1 /* Dead code elimination pass for the GNU compiler.
2    Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4    Contributed by Ben Elliston <bje@redhat.com>
5    and Andrew MacLeod <amacleod@redhat.com>
6    Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14 
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23 
24 /* Dead code elimination.
25 
26    References:
27 
28      Building an Optimizing Compiler,
29      Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30 
31      Advanced Compiler Design and Implementation,
32      Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33 
34    Dead-code elimination is the removal of statements which have no
35    impact on the program's output.  "Dead statements" have no impact
36    on the program's output, while "necessary statements" may have
37    impact on the output.
38 
39    The algorithm consists of three phases:
40    1. Marking as necessary all statements known to be necessary,
41       e.g. most function calls, writing a value to memory, etc;
42    2. Propagating necessary statements, e.g., the statements
43       giving values to operands in necessary statements; and
44    3. Removing dead statements.  */
45 
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
63 
64 static struct stmt_stats
65 {
66   int total;
67   int total_phis;
68   int removed;
69   int removed_phis;
70 } stats;
71 
72 #define STMT_NECESSARY GF_PLF_1
73 
74 static VEC(gimple,heap) *worklist;
75 
76 /* Vector indicating an SSA name has already been processed and marked
77    as necessary.  */
78 static sbitmap processed;
79 
80 /* Vector indicating that the last statement of a basic block has already
81    been marked as necessary.  */
82 static sbitmap last_stmt_necessary;
83 
84 /* Vector indicating that BB contains statements that are live.  */
85 static sbitmap bb_contains_live_stmts;
86 
87 /* Before we can determine whether a control branch is dead, we need to
88    compute which blocks are control dependent on which edges.
89 
90    We expect each block to be control dependent on very few edges so we
91    use a bitmap for each block recording its edges.  An array holds the
92    bitmap.  The Ith bit in the bitmap is set if that block is dependent
93    on the Ith edge.  */
94 static bitmap *control_dependence_map;
95 
96 /* Vector indicating that a basic block has already had all the edges
97    processed that it is control dependent on.  */
98 static sbitmap visited_control_parents;
99 
100 /* TRUE if this pass alters the CFG (by removing control statements).
101    FALSE otherwise.
102 
103    If this pass alters the CFG, then it will arrange for the dominators
104    to be recomputed.  */
105 static bool cfg_altered;
106 
107 /* Execute code that follows the macro for each edge (given number
108    EDGE_NUMBER within the CODE) for which the block with index N is
109    control dependent.  */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER)	\
111   EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0,	\
112 			    (EDGE_NUMBER), (BI))
113 
114 
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
118 {
119   if (bb == ENTRY_BLOCK_PTR)
120     return;
121   gcc_assert (bb != EXIT_BLOCK_PTR);
122   bitmap_set_bit (control_dependence_map[bb->index], edge_index);
123 }
124 
125 /* Clear all control dependences for block BB.  */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
128 {
129   bitmap_clear (control_dependence_map[bb->index]);
130 }
131 
132 
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134    This function is necessary because some blocks have negative numbers.  */
135 
136 static inline basic_block
137 find_pdom (basic_block block)
138 {
139   gcc_assert (block != ENTRY_BLOCK_PTR);
140 
141   if (block == EXIT_BLOCK_PTR)
142     return EXIT_BLOCK_PTR;
143   else
144     {
145       basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146       if (! bb)
147 	return EXIT_BLOCK_PTR;
148       return bb;
149     }
150 }
151 
152 
153 /* Determine all blocks' control dependences on the given edge with edge_list
154    EL index EDGE_INDEX, ala Morgan, Section 3.6.  */
155 
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
158 {
159   basic_block current_block;
160   basic_block ending_block;
161 
162   gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
163 
164   if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165     ending_block = single_succ (ENTRY_BLOCK_PTR);
166   else
167     ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
168 
169   for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170        current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171        current_block = find_pdom (current_block))
172     {
173       edge e = INDEX_EDGE (el, edge_index);
174 
175       /* For abnormal edges, we don't make current_block control
176 	 dependent because instructions that throw are always necessary
177 	 anyway.  */
178       if (e->flags & EDGE_ABNORMAL)
179 	continue;
180 
181       set_control_dependence_map_bit (current_block, edge_index);
182     }
183 }
184 
185 
186 /* Record all blocks' control dependences on all edges in the edge
187    list EL, ala Morgan, Section 3.6.  */
188 
189 static void
190 find_all_control_dependences (struct edge_list *el)
191 {
192   int i;
193 
194   for (i = 0; i < NUM_EDGES (el); ++i)
195     find_control_dependence (el, i);
196 }
197 
198 /* If STMT is not already marked necessary, mark it, and add it to the
199    worklist if ADD_TO_WORKLIST is true.  */
200 
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
203 {
204   gcc_assert (stmt);
205 
206   if (gimple_plf (stmt, STMT_NECESSARY))
207     return;
208 
209   if (dump_file && (dump_flags & TDF_DETAILS))
210     {
211       fprintf (dump_file, "Marking useful stmt: ");
212       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213       fprintf (dump_file, "\n");
214     }
215 
216   gimple_set_plf (stmt, STMT_NECESSARY, true);
217   if (add_to_worklist)
218     VEC_safe_push (gimple, heap, worklist, stmt);
219   if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220     SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
221 }
222 
223 
224 /* Mark the statement defining operand OP as necessary.  */
225 
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229   gimple stmt;
230   int ver;
231 
232   gcc_assert (op);
233 
234   ver = SSA_NAME_VERSION (op);
235   if (TEST_BIT (processed, ver))
236     {
237       stmt = SSA_NAME_DEF_STMT (op);
238       gcc_assert (gimple_nop_p (stmt)
239 		  || gimple_plf (stmt, STMT_NECESSARY));
240       return;
241     }
242   SET_BIT (processed, ver);
243 
244   stmt = SSA_NAME_DEF_STMT (op);
245   gcc_assert (stmt);
246 
247   if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248     return;
249 
250   if (dump_file && (dump_flags & TDF_DETAILS))
251     {
252       fprintf (dump_file, "marking necessary through ");
253       print_generic_expr (dump_file, op, 0);
254       fprintf (dump_file, " stmt ");
255       print_gimple_stmt (dump_file, stmt, 0, 0);
256     }
257 
258   gimple_set_plf (stmt, STMT_NECESSARY, true);
259   if (bb_contains_live_stmts)
260     SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261   VEC_safe_push (gimple, heap, worklist, stmt);
262 }
263 
264 
265 /* Mark STMT as necessary if it obviously is.  Add it to the worklist if
266    it can make other statements necessary.
267 
268    If AGGRESSIVE is false, control statements are conservatively marked as
269    necessary.  */
270 
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
273 {
274   /* With non-call exceptions, we have to assume that all statements could
275      throw.  If a statement may throw, it is inherently necessary.  */
276   if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
277     {
278       mark_stmt_necessary (stmt, true);
279       return;
280     }
281 
282   /* Statements that are implicitly live.  Most function calls, asm
283      and return statements are required.  Labels and GIMPLE_BIND nodes
284      are kept because they are control flow, and we have no way of
285      knowing whether they can be removed.  DCE can eliminate all the
286      other statements in a block, and CFG can then remove the block
287      and labels.  */
288   switch (gimple_code (stmt))
289     {
290     case GIMPLE_PREDICT:
291     case GIMPLE_LABEL:
292       mark_stmt_necessary (stmt, false);
293       return;
294 
295     case GIMPLE_ASM:
296     case GIMPLE_RESX:
297     case GIMPLE_RETURN:
298       mark_stmt_necessary (stmt, true);
299       return;
300 
301     case GIMPLE_CALL:
302       {
303 	tree callee = gimple_call_fndecl (stmt);
304 	if (callee != NULL_TREE
305 	    && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
306 	  switch (DECL_FUNCTION_CODE (callee))
307 	    {
308 	    case BUILT_IN_MALLOC:
309 	    case BUILT_IN_CALLOC:
310 	    case BUILT_IN_ALLOCA:
311 	    case BUILT_IN_ALLOCA_WITH_ALIGN:
312 	      return;
313 
314 	    default:;
315 	    }
316 	/* Most, but not all function calls are required.  Function calls that
317 	   produce no result and have no side effects (i.e. const pure
318 	   functions) are unnecessary.  */
319 	if (gimple_has_side_effects (stmt))
320 	  {
321 	    mark_stmt_necessary (stmt, true);
322 	    return;
323 	  }
324 	if (!gimple_call_lhs (stmt))
325 	  return;
326 	break;
327       }
328 
329     case GIMPLE_DEBUG:
330       /* Debug temps without a value are not useful.  ??? If we could
331 	 easily locate the debug temp bind stmt for a use thereof,
332 	 would could refrain from marking all debug temps here, and
333 	 mark them only if they're used.  */
334       if (!gimple_debug_bind_p (stmt)
335 	  || gimple_debug_bind_has_value_p (stmt)
336 	  || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
337 	mark_stmt_necessary (stmt, false);
338       return;
339 
340     case GIMPLE_GOTO:
341       gcc_assert (!simple_goto_p (stmt));
342       mark_stmt_necessary (stmt, true);
343       return;
344 
345     case GIMPLE_COND:
346       gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
347       /* Fall through.  */
348 
349     case GIMPLE_SWITCH:
350       if (! aggressive)
351 	mark_stmt_necessary (stmt, true);
352       break;
353 
354     case GIMPLE_ASSIGN:
355       if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
356 	  && TREE_CLOBBER_P (gimple_assign_rhs1 (stmt)))
357 	return;
358       break;
359 
360     default:
361       break;
362     }
363 
364   /* If the statement has volatile operands, it needs to be preserved.
365      Same for statements that can alter control flow in unpredictable
366      ways.  */
367   if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
368     {
369       mark_stmt_necessary (stmt, true);
370       return;
371     }
372 
373   if (is_hidden_global_store (stmt))
374     {
375       mark_stmt_necessary (stmt, true);
376       return;
377     }
378 
379   return;
380 }
381 
382 
383 /* Mark the last statement of BB as necessary.  */
384 
385 static void
386 mark_last_stmt_necessary (basic_block bb)
387 {
388   gimple stmt = last_stmt (bb);
389 
390   SET_BIT (last_stmt_necessary, bb->index);
391   SET_BIT (bb_contains_live_stmts, bb->index);
392 
393   /* We actually mark the statement only if it is a control statement.  */
394   if (stmt && is_ctrl_stmt (stmt))
395     mark_stmt_necessary (stmt, true);
396 }
397 
398 
399 /* Mark control dependent edges of BB as necessary.  We have to do this only
400    once for each basic block so we set the appropriate bit after we're done.
401 
402    When IGNORE_SELF is true, ignore BB in the list of control dependences.  */
403 
404 static void
405 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
406 					bool ignore_self)
407 {
408   bitmap_iterator bi;
409   unsigned edge_number;
410   bool skipped = false;
411 
412   gcc_assert (bb != EXIT_BLOCK_PTR);
413 
414   if (bb == ENTRY_BLOCK_PTR)
415     return;
416 
417   EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
418     {
419       basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
420 
421       if (ignore_self && cd_bb == bb)
422 	{
423 	  skipped = true;
424 	  continue;
425 	}
426 
427       if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
428 	mark_last_stmt_necessary (cd_bb);
429     }
430 
431   if (!skipped)
432     SET_BIT (visited_control_parents, bb->index);
433 }
434 
435 
436 /* Find obviously necessary statements.  These are things like most function
437    calls, and stores to file level variables.
438 
439    If EL is NULL, control statements are conservatively marked as
440    necessary.  Otherwise it contains the list of edges used by control
441    dependence analysis.  */
442 
443 static void
444 find_obviously_necessary_stmts (struct edge_list *el)
445 {
446   basic_block bb;
447   gimple_stmt_iterator gsi;
448   edge e;
449   gimple phi, stmt;
450   int flags;
451 
452   FOR_EACH_BB (bb)
453     {
454       /* PHI nodes are never inherently necessary.  */
455       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
456 	{
457 	  phi = gsi_stmt (gsi);
458 	  gimple_set_plf (phi, STMT_NECESSARY, false);
459 	}
460 
461       /* Check all statements in the block.  */
462       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
463 	{
464 	  stmt = gsi_stmt (gsi);
465 	  gimple_set_plf (stmt, STMT_NECESSARY, false);
466 	  mark_stmt_if_obviously_necessary (stmt, el != NULL);
467 	}
468     }
469 
470   /* Pure and const functions are finite and thus have no infinite loops in
471      them.  */
472   flags = flags_from_decl_or_type (current_function_decl);
473   if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
474     return;
475 
476   /* Prevent the empty possibly infinite loops from being removed.  */
477   if (el)
478     {
479       loop_iterator li;
480       struct loop *loop;
481       scev_initialize ();
482       if (mark_irreducible_loops ())
483 	FOR_EACH_BB (bb)
484 	  {
485 	    edge_iterator ei;
486 	    FOR_EACH_EDGE (e, ei, bb->succs)
487 	      if ((e->flags & EDGE_DFS_BACK)
488 		  && (e->flags & EDGE_IRREDUCIBLE_LOOP))
489 		{
490 	          if (dump_file)
491 	            fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
492 		    	     e->src->index, e->dest->index);
493 		  mark_control_dependent_edges_necessary (e->dest, el, false);
494 		}
495 	  }
496 
497       FOR_EACH_LOOP (li, loop, 0)
498 	if (!finite_loop_p (loop))
499 	  {
500 	    if (dump_file)
501 	      fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
502 	    mark_control_dependent_edges_necessary (loop->latch, el, false);
503 	  }
504       scev_finalize ();
505     }
506 }
507 
508 
509 /* Return true if REF is based on an aliased base, otherwise false.  */
510 
511 static bool
512 ref_may_be_aliased (tree ref)
513 {
514   gcc_assert (TREE_CODE (ref) != WITH_SIZE_EXPR);
515   while (handled_component_p (ref))
516     ref = TREE_OPERAND (ref, 0);
517   if (TREE_CODE (ref) == MEM_REF
518       && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
519     ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
520   return !(DECL_P (ref)
521 	   && !may_be_aliased (ref));
522 }
523 
524 static bitmap visited = NULL;
525 static unsigned int longest_chain = 0;
526 static unsigned int total_chain = 0;
527 static unsigned int nr_walks = 0;
528 static bool chain_ovfl = false;
529 
530 /* Worker for the walker that marks reaching definitions of REF,
531    which is based on a non-aliased decl, necessary.  It returns
532    true whenever the defining statement of the current VDEF is
533    a kill for REF, as no dominating may-defs are necessary for REF
534    anymore.  DATA points to the basic-block that contains the
535    stmt that refers to REF.  */
536 
537 static bool
538 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
539 {
540   gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
541 
542   /* All stmts we visit are necessary.  */
543   mark_operand_necessary (vdef);
544 
545   /* If the stmt lhs kills ref, then we can stop walking.  */
546   if (gimple_has_lhs (def_stmt)
547       && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
548       /* The assignment is not necessarily carried out if it can throw
549          and we can catch it in the current function where we could inspect
550 	 the previous value.
551          ???  We only need to care about the RHS throwing.  For aggregate
552 	 assignments or similar calls and non-call exceptions the LHS
553 	 might throw as well.  */
554       && !stmt_can_throw_internal (def_stmt))
555     {
556       tree base, lhs = gimple_get_lhs (def_stmt);
557       HOST_WIDE_INT size, offset, max_size;
558       ao_ref_base (ref);
559       base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
560       /* We can get MEM[symbol: sZ, index: D.8862_1] here,
561 	 so base == refd->base does not always hold.  */
562       if (base == ref->base)
563 	{
564 	  /* For a must-alias check we need to be able to constrain
565 	     the accesses properly.  */
566 	  if (size != -1 && size == max_size
567 	      && ref->max_size != -1)
568 	    {
569 	      if (offset <= ref->offset
570 		  && offset + size >= ref->offset + ref->max_size)
571 		return true;
572 	    }
573 	  /* Or they need to be exactly the same.  */
574 	  else if (ref->ref
575 		   /* Make sure there is no induction variable involved
576 		      in the references (gcc.c-torture/execute/pr42142.c).
577 		      The simplest way is to check if the kill dominates
578 		      the use.  */
579 		   && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
580 				      gimple_bb (def_stmt))
581 		   && operand_equal_p (ref->ref, lhs, 0))
582 	    return true;
583 	}
584     }
585 
586   /* Otherwise keep walking.  */
587   return false;
588 }
589 
590 static void
591 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
592 {
593   unsigned int chain;
594   ao_ref refd;
595   gcc_assert (!chain_ovfl);
596   ao_ref_init (&refd, ref);
597   chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
598 			      mark_aliased_reaching_defs_necessary_1,
599 			      gimple_bb (stmt), NULL);
600   if (chain > longest_chain)
601     longest_chain = chain;
602   total_chain += chain;
603   nr_walks++;
604 }
605 
606 /* Worker for the walker that marks reaching definitions of REF, which
607    is not based on a non-aliased decl.  For simplicity we need to end
608    up marking all may-defs necessary that are not based on a non-aliased
609    decl.  The only job of this walker is to skip may-defs based on
610    a non-aliased decl.  */
611 
612 static bool
613 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
614 				    tree vdef, void *data ATTRIBUTE_UNUSED)
615 {
616   gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
617 
618   /* We have to skip already visited (and thus necessary) statements
619      to make the chaining work after we dropped back to simple mode.  */
620   if (chain_ovfl
621       && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
622     {
623       gcc_assert (gimple_nop_p (def_stmt)
624 		  || gimple_plf (def_stmt, STMT_NECESSARY));
625       return false;
626     }
627 
628   /* We want to skip stores to non-aliased variables.  */
629   if (!chain_ovfl
630       && gimple_assign_single_p (def_stmt))
631     {
632       tree lhs = gimple_assign_lhs (def_stmt);
633       if (!ref_may_be_aliased (lhs))
634 	return false;
635     }
636 
637   /* We want to skip statments that do not constitute stores but have
638      a virtual definition.  */
639   if (is_gimple_call (def_stmt))
640     {
641       tree callee = gimple_call_fndecl (def_stmt);
642       if (callee != NULL_TREE
643 	  && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
644 	switch (DECL_FUNCTION_CODE (callee))
645 	  {
646 	  case BUILT_IN_MALLOC:
647 	  case BUILT_IN_CALLOC:
648 	  case BUILT_IN_ALLOCA:
649 	  case BUILT_IN_ALLOCA_WITH_ALIGN:
650 	  case BUILT_IN_FREE:
651 	    return false;
652 
653 	  default:;
654 	  }
655     }
656 
657   mark_operand_necessary (vdef);
658 
659   return false;
660 }
661 
662 static void
663 mark_all_reaching_defs_necessary (gimple stmt)
664 {
665   walk_aliased_vdefs (NULL, gimple_vuse (stmt),
666 		      mark_all_reaching_defs_necessary_1, NULL, &visited);
667 }
668 
669 /* Return true for PHI nodes with one or identical arguments
670    can be removed.  */
671 static bool
672 degenerate_phi_p (gimple phi)
673 {
674   unsigned int i;
675   tree op = gimple_phi_arg_def (phi, 0);
676   for (i = 1; i < gimple_phi_num_args (phi); i++)
677     if (gimple_phi_arg_def (phi, i) != op)
678       return false;
679   return true;
680 }
681 
682 /* Propagate necessity using the operands of necessary statements.
683    Process the uses on each statement in the worklist, and add all
684    feeding statements which contribute to the calculation of this
685    value to the worklist.
686 
687    In conservative mode, EL is NULL.  */
688 
689 static void
690 propagate_necessity (struct edge_list *el)
691 {
692   gimple stmt;
693   bool aggressive = (el ? true : false);
694 
695   if (dump_file && (dump_flags & TDF_DETAILS))
696     fprintf (dump_file, "\nProcessing worklist:\n");
697 
698   while (VEC_length (gimple, worklist) > 0)
699     {
700       /* Take STMT from worklist.  */
701       stmt = VEC_pop (gimple, worklist);
702 
703       if (dump_file && (dump_flags & TDF_DETAILS))
704 	{
705 	  fprintf (dump_file, "processing: ");
706 	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
707 	  fprintf (dump_file, "\n");
708 	}
709 
710       if (aggressive)
711 	{
712 	  /* Mark the last statement of the basic blocks on which the block
713 	     containing STMT is control dependent, but only if we haven't
714 	     already done so.  */
715 	  basic_block bb = gimple_bb (stmt);
716 	  if (bb != ENTRY_BLOCK_PTR
717 	      && !TEST_BIT (visited_control_parents, bb->index))
718 	    mark_control_dependent_edges_necessary (bb, el, false);
719 	}
720 
721       if (gimple_code (stmt) == GIMPLE_PHI
722 	  /* We do not process virtual PHI nodes nor do we track their
723 	     necessity.  */
724 	  && is_gimple_reg (gimple_phi_result (stmt)))
725 	{
726 	  /* PHI nodes are somewhat special in that each PHI alternative has
727 	     data and control dependencies.  All the statements feeding the
728 	     PHI node's arguments are always necessary.  In aggressive mode,
729 	     we also consider the control dependent edges leading to the
730 	     predecessor block associated with each PHI alternative as
731 	     necessary.  */
732 	  size_t k;
733 
734 	  for (k = 0; k < gimple_phi_num_args (stmt); k++)
735             {
736 	      tree arg = PHI_ARG_DEF (stmt, k);
737 	      if (TREE_CODE (arg) == SSA_NAME)
738 		mark_operand_necessary (arg);
739 	    }
740 
741 	  /* For PHI operands it matters from where the control flow arrives
742 	     to the BB.  Consider the following example:
743 
744 	     a=exp1;
745 	     b=exp2;
746 	     if (test)
747 		;
748 	     else
749 		;
750 	     c=PHI(a,b)
751 
752 	     We need to mark control dependence of the empty basic blocks, since they
753 	     contains computation of PHI operands.
754 
755 	     Doing so is too restrictive in the case the predecestor block is in
756 	     the loop. Consider:
757 
758 	      if (b)
759 		{
760 		  int i;
761 		  for (i = 0; i<1000; ++i)
762 		    ;
763 		  j = 0;
764 		}
765 	      return j;
766 
767 	     There is PHI for J in the BB containing return statement.
768 	     In this case the control dependence of predecestor block (that is
769 	     within the empty loop) also contains the block determining number
770 	     of iterations of the block that would prevent removing of empty
771 	     loop in this case.
772 
773 	     This scenario can be avoided by splitting critical edges.
774 	     To save the critical edge splitting pass we identify how the control
775 	     dependence would look like if the edge was split.
776 
777 	     Consider the modified CFG created from current CFG by splitting
778 	     edge B->C.  In the postdominance tree of modified CFG, C' is
779 	     always child of C.  There are two cases how chlids of C' can look
780 	     like:
781 
782 		1) C' is leaf
783 
784 		   In this case the only basic block C' is control dependent on is B.
785 
786 		2) C' has single child that is B
787 
788 		   In this case control dependence of C' is same as control
789 		   dependence of B in original CFG except for block B itself.
790 		   (since C' postdominate B in modified CFG)
791 
792 	     Now how to decide what case happens?  There are two basic options:
793 
794 		a) C postdominate B.  Then C immediately postdominate B and
795 		   case 2 happens iff there is no other way from B to C except
796 		   the edge B->C.
797 
798 		   There is other way from B to C iff there is succesor of B that
799 		   is not postdominated by B.  Testing this condition is somewhat
800 		   expensive, because we need to iterate all succesors of B.
801 		   We are safe to assume that this does not happen: we will mark B
802 		   as needed when processing the other path from B to C that is
803 		   conrol dependent on B and marking control dependencies of B
804 		   itself is harmless because they will be processed anyway after
805 		   processing control statement in B.
806 
807 		b) C does not postdominate B.  Always case 1 happens since there is
808 		   path from C to exit that does not go through B and thus also C'.  */
809 
810 	  if (aggressive && !degenerate_phi_p (stmt))
811 	    {
812 	      for (k = 0; k < gimple_phi_num_args (stmt); k++)
813 		{
814 		  basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
815 
816 		  if (gimple_bb (stmt)
817 		      != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
818 		    {
819 		      if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
820 			mark_last_stmt_necessary (arg_bb);
821 		    }
822 		  else if (arg_bb != ENTRY_BLOCK_PTR
823 		           && !TEST_BIT (visited_control_parents,
824 					 arg_bb->index))
825 		    mark_control_dependent_edges_necessary (arg_bb, el, true);
826 		}
827 	    }
828 	}
829       else
830 	{
831 	  /* Propagate through the operands.  Examine all the USE, VUSE and
832 	     VDEF operands in this statement.  Mark all the statements
833 	     which feed this statement's uses as necessary.  */
834 	  ssa_op_iter iter;
835 	  tree use;
836 
837 	  /* If this is a call to free which is directly fed by an
838 	     allocation function do not mark that necessary through
839 	     processing the argument.  */
840 	  if (gimple_call_builtin_p (stmt, BUILT_IN_FREE))
841 	    {
842 	      tree ptr = gimple_call_arg (stmt, 0);
843 	      gimple def_stmt;
844 	      tree def_callee;
845 	      /* If the pointer we free is defined by an allocation
846 		 function do not add the call to the worklist.  */
847 	      if (TREE_CODE (ptr) == SSA_NAME
848 		  && is_gimple_call (def_stmt = SSA_NAME_DEF_STMT (ptr))
849 		  && (def_callee = gimple_call_fndecl (def_stmt))
850 		  && DECL_BUILT_IN_CLASS (def_callee) == BUILT_IN_NORMAL
851 		  && (DECL_FUNCTION_CODE (def_callee) == BUILT_IN_MALLOC
852 		      || DECL_FUNCTION_CODE (def_callee) == BUILT_IN_CALLOC))
853 		continue;
854 	    }
855 
856 	  FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
857 	    mark_operand_necessary (use);
858 
859 	  use = gimple_vuse (stmt);
860 	  if (!use)
861 	    continue;
862 
863 	  /* If we dropped to simple mode make all immediately
864 	     reachable definitions necessary.  */
865 	  if (chain_ovfl)
866 	    {
867 	      mark_all_reaching_defs_necessary (stmt);
868 	      continue;
869 	    }
870 
871 	  /* For statements that may load from memory (have a VUSE) we
872 	     have to mark all reaching (may-)definitions as necessary.
873 	     We partition this task into two cases:
874 	      1) explicit loads based on decls that are not aliased
875 	      2) implicit loads (like calls) and explicit loads not
876 	         based on decls that are not aliased (like indirect
877 		 references or loads from globals)
878 	     For 1) we mark all reaching may-defs as necessary, stopping
879 	     at dominating kills.  For 2) we want to mark all dominating
880 	     references necessary, but non-aliased ones which we handle
881 	     in 1).  By keeping a global visited bitmap for references
882 	     we walk for 2) we avoid quadratic behavior for those.  */
883 
884 	  if (is_gimple_call (stmt))
885 	    {
886 	      tree callee = gimple_call_fndecl (stmt);
887 	      unsigned i;
888 
889 	      /* Calls to functions that are merely acting as barriers
890 		 or that only store to memory do not make any previous
891 		 stores necessary.  */
892 	      if (callee != NULL_TREE
893 		  && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
894 		  && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
895 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
896 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
897 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
898 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
899 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_VA_END
900 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
901 		      || (DECL_FUNCTION_CODE (callee)
902 			  == BUILT_IN_ALLOCA_WITH_ALIGN)
903 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
904 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
905 		      || DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
906 		continue;
907 
908 	      /* Calls implicitly load from memory, their arguments
909 	         in addition may explicitly perform memory loads.  */
910 	      mark_all_reaching_defs_necessary (stmt);
911 	      for (i = 0; i < gimple_call_num_args (stmt); ++i)
912 		{
913 		  tree arg = gimple_call_arg (stmt, i);
914 		  if (TREE_CODE (arg) == SSA_NAME
915 		      || is_gimple_min_invariant (arg))
916 		    continue;
917 		  if (TREE_CODE (arg) == WITH_SIZE_EXPR)
918 		    arg = TREE_OPERAND (arg, 0);
919 		  if (!ref_may_be_aliased (arg))
920 		    mark_aliased_reaching_defs_necessary (stmt, arg);
921 		}
922 	    }
923 	  else if (gimple_assign_single_p (stmt))
924 	    {
925 	      tree rhs;
926 	      /* If this is a load mark things necessary.  */
927 	      rhs = gimple_assign_rhs1 (stmt);
928 	      if (TREE_CODE (rhs) != SSA_NAME
929 		  && !is_gimple_min_invariant (rhs)
930 		  && TREE_CODE (rhs) != CONSTRUCTOR)
931 		{
932 		  if (!ref_may_be_aliased (rhs))
933 		    mark_aliased_reaching_defs_necessary (stmt, rhs);
934 		  else
935 		    mark_all_reaching_defs_necessary (stmt);
936 		}
937 	    }
938 	  else if (gimple_code (stmt) == GIMPLE_RETURN)
939 	    {
940 	      tree rhs = gimple_return_retval (stmt);
941 	      /* A return statement may perform a load.  */
942 	      if (rhs
943 		  && TREE_CODE (rhs) != SSA_NAME
944 		  && !is_gimple_min_invariant (rhs)
945 		  && TREE_CODE (rhs) != CONSTRUCTOR)
946 		{
947 		  if (!ref_may_be_aliased (rhs))
948 		    mark_aliased_reaching_defs_necessary (stmt, rhs);
949 		  else
950 		    mark_all_reaching_defs_necessary (stmt);
951 		}
952 	    }
953 	  else if (gimple_code (stmt) == GIMPLE_ASM)
954 	    {
955 	      unsigned i;
956 	      mark_all_reaching_defs_necessary (stmt);
957 	      /* Inputs may perform loads.  */
958 	      for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
959 		{
960 		  tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
961 		  if (TREE_CODE (op) != SSA_NAME
962 		      && !is_gimple_min_invariant (op)
963 		      && TREE_CODE (op) != CONSTRUCTOR
964 		      && !ref_may_be_aliased (op))
965 		    mark_aliased_reaching_defs_necessary (stmt, op);
966 		}
967 	    }
968 	  else if (gimple_code (stmt) == GIMPLE_TRANSACTION)
969 	    {
970 	      /* The beginning of a transaction is a memory barrier.  */
971 	      /* ??? If we were really cool, we'd only be a barrier
972 		 for the memories touched within the transaction.  */
973 	      mark_all_reaching_defs_necessary (stmt);
974 	    }
975 	  else
976 	    gcc_unreachable ();
977 
978 	  /* If we over-used our alias oracle budget drop to simple
979 	     mode.  The cost metric allows quadratic behavior
980 	     (number of uses times number of may-defs queries) up to
981 	     a constant maximal number of queries and after that falls back to
982 	     super-linear complexity.  */
983 	  if (/* Constant but quadratic for small functions.  */
984 	      total_chain > 128 * 128
985 	      /* Linear in the number of may-defs.  */
986 	      && total_chain > 32 * longest_chain
987 	      /* Linear in the number of uses.  */
988 	      && total_chain > nr_walks * 32)
989 	    {
990 	      chain_ovfl = true;
991 	      if (visited)
992 		bitmap_clear (visited);
993 	    }
994 	}
995     }
996 }
997 
998 /* Replace all uses of NAME by underlying variable and mark it
999    for renaming.  */
1000 
1001 void
1002 mark_virtual_operand_for_renaming (tree name)
1003 {
1004   bool used = false;
1005   imm_use_iterator iter;
1006   use_operand_p use_p;
1007   gimple stmt;
1008   tree name_var;
1009 
1010   name_var = SSA_NAME_VAR (name);
1011   FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1012     {
1013       FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1014         SET_USE (use_p, name_var);
1015       update_stmt (stmt);
1016       used = true;
1017     }
1018   if (used)
1019     mark_sym_for_renaming (name_var);
1020 }
1021 
1022 /* Replace all uses of result of PHI by underlying variable and mark it
1023    for renaming.  */
1024 
1025 void
1026 mark_virtual_phi_result_for_renaming (gimple phi)
1027 {
1028   if (dump_file && (dump_flags & TDF_DETAILS))
1029     {
1030       fprintf (dump_file, "Marking result for renaming : ");
1031       print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1032       fprintf (dump_file, "\n");
1033     }
1034 
1035   mark_virtual_operand_for_renaming (gimple_phi_result (phi));
1036 }
1037 
1038 
1039 /* Remove dead PHI nodes from block BB.  */
1040 
1041 static bool
1042 remove_dead_phis (basic_block bb)
1043 {
1044   bool something_changed = false;
1045   gimple_seq phis;
1046   gimple phi;
1047   gimple_stmt_iterator gsi;
1048   phis = phi_nodes (bb);
1049 
1050   for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
1051     {
1052       stats.total_phis++;
1053       phi = gsi_stmt (gsi);
1054 
1055       /* We do not track necessity of virtual PHI nodes.  Instead do
1056          very simple dead PHI removal here.  */
1057       if (!is_gimple_reg (gimple_phi_result (phi)))
1058 	{
1059 	  /* Virtual PHI nodes with one or identical arguments
1060 	     can be removed.  */
1061 	  if (degenerate_phi_p (phi))
1062 	    {
1063 	      tree vdef = gimple_phi_result (phi);
1064 	      tree vuse = gimple_phi_arg_def (phi, 0);
1065 
1066 	      use_operand_p use_p;
1067 	      imm_use_iterator iter;
1068 	      gimple use_stmt;
1069 	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
1070 		FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1071 		  SET_USE (use_p, vuse);
1072 	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
1073 	          && TREE_CODE (vuse) == SSA_NAME)
1074 		SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
1075 	    }
1076 	  else
1077 	    gimple_set_plf (phi, STMT_NECESSARY, true);
1078 	}
1079 
1080       if (!gimple_plf (phi, STMT_NECESSARY))
1081 	{
1082 	  something_changed = true;
1083 	  if (dump_file && (dump_flags & TDF_DETAILS))
1084 	    {
1085 	      fprintf (dump_file, "Deleting : ");
1086 	      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1087 	      fprintf (dump_file, "\n");
1088 	    }
1089 
1090 	  remove_phi_node (&gsi, true);
1091 	  stats.removed_phis++;
1092 	  continue;
1093 	}
1094 
1095       gsi_next (&gsi);
1096     }
1097   return something_changed;
1098 }
1099 
1100 /* Forward edge E to respective POST_DOM_BB and update PHIs.  */
1101 
1102 static edge
1103 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1104 {
1105   gimple_stmt_iterator gsi;
1106   edge e2 = NULL;
1107   edge_iterator ei;
1108 
1109   if (dump_file && (dump_flags & TDF_DETAILS))
1110     fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1111 	     e->dest->index, post_dom_bb->index);
1112 
1113   e2 = redirect_edge_and_branch (e, post_dom_bb);
1114   cfg_altered = true;
1115 
1116   /* If edge was already around, no updating is neccesary.  */
1117   if (e2 != e)
1118     return e2;
1119 
1120   if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1121     {
1122       /* We are sure that for every live PHI we are seeing control dependent BB.
1123          This means that we can pick any edge to duplicate PHI args from.  */
1124       FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1125 	if (e2 != e)
1126 	  break;
1127       for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1128 	{
1129 	  gimple phi = gsi_stmt (gsi);
1130 	  tree op;
1131 	  source_location locus;
1132 
1133 	  /* PHIs for virtuals have no control dependency relation on them.
1134 	     We are lost here and must force renaming of the symbol.  */
1135 	  if (!is_gimple_reg (gimple_phi_result (phi)))
1136 	    {
1137 	      mark_virtual_phi_result_for_renaming (phi);
1138 	      remove_phi_node (&gsi, true);
1139 	      continue;
1140 	    }
1141 
1142 	  /* Dead PHI do not imply control dependency.  */
1143           if (!gimple_plf (phi, STMT_NECESSARY))
1144 	    {
1145 	      gsi_next (&gsi);
1146 	      continue;
1147 	    }
1148 
1149 	  op = gimple_phi_arg_def (phi, e2->dest_idx);
1150 	  locus = gimple_phi_arg_location (phi, e2->dest_idx);
1151 	  add_phi_arg (phi, op, e, locus);
1152 	  /* The resulting PHI if not dead can only be degenerate.  */
1153 	  gcc_assert (degenerate_phi_p (phi));
1154 	  gsi_next (&gsi);
1155 	}
1156     }
1157   return e;
1158 }
1159 
1160 /* Remove dead statement pointed to by iterator I.  Receives the basic block BB
1161    containing I so that we don't have to look it up.  */
1162 
1163 static void
1164 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1165 {
1166   gimple stmt = gsi_stmt (*i);
1167 
1168   if (dump_file && (dump_flags & TDF_DETAILS))
1169     {
1170       fprintf (dump_file, "Deleting : ");
1171       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1172       fprintf (dump_file, "\n");
1173     }
1174 
1175   stats.removed++;
1176 
1177   /* If we have determined that a conditional branch statement contributes
1178      nothing to the program, then we not only remove it, but we also change
1179      the flow graph so that the current block will simply fall-thru to its
1180      immediate post-dominator.  The blocks we are circumventing will be
1181      removed by cleanup_tree_cfg if this change in the flow graph makes them
1182      unreachable.  */
1183   if (is_ctrl_stmt (stmt))
1184     {
1185       basic_block post_dom_bb;
1186       edge e, e2;
1187       edge_iterator ei;
1188 
1189       post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1190 
1191       e = find_edge (bb, post_dom_bb);
1192 
1193       /* If edge is already there, try to use it.  This avoids need to update
1194          PHI nodes.  Also watch for cases where post dominator does not exists
1195 	 or is exit block.  These can happen for infinite loops as we create
1196 	 fake edges in the dominator tree.  */
1197       if (e)
1198         ;
1199       else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1200 	e = EDGE_SUCC (bb, 0);
1201       else
1202         e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1203       gcc_assert (e);
1204       e->probability = REG_BR_PROB_BASE;
1205       e->count = bb->count;
1206 
1207       /* The edge is no longer associated with a conditional, so it does
1208 	 not have TRUE/FALSE flags.  */
1209       e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1210 
1211       /* The lone outgoing edge from BB will be a fallthru edge.  */
1212       e->flags |= EDGE_FALLTHRU;
1213 
1214       /* Remove the remaining outgoing edges.  */
1215       for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1216 	if (e != e2)
1217 	  {
1218 	    cfg_altered = true;
1219             remove_edge (e2);
1220 	  }
1221 	else
1222 	  ei_next (&ei);
1223     }
1224 
1225   /* If this is a store into a variable that is being optimized away,
1226      add a debug bind stmt if possible.  */
1227   if (MAY_HAVE_DEBUG_STMTS
1228       && gimple_assign_single_p (stmt)
1229       && is_gimple_val (gimple_assign_rhs1 (stmt)))
1230     {
1231       tree lhs = gimple_assign_lhs (stmt);
1232       if ((TREE_CODE (lhs) == VAR_DECL || TREE_CODE (lhs) == PARM_DECL)
1233 	  && !DECL_IGNORED_P (lhs)
1234 	  && is_gimple_reg_type (TREE_TYPE (lhs))
1235 	  && !is_global_var (lhs)
1236 	  && !DECL_HAS_VALUE_EXPR_P (lhs))
1237 	{
1238 	  tree rhs = gimple_assign_rhs1 (stmt);
1239 	  gimple note
1240 	    = gimple_build_debug_bind (lhs, unshare_expr (rhs), stmt);
1241 	  gsi_insert_after (i, note, GSI_SAME_STMT);
1242 	}
1243     }
1244 
1245   unlink_stmt_vdef (stmt);
1246   gsi_remove (i, true);
1247   release_defs (stmt);
1248 }
1249 
1250 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1251    contributes nothing to the program, and can be deleted.  */
1252 
1253 static bool
1254 eliminate_unnecessary_stmts (void)
1255 {
1256   bool something_changed = false;
1257   basic_block bb;
1258   gimple_stmt_iterator gsi, psi;
1259   gimple stmt;
1260   tree call;
1261   VEC (basic_block, heap) *h;
1262 
1263   if (dump_file && (dump_flags & TDF_DETAILS))
1264     fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1265 
1266   clear_special_calls ();
1267 
1268   /* Walking basic blocks and statements in reverse order avoids
1269      releasing SSA names before any other DEFs that refer to them are
1270      released.  This helps avoid loss of debug information, as we get
1271      a chance to propagate all RHSs of removed SSAs into debug uses,
1272      rather than only the latest ones.  E.g., consider:
1273 
1274      x_3 = y_1 + z_2;
1275      a_5 = x_3 - b_4;
1276      # DEBUG a => a_5
1277 
1278      If we were to release x_3 before a_5, when we reached a_5 and
1279      tried to substitute it into the debug stmt, we'd see x_3 there,
1280      but x_3's DEF, type, etc would have already been disconnected.
1281      By going backwards, the debug stmt first changes to:
1282 
1283      # DEBUG a => x_3 - b_4
1284 
1285      and then to:
1286 
1287      # DEBUG a => y_1 + z_2 - b_4
1288 
1289      as desired.  */
1290   gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1291   h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1292 
1293   while (VEC_length (basic_block, h))
1294     {
1295       bb = VEC_pop (basic_block, h);
1296 
1297       /* Remove dead statements.  */
1298       for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1299 	{
1300 	  stmt = gsi_stmt (gsi);
1301 
1302 	  psi = gsi;
1303 	  gsi_prev (&psi);
1304 
1305 	  stats.total++;
1306 
1307 	  /* We can mark a call to free as not necessary if the
1308 	     defining statement of its argument is an allocation
1309 	     function and that is not necessary itself.  */
1310 	  if (gimple_call_builtin_p (stmt, BUILT_IN_FREE))
1311 	    {
1312 	      tree ptr = gimple_call_arg (stmt, 0);
1313 	      tree callee2;
1314 	      gimple def_stmt;
1315 	      if (TREE_CODE (ptr) != SSA_NAME)
1316 		continue;
1317 	      def_stmt = SSA_NAME_DEF_STMT (ptr);
1318 	      if (!is_gimple_call (def_stmt)
1319 		  || gimple_plf (def_stmt, STMT_NECESSARY))
1320 		continue;
1321 	      callee2 = gimple_call_fndecl (def_stmt);
1322 	      if (callee2 == NULL_TREE
1323 		  || DECL_BUILT_IN_CLASS (callee2) != BUILT_IN_NORMAL
1324 		  || (DECL_FUNCTION_CODE (callee2) != BUILT_IN_MALLOC
1325 		      && DECL_FUNCTION_CODE (callee2) != BUILT_IN_CALLOC))
1326 		continue;
1327 	      gimple_set_plf (stmt, STMT_NECESSARY, false);
1328 	    }
1329 
1330 	  /* If GSI is not necessary then remove it.  */
1331 	  if (!gimple_plf (stmt, STMT_NECESSARY))
1332 	    {
1333 	      if (!is_gimple_debug (stmt))
1334 		something_changed = true;
1335 	      remove_dead_stmt (&gsi, bb);
1336 	    }
1337 	  else if (is_gimple_call (stmt))
1338 	    {
1339 	      tree name = gimple_call_lhs (stmt);
1340 
1341 	      notice_special_calls (stmt);
1342 
1343 	      /* When LHS of var = call (); is dead, simplify it into
1344 		 call (); saving one operand.  */
1345 	      if (name
1346 		  && TREE_CODE (name) == SSA_NAME
1347 		  && !TEST_BIT (processed, SSA_NAME_VERSION (name))
1348 		  /* Avoid doing so for allocation calls which we
1349 		     did not mark as necessary, it will confuse the
1350 		     special logic we apply to malloc/free pair removal.  */
1351 		  && (!(call = gimple_call_fndecl (stmt))
1352 		      || DECL_BUILT_IN_CLASS (call) != BUILT_IN_NORMAL
1353 		      || (DECL_FUNCTION_CODE (call) != BUILT_IN_MALLOC
1354 			  && DECL_FUNCTION_CODE (call) != BUILT_IN_CALLOC
1355 			  && DECL_FUNCTION_CODE (call) != BUILT_IN_ALLOCA
1356 			  && (DECL_FUNCTION_CODE (call)
1357 			      != BUILT_IN_ALLOCA_WITH_ALIGN))))
1358 		{
1359 		  something_changed = true;
1360 		  if (dump_file && (dump_flags & TDF_DETAILS))
1361 		    {
1362 		      fprintf (dump_file, "Deleting LHS of call: ");
1363 		      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1364 		      fprintf (dump_file, "\n");
1365 		    }
1366 
1367 		  gimple_call_set_lhs (stmt, NULL_TREE);
1368 		  maybe_clean_or_replace_eh_stmt (stmt, stmt);
1369 		  update_stmt (stmt);
1370 		  release_ssa_name (name);
1371 		}
1372 	    }
1373 	}
1374     }
1375 
1376   VEC_free (basic_block, heap, h);
1377 
1378   /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1379      rendered some PHI nodes unreachable while they are still in use.
1380      Mark them for renaming.  */
1381   if (cfg_altered)
1382     {
1383       basic_block prev_bb;
1384 
1385       find_unreachable_blocks ();
1386 
1387       /* Delete all unreachable basic blocks in reverse dominator order.  */
1388       for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1389 	{
1390 	  prev_bb = bb->prev_bb;
1391 
1392 	  if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1393 	      || !(bb->flags & BB_REACHABLE))
1394 	    {
1395 	      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1396 		if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1397 		  {
1398 		    bool found = false;
1399 		    imm_use_iterator iter;
1400 
1401 		    FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1402 		      {
1403 			if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1404 			  continue;
1405 			if (gimple_code (stmt) == GIMPLE_PHI
1406 			    || gimple_plf (stmt, STMT_NECESSARY))
1407 			  {
1408 			    found = true;
1409 			    BREAK_FROM_IMM_USE_STMT (iter);
1410 			  }
1411 		      }
1412 		    if (found)
1413 		      mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1414 		  }
1415 
1416 	      if (!(bb->flags & BB_REACHABLE))
1417 		{
1418 		  /* Speed up the removal of blocks that don't
1419 		     dominate others.  Walking backwards, this should
1420 		     be the common case.  ??? Do we need to recompute
1421 		     dominators because of cfg_altered?  */
1422 		  if (!MAY_HAVE_DEBUG_STMTS
1423 		      || !first_dom_son (CDI_DOMINATORS, bb))
1424 		    delete_basic_block (bb);
1425 		  else
1426 		    {
1427 		      h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1428 
1429 		      while (VEC_length (basic_block, h))
1430 			{
1431 			  bb = VEC_pop (basic_block, h);
1432 			  prev_bb = bb->prev_bb;
1433 			  /* Rearrangements to the CFG may have failed
1434 			     to update the dominators tree, so that
1435 			     formerly-dominated blocks are now
1436 			     otherwise reachable.  */
1437 			  if (!!(bb->flags & BB_REACHABLE))
1438 			    continue;
1439 			  delete_basic_block (bb);
1440 			}
1441 
1442 		      VEC_free (basic_block, heap, h);
1443 		    }
1444 		}
1445 	    }
1446 	}
1447     }
1448   FOR_EACH_BB (bb)
1449     {
1450       /* Remove dead PHI nodes.  */
1451       something_changed |= remove_dead_phis (bb);
1452     }
1453 
1454   return something_changed;
1455 }
1456 
1457 
1458 /* Print out removed statement statistics.  */
1459 
1460 static void
1461 print_stats (void)
1462 {
1463   float percg;
1464 
1465   percg = ((float) stats.removed / (float) stats.total) * 100;
1466   fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1467 	   stats.removed, stats.total, (int) percg);
1468 
1469   if (stats.total_phis == 0)
1470     percg = 0;
1471   else
1472     percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1473 
1474   fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1475 	   stats.removed_phis, stats.total_phis, (int) percg);
1476 }
1477 
1478 /* Initialization for this pass.  Set up the used data structures.  */
1479 
1480 static void
1481 tree_dce_init (bool aggressive)
1482 {
1483   memset ((void *) &stats, 0, sizeof (stats));
1484 
1485   if (aggressive)
1486     {
1487       int i;
1488 
1489       control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1490       for (i = 0; i < last_basic_block; ++i)
1491 	control_dependence_map[i] = BITMAP_ALLOC (NULL);
1492 
1493       last_stmt_necessary = sbitmap_alloc (last_basic_block);
1494       sbitmap_zero (last_stmt_necessary);
1495       bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1496       sbitmap_zero (bb_contains_live_stmts);
1497     }
1498 
1499   processed = sbitmap_alloc (num_ssa_names + 1);
1500   sbitmap_zero (processed);
1501 
1502   worklist = VEC_alloc (gimple, heap, 64);
1503   cfg_altered = false;
1504 }
1505 
1506 /* Cleanup after this pass.  */
1507 
1508 static void
1509 tree_dce_done (bool aggressive)
1510 {
1511   if (aggressive)
1512     {
1513       int i;
1514 
1515       for (i = 0; i < last_basic_block; ++i)
1516 	BITMAP_FREE (control_dependence_map[i]);
1517       free (control_dependence_map);
1518 
1519       sbitmap_free (visited_control_parents);
1520       sbitmap_free (last_stmt_necessary);
1521       sbitmap_free (bb_contains_live_stmts);
1522       bb_contains_live_stmts = NULL;
1523     }
1524 
1525   sbitmap_free (processed);
1526 
1527   VEC_free (gimple, heap, worklist);
1528 }
1529 
1530 /* Main routine to eliminate dead code.
1531 
1532    AGGRESSIVE controls the aggressiveness of the algorithm.
1533    In conservative mode, we ignore control dependence and simply declare
1534    all but the most trivially dead branches necessary.  This mode is fast.
1535    In aggressive mode, control dependences are taken into account, which
1536    results in more dead code elimination, but at the cost of some time.
1537 
1538    FIXME: Aggressive mode before PRE doesn't work currently because
1539 	  the dominance info is not invalidated after DCE1.  This is
1540 	  not an issue right now because we only run aggressive DCE
1541 	  as the last tree SSA pass, but keep this in mind when you
1542 	  start experimenting with pass ordering.  */
1543 
1544 static unsigned int
1545 perform_tree_ssa_dce (bool aggressive)
1546 {
1547   struct edge_list *el = NULL;
1548   bool something_changed = 0;
1549 
1550   calculate_dominance_info (CDI_DOMINATORS);
1551 
1552   /* Preheaders are needed for SCEV to work.
1553      Simple lateches and recorded exits improve chances that loop will
1554      proved to be finite in testcases such as in loop-15.c and loop-24.c  */
1555   if (aggressive)
1556     loop_optimizer_init (LOOPS_NORMAL
1557 			 | LOOPS_HAVE_RECORDED_EXITS);
1558 
1559   tree_dce_init (aggressive);
1560 
1561   if (aggressive)
1562     {
1563       /* Compute control dependence.  */
1564       timevar_push (TV_CONTROL_DEPENDENCES);
1565       calculate_dominance_info (CDI_POST_DOMINATORS);
1566       el = create_edge_list ();
1567       find_all_control_dependences (el);
1568       timevar_pop (TV_CONTROL_DEPENDENCES);
1569 
1570       visited_control_parents = sbitmap_alloc (last_basic_block);
1571       sbitmap_zero (visited_control_parents);
1572 
1573       mark_dfs_back_edges ();
1574     }
1575 
1576   find_obviously_necessary_stmts (el);
1577 
1578   if (aggressive)
1579     loop_optimizer_finalize ();
1580 
1581   longest_chain = 0;
1582   total_chain = 0;
1583   nr_walks = 0;
1584   chain_ovfl = false;
1585   visited = BITMAP_ALLOC (NULL);
1586   propagate_necessity (el);
1587   BITMAP_FREE (visited);
1588 
1589   something_changed |= eliminate_unnecessary_stmts ();
1590   something_changed |= cfg_altered;
1591 
1592   /* We do not update postdominators, so free them unconditionally.  */
1593   free_dominance_info (CDI_POST_DOMINATORS);
1594 
1595   /* If we removed paths in the CFG, then we need to update
1596      dominators as well.  I haven't investigated the possibility
1597      of incrementally updating dominators.  */
1598   if (cfg_altered)
1599     free_dominance_info (CDI_DOMINATORS);
1600 
1601   statistics_counter_event (cfun, "Statements deleted", stats.removed);
1602   statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1603 
1604   /* Debugging dumps.  */
1605   if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1606     print_stats ();
1607 
1608   tree_dce_done (aggressive);
1609 
1610   free_edge_list (el);
1611 
1612   if (something_changed)
1613     return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1614 	    | TODO_remove_unused_locals);
1615   else
1616     return 0;
1617 }
1618 
1619 /* Pass entry points.  */
1620 static unsigned int
1621 tree_ssa_dce (void)
1622 {
1623   return perform_tree_ssa_dce (/*aggressive=*/false);
1624 }
1625 
1626 static unsigned int
1627 tree_ssa_dce_loop (void)
1628 {
1629   unsigned int todo;
1630   todo = perform_tree_ssa_dce (/*aggressive=*/false);
1631   if (todo)
1632     {
1633       free_numbers_of_iterations_estimates ();
1634       scev_reset ();
1635     }
1636   return todo;
1637 }
1638 
1639 static unsigned int
1640 tree_ssa_cd_dce (void)
1641 {
1642   return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1643 }
1644 
1645 static bool
1646 gate_dce (void)
1647 {
1648   return flag_tree_dce != 0;
1649 }
1650 
1651 struct gimple_opt_pass pass_dce =
1652 {
1653  {
1654   GIMPLE_PASS,
1655   "dce",				/* name */
1656   gate_dce,				/* gate */
1657   tree_ssa_dce,				/* execute */
1658   NULL,					/* sub */
1659   NULL,					/* next */
1660   0,					/* static_pass_number */
1661   TV_TREE_DCE,				/* tv_id */
1662   PROP_cfg | PROP_ssa,			/* properties_required */
1663   0,					/* properties_provided */
1664   0,					/* properties_destroyed */
1665   0,					/* todo_flags_start */
1666   TODO_verify_ssa	                /* todo_flags_finish */
1667  }
1668 };
1669 
1670 struct gimple_opt_pass pass_dce_loop =
1671 {
1672  {
1673   GIMPLE_PASS,
1674   "dceloop",				/* name */
1675   gate_dce,				/* gate */
1676   tree_ssa_dce_loop,			/* execute */
1677   NULL,					/* sub */
1678   NULL,					/* next */
1679   0,					/* static_pass_number */
1680   TV_TREE_DCE,				/* tv_id */
1681   PROP_cfg | PROP_ssa,			/* properties_required */
1682   0,					/* properties_provided */
1683   0,					/* properties_destroyed */
1684   0,					/* todo_flags_start */
1685   TODO_verify_ssa	                /* todo_flags_finish */
1686  }
1687 };
1688 
1689 struct gimple_opt_pass pass_cd_dce =
1690 {
1691  {
1692   GIMPLE_PASS,
1693   "cddce",				/* name */
1694   gate_dce,				/* gate */
1695   tree_ssa_cd_dce,			/* execute */
1696   NULL,					/* sub */
1697   NULL,					/* next */
1698   0,					/* static_pass_number */
1699   TV_TREE_CD_DCE,			/* tv_id */
1700   PROP_cfg | PROP_ssa,			/* properties_required */
1701   0,					/* properties_provided */
1702   0,					/* properties_destroyed */
1703   0,					/* todo_flags_start */
1704   TODO_verify_ssa
1705   | TODO_verify_flow			/* todo_flags_finish */
1706  }
1707 };
1708