1 /* Conditional constant propagation pass for the GNU compiler.
2    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3    2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4    Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5    Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 /* Conditional constant propagation (CCP) is based on the SSA
24    propagation engine (tree-ssa-propagate.c).  Constant assignments of
25    the form VAR = CST are propagated from the assignments into uses of
26    VAR, which in turn may generate new constants.  The simulation uses
27    a four level lattice to keep track of constant values associated
28    with SSA names.  Given an SSA name V_i, it may take one of the
29    following values:
30 
31 	UNINITIALIZED   ->  the initial state of the value.  This value
32 			    is replaced with a correct initial value
33 			    the first time the value is used, so the
34 			    rest of the pass does not need to care about
35 			    it.  Using this value simplifies initialization
36 			    of the pass, and prevents us from needlessly
37 			    scanning statements that are never reached.
38 
39 	UNDEFINED	->  V_i is a local variable whose definition
40 			    has not been processed yet.  Therefore we
41 			    don't yet know if its value is a constant
42 			    or not.
43 
44 	CONSTANT	->  V_i has been found to hold a constant
45 			    value C.
46 
47 	VARYING		->  V_i cannot take a constant value, or if it
48 			    does, it is not possible to determine it
49 			    at compile time.
50 
51    The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 
53    1- In ccp_visit_stmt, we are interested in assignments whose RHS
54       evaluates into a constant and conditional jumps whose predicate
55       evaluates into a boolean true or false.  When an assignment of
56       the form V_i = CONST is found, V_i's lattice value is set to
57       CONSTANT and CONST is associated with it.  This causes the
58       propagation engine to add all the SSA edges coming out the
59       assignment into the worklists, so that statements that use V_i
60       can be visited.
61 
62       If the statement is a conditional with a constant predicate, we
63       mark the outgoing edges as executable or not executable
64       depending on the predicate's value.  This is then used when
65       visiting PHI nodes to know when a PHI argument can be ignored.
66 
67 
68    2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69       same constant C, then the LHS of the PHI is set to C.  This
70       evaluation is known as the "meet operation".  Since one of the
71       goals of this evaluation is to optimistically return constant
72       values as often as possible, it uses two main short cuts:
73 
74       - If an argument is flowing in through a non-executable edge, it
75 	is ignored.  This is useful in cases like this:
76 
77 			if (PRED)
78 			  a_9 = 3;
79 			else
80 			  a_10 = 100;
81 			a_11 = PHI (a_9, a_10)
82 
83 	If PRED is known to always evaluate to false, then we can
84 	assume that a_11 will always take its value from a_10, meaning
85 	that instead of consider it VARYING (a_9 and a_10 have
86 	different values), we can consider it CONSTANT 100.
87 
88       - If an argument has an UNDEFINED value, then it does not affect
89 	the outcome of the meet operation.  If a variable V_i has an
90 	UNDEFINED value, it means that either its defining statement
91 	hasn't been visited yet or V_i has no defining statement, in
92 	which case the original symbol 'V' is being used
93 	uninitialized.  Since 'V' is a local variable, the compiler
94 	may assume any initial value for it.
95 
96 
97    After propagation, every variable V_i that ends up with a lattice
98    value of CONSTANT will have the associated constant value in the
99    array CONST_VAL[i].VALUE.  That is fed into substitute_and_fold for
100    final substitution and folding.
101 
102    References:
103 
104      Constant propagation with conditional branches,
105      Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106 
107      Building an Optimizing Compiler,
108      Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109 
110      Advanced Compiler Design and Implementation,
111      Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6  */
112 
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "output.h"
122 #include "function.h"
123 #include "tree-pretty-print.h"
124 #include "gimple-pretty-print.h"
125 #include "timevar.h"
126 #include "tree-dump.h"
127 #include "tree-flow.h"
128 #include "tree-pass.h"
129 #include "tree-ssa-propagate.h"
130 #include "value-prof.h"
131 #include "langhooks.h"
132 #include "target.h"
133 #include "diagnostic-core.h"
134 #include "dbgcnt.h"
135 #include "gimple-fold.h"
136 #include "params.h"
137 
138 
139 /* Possible lattice values.  */
140 typedef enum
141 {
142   UNINITIALIZED,
143   UNDEFINED,
144   CONSTANT,
145   VARYING
146 } ccp_lattice_t;
147 
148 struct prop_value_d {
149     /* Lattice value.  */
150     ccp_lattice_t lattice_val;
151 
152     /* Propagated value.  */
153     tree value;
154 
155     /* Mask that applies to the propagated value during CCP.  For
156        X with a CONSTANT lattice value X & ~mask == value & ~mask.  */
157     double_int mask;
158 };
159 
160 typedef struct prop_value_d prop_value_t;
161 
162 /* Array of propagated constant values.  After propagation,
163    CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I).  If
164    the constant is held in an SSA name representing a memory store
165    (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
166    memory reference used to store (i.e., the LHS of the assignment
167    doing the store).  */
168 static prop_value_t *const_val;
169 
170 static void canonicalize_float_value (prop_value_t *);
171 static bool ccp_fold_stmt (gimple_stmt_iterator *);
172 
173 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX.  */
174 
175 static void
176 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
177 {
178   switch (val.lattice_val)
179     {
180     case UNINITIALIZED:
181       fprintf (outf, "%sUNINITIALIZED", prefix);
182       break;
183     case UNDEFINED:
184       fprintf (outf, "%sUNDEFINED", prefix);
185       break;
186     case VARYING:
187       fprintf (outf, "%sVARYING", prefix);
188       break;
189     case CONSTANT:
190       fprintf (outf, "%sCONSTANT ", prefix);
191       if (TREE_CODE (val.value) != INTEGER_CST
192 	  || double_int_zero_p (val.mask))
193 	print_generic_expr (outf, val.value, dump_flags);
194       else
195 	{
196 	  double_int cval = double_int_and_not (tree_to_double_int (val.value),
197 						val.mask);
198 	  fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
199 		   prefix, cval.high, cval.low);
200 	  fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
201 		   val.mask.high, val.mask.low);
202 	}
203       break;
204     default:
205       gcc_unreachable ();
206     }
207 }
208 
209 
210 /* Print lattice value VAL to stderr.  */
211 
212 void debug_lattice_value (prop_value_t val);
213 
214 DEBUG_FUNCTION void
215 debug_lattice_value (prop_value_t val)
216 {
217   dump_lattice_value (stderr, "", val);
218   fprintf (stderr, "\n");
219 }
220 
221 
222 /* Compute a default value for variable VAR and store it in the
223    CONST_VAL array.  The following rules are used to get default
224    values:
225 
226    1- Global and static variables that are declared constant are
227       considered CONSTANT.
228 
229    2- Any other value is considered UNDEFINED.  This is useful when
230       considering PHI nodes.  PHI arguments that are undefined do not
231       change the constant value of the PHI node, which allows for more
232       constants to be propagated.
233 
234    3- Variables defined by statements other than assignments and PHI
235       nodes are considered VARYING.
236 
237    4- Initial values of variables that are not GIMPLE registers are
238       considered VARYING.  */
239 
240 static prop_value_t
241 get_default_value (tree var)
242 {
243   tree sym = SSA_NAME_VAR (var);
244   prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
245   gimple stmt;
246 
247   stmt = SSA_NAME_DEF_STMT (var);
248 
249   if (gimple_nop_p (stmt))
250     {
251       /* Variables defined by an empty statement are those used
252 	 before being initialized.  If VAR is a local variable, we
253 	 can assume initially that it is UNDEFINED, otherwise we must
254 	 consider it VARYING.  */
255       if (is_gimple_reg (sym)
256 	  && TREE_CODE (sym) == VAR_DECL)
257 	val.lattice_val = UNDEFINED;
258       else
259 	{
260 	  val.lattice_val = VARYING;
261 	  val.mask = double_int_minus_one;
262 	}
263     }
264   else if (is_gimple_assign (stmt)
265 	   /* Value-returning GIMPLE_CALL statements assign to
266 	      a variable, and are treated similarly to GIMPLE_ASSIGN.  */
267 	   || (is_gimple_call (stmt)
268 	       && gimple_call_lhs (stmt) != NULL_TREE)
269 	   || gimple_code (stmt) == GIMPLE_PHI)
270     {
271       tree cst;
272       if (gimple_assign_single_p (stmt)
273 	  && DECL_P (gimple_assign_rhs1 (stmt))
274 	  && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
275 	{
276 	  val.lattice_val = CONSTANT;
277 	  val.value = cst;
278 	}
279       else
280 	/* Any other variable defined by an assignment or a PHI node
281 	   is considered UNDEFINED.  */
282 	val.lattice_val = UNDEFINED;
283     }
284   else
285     {
286       /* Otherwise, VAR will never take on a constant value.  */
287       val.lattice_val = VARYING;
288       val.mask = double_int_minus_one;
289     }
290 
291   return val;
292 }
293 
294 
295 /* Get the constant value associated with variable VAR.  */
296 
297 static inline prop_value_t *
298 get_value (tree var)
299 {
300   prop_value_t *val;
301 
302   if (const_val == NULL)
303     return NULL;
304 
305   val = &const_val[SSA_NAME_VERSION (var)];
306   if (val->lattice_val == UNINITIALIZED)
307     *val = get_default_value (var);
308 
309   canonicalize_float_value (val);
310 
311   return val;
312 }
313 
314 /* Return the constant tree value associated with VAR.  */
315 
316 static inline tree
317 get_constant_value (tree var)
318 {
319   prop_value_t *val;
320   if (TREE_CODE (var) != SSA_NAME)
321     {
322       if (is_gimple_min_invariant (var))
323         return var;
324       return NULL_TREE;
325     }
326   val = get_value (var);
327   if (val
328       && val->lattice_val == CONSTANT
329       && (TREE_CODE (val->value) != INTEGER_CST
330 	  || double_int_zero_p (val->mask)))
331     return val->value;
332   return NULL_TREE;
333 }
334 
335 /* Sets the value associated with VAR to VARYING.  */
336 
337 static inline void
338 set_value_varying (tree var)
339 {
340   prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
341 
342   val->lattice_val = VARYING;
343   val->value = NULL_TREE;
344   val->mask = double_int_minus_one;
345 }
346 
347 /* For float types, modify the value of VAL to make ccp work correctly
348    for non-standard values (-0, NaN):
349 
350    If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
351    If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
352      This is to fix the following problem (see PR 29921): Suppose we have
353 
354      x = 0.0 * y
355 
356      and we set value of y to NaN.  This causes value of x to be set to NaN.
357      When we later determine that y is in fact VARYING, fold uses the fact
358      that HONOR_NANS is false, and we try to change the value of x to 0,
359      causing an ICE.  With HONOR_NANS being false, the real appearance of
360      NaN would cause undefined behavior, though, so claiming that y (and x)
361      are UNDEFINED initially is correct.  */
362 
363 static void
364 canonicalize_float_value (prop_value_t *val)
365 {
366   enum machine_mode mode;
367   tree type;
368   REAL_VALUE_TYPE d;
369 
370   if (val->lattice_val != CONSTANT
371       || TREE_CODE (val->value) != REAL_CST)
372     return;
373 
374   d = TREE_REAL_CST (val->value);
375   type = TREE_TYPE (val->value);
376   mode = TYPE_MODE (type);
377 
378   if (!HONOR_SIGNED_ZEROS (mode)
379       && REAL_VALUE_MINUS_ZERO (d))
380     {
381       val->value = build_real (type, dconst0);
382       return;
383     }
384 
385   if (!HONOR_NANS (mode)
386       && REAL_VALUE_ISNAN (d))
387     {
388       val->lattice_val = UNDEFINED;
389       val->value = NULL;
390       return;
391     }
392 }
393 
394 /* Return whether the lattice transition is valid.  */
395 
396 static bool
397 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
398 {
399   /* Lattice transitions must always be monotonically increasing in
400      value.  */
401   if (old_val.lattice_val < new_val.lattice_val)
402     return true;
403 
404   if (old_val.lattice_val != new_val.lattice_val)
405     return false;
406 
407   if (!old_val.value && !new_val.value)
408     return true;
409 
410   /* Now both lattice values are CONSTANT.  */
411 
412   /* Allow transitioning from PHI <&x, not executable> == &x
413      to PHI <&x, &y> == common alignment.  */
414   if (TREE_CODE (old_val.value) != INTEGER_CST
415       && TREE_CODE (new_val.value) == INTEGER_CST)
416     return true;
417 
418   /* Bit-lattices have to agree in the still valid bits.  */
419   if (TREE_CODE (old_val.value) == INTEGER_CST
420       && TREE_CODE (new_val.value) == INTEGER_CST)
421     return double_int_equal_p
422 		(double_int_and_not (tree_to_double_int (old_val.value),
423 				     new_val.mask),
424 		 double_int_and_not (tree_to_double_int (new_val.value),
425 				     new_val.mask));
426 
427   /* Otherwise constant values have to agree.  */
428   return operand_equal_p (old_val.value, new_val.value, 0);
429 }
430 
431 /* Set the value for variable VAR to NEW_VAL.  Return true if the new
432    value is different from VAR's previous value.  */
433 
434 static bool
435 set_lattice_value (tree var, prop_value_t new_val)
436 {
437   /* We can deal with old UNINITIALIZED values just fine here.  */
438   prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
439 
440   canonicalize_float_value (&new_val);
441 
442   /* We have to be careful to not go up the bitwise lattice
443      represented by the mask.
444      ???  This doesn't seem to be the best place to enforce this.  */
445   if (new_val.lattice_val == CONSTANT
446       && old_val->lattice_val == CONSTANT
447       && TREE_CODE (new_val.value) == INTEGER_CST
448       && TREE_CODE (old_val->value) == INTEGER_CST)
449     {
450       double_int diff;
451       diff = double_int_xor (tree_to_double_int (new_val.value),
452 			     tree_to_double_int (old_val->value));
453       new_val.mask = double_int_ior (new_val.mask,
454 				     double_int_ior (old_val->mask, diff));
455     }
456 
457   gcc_assert (valid_lattice_transition (*old_val, new_val));
458 
459   /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
460      caller that this was a non-transition.  */
461   if (old_val->lattice_val != new_val.lattice_val
462       || (new_val.lattice_val == CONSTANT
463 	  && TREE_CODE (new_val.value) == INTEGER_CST
464 	  && (TREE_CODE (old_val->value) != INTEGER_CST
465 	      || !double_int_equal_p (new_val.mask, old_val->mask))))
466     {
467       /* ???  We would like to delay creation of INTEGER_CSTs from
468 	 partially constants here.  */
469 
470       if (dump_file && (dump_flags & TDF_DETAILS))
471 	{
472 	  dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
473 	  fprintf (dump_file, ".  Adding SSA edges to worklist.\n");
474 	}
475 
476       *old_val = new_val;
477 
478       gcc_assert (new_val.lattice_val != UNINITIALIZED);
479       return true;
480     }
481 
482   return false;
483 }
484 
485 static prop_value_t get_value_for_expr (tree, bool);
486 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
487 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
488 			       tree, double_int, double_int,
489 			       tree, double_int, double_int);
490 
491 /* Return a double_int that can be used for bitwise simplifications
492    from VAL.  */
493 
494 static double_int
495 value_to_double_int (prop_value_t val)
496 {
497   if (val.value
498       && TREE_CODE (val.value) == INTEGER_CST)
499     return tree_to_double_int (val.value);
500   else
501     return double_int_zero;
502 }
503 
504 /* Return the value for the address expression EXPR based on alignment
505    information.  */
506 
507 static prop_value_t
508 get_value_from_alignment (tree expr)
509 {
510   tree type = TREE_TYPE (expr);
511   prop_value_t val;
512   unsigned HOST_WIDE_INT bitpos;
513   unsigned int align;
514 
515   gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
516 
517   align = get_object_alignment_1 (TREE_OPERAND (expr, 0), &bitpos);
518   val.mask
519     = double_int_and_not (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
520 			  ? double_int_mask (TYPE_PRECISION (type))
521 			  : double_int_minus_one,
522 			  uhwi_to_double_int (align / BITS_PER_UNIT - 1));
523   val.lattice_val = double_int_minus_one_p (val.mask) ? VARYING : CONSTANT;
524   if (val.lattice_val == CONSTANT)
525     val.value
526       = double_int_to_tree (type, uhwi_to_double_int (bitpos / BITS_PER_UNIT));
527   else
528     val.value = NULL_TREE;
529 
530   return val;
531 }
532 
533 /* Return the value for the tree operand EXPR.  If FOR_BITS_P is true
534    return constant bits extracted from alignment information for
535    invariant addresses.  */
536 
537 static prop_value_t
538 get_value_for_expr (tree expr, bool for_bits_p)
539 {
540   prop_value_t val;
541 
542   if (TREE_CODE (expr) == SSA_NAME)
543     {
544       val = *get_value (expr);
545       if (for_bits_p
546 	  && val.lattice_val == CONSTANT
547 	  && TREE_CODE (val.value) == ADDR_EXPR)
548 	val = get_value_from_alignment (val.value);
549     }
550   else if (is_gimple_min_invariant (expr)
551 	   && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
552     {
553       val.lattice_val = CONSTANT;
554       val.value = expr;
555       val.mask = double_int_zero;
556       canonicalize_float_value (&val);
557     }
558   else if (TREE_CODE (expr) == ADDR_EXPR)
559     val = get_value_from_alignment (expr);
560   else
561     {
562       val.lattice_val = VARYING;
563       val.mask = double_int_minus_one;
564       val.value = NULL_TREE;
565     }
566   return val;
567 }
568 
569 /* Return the likely CCP lattice value for STMT.
570 
571    If STMT has no operands, then return CONSTANT.
572 
573    Else if undefinedness of operands of STMT cause its value to be
574    undefined, then return UNDEFINED.
575 
576    Else if any operands of STMT are constants, then return CONSTANT.
577 
578    Else return VARYING.  */
579 
580 static ccp_lattice_t
581 likely_value (gimple stmt)
582 {
583   bool has_constant_operand, has_undefined_operand, all_undefined_operands;
584   tree use;
585   ssa_op_iter iter;
586   unsigned i;
587 
588   enum gimple_code code = gimple_code (stmt);
589 
590   /* This function appears to be called only for assignments, calls,
591      conditionals, and switches, due to the logic in visit_stmt.  */
592   gcc_assert (code == GIMPLE_ASSIGN
593               || code == GIMPLE_CALL
594               || code == GIMPLE_COND
595               || code == GIMPLE_SWITCH);
596 
597   /* If the statement has volatile operands, it won't fold to a
598      constant value.  */
599   if (gimple_has_volatile_ops (stmt))
600     return VARYING;
601 
602   /* Arrive here for more complex cases.  */
603   has_constant_operand = false;
604   has_undefined_operand = false;
605   all_undefined_operands = true;
606   FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
607     {
608       prop_value_t *val = get_value (use);
609 
610       if (val->lattice_val == UNDEFINED)
611 	has_undefined_operand = true;
612       else
613 	all_undefined_operands = false;
614 
615       if (val->lattice_val == CONSTANT)
616 	has_constant_operand = true;
617     }
618 
619   /* There may be constants in regular rhs operands.  For calls we
620      have to ignore lhs, fndecl and static chain, otherwise only
621      the lhs.  */
622   for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
623        i < gimple_num_ops (stmt); ++i)
624     {
625       tree op = gimple_op (stmt, i);
626       if (!op || TREE_CODE (op) == SSA_NAME)
627 	continue;
628       if (is_gimple_min_invariant (op))
629 	has_constant_operand = true;
630     }
631 
632   if (has_constant_operand)
633     all_undefined_operands = false;
634 
635   /* If the operation combines operands like COMPLEX_EXPR make sure to
636      not mark the result UNDEFINED if only one part of the result is
637      undefined.  */
638   if (has_undefined_operand && all_undefined_operands)
639     return UNDEFINED;
640   else if (code == GIMPLE_ASSIGN && has_undefined_operand)
641     {
642       switch (gimple_assign_rhs_code (stmt))
643 	{
644 	/* Unary operators are handled with all_undefined_operands.  */
645 	case PLUS_EXPR:
646 	case MINUS_EXPR:
647 	case POINTER_PLUS_EXPR:
648 	  /* Not MIN_EXPR, MAX_EXPR.  One VARYING operand may be selected.
649 	     Not bitwise operators, one VARYING operand may specify the
650 	     result completely.  Not logical operators for the same reason.
651 	     Not COMPLEX_EXPR as one VARYING operand makes the result partly
652 	     not UNDEFINED.  Not *DIV_EXPR, comparisons and shifts because
653 	     the undefined operand may be promoted.  */
654 	  return UNDEFINED;
655 
656 	case ADDR_EXPR:
657 	  /* If any part of an address is UNDEFINED, like the index
658 	     of an ARRAY_EXPR, then treat the result as UNDEFINED.  */
659 	  return UNDEFINED;
660 
661 	default:
662 	  ;
663 	}
664     }
665   /* If there was an UNDEFINED operand but the result may be not UNDEFINED
666      fall back to CONSTANT.  During iteration UNDEFINED may still drop
667      to CONSTANT.  */
668   if (has_undefined_operand)
669     return CONSTANT;
670 
671   /* We do not consider virtual operands here -- load from read-only
672      memory may have only VARYING virtual operands, but still be
673      constant.  */
674   if (has_constant_operand
675       || gimple_references_memory_p (stmt))
676     return CONSTANT;
677 
678   return VARYING;
679 }
680 
681 /* Returns true if STMT cannot be constant.  */
682 
683 static bool
684 surely_varying_stmt_p (gimple stmt)
685 {
686   /* If the statement has operands that we cannot handle, it cannot be
687      constant.  */
688   if (gimple_has_volatile_ops (stmt))
689     return true;
690 
691   /* If it is a call and does not return a value or is not a
692      builtin and not an indirect call, it is varying.  */
693   if (is_gimple_call (stmt))
694     {
695       tree fndecl;
696       if (!gimple_call_lhs (stmt)
697 	  || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
698 	      && !DECL_BUILT_IN (fndecl)))
699 	return true;
700     }
701 
702   /* Any other store operation is not interesting.  */
703   else if (gimple_vdef (stmt))
704     return true;
705 
706   /* Anything other than assignments and conditional jumps are not
707      interesting for CCP.  */
708   if (gimple_code (stmt) != GIMPLE_ASSIGN
709       && gimple_code (stmt) != GIMPLE_COND
710       && gimple_code (stmt) != GIMPLE_SWITCH
711       && gimple_code (stmt) != GIMPLE_CALL)
712     return true;
713 
714   return false;
715 }
716 
717 /* Initialize local data structures for CCP.  */
718 
719 static void
720 ccp_initialize (void)
721 {
722   basic_block bb;
723 
724   const_val = XCNEWVEC (prop_value_t, num_ssa_names);
725 
726   /* Initialize simulation flags for PHI nodes and statements.  */
727   FOR_EACH_BB (bb)
728     {
729       gimple_stmt_iterator i;
730 
731       for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
732         {
733 	  gimple stmt = gsi_stmt (i);
734 	  bool is_varying;
735 
736 	  /* If the statement is a control insn, then we do not
737 	     want to avoid simulating the statement once.  Failure
738 	     to do so means that those edges will never get added.  */
739 	  if (stmt_ends_bb_p (stmt))
740 	    is_varying = false;
741 	  else
742 	    is_varying = surely_varying_stmt_p (stmt);
743 
744 	  if (is_varying)
745 	    {
746 	      tree def;
747 	      ssa_op_iter iter;
748 
749 	      /* If the statement will not produce a constant, mark
750 		 all its outputs VARYING.  */
751 	      FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
752 		set_value_varying (def);
753 	    }
754           prop_set_simulate_again (stmt, !is_varying);
755 	}
756     }
757 
758   /* Now process PHI nodes.  We never clear the simulate_again flag on
759      phi nodes, since we do not know which edges are executable yet,
760      except for phi nodes for virtual operands when we do not do store ccp.  */
761   FOR_EACH_BB (bb)
762     {
763       gimple_stmt_iterator i;
764 
765       for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
766         {
767           gimple phi = gsi_stmt (i);
768 
769 	  if (!is_gimple_reg (gimple_phi_result (phi)))
770             prop_set_simulate_again (phi, false);
771 	  else
772             prop_set_simulate_again (phi, true);
773 	}
774     }
775 }
776 
777 /* Debug count support. Reset the values of ssa names
778    VARYING when the total number ssa names analyzed is
779    beyond the debug count specified.  */
780 
781 static void
782 do_dbg_cnt (void)
783 {
784   unsigned i;
785   for (i = 0; i < num_ssa_names; i++)
786     {
787       if (!dbg_cnt (ccp))
788         {
789           const_val[i].lattice_val = VARYING;
790 	  const_val[i].mask = double_int_minus_one;
791           const_val[i].value = NULL_TREE;
792         }
793     }
794 }
795 
796 
797 /* Do final substitution of propagated values, cleanup the flowgraph and
798    free allocated storage.
799 
800    Return TRUE when something was optimized.  */
801 
802 static bool
803 ccp_finalize (void)
804 {
805   bool something_changed;
806   unsigned i;
807 
808   do_dbg_cnt ();
809 
810   /* Derive alignment and misalignment information from partially
811      constant pointers in the lattice.  */
812   for (i = 1; i < num_ssa_names; ++i)
813     {
814       tree name = ssa_name (i);
815       prop_value_t *val;
816       struct ptr_info_def *pi;
817       unsigned int tem, align;
818 
819       if (!name
820 	  || !POINTER_TYPE_P (TREE_TYPE (name)))
821 	continue;
822 
823       val = get_value (name);
824       if (val->lattice_val != CONSTANT
825 	  || TREE_CODE (val->value) != INTEGER_CST)
826 	continue;
827 
828       /* Trailing constant bits specify the alignment, trailing value
829 	 bits the misalignment.  */
830       tem = val->mask.low;
831       align = (tem & -tem);
832       if (align == 1)
833 	continue;
834 
835       pi = get_ptr_info (name);
836       pi->align = align;
837       pi->misalign = TREE_INT_CST_LOW (val->value) & (align - 1);
838     }
839 
840   /* Perform substitutions based on the known constant values.  */
841   something_changed = substitute_and_fold (get_constant_value,
842 					   ccp_fold_stmt, true);
843 
844   free (const_val);
845   const_val = NULL;
846   return something_changed;;
847 }
848 
849 
850 /* Compute the meet operator between *VAL1 and *VAL2.  Store the result
851    in VAL1.
852 
853    		any  M UNDEFINED   = any
854 		any  M VARYING     = VARYING
855 		Ci   M Cj	   = Ci		if (i == j)
856 		Ci   M Cj	   = VARYING	if (i != j)
857    */
858 
859 static void
860 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
861 {
862   if (val1->lattice_val == UNDEFINED)
863     {
864       /* UNDEFINED M any = any   */
865       *val1 = *val2;
866     }
867   else if (val2->lattice_val == UNDEFINED)
868     {
869       /* any M UNDEFINED = any
870          Nothing to do.  VAL1 already contains the value we want.  */
871       ;
872     }
873   else if (val1->lattice_val == VARYING
874            || val2->lattice_val == VARYING)
875     {
876       /* any M VARYING = VARYING.  */
877       val1->lattice_val = VARYING;
878       val1->mask = double_int_minus_one;
879       val1->value = NULL_TREE;
880     }
881   else if (val1->lattice_val == CONSTANT
882 	   && val2->lattice_val == CONSTANT
883 	   && TREE_CODE (val1->value) == INTEGER_CST
884 	   && TREE_CODE (val2->value) == INTEGER_CST)
885     {
886       /* Ci M Cj = Ci		if (i == j)
887 	 Ci M Cj = VARYING	if (i != j)
888 
889          For INTEGER_CSTs mask unequal bits.  If no equal bits remain,
890 	 drop to varying.  */
891       val1->mask
892 	  = double_int_ior (double_int_ior (val1->mask,
893 					    val2->mask),
894 			    double_int_xor (tree_to_double_int (val1->value),
895 					    tree_to_double_int (val2->value)));
896       if (double_int_minus_one_p (val1->mask))
897 	{
898 	  val1->lattice_val = VARYING;
899 	  val1->value = NULL_TREE;
900 	}
901     }
902   else if (val1->lattice_val == CONSTANT
903 	   && val2->lattice_val == CONSTANT
904 	   && simple_cst_equal (val1->value, val2->value) == 1)
905     {
906       /* Ci M Cj = Ci		if (i == j)
907 	 Ci M Cj = VARYING	if (i != j)
908 
909          VAL1 already contains the value we want for equivalent values.  */
910     }
911   else if (val1->lattice_val == CONSTANT
912 	   && val2->lattice_val == CONSTANT
913 	   && (TREE_CODE (val1->value) == ADDR_EXPR
914 	       || TREE_CODE (val2->value) == ADDR_EXPR))
915     {
916       /* When not equal addresses are involved try meeting for
917 	 alignment.  */
918       prop_value_t tem = *val2;
919       if (TREE_CODE (val1->value) == ADDR_EXPR)
920 	*val1 = get_value_for_expr (val1->value, true);
921       if (TREE_CODE (val2->value) == ADDR_EXPR)
922 	tem = get_value_for_expr (val2->value, true);
923       ccp_lattice_meet (val1, &tem);
924     }
925   else
926     {
927       /* Any other combination is VARYING.  */
928       val1->lattice_val = VARYING;
929       val1->mask = double_int_minus_one;
930       val1->value = NULL_TREE;
931     }
932 }
933 
934 
935 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
936    lattice values to determine PHI_NODE's lattice value.  The value of a
937    PHI node is determined calling ccp_lattice_meet with all the arguments
938    of the PHI node that are incoming via executable edges.  */
939 
940 static enum ssa_prop_result
941 ccp_visit_phi_node (gimple phi)
942 {
943   unsigned i;
944   prop_value_t *old_val, new_val;
945 
946   if (dump_file && (dump_flags & TDF_DETAILS))
947     {
948       fprintf (dump_file, "\nVisiting PHI node: ");
949       print_gimple_stmt (dump_file, phi, 0, dump_flags);
950     }
951 
952   old_val = get_value (gimple_phi_result (phi));
953   switch (old_val->lattice_val)
954     {
955     case VARYING:
956       return SSA_PROP_VARYING;
957 
958     case CONSTANT:
959       new_val = *old_val;
960       break;
961 
962     case UNDEFINED:
963       new_val.lattice_val = UNDEFINED;
964       new_val.value = NULL_TREE;
965       break;
966 
967     default:
968       gcc_unreachable ();
969     }
970 
971   for (i = 0; i < gimple_phi_num_args (phi); i++)
972     {
973       /* Compute the meet operator over all the PHI arguments flowing
974 	 through executable edges.  */
975       edge e = gimple_phi_arg_edge (phi, i);
976 
977       if (dump_file && (dump_flags & TDF_DETAILS))
978 	{
979 	  fprintf (dump_file,
980 	      "\n    Argument #%d (%d -> %d %sexecutable)\n",
981 	      i, e->src->index, e->dest->index,
982 	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
983 	}
984 
985       /* If the incoming edge is executable, Compute the meet operator for
986 	 the existing value of the PHI node and the current PHI argument.  */
987       if (e->flags & EDGE_EXECUTABLE)
988 	{
989 	  tree arg = gimple_phi_arg (phi, i)->def;
990 	  prop_value_t arg_val = get_value_for_expr (arg, false);
991 
992 	  ccp_lattice_meet (&new_val, &arg_val);
993 
994 	  if (dump_file && (dump_flags & TDF_DETAILS))
995 	    {
996 	      fprintf (dump_file, "\t");
997 	      print_generic_expr (dump_file, arg, dump_flags);
998 	      dump_lattice_value (dump_file, "\tValue: ", arg_val);
999 	      fprintf (dump_file, "\n");
1000 	    }
1001 
1002 	  if (new_val.lattice_val == VARYING)
1003 	    break;
1004 	}
1005     }
1006 
1007   if (dump_file && (dump_flags & TDF_DETAILS))
1008     {
1009       dump_lattice_value (dump_file, "\n    PHI node value: ", new_val);
1010       fprintf (dump_file, "\n\n");
1011     }
1012 
1013   /* Make the transition to the new value.  */
1014   if (set_lattice_value (gimple_phi_result (phi), new_val))
1015     {
1016       if (new_val.lattice_val == VARYING)
1017 	return SSA_PROP_VARYING;
1018       else
1019 	return SSA_PROP_INTERESTING;
1020     }
1021   else
1022     return SSA_PROP_NOT_INTERESTING;
1023 }
1024 
1025 /* Return the constant value for OP or OP otherwise.  */
1026 
1027 static tree
1028 valueize_op (tree op)
1029 {
1030   if (TREE_CODE (op) == SSA_NAME)
1031     {
1032       tree tem = get_constant_value (op);
1033       if (tem)
1034 	return tem;
1035     }
1036   return op;
1037 }
1038 
1039 /* CCP specific front-end to the non-destructive constant folding
1040    routines.
1041 
1042    Attempt to simplify the RHS of STMT knowing that one or more
1043    operands are constants.
1044 
1045    If simplification is possible, return the simplified RHS,
1046    otherwise return the original RHS or NULL_TREE.  */
1047 
1048 static tree
1049 ccp_fold (gimple stmt)
1050 {
1051   location_t loc = gimple_location (stmt);
1052   switch (gimple_code (stmt))
1053     {
1054     case GIMPLE_COND:
1055       {
1056         /* Handle comparison operators that can appear in GIMPLE form.  */
1057         tree op0 = valueize_op (gimple_cond_lhs (stmt));
1058         tree op1 = valueize_op (gimple_cond_rhs (stmt));
1059         enum tree_code code = gimple_cond_code (stmt);
1060         return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1061       }
1062 
1063     case GIMPLE_SWITCH:
1064       {
1065 	/* Return the constant switch index.  */
1066         return valueize_op (gimple_switch_index (stmt));
1067       }
1068 
1069     case GIMPLE_ASSIGN:
1070     case GIMPLE_CALL:
1071       return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1072 
1073     default:
1074       gcc_unreachable ();
1075     }
1076 }
1077 
1078 /* Apply the operation CODE in type TYPE to the value, mask pair
1079    RVAL and RMASK representing a value of type RTYPE and set
1080    the value, mask pair *VAL and *MASK to the result.  */
1081 
1082 static void
1083 bit_value_unop_1 (enum tree_code code, tree type,
1084 		  double_int *val, double_int *mask,
1085 		  tree rtype, double_int rval, double_int rmask)
1086 {
1087   switch (code)
1088     {
1089     case BIT_NOT_EXPR:
1090       *mask = rmask;
1091       *val = double_int_not (rval);
1092       break;
1093 
1094     case NEGATE_EXPR:
1095       {
1096 	double_int temv, temm;
1097 	/* Return ~rval + 1.  */
1098 	bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1099 	bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1100 			 type, temv, temm,
1101 			 type, double_int_one, double_int_zero);
1102 	break;
1103       }
1104 
1105     CASE_CONVERT:
1106       {
1107 	bool uns;
1108 
1109 	/* First extend mask and value according to the original type.  */
1110 	uns = (TREE_CODE (rtype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (rtype)
1111 	       ? 0 : TYPE_UNSIGNED (rtype));
1112 	*mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
1113 	*val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
1114 
1115 	/* Then extend mask and value according to the target type.  */
1116 	uns = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1117 	       ? 0 : TYPE_UNSIGNED (type));
1118 	*mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1119 	*val = double_int_ext (*val, TYPE_PRECISION (type), uns);
1120 	break;
1121       }
1122 
1123     default:
1124       *mask = double_int_minus_one;
1125       break;
1126     }
1127 }
1128 
1129 /* Apply the operation CODE in type TYPE to the value, mask pairs
1130    R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1131    and R2TYPE and set the value, mask pair *VAL and *MASK to the result.  */
1132 
1133 static void
1134 bit_value_binop_1 (enum tree_code code, tree type,
1135 		   double_int *val, double_int *mask,
1136 		   tree r1type, double_int r1val, double_int r1mask,
1137 		   tree r2type, double_int r2val, double_int r2mask)
1138 {
1139   bool uns = (TREE_CODE (type) == INTEGER_TYPE
1140 	      && TYPE_IS_SIZETYPE (type) ? 0 : TYPE_UNSIGNED (type));
1141   /* Assume we'll get a constant result.  Use an initial varying value,
1142      we fall back to varying in the end if necessary.  */
1143   *mask = double_int_minus_one;
1144   switch (code)
1145     {
1146     case BIT_AND_EXPR:
1147       /* The mask is constant where there is a known not
1148 	 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1149       *mask = double_int_and (double_int_ior (r1mask, r2mask),
1150 			      double_int_and (double_int_ior (r1val, r1mask),
1151 					      double_int_ior (r2val, r2mask)));
1152       *val = double_int_and (r1val, r2val);
1153       break;
1154 
1155     case BIT_IOR_EXPR:
1156       /* The mask is constant where there is a known
1157 	 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)).  */
1158       *mask = double_int_and_not
1159 	  	(double_int_ior (r1mask, r2mask),
1160 		 double_int_ior (double_int_and_not (r1val, r1mask),
1161 				 double_int_and_not (r2val, r2mask)));
1162       *val = double_int_ior (r1val, r2val);
1163       break;
1164 
1165     case BIT_XOR_EXPR:
1166       /* m1 | m2  */
1167       *mask = double_int_ior (r1mask, r2mask);
1168       *val = double_int_xor (r1val, r2val);
1169       break;
1170 
1171     case LROTATE_EXPR:
1172     case RROTATE_EXPR:
1173       if (double_int_zero_p (r2mask))
1174 	{
1175 	  HOST_WIDE_INT shift = r2val.low;
1176 	  if (code == RROTATE_EXPR)
1177 	    shift = -shift;
1178 	  *mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
1179 	  *val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
1180 	}
1181       break;
1182 
1183     case LSHIFT_EXPR:
1184     case RSHIFT_EXPR:
1185       /* ???  We can handle partially known shift counts if we know
1186 	 its sign.  That way we can tell that (x << (y | 8)) & 255
1187 	 is zero.  */
1188       if (double_int_zero_p (r2mask))
1189 	{
1190 	  HOST_WIDE_INT shift = r2val.low;
1191 	  if (code == RSHIFT_EXPR)
1192 	    shift = -shift;
1193 	  /* We need to know if we are doing a left or a right shift
1194 	     to properly shift in zeros for left shift and unsigned
1195 	     right shifts and the sign bit for signed right shifts.
1196 	     For signed right shifts we shift in varying in case
1197 	     the sign bit was varying.  */
1198 	  if (shift > 0)
1199 	    {
1200 	      *mask = double_int_lshift (r1mask, shift,
1201 					 TYPE_PRECISION (type), false);
1202 	      *val = double_int_lshift (r1val, shift,
1203 					TYPE_PRECISION (type), false);
1204 	    }
1205 	  else if (shift < 0)
1206 	    {
1207 	      /* ???  We can have sizetype related inconsistencies in
1208 		 the IL.  */
1209 	      if ((TREE_CODE (r1type) == INTEGER_TYPE
1210 		   && (TYPE_IS_SIZETYPE (r1type)
1211 		       ? 0 : TYPE_UNSIGNED (r1type))) != uns)
1212 		break;
1213 
1214 	      shift = -shift;
1215 	      *mask = double_int_rshift (r1mask, shift,
1216 					 TYPE_PRECISION (type), !uns);
1217 	      *val = double_int_rshift (r1val, shift,
1218 					TYPE_PRECISION (type), !uns);
1219 	    }
1220 	  else
1221 	    {
1222 	      *mask = r1mask;
1223 	      *val = r1val;
1224 	    }
1225 	}
1226       break;
1227 
1228     case PLUS_EXPR:
1229     case POINTER_PLUS_EXPR:
1230       {
1231 	double_int lo, hi;
1232 	/* Do the addition with unknown bits set to zero, to give carry-ins of
1233 	   zero wherever possible.  */
1234 	lo = double_int_add (double_int_and_not (r1val, r1mask),
1235 			     double_int_and_not (r2val, r2mask));
1236 	lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
1237 	/* Do the addition with unknown bits set to one, to give carry-ins of
1238 	   one wherever possible.  */
1239 	hi = double_int_add (double_int_ior (r1val, r1mask),
1240 			     double_int_ior (r2val, r2mask));
1241 	hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
1242 	/* Each bit in the result is known if (a) the corresponding bits in
1243 	   both inputs are known, and (b) the carry-in to that bit position
1244 	   is known.  We can check condition (b) by seeing if we got the same
1245 	   result with minimised carries as with maximised carries.  */
1246 	*mask = double_int_ior (double_int_ior (r1mask, r2mask),
1247 				double_int_xor (lo, hi));
1248 	*mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1249 	/* It shouldn't matter whether we choose lo or hi here.  */
1250 	*val = lo;
1251 	break;
1252       }
1253 
1254     case MINUS_EXPR:
1255       {
1256 	double_int temv, temm;
1257 	bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1258 			  r2type, r2val, r2mask);
1259 	bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1260 			   r1type, r1val, r1mask,
1261 			   r2type, temv, temm);
1262 	break;
1263       }
1264 
1265     case MULT_EXPR:
1266       {
1267 	/* Just track trailing zeros in both operands and transfer
1268 	   them to the other.  */
1269 	int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
1270 	int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
1271 	if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1272 	  {
1273 	    *mask = double_int_zero;
1274 	    *val = double_int_zero;
1275 	  }
1276 	else if (r1tz + r2tz > 0)
1277 	  {
1278 	    *mask = double_int_not (double_int_mask (r1tz + r2tz));
1279 	    *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1280 	    *val = double_int_zero;
1281 	  }
1282 	break;
1283       }
1284 
1285     case EQ_EXPR:
1286     case NE_EXPR:
1287       {
1288 	double_int m = double_int_ior (r1mask, r2mask);
1289 	if (!double_int_equal_p (double_int_and_not (r1val, m),
1290 				 double_int_and_not (r2val, m)))
1291 	  {
1292 	    *mask = double_int_zero;
1293 	    *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1294 	  }
1295 	else
1296 	  {
1297 	    /* We know the result of a comparison is always one or zero.  */
1298 	    *mask = double_int_one;
1299 	    *val = double_int_zero;
1300 	  }
1301 	break;
1302       }
1303 
1304     case GE_EXPR:
1305     case GT_EXPR:
1306       {
1307 	double_int tem = r1val;
1308 	r1val = r2val;
1309 	r2val = tem;
1310 	tem = r1mask;
1311 	r1mask = r2mask;
1312 	r2mask = tem;
1313 	code = swap_tree_comparison (code);
1314       }
1315       /* Fallthru.  */
1316     case LT_EXPR:
1317     case LE_EXPR:
1318       {
1319 	int minmax, maxmin;
1320 	/* If the most significant bits are not known we know nothing.  */
1321 	if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
1322 	  break;
1323 
1324 	/* For comparisons the signedness is in the comparison operands.  */
1325 	uns = (TREE_CODE (r1type) == INTEGER_TYPE
1326 	       && TYPE_IS_SIZETYPE (r1type) ? 0 : TYPE_UNSIGNED (r1type));
1327 	/* ???  We can have sizetype related inconsistencies in the IL.  */
1328 	if ((TREE_CODE (r2type) == INTEGER_TYPE
1329 	     && TYPE_IS_SIZETYPE (r2type) ? 0 : TYPE_UNSIGNED (r2type)) != uns)
1330 	  break;
1331 
1332 	/* If we know the most significant bits we know the values
1333 	   value ranges by means of treating varying bits as zero
1334 	   or one.  Do a cross comparison of the max/min pairs.  */
1335 	maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
1336 				 double_int_and_not (r2val, r2mask), uns);
1337 	minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
1338 				 double_int_ior (r2val, r2mask), uns);
1339 	if (maxmin < 0)  /* r1 is less than r2.  */
1340 	  {
1341 	    *mask = double_int_zero;
1342 	    *val = double_int_one;
1343 	  }
1344 	else if (minmax > 0)  /* r1 is not less or equal to r2.  */
1345 	  {
1346 	    *mask = double_int_zero;
1347 	    *val = double_int_zero;
1348 	  }
1349 	else if (maxmin == minmax)  /* r1 and r2 are equal.  */
1350 	  {
1351 	    /* This probably should never happen as we'd have
1352 	       folded the thing during fully constant value folding.  */
1353 	    *mask = double_int_zero;
1354 	    *val = (code == LE_EXPR ? double_int_one :  double_int_zero);
1355 	  }
1356 	else
1357 	  {
1358 	    /* We know the result of a comparison is always one or zero.  */
1359 	    *mask = double_int_one;
1360 	    *val = double_int_zero;
1361 	  }
1362 	break;
1363       }
1364 
1365     default:;
1366     }
1367 }
1368 
1369 /* Return the propagation value when applying the operation CODE to
1370    the value RHS yielding type TYPE.  */
1371 
1372 static prop_value_t
1373 bit_value_unop (enum tree_code code, tree type, tree rhs)
1374 {
1375   prop_value_t rval = get_value_for_expr (rhs, true);
1376   double_int value, mask;
1377   prop_value_t val;
1378 
1379   if (rval.lattice_val == UNDEFINED)
1380     return rval;
1381 
1382   gcc_assert ((rval.lattice_val == CONSTANT
1383 	       && TREE_CODE (rval.value) == INTEGER_CST)
1384 	      || double_int_minus_one_p (rval.mask));
1385   bit_value_unop_1 (code, type, &value, &mask,
1386 		    TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1387   if (!double_int_minus_one_p (mask))
1388     {
1389       val.lattice_val = CONSTANT;
1390       val.mask = mask;
1391       /* ???  Delay building trees here.  */
1392       val.value = double_int_to_tree (type, value);
1393     }
1394   else
1395     {
1396       val.lattice_val = VARYING;
1397       val.value = NULL_TREE;
1398       val.mask = double_int_minus_one;
1399     }
1400   return val;
1401 }
1402 
1403 /* Return the propagation value when applying the operation CODE to
1404    the values RHS1 and RHS2 yielding type TYPE.  */
1405 
1406 static prop_value_t
1407 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1408 {
1409   prop_value_t r1val = get_value_for_expr (rhs1, true);
1410   prop_value_t r2val = get_value_for_expr (rhs2, true);
1411   double_int value, mask;
1412   prop_value_t val;
1413 
1414   if (r1val.lattice_val == UNDEFINED
1415       || r2val.lattice_val == UNDEFINED)
1416     {
1417       val.lattice_val = VARYING;
1418       val.value = NULL_TREE;
1419       val.mask = double_int_minus_one;
1420       return val;
1421     }
1422 
1423   gcc_assert ((r1val.lattice_val == CONSTANT
1424 	       && TREE_CODE (r1val.value) == INTEGER_CST)
1425 	      || double_int_minus_one_p (r1val.mask));
1426   gcc_assert ((r2val.lattice_val == CONSTANT
1427 	       && TREE_CODE (r2val.value) == INTEGER_CST)
1428 	      || double_int_minus_one_p (r2val.mask));
1429   bit_value_binop_1 (code, type, &value, &mask,
1430 		     TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1431 		     TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1432   if (!double_int_minus_one_p (mask))
1433     {
1434       val.lattice_val = CONSTANT;
1435       val.mask = mask;
1436       /* ???  Delay building trees here.  */
1437       val.value = double_int_to_tree (type, value);
1438     }
1439   else
1440     {
1441       val.lattice_val = VARYING;
1442       val.value = NULL_TREE;
1443       val.mask = double_int_minus_one;
1444     }
1445   return val;
1446 }
1447 
1448 /* Return the propagation value when applying __builtin_assume_aligned to
1449    its arguments.  */
1450 
1451 static prop_value_t
1452 bit_value_assume_aligned (gimple stmt)
1453 {
1454   tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1455   tree type = TREE_TYPE (ptr);
1456   unsigned HOST_WIDE_INT aligni, misaligni = 0;
1457   prop_value_t ptrval = get_value_for_expr (ptr, true);
1458   prop_value_t alignval;
1459   double_int value, mask;
1460   prop_value_t val;
1461   if (ptrval.lattice_val == UNDEFINED)
1462     return ptrval;
1463   gcc_assert ((ptrval.lattice_val == CONSTANT
1464 	       && TREE_CODE (ptrval.value) == INTEGER_CST)
1465 	      || double_int_minus_one_p (ptrval.mask));
1466   align = gimple_call_arg (stmt, 1);
1467   if (!host_integerp (align, 1))
1468     return ptrval;
1469   aligni = tree_low_cst (align, 1);
1470   if (aligni <= 1
1471       || (aligni & (aligni - 1)) != 0)
1472     return ptrval;
1473   if (gimple_call_num_args (stmt) > 2)
1474     {
1475       misalign = gimple_call_arg (stmt, 2);
1476       if (!host_integerp (misalign, 1))
1477 	return ptrval;
1478       misaligni = tree_low_cst (misalign, 1);
1479       if (misaligni >= aligni)
1480 	return ptrval;
1481     }
1482   align = build_int_cst_type (type, -aligni);
1483   alignval = get_value_for_expr (align, true);
1484   bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1485 		     type, value_to_double_int (ptrval), ptrval.mask,
1486 		     type, value_to_double_int (alignval), alignval.mask);
1487   if (!double_int_minus_one_p (mask))
1488     {
1489       val.lattice_val = CONSTANT;
1490       val.mask = mask;
1491       gcc_assert ((mask.low & (aligni - 1)) == 0);
1492       gcc_assert ((value.low & (aligni - 1)) == 0);
1493       value.low |= misaligni;
1494       /* ???  Delay building trees here.  */
1495       val.value = double_int_to_tree (type, value);
1496     }
1497   else
1498     {
1499       val.lattice_val = VARYING;
1500       val.value = NULL_TREE;
1501       val.mask = double_int_minus_one;
1502     }
1503   return val;
1504 }
1505 
1506 /* Evaluate statement STMT.
1507    Valid only for assignments, calls, conditionals, and switches. */
1508 
1509 static prop_value_t
1510 evaluate_stmt (gimple stmt)
1511 {
1512   prop_value_t val;
1513   tree simplified = NULL_TREE;
1514   ccp_lattice_t likelyvalue = likely_value (stmt);
1515   bool is_constant = false;
1516   unsigned int align;
1517 
1518   if (dump_file && (dump_flags & TDF_DETAILS))
1519     {
1520       fprintf (dump_file, "which is likely ");
1521       switch (likelyvalue)
1522 	{
1523 	case CONSTANT:
1524 	  fprintf (dump_file, "CONSTANT");
1525 	  break;
1526 	case UNDEFINED:
1527 	  fprintf (dump_file, "UNDEFINED");
1528 	  break;
1529 	case VARYING:
1530 	  fprintf (dump_file, "VARYING");
1531 	  break;
1532 	default:;
1533 	}
1534       fprintf (dump_file, "\n");
1535     }
1536 
1537   /* If the statement is likely to have a CONSTANT result, then try
1538      to fold the statement to determine the constant value.  */
1539   /* FIXME.  This is the only place that we call ccp_fold.
1540      Since likely_value never returns CONSTANT for calls, we will
1541      not attempt to fold them, including builtins that may profit.  */
1542   if (likelyvalue == CONSTANT)
1543     {
1544       fold_defer_overflow_warnings ();
1545       simplified = ccp_fold (stmt);
1546       is_constant = simplified && is_gimple_min_invariant (simplified);
1547       fold_undefer_overflow_warnings (is_constant, stmt, 0);
1548       if (is_constant)
1549 	{
1550 	  /* The statement produced a constant value.  */
1551 	  val.lattice_val = CONSTANT;
1552 	  val.value = simplified;
1553 	  val.mask = double_int_zero;
1554 	}
1555     }
1556   /* If the statement is likely to have a VARYING result, then do not
1557      bother folding the statement.  */
1558   else if (likelyvalue == VARYING)
1559     {
1560       enum gimple_code code = gimple_code (stmt);
1561       if (code == GIMPLE_ASSIGN)
1562         {
1563           enum tree_code subcode = gimple_assign_rhs_code (stmt);
1564 
1565           /* Other cases cannot satisfy is_gimple_min_invariant
1566              without folding.  */
1567           if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1568             simplified = gimple_assign_rhs1 (stmt);
1569         }
1570       else if (code == GIMPLE_SWITCH)
1571         simplified = gimple_switch_index (stmt);
1572       else
1573 	/* These cannot satisfy is_gimple_min_invariant without folding.  */
1574 	gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1575       is_constant = simplified && is_gimple_min_invariant (simplified);
1576       if (is_constant)
1577 	{
1578 	  /* The statement produced a constant value.  */
1579 	  val.lattice_val = CONSTANT;
1580 	  val.value = simplified;
1581 	  val.mask = double_int_zero;
1582 	}
1583     }
1584 
1585   /* Resort to simplification for bitwise tracking.  */
1586   if (flag_tree_bit_ccp
1587       && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1588       && !is_constant)
1589     {
1590       enum gimple_code code = gimple_code (stmt);
1591       val.lattice_val = VARYING;
1592       val.value = NULL_TREE;
1593       val.mask = double_int_minus_one;
1594       if (code == GIMPLE_ASSIGN)
1595 	{
1596 	  enum tree_code subcode = gimple_assign_rhs_code (stmt);
1597 	  tree rhs1 = gimple_assign_rhs1 (stmt);
1598 	  switch (get_gimple_rhs_class (subcode))
1599 	    {
1600 	    case GIMPLE_SINGLE_RHS:
1601 	      if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1602 		  || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1603 		val = get_value_for_expr (rhs1, true);
1604 	      break;
1605 
1606 	    case GIMPLE_UNARY_RHS:
1607 	      if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1608 		   || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1609 		  && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1610 		      || POINTER_TYPE_P (gimple_expr_type (stmt))))
1611 		val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1612 	      break;
1613 
1614 	    case GIMPLE_BINARY_RHS:
1615 	      if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1616 		  || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1617 		{
1618 		  tree lhs = gimple_assign_lhs (stmt);
1619 		  tree rhs2 = gimple_assign_rhs2 (stmt);
1620 		  val = bit_value_binop (subcode,
1621 					 TREE_TYPE (lhs), rhs1, rhs2);
1622 		}
1623 	      break;
1624 
1625 	    default:;
1626 	    }
1627 	}
1628       else if (code == GIMPLE_COND)
1629 	{
1630 	  enum tree_code code = gimple_cond_code (stmt);
1631 	  tree rhs1 = gimple_cond_lhs (stmt);
1632 	  tree rhs2 = gimple_cond_rhs (stmt);
1633 	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1634 	      || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1635 	    val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1636 	}
1637       else if (gimple_call_builtin_class_p (stmt, BUILT_IN_NORMAL))
1638 	{
1639 	  tree fndecl = gimple_call_fndecl (stmt);
1640 	  switch (DECL_FUNCTION_CODE (fndecl))
1641 	    {
1642 	    case BUILT_IN_MALLOC:
1643 	    case BUILT_IN_REALLOC:
1644 	    case BUILT_IN_CALLOC:
1645 	    case BUILT_IN_STRDUP:
1646 	    case BUILT_IN_STRNDUP:
1647 	      val.lattice_val = CONSTANT;
1648 	      val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1649 	      val.mask = shwi_to_double_int
1650 		  	   (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1651 			      / BITS_PER_UNIT - 1));
1652 	      break;
1653 
1654 	    case BUILT_IN_ALLOCA:
1655 	    case BUILT_IN_ALLOCA_WITH_ALIGN:
1656 	      align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1657 		       ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1658 		       : BIGGEST_ALIGNMENT);
1659 	      val.lattice_val = CONSTANT;
1660 	      val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1661 	      val.mask = shwi_to_double_int
1662 		  	   (~(((HOST_WIDE_INT) align)
1663 			      / BITS_PER_UNIT - 1));
1664 	      break;
1665 
1666 	    /* These builtins return their first argument, unmodified.  */
1667 	    case BUILT_IN_MEMCPY:
1668 	    case BUILT_IN_MEMMOVE:
1669 	    case BUILT_IN_MEMSET:
1670 	    case BUILT_IN_STRCPY:
1671 	    case BUILT_IN_STRNCPY:
1672 	    case BUILT_IN_MEMCPY_CHK:
1673 	    case BUILT_IN_MEMMOVE_CHK:
1674 	    case BUILT_IN_MEMSET_CHK:
1675 	    case BUILT_IN_STRCPY_CHK:
1676 	    case BUILT_IN_STRNCPY_CHK:
1677 	      val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1678 	      break;
1679 
1680 	    case BUILT_IN_ASSUME_ALIGNED:
1681 	      val = bit_value_assume_aligned (stmt);
1682 	      break;
1683 
1684 	    default:;
1685 	    }
1686 	}
1687       is_constant = (val.lattice_val == CONSTANT);
1688     }
1689 
1690   if (!is_constant)
1691     {
1692       /* The statement produced a nonconstant value.  If the statement
1693 	 had UNDEFINED operands, then the result of the statement
1694 	 should be UNDEFINED.  Otherwise, the statement is VARYING.  */
1695       if (likelyvalue == UNDEFINED)
1696 	{
1697 	  val.lattice_val = likelyvalue;
1698 	  val.mask = double_int_zero;
1699 	}
1700       else
1701 	{
1702 	  val.lattice_val = VARYING;
1703 	  val.mask = double_int_minus_one;
1704 	}
1705 
1706       val.value = NULL_TREE;
1707     }
1708 
1709   return val;
1710 }
1711 
1712 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1713    each matching BUILT_IN_STACK_RESTORE.  Mark visited phis in VISITED.  */
1714 
1715 static void
1716 insert_clobber_before_stack_restore (tree saved_val, tree var, htab_t *visited)
1717 {
1718   gimple stmt, clobber_stmt;
1719   tree clobber;
1720   imm_use_iterator iter;
1721   gimple_stmt_iterator i;
1722   gimple *slot;
1723 
1724   FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1725     if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1726       {
1727 	clobber = build_constructor (TREE_TYPE (var), NULL);
1728 	TREE_THIS_VOLATILE (clobber) = 1;
1729 	clobber_stmt = gimple_build_assign (var, clobber);
1730 
1731 	i = gsi_for_stmt (stmt);
1732 	gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1733       }
1734     else if (gimple_code (stmt) == GIMPLE_PHI)
1735       {
1736 	if (*visited == NULL)
1737 	  *visited = htab_create (10, htab_hash_pointer, htab_eq_pointer, NULL);
1738 
1739 	slot = (gimple *)htab_find_slot (*visited, stmt, INSERT);
1740 	if (*slot != NULL)
1741 	  continue;
1742 
1743 	*slot = stmt;
1744 	insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1745 					     visited);
1746       }
1747     else
1748       gcc_assert (is_gimple_debug (stmt));
1749 }
1750 
1751 /* Advance the iterator to the previous non-debug gimple statement in the same
1752    or dominating basic block.  */
1753 
1754 static inline void
1755 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1756 {
1757   basic_block dom;
1758 
1759   gsi_prev_nondebug (i);
1760   while (gsi_end_p (*i))
1761     {
1762       dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1763       if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1764 	return;
1765 
1766       *i = gsi_last_bb (dom);
1767     }
1768 }
1769 
1770 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1771    a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1772 
1773    It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1774    previous pass (such as DOM) duplicated it along multiple paths to a BB.  In
1775    that case the function gives up without inserting the clobbers.  */
1776 
1777 static void
1778 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1779 {
1780   gimple stmt;
1781   tree saved_val;
1782   htab_t visited = NULL;
1783 
1784   for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1785     {
1786       stmt = gsi_stmt (i);
1787 
1788       if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1789 	continue;
1790 
1791       saved_val = gimple_call_lhs (stmt);
1792       if (saved_val == NULL_TREE)
1793 	continue;
1794 
1795       insert_clobber_before_stack_restore (saved_val, var, &visited);
1796       break;
1797     }
1798 
1799   if (visited != NULL)
1800     htab_delete (visited);
1801 }
1802 
1803 /* Detects a __builtin_alloca_with_align with constant size argument.  Declares
1804    fixed-size array and returns the address, if found, otherwise returns
1805    NULL_TREE.  */
1806 
1807 static tree
1808 fold_builtin_alloca_with_align (gimple stmt)
1809 {
1810   unsigned HOST_WIDE_INT size, threshold, n_elem;
1811   tree lhs, arg, block, var, elem_type, array_type;
1812 
1813   /* Get lhs.  */
1814   lhs = gimple_call_lhs (stmt);
1815   if (lhs == NULL_TREE)
1816     return NULL_TREE;
1817 
1818   /* Detect constant argument.  */
1819   arg = get_constant_value (gimple_call_arg (stmt, 0));
1820   if (arg == NULL_TREE
1821       || TREE_CODE (arg) != INTEGER_CST
1822       || !host_integerp (arg, 1))
1823     return NULL_TREE;
1824 
1825   size = TREE_INT_CST_LOW (arg);
1826 
1827   /* Heuristic: don't fold large allocas.  */
1828   threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1829   /* In case the alloca is located at function entry, it has the same lifetime
1830      as a declared array, so we allow a larger size.  */
1831   block = gimple_block (stmt);
1832   if (!(cfun->after_inlining
1833         && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1834     threshold /= 10;
1835   if (size > threshold)
1836     return NULL_TREE;
1837 
1838   /* Declare array.  */
1839   elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1840   n_elem = size * 8 / BITS_PER_UNIT;
1841   array_type = build_array_type_nelts (elem_type, n_elem);
1842   var = create_tmp_var (array_type, NULL);
1843   DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1844   {
1845     struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1846     if (pi != NULL && !pi->pt.anything)
1847       {
1848 	bool singleton_p;
1849 	unsigned uid;
1850 	singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1851 	gcc_assert (singleton_p);
1852 	SET_DECL_PT_UID (var, uid);
1853       }
1854   }
1855 
1856   /* Fold alloca to the address of the array.  */
1857   return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1858 }
1859 
1860 /* Fold the stmt at *GSI with CCP specific information that propagating
1861    and regular folding does not catch.  */
1862 
1863 static bool
1864 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1865 {
1866   gimple stmt = gsi_stmt (*gsi);
1867 
1868   switch (gimple_code (stmt))
1869     {
1870     case GIMPLE_COND:
1871       {
1872 	prop_value_t val;
1873 	/* Statement evaluation will handle type mismatches in constants
1874 	   more gracefully than the final propagation.  This allows us to
1875 	   fold more conditionals here.  */
1876 	val = evaluate_stmt (stmt);
1877 	if (val.lattice_val != CONSTANT
1878 	    || !double_int_zero_p (val.mask))
1879 	  return false;
1880 
1881 	if (dump_file)
1882 	  {
1883 	    fprintf (dump_file, "Folding predicate ");
1884 	    print_gimple_expr (dump_file, stmt, 0, 0);
1885 	    fprintf (dump_file, " to ");
1886 	    print_generic_expr (dump_file, val.value, 0);
1887 	    fprintf (dump_file, "\n");
1888 	  }
1889 
1890 	if (integer_zerop (val.value))
1891 	  gimple_cond_make_false (stmt);
1892 	else
1893 	  gimple_cond_make_true (stmt);
1894 
1895 	return true;
1896       }
1897 
1898     case GIMPLE_CALL:
1899       {
1900 	tree lhs = gimple_call_lhs (stmt);
1901 	int flags = gimple_call_flags (stmt);
1902 	tree val;
1903 	tree argt;
1904 	bool changed = false;
1905 	unsigned i;
1906 
1907 	/* If the call was folded into a constant make sure it goes
1908 	   away even if we cannot propagate into all uses because of
1909 	   type issues.  */
1910 	if (lhs
1911 	    && TREE_CODE (lhs) == SSA_NAME
1912 	    && (val = get_constant_value (lhs))
1913 	    /* Don't optimize away calls that have side-effects.  */
1914 	    && (flags & (ECF_CONST|ECF_PURE)) != 0
1915 	    && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1916 	  {
1917 	    tree new_rhs = unshare_expr (val);
1918 	    bool res;
1919 	    if (!useless_type_conversion_p (TREE_TYPE (lhs),
1920 					    TREE_TYPE (new_rhs)))
1921 	      new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1922 	    res = update_call_from_tree (gsi, new_rhs);
1923 	    gcc_assert (res);
1924 	    return true;
1925 	  }
1926 
1927 	/* Internal calls provide no argument types, so the extra laxity
1928 	   for normal calls does not apply.  */
1929 	if (gimple_call_internal_p (stmt))
1930 	  return false;
1931 
1932         /* The heuristic of fold_builtin_alloca_with_align differs before and
1933 	   after inlining, so we don't require the arg to be changed into a
1934 	   constant for folding, but just to be constant.  */
1935         if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1936           {
1937             tree new_rhs = fold_builtin_alloca_with_align (stmt);
1938             if (new_rhs)
1939 	      {
1940 		bool res = update_call_from_tree (gsi, new_rhs);
1941 		tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1942 		gcc_assert (res);
1943 		insert_clobbers_for_var (*gsi, var);
1944 		return true;
1945 	      }
1946           }
1947 
1948 	/* Propagate into the call arguments.  Compared to replace_uses_in
1949 	   this can use the argument slot types for type verification
1950 	   instead of the current argument type.  We also can safely
1951 	   drop qualifiers here as we are dealing with constants anyway.  */
1952 	argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
1953 	for (i = 0; i < gimple_call_num_args (stmt) && argt;
1954 	     ++i, argt = TREE_CHAIN (argt))
1955 	  {
1956 	    tree arg = gimple_call_arg (stmt, i);
1957 	    if (TREE_CODE (arg) == SSA_NAME
1958 		&& (val = get_constant_value (arg))
1959 		&& useless_type_conversion_p
1960 		     (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1961 		      TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1962 	      {
1963 		gimple_call_set_arg (stmt, i, unshare_expr (val));
1964 		changed = true;
1965 	      }
1966 	  }
1967 
1968 	return changed;
1969       }
1970 
1971     case GIMPLE_ASSIGN:
1972       {
1973 	tree lhs = gimple_assign_lhs (stmt);
1974 	tree val;
1975 
1976 	/* If we have a load that turned out to be constant replace it
1977 	   as we cannot propagate into all uses in all cases.  */
1978 	if (gimple_assign_single_p (stmt)
1979 	    && TREE_CODE (lhs) == SSA_NAME
1980 	    && (val = get_constant_value (lhs)))
1981 	  {
1982 	    tree rhs = unshare_expr (val);
1983 	    if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1984 	      rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1985 	    gimple_assign_set_rhs_from_tree (gsi, rhs);
1986 	    return true;
1987 	  }
1988 
1989 	return false;
1990       }
1991 
1992     default:
1993       return false;
1994     }
1995 }
1996 
1997 /* Visit the assignment statement STMT.  Set the value of its LHS to the
1998    value computed by the RHS and store LHS in *OUTPUT_P.  If STMT
1999    creates virtual definitions, set the value of each new name to that
2000    of the RHS (if we can derive a constant out of the RHS).
2001    Value-returning call statements also perform an assignment, and
2002    are handled here.  */
2003 
2004 static enum ssa_prop_result
2005 visit_assignment (gimple stmt, tree *output_p)
2006 {
2007   prop_value_t val;
2008   enum ssa_prop_result retval;
2009 
2010   tree lhs = gimple_get_lhs (stmt);
2011 
2012   gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2013               || gimple_call_lhs (stmt) != NULL_TREE);
2014 
2015   if (gimple_assign_single_p (stmt)
2016       && gimple_assign_rhs_code (stmt) == SSA_NAME)
2017     /* For a simple copy operation, we copy the lattice values.  */
2018     val = *get_value (gimple_assign_rhs1 (stmt));
2019   else
2020     /* Evaluate the statement, which could be
2021        either a GIMPLE_ASSIGN or a GIMPLE_CALL.  */
2022     val = evaluate_stmt (stmt);
2023 
2024   retval = SSA_PROP_NOT_INTERESTING;
2025 
2026   /* Set the lattice value of the statement's output.  */
2027   if (TREE_CODE (lhs) == SSA_NAME)
2028     {
2029       /* If STMT is an assignment to an SSA_NAME, we only have one
2030 	 value to set.  */
2031       if (set_lattice_value (lhs, val))
2032 	{
2033 	  *output_p = lhs;
2034 	  if (val.lattice_val == VARYING)
2035 	    retval = SSA_PROP_VARYING;
2036 	  else
2037 	    retval = SSA_PROP_INTERESTING;
2038 	}
2039     }
2040 
2041   return retval;
2042 }
2043 
2044 
2045 /* Visit the conditional statement STMT.  Return SSA_PROP_INTERESTING
2046    if it can determine which edge will be taken.  Otherwise, return
2047    SSA_PROP_VARYING.  */
2048 
2049 static enum ssa_prop_result
2050 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2051 {
2052   prop_value_t val;
2053   basic_block block;
2054 
2055   block = gimple_bb (stmt);
2056   val = evaluate_stmt (stmt);
2057   if (val.lattice_val != CONSTANT
2058       || !double_int_zero_p (val.mask))
2059     return SSA_PROP_VARYING;
2060 
2061   /* Find which edge out of the conditional block will be taken and add it
2062      to the worklist.  If no single edge can be determined statically,
2063      return SSA_PROP_VARYING to feed all the outgoing edges to the
2064      propagation engine.  */
2065   *taken_edge_p = find_taken_edge (block, val.value);
2066   if (*taken_edge_p)
2067     return SSA_PROP_INTERESTING;
2068   else
2069     return SSA_PROP_VARYING;
2070 }
2071 
2072 
2073 /* Evaluate statement STMT.  If the statement produces an output value and
2074    its evaluation changes the lattice value of its output, return
2075    SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2076    output value.
2077 
2078    If STMT is a conditional branch and we can determine its truth
2079    value, set *TAKEN_EDGE_P accordingly.  If STMT produces a varying
2080    value, return SSA_PROP_VARYING.  */
2081 
2082 static enum ssa_prop_result
2083 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2084 {
2085   tree def;
2086   ssa_op_iter iter;
2087 
2088   if (dump_file && (dump_flags & TDF_DETAILS))
2089     {
2090       fprintf (dump_file, "\nVisiting statement:\n");
2091       print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2092     }
2093 
2094   switch (gimple_code (stmt))
2095     {
2096       case GIMPLE_ASSIGN:
2097         /* If the statement is an assignment that produces a single
2098            output value, evaluate its RHS to see if the lattice value of
2099            its output has changed.  */
2100         return visit_assignment (stmt, output_p);
2101 
2102       case GIMPLE_CALL:
2103         /* A value-returning call also performs an assignment.  */
2104         if (gimple_call_lhs (stmt) != NULL_TREE)
2105           return visit_assignment (stmt, output_p);
2106         break;
2107 
2108       case GIMPLE_COND:
2109       case GIMPLE_SWITCH:
2110         /* If STMT is a conditional branch, see if we can determine
2111            which branch will be taken.   */
2112         /* FIXME.  It appears that we should be able to optimize
2113            computed GOTOs here as well.  */
2114         return visit_cond_stmt (stmt, taken_edge_p);
2115 
2116       default:
2117         break;
2118     }
2119 
2120   /* Any other kind of statement is not interesting for constant
2121      propagation and, therefore, not worth simulating.  */
2122   if (dump_file && (dump_flags & TDF_DETAILS))
2123     fprintf (dump_file, "No interesting values produced.  Marked VARYING.\n");
2124 
2125   /* Definitions made by statements other than assignments to
2126      SSA_NAMEs represent unknown modifications to their outputs.
2127      Mark them VARYING.  */
2128   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2129     {
2130       prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2131       set_lattice_value (def, v);
2132     }
2133 
2134   return SSA_PROP_VARYING;
2135 }
2136 
2137 
2138 /* Main entry point for SSA Conditional Constant Propagation.  */
2139 
2140 static unsigned int
2141 do_ssa_ccp (void)
2142 {
2143   unsigned int todo = 0;
2144   calculate_dominance_info (CDI_DOMINATORS);
2145   ccp_initialize ();
2146   ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2147   if (ccp_finalize ())
2148     todo = (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2149   free_dominance_info (CDI_DOMINATORS);
2150   return todo;
2151 }
2152 
2153 
2154 static bool
2155 gate_ccp (void)
2156 {
2157   return flag_tree_ccp != 0;
2158 }
2159 
2160 
2161 struct gimple_opt_pass pass_ccp =
2162 {
2163  {
2164   GIMPLE_PASS,
2165   "ccp",				/* name */
2166   gate_ccp,				/* gate */
2167   do_ssa_ccp,				/* execute */
2168   NULL,					/* sub */
2169   NULL,					/* next */
2170   0,					/* static_pass_number */
2171   TV_TREE_CCP,				/* tv_id */
2172   PROP_cfg | PROP_ssa,			/* properties_required */
2173   0,					/* properties_provided */
2174   0,					/* properties_destroyed */
2175   0,					/* todo_flags_start */
2176   TODO_verify_ssa
2177   | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2178  }
2179 };
2180 
2181 
2182 
2183 /* Try to optimize out __builtin_stack_restore.  Optimize it out
2184    if there is another __builtin_stack_restore in the same basic
2185    block and no calls or ASM_EXPRs are in between, or if this block's
2186    only outgoing edge is to EXIT_BLOCK and there are no calls or
2187    ASM_EXPRs after this __builtin_stack_restore.  */
2188 
2189 static tree
2190 optimize_stack_restore (gimple_stmt_iterator i)
2191 {
2192   tree callee;
2193   gimple stmt;
2194 
2195   basic_block bb = gsi_bb (i);
2196   gimple call = gsi_stmt (i);
2197 
2198   if (gimple_code (call) != GIMPLE_CALL
2199       || gimple_call_num_args (call) != 1
2200       || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2201       || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2202     return NULL_TREE;
2203 
2204   for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2205     {
2206       stmt = gsi_stmt (i);
2207       if (gimple_code (stmt) == GIMPLE_ASM)
2208 	return NULL_TREE;
2209       if (gimple_code (stmt) != GIMPLE_CALL)
2210 	continue;
2211 
2212       callee = gimple_call_fndecl (stmt);
2213       if (!callee
2214 	  || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2215 	  /* All regular builtins are ok, just obviously not alloca.  */
2216 	  || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2217 	  || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2218 	return NULL_TREE;
2219 
2220       if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2221 	goto second_stack_restore;
2222     }
2223 
2224   if (!gsi_end_p (i))
2225     return NULL_TREE;
2226 
2227   /* Allow one successor of the exit block, or zero successors.  */
2228   switch (EDGE_COUNT (bb->succs))
2229     {
2230     case 0:
2231       break;
2232     case 1:
2233       if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2234 	return NULL_TREE;
2235       break;
2236     default:
2237       return NULL_TREE;
2238     }
2239  second_stack_restore:
2240 
2241   /* If there's exactly one use, then zap the call to __builtin_stack_save.
2242      If there are multiple uses, then the last one should remove the call.
2243      In any case, whether the call to __builtin_stack_save can be removed
2244      or not is irrelevant to removing the call to __builtin_stack_restore.  */
2245   if (has_single_use (gimple_call_arg (call, 0)))
2246     {
2247       gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2248       if (is_gimple_call (stack_save))
2249 	{
2250 	  callee = gimple_call_fndecl (stack_save);
2251 	  if (callee
2252 	      && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2253 	      && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2254 	    {
2255 	      gimple_stmt_iterator stack_save_gsi;
2256 	      tree rhs;
2257 
2258 	      stack_save_gsi = gsi_for_stmt (stack_save);
2259 	      rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2260 	      update_call_from_tree (&stack_save_gsi, rhs);
2261 	    }
2262 	}
2263     }
2264 
2265   /* No effect, so the statement will be deleted.  */
2266   return integer_zero_node;
2267 }
2268 
2269 /* If va_list type is a simple pointer and nothing special is needed,
2270    optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2271    __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2272    pointer assignment.  */
2273 
2274 static tree
2275 optimize_stdarg_builtin (gimple call)
2276 {
2277   tree callee, lhs, rhs, cfun_va_list;
2278   bool va_list_simple_ptr;
2279   location_t loc = gimple_location (call);
2280 
2281   if (gimple_code (call) != GIMPLE_CALL)
2282     return NULL_TREE;
2283 
2284   callee = gimple_call_fndecl (call);
2285 
2286   cfun_va_list = targetm.fn_abi_va_list (callee);
2287   va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2288 		       && (TREE_TYPE (cfun_va_list) == void_type_node
2289 			   || TREE_TYPE (cfun_va_list) == char_type_node);
2290 
2291   switch (DECL_FUNCTION_CODE (callee))
2292     {
2293     case BUILT_IN_VA_START:
2294       if (!va_list_simple_ptr
2295 	  || targetm.expand_builtin_va_start != NULL
2296 	  || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2297 	return NULL_TREE;
2298 
2299       if (gimple_call_num_args (call) != 2)
2300 	return NULL_TREE;
2301 
2302       lhs = gimple_call_arg (call, 0);
2303       if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2304 	  || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2305 	     != TYPE_MAIN_VARIANT (cfun_va_list))
2306 	return NULL_TREE;
2307 
2308       lhs = build_fold_indirect_ref_loc (loc, lhs);
2309       rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2310                              1, integer_zero_node);
2311       rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2312       return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2313 
2314     case BUILT_IN_VA_COPY:
2315       if (!va_list_simple_ptr)
2316 	return NULL_TREE;
2317 
2318       if (gimple_call_num_args (call) != 2)
2319 	return NULL_TREE;
2320 
2321       lhs = gimple_call_arg (call, 0);
2322       if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2323 	  || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2324 	     != TYPE_MAIN_VARIANT (cfun_va_list))
2325 	return NULL_TREE;
2326 
2327       lhs = build_fold_indirect_ref_loc (loc, lhs);
2328       rhs = gimple_call_arg (call, 1);
2329       if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2330 	  != TYPE_MAIN_VARIANT (cfun_va_list))
2331 	return NULL_TREE;
2332 
2333       rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2334       return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2335 
2336     case BUILT_IN_VA_END:
2337       /* No effect, so the statement will be deleted.  */
2338       return integer_zero_node;
2339 
2340     default:
2341       gcc_unreachable ();
2342     }
2343 }
2344 
2345 /* A simple pass that attempts to fold all builtin functions.  This pass
2346    is run after we've propagated as many constants as we can.  */
2347 
2348 static unsigned int
2349 execute_fold_all_builtins (void)
2350 {
2351   bool cfg_changed = false;
2352   basic_block bb;
2353   unsigned int todoflags = 0;
2354 
2355   FOR_EACH_BB (bb)
2356     {
2357       gimple_stmt_iterator i;
2358       for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2359 	{
2360           gimple stmt, old_stmt;
2361 	  tree callee, result;
2362 	  enum built_in_function fcode;
2363 
2364 	  stmt = gsi_stmt (i);
2365 
2366           if (gimple_code (stmt) != GIMPLE_CALL)
2367 	    {
2368 	      gsi_next (&i);
2369 	      continue;
2370 	    }
2371 	  callee = gimple_call_fndecl (stmt);
2372 	  if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2373 	    {
2374 	      gsi_next (&i);
2375 	      continue;
2376 	    }
2377 	  fcode = DECL_FUNCTION_CODE (callee);
2378 
2379 	  result = gimple_fold_builtin (stmt);
2380 
2381 	  if (result)
2382 	    gimple_remove_stmt_histograms (cfun, stmt);
2383 
2384 	  if (!result)
2385 	    switch (DECL_FUNCTION_CODE (callee))
2386 	      {
2387 	      case BUILT_IN_CONSTANT_P:
2388 		/* Resolve __builtin_constant_p.  If it hasn't been
2389 		   folded to integer_one_node by now, it's fairly
2390 		   certain that the value simply isn't constant.  */
2391                 result = integer_zero_node;
2392 		break;
2393 
2394 	      case BUILT_IN_ASSUME_ALIGNED:
2395 		/* Remove __builtin_assume_aligned.  */
2396 		result = gimple_call_arg (stmt, 0);
2397 		break;
2398 
2399 	      case BUILT_IN_STACK_RESTORE:
2400 		result = optimize_stack_restore (i);
2401 		if (result)
2402 		  break;
2403 		gsi_next (&i);
2404 		continue;
2405 
2406 	      case BUILT_IN_VA_START:
2407 	      case BUILT_IN_VA_END:
2408 	      case BUILT_IN_VA_COPY:
2409 		/* These shouldn't be folded before pass_stdarg.  */
2410 		result = optimize_stdarg_builtin (stmt);
2411 		if (result)
2412 		  break;
2413 		/* FALLTHRU */
2414 
2415 	      default:
2416 		gsi_next (&i);
2417 		continue;
2418 	      }
2419 
2420 	  if (dump_file && (dump_flags & TDF_DETAILS))
2421 	    {
2422 	      fprintf (dump_file, "Simplified\n  ");
2423 	      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2424 	    }
2425 
2426           old_stmt = stmt;
2427           if (!update_call_from_tree (&i, result))
2428 	    {
2429 	      gimplify_and_update_call_from_tree (&i, result);
2430 	      todoflags |= TODO_update_address_taken;
2431 	    }
2432 
2433 	  stmt = gsi_stmt (i);
2434 	  update_stmt (stmt);
2435 
2436 	  if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2437 	      && gimple_purge_dead_eh_edges (bb))
2438 	    cfg_changed = true;
2439 
2440 	  if (dump_file && (dump_flags & TDF_DETAILS))
2441 	    {
2442 	      fprintf (dump_file, "to\n  ");
2443 	      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2444 	      fprintf (dump_file, "\n");
2445 	    }
2446 
2447 	  /* Retry the same statement if it changed into another
2448 	     builtin, there might be new opportunities now.  */
2449           if (gimple_code (stmt) != GIMPLE_CALL)
2450 	    {
2451 	      gsi_next (&i);
2452 	      continue;
2453 	    }
2454 	  callee = gimple_call_fndecl (stmt);
2455 	  if (!callee
2456               || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2457 	      || DECL_FUNCTION_CODE (callee) == fcode)
2458 	    gsi_next (&i);
2459 	}
2460     }
2461 
2462   /* Delete unreachable blocks.  */
2463   if (cfg_changed)
2464     todoflags |= TODO_cleanup_cfg;
2465 
2466   return todoflags;
2467 }
2468 
2469 
2470 struct gimple_opt_pass pass_fold_builtins =
2471 {
2472  {
2473   GIMPLE_PASS,
2474   "fab",				/* name */
2475   NULL,					/* gate */
2476   execute_fold_all_builtins,		/* execute */
2477   NULL,					/* sub */
2478   NULL,					/* next */
2479   0,					/* static_pass_number */
2480   TV_NONE,				/* tv_id */
2481   PROP_cfg | PROP_ssa,			/* properties_required */
2482   0,					/* properties_provided */
2483   0,					/* properties_destroyed */
2484   0,					/* todo_flags_start */
2485   TODO_verify_ssa
2486     | TODO_update_ssa			/* todo_flags_finish */
2487  }
2488 };
2489