished.  */
3077 
3078 void
3079 release_ssa_name_after_update_ssa (tree name)
3080 {
3081   gcc_assert (cfun && update_ssa_initialized_fn == cfun);
3082 
3083   if (names_to_release == NULL)
3084     names_to_release = BITMAP_ALLOC (NULL);
3085 
3086   bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
3087 }
3088 
3089 
3090 /* Insert new PHI nodes to replace VAR.  DFS contains dominance
3091    frontier information.  BLOCKS is the set of blocks to be updated.
3092 
3093    This is slightly different than the regular PHI insertion
3094    algorithm.  The value of UPDATE_FLAGS controls how PHI nodes for
3095    real names (i.e., GIMPLE registers) are inserted:
3096 
3097    - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
3098      nodes inside the region affected by the block that defines VAR
3099      and the blocks that define all its replacements.  All these
3100      definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
3101 
3102      First, we compute the entry point to the region (ENTRY).  This is
3103      given by the nearest common dominator to all the definition
3104      blocks. When computing the iterated dominance frontier (IDF), any
3105      block not strictly dominated by ENTRY is ignored.
3106 
3107      We then call the standard PHI insertion algorithm with the pruned
3108      IDF.
3109 
3110    - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3111      names is not pruned.  PHI nodes are inserted at every IDF block.  */
3112 
3113 static void
3114 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3115                               unsigned update_flags)
3116 {
3117   basic_block entry;
3118   struct def_blocks_d *db;
3119   bitmap idf, pruned_idf;
3120   bitmap_iterator bi;
3121   unsigned i;
3122 
3123   if (TREE_CODE (var) == SSA_NAME)
3124     gcc_checking_assert (is_old_name (var));
3125   else
3126     gcc_checking_assert (symbol_marked_for_renaming (var));
3127 
3128   /* Get all the definition sites for VAR.  */
3129   db = find_def_blocks_for (var);
3130 
3131   /* No need to do anything if there were no definitions to VAR.  */
3132   if (db == NULL || bitmap_empty_p (db->def_blocks))
3133     return;
3134 
3135   /* Compute the initial iterated dominance frontier.  */
3136   idf = compute_idf (db->def_blocks, dfs);
3137   pruned_idf = BITMAP_ALLOC (NULL);
3138 
3139   if (TREE_CODE (var) == SSA_NAME)
3140     {
3141       if (update_flags == TODO_update_ssa)
3142 	{
3143 	  /* If doing regular SSA updates for GIMPLE registers, we are
3144 	     only interested in IDF blocks dominated by the nearest
3145 	     common dominator of all the definition blocks.  */
3146 	  entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3147 						    db->def_blocks);
3148 	  if (entry != ENTRY_BLOCK_PTR)
3149 	    EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3150 	      if (BASIC_BLOCK (i) != entry
3151 		  && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3152 		bitmap_set_bit (pruned_idf, i);
3153 	}
3154       else
3155 	{
3156 	  /* Otherwise, do not prune the IDF for VAR.  */
3157 	  gcc_assert (update_flags == TODO_update_ssa_full_phi);
3158 	  bitmap_copy (pruned_idf, idf);
3159 	}
3160     }
3161   else
3162     {
3163       /* Otherwise, VAR is a symbol that needs to be put into SSA form
3164 	 for the first time, so we need to compute the full IDF for
3165 	 it.  */
3166       bitmap_copy (pruned_idf, idf);
3167     }
3168 
3169   if (!bitmap_empty_p (pruned_idf))
3170     {
3171       /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3172 	 are included in the region to be updated.  The feeding blocks
3173 	 are important to guarantee that the PHI arguments are renamed
3174 	 properly.  */
3175 
3176       /* FIXME, this is not needed if we are updating symbols.  We are
3177 	 already starting at the ENTRY block anyway.  */
3178       bitmap_ior_into (blocks, pruned_idf);
3179       EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3180 	{
3181 	  edge e;
3182 	  edge_iterator ei;
3183 	  basic_block bb = BASIC_BLOCK (i);
3184 
3185 	  FOR_EACH_EDGE (e, ei, bb->preds)
3186 	    if (e->src->index >= 0)
3187 	      bitmap_set_bit (blocks, e->src->index);
3188 	}
3189 
3190       insert_phi_nodes_for (var, pruned_idf, true);
3191     }
3192 
3193   BITMAP_FREE (pruned_idf);
3194   BITMAP_FREE (idf);
3195 }
3196 
3197 
3198 /* Heuristic to determine whether SSA name mappings for virtual names
3199    should be discarded and their symbols rewritten from scratch.  When
3200    there is a large number of mappings for virtual names, the
3201    insertion of PHI nodes for the old names in the mappings takes
3202    considerable more time than if we inserted PHI nodes for the
3203    symbols instead.
3204 
3205    Currently the heuristic takes these stats into account:
3206 
3207    	- Number of mappings for virtual SSA names.
3208 	- Number of distinct virtual symbols involved in those mappings.
3209 
3210    If the number of virtual mappings is much larger than the number of
3211    virtual symbols, then it will be faster to compute PHI insertion
3212    spots for the symbols.  Even if this involves traversing the whole
3213    CFG, which is what happens when symbols are renamed from scratch.  */
3214 
3215 static bool
3216 switch_virtuals_to_full_rewrite_p (void)
3217 {
3218   if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
3219     return false;
3220 
3221   if (update_ssa_stats.num_virtual_mappings
3222       > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3223         * update_ssa_stats.num_virtual_symbols)
3224     return true;
3225 
3226   return false;
3227 }
3228 
3229 
3230 /* Remove every virtual mapping and mark all the affected virtual
3231    symbols for renaming.  */
3232 
3233 static void
3234 switch_virtuals_to_full_rewrite (void)
3235 {
3236   unsigned i = 0;
3237   sbitmap_iterator sbi;
3238 
3239   if (dump_file)
3240     {
3241       fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3242       fprintf (dump_file, "\tNumber of virtual mappings:       %7u\n",
3243 	       update_ssa_stats.num_virtual_mappings);
3244       fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3245 	       update_ssa_stats.num_virtual_symbols);
3246       fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3247 	                  "faster than processing\nthe name mappings.\n\n");
3248     }
3249 
3250   /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3251      Note that it is not really necessary to remove the mappings from
3252      REPL_TBL, that would only waste time.  */
3253   EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3254     if (!is_gimple_reg (ssa_name (i)))
3255       RESET_BIT (new_ssa_names, i);
3256 
3257   EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3258     if (!is_gimple_reg (ssa_name (i)))
3259       RESET_BIT (old_ssa_names, i);
3260 
3261   mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3262 }
3263 
3264 
3265 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3266    existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3267 
3268    1- The names in OLD_SSA_NAMES dominated by the definitions of
3269       NEW_SSA_NAMES are all re-written to be reached by the
3270       appropriate definition from NEW_SSA_NAMES.
3271 
3272    2- If needed, new PHI nodes are added to the iterated dominance
3273       frontier of the blocks where each of NEW_SSA_NAMES are defined.
3274 
3275    The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3276    calling register_new_name_mapping for every pair of names that the
3277    caller wants to replace.
3278 
3279    The caller identifies the new names that have been inserted and the
3280    names that need to be replaced by calling register_new_name_mapping
3281    for every pair <NEW, OLD>.  Note that the function assumes that the
3282    new names have already been inserted in the IL.
3283 
3284    For instance, given the following code:
3285 
3286      1	L0:
3287      2	x_1 = PHI (0, x_5)
3288      3	if (x_1 < 10)
3289      4	  if (x_1 > 7)
3290      5	    y_2 = 0
3291      6	  else
3292      7	    y_3 = x_1 + x_7
3293      8	  endif
3294      9	  x_5 = x_1 + 1
3295      10   goto L0;
3296      11	endif
3297 
3298    Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3299 
3300      1	L0:
3301      2	x_1 = PHI (0, x_5)
3302      3	if (x_1 < 10)
3303      4	  x_10 = ...
3304      5	  if (x_1 > 7)
3305      6	    y_2 = 0
3306      7	  else
3307      8	    x_11 = ...
3308      9	    y_3 = x_1 + x_7
3309      10	  endif
3310      11	  x_5 = x_1 + 1
3311      12	  goto L0;
3312      13	endif
3313 
3314    We want to replace all the uses of x_1 with the new definitions of
3315    x_10 and x_11.  Note that the only uses that should be replaced are
3316    those at lines 5, 9 and 11.  Also, the use of x_7 at line 9 should
3317    *not* be replaced (this is why we cannot just mark symbol 'x' for
3318    renaming).
3319 
3320    Additionally, we may need to insert a PHI node at line 11 because
3321    that is a merge point for x_10 and x_11.  So the use of x_1 at line
3322    11 will be replaced with the new PHI node.  The insertion of PHI
3323    nodes is optional.  They are not strictly necessary to preserve the
3324    SSA form, and depending on what the caller inserted, they may not
3325    even be useful for the optimizers.  UPDATE_FLAGS controls various
3326    aspects of how update_ssa operates, see the documentation for
3327    TODO_update_ssa*.  */
3328 
3329 void
3330 update_ssa (unsigned update_flags)
3331 {
3332   basic_block bb, start_bb;
3333   bitmap_iterator bi;
3334   unsigned i = 0;
3335   bool insert_phi_p;
3336   sbitmap_iterator sbi;
3337 
3338   if (!need_ssa_update_p (cfun))
3339     return;
3340 
3341   timevar_push (TV_TREE_SSA_INCREMENTAL);
3342 
3343   if (dump_file && (dump_flags & TDF_DETAILS))
3344     fprintf (dump_file, "\nUpdating SSA:\n");
3345 
3346   if (!update_ssa_initialized_fn)
3347     init_update_ssa (cfun);
3348   gcc_assert (update_ssa_initialized_fn == cfun);
3349 
3350   blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3351   if (!phis_to_rewrite)
3352     phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3353   blocks_to_update = BITMAP_ALLOC (NULL);
3354 
3355   /* Ensure that the dominance information is up-to-date.  */
3356   calculate_dominance_info (CDI_DOMINATORS);
3357 
3358   /* Only one update flag should be set.  */
3359   gcc_assert (update_flags == TODO_update_ssa
3360               || update_flags == TODO_update_ssa_no_phi
3361 	      || update_flags == TODO_update_ssa_full_phi
3362 	      || update_flags == TODO_update_ssa_only_virtuals);
3363 
3364   /* If we only need to update virtuals, remove all the mappings for
3365      real names before proceeding.  The caller is responsible for
3366      having dealt with the name mappings before calling update_ssa.  */
3367   if (update_flags == TODO_update_ssa_only_virtuals)
3368     {
3369       sbitmap_zero (old_ssa_names);
3370       sbitmap_zero (new_ssa_names);
3371       htab_empty (repl_tbl);
3372     }
3373 
3374   insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3375 
3376   if (insert_phi_p)
3377     {
3378       /* If the caller requested PHI nodes to be added, initialize
3379 	 live-in information data structures (DEF_BLOCKS).  */
3380 
3381       /* For each SSA name N, the DEF_BLOCKS table describes where the
3382 	 name is defined, which blocks have PHI nodes for N, and which
3383 	 blocks have uses of N (i.e., N is live-on-entry in those
3384 	 blocks).  */
3385       def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3386 				def_blocks_eq, def_blocks_free);
3387     }
3388   else
3389     {
3390       def_blocks = NULL;
3391     }
3392 
3393   /* Heuristic to avoid massive slow downs when the replacement
3394      mappings include lots of virtual names.  */
3395   if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3396     switch_virtuals_to_full_rewrite ();
3397 
3398   /* If there are names defined in the replacement table, prepare
3399      definition and use sites for all the names in NEW_SSA_NAMES and
3400      OLD_SSA_NAMES.  */
3401   if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3402     {
3403       prepare_names_to_update (insert_phi_p);
3404 
3405       /* If all the names in NEW_SSA_NAMES had been marked for
3406 	 removal, and there are no symbols to rename, then there's
3407 	 nothing else to do.  */
3408       if (sbitmap_first_set_bit (new_ssa_names) < 0
3409 	  && bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3410 	goto done;
3411     }
3412 
3413   /* Next, determine the block at which to start the renaming process.  */
3414   if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3415     {
3416       /* If we have to rename some symbols from scratch, we need to
3417 	 start the process at the root of the CFG.  FIXME, it should
3418 	 be possible to determine the nearest block that had a
3419 	 definition for each of the symbols that are marked for
3420 	 updating.  For now this seems more work than it's worth.  */
3421       start_bb = ENTRY_BLOCK_PTR;
3422 
3423       /* Traverse the CFG looking for existing definitions and uses of
3424 	 symbols in SYMS_TO_RENAME.  Mark interesting blocks and
3425 	 statements and set local live-in information for the PHI
3426 	 placement heuristics.  */
3427       prepare_block_for_update (start_bb, insert_phi_p);
3428     }
3429   else
3430     {
3431       /* Otherwise, the entry block to the region is the nearest
3432 	 common dominator for the blocks in BLOCKS.  */
3433       start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3434 						   blocks_to_update);
3435     }
3436 
3437   /* If requested, insert PHI nodes at the iterated dominance frontier
3438      of every block, creating new definitions for names in OLD_SSA_NAMES
3439      and for symbols in SYMS_TO_RENAME.  */
3440   if (insert_phi_p)
3441     {
3442       bitmap_head *dfs;
3443 
3444       /* If the caller requested PHI nodes to be added, compute
3445 	 dominance frontiers.  */
3446       dfs = XNEWVEC (bitmap_head, last_basic_block);
3447       FOR_EACH_BB (bb)
3448 	bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3449       compute_dominance_frontiers (dfs);
3450 
3451       if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3452 	{
3453 	  sbitmap_iterator sbi;
3454 
3455 	  /* insert_update_phi_nodes_for will call add_new_name_mapping
3456 	     when inserting new PHI nodes, so the set OLD_SSA_NAMES
3457 	     will grow while we are traversing it (but it will not
3458 	     gain any new members).  Copy OLD_SSA_NAMES to a temporary
3459 	     for traversal.  */
3460 	  sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3461 	  sbitmap_copy (tmp, old_ssa_names);
3462 	  EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3463 	    insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3464 	                                  update_flags);
3465 	  sbitmap_free (tmp);
3466 	}
3467 
3468       EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3469 	insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3470 	                              update_flags);
3471 
3472       FOR_EACH_BB (bb)
3473 	bitmap_clear (&dfs[bb->index]);
3474       free (dfs);
3475 
3476       /* Insertion of PHI nodes may have added blocks to the region.
3477 	 We need to re-compute START_BB to include the newly added
3478 	 blocks.  */
3479       if (start_bb != ENTRY_BLOCK_PTR)
3480 	start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3481 						     blocks_to_update);
3482     }
3483 
3484   /* Reset the current definition for name and symbol before renaming
3485      the sub-graph.  */
3486   EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3487     set_current_def (ssa_name (i), NULL_TREE);
3488 
3489   EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3490     set_current_def (referenced_var (i), NULL_TREE);
3491 
3492   /* Now start the renaming process at START_BB.  */
3493   interesting_blocks = sbitmap_alloc (last_basic_block);
3494   sbitmap_zero (interesting_blocks);
3495   EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3496     SET_BIT (interesting_blocks, i);
3497 
3498   rewrite_blocks (start_bb, REWRITE_UPDATE);
3499 
3500   sbitmap_free (interesting_blocks);
3501 
3502   /* Debugging dumps.  */
3503   if (dump_file)
3504     {
3505       int c;
3506       unsigned i;
3507 
3508       dump_update_ssa (dump_file);
3509 
3510       fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3511 	       start_bb->index);
3512 
3513       c = 0;
3514       EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3515 	c++;
3516       fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3517       fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3518 	       c, PERCENT (c, last_basic_block));
3519 
3520       if (dump_flags & TDF_DETAILS)
3521 	{
3522 	  fprintf (dump_file, "Affected blocks:");
3523 	  EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3524 	    fprintf (dump_file, " %u", i);
3525 	  fprintf (dump_file, "\n");
3526 	}
3527 
3528       fprintf (dump_file, "\n\n");
3529     }
3530 
3531   /* Free allocated memory.  */
3532 done:
3533   delete_update_ssa ();
3534 
3535   timevar_pop (TV_TREE_SSA_INCREMENTAL);
3536 }
3537