1 /* Array prefetching.
2    Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "output.h"
29 #include "tree-pretty-print.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "cfgloop.h"
34 #include "tree-pass.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "hashtab.h"
38 #include "tree-chrec.h"
39 #include "tree-scalar-evolution.h"
40 #include "diagnostic-core.h"
41 #include "params.h"
42 #include "langhooks.h"
43 #include "tree-inline.h"
44 #include "tree-data-ref.h"
45 
46 
47 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
48    between the GIMPLE and RTL worlds.  */
49 #include "expr.h"
50 #include "optabs.h"
51 
52 /* This pass inserts prefetch instructions to optimize cache usage during
53    accesses to arrays in loops.  It processes loops sequentially and:
54 
55    1) Gathers all memory references in the single loop.
56    2) For each of the references it decides when it is profitable to prefetch
57       it.  To do it, we evaluate the reuse among the accesses, and determines
58       two values: PREFETCH_BEFORE (meaning that it only makes sense to do
59       prefetching in the first PREFETCH_BEFORE iterations of the loop) and
60       PREFETCH_MOD (meaning that it only makes sense to prefetch in the
61       iterations of the loop that are zero modulo PREFETCH_MOD).  For example
62       (assuming cache line size is 64 bytes, char has size 1 byte and there
63       is no hardware sequential prefetch):
64 
65       char *a;
66       for (i = 0; i < max; i++)
67 	{
68 	  a[255] = ...;		(0)
69 	  a[i] = ...;		(1)
70 	  a[i + 64] = ...;	(2)
71 	  a[16*i] = ...;	(3)
72 	  a[187*i] = ...;	(4)
73 	  a[187*i + 50] = ...;	(5)
74 	}
75 
76        (0) obviously has PREFETCH_BEFORE 1
77        (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
78            location 64 iterations before it, and PREFETCH_MOD 64 (since
79 	   it hits the same cache line otherwise).
80        (2) has PREFETCH_MOD 64
81        (3) has PREFETCH_MOD 4
82        (4) has PREFETCH_MOD 1.  We do not set PREFETCH_BEFORE here, since
83            the cache line accessed by (5) is the same with probability only
84 	   7/32.
85        (5) has PREFETCH_MOD 1 as well.
86 
87       Additionally, we use data dependence analysis to determine for each
88       reference the distance till the first reuse; this information is used
89       to determine the temporality of the issued prefetch instruction.
90 
91    3) We determine how much ahead we need to prefetch.  The number of
92       iterations needed is time to fetch / time spent in one iteration of
93       the loop.  The problem is that we do not know either of these values,
94       so we just make a heuristic guess based on a magic (possibly)
95       target-specific constant and size of the loop.
96 
97    4) Determine which of the references we prefetch.  We take into account
98       that there is a maximum number of simultaneous prefetches (provided
99       by machine description).  We prefetch as many prefetches as possible
100       while still within this bound (starting with those with lowest
101       prefetch_mod, since they are responsible for most of the cache
102       misses).
103 
104    5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
105       and PREFETCH_BEFORE requirements (within some bounds), and to avoid
106       prefetching nonaccessed memory.
107       TODO -- actually implement peeling.
108 
109    6) We actually emit the prefetch instructions.  ??? Perhaps emit the
110       prefetch instructions with guards in cases where 5) was not sufficient
111       to satisfy the constraints?
112 
113    A cost model is implemented to determine whether or not prefetching is
114    profitable for a given loop.  The cost model has three heuristics:
115 
116    1. Function trip_count_to_ahead_ratio_too_small_p implements a
117       heuristic that determines whether or not the loop has too few
118       iterations (compared to ahead).  Prefetching is not likely to be
119       beneficial if the trip count to ahead ratio is below a certain
120       minimum.
121 
122    2. Function mem_ref_count_reasonable_p implements a heuristic that
123       determines whether the given loop has enough CPU ops that can be
124       overlapped with cache missing memory ops.  If not, the loop
125       won't benefit from prefetching.  In the implementation,
126       prefetching is not considered beneficial if the ratio between
127       the instruction count and the mem ref count is below a certain
128       minimum.
129 
130    3. Function insn_to_prefetch_ratio_too_small_p implements a
131       heuristic that disables prefetching in a loop if the prefetching
132       cost is above a certain limit.  The relative prefetching cost is
133       estimated by taking the ratio between the prefetch count and the
134       total intruction count (this models the I-cache cost).
135 
136    The limits used in these heuristics are defined as parameters with
137    reasonable default values. Machine-specific default values will be
138    added later.
139 
140    Some other TODO:
141       -- write and use more general reuse analysis (that could be also used
142 	 in other cache aimed loop optimizations)
143       -- make it behave sanely together with the prefetches given by user
144 	 (now we just ignore them; at the very least we should avoid
145 	 optimizing loops in that user put his own prefetches)
146       -- we assume cache line size alignment of arrays; this could be
147 	 improved.  */
148 
149 /* Magic constants follow.  These should be replaced by machine specific
150    numbers.  */
151 
152 /* True if write can be prefetched by a read prefetch.  */
153 
154 #ifndef WRITE_CAN_USE_READ_PREFETCH
155 #define WRITE_CAN_USE_READ_PREFETCH 1
156 #endif
157 
158 /* True if read can be prefetched by a write prefetch. */
159 
160 #ifndef READ_CAN_USE_WRITE_PREFETCH
161 #define READ_CAN_USE_WRITE_PREFETCH 0
162 #endif
163 
164 /* The size of the block loaded by a single prefetch.  Usually, this is
165    the same as cache line size (at the moment, we only consider one level
166    of cache hierarchy).  */
167 
168 #ifndef PREFETCH_BLOCK
169 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
170 #endif
171 
172 /* Do we have a forward hardware sequential prefetching?  */
173 
174 #ifndef HAVE_FORWARD_PREFETCH
175 #define HAVE_FORWARD_PREFETCH 0
176 #endif
177 
178 /* Do we have a backward hardware sequential prefetching?  */
179 
180 #ifndef HAVE_BACKWARD_PREFETCH
181 #define HAVE_BACKWARD_PREFETCH 0
182 #endif
183 
184 /* In some cases we are only able to determine that there is a certain
185    probability that the two accesses hit the same cache line.  In this
186    case, we issue the prefetches for both of them if this probability
187    is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand.  */
188 
189 #ifndef ACCEPTABLE_MISS_RATE
190 #define ACCEPTABLE_MISS_RATE 50
191 #endif
192 
193 #ifndef HAVE_prefetch
194 #define HAVE_prefetch 0
195 #endif
196 
197 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
198 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
199 
200 /* We consider a memory access nontemporal if it is not reused sooner than
201    after L2_CACHE_SIZE_BYTES of memory are accessed.  However, we ignore
202    accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
203    so that we use nontemporal prefetches e.g. if single memory location
204    is accessed several times in a single iteration of the loop.  */
205 #define NONTEMPORAL_FRACTION 16
206 
207 /* In case we have to emit a memory fence instruction after the loop that
208    uses nontemporal stores, this defines the builtin to use.  */
209 
210 #ifndef FENCE_FOLLOWING_MOVNT
211 #define FENCE_FOLLOWING_MOVNT NULL_TREE
212 #endif
213 
214 /* It is not profitable to prefetch when the trip count is not at
215    least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
216    For example, in a loop with a prefetch ahead distance of 10,
217    supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
218    profitable to prefetch when the trip count is greater or equal to
219    40.  In that case, 30 out of the 40 iterations will benefit from
220    prefetching.  */
221 
222 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
223 #define TRIP_COUNT_TO_AHEAD_RATIO 4
224 #endif
225 
226 /* The group of references between that reuse may occur.  */
227 
228 struct mem_ref_group
229 {
230   tree base;			/* Base of the reference.  */
231   tree step;			/* Step of the reference.  */
232   struct mem_ref *refs;		/* References in the group.  */
233   struct mem_ref_group *next;	/* Next group of references.  */
234 };
235 
236 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched.  */
237 
238 #define PREFETCH_ALL		(~(unsigned HOST_WIDE_INT) 0)
239 
240 /* Do not generate a prefetch if the unroll factor is significantly less
241    than what is required by the prefetch.  This is to avoid redundant
242    prefetches.  For example, when prefetch_mod is 16 and unroll_factor is
243    2, prefetching requires unrolling the loop 16 times, but
244    the loop is actually unrolled twice.  In this case (ratio = 8),
245    prefetching is not likely to be beneficial.  */
246 
247 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
248 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
249 #endif
250 
251 /* Some of the prefetch computations have quadratic complexity.  We want to
252    avoid huge compile times and, therefore, want to limit the amount of
253    memory references per loop where we consider prefetching.  */
254 
255 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
256 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
257 #endif
258 
259 /* The memory reference.  */
260 
261 struct mem_ref
262 {
263   gimple stmt;			/* Statement in that the reference appears.  */
264   tree mem;			/* The reference.  */
265   HOST_WIDE_INT delta;		/* Constant offset of the reference.  */
266   struct mem_ref_group *group;	/* The group of references it belongs to.  */
267   unsigned HOST_WIDE_INT prefetch_mod;
268 				/* Prefetch only each PREFETCH_MOD-th
269 				   iteration.  */
270   unsigned HOST_WIDE_INT prefetch_before;
271 				/* Prefetch only first PREFETCH_BEFORE
272 				   iterations.  */
273   unsigned reuse_distance;	/* The amount of data accessed before the first
274 				   reuse of this value.  */
275   struct mem_ref *next;		/* The next reference in the group.  */
276   unsigned write_p : 1;		/* Is it a write?  */
277   unsigned independent_p : 1;	/* True if the reference is independent on
278 				   all other references inside the loop.  */
279   unsigned issue_prefetch_p : 1;	/* Should we really issue the prefetch?  */
280   unsigned storent_p : 1;	/* True if we changed the store to a
281 				   nontemporal one.  */
282 };
283 
284 /* Dumps information about reference REF to FILE.  */
285 
286 static void
287 dump_mem_ref (FILE *file, struct mem_ref *ref)
288 {
289   fprintf (file, "Reference %p:\n", (void *) ref);
290 
291   fprintf (file, "  group %p (base ", (void *) ref->group);
292   print_generic_expr (file, ref->group->base, TDF_SLIM);
293   fprintf (file, ", step ");
294   if (cst_and_fits_in_hwi (ref->group->step))
295     fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (ref->group->step));
296   else
297     print_generic_expr (file, ref->group->step, TDF_TREE);
298   fprintf (file, ")\n");
299 
300   fprintf (file, "  delta ");
301   fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
302   fprintf (file, "\n");
303 
304   fprintf (file, "  %s\n", ref->write_p ? "write" : "read");
305 
306   fprintf (file, "\n");
307 }
308 
309 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
310    exist.  */
311 
312 static struct mem_ref_group *
313 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
314 {
315   struct mem_ref_group *group;
316 
317   for (; *groups; groups = &(*groups)->next)
318     {
319       if (operand_equal_p ((*groups)->step, step, 0)
320 	  && operand_equal_p ((*groups)->base, base, 0))
321 	return *groups;
322 
323       /* If step is an integer constant, keep the list of groups sorted
324          by decreasing step.  */
325         if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
326             && int_cst_value ((*groups)->step) < int_cst_value (step))
327 	break;
328     }
329 
330   group = XNEW (struct mem_ref_group);
331   group->base = base;
332   group->step = step;
333   group->refs = NULL;
334   group->next = *groups;
335   *groups = group;
336 
337   return group;
338 }
339 
340 /* Records a memory reference MEM in GROUP with offset DELTA and write status
341    WRITE_P.  The reference occurs in statement STMT.  */
342 
343 static void
344 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
345 	    HOST_WIDE_INT delta, bool write_p)
346 {
347   struct mem_ref **aref;
348 
349   /* Do not record the same address twice.  */
350   for (aref = &group->refs; *aref; aref = &(*aref)->next)
351     {
352       /* It does not have to be possible for write reference to reuse the read
353 	 prefetch, or vice versa.  */
354       if (!WRITE_CAN_USE_READ_PREFETCH
355 	  && write_p
356 	  && !(*aref)->write_p)
357 	continue;
358       if (!READ_CAN_USE_WRITE_PREFETCH
359 	  && !write_p
360 	  && (*aref)->write_p)
361 	continue;
362 
363       if ((*aref)->delta == delta)
364 	return;
365     }
366 
367   (*aref) = XNEW (struct mem_ref);
368   (*aref)->stmt = stmt;
369   (*aref)->mem = mem;
370   (*aref)->delta = delta;
371   (*aref)->write_p = write_p;
372   (*aref)->prefetch_before = PREFETCH_ALL;
373   (*aref)->prefetch_mod = 1;
374   (*aref)->reuse_distance = 0;
375   (*aref)->issue_prefetch_p = false;
376   (*aref)->group = group;
377   (*aref)->next = NULL;
378   (*aref)->independent_p = false;
379   (*aref)->storent_p = false;
380 
381   if (dump_file && (dump_flags & TDF_DETAILS))
382     dump_mem_ref (dump_file, *aref);
383 }
384 
385 /* Release memory references in GROUPS.  */
386 
387 static void
388 release_mem_refs (struct mem_ref_group *groups)
389 {
390   struct mem_ref_group *next_g;
391   struct mem_ref *ref, *next_r;
392 
393   for (; groups; groups = next_g)
394     {
395       next_g = groups->next;
396       for (ref = groups->refs; ref; ref = next_r)
397 	{
398 	  next_r = ref->next;
399 	  free (ref);
400 	}
401       free (groups);
402     }
403 }
404 
405 /* A structure used to pass arguments to idx_analyze_ref.  */
406 
407 struct ar_data
408 {
409   struct loop *loop;			/* Loop of the reference.  */
410   gimple stmt;				/* Statement of the reference.  */
411   tree *step;				/* Step of the memory reference.  */
412   HOST_WIDE_INT *delta;			/* Offset of the memory reference.  */
413 };
414 
415 /* Analyzes a single INDEX of a memory reference to obtain information
416    described at analyze_ref.  Callback for for_each_index.  */
417 
418 static bool
419 idx_analyze_ref (tree base, tree *index, void *data)
420 {
421   struct ar_data *ar_data = (struct ar_data *) data;
422   tree ibase, step, stepsize;
423   HOST_WIDE_INT idelta = 0, imult = 1;
424   affine_iv iv;
425 
426   if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
427 		  *index, &iv, true))
428     return false;
429   ibase = iv.base;
430   step = iv.step;
431 
432   if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
433       && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
434     {
435       idelta = int_cst_value (TREE_OPERAND (ibase, 1));
436       ibase = TREE_OPERAND (ibase, 0);
437     }
438   if (cst_and_fits_in_hwi (ibase))
439     {
440       idelta += int_cst_value (ibase);
441       ibase = build_int_cst (TREE_TYPE (ibase), 0);
442     }
443 
444   if (TREE_CODE (base) == ARRAY_REF)
445     {
446       stepsize = array_ref_element_size (base);
447       if (!cst_and_fits_in_hwi (stepsize))
448 	return false;
449       imult = int_cst_value (stepsize);
450       step = fold_build2 (MULT_EXPR, sizetype,
451 			  fold_convert (sizetype, step),
452 			  fold_convert (sizetype, stepsize));
453       idelta *= imult;
454     }
455 
456   if (*ar_data->step == NULL_TREE)
457     *ar_data->step = step;
458   else
459     *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
460 				  fold_convert (sizetype, *ar_data->step),
461 				  fold_convert (sizetype, step));
462   *ar_data->delta += idelta;
463   *index = ibase;
464 
465   return true;
466 }
467 
468 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
469    STEP are integer constants and iter is number of iterations of LOOP.  The
470    reference occurs in statement STMT.  Strips nonaddressable component
471    references from REF_P.  */
472 
473 static bool
474 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
475 	     tree *step, HOST_WIDE_INT *delta,
476 	     gimple stmt)
477 {
478   struct ar_data ar_data;
479   tree off;
480   HOST_WIDE_INT bit_offset;
481   tree ref = *ref_p;
482 
483   *step = NULL_TREE;
484   *delta = 0;
485 
486   /* First strip off the component references.  Ignore bitfields.
487      Also strip off the real and imagine parts of a complex, so that
488      they can have the same base.  */
489   if (TREE_CODE (ref) == REALPART_EXPR
490       || TREE_CODE (ref) == IMAGPART_EXPR
491       || (TREE_CODE (ref) == COMPONENT_REF
492           && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
493     {
494       if (TREE_CODE (ref) == IMAGPART_EXPR)
495         *delta += int_size_in_bytes (TREE_TYPE (ref));
496       ref = TREE_OPERAND (ref, 0);
497     }
498 
499   *ref_p = ref;
500 
501   for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
502     {
503       off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
504       bit_offset = TREE_INT_CST_LOW (off);
505       gcc_assert (bit_offset % BITS_PER_UNIT == 0);
506 
507       *delta += bit_offset / BITS_PER_UNIT;
508     }
509 
510   *base = unshare_expr (ref);
511   ar_data.loop = loop;
512   ar_data.stmt = stmt;
513   ar_data.step = step;
514   ar_data.delta = delta;
515   return for_each_index (base, idx_analyze_ref, &ar_data);
516 }
517 
518 /* Record a memory reference REF to the list REFS.  The reference occurs in
519    LOOP in statement STMT and it is write if WRITE_P.  Returns true if the
520    reference was recorded, false otherwise.  */
521 
522 static bool
523 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
524 			      tree ref, bool write_p, gimple stmt)
525 {
526   tree base, step;
527   HOST_WIDE_INT delta;
528   struct mem_ref_group *agrp;
529 
530   if (get_base_address (ref) == NULL)
531     return false;
532 
533   if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
534     return false;
535   /* If analyze_ref fails the default is a NULL_TREE.  We can stop here.  */
536   if (step == NULL_TREE)
537     return false;
538 
539   /* Stop if the address of BASE could not be taken.  */
540   if (may_be_nonaddressable_p (base))
541     return false;
542 
543   /* Limit non-constant step prefetching only to the innermost loops.  */
544   if (!cst_and_fits_in_hwi (step) && loop->inner != NULL)
545     return false;
546 
547   /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
548      are integer constants.  */
549   agrp = find_or_create_group (refs, base, step);
550   record_ref (agrp, stmt, ref, delta, write_p);
551 
552   return true;
553 }
554 
555 /* Record the suitable memory references in LOOP.  NO_OTHER_REFS is set to
556    true if there are no other memory references inside the loop.  */
557 
558 static struct mem_ref_group *
559 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
560 {
561   basic_block *body = get_loop_body_in_dom_order (loop);
562   basic_block bb;
563   unsigned i;
564   gimple_stmt_iterator bsi;
565   gimple stmt;
566   tree lhs, rhs;
567   struct mem_ref_group *refs = NULL;
568 
569   *no_other_refs = true;
570   *ref_count = 0;
571 
572   /* Scan the loop body in order, so that the former references precede the
573      later ones.  */
574   for (i = 0; i < loop->num_nodes; i++)
575     {
576       bb = body[i];
577       if (bb->loop_father != loop)
578 	continue;
579 
580       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
581 	{
582 	  stmt = gsi_stmt (bsi);
583 
584 	  if (gimple_code (stmt) != GIMPLE_ASSIGN)
585 	    {
586 	      if (gimple_vuse (stmt)
587 		  || (is_gimple_call (stmt)
588 		      && !(gimple_call_flags (stmt) & ECF_CONST)))
589 		*no_other_refs = false;
590 	      continue;
591 	    }
592 
593 	  lhs = gimple_assign_lhs (stmt);
594 	  rhs = gimple_assign_rhs1 (stmt);
595 
596 	  if (REFERENCE_CLASS_P (rhs))
597 	    {
598 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
599 							    rhs, false, stmt);
600 	    *ref_count += 1;
601 	    }
602 	  if (REFERENCE_CLASS_P (lhs))
603 	    {
604 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
605 							    lhs, true, stmt);
606 	    *ref_count += 1;
607 	    }
608 	}
609     }
610   free (body);
611 
612   return refs;
613 }
614 
615 /* Prune the prefetch candidate REF using the self-reuse.  */
616 
617 static void
618 prune_ref_by_self_reuse (struct mem_ref *ref)
619 {
620   HOST_WIDE_INT step;
621   bool backward;
622 
623   /* If the step size is non constant, we cannot calculate prefetch_mod.  */
624   if (!cst_and_fits_in_hwi (ref->group->step))
625     return;
626 
627   step = int_cst_value (ref->group->step);
628 
629   backward = step < 0;
630 
631   if (step == 0)
632     {
633       /* Prefetch references to invariant address just once.  */
634       ref->prefetch_before = 1;
635       return;
636     }
637 
638   if (backward)
639     step = -step;
640 
641   if (step > PREFETCH_BLOCK)
642     return;
643 
644   if ((backward && HAVE_BACKWARD_PREFETCH)
645       || (!backward && HAVE_FORWARD_PREFETCH))
646     {
647       ref->prefetch_before = 1;
648       return;
649     }
650 
651   ref->prefetch_mod = PREFETCH_BLOCK / step;
652 }
653 
654 /* Divides X by BY, rounding down.  */
655 
656 static HOST_WIDE_INT
657 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
658 {
659   gcc_assert (by > 0);
660 
661   if (x >= 0)
662     return x / by;
663   else
664     return (x + by - 1) / by;
665 }
666 
667 /* Given a CACHE_LINE_SIZE and two inductive memory references
668    with a common STEP greater than CACHE_LINE_SIZE and an address
669    difference DELTA, compute the probability that they will fall
670    in different cache lines.  Return true if the computed miss rate
671    is not greater than the ACCEPTABLE_MISS_RATE.  DISTINCT_ITERS is the
672    number of distinct iterations after which the pattern repeats itself.
673    ALIGN_UNIT is the unit of alignment in bytes.  */
674 
675 static bool
676 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
677 		   HOST_WIDE_INT step, HOST_WIDE_INT delta,
678 		   unsigned HOST_WIDE_INT distinct_iters,
679 		   int align_unit)
680 {
681   unsigned align, iter;
682   int total_positions, miss_positions, max_allowed_miss_positions;
683   int address1, address2, cache_line1, cache_line2;
684 
685   /* It always misses if delta is greater than or equal to the cache
686      line size.  */
687   if (delta >= (HOST_WIDE_INT) cache_line_size)
688     return false;
689 
690   miss_positions = 0;
691   total_positions = (cache_line_size / align_unit) * distinct_iters;
692   max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
693 
694   /* Iterate through all possible alignments of the first
695      memory reference within its cache line.  */
696   for (align = 0; align < cache_line_size; align += align_unit)
697 
698     /* Iterate through all distinct iterations.  */
699     for (iter = 0; iter < distinct_iters; iter++)
700       {
701 	address1 = align + step * iter;
702 	address2 = address1 + delta;
703 	cache_line1 = address1 / cache_line_size;
704 	cache_line2 = address2 / cache_line_size;
705 	if (cache_line1 != cache_line2)
706 	  {
707 	    miss_positions += 1;
708             if (miss_positions > max_allowed_miss_positions)
709 	      return false;
710           }
711       }
712   return true;
713 }
714 
715 /* Prune the prefetch candidate REF using the reuse with BY.
716    If BY_IS_BEFORE is true, BY is before REF in the loop.  */
717 
718 static void
719 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
720 			  bool by_is_before)
721 {
722   HOST_WIDE_INT step;
723   bool backward;
724   HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
725   HOST_WIDE_INT delta = delta_b - delta_r;
726   HOST_WIDE_INT hit_from;
727   unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
728   HOST_WIDE_INT reduced_step;
729   unsigned HOST_WIDE_INT reduced_prefetch_block;
730   tree ref_type;
731   int align_unit;
732 
733   /* If the step is non constant we cannot calculate prefetch_before.  */
734   if (!cst_and_fits_in_hwi (ref->group->step)) {
735     return;
736   }
737 
738   step = int_cst_value (ref->group->step);
739 
740   backward = step < 0;
741 
742 
743   if (delta == 0)
744     {
745       /* If the references has the same address, only prefetch the
746 	 former.  */
747       if (by_is_before)
748 	ref->prefetch_before = 0;
749 
750       return;
751     }
752 
753   if (!step)
754     {
755       /* If the reference addresses are invariant and fall into the
756 	 same cache line, prefetch just the first one.  */
757       if (!by_is_before)
758 	return;
759 
760       if (ddown (ref->delta, PREFETCH_BLOCK)
761 	  != ddown (by->delta, PREFETCH_BLOCK))
762 	return;
763 
764       ref->prefetch_before = 0;
765       return;
766     }
767 
768   /* Only prune the reference that is behind in the array.  */
769   if (backward)
770     {
771       if (delta > 0)
772 	return;
773 
774       /* Transform the data so that we may assume that the accesses
775 	 are forward.  */
776       delta = - delta;
777       step = -step;
778       delta_r = PREFETCH_BLOCK - 1 - delta_r;
779       delta_b = PREFETCH_BLOCK - 1 - delta_b;
780     }
781   else
782     {
783       if (delta < 0)
784 	return;
785     }
786 
787   /* Check whether the two references are likely to hit the same cache
788      line, and how distant the iterations in that it occurs are from
789      each other.  */
790 
791   if (step <= PREFETCH_BLOCK)
792     {
793       /* The accesses are sure to meet.  Let us check when.  */
794       hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
795       prefetch_before = (hit_from - delta_r + step - 1) / step;
796 
797       /* Do not reduce prefetch_before if we meet beyond cache size.  */
798       if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
799         prefetch_before = PREFETCH_ALL;
800       if (prefetch_before < ref->prefetch_before)
801 	ref->prefetch_before = prefetch_before;
802 
803       return;
804     }
805 
806   /* A more complicated case with step > prefetch_block.  First reduce
807      the ratio between the step and the cache line size to its simplest
808      terms.  The resulting denominator will then represent the number of
809      distinct iterations after which each address will go back to its
810      initial location within the cache line.  This computation assumes
811      that PREFETCH_BLOCK is a power of two.  */
812   prefetch_block = PREFETCH_BLOCK;
813   reduced_prefetch_block = prefetch_block;
814   reduced_step = step;
815   while ((reduced_step & 1) == 0
816 	 && reduced_prefetch_block > 1)
817     {
818       reduced_step >>= 1;
819       reduced_prefetch_block >>= 1;
820     }
821 
822   prefetch_before = delta / step;
823   delta %= step;
824   ref_type = TREE_TYPE (ref->mem);
825   align_unit = TYPE_ALIGN (ref_type) / 8;
826   if (is_miss_rate_acceptable (prefetch_block, step, delta,
827 			       reduced_prefetch_block, align_unit))
828     {
829       /* Do not reduce prefetch_before if we meet beyond cache size.  */
830       if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
831         prefetch_before = PREFETCH_ALL;
832       if (prefetch_before < ref->prefetch_before)
833 	ref->prefetch_before = prefetch_before;
834 
835       return;
836     }
837 
838   /* Try also the following iteration.  */
839   prefetch_before++;
840   delta = step - delta;
841   if (is_miss_rate_acceptable (prefetch_block, step, delta,
842 			       reduced_prefetch_block, align_unit))
843     {
844       if (prefetch_before < ref->prefetch_before)
845 	ref->prefetch_before = prefetch_before;
846 
847       return;
848     }
849 
850   /* The ref probably does not reuse by.  */
851   return;
852 }
853 
854 /* Prune the prefetch candidate REF using the reuses with other references
855    in REFS.  */
856 
857 static void
858 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
859 {
860   struct mem_ref *prune_by;
861   bool before = true;
862 
863   prune_ref_by_self_reuse (ref);
864 
865   for (prune_by = refs; prune_by; prune_by = prune_by->next)
866     {
867       if (prune_by == ref)
868 	{
869 	  before = false;
870 	  continue;
871 	}
872 
873       if (!WRITE_CAN_USE_READ_PREFETCH
874 	  && ref->write_p
875 	  && !prune_by->write_p)
876 	continue;
877       if (!READ_CAN_USE_WRITE_PREFETCH
878 	  && !ref->write_p
879 	  && prune_by->write_p)
880 	continue;
881 
882       prune_ref_by_group_reuse (ref, prune_by, before);
883     }
884 }
885 
886 /* Prune the prefetch candidates in GROUP using the reuse analysis.  */
887 
888 static void
889 prune_group_by_reuse (struct mem_ref_group *group)
890 {
891   struct mem_ref *ref_pruned;
892 
893   for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
894     {
895       prune_ref_by_reuse (ref_pruned, group->refs);
896 
897       if (dump_file && (dump_flags & TDF_DETAILS))
898 	{
899 	  fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
900 
901 	  if (ref_pruned->prefetch_before == PREFETCH_ALL
902 	      && ref_pruned->prefetch_mod == 1)
903 	    fprintf (dump_file, " no restrictions");
904 	  else if (ref_pruned->prefetch_before == 0)
905 	    fprintf (dump_file, " do not prefetch");
906 	  else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
907 	    fprintf (dump_file, " prefetch once");
908 	  else
909 	    {
910 	      if (ref_pruned->prefetch_before != PREFETCH_ALL)
911 		{
912 		  fprintf (dump_file, " prefetch before ");
913 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
914 			   ref_pruned->prefetch_before);
915 		}
916 	      if (ref_pruned->prefetch_mod != 1)
917 		{
918 		  fprintf (dump_file, " prefetch mod ");
919 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
920 			   ref_pruned->prefetch_mod);
921 		}
922 	    }
923 	  fprintf (dump_file, "\n");
924 	}
925     }
926 }
927 
928 /* Prune the list of prefetch candidates GROUPS using the reuse analysis.  */
929 
930 static void
931 prune_by_reuse (struct mem_ref_group *groups)
932 {
933   for (; groups; groups = groups->next)
934     prune_group_by_reuse (groups);
935 }
936 
937 /* Returns true if we should issue prefetch for REF.  */
938 
939 static bool
940 should_issue_prefetch_p (struct mem_ref *ref)
941 {
942   /* For now do not issue prefetches for only first few of the
943      iterations.  */
944   if (ref->prefetch_before != PREFETCH_ALL)
945     {
946       if (dump_file && (dump_flags & TDF_DETAILS))
947         fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
948 		 (void *) ref);
949       return false;
950     }
951 
952   /* Do not prefetch nontemporal stores.  */
953   if (ref->storent_p)
954     {
955       if (dump_file && (dump_flags & TDF_DETAILS))
956         fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
957       return false;
958     }
959 
960   return true;
961 }
962 
963 /* Decide which of the prefetch candidates in GROUPS to prefetch.
964    AHEAD is the number of iterations to prefetch ahead (which corresponds
965    to the number of simultaneous instances of one prefetch running at a
966    time).  UNROLL_FACTOR is the factor by that the loop is going to be
967    unrolled.  Returns true if there is anything to prefetch.  */
968 
969 static bool
970 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
971 		     unsigned ahead)
972 {
973   unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
974   unsigned slots_per_prefetch;
975   struct mem_ref *ref;
976   bool any = false;
977 
978   /* At most SIMULTANEOUS_PREFETCHES should be running at the same time.  */
979   remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
980 
981   /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
982      AHEAD / UNROLL_FACTOR iterations of the unrolled loop.  In each iteration,
983      it will need a prefetch slot.  */
984   slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
985   if (dump_file && (dump_flags & TDF_DETAILS))
986     fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
987 	     slots_per_prefetch);
988 
989   /* For now we just take memory references one by one and issue
990      prefetches for as many as possible.  The groups are sorted
991      starting with the largest step, since the references with
992      large step are more likely to cause many cache misses.  */
993 
994   for (; groups; groups = groups->next)
995     for (ref = groups->refs; ref; ref = ref->next)
996       {
997 	if (!should_issue_prefetch_p (ref))
998 	  continue;
999 
1000         /* The loop is far from being sufficiently unrolled for this
1001            prefetch.  Do not generate prefetch to avoid many redudant
1002            prefetches.  */
1003         if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1004           continue;
1005 
1006 	/* If we need to prefetch the reference each PREFETCH_MOD iterations,
1007 	   and we unroll the loop UNROLL_FACTOR times, we need to insert
1008 	   ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1009 	   iteration.  */
1010 	n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1011 			/ ref->prefetch_mod);
1012 	prefetch_slots = n_prefetches * slots_per_prefetch;
1013 
1014 	/* If more than half of the prefetches would be lost anyway, do not
1015 	   issue the prefetch.  */
1016 	if (2 * remaining_prefetch_slots < prefetch_slots)
1017 	  continue;
1018 
1019 	ref->issue_prefetch_p = true;
1020 
1021 	if (remaining_prefetch_slots <= prefetch_slots)
1022 	  return true;
1023 	remaining_prefetch_slots -= prefetch_slots;
1024 	any = true;
1025       }
1026 
1027   return any;
1028 }
1029 
1030 /* Return TRUE if no prefetch is going to be generated in the given
1031    GROUPS.  */
1032 
1033 static bool
1034 nothing_to_prefetch_p (struct mem_ref_group *groups)
1035 {
1036   struct mem_ref *ref;
1037 
1038   for (; groups; groups = groups->next)
1039     for (ref = groups->refs; ref; ref = ref->next)
1040       if (should_issue_prefetch_p (ref))
1041 	return false;
1042 
1043   return true;
1044 }
1045 
1046 /* Estimate the number of prefetches in the given GROUPS.
1047    UNROLL_FACTOR is the factor by which LOOP was unrolled.  */
1048 
1049 static int
1050 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1051 {
1052   struct mem_ref *ref;
1053   unsigned n_prefetches;
1054   int prefetch_count = 0;
1055 
1056   for (; groups; groups = groups->next)
1057     for (ref = groups->refs; ref; ref = ref->next)
1058       if (should_issue_prefetch_p (ref))
1059 	{
1060 	  n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1061 			  / ref->prefetch_mod);
1062 	  prefetch_count += n_prefetches;
1063 	}
1064 
1065   return prefetch_count;
1066 }
1067 
1068 /* Issue prefetches for the reference REF into loop as decided before.
1069    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR
1070    is the factor by which LOOP was unrolled.  */
1071 
1072 static void
1073 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1074 {
1075   HOST_WIDE_INT delta;
1076   tree addr, addr_base, write_p, local, forward;
1077   gimple prefetch;
1078   gimple_stmt_iterator bsi;
1079   unsigned n_prefetches, ap;
1080   bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1081 
1082   if (dump_file && (dump_flags & TDF_DETAILS))
1083     fprintf (dump_file, "Issued%s prefetch for %p.\n",
1084 	     nontemporal ? " nontemporal" : "",
1085 	     (void *) ref);
1086 
1087   bsi = gsi_for_stmt (ref->stmt);
1088 
1089   n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1090 		  / ref->prefetch_mod);
1091   addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1092   addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1093 					true, NULL, true, GSI_SAME_STMT);
1094   write_p = ref->write_p ? integer_one_node : integer_zero_node;
1095   local = nontemporal ? integer_zero_node : integer_three_node;
1096 
1097   for (ap = 0; ap < n_prefetches; ap++)
1098     {
1099       if (cst_and_fits_in_hwi (ref->group->step))
1100         {
1101           /* Determine the address to prefetch.  */
1102           delta = (ahead + ap * ref->prefetch_mod) *
1103 		   int_cst_value (ref->group->step);
1104           addr = fold_build_pointer_plus_hwi (addr_base, delta);
1105           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1106                                            true, GSI_SAME_STMT);
1107         }
1108       else
1109         {
1110           /* The step size is non-constant but loop-invariant.  We use the
1111              heuristic to simply prefetch ahead iterations ahead.  */
1112           forward = fold_build2 (MULT_EXPR, sizetype,
1113                                  fold_convert (sizetype, ref->group->step),
1114                                  fold_convert (sizetype, size_int (ahead)));
1115           addr = fold_build_pointer_plus (addr_base, forward);
1116           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1117 					   NULL, true, GSI_SAME_STMT);
1118       }
1119       /* Create the prefetch instruction.  */
1120       prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1121 				    3, addr, write_p, local);
1122       gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1123     }
1124 }
1125 
1126 /* Issue prefetches for the references in GROUPS into loop as decided before.
1127    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR is the
1128    factor by that LOOP was unrolled.  */
1129 
1130 static void
1131 issue_prefetches (struct mem_ref_group *groups,
1132 		  unsigned unroll_factor, unsigned ahead)
1133 {
1134   struct mem_ref *ref;
1135 
1136   for (; groups; groups = groups->next)
1137     for (ref = groups->refs; ref; ref = ref->next)
1138       if (ref->issue_prefetch_p)
1139 	issue_prefetch_ref (ref, unroll_factor, ahead);
1140 }
1141 
1142 /* Returns true if REF is a memory write for that a nontemporal store insn
1143    can be used.  */
1144 
1145 static bool
1146 nontemporal_store_p (struct mem_ref *ref)
1147 {
1148   enum machine_mode mode;
1149   enum insn_code code;
1150 
1151   /* REF must be a write that is not reused.  We require it to be independent
1152      on all other memory references in the loop, as the nontemporal stores may
1153      be reordered with respect to other memory references.  */
1154   if (!ref->write_p
1155       || !ref->independent_p
1156       || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1157     return false;
1158 
1159   /* Check that we have the storent instruction for the mode.  */
1160   mode = TYPE_MODE (TREE_TYPE (ref->mem));
1161   if (mode == BLKmode)
1162     return false;
1163 
1164   code = optab_handler (storent_optab, mode);
1165   return code != CODE_FOR_nothing;
1166 }
1167 
1168 /* If REF is a nontemporal store, we mark the corresponding modify statement
1169    and return true.  Otherwise, we return false.  */
1170 
1171 static bool
1172 mark_nontemporal_store (struct mem_ref *ref)
1173 {
1174   if (!nontemporal_store_p (ref))
1175     return false;
1176 
1177   if (dump_file && (dump_flags & TDF_DETAILS))
1178     fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1179 	     (void *) ref);
1180 
1181   gimple_assign_set_nontemporal_move (ref->stmt, true);
1182   ref->storent_p = true;
1183 
1184   return true;
1185 }
1186 
1187 /* Issue a memory fence instruction after LOOP.  */
1188 
1189 static void
1190 emit_mfence_after_loop (struct loop *loop)
1191 {
1192   VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1193   edge exit;
1194   gimple call;
1195   gimple_stmt_iterator bsi;
1196   unsigned i;
1197 
1198   FOR_EACH_VEC_ELT (edge, exits, i, exit)
1199     {
1200       call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1201 
1202       if (!single_pred_p (exit->dest)
1203 	  /* If possible, we prefer not to insert the fence on other paths
1204 	     in cfg.  */
1205 	  && !(exit->flags & EDGE_ABNORMAL))
1206 	split_loop_exit_edge (exit);
1207       bsi = gsi_after_labels (exit->dest);
1208 
1209       gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1210       mark_virtual_ops_for_renaming (call);
1211     }
1212 
1213   VEC_free (edge, heap, exits);
1214   update_ssa (TODO_update_ssa_only_virtuals);
1215 }
1216 
1217 /* Returns true if we can use storent in loop, false otherwise.  */
1218 
1219 static bool
1220 may_use_storent_in_loop_p (struct loop *loop)
1221 {
1222   bool ret = true;
1223 
1224   if (loop->inner != NULL)
1225     return false;
1226 
1227   /* If we must issue a mfence insn after using storent, check that there
1228      is a suitable place for it at each of the loop exits.  */
1229   if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1230     {
1231       VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1232       unsigned i;
1233       edge exit;
1234 
1235       FOR_EACH_VEC_ELT (edge, exits, i, exit)
1236 	if ((exit->flags & EDGE_ABNORMAL)
1237 	    && exit->dest == EXIT_BLOCK_PTR)
1238 	  ret = false;
1239 
1240       VEC_free (edge, heap, exits);
1241     }
1242 
1243   return ret;
1244 }
1245 
1246 /* Marks nontemporal stores in LOOP.  GROUPS contains the description of memory
1247    references in the loop.  */
1248 
1249 static void
1250 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1251 {
1252   struct mem_ref *ref;
1253   bool any = false;
1254 
1255   if (!may_use_storent_in_loop_p (loop))
1256     return;
1257 
1258   for (; groups; groups = groups->next)
1259     for (ref = groups->refs; ref; ref = ref->next)
1260       any |= mark_nontemporal_store (ref);
1261 
1262   if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1263     emit_mfence_after_loop (loop);
1264 }
1265 
1266 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1267    this is the case, fill in DESC by the description of number of
1268    iterations.  */
1269 
1270 static bool
1271 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1272 		      unsigned factor)
1273 {
1274   if (!can_unroll_loop_p (loop, factor, desc))
1275     return false;
1276 
1277   /* We only consider loops without control flow for unrolling.  This is not
1278      a hard restriction -- tree_unroll_loop works with arbitrary loops
1279      as well; but the unrolling/prefetching is usually more profitable for
1280      loops consisting of a single basic block, and we want to limit the
1281      code growth.  */
1282   if (loop->num_nodes > 2)
1283     return false;
1284 
1285   return true;
1286 }
1287 
1288 /* Determine the coefficient by that unroll LOOP, from the information
1289    contained in the list of memory references REFS.  Description of
1290    umber of iterations of LOOP is stored to DESC.  NINSNS is the number of
1291    insns of the LOOP.  EST_NITER is the estimated number of iterations of
1292    the loop, or -1 if no estimate is available.  */
1293 
1294 static unsigned
1295 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1296 			 unsigned ninsns, struct tree_niter_desc *desc,
1297 			 HOST_WIDE_INT est_niter)
1298 {
1299   unsigned upper_bound;
1300   unsigned nfactor, factor, mod_constraint;
1301   struct mem_ref_group *agp;
1302   struct mem_ref *ref;
1303 
1304   /* First check whether the loop is not too large to unroll.  We ignore
1305      PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1306      from unrolling them enough to make exactly one cache line covered by each
1307      iteration.  Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1308      us from unrolling the loops too many times in cases where we only expect
1309      gains from better scheduling and decreasing loop overhead, which is not
1310      the case here.  */
1311   upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1312 
1313   /* If we unrolled the loop more times than it iterates, the unrolled version
1314      of the loop would be never entered.  */
1315   if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1316     upper_bound = est_niter;
1317 
1318   if (upper_bound <= 1)
1319     return 1;
1320 
1321   /* Choose the factor so that we may prefetch each cache just once,
1322      but bound the unrolling by UPPER_BOUND.  */
1323   factor = 1;
1324   for (agp = refs; agp; agp = agp->next)
1325     for (ref = agp->refs; ref; ref = ref->next)
1326       if (should_issue_prefetch_p (ref))
1327 	{
1328 	  mod_constraint = ref->prefetch_mod;
1329 	  nfactor = least_common_multiple (mod_constraint, factor);
1330 	  if (nfactor <= upper_bound)
1331 	    factor = nfactor;
1332 	}
1333 
1334   if (!should_unroll_loop_p (loop, desc, factor))
1335     return 1;
1336 
1337   return factor;
1338 }
1339 
1340 /* Returns the total volume of the memory references REFS, taking into account
1341    reuses in the innermost loop and cache line size.  TODO -- we should also
1342    take into account reuses across the iterations of the loops in the loop
1343    nest.  */
1344 
1345 static unsigned
1346 volume_of_references (struct mem_ref_group *refs)
1347 {
1348   unsigned volume = 0;
1349   struct mem_ref_group *gr;
1350   struct mem_ref *ref;
1351 
1352   for (gr = refs; gr; gr = gr->next)
1353     for (ref = gr->refs; ref; ref = ref->next)
1354       {
1355 	/* Almost always reuses another value?  */
1356 	if (ref->prefetch_before != PREFETCH_ALL)
1357 	  continue;
1358 
1359 	/* If several iterations access the same cache line, use the size of
1360 	   the line divided by this number.  Otherwise, a cache line is
1361 	   accessed in each iteration.  TODO -- in the latter case, we should
1362 	   take the size of the reference into account, rounding it up on cache
1363 	   line size multiple.  */
1364 	volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1365       }
1366   return volume;
1367 }
1368 
1369 /* Returns the volume of memory references accessed across VEC iterations of
1370    loops, whose sizes are described in the LOOP_SIZES array.  N is the number
1371    of the loops in the nest (length of VEC and LOOP_SIZES vectors).  */
1372 
1373 static unsigned
1374 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1375 {
1376   unsigned i;
1377 
1378   for (i = 0; i < n; i++)
1379     if (vec[i] != 0)
1380       break;
1381 
1382   if (i == n)
1383     return 0;
1384 
1385   gcc_assert (vec[i] > 0);
1386 
1387   /* We ignore the parts of the distance vector in subloops, since usually
1388      the numbers of iterations are much smaller.  */
1389   return loop_sizes[i] * vec[i];
1390 }
1391 
1392 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1393    at the position corresponding to the loop of the step.  N is the depth
1394    of the considered loop nest, and, LOOP is its innermost loop.  */
1395 
1396 static void
1397 add_subscript_strides (tree access_fn, unsigned stride,
1398 		       HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1399 {
1400   struct loop *aloop;
1401   tree step;
1402   HOST_WIDE_INT astep;
1403   unsigned min_depth = loop_depth (loop) - n;
1404 
1405   while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1406     {
1407       aloop = get_chrec_loop (access_fn);
1408       step = CHREC_RIGHT (access_fn);
1409       access_fn = CHREC_LEFT (access_fn);
1410 
1411       if ((unsigned) loop_depth (aloop) <= min_depth)
1412 	continue;
1413 
1414       if (host_integerp (step, 0))
1415 	astep = tree_low_cst (step, 0);
1416       else
1417 	astep = L1_CACHE_LINE_SIZE;
1418 
1419       strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1420 
1421     }
1422 }
1423 
1424 /* Returns the volume of memory references accessed between two consecutive
1425    self-reuses of the reference DR.  We consider the subscripts of DR in N
1426    loops, and LOOP_SIZES contains the volumes of accesses in each of the
1427    loops.  LOOP is the innermost loop of the current loop nest.  */
1428 
1429 static unsigned
1430 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1431 		     struct loop *loop)
1432 {
1433   tree stride, access_fn;
1434   HOST_WIDE_INT *strides, astride;
1435   VEC (tree, heap) *access_fns;
1436   tree ref = DR_REF (dr);
1437   unsigned i, ret = ~0u;
1438 
1439   /* In the following example:
1440 
1441      for (i = 0; i < N; i++)
1442        for (j = 0; j < N; j++)
1443          use (a[j][i]);
1444      the same cache line is accessed each N steps (except if the change from
1445      i to i + 1 crosses the boundary of the cache line).  Thus, for self-reuse,
1446      we cannot rely purely on the results of the data dependence analysis.
1447 
1448      Instead, we compute the stride of the reference in each loop, and consider
1449      the innermost loop in that the stride is less than cache size.  */
1450 
1451   strides = XCNEWVEC (HOST_WIDE_INT, n);
1452   access_fns = DR_ACCESS_FNS (dr);
1453 
1454   FOR_EACH_VEC_ELT (tree, access_fns, i, access_fn)
1455     {
1456       /* Keep track of the reference corresponding to the subscript, so that we
1457 	 know its stride.  */
1458       while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1459 	ref = TREE_OPERAND (ref, 0);
1460 
1461       if (TREE_CODE (ref) == ARRAY_REF)
1462 	{
1463 	  stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1464 	  if (host_integerp (stride, 1))
1465 	    astride = tree_low_cst (stride, 1);
1466 	  else
1467 	    astride = L1_CACHE_LINE_SIZE;
1468 
1469 	  ref = TREE_OPERAND (ref, 0);
1470 	}
1471       else
1472 	astride = 1;
1473 
1474       add_subscript_strides (access_fn, astride, strides, n, loop);
1475     }
1476 
1477   for (i = n; i-- > 0; )
1478     {
1479       unsigned HOST_WIDE_INT s;
1480 
1481       s = strides[i] < 0 ?  -strides[i] : strides[i];
1482 
1483       if (s < (unsigned) L1_CACHE_LINE_SIZE
1484 	  && (loop_sizes[i]
1485 	      > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1486 	{
1487 	  ret = loop_sizes[i];
1488 	  break;
1489 	}
1490     }
1491 
1492   free (strides);
1493   return ret;
1494 }
1495 
1496 /* Determines the distance till the first reuse of each reference in REFS
1497    in the loop nest of LOOP.  NO_OTHER_REFS is true if there are no other
1498    memory references in the loop.  */
1499 
1500 static void
1501 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1502 			   bool no_other_refs)
1503 {
1504   struct loop *nest, *aloop;
1505   VEC (data_reference_p, heap) *datarefs = NULL;
1506   VEC (ddr_p, heap) *dependences = NULL;
1507   struct mem_ref_group *gr;
1508   struct mem_ref *ref, *refb;
1509   VEC (loop_p, heap) *vloops = NULL;
1510   unsigned *loop_data_size;
1511   unsigned i, j, n;
1512   unsigned volume, dist, adist;
1513   HOST_WIDE_INT vol;
1514   data_reference_p dr;
1515   ddr_p dep;
1516 
1517   if (loop->inner)
1518     return;
1519 
1520   /* Find the outermost loop of the loop nest of loop (we require that
1521      there are no sibling loops inside the nest).  */
1522   nest = loop;
1523   while (1)
1524     {
1525       aloop = loop_outer (nest);
1526 
1527       if (aloop == current_loops->tree_root
1528 	  || aloop->inner->next)
1529 	break;
1530 
1531       nest = aloop;
1532     }
1533 
1534   /* For each loop, determine the amount of data accessed in each iteration.
1535      We use this to estimate whether the reference is evicted from the
1536      cache before its reuse.  */
1537   find_loop_nest (nest, &vloops);
1538   n = VEC_length (loop_p, vloops);
1539   loop_data_size = XNEWVEC (unsigned, n);
1540   volume = volume_of_references (refs);
1541   i = n;
1542   while (i-- != 0)
1543     {
1544       loop_data_size[i] = volume;
1545       /* Bound the volume by the L2 cache size, since above this bound,
1546 	 all dependence distances are equivalent.  */
1547       if (volume > L2_CACHE_SIZE_BYTES)
1548 	continue;
1549 
1550       aloop = VEC_index (loop_p, vloops, i);
1551       vol = max_stmt_executions_int (aloop, false);
1552       if (vol < 0)
1553 	vol = expected_loop_iterations (aloop);
1554       volume *= vol;
1555     }
1556 
1557   /* Prepare the references in the form suitable for data dependence
1558      analysis.  We ignore unanalyzable data references (the results
1559      are used just as a heuristics to estimate temporality of the
1560      references, hence we do not need to worry about correctness).  */
1561   for (gr = refs; gr; gr = gr->next)
1562     for (ref = gr->refs; ref; ref = ref->next)
1563       {
1564 	dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1565 			      ref->mem, ref->stmt, !ref->write_p);
1566 
1567 	if (dr)
1568 	  {
1569 	    ref->reuse_distance = volume;
1570 	    dr->aux = ref;
1571 	    VEC_safe_push (data_reference_p, heap, datarefs, dr);
1572 	  }
1573 	else
1574 	  no_other_refs = false;
1575       }
1576 
1577   FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
1578     {
1579       dist = self_reuse_distance (dr, loop_data_size, n, loop);
1580       ref = (struct mem_ref *) dr->aux;
1581       if (ref->reuse_distance > dist)
1582 	ref->reuse_distance = dist;
1583 
1584       if (no_other_refs)
1585 	ref->independent_p = true;
1586     }
1587 
1588   compute_all_dependences (datarefs, &dependences, vloops, true);
1589 
1590   FOR_EACH_VEC_ELT (ddr_p, dependences, i, dep)
1591     {
1592       if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1593 	continue;
1594 
1595       ref = (struct mem_ref *) DDR_A (dep)->aux;
1596       refb = (struct mem_ref *) DDR_B (dep)->aux;
1597 
1598       if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1599 	  || DDR_NUM_DIST_VECTS (dep) == 0)
1600 	{
1601 	  /* If the dependence cannot be analyzed, assume that there might be
1602 	     a reuse.  */
1603 	  dist = 0;
1604 
1605 	  ref->independent_p = false;
1606 	  refb->independent_p = false;
1607 	}
1608       else
1609 	{
1610 	  /* The distance vectors are normalized to be always lexicographically
1611 	     positive, hence we cannot tell just from them whether DDR_A comes
1612 	     before DDR_B or vice versa.  However, it is not important,
1613 	     anyway -- if DDR_A is close to DDR_B, then it is either reused in
1614 	     DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1615 	     in cache (and marking it as nontemporal would not affect
1616 	     anything).  */
1617 
1618 	  dist = volume;
1619 	  for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1620 	    {
1621 	      adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1622 					     loop_data_size, n);
1623 
1624 	      /* If this is a dependence in the innermost loop (i.e., the
1625 		 distances in all superloops are zero) and it is not
1626 		 the trivial self-dependence with distance zero, record that
1627 		 the references are not completely independent.  */
1628 	      if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1629 		  && (ref != refb
1630 		      || DDR_DIST_VECT (dep, j)[n-1] != 0))
1631 		{
1632 		  ref->independent_p = false;
1633 		  refb->independent_p = false;
1634 		}
1635 
1636 	      /* Ignore accesses closer than
1637 		 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1638 	      	 so that we use nontemporal prefetches e.g. if single memory
1639 		 location is accessed several times in a single iteration of
1640 		 the loop.  */
1641 	      if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1642 		continue;
1643 
1644 	      if (adist < dist)
1645 		dist = adist;
1646 	    }
1647 	}
1648 
1649       if (ref->reuse_distance > dist)
1650 	ref->reuse_distance = dist;
1651       if (refb->reuse_distance > dist)
1652 	refb->reuse_distance = dist;
1653     }
1654 
1655   free_dependence_relations (dependences);
1656   free_data_refs (datarefs);
1657   free (loop_data_size);
1658 
1659   if (dump_file && (dump_flags & TDF_DETAILS))
1660     {
1661       fprintf (dump_file, "Reuse distances:\n");
1662       for (gr = refs; gr; gr = gr->next)
1663 	for (ref = gr->refs; ref; ref = ref->next)
1664 	  fprintf (dump_file, " ref %p distance %u\n",
1665 		   (void *) ref, ref->reuse_distance);
1666     }
1667 }
1668 
1669 /* Determine whether or not the trip count to ahead ratio is too small based
1670    on prefitablility consideration.
1671    AHEAD: the iteration ahead distance,
1672    EST_NITER: the estimated trip count.  */
1673 
1674 static bool
1675 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1676 {
1677   /* Assume trip count to ahead ratio is big enough if the trip count could not
1678      be estimated at compile time.  */
1679   if (est_niter < 0)
1680     return false;
1681 
1682   if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1683     {
1684       if (dump_file && (dump_flags & TDF_DETAILS))
1685 	fprintf (dump_file,
1686 		 "Not prefetching -- loop estimated to roll only %d times\n",
1687 		 (int) est_niter);
1688       return true;
1689     }
1690 
1691   return false;
1692 }
1693 
1694 /* Determine whether or not the number of memory references in the loop is
1695    reasonable based on the profitablity and compilation time considerations.
1696    NINSNS: estimated number of instructions in the loop,
1697    MEM_REF_COUNT: total number of memory references in the loop.  */
1698 
1699 static bool
1700 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1701 {
1702   int insn_to_mem_ratio;
1703 
1704   if (mem_ref_count == 0)
1705     return false;
1706 
1707   /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1708      (compute_all_dependences) have high costs based on quadratic complexity.
1709      To avoid huge compilation time, we give up prefetching if mem_ref_count
1710      is too large.  */
1711   if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1712     return false;
1713 
1714   /* Prefetching improves performance by overlapping cache missing
1715      memory accesses with CPU operations.  If the loop does not have
1716      enough CPU operations to overlap with memory operations, prefetching
1717      won't give a significant benefit.  One approximate way of checking
1718      this is to require the ratio of instructions to memory references to
1719      be above a certain limit.  This approximation works well in practice.
1720      TODO: Implement a more precise computation by estimating the time
1721      for each CPU or memory op in the loop. Time estimates for memory ops
1722      should account for cache misses.  */
1723   insn_to_mem_ratio = ninsns / mem_ref_count;
1724 
1725   if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1726     {
1727       if (dump_file && (dump_flags & TDF_DETAILS))
1728         fprintf (dump_file,
1729 		 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1730 		 insn_to_mem_ratio);
1731       return false;
1732     }
1733 
1734   return true;
1735 }
1736 
1737 /* Determine whether or not the instruction to prefetch ratio in the loop is
1738    too small based on the profitablity consideration.
1739    NINSNS: estimated number of instructions in the loop,
1740    PREFETCH_COUNT: an estimate of the number of prefetches,
1741    UNROLL_FACTOR:  the factor to unroll the loop if prefetching.  */
1742 
1743 static bool
1744 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1745                                      unsigned unroll_factor)
1746 {
1747   int insn_to_prefetch_ratio;
1748 
1749   /* Prefetching most likely causes performance degradation when the instruction
1750      to prefetch ratio is too small.  Too many prefetch instructions in a loop
1751      may reduce the I-cache performance.
1752      (unroll_factor * ninsns) is used to estimate the number of instructions in
1753      the unrolled loop.  This implementation is a bit simplistic -- the number
1754      of issued prefetch instructions is also affected by unrolling.  So,
1755      prefetch_mod and the unroll factor should be taken into account when
1756      determining prefetch_count.  Also, the number of insns of the unrolled
1757      loop will usually be significantly smaller than the number of insns of the
1758      original loop * unroll_factor (at least the induction variable increases
1759      and the exit branches will get eliminated), so it might be better to use
1760      tree_estimate_loop_size + estimated_unrolled_size.  */
1761   insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1762   if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1763     {
1764       if (dump_file && (dump_flags & TDF_DETAILS))
1765         fprintf (dump_file,
1766 		 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1767 		 insn_to_prefetch_ratio);
1768       return true;
1769     }
1770 
1771   return false;
1772 }
1773 
1774 
1775 /* Issue prefetch instructions for array references in LOOP.  Returns
1776    true if the LOOP was unrolled.  */
1777 
1778 static bool
1779 loop_prefetch_arrays (struct loop *loop)
1780 {
1781   struct mem_ref_group *refs;
1782   unsigned ahead, ninsns, time, unroll_factor;
1783   HOST_WIDE_INT est_niter;
1784   struct tree_niter_desc desc;
1785   bool unrolled = false, no_other_refs;
1786   unsigned prefetch_count;
1787   unsigned mem_ref_count;
1788 
1789   if (optimize_loop_nest_for_size_p (loop))
1790     {
1791       if (dump_file && (dump_flags & TDF_DETAILS))
1792 	fprintf (dump_file, "  ignored (cold area)\n");
1793       return false;
1794     }
1795 
1796   /* FIXME: the time should be weighted by the probabilities of the blocks in
1797      the loop body.  */
1798   time = tree_num_loop_insns (loop, &eni_time_weights);
1799   if (time == 0)
1800     return false;
1801 
1802   ahead = (PREFETCH_LATENCY + time - 1) / time;
1803   est_niter = max_stmt_executions_int (loop, false);
1804 
1805   /* Prefetching is not likely to be profitable if the trip count to ahead
1806      ratio is too small.  */
1807   if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1808     return false;
1809 
1810   ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1811 
1812   /* Step 1: gather the memory references.  */
1813   refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1814 
1815   /* Give up prefetching if the number of memory references in the
1816      loop is not reasonable based on profitablity and compilation time
1817      considerations.  */
1818   if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1819     goto fail;
1820 
1821   /* Step 2: estimate the reuse effects.  */
1822   prune_by_reuse (refs);
1823 
1824   if (nothing_to_prefetch_p (refs))
1825     goto fail;
1826 
1827   determine_loop_nest_reuse (loop, refs, no_other_refs);
1828 
1829   /* Step 3: determine unroll factor.  */
1830   unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1831 					   est_niter);
1832 
1833   /* Estimate prefetch count for the unrolled loop.  */
1834   prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1835   if (prefetch_count == 0)
1836     goto fail;
1837 
1838   if (dump_file && (dump_flags & TDF_DETAILS))
1839     fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1840 	     HOST_WIDE_INT_PRINT_DEC "\n"
1841 	     "insn count %d, mem ref count %d, prefetch count %d\n",
1842 	     ahead, unroll_factor, est_niter,
1843 	     ninsns, mem_ref_count, prefetch_count);
1844 
1845   /* Prefetching is not likely to be profitable if the instruction to prefetch
1846      ratio is too small.  */
1847   if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1848 					  unroll_factor))
1849     goto fail;
1850 
1851   mark_nontemporal_stores (loop, refs);
1852 
1853   /* Step 4: what to prefetch?  */
1854   if (!schedule_prefetches (refs, unroll_factor, ahead))
1855     goto fail;
1856 
1857   /* Step 5: unroll the loop.  TODO -- peeling of first and last few
1858      iterations so that we do not issue superfluous prefetches.  */
1859   if (unroll_factor != 1)
1860     {
1861       tree_unroll_loop (loop, unroll_factor,
1862 			single_dom_exit (loop), &desc);
1863       unrolled = true;
1864     }
1865 
1866   /* Step 6: issue the prefetches.  */
1867   issue_prefetches (refs, unroll_factor, ahead);
1868 
1869 fail:
1870   release_mem_refs (refs);
1871   return unrolled;
1872 }
1873 
1874 /* Issue prefetch instructions for array references in loops.  */
1875 
1876 unsigned int
1877 tree_ssa_prefetch_arrays (void)
1878 {
1879   loop_iterator li;
1880   struct loop *loop;
1881   bool unrolled = false;
1882   int todo_flags = 0;
1883 
1884   if (!HAVE_prefetch
1885       /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1886 	 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1887 	 of processor costs and i486 does not have prefetch, but
1888 	 -march=pentium4 causes HAVE_prefetch to be true.  Ugh.  */
1889       || PREFETCH_BLOCK == 0)
1890     return 0;
1891 
1892   if (dump_file && (dump_flags & TDF_DETAILS))
1893     {
1894       fprintf (dump_file, "Prefetching parameters:\n");
1895       fprintf (dump_file, "    simultaneous prefetches: %d\n",
1896 	       SIMULTANEOUS_PREFETCHES);
1897       fprintf (dump_file, "    prefetch latency: %d\n", PREFETCH_LATENCY);
1898       fprintf (dump_file, "    prefetch block size: %d\n", PREFETCH_BLOCK);
1899       fprintf (dump_file, "    L1 cache size: %d lines, %d kB\n",
1900 	       L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1901       fprintf (dump_file, "    L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1902       fprintf (dump_file, "    L2 cache size: %d kB\n", L2_CACHE_SIZE);
1903       fprintf (dump_file, "    min insn-to-prefetch ratio: %d \n",
1904 	       MIN_INSN_TO_PREFETCH_RATIO);
1905       fprintf (dump_file, "    min insn-to-mem ratio: %d \n",
1906 	       PREFETCH_MIN_INSN_TO_MEM_RATIO);
1907       fprintf (dump_file, "\n");
1908     }
1909 
1910   initialize_original_copy_tables ();
1911 
1912   if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
1913     {
1914       tree type = build_function_type_list (void_type_node,
1915 					    const_ptr_type_node, NULL_TREE);
1916       tree decl = add_builtin_function ("__builtin_prefetch", type,
1917 					BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1918 					NULL, NULL_TREE);
1919       DECL_IS_NOVOPS (decl) = true;
1920       set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
1921     }
1922 
1923   /* We assume that size of cache line is a power of two, so verify this
1924      here.  */
1925   gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1926 
1927   FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1928     {
1929       if (dump_file && (dump_flags & TDF_DETAILS))
1930 	fprintf (dump_file, "Processing loop %d:\n", loop->num);
1931 
1932       unrolled |= loop_prefetch_arrays (loop);
1933 
1934       if (dump_file && (dump_flags & TDF_DETAILS))
1935 	fprintf (dump_file, "\n\n");
1936     }
1937 
1938   if (unrolled)
1939     {
1940       scev_reset ();
1941       todo_flags |= TODO_cleanup_cfg;
1942     }
1943 
1944   free_original_copy_tables ();
1945   return todo_flags;
1946 }
1947