1 /* Generic routines for manipulating PHIs
2    Copyright (C) 2003, 2005, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"	/* FIXME: Only for ceil_log2, of all things...  */
27 #include "ggc.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "diagnostic-core.h"
31 #include "gimple.h"
32 
33 /* Rewriting a function into SSA form can create a huge number of PHIs
34    many of which may be thrown away shortly after their creation if jumps
35    were threaded through PHI nodes.
36 
37    While our garbage collection mechanisms will handle this situation, it
38    is extremely wasteful to create nodes and throw them away, especially
39    when the nodes can be reused.
40 
41    For PR 8361, we can significantly reduce the number of nodes allocated
42    and thus the total amount of memory allocated by managing PHIs a
43    little.  This additionally helps reduce the amount of work done by the
44    garbage collector.  Similar results have been seen on a wider variety
45    of tests (such as the compiler itself).
46 
47    Right now we maintain our free list on a per-function basis.  It may
48    or may not make sense to maintain the free list for the duration of
49    a compilation unit.
50 
51    We could also use a zone allocator for these objects since they have
52    a very well defined lifetime.  If someone wants to experiment with that
53    this is the place to try it.
54 
55    PHI nodes have different sizes, so we can't have a single list of all
56    the PHI nodes as it would be too expensive to walk down that list to
57    find a PHI of a suitable size.
58 
59    Instead we have an array of lists of free PHI nodes.  The array is
60    indexed by the number of PHI alternatives that PHI node can hold.
61    Except for the last array member, which holds all remaining PHI
62    nodes.
63 
64    So to find a free PHI node, we compute its index into the free PHI
65    node array and see if there are any elements with an exact match.
66    If so, then we are done.  Otherwise, we test the next larger size
67    up and continue until we are in the last array element.
68 
69    We do not actually walk members of the last array element.  While it
70    might allow us to pick up a few reusable PHI nodes, it could potentially
71    be very expensive if the program has released a bunch of large PHI nodes,
72    but keeps asking for even larger PHI nodes.  Experiments have shown that
73    walking the elements of the last array entry would result in finding less
74    than .1% additional reusable PHI nodes.
75 
76    Note that we can never have less than two PHI argument slots.  Thus,
77    the -2 on all the calculations below.  */
78 
79 #define NUM_BUCKETS 10
80 static GTY ((deletable (""))) VEC(gimple,gc) *free_phinodes[NUM_BUCKETS - 2];
81 static unsigned long free_phinode_count;
82 
83 static int ideal_phi_node_len (int);
84 
85 #ifdef GATHER_STATISTICS
86 unsigned int phi_nodes_reused;
87 unsigned int phi_nodes_created;
88 #endif
89 
90 /* Initialize management of PHIs.  */
91 
92 void
93 init_phinodes (void)
94 {
95   int i;
96 
97   for (i = 0; i < NUM_BUCKETS - 2; i++)
98     free_phinodes[i] = NULL;
99   free_phinode_count = 0;
100 }
101 
102 /* Finalize management of PHIs.  */
103 
104 void
105 fini_phinodes (void)
106 {
107   int i;
108 
109   for (i = 0; i < NUM_BUCKETS - 2; i++)
110     free_phinodes[i] = NULL;
111   free_phinode_count = 0;
112 }
113 
114 /* Dump some simple statistics regarding the re-use of PHI nodes.  */
115 
116 #ifdef GATHER_STATISTICS
117 void
118 phinodes_print_statistics (void)
119 {
120   fprintf (stderr, "PHI nodes allocated: %u\n", phi_nodes_created);
121   fprintf (stderr, "PHI nodes reused: %u\n", phi_nodes_reused);
122 }
123 #endif
124 
125 /* Allocate a PHI node with at least LEN arguments.  If the free list
126    happens to contain a PHI node with LEN arguments or more, return
127    that one.  */
128 
129 static inline gimple
130 allocate_phi_node (size_t len)
131 {
132   gimple phi;
133   size_t bucket = NUM_BUCKETS - 2;
134   size_t size = sizeof (struct gimple_statement_phi)
135 	        + (len - 1) * sizeof (struct phi_arg_d);
136 
137   if (free_phinode_count)
138     for (bucket = len - 2; bucket < NUM_BUCKETS - 2; bucket++)
139       if (free_phinodes[bucket])
140 	break;
141 
142   /* If our free list has an element, then use it.  */
143   if (bucket < NUM_BUCKETS - 2
144       && gimple_phi_capacity (VEC_index (gimple, free_phinodes[bucket], 0))
145 	 >= len)
146     {
147       free_phinode_count--;
148       phi = VEC_pop (gimple, free_phinodes[bucket]);
149       if (VEC_empty (gimple, free_phinodes[bucket]))
150 	VEC_free (gimple, gc, free_phinodes[bucket]);
151 #ifdef GATHER_STATISTICS
152       phi_nodes_reused++;
153 #endif
154     }
155   else
156     {
157       phi = ggc_alloc_gimple_statement_d (size);
158 #ifdef GATHER_STATISTICS
159       phi_nodes_created++;
160 	{
161 	  enum gimple_alloc_kind kind = gimple_alloc_kind (GIMPLE_PHI);
162           gimple_alloc_counts[(int) kind]++;
163           gimple_alloc_sizes[(int) kind] += size;
164 	}
165 #endif
166     }
167 
168   return phi;
169 }
170 
171 /* Given LEN, the original number of requested PHI arguments, return
172    a new, "ideal" length for the PHI node.  The "ideal" length rounds
173    the total size of the PHI node up to the next power of two bytes.
174 
175    Rounding up will not result in wasting any memory since the size request
176    will be rounded up by the GC system anyway.  [ Note this is not entirely
177    true since the original length might have fit on one of the special
178    GC pages. ]  By rounding up, we may avoid the need to reallocate the
179    PHI node later if we increase the number of arguments for the PHI.  */
180 
181 static int
182 ideal_phi_node_len (int len)
183 {
184   size_t size, new_size;
185   int log2, new_len;
186 
187   /* We do not support allocations of less than two PHI argument slots.  */
188   if (len < 2)
189     len = 2;
190 
191   /* Compute the number of bytes of the original request.  */
192   size = sizeof (struct gimple_statement_phi)
193 	 + (len - 1) * sizeof (struct phi_arg_d);
194 
195   /* Round it up to the next power of two.  */
196   log2 = ceil_log2 (size);
197   new_size = 1 << log2;
198 
199   /* Now compute and return the number of PHI argument slots given an
200      ideal size allocation.  */
201   new_len = len + (new_size - size) / sizeof (struct phi_arg_d);
202   return new_len;
203 }
204 
205 /* Return a PHI node with LEN argument slots for variable VAR.  */
206 
207 static gimple
208 make_phi_node (tree var, int len)
209 {
210   gimple phi;
211   int capacity, i;
212 
213   capacity = ideal_phi_node_len (len);
214 
215   phi = allocate_phi_node (capacity);
216 
217   /* We need to clear the entire PHI node, including the argument
218      portion, because we represent a "missing PHI argument" by placing
219      NULL_TREE in PHI_ARG_DEF.  */
220   memset (phi, 0, (sizeof (struct gimple_statement_phi)
221 		   - sizeof (struct phi_arg_d)
222 		   + sizeof (struct phi_arg_d) * len));
223   phi->gsbase.code = GIMPLE_PHI;
224   phi->gimple_phi.nargs = len;
225   phi->gimple_phi.capacity = capacity;
226   if (TREE_CODE (var) == SSA_NAME)
227     gimple_phi_set_result (phi, var);
228   else
229     gimple_phi_set_result (phi, make_ssa_name (var, phi));
230 
231   for (i = 0; i < capacity; i++)
232     {
233       use_operand_p  imm;
234 
235       gimple_phi_arg_set_location (phi, i, UNKNOWN_LOCATION);
236       imm = gimple_phi_arg_imm_use_ptr (phi, i);
237       imm->use = gimple_phi_arg_def_ptr (phi, i);
238       imm->prev = NULL;
239       imm->next = NULL;
240       imm->loc.stmt = phi;
241     }
242 
243   return phi;
244 }
245 
246 /* We no longer need PHI, release it so that it may be reused.  */
247 
248 void
249 release_phi_node (gimple phi)
250 {
251   size_t bucket;
252   size_t len = gimple_phi_capacity (phi);
253   size_t x;
254 
255   for (x = 0; x < gimple_phi_num_args (phi); x++)
256     {
257       use_operand_p  imm;
258       imm = gimple_phi_arg_imm_use_ptr (phi, x);
259       delink_imm_use (imm);
260     }
261 
262   bucket = len > NUM_BUCKETS - 1 ? NUM_BUCKETS - 1 : len;
263   bucket -= 2;
264   VEC_safe_push (gimple, gc, free_phinodes[bucket], phi);
265   free_phinode_count++;
266 }
267 
268 
269 /* Resize an existing PHI node.  The only way is up.  Return the
270    possibly relocated phi.  */
271 
272 static void
273 resize_phi_node (gimple *phi, size_t len)
274 {
275   size_t old_size, i;
276   gimple new_phi;
277 
278   gcc_assert (len > gimple_phi_capacity (*phi));
279 
280   /* The garbage collector will not look at the PHI node beyond the
281      first PHI_NUM_ARGS elements.  Therefore, all we have to copy is a
282      portion of the PHI node currently in use.  */
283   old_size = sizeof (struct gimple_statement_phi)
284 	     + (gimple_phi_num_args (*phi) - 1) * sizeof (struct phi_arg_d);
285 
286   new_phi = allocate_phi_node (len);
287 
288   memcpy (new_phi, *phi, old_size);
289 
290   for (i = 0; i < gimple_phi_num_args (new_phi); i++)
291     {
292       use_operand_p imm, old_imm;
293       imm = gimple_phi_arg_imm_use_ptr (new_phi, i);
294       old_imm = gimple_phi_arg_imm_use_ptr (*phi, i);
295       imm->use = gimple_phi_arg_def_ptr (new_phi, i);
296       relink_imm_use_stmt (imm, old_imm, new_phi);
297     }
298 
299   new_phi->gimple_phi.capacity = len;
300 
301   for (i = gimple_phi_num_args (new_phi); i < len; i++)
302     {
303       use_operand_p imm;
304 
305       gimple_phi_arg_set_location (new_phi, i, UNKNOWN_LOCATION);
306       imm = gimple_phi_arg_imm_use_ptr (new_phi, i);
307       imm->use = gimple_phi_arg_def_ptr (new_phi, i);
308       imm->prev = NULL;
309       imm->next = NULL;
310       imm->loc.stmt = new_phi;
311     }
312 
313   *phi = new_phi;
314 }
315 
316 /* Reserve PHI arguments for a new edge to basic block BB.  */
317 
318 void
319 reserve_phi_args_for_new_edge (basic_block bb)
320 {
321   size_t len = EDGE_COUNT (bb->preds);
322   size_t cap = ideal_phi_node_len (len + 4);
323   gimple_stmt_iterator gsi;
324 
325   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
326     {
327       gimple *loc = gsi_stmt_ptr (&gsi);
328 
329       if (len > gimple_phi_capacity (*loc))
330 	{
331 	  gimple old_phi = *loc;
332 
333 	  resize_phi_node (loc, cap);
334 
335 	  /* The result of the PHI is defined by this PHI node.  */
336 	  SSA_NAME_DEF_STMT (gimple_phi_result (*loc)) = *loc;
337 
338 	  release_phi_node (old_phi);
339 	}
340 
341       /* We represent a "missing PHI argument" by placing NULL_TREE in
342 	 the corresponding slot.  If PHI arguments were added
343 	 immediately after an edge is created, this zeroing would not
344 	 be necessary, but unfortunately this is not the case.  For
345 	 example, the loop optimizer duplicates several basic blocks,
346 	 redirects edges, and then fixes up PHI arguments later in
347 	 batch.  */
348       SET_PHI_ARG_DEF (*loc, len - 1, NULL_TREE);
349 
350       (*loc)->gimple_phi.nargs++;
351     }
352 }
353 
354 /* Adds PHI to BB.  */
355 
356 void
357 add_phi_node_to_bb (gimple phi, basic_block bb)
358 {
359   gimple_stmt_iterator gsi;
360   /* Add the new PHI node to the list of PHI nodes for block BB.  */
361   if (phi_nodes (bb) == NULL)
362     set_phi_nodes (bb, gimple_seq_alloc ());
363 
364   gsi = gsi_last (phi_nodes (bb));
365   gsi_insert_after (&gsi, phi, GSI_NEW_STMT);
366 
367   /* Associate BB to the PHI node.  */
368   gimple_set_bb (phi, bb);
369 
370 }
371 
372 /* Create a new PHI node for variable VAR at basic block BB.  */
373 
374 gimple
375 create_phi_node (tree var, basic_block bb)
376 {
377   gimple phi = make_phi_node (var, EDGE_COUNT (bb->preds));
378 
379   add_phi_node_to_bb (phi, bb);
380   return phi;
381 }
382 
383 
384 /* Add a new argument to PHI node PHI.  DEF is the incoming reaching
385    definition and E is the edge through which DEF reaches PHI.  The new
386    argument is added at the end of the argument list.
387    If PHI has reached its maximum capacity, add a few slots.  In this case,
388    PHI points to the reallocated phi node when we return.  */
389 
390 void
391 add_phi_arg (gimple phi, tree def, edge e, source_location locus)
392 {
393   basic_block bb = e->dest;
394 
395   gcc_assert (bb == gimple_bb (phi));
396 
397   /* We resize PHI nodes upon edge creation.  We should always have
398      enough room at this point.  */
399   gcc_assert (gimple_phi_num_args (phi) <= gimple_phi_capacity (phi));
400 
401   /* We resize PHI nodes upon edge creation.  We should always have
402      enough room at this point.  */
403   gcc_assert (e->dest_idx < gimple_phi_num_args (phi));
404 
405   /* Copy propagation needs to know what object occur in abnormal
406      PHI nodes.  This is a convenient place to record such information.  */
407   if (e->flags & EDGE_ABNORMAL)
408     {
409       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) = 1;
410       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)) = 1;
411     }
412 
413   SET_PHI_ARG_DEF (phi, e->dest_idx, def);
414   gimple_phi_arg_set_location (phi, e->dest_idx, locus);
415 }
416 
417 
418 /* Remove the Ith argument from PHI's argument list.  This routine
419    implements removal by swapping the last alternative with the
420    alternative we want to delete and then shrinking the vector, which
421    is consistent with how we remove an edge from the edge vector.  */
422 
423 static void
424 remove_phi_arg_num (gimple phi, int i)
425 {
426   int num_elem = gimple_phi_num_args (phi);
427 
428   gcc_assert (i < num_elem);
429 
430   /* Delink the item which is being removed.  */
431   delink_imm_use (gimple_phi_arg_imm_use_ptr (phi, i));
432 
433   /* If it is not the last element, move the last element
434      to the element we want to delete, resetting all the links. */
435   if (i != num_elem - 1)
436     {
437       use_operand_p old_p, new_p;
438       old_p = gimple_phi_arg_imm_use_ptr (phi, num_elem - 1);
439       new_p = gimple_phi_arg_imm_use_ptr (phi, i);
440       /* Set use on new node, and link into last element's place.  */
441       *(new_p->use) = *(old_p->use);
442       relink_imm_use (new_p, old_p);
443       /* Move the location as well.  */
444       gimple_phi_arg_set_location (phi, i,
445 				   gimple_phi_arg_location (phi, num_elem - 1));
446     }
447 
448   /* Shrink the vector and return.  Note that we do not have to clear
449      PHI_ARG_DEF because the garbage collector will not look at those
450      elements beyond the first PHI_NUM_ARGS elements of the array.  */
451   phi->gimple_phi.nargs--;
452 }
453 
454 
455 /* Remove all PHI arguments associated with edge E.  */
456 
457 void
458 remove_phi_args (edge e)
459 {
460   gimple_stmt_iterator gsi;
461 
462   for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
463     remove_phi_arg_num (gsi_stmt (gsi), e->dest_idx);
464 }
465 
466 
467 /* Remove the PHI node pointed-to by iterator GSI from basic block BB.  After
468    removal, iterator GSI is updated to point to the next PHI node in the
469    sequence. If RELEASE_LHS_P is true, the LHS of this PHI node is released
470    into the free pool of SSA names.  */
471 
472 void
473 remove_phi_node (gimple_stmt_iterator *gsi, bool release_lhs_p)
474 {
475   gimple phi = gsi_stmt (*gsi);
476 
477   if (release_lhs_p)
478     insert_debug_temps_for_defs (gsi);
479 
480   gsi_remove (gsi, false);
481 
482   /* If we are deleting the PHI node, then we should release the
483      SSA_NAME node so that it can be reused.  */
484   release_phi_node (phi);
485   if (release_lhs_p)
486     release_ssa_name (gimple_phi_result (phi));
487 }
488 
489 /* Remove all the phi nodes from BB.  */
490 
491 void
492 remove_phi_nodes (basic_block bb)
493 {
494   gimple_stmt_iterator gsi;
495 
496   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
497     remove_phi_node (&gsi, true);
498 
499   set_phi_nodes (bb, NULL);
500 }
501 
502 #include "gt-tree-phinodes.h"
503