1 /* Dead code elimination pass for the GNU compiler.
2    Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4    Contributed by Ben Elliston <bje@redhat.com>
5    and Andrew MacLeod <amacleod@redhat.com>
6    Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14 
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23 
24 /* Dead code elimination.
25 
26    References:
27 
28      Building an Optimizing Compiler,
29      Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30 
31      Advanced Compiler Design and Implementation,
32      Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33 
34    Dead-code elimination is the removal of statements which have no
35    impact on the program's output.  "Dead statements" have no impact
36    on the program's output, while "necessary statements" may have
37    impact on the output.
38 
39    The algorithm consists of three phases:
40    1. Marking as necessary all statements known to be necessary,
41       e.g. most function calls, writing a value to memory, etc;
42    2. Propagating necessary statements, e.g., the statements
43       giving values to operands in necessary statements; and
44    3. Removing dead statements.  */
45 
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
63 
64 static struct stmt_stats
65 {
66   int total;
67   int total_phis;
68   int removed;
69   int removed_phis;
70 } stats;
71 
72 #define STMT_NECESSARY GF_PLF_1
73 
74 static VEC(gimple,heap) *worklist;
75 
76 /* Vector indicating an SSA name has already been processed and marked
77    as necessary.  */
78 static sbitmap processed;
79 
80 /* Vector indicating that the last statement of a basic block has already
81    been marked as necessary.  */
82 static sbitmap last_stmt_necessary;
83 
84 /* Vector indicating that BB contains statements that are live.  */
85 static sbitmap bb_contains_live_stmts;
86 
87 /* Before we can determine whether a control branch is dead, we need to
88    compute which blocks are control dependent on which edges.
89 
90    We expect each block to be control dependent on very few edges so we
91    use a bitmap for each block recording its edges.  An array holds the
92    bitmap.  The Ith bit in the bitmap is set if that block is dependent
93    on the Ith edge.  */
94 static bitmap *control_dependence_map;
95 
96 /* Vector indicating that a basic block has already had all the edges
97    processed that it is control dependent on.  */
98 static sbitmap visited_control_parents;
99 
100 /* TRUE if this pass alters the CFG (by removing control statements).
101    FALSE otherwise.
102 
103    If this pass alters the CFG, then it will arrange for the dominators
104    to be recomputed.  */
105 static bool cfg_altered;
106 
107 /* Execute code that follows the macro for each edge (given number
108    EDGE_NUMBER within the CODE) for which the block with index N is
109    control dependent.  */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER)	\
111   EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0,	\
112 			    (EDGE_NUMBER), (BI))
113 
114 
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
118 {
119   if (bb == ENTRY_BLOCK_PTR)
120     return;
121   gcc_assert (bb != EXIT_BLOCK_PTR);
122   bitmap_set_bit (control_dependence_map[bb->index], edge_index);
123 }
124 
125 /* Clear all control dependences for block BB.  */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
128 {
129   bitmap_clear (control_dependence_map[bb->index]);
130 }
131 
132 
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134    This function is necessary because some blocks have negative numbers.  */
135 
136 static inline basic_block
137 find_pdom (basic_block block)
138 {
139   gcc_assert (block != ENTRY_BLOCK_PTR);
140 
141   if (block == EXIT_BLOCK_PTR)
142     return EXIT_BLOCK_PTR;
143   else
144     {
145       basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146       if (! bb)
147 	return EXIT_BLOCK_PTR;
148       return bb;
149     }
150 }
151 
152 
153 /* Determine all blocks' control dependences on the given edge with edge_list
154    EL index EDGE_INDEX, ala Morgan, Section 3.6.  */
155 
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
158 {
159   basic_block current_block;
160   basic_block ending_block;
161 
162   gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
163 
164   if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165     ending_block = single_succ (ENTRY_BLOCK_PTR);
166   else
167     ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
168 
169   for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170        current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171        current_block = find_pdom (current_block))
172     {
173       edge e = INDEX_EDGE (el, edge_index);
174 
175       /* For abnormal edges, we don't make current_block control
176 	 dependent because instructions that throw are always necessary
177 	 anyway.  */
178       if (e->flags & EDGE_ABNORMAL)
179 	continue;
180 
181       set_control_dependence_map_bit (current_block, edge_index);
182     }
183 }
184 
185 
186 /* Record all blocks' control dependences on all edges in the edge
187    list EL, ala Morgan, Section 3.6.  */
188 
189 static void
190 find_all_control_dependences (struct edge_list *el)
191 {
192   int i;
193 
194   for (i = 0; i < NUM_EDGES (el); ++i)
195     find_control_dependence (el, i);
196 }
197 
198 /* If STMT is not already marked necessary, mark it, and add it to the
199    worklist if ADD_TO_WORKLIST is true.  */
200 
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
203 {
204   gcc_assert (stmt);
205 
206   if (gimple_plf (stmt, STMT_NECESSARY))
207     return;
208 
209   if (dump_file && (dump_flags & TDF_DETAILS))
210     {
211       fprintf (dump_file, "Marking useful stmt: ");
212       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213       fprintf (dump_file, "\n");
214     }
215 
216   gimple_set_plf (stmt, STMT_NECESSARY, true);
217   if (add_to_worklist)
218     VEC_safe_push (gimple, heap, worklist, stmt);
219   if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220     SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
221 }
222 
223 
224 /* Mark the statement defining operand OP as necessary.  */
225 
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229   gimple stmt;
230   int ver;
231 
232   gcc_assert (op);
233 
234   ver = SSA_NAME_VERSION (op);
235   if (TEST_BIT (processed, ver))
236     {
237       stmt = SSA_NAME_DEF_STMT (op);
238       gcc_assert (gimple_nop_p (stmt)
239 		  || gimple_plf (stmt, STMT_NECESSARY));
240       return;
241     }
242   SET_BIT (processed, ver);
243 
244   stmt = SSA_NAME_DEF_STMT (op);
245   gcc_assert (stmt);
246 
247   if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248     return;
249 
250   if (dump_file && (dump_flags & TDF_DETAILS))
251     {
252       fprintf (dump_file, "marking necessary through ");
253       print_generic_expr (dump_file, op, 0);
254       fprintf (dump_file, " stmt ");
255       print_gimple_stmt (dump_file, stmt, 0, 0);
256     }
257 
258   gimple_set_plf (stmt, STMT_NECESSARY, true);
259   if (bb_contains_live_stmts)
260     SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261   VEC_safe_push (gimple, heap, worklist, stmt);
262 }
263 
264 
265 /* Mark STMT as necessary if it obviously is.  Add it to the worklist if
266    it can make other statements necessary.
267 
268    If AGGRESSIVE is false, control statements are conservatively marked as
269    necessary.  */
270 
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
273 {
274   /* With non-call exceptions, we have to assume that all statements could
275      throw.  If a statement may throw, it is inherently necessary.  */
276   if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
277     {
278       mark_stmt_necessary (stmt, true);
279       return;
280     }
281 
282   /* Statements that are implicitly live.  Most function calls, asm
283      and return statements are required.  Labels and GIMPLE_BIND nodes
284      are kept because they are control flow, and we have no way of
285      knowing whether they can be removed.  DCE can eliminate all the
286      other statements in a block, and CFG can then remove the block
287      and labels.  */
288   switch (gimple_code (stmt))
289     {
290     case GIMPLE_PREDICT:
291     case GIMPLE_LABEL:
292       mark_stmt_necessary (stmt, false);
293       return;
294 
295     case GIMPLE_ASM:
296     case GIMPLE_RESX:
297     case GIMPLE_RETURN:
298       mark_stmt_necessary (stmt, true);
299       return;
300 
301     case GIMPLE_CALL:
302       {
303 	tree callee = gimple_call_fndecl (stmt);
304 	if (callee != NULL_TREE
305 	    && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
306 	  switch (DECL_FUNCTION_CODE (callee))
307 	    {
308 	    case BUILT_IN_MALLOC:
309 	    case BUILT_IN_CALLOC:
310 	    case BUILT_IN_ALLOCA:
311 	    case BUILT_IN_ALLOCA_WITH_ALIGN:
312 	      return;
313 
314 	    default:;
315 	    }
316 	/* Most, but not all function calls are required.  Function calls that
317 	   produce no result and have no side effects (i.e. const pure
318 	   functions) are unnecessary.  */
319 	if (gimple_has_side_effects (stmt))
320 	  {
321 	    mark_stmt_necessary (stmt, true);
322 	    return;
323 	  }
324 	if (!gimple_call_lhs (stmt))
325 	  return;
326 	break;
327       }
328 
329     case GIMPLE_DEBUG:
330       /* Debug temps without a value are not useful.  ??? If we could
331 	 easily locate the debug temp bind stmt for a use thereof,
332 	 would could refrain from marking all debug temps here, and
333 	 mark them only if they're used.  */
334       if (!gimple_debug_bind_p (stmt)
335 	  || gimple_debug_bind_has_value_p (stmt)
336 	  || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
337 	mark_stmt_necessary (stmt, false);
338       return;
339 
340     case GIMPLE_GOTO:
341       gcc_assert (!simple_goto_p (stmt));
342       mark_stmt_necessary (stmt, true);
343       return;
344 
345     case GIMPLE_COND:
346       gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
347       /* Fall through.  */
348 
349     case GIMPLE_SWITCH:
350       if (! aggressive)
351 	mark_stmt_necessary (stmt, true);
352       break;
353 
354     case GIMPLE_ASSIGN:
355       if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
356 	  && TREE_CLOBBER_P (gimple_assign_rhs1 (stmt)))
357 	return;
358       break;
359 
360     default:
361       break;
362     }
363 
364   /* If the statement has volatile operands, it needs to be preserved.
365      Same for statements that can alter control flow in unpredictable
366      ways.  */
367   if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
368     {
369       mark_stmt_necessary (stmt, true);
370       return;
371     }
372 
373   if (is_hidden_global_store (stmt))
374     {
375       mark_stmt_necessary (stmt, true);
376       return;
377     }
378 
379   return;
380 }
381 
382 
383 /* Mark the last statement of BB as necessary.  */
384 
385 static void
386 mark_last_stmt_necessary (basic_block bb)
387 {
388   gimple stmt = last_stmt (bb);
389 
390   SET_BIT (last_stmt_necessary, bb->index);
391   SET_BIT (bb_contains_live_stmts, bb->index);
392 
393   /* We actually mark the statement only if it is a control statement.  */
394   if (stmt && is_ctrl_stmt (stmt))
395     mark_stmt_necessary (stmt, true);
396 }
397 
398 
399 /* Mark control dependent edges of BB as necessary.  We have to do this only
400    once for each basic block so we set the appropriate bit after we're done.
401 
402    When IGNORE_SELF is true, ignore BB in the list of control dependences.  */
403 
404 static void
405 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
406 					bool ignore_self)
407 {
408   bitmap_iterator bi;
409   unsigned edge_number;
410   bool skipped = false;
411 
412   gcc_assert (bb != EXIT_BLOCK_PTR);
413 
414   if (bb == ENTRY_BLOCK_PTR)
415     return;
416 
417   EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
418     {
419       basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
420 
421       if (ignore_self && cd_bb == bb)
422 	{
423 	  skipped = true;
424 	  continue;
425 	}
426 
427       if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
428 	mark_last_stmt_necessary (cd_bb);
429     }
430 
431   if (!skipped)
432     SET_BIT (visited_control_parents, bb->index);
433 }
434 
435 
436 /* Find obviously necessary statements.  These are things like most function
437    calls, and stores to file level variables.
438 
439    If EL is NULL, control statements are conservatively marked as
440    necessary.  Otherwise it contains the list of edges used by control
441    dependence analysis.  */
442 
443 static void
444 find_obviously_necessary_stmts (struct edge_list *el)
445 {
446   basic_block bb;
447   gimple_stmt_iterator gsi;
448   edge e;
449   gimple phi, stmt;
450   int flags;
451 
452   FOR_EACH_BB (bb)
453     {
454       /* PHI nodes are never inherently necessary.  */
455       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
456 	{
457 	  phi = gsi_stmt (gsi);
458 	  gimple_set_plf (phi, STMT_NECESSARY, false);
459 	}
460 
461       /* Check all statements in the block.  */
462       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
463 	{
464 	  stmt = gsi_stmt (gsi);
465 	  gimple_set_plf (stmt, STMT_NECESSARY, false);
466 	  mark_stmt_if_obviously_necessary (stmt, el != NULL);
467 	}
468     }
469 
470   /* Pure and const functions are finite and thus have no infinite loops in
471      them.  */
472   flags = flags_from_decl_or_type (current_function_decl);
473   if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
474     return;
475 
476   /* Prevent the empty possibly infinite loops from being removed.  */
477   if (el)
478     {
479       loop_iterator li;
480       struct loop *loop;
481       scev_initialize ();
482       if (mark_irreducible_loops ())
483 	FOR_EACH_BB (bb)
484 	  {
485 	    edge_iterator ei;
486 	    FOR_EACH_EDGE (e, ei, bb->succs)
487 	      if ((e->flags & EDGE_DFS_BACK)
488 		  && (e->flags & EDGE_IRREDUCIBLE_LOOP))
489 		{
490 	          if (dump_file)
491 	            fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
492 		    	     e->src->index, e->dest->index);
493 		  mark_control_dependent_edges_necessary (e->dest, el, false);
494 		}
495 	  }
496 
497       FOR_EACH_LOOP (li, loop, 0)
498 	if (!finite_loop_p (loop))
499 	  {
500 	    if (dump_file)
501 	      fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
502 	    mark_control_dependent_edges_necessary (loop->latch, el, false);
503 	  }
504       scev_finalize ();
505     }
506 }
507 
508 
509 /* Return true if REF is based on an aliased base, otherwise false.  */
510 
511 static bool
512 ref_may_be_aliased (tree ref)
513 {
514   gcc_assert (TREE_CODE (ref) != WITH_SIZE_EXPR);
515   while (handled_component_p (ref))
516     ref = TREE_OPERAND (ref, 0);
517   if (TREE_CODE (ref) == MEM_REF
518       && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
519     ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
520   return !(DECL_P (ref)
521 	   && !may_be_aliased (ref));
522 }
523 
524 static bitmap visited = NULL;
525 static unsigned int longest_chain = 0;
526 static unsigned int total_chain = 0;
527 static unsigned int nr_walks = 0;
528 static bool chain_ovfl = false;
529 
530 /* Worker for the walker that marks reaching definitions of REF,
531    which is based on a non-aliased decl, necessary.  It returns
532    true whenever the defining statement of the current VDEF is
533    a kill for REF, as no dominating may-defs are necessary for REF
534    anymore.  DATA points to the basic-block that contains the
535    stmt that refers to REF.  */
536 
537 static bool
538 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
539 {
540   gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
541 
542   /* All stmts we visit are necessary.  */
543   mark_operand_necessary (vdef);
544 
545   /* If the stmt lhs kills ref, then we can stop walking.  */
546   if (gimple_has_lhs (def_stmt)
547       && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
548       /* The assignment is not necessarily carried out if it can throw
549          and we can catch it in the current function where we could inspect
550 	 the previous value.
551          ???  We only need to care about the RHS throwing.  For aggregate
552 	 assignments or similar calls and non-call exceptions the LHS
553 	 might throw as well.  */
554       && !stmt_can_throw_internal (def_stmt))
555     {
556       tree base, lhs = gimple_get_lhs (def_stmt);
557       HOST_WIDE_INT size, offset, max_size;
558       ao_ref_base (ref);
559       base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
560       /* We can get MEM[symbol: sZ, index: D.8862_1] here,
561 	 so base == refd->base does not always hold.  */
562       if (base == ref->base)
563 	{
564 	  /* For a must-alias check we need to be able to constrain
565 	     the accesses properly.  */
566 	  if (size != -1 && size == max_size
567 	      && ref->max_size != -1)
568 	    {
569 	      if (offset <= ref->offset
570 		  && offset + size >= ref->offset + ref->max_size)
571 		return true;
572 	    }
573 	  /* Or they need to be exactly the same.  */
574 	  else if (ref->ref
575 		   /* Make sure there is no induction variable involved
576 		      in the references (gcc.c-torture/execute/pr42142.c).
577 		      The simplest way is to check if the kill dominates
578 		      the use.  */
579 		   /* But when both are in the same block we cannot
580 		      easily tell whether we came from a backedge
581 		      unless we decide to compute stmt UIDs
582 		      (see PR58246).  */
583 		   && (basic_block) data != gimple_bb (def_stmt)
584 		   && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
585 				      gimple_bb (def_stmt))
586 		   && operand_equal_p (ref->ref, lhs, 0))
587 	    return true;
588 	}
589     }
590 
591   /* Otherwise keep walking.  */
592   return false;
593 }
594 
595 static void
596 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
597 {
598   unsigned int chain;
599   ao_ref refd;
600   gcc_assert (!chain_ovfl);
601   ao_ref_init (&refd, ref);
602   chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
603 			      mark_aliased_reaching_defs_necessary_1,
604 			      gimple_bb (stmt), NULL);
605   if (chain > longest_chain)
606     longest_chain = chain;
607   total_chain += chain;
608   nr_walks++;
609 }
610 
611 /* Worker for the walker that marks reaching definitions of REF, which
612    is not based on a non-aliased decl.  For simplicity we need to end
613    up marking all may-defs necessary that are not based on a non-aliased
614    decl.  The only job of this walker is to skip may-defs based on
615    a non-aliased decl.  */
616 
617 static bool
618 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
619 				    tree vdef, void *data ATTRIBUTE_UNUSED)
620 {
621   gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
622 
623   /* We have to skip already visited (and thus necessary) statements
624      to make the chaining work after we dropped back to simple mode.  */
625   if (chain_ovfl
626       && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
627     {
628       gcc_assert (gimple_nop_p (def_stmt)
629 		  || gimple_plf (def_stmt, STMT_NECESSARY));
630       return false;
631     }
632 
633   /* We want to skip stores to non-aliased variables.  */
634   if (!chain_ovfl
635       && gimple_assign_single_p (def_stmt))
636     {
637       tree lhs = gimple_assign_lhs (def_stmt);
638       if (!ref_may_be_aliased (lhs))
639 	return false;
640     }
641 
642   /* We want to skip statments that do not constitute stores but have
643      a virtual definition.  */
644   if (is_gimple_call (def_stmt))
645     {
646       tree callee = gimple_call_fndecl (def_stmt);
647       if (callee != NULL_TREE
648 	  && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
649 	switch (DECL_FUNCTION_CODE (callee))
650 	  {
651 	  case BUILT_IN_MALLOC:
652 	  case BUILT_IN_CALLOC:
653 	  case BUILT_IN_ALLOCA:
654 	  case BUILT_IN_ALLOCA_WITH_ALIGN:
655 	  case BUILT_IN_FREE:
656 	    return false;
657 
658 	  default:;
659 	  }
660     }
661 
662   mark_operand_necessary (vdef);
663 
664   return false;
665 }
666 
667 static void
668 mark_all_reaching_defs_necessary (gimple stmt)
669 {
670   walk_aliased_vdefs (NULL, gimple_vuse (stmt),
671 		      mark_all_reaching_defs_necessary_1, NULL, &visited);
672 }
673 
674 /* Return true for PHI nodes with one or identical arguments
675    can be removed.  */
676 static bool
677 degenerate_phi_p (gimple phi)
678 {
679   unsigned int i;
680   tree op = gimple_phi_arg_def (phi, 0);
681   for (i = 1; i < gimple_phi_num_args (phi); i++)
682     if (gimple_phi_arg_def (phi, i) != op)
683       return false;
684   return true;
685 }
686 
687 /* Propagate necessity using the operands of necessary statements.
688    Process the uses on each statement in the worklist, and add all
689    feeding statements which contribute to the calculation of this
690    value to the worklist.
691 
692    In conservative mode, EL is NULL.  */
693 
694 static void
695 propagate_necessity (struct edge_list *el)
696 {
697   gimple stmt;
698   bool aggressive = (el ? true : false);
699 
700   if (dump_file && (dump_flags & TDF_DETAILS))
701     fprintf (dump_file, "\nProcessing worklist:\n");
702 
703   while (VEC_length (gimple, worklist) > 0)
704     {
705       /* Take STMT from worklist.  */
706       stmt = VEC_pop (gimple, worklist);
707 
708       if (dump_file && (dump_flags & TDF_DETAILS))
709 	{
710 	  fprintf (dump_file, "processing: ");
711 	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
712 	  fprintf (dump_file, "\n");
713 	}
714 
715       if (aggressive)
716 	{
717 	  /* Mark the last statement of the basic blocks on which the block
718 	     containing STMT is control dependent, but only if we haven't
719 	     already done so.  */
720 	  basic_block bb = gimple_bb (stmt);
721 	  if (bb != ENTRY_BLOCK_PTR
722 	      && !TEST_BIT (visited_control_parents, bb->index))
723 	    mark_control_dependent_edges_necessary (bb, el, false);
724 	}
725 
726       if (gimple_code (stmt) == GIMPLE_PHI
727 	  /* We do not process virtual PHI nodes nor do we track their
728 	     necessity.  */
729 	  && is_gimple_reg (gimple_phi_result (stmt)))
730 	{
731 	  /* PHI nodes are somewhat special in that each PHI alternative has
732 	     data and control dependencies.  All the statements feeding the
733 	     PHI node's arguments are always necessary.  In aggressive mode,
734 	     we also consider the control dependent edges leading to the
735 	     predecessor block associated with each PHI alternative as
736 	     necessary.  */
737 	  size_t k;
738 
739 	  for (k = 0; k < gimple_phi_num_args (stmt); k++)
740             {
741 	      tree arg = PHI_ARG_DEF (stmt, k);
742 	      if (TREE_CODE (arg) == SSA_NAME)
743 		mark_operand_necessary (arg);
744 	    }
745 
746 	  /* For PHI operands it matters from where the control flow arrives
747 	     to the BB.  Consider the following example:
748 
749 	     a=exp1;
750 	     b=exp2;
751 	     if (test)
752 		;
753 	     else
754 		;
755 	     c=PHI(a,b)
756 
757 	     We need to mark control dependence of the empty basic blocks, since they
758 	     contains computation of PHI operands.
759 
760 	     Doing so is too restrictive in the case the predecestor block is in
761 	     the loop. Consider:
762 
763 	      if (b)
764 		{
765 		  int i;
766 		  for (i = 0; i<1000; ++i)
767 		    ;
768 		  j = 0;
769 		}
770 	      return j;
771 
772 	     There is PHI for J in the BB containing return statement.
773 	     In this case the control dependence of predecestor block (that is
774 	     within the empty loop) also contains the block determining number
775 	     of iterations of the block that would prevent removing of empty
776 	     loop in this case.
777 
778 	     This scenario can be avoided by splitting critical edges.
779 	     To save the critical edge splitting pass we identify how the control
780 	     dependence would look like if the edge was split.
781 
782 	     Consider the modified CFG created from current CFG by splitting
783 	     edge B->C.  In the postdominance tree of modified CFG, C' is
784 	     always child of C.  There are two cases how chlids of C' can look
785 	     like:
786 
787 		1) C' is leaf
788 
789 		   In this case the only basic block C' is control dependent on is B.
790 
791 		2) C' has single child that is B
792 
793 		   In this case control dependence of C' is same as control
794 		   dependence of B in original CFG except for block B itself.
795 		   (since C' postdominate B in modified CFG)
796 
797 	     Now how to decide what case happens?  There are two basic options:
798 
799 		a) C postdominate B.  Then C immediately postdominate B and
800 		   case 2 happens iff there is no other way from B to C except
801 		   the edge B->C.
802 
803 		   There is other way from B to C iff there is succesor of B that
804 		   is not postdominated by B.  Testing this condition is somewhat
805 		   expensive, because we need to iterate all succesors of B.
806 		   We are safe to assume that this does not happen: we will mark B
807 		   as needed when processing the other path from B to C that is
808 		   conrol dependent on B and marking control dependencies of B
809 		   itself is harmless because they will be processed anyway after
810 		   processing control statement in B.
811 
812 		b) C does not postdominate B.  Always case 1 happens since there is
813 		   path from C to exit that does not go through B and thus also C'.  */
814 
815 	  if (aggressive && !degenerate_phi_p (stmt))
816 	    {
817 	      for (k = 0; k < gimple_phi_num_args (stmt); k++)
818 		{
819 		  basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
820 
821 		  if (gimple_bb (stmt)
822 		      != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
823 		    {
824 		      if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
825 			mark_last_stmt_necessary (arg_bb);
826 		    }
827 		  else if (arg_bb != ENTRY_BLOCK_PTR
828 		           && !TEST_BIT (visited_control_parents,
829 					 arg_bb->index))
830 		    mark_control_dependent_edges_necessary (arg_bb, el, true);
831 		}
832 	    }
833 	}
834       else
835 	{
836 	  /* Propagate through the operands.  Examine all the USE, VUSE and
837 	     VDEF operands in this statement.  Mark all the statements
838 	     which feed this statement's uses as necessary.  */
839 	  ssa_op_iter iter;
840 	  tree use;
841 
842 	  /* If this is a call to free which is directly fed by an
843 	     allocation function do not mark that necessary through
844 	     processing the argument.  */
845 	  if (gimple_call_builtin_p (stmt, BUILT_IN_FREE))
846 	    {
847 	      tree ptr = gimple_call_arg (stmt, 0);
848 	      gimple def_stmt;
849 	      tree def_callee;
850 	      /* If the pointer we free is defined by an allocation
851 		 function do not add the call to the worklist.  */
852 	      if (TREE_CODE (ptr) == SSA_NAME
853 		  && is_gimple_call (def_stmt = SSA_NAME_DEF_STMT (ptr))
854 		  && (def_callee = gimple_call_fndecl (def_stmt))
855 		  && DECL_BUILT_IN_CLASS (def_callee) == BUILT_IN_NORMAL
856 		  && (DECL_FUNCTION_CODE (def_callee) == BUILT_IN_MALLOC
857 		      || DECL_FUNCTION_CODE (def_callee) == BUILT_IN_CALLOC))
858 		continue;
859 	    }
860 
861 	  FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
862 	    mark_operand_necessary (use);
863 
864 	  use = gimple_vuse (stmt);
865 	  if (!use)
866 	    continue;
867 
868 	  /* If we dropped to simple mode make all immediately
869 	     reachable definitions necessary.  */
870 	  if (chain_ovfl)
871 	    {
872 	      mark_all_reaching_defs_necessary (stmt);
873 	      continue;
874 	    }
875 
876 	  /* For statements that may load from memory (have a VUSE) we
877 	     have to mark all reaching (may-)definitions as necessary.
878 	     We partition this task into two cases:
879 	      1) explicit loads based on decls that are not aliased
880 	      2) implicit loads (like calls) and explicit loads not
881 	         based on decls that are not aliased (like indirect
882 		 references or loads from globals)
883 	     For 1) we mark all reaching may-defs as necessary, stopping
884 	     at dominating kills.  For 2) we want to mark all dominating
885 	     references necessary, but non-aliased ones which we handle
886 	     in 1).  By keeping a global visited bitmap for references
887 	     we walk for 2) we avoid quadratic behavior for those.  */
888 
889 	  if (is_gimple_call (stmt))
890 	    {
891 	      tree callee = gimple_call_fndecl (stmt);
892 	      unsigned i;
893 
894 	      /* Calls to functions that are merely acting as barriers
895 		 or that only store to memory do not make any previous
896 		 stores necessary.  */
897 	      if (callee != NULL_TREE
898 		  && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
899 		  && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
900 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
901 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
902 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
903 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
904 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_VA_END
905 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
906 		      || (DECL_FUNCTION_CODE (callee)
907 			  == BUILT_IN_ALLOCA_WITH_ALIGN)
908 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
909 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
910 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
911 		continue;
912 
913 	      /* Calls implicitly load from memory, their arguments
914 	         in addition may explicitly perform memory loads.  */
915 	      mark_all_reaching_defs_necessary (stmt);
916 	      for (i = 0; i < gimple_call_num_args (stmt); ++i)
917 		{
918 		  tree arg = gimple_call_arg (stmt, i);
919 		  if (TREE_CODE (arg) == SSA_NAME
920 		      || is_gimple_min_invariant (arg))
921 		    continue;
922 		  if (TREE_CODE (arg) == WITH_SIZE_EXPR)
923 		    arg = TREE_OPERAND (arg, 0);
924 		  if (!ref_may_be_aliased (arg))
925 		    mark_aliased_reaching_defs_necessary (stmt, arg);
926 		}
927 	    }
928 	  else if (gimple_assign_single_p (stmt))
929 	    {
930 	      tree rhs;
931 	      /* If this is a load mark things necessary.  */
932 	      rhs = gimple_assign_rhs1 (stmt);
933 	      if (TREE_CODE (rhs) != SSA_NAME
934 		  && !is_gimple_min_invariant (rhs)
935 		  && TREE_CODE (rhs) != CONSTRUCTOR)
936 		{
937 		  if (!ref_may_be_aliased (rhs))
938 		    mark_aliased_reaching_defs_necessary (stmt, rhs);
939 		  else
940 		    mark_all_reaching_defs_necessary (stmt);
941 		}
942 	    }
943 	  else if (gimple_code (stmt) == GIMPLE_RETURN)
944 	    {
945 	      tree rhs = gimple_return_retval (stmt);
946 	      /* A return statement may perform a load.  */
947 	      if (rhs
948 		  && TREE_CODE (rhs) != SSA_NAME
949 		  && !is_gimple_min_invariant (rhs)
950 		  && TREE_CODE (rhs) != CONSTRUCTOR)
951 		{
952 		  if (!ref_may_be_aliased (rhs))
953 		    mark_aliased_reaching_defs_necessary (stmt, rhs);
954 		  else
955 		    mark_all_reaching_defs_necessary (stmt);
956 		}
957 	    }
958 	  else if (gimple_code (stmt) == GIMPLE_ASM)
959 	    {
960 	      unsigned i;
961 	      mark_all_reaching_defs_necessary (stmt);
962 	      /* Inputs may perform loads.  */
963 	      for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
964 		{
965 		  tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
966 		  if (TREE_CODE (op) != SSA_NAME
967 		      && !is_gimple_min_invariant (op)
968 		      && TREE_CODE (op) != CONSTRUCTOR
969 		      && !ref_may_be_aliased (op))
970 		    mark_aliased_reaching_defs_necessary (stmt, op);
971 		}
972 	    }
973 	  else if (gimple_code (stmt) == GIMPLE_TRANSACTION)
974 	    {
975 	      /* The beginning of a transaction is a memory barrier.  */
976 	      /* ??? If we were really cool, we'd only be a barrier
977 		 for the memories touched within the transaction.  */
978 	      mark_all_reaching_defs_necessary (stmt);
979 	    }
980 	  else
981 	    gcc_unreachable ();
982 
983 	  /* If we over-used our alias oracle budget drop to simple
984 	     mode.  The cost metric allows quadratic behavior
985 	     (number of uses times number of may-defs queries) up to
986 	     a constant maximal number of queries and after that falls back to
987 	     super-linear complexity.  */
988 	  if (/* Constant but quadratic for small functions.  */
989 	      total_chain > 128 * 128
990 	      /* Linear in the number of may-defs.  */
991 	      && total_chain > 32 * longest_chain
992 	      /* Linear in the number of uses.  */
993 	      && total_chain > nr_walks * 32)
994 	    {
995 	      chain_ovfl = true;
996 	      if (visited)
997 		bitmap_clear (visited);
998 	    }
999 	}
1000     }
1001 }
1002 
1003 /* Replace all uses of NAME by underlying variable and mark it
1004    for renaming.  */
1005 
1006 void
1007 mark_virtual_operand_for_renaming (tree name)
1008 {
1009   bool used = false;
1010   imm_use_iterator iter;
1011   use_operand_p use_p;
1012   gimple stmt;
1013   tree name_var;
1014 
1015   name_var = SSA_NAME_VAR (name);
1016   FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1017     {
1018       FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1019         SET_USE (use_p, name_var);
1020       update_stmt (stmt);
1021       used = true;
1022     }
1023   if (used)
1024     mark_sym_for_renaming (name_var);
1025 }
1026 
1027 /* Replace all uses of result of PHI by underlying variable and mark it
1028    for renaming.  */
1029 
1030 void
1031 mark_virtual_phi_result_for_renaming (gimple phi)
1032 {
1033   if (dump_file && (dump_flags & TDF_DETAILS))
1034     {
1035       fprintf (dump_file, "Marking result for renaming : ");
1036       print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1037       fprintf (dump_file, "\n");
1038     }
1039 
1040   mark_virtual_operand_for_renaming (gimple_phi_result (phi));
1041 }
1042 
1043 
1044 /* Remove dead PHI nodes from block BB.  */
1045 
1046 static bool
1047 remove_dead_phis (basic_block bb)
1048 {
1049   bool something_changed = false;
1050   gimple_seq phis;
1051   gimple phi;
1052   gimple_stmt_iterator gsi;
1053   phis = phi_nodes (bb);
1054 
1055   for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
1056     {
1057       stats.total_phis++;
1058       phi = gsi_stmt (gsi);
1059 
1060       /* We do not track necessity of virtual PHI nodes.  Instead do
1061          very simple dead PHI removal here.  */
1062       if (!is_gimple_reg (gimple_phi_result (phi)))
1063 	{
1064 	  /* Virtual PHI nodes with one or identical arguments
1065 	     can be removed.  */
1066 	  if (degenerate_phi_p (phi))
1067 	    {
1068 	      tree vdef = gimple_phi_result (phi);
1069 	      tree vuse = gimple_phi_arg_def (phi, 0);
1070 
1071 	      use_operand_p use_p;
1072 	      imm_use_iterator iter;
1073 	      gimple use_stmt;
1074 	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
1075 		FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1076 		  SET_USE (use_p, vuse);
1077 	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
1078 	          && TREE_CODE (vuse) == SSA_NAME)
1079 		SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
1080 	    }
1081 	  else
1082 	    gimple_set_plf (phi, STMT_NECESSARY, true);
1083 	}
1084 
1085       if (!gimple_plf (phi, STMT_NECESSARY))
1086 	{
1087 	  something_changed = true;
1088 	  if (dump_file && (dump_flags & TDF_DETAILS))
1089 	    {
1090 	      fprintf (dump_file, "Deleting : ");
1091 	      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1092 	      fprintf (dump_file, "\n");
1093 	    }
1094 
1095 	  remove_phi_node (&gsi, true);
1096 	  stats.removed_phis++;
1097 	  continue;
1098 	}
1099 
1100       gsi_next (&gsi);
1101     }
1102   return something_changed;
1103 }
1104 
1105 /* Forward edge E to respective POST_DOM_BB and update PHIs.  */
1106 
1107 static edge
1108 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1109 {
1110   gimple_stmt_iterator gsi;
1111   edge e2 = NULL;
1112   edge_iterator ei;
1113 
1114   if (dump_file && (dump_flags & TDF_DETAILS))
1115     fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1116 	     e->dest->index, post_dom_bb->index);
1117 
1118   e2 = redirect_edge_and_branch (e, post_dom_bb);
1119   cfg_altered = true;
1120 
1121   /* If edge was already around, no updating is neccesary.  */
1122   if (e2 != e)
1123     return e2;
1124 
1125   if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1126     {
1127       /* We are sure that for every live PHI we are seeing control dependent BB.
1128          This means that we can pick any edge to duplicate PHI args from.  */
1129       FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1130 	if (e2 != e)
1131 	  break;
1132       for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1133 	{
1134 	  gimple phi = gsi_stmt (gsi);
1135 	  tree op;
1136 	  source_location locus;
1137 
1138 	  /* PHIs for virtuals have no control dependency relation on them.
1139 	     We are lost here and must force renaming of the symbol.  */
1140 	  if (!is_gimple_reg (gimple_phi_result (phi)))
1141 	    {
1142 	      mark_virtual_phi_result_for_renaming (phi);
1143 	      remove_phi_node (&gsi, true);
1144 	      continue;
1145 	    }
1146 
1147 	  /* Dead PHI do not imply control dependency.  */
1148           if (!gimple_plf (phi, STMT_NECESSARY))
1149 	    {
1150 	      gsi_next (&gsi);
1151 	      continue;
1152 	    }
1153 
1154 	  op = gimple_phi_arg_def (phi, e2->dest_idx);
1155 	  locus = gimple_phi_arg_location (phi, e2->dest_idx);
1156 	  add_phi_arg (phi, op, e, locus);
1157 	  /* The resulting PHI if not dead can only be degenerate.  */
1158 	  gcc_assert (degenerate_phi_p (phi));
1159 	  gsi_next (&gsi);
1160 	}
1161     }
1162   return e;
1163 }
1164 
1165 /* Remove dead statement pointed to by iterator I.  Receives the basic block BB
1166    containing I so that we don't have to look it up.  */
1167 
1168 static void
1169 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1170 {
1171   gimple stmt = gsi_stmt (*i);
1172 
1173   if (dump_file && (dump_flags & TDF_DETAILS))
1174     {
1175       fprintf (dump_file, "Deleting : ");
1176       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1177       fprintf (dump_file, "\n");
1178     }
1179 
1180   stats.removed++;
1181 
1182   /* If we have determined that a conditional branch statement contributes
1183      nothing to the program, then we not only remove it, but we also change
1184      the flow graph so that the current block will simply fall-thru to its
1185      immediate post-dominator.  The blocks we are circumventing will be
1186      removed by cleanup_tree_cfg if this change in the flow graph makes them
1187      unreachable.  */
1188   if (is_ctrl_stmt (stmt))
1189     {
1190       basic_block post_dom_bb;
1191       edge e, e2;
1192       edge_iterator ei;
1193 
1194       post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1195 
1196       e = find_edge (bb, post_dom_bb);
1197 
1198       /* If edge is already there, try to use it.  This avoids need to update
1199          PHI nodes.  Also watch for cases where post dominator does not exists
1200 	 or is exit block.  These can happen for infinite loops as we create
1201 	 fake edges in the dominator tree.  */
1202       if (e)
1203         ;
1204       else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1205 	e = EDGE_SUCC (bb, 0);
1206       else
1207         e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1208       gcc_assert (e);
1209       e->probability = REG_BR_PROB_BASE;
1210       e->count = bb->count;
1211 
1212       /* The edge is no longer associated with a conditional, so it does
1213 	 not have TRUE/FALSE flags.  */
1214       e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1215 
1216       /* The lone outgoing edge from BB will be a fallthru edge.  */
1217       e->flags |= EDGE_FALLTHRU;
1218 
1219       /* Remove the remaining outgoing edges.  */
1220       for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1221 	if (e != e2)
1222 	  {
1223 	    cfg_altered = true;
1224             remove_edge (e2);
1225 	  }
1226 	else
1227 	  ei_next (&ei);
1228     }
1229 
1230   /* If this is a store into a variable that is being optimized away,
1231      add a debug bind stmt if possible.  */
1232   if (MAY_HAVE_DEBUG_STMTS
1233       && gimple_assign_single_p (stmt)
1234       && is_gimple_val (gimple_assign_rhs1 (stmt)))
1235     {
1236       tree lhs = gimple_assign_lhs (stmt);
1237       if ((TREE_CODE (lhs) == VAR_DECL || TREE_CODE (lhs) == PARM_DECL)
1238 	  && !DECL_IGNORED_P (lhs)
1239 	  && is_gimple_reg_type (TREE_TYPE (lhs))
1240 	  && !is_global_var (lhs)
1241 	  && !DECL_HAS_VALUE_EXPR_P (lhs))
1242 	{
1243 	  tree rhs = gimple_assign_rhs1 (stmt);
1244 	  gimple note
1245 	    = gimple_build_debug_bind (lhs, unshare_expr (rhs), stmt);
1246 	  gsi_insert_after (i, note, GSI_SAME_STMT);
1247 	}
1248     }
1249 
1250   unlink_stmt_vdef (stmt);
1251   gsi_remove (i, true);
1252   release_defs (stmt);
1253 }
1254 
1255 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1256    contributes nothing to the program, and can be deleted.  */
1257 
1258 static bool
1259 eliminate_unnecessary_stmts (void)
1260 {
1261   bool something_changed = false;
1262   basic_block bb;
1263   gimple_stmt_iterator gsi, psi;
1264   gimple stmt;
1265   tree call;
1266   VEC (basic_block, heap) *h;
1267 
1268   if (dump_file && (dump_flags & TDF_DETAILS))
1269     fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1270 
1271   clear_special_calls ();
1272 
1273   /* Walking basic blocks and statements in reverse order avoids
1274      releasing SSA names before any other DEFs that refer to them are
1275      released.  This helps avoid loss of debug information, as we get
1276      a chance to propagate all RHSs of removed SSAs into debug uses,
1277      rather than only the latest ones.  E.g., consider:
1278 
1279      x_3 = y_1 + z_2;
1280      a_5 = x_3 - b_4;
1281      # DEBUG a => a_5
1282 
1283      If we were to release x_3 before a_5, when we reached a_5 and
1284      tried to substitute it into the debug stmt, we'd see x_3 there,
1285      but x_3's DEF, type, etc would have already been disconnected.
1286      By going backwards, the debug stmt first changes to:
1287 
1288      # DEBUG a => x_3 - b_4
1289 
1290      and then to:
1291 
1292      # DEBUG a => y_1 + z_2 - b_4
1293 
1294      as desired.  */
1295   gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1296   h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1297 
1298   while (VEC_length (basic_block, h))
1299     {
1300       bb = VEC_pop (basic_block, h);
1301 
1302       /* Remove dead statements.  */
1303       for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1304 	{
1305 	  stmt = gsi_stmt (gsi);
1306 
1307 	  psi = gsi;
1308 	  gsi_prev (&psi);
1309 
1310 	  stats.total++;
1311 
1312 	  /* We can mark a call to free as not necessary if the
1313 	     defining statement of its argument is not necessary
1314 	     (and thus is getting removed).  */
1315 	  if (gimple_plf (stmt, STMT_NECESSARY)
1316 	      && gimple_call_builtin_p (stmt, BUILT_IN_FREE))
1317 	    {
1318 	      tree ptr = gimple_call_arg (stmt, 0);
1319 	      if (TREE_CODE (ptr) == SSA_NAME)
1320 		{
1321 		  gimple def_stmt = SSA_NAME_DEF_STMT (ptr);
1322 		  if (!gimple_nop_p (def_stmt)
1323 		      && !gimple_plf (def_stmt, STMT_NECESSARY))
1324 		    gimple_set_plf (stmt, STMT_NECESSARY, false);
1325 		}
1326 	    }
1327 
1328 	  /* If GSI is not necessary then remove it.  */
1329 	  if (!gimple_plf (stmt, STMT_NECESSARY))
1330 	    {
1331 	      if (!is_gimple_debug (stmt))
1332 		something_changed = true;
1333 	      remove_dead_stmt (&gsi, bb);
1334 	    }
1335 	  else if (is_gimple_call (stmt))
1336 	    {
1337 	      tree name = gimple_call_lhs (stmt);
1338 
1339 	      notice_special_calls (stmt);
1340 
1341 	      /* When LHS of var = call (); is dead, simplify it into
1342 		 call (); saving one operand.  */
1343 	      if (name
1344 		  && TREE_CODE (name) == SSA_NAME
1345 		  && !TEST_BIT (processed, SSA_NAME_VERSION (name))
1346 		  /* Avoid doing so for allocation calls which we
1347 		     did not mark as necessary, it will confuse the
1348 		     special logic we apply to malloc/free pair removal.  */
1349 		  && (!(call = gimple_call_fndecl (stmt))
1350 		      || DECL_BUILT_IN_CLASS (call) != BUILT_IN_NORMAL
1351 		      || (DECL_FUNCTION_CODE (call) != BUILT_IN_MALLOC
1352 			  && DECL_FUNCTION_CODE (call) != BUILT_IN_CALLOC
1353 			  && DECL_FUNCTION_CODE (call) != BUILT_IN_ALLOCA
1354 			  && (DECL_FUNCTION_CODE (call)
1355 			      != BUILT_IN_ALLOCA_WITH_ALIGN))))
1356 		{
1357 		  something_changed = true;
1358 		  if (dump_file && (dump_flags & TDF_DETAILS))
1359 		    {
1360 		      fprintf (dump_file, "Deleting LHS of call: ");
1361 		      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1362 		      fprintf (dump_file, "\n");
1363 		    }
1364 
1365 		  gimple_call_set_lhs (stmt, NULL_TREE);
1366 		  maybe_clean_or_replace_eh_stmt (stmt, stmt);
1367 		  update_stmt (stmt);
1368 		  release_ssa_name (name);
1369 		}
1370 	    }
1371 	}
1372     }
1373 
1374   VEC_free (basic_block, heap, h);
1375 
1376   /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1377      rendered some PHI nodes unreachable while they are still in use.
1378      Mark them for renaming.  */
1379   if (cfg_altered)
1380     {
1381       basic_block prev_bb;
1382 
1383       find_unreachable_blocks ();
1384 
1385       /* Delete all unreachable basic blocks in reverse dominator order.  */
1386       for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1387 	{
1388 	  prev_bb = bb->prev_bb;
1389 
1390 	  if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1391 	      || !(bb->flags & BB_REACHABLE))
1392 	    {
1393 	      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1394 		if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1395 		  {
1396 		    bool found = false;
1397 		    imm_use_iterator iter;
1398 
1399 		    FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1400 		      {
1401 			if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1402 			  continue;
1403 			if (gimple_code (stmt) == GIMPLE_PHI
1404 			    || gimple_plf (stmt, STMT_NECESSARY))
1405 			  {
1406 			    found = true;
1407 			    BREAK_FROM_IMM_USE_STMT (iter);
1408 			  }
1409 		      }
1410 		    if (found)
1411 		      mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1412 		  }
1413 
1414 	      if (!(bb->flags & BB_REACHABLE))
1415 		{
1416 		  /* Speed up the removal of blocks that don't
1417 		     dominate others.  Walking backwards, this should
1418 		     be the common case.  ??? Do we need to recompute
1419 		     dominators because of cfg_altered?  */
1420 		  if (!MAY_HAVE_DEBUG_STMTS
1421 		      || !first_dom_son (CDI_DOMINATORS, bb))
1422 		    delete_basic_block (bb);
1423 		  else
1424 		    {
1425 		      h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1426 
1427 		      while (VEC_length (basic_block, h))
1428 			{
1429 			  bb = VEC_pop (basic_block, h);
1430 			  prev_bb = bb->prev_bb;
1431 			  /* Rearrangements to the CFG may have failed
1432 			     to update the dominators tree, so that
1433 			     formerly-dominated blocks are now
1434 			     otherwise reachable.  */
1435 			  if (!!(bb->flags & BB_REACHABLE))
1436 			    continue;
1437 			  delete_basic_block (bb);
1438 			}
1439 
1440 		      VEC_free (basic_block, heap, h);
1441 		    }
1442 		}
1443 	    }
1444 	}
1445     }
1446   FOR_EACH_BB (bb)
1447     {
1448       /* Remove dead PHI nodes.  */
1449       something_changed |= remove_dead_phis (bb);
1450     }
1451 
1452   return something_changed;
1453 }
1454 
1455 
1456 /* Print out removed statement statistics.  */
1457 
1458 static void
1459 print_stats (void)
1460 {
1461   float percg;
1462 
1463   percg = ((float) stats.removed / (float) stats.total) * 100;
1464   fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1465 	   stats.removed, stats.total, (int) percg);
1466 
1467   if (stats.total_phis == 0)
1468     percg = 0;
1469   else
1470     percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1471 
1472   fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1473 	   stats.removed_phis, stats.total_phis, (int) percg);
1474 }
1475 
1476 /* Initialization for this pass.  Set up the used data structures.  */
1477 
1478 static void
1479 tree_dce_init (bool aggressive)
1480 {
1481   memset ((void *) &stats, 0, sizeof (stats));
1482 
1483   if (aggressive)
1484     {
1485       int i;
1486 
1487       control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1488       for (i = 0; i < last_basic_block; ++i)
1489 	control_dependence_map[i] = BITMAP_ALLOC (NULL);
1490 
1491       last_stmt_necessary = sbitmap_alloc (last_basic_block);
1492       sbitmap_zero (last_stmt_necessary);
1493       bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1494       sbitmap_zero (bb_contains_live_stmts);
1495     }
1496 
1497   processed = sbitmap_alloc (num_ssa_names + 1);
1498   sbitmap_zero (processed);
1499 
1500   worklist = VEC_alloc (gimple, heap, 64);
1501   cfg_altered = false;
1502 }
1503 
1504 /* Cleanup after this pass.  */
1505 
1506 static void
1507 tree_dce_done (bool aggressive)
1508 {
1509   if (aggressive)
1510     {
1511       int i;
1512 
1513       for (i = 0; i < last_basic_block; ++i)
1514 	BITMAP_FREE (control_dependence_map[i]);
1515       free (control_dependence_map);
1516 
1517       sbitmap_free (visited_control_parents);
1518       sbitmap_free (last_stmt_necessary);
1519       sbitmap_free (bb_contains_live_stmts);
1520       bb_contains_live_stmts = NULL;
1521     }
1522 
1523   sbitmap_free (processed);
1524 
1525   VEC_free (gimple, heap, worklist);
1526 }
1527 
1528 /* Main routine to eliminate dead code.
1529 
1530    AGGRESSIVE controls the aggressiveness of the algorithm.
1531    In conservative mode, we ignore control dependence and simply declare
1532    all but the most trivially dead branches necessary.  This mode is fast.
1533    In aggressive mode, control dependences are taken into account, which
1534    results in more dead code elimination, but at the cost of some time.
1535 
1536    FIXME: Aggressive mode before PRE doesn't work currently because
1537 	  the dominance info is not invalidated after DCE1.  This is
1538 	  not an issue right now because we only run aggressive DCE
1539 	  as the last tree SSA pass, but keep this in mind when you
1540 	  start experimenting with pass ordering.  */
1541 
1542 static unsigned int
1543 perform_tree_ssa_dce (bool aggressive)
1544 {
1545   struct edge_list *el = NULL;
1546   bool something_changed = 0;
1547 
1548   calculate_dominance_info (CDI_DOMINATORS);
1549 
1550   /* Preheaders are needed for SCEV to work.
1551      Simple lateches and recorded exits improve chances that loop will
1552      proved to be finite in testcases such as in loop-15.c and loop-24.c  */
1553   if (aggressive)
1554     loop_optimizer_init (LOOPS_NORMAL
1555 			 | LOOPS_HAVE_RECORDED_EXITS);
1556 
1557   tree_dce_init (aggressive);
1558 
1559   if (aggressive)
1560     {
1561       /* Compute control dependence.  */
1562       timevar_push (TV_CONTROL_DEPENDENCES);
1563       calculate_dominance_info (CDI_POST_DOMINATORS);
1564       el = create_edge_list ();
1565       find_all_control_dependences (el);
1566       timevar_pop (TV_CONTROL_DEPENDENCES);
1567 
1568       visited_control_parents = sbitmap_alloc (last_basic_block);
1569       sbitmap_zero (visited_control_parents);
1570 
1571       mark_dfs_back_edges ();
1572     }
1573 
1574   find_obviously_necessary_stmts (el);
1575 
1576   if (aggressive)
1577     loop_optimizer_finalize ();
1578 
1579   longest_chain = 0;
1580   total_chain = 0;
1581   nr_walks = 0;
1582   chain_ovfl = false;
1583   visited = BITMAP_ALLOC (NULL);
1584   propagate_necessity (el);
1585   BITMAP_FREE (visited);
1586 
1587   something_changed |= eliminate_unnecessary_stmts ();
1588   something_changed |= cfg_altered;
1589 
1590   /* We do not update postdominators, so free them unconditionally.  */
1591   free_dominance_info (CDI_POST_DOMINATORS);
1592 
1593   /* If we removed paths in the CFG, then we need to update
1594      dominators as well.  I haven't investigated the possibility
1595      of incrementally updating dominators.  */
1596   if (cfg_altered)
1597     free_dominance_info (CDI_DOMINATORS);
1598 
1599   statistics_counter_event (cfun, "Statements deleted", stats.removed);
1600   statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1601 
1602   /* Debugging dumps.  */
1603   if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1604     print_stats ();
1605 
1606   tree_dce_done (aggressive);
1607 
1608   free_edge_list (el);
1609 
1610   if (something_changed)
1611     return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1612 	    | TODO_remove_unused_locals);
1613   else
1614     return 0;
1615 }
1616 
1617 /* Pass entry points.  */
1618 static unsigned int
1619 tree_ssa_dce (void)
1620 {
1621   return perform_tree_ssa_dce (/*aggressive=*/false);
1622 }
1623 
1624 static unsigned int
1625 tree_ssa_dce_loop (void)
1626 {
1627   unsigned int todo;
1628   todo = perform_tree_ssa_dce (/*aggressive=*/false);
1629   if (todo)
1630     {
1631       free_numbers_of_iterations_estimates ();
1632       scev_reset ();
1633     }
1634   return todo;
1635 }
1636 
1637 static unsigned int
1638 tree_ssa_cd_dce (void)
1639 {
1640   return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1641 }
1642 
1643 static bool
1644 gate_dce (void)
1645 {
1646   return flag_tree_dce != 0;
1647 }
1648 
1649 struct gimple_opt_pass pass_dce =
1650 {
1651  {
1652   GIMPLE_PASS,
1653   "dce",				/* name */
1654   gate_dce,				/* gate */
1655   tree_ssa_dce,				/* execute */
1656   NULL,					/* sub */
1657   NULL,					/* next */
1658   0,					/* static_pass_number */
1659   TV_TREE_DCE,				/* tv_id */
1660   PROP_cfg | PROP_ssa,			/* properties_required */
1661   0,					/* properties_provided */
1662   0,					/* properties_destroyed */
1663   0,					/* todo_flags_start */
1664   TODO_verify_ssa	                /* todo_flags_finish */
1665  }
1666 };
1667 
1668 struct gimple_opt_pass pass_dce_loop =
1669 {
1670  {
1671   GIMPLE_PASS,
1672   "dceloop",				/* name */
1673   gate_dce,				/* gate */
1674   tree_ssa_dce_loop,			/* execute */
1675   NULL,					/* sub */
1676   NULL,					/* next */
1677   0,					/* static_pass_number */
1678   TV_TREE_DCE,				/* tv_id */
1679   PROP_cfg | PROP_ssa,			/* properties_required */
1680   0,					/* properties_provided */
1681   0,					/* properties_destroyed */
1682   0,					/* todo_flags_start */
1683   TODO_verify_ssa	                /* todo_flags_finish */
1684  }
1685 };
1686 
1687 struct gimple_opt_pass pass_cd_dce =
1688 {
1689  {
1690   GIMPLE_PASS,
1691   "cddce",				/* name */
1692   gate_dce,				/* gate */
1693   tree_ssa_cd_dce,			/* execute */
1694   NULL,					/* sub */
1695   NULL,					/* next */
1696   0,					/* static_pass_number */
1697   TV_TREE_CD_DCE,			/* tv_id */
1698   PROP_cfg | PROP_ssa,			/* properties_required */
1699   0,					/* properties_provided */
1700   0,					/* properties_destroyed */
1701   0,					/* todo_flags_start */
1702   TODO_verify_ssa
1703   | TODO_verify_flow			/* todo_flags_finish */
1704  }
1705 };
1706