1 /* Global, SSA-based optimizations using mathematical identities.
2    Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22    operations.  These are common in sequences such as this one:
23 
24 	modulus = sqrt(x*x + y*y + z*z);
25 	x = x / modulus;
26 	y = y / modulus;
27 	z = z / modulus;
28 
29    that can be optimized to
30 
31 	modulus = sqrt(x*x + y*y + z*z);
32         rmodulus = 1.0 / modulus;
33 	x = x * rmodulus;
34 	y = y * rmodulus;
35 	z = z * rmodulus;
36 
37    We do this for loop invariant divisors, and with this pass whenever
38    we notice that a division has the same divisor multiple times.
39 
40    Of course, like in PRE, we don't insert a division if a dominator
41    already has one.  However, this cannot be done as an extension of
42    PRE for several reasons.
43 
44    First of all, with some experiments it was found out that the
45    transformation is not always useful if there are only two divisions
46    hy the same divisor.  This is probably because modern processors
47    can pipeline the divisions; on older, in-order processors it should
48    still be effective to optimize two divisions by the same number.
49    We make this a param, and it shall be called N in the remainder of
50    this comment.
51 
52    Second, if trapping math is active, we have less freedom on where
53    to insert divisions: we can only do so in basic blocks that already
54    contain one.  (If divisions don't trap, instead, we can insert
55    divisions elsewhere, which will be in blocks that are common dominators
56    of those that have the division).
57 
58    We really don't want to compute the reciprocal unless a division will
59    be found.  To do this, we won't insert the division in a basic block
60    that has less than N divisions *post-dominating* it.
61 
62    The algorithm constructs a subset of the dominator tree, holding the
63    blocks containing the divisions and the common dominators to them,
64    and walk it twice.  The first walk is in post-order, and it annotates
65    each block with the number of divisions that post-dominate it: this
66    gives information on where divisions can be inserted profitably.
67    The second walk is in pre-order, and it inserts divisions as explained
68    above, and replaces divisions by multiplications.
69 
70    In the best case, the cost of the pass is O(n_statements).  In the
71    worst-case, the cost is due to creating the dominator tree subset,
72    with a cost of O(n_basic_blocks ^ 2); however this can only happen
73    for n_statements / n_basic_blocks statements.  So, the amortized cost
74    of creating the dominator tree subset is O(n_basic_blocks) and the
75    worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 
77    More practically, the cost will be small because there are few
78    divisions, and they tend to be in the same basic block, so insert_bb
79    is called very few times.
80 
81    If we did this using domwalk.c, an efficient implementation would have
82    to work on all the variables in a single pass, because we could not
83    work on just a subset of the dominator tree, as we do now, and the
84    cost would also be something like O(n_statements * n_basic_blocks).
85    The data structures would be more complex in order to work on all the
86    variables in a single pass.  */
87 
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "flags.h"
93 #include "tree.h"
94 #include "tree-flow.h"
95 #include "timevar.h"
96 #include "tree-pass.h"
97 #include "alloc-pool.h"
98 #include "basic-block.h"
99 #include "target.h"
100 #include "gimple-pretty-print.h"
101 
102 /* FIXME: RTL headers have to be included here for optabs.  */
103 #include "rtl.h"		/* Because optabs.h wants enum rtx_code.  */
104 #include "expr.h"		/* Because optabs.h wants sepops.  */
105 #include "optabs.h"
106 
107 /* This structure represents one basic block that either computes a
108    division, or is a common dominator for basic block that compute a
109    division.  */
110 struct occurrence {
111   /* The basic block represented by this structure.  */
112   basic_block bb;
113 
114   /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
115      inserted in BB.  */
116   tree recip_def;
117 
118   /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
119      was inserted in BB.  */
120   gimple recip_def_stmt;
121 
122   /* Pointer to a list of "struct occurrence"s for blocks dominated
123      by BB.  */
124   struct occurrence *children;
125 
126   /* Pointer to the next "struct occurrence"s in the list of blocks
127      sharing a common dominator.  */
128   struct occurrence *next;
129 
130   /* The number of divisions that are in BB before compute_merit.  The
131      number of divisions that are in BB or post-dominate it after
132      compute_merit.  */
133   int num_divisions;
134 
135   /* True if the basic block has a division, false if it is a common
136      dominator for basic blocks that do.  If it is false and trapping
137      math is active, BB is not a candidate for inserting a reciprocal.  */
138   bool bb_has_division;
139 };
140 
141 static struct
142 {
143   /* Number of 1.0/X ops inserted.  */
144   int rdivs_inserted;
145 
146   /* Number of 1.0/FUNC ops inserted.  */
147   int rfuncs_inserted;
148 } reciprocal_stats;
149 
150 static struct
151 {
152   /* Number of cexpi calls inserted.  */
153   int inserted;
154 } sincos_stats;
155 
156 static struct
157 {
158   /* Number of hand-written 32-bit bswaps found.  */
159   int found_32bit;
160 
161   /* Number of hand-written 64-bit bswaps found.  */
162   int found_64bit;
163 } bswap_stats;
164 
165 static struct
166 {
167   /* Number of widening multiplication ops inserted.  */
168   int widen_mults_inserted;
169 
170   /* Number of integer multiply-and-accumulate ops inserted.  */
171   int maccs_inserted;
172 
173   /* Number of fp fused multiply-add ops inserted.  */
174   int fmas_inserted;
175 } widen_mul_stats;
176 
177 /* The instance of "struct occurrence" representing the highest
178    interesting block in the dominator tree.  */
179 static struct occurrence *occ_head;
180 
181 /* Allocation pool for getting instances of "struct occurrence".  */
182 static alloc_pool occ_pool;
183 
184 
185 
186 /* Allocate and return a new struct occurrence for basic block BB, and
187    whose children list is headed by CHILDREN.  */
188 static struct occurrence *
189 occ_new (basic_block bb, struct occurrence *children)
190 {
191   struct occurrence *occ;
192 
193   bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
194   memset (occ, 0, sizeof (struct occurrence));
195 
196   occ->bb = bb;
197   occ->children = children;
198   return occ;
199 }
200 
201 
202 /* Insert NEW_OCC into our subset of the dominator tree.  P_HEAD points to a
203    list of "struct occurrence"s, one per basic block, having IDOM as
204    their common dominator.
205 
206    We try to insert NEW_OCC as deep as possible in the tree, and we also
207    insert any other block that is a common dominator for BB and one
208    block already in the tree.  */
209 
210 static void
211 insert_bb (struct occurrence *new_occ, basic_block idom,
212 	   struct occurrence **p_head)
213 {
214   struct occurrence *occ, **p_occ;
215 
216   for (p_occ = p_head; (occ = *p_occ) != NULL; )
217     {
218       basic_block bb = new_occ->bb, occ_bb = occ->bb;
219       basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
220       if (dom == bb)
221 	{
222 	  /* BB dominates OCC_BB.  OCC becomes NEW_OCC's child: remove OCC
223 	     from its list.  */
224 	  *p_occ = occ->next;
225 	  occ->next = new_occ->children;
226 	  new_occ->children = occ;
227 
228 	  /* Try the next block (it may as well be dominated by BB).  */
229 	}
230 
231       else if (dom == occ_bb)
232 	{
233 	  /* OCC_BB dominates BB.  Tail recurse to look deeper.  */
234 	  insert_bb (new_occ, dom, &occ->children);
235 	  return;
236 	}
237 
238       else if (dom != idom)
239 	{
240 	  gcc_assert (!dom->aux);
241 
242 	  /* There is a dominator between IDOM and BB, add it and make
243 	     two children out of NEW_OCC and OCC.  First, remove OCC from
244 	     its list.	*/
245 	  *p_occ = occ->next;
246 	  new_occ->next = occ;
247 	  occ->next = NULL;
248 
249 	  /* None of the previous blocks has DOM as a dominator: if we tail
250 	     recursed, we would reexamine them uselessly. Just switch BB with
251 	     DOM, and go on looking for blocks dominated by DOM.  */
252           new_occ = occ_new (dom, new_occ);
253 	}
254 
255       else
256 	{
257 	  /* Nothing special, go on with the next element.  */
258 	  p_occ = &occ->next;
259 	}
260     }
261 
262   /* No place was found as a child of IDOM.  Make BB a sibling of IDOM.  */
263   new_occ->next = *p_head;
264   *p_head = new_occ;
265 }
266 
267 /* Register that we found a division in BB.  */
268 
269 static inline void
270 register_division_in (basic_block bb)
271 {
272   struct occurrence *occ;
273 
274   occ = (struct occurrence *) bb->aux;
275   if (!occ)
276     {
277       occ = occ_new (bb, NULL);
278       insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
279     }
280 
281   occ->bb_has_division = true;
282   occ->num_divisions++;
283 }
284 
285 
286 /* Compute the number of divisions that postdominate each block in OCC and
287    its children.  */
288 
289 static void
290 compute_merit (struct occurrence *occ)
291 {
292   struct occurrence *occ_child;
293   basic_block dom = occ->bb;
294 
295   for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
296     {
297       basic_block bb;
298       if (occ_child->children)
299         compute_merit (occ_child);
300 
301       if (flag_exceptions)
302 	bb = single_noncomplex_succ (dom);
303       else
304 	bb = dom;
305 
306       if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
307         occ->num_divisions += occ_child->num_divisions;
308     }
309 }
310 
311 
312 /* Return whether USE_STMT is a floating-point division by DEF.  */
313 static inline bool
314 is_division_by (gimple use_stmt, tree def)
315 {
316   return is_gimple_assign (use_stmt)
317 	 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
318 	 && gimple_assign_rhs2 (use_stmt) == def
319 	 /* Do not recognize x / x as valid division, as we are getting
320 	    confused later by replacing all immediate uses x in such
321 	    a stmt.  */
322 	 && gimple_assign_rhs1 (use_stmt) != def;
323 }
324 
325 /* Walk the subset of the dominator tree rooted at OCC, setting the
326    RECIP_DEF field to a definition of 1.0 / DEF that can be used in
327    the given basic block.  The field may be left NULL, of course,
328    if it is not possible or profitable to do the optimization.
329 
330    DEF_BSI is an iterator pointing at the statement defining DEF.
331    If RECIP_DEF is set, a dominator already has a computation that can
332    be used.  */
333 
334 static void
335 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
336 		    tree def, tree recip_def, int threshold)
337 {
338   tree type;
339   gimple new_stmt;
340   gimple_stmt_iterator gsi;
341   struct occurrence *occ_child;
342 
343   if (!recip_def
344       && (occ->bb_has_division || !flag_trapping_math)
345       && occ->num_divisions >= threshold)
346     {
347       /* Make a variable with the replacement and substitute it.  */
348       type = TREE_TYPE (def);
349       recip_def = make_rename_temp (type, "reciptmp");
350       new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
351 					       build_one_cst (type), def);
352 
353       if (occ->bb_has_division)
354         {
355           /* Case 1: insert before an existing division.  */
356           gsi = gsi_after_labels (occ->bb);
357           while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
358 	    gsi_next (&gsi);
359 
360           gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
361         }
362       else if (def_gsi && occ->bb == def_gsi->bb)
363         {
364           /* Case 2: insert right after the definition.  Note that this will
365 	     never happen if the definition statement can throw, because in
366 	     that case the sole successor of the statement's basic block will
367 	     dominate all the uses as well.  */
368           gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
369         }
370       else
371         {
372           /* Case 3: insert in a basic block not containing defs/uses.  */
373           gsi = gsi_after_labels (occ->bb);
374           gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
375         }
376 
377       reciprocal_stats.rdivs_inserted++;
378 
379       occ->recip_def_stmt = new_stmt;
380     }
381 
382   occ->recip_def = recip_def;
383   for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
384     insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
385 }
386 
387 
388 /* Replace the division at USE_P with a multiplication by the reciprocal, if
389    possible.  */
390 
391 static inline void
392 replace_reciprocal (use_operand_p use_p)
393 {
394   gimple use_stmt = USE_STMT (use_p);
395   basic_block bb = gimple_bb (use_stmt);
396   struct occurrence *occ = (struct occurrence *) bb->aux;
397 
398   if (optimize_bb_for_speed_p (bb)
399       && occ->recip_def && use_stmt != occ->recip_def_stmt)
400     {
401       gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
402       gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
403       SET_USE (use_p, occ->recip_def);
404       fold_stmt_inplace (&gsi);
405       update_stmt (use_stmt);
406     }
407 }
408 
409 
410 /* Free OCC and return one more "struct occurrence" to be freed.  */
411 
412 static struct occurrence *
413 free_bb (struct occurrence *occ)
414 {
415   struct occurrence *child, *next;
416 
417   /* First get the two pointers hanging off OCC.  */
418   next = occ->next;
419   child = occ->children;
420   occ->bb->aux = NULL;
421   pool_free (occ_pool, occ);
422 
423   /* Now ensure that we don't recurse unless it is necessary.  */
424   if (!child)
425     return next;
426   else
427     {
428       while (next)
429 	next = free_bb (next);
430 
431       return child;
432     }
433 }
434 
435 
436 /* Look for floating-point divisions among DEF's uses, and try to
437    replace them by multiplications with the reciprocal.  Add
438    as many statements computing the reciprocal as needed.
439 
440    DEF must be a GIMPLE register of a floating-point type.  */
441 
442 static void
443 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
444 {
445   use_operand_p use_p;
446   imm_use_iterator use_iter;
447   struct occurrence *occ;
448   int count = 0, threshold;
449 
450   gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
451 
452   FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
453     {
454       gimple use_stmt = USE_STMT (use_p);
455       if (is_division_by (use_stmt, def))
456 	{
457 	  register_division_in (gimple_bb (use_stmt));
458 	  count++;
459 	}
460     }
461 
462   /* Do the expensive part only if we can hope to optimize something.  */
463   threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
464   if (count >= threshold)
465     {
466       gimple use_stmt;
467       for (occ = occ_head; occ; occ = occ->next)
468 	{
469 	  compute_merit (occ);
470 	  insert_reciprocals (def_gsi, occ, def, NULL, threshold);
471 	}
472 
473       FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
474 	{
475 	  if (is_division_by (use_stmt, def))
476 	    {
477 	      FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
478 		replace_reciprocal (use_p);
479 	    }
480 	}
481     }
482 
483   for (occ = occ_head; occ; )
484     occ = free_bb (occ);
485 
486   occ_head = NULL;
487 }
488 
489 static bool
490 gate_cse_reciprocals (void)
491 {
492   return optimize && flag_reciprocal_math;
493 }
494 
495 /* Go through all the floating-point SSA_NAMEs, and call
496    execute_cse_reciprocals_1 on each of them.  */
497 static unsigned int
498 execute_cse_reciprocals (void)
499 {
500   basic_block bb;
501   tree arg;
502 
503   occ_pool = create_alloc_pool ("dominators for recip",
504 				sizeof (struct occurrence),
505 				n_basic_blocks / 3 + 1);
506 
507   memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
508   calculate_dominance_info (CDI_DOMINATORS);
509   calculate_dominance_info (CDI_POST_DOMINATORS);
510 
511 #ifdef ENABLE_CHECKING
512   FOR_EACH_BB (bb)
513     gcc_assert (!bb->aux);
514 #endif
515 
516   for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
517     if (gimple_default_def (cfun, arg)
518 	&& FLOAT_TYPE_P (TREE_TYPE (arg))
519 	&& is_gimple_reg (arg))
520       execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
521 
522   FOR_EACH_BB (bb)
523     {
524       gimple_stmt_iterator gsi;
525       gimple phi;
526       tree def;
527 
528       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
529 	{
530 	  phi = gsi_stmt (gsi);
531 	  def = PHI_RESULT (phi);
532 	  if (FLOAT_TYPE_P (TREE_TYPE (def))
533 	      && is_gimple_reg (def))
534 	    execute_cse_reciprocals_1 (NULL, def);
535 	}
536 
537       for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
538         {
539 	  gimple stmt = gsi_stmt (gsi);
540 
541 	  if (gimple_has_lhs (stmt)
542 	      && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
543 	      && FLOAT_TYPE_P (TREE_TYPE (def))
544 	      && TREE_CODE (def) == SSA_NAME)
545 	    execute_cse_reciprocals_1 (&gsi, def);
546 	}
547 
548       if (optimize_bb_for_size_p (bb))
549         continue;
550 
551       /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b).  */
552       for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
553         {
554 	  gimple stmt = gsi_stmt (gsi);
555 	  tree fndecl;
556 
557 	  if (is_gimple_assign (stmt)
558 	      && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
559 	    {
560 	      tree arg1 = gimple_assign_rhs2 (stmt);
561 	      gimple stmt1;
562 
563 	      if (TREE_CODE (arg1) != SSA_NAME)
564 		continue;
565 
566 	      stmt1 = SSA_NAME_DEF_STMT (arg1);
567 
568 	      if (is_gimple_call (stmt1)
569 		  && gimple_call_lhs (stmt1)
570 		  && (fndecl = gimple_call_fndecl (stmt1))
571 		  && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
572 		      || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
573 		{
574 		  enum built_in_function code;
575 		  bool md_code, fail;
576 		  imm_use_iterator ui;
577 		  use_operand_p use_p;
578 
579 		  code = DECL_FUNCTION_CODE (fndecl);
580 		  md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
581 
582 		  fndecl = targetm.builtin_reciprocal (code, md_code, false);
583 		  if (!fndecl)
584 		    continue;
585 
586 		  /* Check that all uses of the SSA name are divisions,
587 		     otherwise replacing the defining statement will do
588 		     the wrong thing.  */
589 		  fail = false;
590 		  FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
591 		    {
592 		      gimple stmt2 = USE_STMT (use_p);
593 		      if (is_gimple_debug (stmt2))
594 			continue;
595 		      if (!is_gimple_assign (stmt2)
596 			  || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
597 			  || gimple_assign_rhs1 (stmt2) == arg1
598 			  || gimple_assign_rhs2 (stmt2) != arg1)
599 			{
600 			  fail = true;
601 			  break;
602 			}
603 		    }
604 		  if (fail)
605 		    continue;
606 
607 		  gimple_replace_lhs (stmt1, arg1);
608 		  gimple_call_set_fndecl (stmt1, fndecl);
609 		  update_stmt (stmt1);
610 		  reciprocal_stats.rfuncs_inserted++;
611 
612 		  FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
613 		    {
614 		      gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
615 		      gimple_assign_set_rhs_code (stmt, MULT_EXPR);
616 		      fold_stmt_inplace (&gsi);
617 		      update_stmt (stmt);
618 		    }
619 		}
620 	    }
621 	}
622     }
623 
624   statistics_counter_event (cfun, "reciprocal divs inserted",
625 			    reciprocal_stats.rdivs_inserted);
626   statistics_counter_event (cfun, "reciprocal functions inserted",
627 			    reciprocal_stats.rfuncs_inserted);
628 
629   free_dominance_info (CDI_DOMINATORS);
630   free_dominance_info (CDI_POST_DOMINATORS);
631   free_alloc_pool (occ_pool);
632   return 0;
633 }
634 
635 struct gimple_opt_pass pass_cse_reciprocals =
636 {
637  {
638   GIMPLE_PASS,
639   "recip",				/* name */
640   gate_cse_reciprocals,			/* gate */
641   execute_cse_reciprocals,		/* execute */
642   NULL,					/* sub */
643   NULL,					/* next */
644   0,					/* static_pass_number */
645   TV_NONE,				/* tv_id */
646   PROP_ssa,				/* properties_required */
647   0,					/* properties_provided */
648   0,					/* properties_destroyed */
649   0,					/* todo_flags_start */
650   TODO_update_ssa | TODO_verify_ssa
651     | TODO_verify_stmts                /* todo_flags_finish */
652  }
653 };
654 
655 /* Records an occurrence at statement USE_STMT in the vector of trees
656    STMTS if it is dominated by *TOP_BB or dominates it or this basic block
657    is not yet initialized.  Returns true if the occurrence was pushed on
658    the vector.  Adjusts *TOP_BB to be the basic block dominating all
659    statements in the vector.  */
660 
661 static bool
662 maybe_record_sincos (VEC(gimple, heap) **stmts,
663 		     basic_block *top_bb, gimple use_stmt)
664 {
665   basic_block use_bb = gimple_bb (use_stmt);
666   if (*top_bb
667       && (*top_bb == use_bb
668 	  || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
669     VEC_safe_push (gimple, heap, *stmts, use_stmt);
670   else if (!*top_bb
671 	   || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
672     {
673       VEC_safe_push (gimple, heap, *stmts, use_stmt);
674       *top_bb = use_bb;
675     }
676   else
677     return false;
678 
679   return true;
680 }
681 
682 /* Look for sin, cos and cexpi calls with the same argument NAME and
683    create a single call to cexpi CSEing the result in this case.
684    We first walk over all immediate uses of the argument collecting
685    statements that we can CSE in a vector and in a second pass replace
686    the statement rhs with a REALPART or IMAGPART expression on the
687    result of the cexpi call we insert before the use statement that
688    dominates all other candidates.  */
689 
690 static bool
691 execute_cse_sincos_1 (tree name)
692 {
693   gimple_stmt_iterator gsi;
694   imm_use_iterator use_iter;
695   tree fndecl, res, type;
696   gimple def_stmt, use_stmt, stmt;
697   int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
698   VEC(gimple, heap) *stmts = NULL;
699   basic_block top_bb = NULL;
700   int i;
701   bool cfg_changed = false;
702 
703   type = TREE_TYPE (name);
704   FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
705     {
706       if (gimple_code (use_stmt) != GIMPLE_CALL
707 	  || !gimple_call_lhs (use_stmt)
708 	  || !(fndecl = gimple_call_fndecl (use_stmt))
709 	  || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
710 	continue;
711 
712       switch (DECL_FUNCTION_CODE (fndecl))
713 	{
714 	CASE_FLT_FN (BUILT_IN_COS):
715 	  seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
716 	  break;
717 
718 	CASE_FLT_FN (BUILT_IN_SIN):
719 	  seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
720 	  break;
721 
722 	CASE_FLT_FN (BUILT_IN_CEXPI):
723 	  seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
724 	  break;
725 
726 	default:;
727 	}
728     }
729 
730   if (seen_cos + seen_sin + seen_cexpi <= 1)
731     {
732       VEC_free(gimple, heap, stmts);
733       return false;
734     }
735 
736   /* Simply insert cexpi at the beginning of top_bb but not earlier than
737      the name def statement.  */
738   fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
739   if (!fndecl)
740     return false;
741   res = create_tmp_reg (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
742   stmt = gimple_build_call (fndecl, 1, name);
743   res = make_ssa_name (res, stmt);
744   gimple_call_set_lhs (stmt, res);
745 
746   def_stmt = SSA_NAME_DEF_STMT (name);
747   if (!SSA_NAME_IS_DEFAULT_DEF (name)
748       && gimple_code (def_stmt) != GIMPLE_PHI
749       && gimple_bb (def_stmt) == top_bb)
750     {
751       gsi = gsi_for_stmt (def_stmt);
752       gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
753     }
754   else
755     {
756       gsi = gsi_after_labels (top_bb);
757       gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
758     }
759   update_stmt (stmt);
760   sincos_stats.inserted++;
761 
762   /* And adjust the recorded old call sites.  */
763   for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
764     {
765       tree rhs = NULL;
766       fndecl = gimple_call_fndecl (use_stmt);
767 
768       switch (DECL_FUNCTION_CODE (fndecl))
769 	{
770 	CASE_FLT_FN (BUILT_IN_COS):
771 	  rhs = fold_build1 (REALPART_EXPR, type, res);
772 	  break;
773 
774 	CASE_FLT_FN (BUILT_IN_SIN):
775 	  rhs = fold_build1 (IMAGPART_EXPR, type, res);
776 	  break;
777 
778 	CASE_FLT_FN (BUILT_IN_CEXPI):
779 	  rhs = res;
780 	  break;
781 
782 	default:;
783 	  gcc_unreachable ();
784 	}
785 
786 	/* Replace call with a copy.  */
787 	stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
788 
789 	gsi = gsi_for_stmt (use_stmt);
790 	gsi_replace (&gsi, stmt, true);
791 	if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
792 	  cfg_changed = true;
793     }
794 
795   VEC_free(gimple, heap, stmts);
796 
797   return cfg_changed;
798 }
799 
800 /* To evaluate powi(x,n), the floating point value x raised to the
801    constant integer exponent n, we use a hybrid algorithm that
802    combines the "window method" with look-up tables.  For an
803    introduction to exponentiation algorithms and "addition chains",
804    see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
805    "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
806    3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
807    Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998.  */
808 
809 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
810    multiplications to inline before calling the system library's pow
811    function.  powi(x,n) requires at worst 2*bits(n)-2 multiplications,
812    so this default never requires calling pow, powf or powl.  */
813 
814 #ifndef POWI_MAX_MULTS
815 #define POWI_MAX_MULTS  (2*HOST_BITS_PER_WIDE_INT-2)
816 #endif
817 
818 /* The size of the "optimal power tree" lookup table.  All
819    exponents less than this value are simply looked up in the
820    powi_table below.  This threshold is also used to size the
821    cache of pseudo registers that hold intermediate results.  */
822 #define POWI_TABLE_SIZE 256
823 
824 /* The size, in bits of the window, used in the "window method"
825    exponentiation algorithm.  This is equivalent to a radix of
826    (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method".  */
827 #define POWI_WINDOW_SIZE 3
828 
829 /* The following table is an efficient representation of an
830    "optimal power tree".  For each value, i, the corresponding
831    value, j, in the table states than an optimal evaluation
832    sequence for calculating pow(x,i) can be found by evaluating
833    pow(x,j)*pow(x,i-j).  An optimal power tree for the first
834    100 integers is given in Knuth's "Seminumerical algorithms".  */
835 
836 static const unsigned char powi_table[POWI_TABLE_SIZE] =
837   {
838       0,   1,   1,   2,   2,   3,   3,   4,  /*   0 -   7 */
839       4,   6,   5,   6,   6,  10,   7,   9,  /*   8 -  15 */
840       8,  16,   9,  16,  10,  12,  11,  13,  /*  16 -  23 */
841      12,  17,  13,  18,  14,  24,  15,  26,  /*  24 -  31 */
842      16,  17,  17,  19,  18,  33,  19,  26,  /*  32 -  39 */
843      20,  25,  21,  40,  22,  27,  23,  44,  /*  40 -  47 */
844      24,  32,  25,  34,  26,  29,  27,  44,  /*  48 -  55 */
845      28,  31,  29,  34,  30,  60,  31,  36,  /*  56 -  63 */
846      32,  64,  33,  34,  34,  46,  35,  37,  /*  64 -  71 */
847      36,  65,  37,  50,  38,  48,  39,  69,  /*  72 -  79 */
848      40,  49,  41,  43,  42,  51,  43,  58,  /*  80 -  87 */
849      44,  64,  45,  47,  46,  59,  47,  76,  /*  88 -  95 */
850      48,  65,  49,  66,  50,  67,  51,  66,  /*  96 - 103 */
851      52,  70,  53,  74,  54, 104,  55,  74,  /* 104 - 111 */
852      56,  64,  57,  69,  58,  78,  59,  68,  /* 112 - 119 */
853      60,  61,  61,  80,  62,  75,  63,  68,  /* 120 - 127 */
854      64,  65,  65, 128,  66, 129,  67,  90,  /* 128 - 135 */
855      68,  73,  69, 131,  70,  94,  71,  88,  /* 136 - 143 */
856      72, 128,  73,  98,  74, 132,  75, 121,  /* 144 - 151 */
857      76, 102,  77, 124,  78, 132,  79, 106,  /* 152 - 159 */
858      80,  97,  81, 160,  82,  99,  83, 134,  /* 160 - 167 */
859      84,  86,  85,  95,  86, 160,  87, 100,  /* 168 - 175 */
860      88, 113,  89,  98,  90, 107,  91, 122,  /* 176 - 183 */
861      92, 111,  93, 102,  94, 126,  95, 150,  /* 184 - 191 */
862      96, 128,  97, 130,  98, 133,  99, 195,  /* 192 - 199 */
863     100, 128, 101, 123, 102, 164, 103, 138,  /* 200 - 207 */
864     104, 145, 105, 146, 106, 109, 107, 149,  /* 208 - 215 */
865     108, 200, 109, 146, 110, 170, 111, 157,  /* 216 - 223 */
866     112, 128, 113, 130, 114, 182, 115, 132,  /* 224 - 231 */
867     116, 200, 117, 132, 118, 158, 119, 206,  /* 232 - 239 */
868     120, 240, 121, 162, 122, 147, 123, 152,  /* 240 - 247 */
869     124, 166, 125, 214, 126, 138, 127, 153,  /* 248 - 255 */
870   };
871 
872 
873 /* Return the number of multiplications required to calculate
874    powi(x,n) where n is less than POWI_TABLE_SIZE.  This is a
875    subroutine of powi_cost.  CACHE is an array indicating
876    which exponents have already been calculated.  */
877 
878 static int
879 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
880 {
881   /* If we've already calculated this exponent, then this evaluation
882      doesn't require any additional multiplications.  */
883   if (cache[n])
884     return 0;
885 
886   cache[n] = true;
887   return powi_lookup_cost (n - powi_table[n], cache)
888 	 + powi_lookup_cost (powi_table[n], cache) + 1;
889 }
890 
891 /* Return the number of multiplications required to calculate
892    powi(x,n) for an arbitrary x, given the exponent N.  This
893    function needs to be kept in sync with powi_as_mults below.  */
894 
895 static int
896 powi_cost (HOST_WIDE_INT n)
897 {
898   bool cache[POWI_TABLE_SIZE];
899   unsigned HOST_WIDE_INT digit;
900   unsigned HOST_WIDE_INT val;
901   int result;
902 
903   if (n == 0)
904     return 0;
905 
906   /* Ignore the reciprocal when calculating the cost.  */
907   val = (n < 0) ? -n : n;
908 
909   /* Initialize the exponent cache.  */
910   memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
911   cache[1] = true;
912 
913   result = 0;
914 
915   while (val >= POWI_TABLE_SIZE)
916     {
917       if (val & 1)
918 	{
919 	  digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
920 	  result += powi_lookup_cost (digit, cache)
921 		    + POWI_WINDOW_SIZE + 1;
922 	  val >>= POWI_WINDOW_SIZE;
923 	}
924       else
925 	{
926 	  val >>= 1;
927 	  result++;
928 	}
929     }
930 
931   return result + powi_lookup_cost (val, cache);
932 }
933 
934 /* Recursive subroutine of powi_as_mults.  This function takes the
935    array, CACHE, of already calculated exponents and an exponent N and
936    returns a tree that corresponds to CACHE[1]**N, with type TYPE.  */
937 
938 static tree
939 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
940 		 HOST_WIDE_INT n, tree *cache, tree target)
941 {
942   tree op0, op1, ssa_target;
943   unsigned HOST_WIDE_INT digit;
944   gimple mult_stmt;
945 
946   if (n < POWI_TABLE_SIZE && cache[n])
947     return cache[n];
948 
949   ssa_target = make_ssa_name (target, NULL);
950 
951   if (n < POWI_TABLE_SIZE)
952     {
953       cache[n] = ssa_target;
954       op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache, target);
955       op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache, target);
956     }
957   else if (n & 1)
958     {
959       digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
960       op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache, target);
961       op1 = powi_as_mults_1 (gsi, loc, type, digit, cache, target);
962     }
963   else
964     {
965       op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache, target);
966       op1 = op0;
967     }
968 
969   mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
970   gimple_set_location (mult_stmt, loc);
971   gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
972 
973   return ssa_target;
974 }
975 
976 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
977    This function needs to be kept in sync with powi_cost above.  */
978 
979 static tree
980 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
981 	       tree arg0, HOST_WIDE_INT n)
982 {
983   tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0), target;
984   gimple div_stmt;
985 
986   if (n == 0)
987     return build_real (type, dconst1);
988 
989   memset (cache, 0,  sizeof (cache));
990   cache[1] = arg0;
991 
992   target = create_tmp_reg (type, "powmult");
993   add_referenced_var (target);
994 
995   result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache, target);
996 
997   if (n >= 0)
998     return result;
999 
1000   /* If the original exponent was negative, reciprocate the result.  */
1001   target = make_ssa_name (target, NULL);
1002   div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1003 					   build_real (type, dconst1),
1004 					   result);
1005   gimple_set_location (div_stmt, loc);
1006   gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1007 
1008   return target;
1009 }
1010 
1011 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1012    location info LOC.  If the arguments are appropriate, create an
1013    equivalent sequence of statements prior to GSI using an optimal
1014    number of multiplications, and return an expession holding the
1015    result.  */
1016 
1017 static tree
1018 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1019 			    tree arg0, HOST_WIDE_INT n)
1020 {
1021   /* Avoid largest negative number.  */
1022   if (n != -n
1023       && ((n >= -1 && n <= 2)
1024 	  || (optimize_function_for_speed_p (cfun)
1025 	      && powi_cost (n) <= POWI_MAX_MULTS)))
1026     return powi_as_mults (gsi, loc, arg0, n);
1027 
1028   return NULL_TREE;
1029 }
1030 
1031 /* Build a gimple call statement that calls FN with argument ARG.
1032    Set the lhs of the call statement to a fresh SSA name for
1033    variable VAR.  If VAR is NULL, first allocate it.  Insert the
1034    statement prior to GSI's current position, and return the fresh
1035    SSA name.  */
1036 
1037 static tree
1038 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1039 		       tree *var, tree fn, tree arg)
1040 {
1041   gimple call_stmt;
1042   tree ssa_target;
1043 
1044   if (!*var)
1045     {
1046       *var = create_tmp_reg (TREE_TYPE (arg), "powroot");
1047       add_referenced_var (*var);
1048     }
1049 
1050   call_stmt = gimple_build_call (fn, 1, arg);
1051   ssa_target = make_ssa_name (*var, NULL);
1052   gimple_set_lhs (call_stmt, ssa_target);
1053   gimple_set_location (call_stmt, loc);
1054   gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1055 
1056   return ssa_target;
1057 }
1058 
1059 /* Build a gimple binary operation with the given CODE and arguments
1060    ARG0, ARG1, assigning the result to a new SSA name for variable
1061    TARGET.  Insert the statement prior to GSI's current position, and
1062    return the fresh SSA name.*/
1063 
1064 static tree
1065 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1066 			tree target, enum tree_code code, tree arg0, tree arg1)
1067 {
1068   tree result = make_ssa_name (target, NULL);
1069   gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1070   gimple_set_location (stmt, loc);
1071   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1072   return result;
1073 }
1074 
1075 /* Build a gimple reference operation with the given CODE and argument
1076    ARG, assigning the result to a new SSA name for variable TARGET.
1077    Insert the statement prior to GSI's current position, and return
1078    the fresh SSA name.  */
1079 
1080 static inline tree
1081 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1082 		      tree target, enum tree_code code, tree arg0)
1083 {
1084   tree result = make_ssa_name (target, NULL);
1085   gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1086   gimple_set_location (stmt, loc);
1087   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1088   return result;
1089 }
1090 
1091 /* Build a gimple assignment to cast VAL to TARGET.  Insert the statement
1092    prior to GSI's current position, and return the fresh SSA name.  */
1093 
1094 static tree
1095 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1096 		       tree target, tree val)
1097 {
1098   return build_and_insert_binop (gsi, loc, target, CONVERT_EXPR, val, NULL);
1099 }
1100 
1101 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1102    with location info LOC.  If possible, create an equivalent and
1103    less expensive sequence of statements prior to GSI, and return an
1104    expession holding the result.  */
1105 
1106 static tree
1107 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1108 			   tree arg0, tree arg1)
1109 {
1110   REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1111   REAL_VALUE_TYPE c2, dconst3;
1112   HOST_WIDE_INT n;
1113   tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1114   tree target = NULL_TREE;
1115   enum machine_mode mode;
1116   bool hw_sqrt_exists;
1117 
1118   /* If the exponent isn't a constant, there's nothing of interest
1119      to be done.  */
1120   if (TREE_CODE (arg1) != REAL_CST)
1121     return NULL_TREE;
1122 
1123   /* If the exponent is equivalent to an integer, expand to an optimal
1124      multiplication sequence when profitable.  */
1125   c = TREE_REAL_CST (arg1);
1126   n = real_to_integer (&c);
1127   real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1128 
1129   if (real_identical (&c, &cint)
1130       && ((n >= -1 && n <= 2)
1131 	  || (flag_unsafe_math_optimizations
1132 	      && optimize_insn_for_speed_p ()
1133 	      && powi_cost (n) <= POWI_MAX_MULTS)))
1134     return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1135 
1136   /* Attempt various optimizations using sqrt and cbrt.  */
1137   type = TREE_TYPE (arg0);
1138   mode = TYPE_MODE (type);
1139   sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1140 
1141   /* Optimize pow(x,0.5) = sqrt(x).  This replacement is always safe
1142      unless signed zeros must be maintained.  pow(-0,0.5) = +0, while
1143      sqrt(-0) = -0.  */
1144   if (sqrtfn
1145       && REAL_VALUES_EQUAL (c, dconsthalf)
1146       && !HONOR_SIGNED_ZEROS (mode))
1147     return build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1148 
1149   /* Optimize pow(x,0.25) = sqrt(sqrt(x)).  Assume on most machines that
1150      a builtin sqrt instruction is smaller than a call to pow with 0.25,
1151      so do this optimization even if -Os.  Don't do this optimization
1152      if we don't have a hardware sqrt insn.  */
1153   dconst1_4 = dconst1;
1154   SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1155   hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1156 
1157   if (flag_unsafe_math_optimizations
1158       && sqrtfn
1159       && REAL_VALUES_EQUAL (c, dconst1_4)
1160       && hw_sqrt_exists)
1161     {
1162       /* sqrt(x)  */
1163       sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1164 
1165       /* sqrt(sqrt(x))  */
1166       return build_and_insert_call (gsi, loc, &target, sqrtfn, sqrt_arg0);
1167     }
1168 
1169   /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1170      optimizing for space.  Don't do this optimization if we don't have
1171      a hardware sqrt insn.  */
1172   real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1173   SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1174 
1175   if (flag_unsafe_math_optimizations
1176       && sqrtfn
1177       && optimize_function_for_speed_p (cfun)
1178       && REAL_VALUES_EQUAL (c, dconst3_4)
1179       && hw_sqrt_exists)
1180     {
1181       /* sqrt(x)  */
1182       sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1183 
1184       /* sqrt(sqrt(x))  */
1185       sqrt_sqrt = build_and_insert_call (gsi, loc, &target, sqrtfn, sqrt_arg0);
1186 
1187       /* sqrt(x) * sqrt(sqrt(x))  */
1188       return build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1189 				     sqrt_arg0, sqrt_sqrt);
1190     }
1191 
1192   /* Optimize pow(x,1./3.) = cbrt(x).  This requires unsafe math
1193      optimizations since 1./3. is not exactly representable.  If x
1194      is negative and finite, the correct value of pow(x,1./3.) is
1195      a NaN with the "invalid" exception raised, because the value
1196      of 1./3. actually has an even denominator.  The correct value
1197      of cbrt(x) is a negative real value.  */
1198   cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1199   dconst1_3 = real_value_truncate (mode, dconst_third ());
1200 
1201   if (flag_unsafe_math_optimizations
1202       && cbrtfn
1203       && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1204       && REAL_VALUES_EQUAL (c, dconst1_3))
1205     return build_and_insert_call (gsi, loc, &target, cbrtfn, arg0);
1206 
1207   /* Optimize pow(x,1./6.) = cbrt(sqrt(x)).  Don't do this optimization
1208      if we don't have a hardware sqrt insn.  */
1209   dconst1_6 = dconst1_3;
1210   SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1211 
1212   if (flag_unsafe_math_optimizations
1213       && sqrtfn
1214       && cbrtfn
1215       && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1216       && optimize_function_for_speed_p (cfun)
1217       && hw_sqrt_exists
1218       && REAL_VALUES_EQUAL (c, dconst1_6))
1219     {
1220       /* sqrt(x)  */
1221       sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1222 
1223       /* cbrt(sqrt(x))  */
1224       return build_and_insert_call (gsi, loc, &target, cbrtfn, sqrt_arg0);
1225     }
1226 
1227   /* Optimize pow(x,c), where n = 2c for some nonzero integer n, into
1228 
1229        sqrt(x) * powi(x, n/2),                n > 0;
1230        1.0 / (sqrt(x) * powi(x, abs(n/2))),   n < 0.
1231 
1232      Do not calculate the powi factor when n/2 = 0.  */
1233   real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1234   n = real_to_integer (&c2);
1235   real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1236 
1237   if (flag_unsafe_math_optimizations
1238       && sqrtfn
1239       && real_identical (&c2, &cint))
1240     {
1241       tree powi_x_ndiv2 = NULL_TREE;
1242 
1243       /* Attempt to fold powi(arg0, abs(n/2)) into multiplies.  If not
1244          possible or profitable, give up.  Skip the degenerate case when
1245          n is 1 or -1, where the result is always 1.  */
1246       if (absu_hwi (n) != 1)
1247 	{
1248 	  powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1249 						     abs_hwi (n / 2));
1250 	  if (!powi_x_ndiv2)
1251 	    return NULL_TREE;
1252 	}
1253 
1254       /* Calculate sqrt(x).  When n is not 1 or -1, multiply it by the
1255 	 result of the optimal multiply sequence just calculated.  */
1256       sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1257 
1258       if (absu_hwi (n) == 1)
1259 	result = sqrt_arg0;
1260       else
1261 	result = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1262 					 sqrt_arg0, powi_x_ndiv2);
1263 
1264       /* If n is negative, reciprocate the result.  */
1265       if (n < 0)
1266 	result = build_and_insert_binop (gsi, loc, target, RDIV_EXPR,
1267 					 build_real (type, dconst1), result);
1268       return result;
1269     }
1270 
1271   /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1272 
1273      powi(x, n/3) * powi(cbrt(x), n%3),                    n > 0;
1274      1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)),  n < 0.
1275 
1276      Do not calculate the first factor when n/3 = 0.  As cbrt(x) is
1277      different from pow(x, 1./3.) due to rounding and behavior with
1278      negative x, we need to constrain this transformation to unsafe
1279      math and positive x or finite math.  */
1280   real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1281   real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1282   real_round (&c2, mode, &c2);
1283   n = real_to_integer (&c2);
1284   real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1285   real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1286   real_convert (&c2, mode, &c2);
1287 
1288   if (flag_unsafe_math_optimizations
1289       && cbrtfn
1290       && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1291       && real_identical (&c2, &c)
1292       && optimize_function_for_speed_p (cfun)
1293       && powi_cost (n / 3) <= POWI_MAX_MULTS)
1294     {
1295       tree powi_x_ndiv3 = NULL_TREE;
1296 
1297       /* Attempt to fold powi(arg0, abs(n/3)) into multiplies.  If not
1298          possible or profitable, give up.  Skip the degenerate case when
1299          abs(n) < 3, where the result is always 1.  */
1300       if (absu_hwi (n) >= 3)
1301 	{
1302 	  powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1303 						     abs_hwi (n / 3));
1304 	  if (!powi_x_ndiv3)
1305 	    return NULL_TREE;
1306 	}
1307 
1308       /* Calculate powi(cbrt(x), n%3).  Don't use gimple_expand_builtin_powi
1309          as that creates an unnecessary variable.  Instead, just produce
1310          either cbrt(x) or cbrt(x) * cbrt(x).  */
1311       cbrt_x = build_and_insert_call (gsi, loc, &target, cbrtfn, arg0);
1312 
1313       if (absu_hwi (n) % 3 == 1)
1314 	powi_cbrt_x = cbrt_x;
1315       else
1316 	powi_cbrt_x = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1317 					      cbrt_x, cbrt_x);
1318 
1319       /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1.  */
1320       if (absu_hwi (n) < 3)
1321 	result = powi_cbrt_x;
1322       else
1323 	result = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1324 					 powi_x_ndiv3, powi_cbrt_x);
1325 
1326       /* If n is negative, reciprocate the result.  */
1327       if (n < 0)
1328 	result = build_and_insert_binop (gsi, loc, target, RDIV_EXPR,
1329 					 build_real (type, dconst1), result);
1330 
1331       return result;
1332     }
1333 
1334   /* No optimizations succeeded.  */
1335   return NULL_TREE;
1336 }
1337 
1338 /* ARG is the argument to a cabs builtin call in GSI with location info
1339    LOC.  Create a sequence of statements prior to GSI that calculates
1340    sqrt(R*R + I*I), where R and I are the real and imaginary components
1341    of ARG, respectively.  Return an expression holding the result.  */
1342 
1343 static tree
1344 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1345 {
1346   tree target, real_part, imag_part, addend1, addend2, sum, result;
1347   tree type = TREE_TYPE (TREE_TYPE (arg));
1348   tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1349   enum machine_mode mode = TYPE_MODE (type);
1350 
1351   if (!flag_unsafe_math_optimizations
1352       || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1353       || !sqrtfn
1354       || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1355     return NULL_TREE;
1356 
1357   target = create_tmp_reg (type, "cabs");
1358   add_referenced_var (target);
1359 
1360   real_part = build_and_insert_ref (gsi, loc, type, target,
1361 				    REALPART_EXPR, arg);
1362   addend1 = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1363 				    real_part, real_part);
1364   imag_part = build_and_insert_ref (gsi, loc, type, target,
1365 				    IMAGPART_EXPR, arg);
1366   addend2 = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1367 				    imag_part, imag_part);
1368   sum = build_and_insert_binop (gsi, loc, target, PLUS_EXPR, addend1, addend2);
1369   result = build_and_insert_call (gsi, loc, &target, sqrtfn, sum);
1370 
1371   return result;
1372 }
1373 
1374 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1375    on the SSA_NAME argument of each of them.  Also expand powi(x,n) into
1376    an optimal number of multiplies, when n is a constant.  */
1377 
1378 static unsigned int
1379 execute_cse_sincos (void)
1380 {
1381   basic_block bb;
1382   bool cfg_changed = false;
1383 
1384   calculate_dominance_info (CDI_DOMINATORS);
1385   memset (&sincos_stats, 0, sizeof (sincos_stats));
1386 
1387   FOR_EACH_BB (bb)
1388     {
1389       gimple_stmt_iterator gsi;
1390 
1391       for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1392         {
1393 	  gimple stmt = gsi_stmt (gsi);
1394 	  tree fndecl;
1395 
1396 	  if (is_gimple_call (stmt)
1397 	      && gimple_call_lhs (stmt)
1398 	      && (fndecl = gimple_call_fndecl (stmt))
1399 	      && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1400 	    {
1401 	      tree arg, arg0, arg1, result;
1402 	      HOST_WIDE_INT n;
1403 	      location_t loc;
1404 
1405 	      switch (DECL_FUNCTION_CODE (fndecl))
1406 		{
1407 		CASE_FLT_FN (BUILT_IN_COS):
1408 		CASE_FLT_FN (BUILT_IN_SIN):
1409 		CASE_FLT_FN (BUILT_IN_CEXPI):
1410 		  /* Make sure we have either sincos or cexp.  */
1411 		  if (!TARGET_HAS_SINCOS && !TARGET_C99_FUNCTIONS)
1412 		    break;
1413 
1414 		  arg = gimple_call_arg (stmt, 0);
1415 		  if (TREE_CODE (arg) == SSA_NAME)
1416 		    cfg_changed |= execute_cse_sincos_1 (arg);
1417 		  break;
1418 
1419 		CASE_FLT_FN (BUILT_IN_POW):
1420 		  arg0 = gimple_call_arg (stmt, 0);
1421 		  arg1 = gimple_call_arg (stmt, 1);
1422 
1423 		  loc = gimple_location (stmt);
1424 		  result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1425 
1426 		  if (result)
1427 		    {
1428 		      tree lhs = gimple_get_lhs (stmt);
1429 		      gimple new_stmt = gimple_build_assign (lhs, result);
1430 		      gimple_set_location (new_stmt, loc);
1431 		      unlink_stmt_vdef (stmt);
1432 		      gsi_replace (&gsi, new_stmt, true);
1433 		    }
1434 		  break;
1435 
1436 		CASE_FLT_FN (BUILT_IN_POWI):
1437 		  arg0 = gimple_call_arg (stmt, 0);
1438 		  arg1 = gimple_call_arg (stmt, 1);
1439 		  if (!host_integerp (arg1, 0))
1440 		    break;
1441 
1442 		  n = TREE_INT_CST_LOW (arg1);
1443 		  loc = gimple_location (stmt);
1444 		  result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1445 
1446 		  if (result)
1447 		    {
1448 		      tree lhs = gimple_get_lhs (stmt);
1449 		      gimple new_stmt = gimple_build_assign (lhs, result);
1450 		      gimple_set_location (new_stmt, loc);
1451 		      unlink_stmt_vdef (stmt);
1452 		      gsi_replace (&gsi, new_stmt, true);
1453 		    }
1454 		  break;
1455 
1456 		CASE_FLT_FN (BUILT_IN_CABS):
1457 		  arg0 = gimple_call_arg (stmt, 0);
1458 		  loc = gimple_location (stmt);
1459 		  result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1460 
1461 		  if (result)
1462 		    {
1463 		      tree lhs = gimple_get_lhs (stmt);
1464 		      gimple new_stmt = gimple_build_assign (lhs, result);
1465 		      gimple_set_location (new_stmt, loc);
1466 		      unlink_stmt_vdef (stmt);
1467 		      gsi_replace (&gsi, new_stmt, true);
1468 		    }
1469 		  break;
1470 
1471 		default:;
1472 		}
1473 	    }
1474 	}
1475     }
1476 
1477   statistics_counter_event (cfun, "sincos statements inserted",
1478 			    sincos_stats.inserted);
1479 
1480   free_dominance_info (CDI_DOMINATORS);
1481   return cfg_changed ? TODO_cleanup_cfg : 0;
1482 }
1483 
1484 static bool
1485 gate_cse_sincos (void)
1486 {
1487   /* We no longer require either sincos or cexp, since powi expansion
1488      piggybacks on this pass.  */
1489   return optimize;
1490 }
1491 
1492 struct gimple_opt_pass pass_cse_sincos =
1493 {
1494  {
1495   GIMPLE_PASS,
1496   "sincos",				/* name */
1497   gate_cse_sincos,			/* gate */
1498   execute_cse_sincos,			/* execute */
1499   NULL,					/* sub */
1500   NULL,					/* next */
1501   0,					/* static_pass_number */
1502   TV_NONE,				/* tv_id */
1503   PROP_ssa,				/* properties_required */
1504   0,					/* properties_provided */
1505   0,					/* properties_destroyed */
1506   0,					/* todo_flags_start */
1507   TODO_update_ssa | TODO_verify_ssa
1508     | TODO_verify_stmts                 /* todo_flags_finish */
1509  }
1510 };
1511 
1512 /* A symbolic number is used to detect byte permutation and selection
1513    patterns.  Therefore the field N contains an artificial number
1514    consisting of byte size markers:
1515 
1516    0    - byte has the value 0
1517    1..size - byte contains the content of the byte
1518    number indexed with that value minus one  */
1519 
1520 struct symbolic_number {
1521   unsigned HOST_WIDEST_INT n;
1522   int size;
1523 };
1524 
1525 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1526    number N.  Return false if the requested operation is not permitted
1527    on a symbolic number.  */
1528 
1529 static inline bool
1530 do_shift_rotate (enum tree_code code,
1531 		 struct symbolic_number *n,
1532 		 int count)
1533 {
1534   if (count % 8 != 0)
1535     return false;
1536 
1537   /* Zero out the extra bits of N in order to avoid them being shifted
1538      into the significant bits.  */
1539   if (n->size < (int)sizeof (HOST_WIDEST_INT))
1540     n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1541 
1542   switch (code)
1543     {
1544     case LSHIFT_EXPR:
1545       n->n <<= count;
1546       break;
1547     case RSHIFT_EXPR:
1548       n->n >>= count;
1549       break;
1550     case LROTATE_EXPR:
1551       n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1552       break;
1553     case RROTATE_EXPR:
1554       n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1555       break;
1556     default:
1557       return false;
1558     }
1559   /* Zero unused bits for size.  */
1560   if (n->size < (int)sizeof (HOST_WIDEST_INT))
1561     n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1562   return true;
1563 }
1564 
1565 /* Perform sanity checking for the symbolic number N and the gimple
1566    statement STMT.  */
1567 
1568 static inline bool
1569 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1570 {
1571   tree lhs_type;
1572 
1573   lhs_type = gimple_expr_type (stmt);
1574 
1575   if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1576     return false;
1577 
1578   if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1579     return false;
1580 
1581   return true;
1582 }
1583 
1584 /* find_bswap_1 invokes itself recursively with N and tries to perform
1585    the operation given by the rhs of STMT on the result.  If the
1586    operation could successfully be executed the function returns the
1587    tree expression of the source operand and NULL otherwise.  */
1588 
1589 static tree
1590 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1591 {
1592   enum tree_code code;
1593   tree rhs1, rhs2 = NULL;
1594   gimple rhs1_stmt, rhs2_stmt;
1595   tree source_expr1;
1596   enum gimple_rhs_class rhs_class;
1597 
1598   if (!limit || !is_gimple_assign (stmt))
1599     return NULL_TREE;
1600 
1601   rhs1 = gimple_assign_rhs1 (stmt);
1602 
1603   if (TREE_CODE (rhs1) != SSA_NAME)
1604     return NULL_TREE;
1605 
1606   code = gimple_assign_rhs_code (stmt);
1607   rhs_class = gimple_assign_rhs_class (stmt);
1608   rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1609 
1610   if (rhs_class == GIMPLE_BINARY_RHS)
1611     rhs2 = gimple_assign_rhs2 (stmt);
1612 
1613   /* Handle unary rhs and binary rhs with integer constants as second
1614      operand.  */
1615 
1616   if (rhs_class == GIMPLE_UNARY_RHS
1617       || (rhs_class == GIMPLE_BINARY_RHS
1618 	  && TREE_CODE (rhs2) == INTEGER_CST))
1619     {
1620       if (code != BIT_AND_EXPR
1621 	  && code != LSHIFT_EXPR
1622 	  && code != RSHIFT_EXPR
1623 	  && code != LROTATE_EXPR
1624 	  && code != RROTATE_EXPR
1625 	  && code != NOP_EXPR
1626 	  && code != CONVERT_EXPR)
1627 	return NULL_TREE;
1628 
1629       source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1630 
1631       /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1632 	 to initialize the symbolic number.  */
1633       if (!source_expr1)
1634 	{
1635 	  /* Set up the symbolic number N by setting each byte to a
1636 	     value between 1 and the byte size of rhs1.  The highest
1637 	     order byte is set to n->size and the lowest order
1638 	     byte to 1.  */
1639 	  n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1640 	  if (n->size % BITS_PER_UNIT != 0)
1641 	    return NULL_TREE;
1642 	  n->size /= BITS_PER_UNIT;
1643 	  n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1644 		  (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1645 
1646 	  if (n->size < (int)sizeof (HOST_WIDEST_INT))
1647 	    n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1648 		     (n->size * BITS_PER_UNIT)) - 1;
1649 
1650 	  source_expr1 = rhs1;
1651 	}
1652 
1653       switch (code)
1654 	{
1655 	case BIT_AND_EXPR:
1656 	  {
1657 	    int i;
1658 	    unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1659 	    unsigned HOST_WIDEST_INT tmp = val;
1660 
1661 	    /* Only constants masking full bytes are allowed.  */
1662 	    for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1663 	      if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1664 		return NULL_TREE;
1665 
1666 	    n->n &= val;
1667 	  }
1668 	  break;
1669 	case LSHIFT_EXPR:
1670 	case RSHIFT_EXPR:
1671 	case LROTATE_EXPR:
1672 	case RROTATE_EXPR:
1673 	  if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1674 	    return NULL_TREE;
1675 	  break;
1676 	CASE_CONVERT:
1677 	  {
1678 	    int type_size;
1679 
1680 	    type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1681 	    if (type_size % BITS_PER_UNIT != 0)
1682 	      return NULL_TREE;
1683 
1684 	    if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1685 	      {
1686 		/* If STMT casts to a smaller type mask out the bits not
1687 		   belonging to the target type.  */
1688 		n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1689 	      }
1690 	    n->size = type_size / BITS_PER_UNIT;
1691 	  }
1692 	  break;
1693 	default:
1694 	  return NULL_TREE;
1695 	};
1696       return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1697     }
1698 
1699   /* Handle binary rhs.  */
1700 
1701   if (rhs_class == GIMPLE_BINARY_RHS)
1702     {
1703       struct symbolic_number n1, n2;
1704       tree source_expr2;
1705 
1706       if (code != BIT_IOR_EXPR)
1707 	return NULL_TREE;
1708 
1709       if (TREE_CODE (rhs2) != SSA_NAME)
1710 	return NULL_TREE;
1711 
1712       rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1713 
1714       switch (code)
1715 	{
1716 	case BIT_IOR_EXPR:
1717 	  source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1718 
1719 	  if (!source_expr1)
1720 	    return NULL_TREE;
1721 
1722 	  source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1723 
1724 	  if (source_expr1 != source_expr2
1725 	      || n1.size != n2.size)
1726 	    return NULL_TREE;
1727 
1728 	  n->size = n1.size;
1729 	  n->n = n1.n | n2.n;
1730 
1731 	  if (!verify_symbolic_number_p (n, stmt))
1732 	    return NULL_TREE;
1733 
1734 	  break;
1735 	default:
1736 	  return NULL_TREE;
1737 	}
1738       return source_expr1;
1739     }
1740   return NULL_TREE;
1741 }
1742 
1743 /* Check if STMT completes a bswap implementation consisting of ORs,
1744    SHIFTs and ANDs.  Return the source tree expression on which the
1745    byte swap is performed and NULL if no bswap was found.  */
1746 
1747 static tree
1748 find_bswap (gimple stmt)
1749 {
1750 /* The number which the find_bswap result should match in order to
1751    have a full byte swap.  The number is shifted to the left according
1752    to the size of the symbolic number before using it.  */
1753   unsigned HOST_WIDEST_INT cmp =
1754     sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1755     (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1756 
1757   struct symbolic_number n;
1758   tree source_expr;
1759   int limit;
1760 
1761   /* The last parameter determines the depth search limit.  It usually
1762      correlates directly to the number of bytes to be touched.  We
1763      increase that number by three  here in order to also
1764      cover signed -> unsigned converions of the src operand as can be seen
1765      in libgcc, and for initial shift/and operation of the src operand.  */
1766   limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1767   limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1768   source_expr =  find_bswap_1 (stmt, &n, limit);
1769 
1770   if (!source_expr)
1771     return NULL_TREE;
1772 
1773   /* Zero out the extra bits of N and CMP.  */
1774   if (n.size < (int)sizeof (HOST_WIDEST_INT))
1775     {
1776       unsigned HOST_WIDEST_INT mask =
1777 	((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1778 
1779       n.n &= mask;
1780       cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1781     }
1782 
1783   /* A complete byte swap should make the symbolic number to start
1784      with the largest digit in the highest order byte.  */
1785   if (cmp != n.n)
1786     return NULL_TREE;
1787 
1788   return source_expr;
1789 }
1790 
1791 /* Find manual byte swap implementations and turn them into a bswap
1792    builtin invokation.  */
1793 
1794 static unsigned int
1795 execute_optimize_bswap (void)
1796 {
1797   basic_block bb;
1798   bool bswap32_p, bswap64_p;
1799   bool changed = false;
1800   tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1801 
1802   if (BITS_PER_UNIT != 8)
1803     return 0;
1804 
1805   if (sizeof (HOST_WIDEST_INT) < 8)
1806     return 0;
1807 
1808   bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1809 	       && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1810   bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1811 	       && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1812 		   || (bswap32_p && word_mode == SImode)));
1813 
1814   if (!bswap32_p && !bswap64_p)
1815     return 0;
1816 
1817   /* Determine the argument type of the builtins.  The code later on
1818      assumes that the return and argument type are the same.  */
1819   if (bswap32_p)
1820     {
1821       tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1822       bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1823     }
1824 
1825   if (bswap64_p)
1826     {
1827       tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1828       bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1829     }
1830 
1831   memset (&bswap_stats, 0, sizeof (bswap_stats));
1832 
1833   FOR_EACH_BB (bb)
1834     {
1835       gimple_stmt_iterator gsi;
1836 
1837       /* We do a reverse scan for bswap patterns to make sure we get the
1838 	 widest match. As bswap pattern matching doesn't handle
1839 	 previously inserted smaller bswap replacements as sub-
1840 	 patterns, the wider variant wouldn't be detected.  */
1841       for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1842         {
1843 	  gimple stmt = gsi_stmt (gsi);
1844 	  tree bswap_src, bswap_type;
1845 	  tree bswap_tmp;
1846 	  tree fndecl = NULL_TREE;
1847 	  int type_size;
1848 	  gimple call;
1849 
1850 	  if (!is_gimple_assign (stmt)
1851 	      || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1852 	    continue;
1853 
1854 	  type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1855 
1856 	  switch (type_size)
1857 	    {
1858 	    case 32:
1859 	      if (bswap32_p)
1860 		{
1861 		  fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1862 		  bswap_type = bswap32_type;
1863 		}
1864 	      break;
1865 	    case 64:
1866 	      if (bswap64_p)
1867 		{
1868 		  fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1869 		  bswap_type = bswap64_type;
1870 		}
1871 	      break;
1872 	    default:
1873 	      continue;
1874 	    }
1875 
1876 	  if (!fndecl)
1877 	    continue;
1878 
1879 	  bswap_src = find_bswap (stmt);
1880 
1881 	  if (!bswap_src)
1882 	    continue;
1883 
1884 	  changed = true;
1885 	  if (type_size == 32)
1886 	    bswap_stats.found_32bit++;
1887 	  else
1888 	    bswap_stats.found_64bit++;
1889 
1890 	  bswap_tmp = bswap_src;
1891 
1892 	  /* Convert the src expression if necessary.  */
1893 	  if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1894 	    {
1895 	      gimple convert_stmt;
1896 
1897 	      bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
1898 	      add_referenced_var (bswap_tmp);
1899 	      bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1900 
1901 	      convert_stmt = gimple_build_assign_with_ops (
1902 			       CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
1903 	      gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1904 	    }
1905 
1906 	  call = gimple_build_call (fndecl, 1, bswap_tmp);
1907 
1908 	  bswap_tmp = gimple_assign_lhs (stmt);
1909 
1910 	  /* Convert the result if necessary.  */
1911 	  if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1912 	    {
1913 	      gimple convert_stmt;
1914 
1915 	      bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
1916 	      add_referenced_var (bswap_tmp);
1917 	      bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1918 	      convert_stmt = gimple_build_assign_with_ops (
1919 		               CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1920 	      gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1921 	    }
1922 
1923 	  gimple_call_set_lhs (call, bswap_tmp);
1924 
1925 	  if (dump_file)
1926 	    {
1927 	      fprintf (dump_file, "%d bit bswap implementation found at: ",
1928 		       (int)type_size);
1929 	      print_gimple_stmt (dump_file, stmt, 0, 0);
1930 	    }
1931 
1932 	  gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1933 	  gsi_remove (&gsi, true);
1934 	}
1935     }
1936 
1937   statistics_counter_event (cfun, "32-bit bswap implementations found",
1938 			    bswap_stats.found_32bit);
1939   statistics_counter_event (cfun, "64-bit bswap implementations found",
1940 			    bswap_stats.found_64bit);
1941 
1942   return (changed ? TODO_update_ssa | TODO_verify_ssa
1943 	  | TODO_verify_stmts : 0);
1944 }
1945 
1946 static bool
1947 gate_optimize_bswap (void)
1948 {
1949   return flag_expensive_optimizations && optimize;
1950 }
1951 
1952 struct gimple_opt_pass pass_optimize_bswap =
1953 {
1954  {
1955   GIMPLE_PASS,
1956   "bswap",				/* name */
1957   gate_optimize_bswap,                  /* gate */
1958   execute_optimize_bswap,		/* execute */
1959   NULL,					/* sub */
1960   NULL,					/* next */
1961   0,					/* static_pass_number */
1962   TV_NONE,				/* tv_id */
1963   PROP_ssa,				/* properties_required */
1964   0,					/* properties_provided */
1965   0,					/* properties_destroyed */
1966   0,					/* todo_flags_start */
1967   0                                     /* todo_flags_finish */
1968  }
1969 };
1970 
1971 /* Return true if RHS is a suitable operand for a widening multiplication,
1972    assuming a target type of TYPE.
1973    There are two cases:
1974 
1975      - RHS makes some value at least twice as wide.  Store that value
1976        in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
1977 
1978      - RHS is an integer constant.  Store that value in *NEW_RHS_OUT if so,
1979        but leave *TYPE_OUT untouched.  */
1980 
1981 static bool
1982 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
1983 			tree *new_rhs_out)
1984 {
1985   gimple stmt;
1986   tree type1, rhs1;
1987   enum tree_code rhs_code;
1988 
1989   if (TREE_CODE (rhs) == SSA_NAME)
1990     {
1991       stmt = SSA_NAME_DEF_STMT (rhs);
1992       if (is_gimple_assign (stmt))
1993 	{
1994 	  rhs_code = gimple_assign_rhs_code (stmt);
1995 	  if (TREE_CODE (type) == INTEGER_TYPE
1996 	      ? !CONVERT_EXPR_CODE_P (rhs_code)
1997 	      : rhs_code != FIXED_CONVERT_EXPR)
1998 	    rhs1 = rhs;
1999 	  else
2000 	    {
2001 	      rhs1 = gimple_assign_rhs1 (stmt);
2002 
2003 	      if (TREE_CODE (rhs1) == INTEGER_CST)
2004 		{
2005 		  *new_rhs_out = rhs1;
2006 		  *type_out = NULL;
2007 		  return true;
2008 		}
2009 	    }
2010 	}
2011       else
2012 	rhs1 = rhs;
2013 
2014       type1 = TREE_TYPE (rhs1);
2015 
2016       if (TREE_CODE (type1) != TREE_CODE (type)
2017 	  || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2018 	return false;
2019 
2020       *new_rhs_out = rhs1;
2021       *type_out = type1;
2022       return true;
2023     }
2024 
2025   if (TREE_CODE (rhs) == INTEGER_CST)
2026     {
2027       *new_rhs_out = rhs;
2028       *type_out = NULL;
2029       return true;
2030     }
2031 
2032   return false;
2033 }
2034 
2035 /* Return true if STMT performs a widening multiplication, assuming the
2036    output type is TYPE.  If so, store the unwidened types of the operands
2037    in *TYPE1_OUT and *TYPE2_OUT respectively.  Also fill *RHS1_OUT and
2038    *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2039    and *TYPE2_OUT would give the operands of the multiplication.  */
2040 
2041 static bool
2042 is_widening_mult_p (gimple stmt,
2043 		    tree *type1_out, tree *rhs1_out,
2044 		    tree *type2_out, tree *rhs2_out)
2045 {
2046   tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2047 
2048   if (TREE_CODE (type) != INTEGER_TYPE
2049       && TREE_CODE (type) != FIXED_POINT_TYPE)
2050     return false;
2051 
2052   if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2053 			       rhs1_out))
2054     return false;
2055 
2056   if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2057 			       rhs2_out))
2058     return false;
2059 
2060   if (*type1_out == NULL)
2061     {
2062       if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2063 	return false;
2064       *type1_out = *type2_out;
2065     }
2066 
2067   if (*type2_out == NULL)
2068     {
2069       if (!int_fits_type_p (*rhs2_out, *type1_out))
2070 	return false;
2071       *type2_out = *type1_out;
2072     }
2073 
2074   /* Ensure that the larger of the two operands comes first. */
2075   if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2076     {
2077       tree tmp;
2078       tmp = *type1_out;
2079       *type1_out = *type2_out;
2080       *type2_out = tmp;
2081       tmp = *rhs1_out;
2082       *rhs1_out = *rhs2_out;
2083       *rhs2_out = tmp;
2084     }
2085 
2086   return true;
2087 }
2088 
2089 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2090    its rhs, and try to convert it into a WIDEN_MULT_EXPR.  The return
2091    value is true iff we converted the statement.  */
2092 
2093 static bool
2094 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2095 {
2096   tree lhs, rhs1, rhs2, type, type1, type2, tmp = NULL;
2097   enum insn_code handler;
2098   enum machine_mode to_mode, from_mode, actual_mode;
2099   optab op;
2100   int actual_precision;
2101   location_t loc = gimple_location (stmt);
2102   bool from_unsigned1, from_unsigned2;
2103 
2104   lhs = gimple_assign_lhs (stmt);
2105   type = TREE_TYPE (lhs);
2106   if (TREE_CODE (type) != INTEGER_TYPE)
2107     return false;
2108 
2109   if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2110     return false;
2111 
2112   to_mode = TYPE_MODE (type);
2113   from_mode = TYPE_MODE (type1);
2114   from_unsigned1 = TYPE_UNSIGNED (type1);
2115   from_unsigned2 = TYPE_UNSIGNED (type2);
2116 
2117   if (from_unsigned1 && from_unsigned2)
2118     op = umul_widen_optab;
2119   else if (!from_unsigned1 && !from_unsigned2)
2120     op = smul_widen_optab;
2121   else
2122     op = usmul_widen_optab;
2123 
2124   handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2125 						  0, &actual_mode);
2126 
2127   if (handler == CODE_FOR_nothing)
2128     {
2129       if (op != smul_widen_optab)
2130 	{
2131 	  /* We can use a signed multiply with unsigned types as long as
2132 	     there is a wider mode to use, or it is the smaller of the two
2133 	     types that is unsigned.  Note that type1 >= type2, always.  */
2134 	  if ((TYPE_UNSIGNED (type1)
2135 	       && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2136 	      || (TYPE_UNSIGNED (type2)
2137 		  && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2138 	    {
2139 	      from_mode = GET_MODE_WIDER_MODE (from_mode);
2140 	      if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2141 		return false;
2142 	    }
2143 
2144 	  op = smul_widen_optab;
2145 	  handler = find_widening_optab_handler_and_mode (op, to_mode,
2146 							  from_mode, 0,
2147 							  &actual_mode);
2148 
2149 	  if (handler == CODE_FOR_nothing)
2150 	    return false;
2151 
2152 	  from_unsigned1 = from_unsigned2 = false;
2153 	}
2154       else
2155 	return false;
2156     }
2157 
2158   /* Ensure that the inputs to the handler are in the correct precison
2159      for the opcode.  This will be the full mode size.  */
2160   actual_precision = GET_MODE_PRECISION (actual_mode);
2161   if (actual_precision != TYPE_PRECISION (type1)
2162       || from_unsigned1 != TYPE_UNSIGNED (type1))
2163     {
2164       tmp = create_tmp_var (build_nonstandard_integer_type
2165 				(actual_precision, from_unsigned1),
2166 			    NULL);
2167       rhs1 = build_and_insert_cast (gsi, loc, tmp, rhs1);
2168     }
2169   if (actual_precision != TYPE_PRECISION (type2)
2170       || from_unsigned2 != TYPE_UNSIGNED (type2))
2171     {
2172       /* Reuse the same type info, if possible.  */
2173       if (!tmp || from_unsigned1 != from_unsigned2)
2174 	tmp = create_tmp_var (build_nonstandard_integer_type
2175 				(actual_precision, from_unsigned2),
2176 			      NULL);
2177       rhs2 = build_and_insert_cast (gsi, loc, tmp, rhs2);
2178     }
2179 
2180   /* Handle constants.  */
2181   if (TREE_CODE (rhs1) == INTEGER_CST)
2182     rhs1 = fold_convert (type1, rhs1);
2183   if (TREE_CODE (rhs2) == INTEGER_CST)
2184     rhs2 = fold_convert (type2, rhs2);
2185 
2186   gimple_assign_set_rhs1 (stmt, rhs1);
2187   gimple_assign_set_rhs2 (stmt, rhs2);
2188   gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2189   update_stmt (stmt);
2190   widen_mul_stats.widen_mults_inserted++;
2191   return true;
2192 }
2193 
2194 /* Process a single gimple statement STMT, which is found at the
2195    iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2196    rhs (given by CODE), and try to convert it into a
2197    WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR.  The return value
2198    is true iff we converted the statement.  */
2199 
2200 static bool
2201 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2202 			    enum tree_code code)
2203 {
2204   gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2205   gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2206   tree type, type1, type2, optype, tmp = NULL;
2207   tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2208   enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2209   optab this_optab;
2210   enum tree_code wmult_code;
2211   enum insn_code handler;
2212   enum machine_mode to_mode, from_mode, actual_mode;
2213   location_t loc = gimple_location (stmt);
2214   int actual_precision;
2215   bool from_unsigned1, from_unsigned2;
2216 
2217   lhs = gimple_assign_lhs (stmt);
2218   type = TREE_TYPE (lhs);
2219   if (TREE_CODE (type) != INTEGER_TYPE
2220       && TREE_CODE (type) != FIXED_POINT_TYPE)
2221     return false;
2222 
2223   if (code == MINUS_EXPR)
2224     wmult_code = WIDEN_MULT_MINUS_EXPR;
2225   else
2226     wmult_code = WIDEN_MULT_PLUS_EXPR;
2227 
2228   rhs1 = gimple_assign_rhs1 (stmt);
2229   rhs2 = gimple_assign_rhs2 (stmt);
2230 
2231   if (TREE_CODE (rhs1) == SSA_NAME)
2232     {
2233       rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2234       if (is_gimple_assign (rhs1_stmt))
2235 	rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2236     }
2237 
2238   if (TREE_CODE (rhs2) == SSA_NAME)
2239     {
2240       rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2241       if (is_gimple_assign (rhs2_stmt))
2242 	rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2243     }
2244 
2245   /* Allow for one conversion statement between the multiply
2246      and addition/subtraction statement.  If there are more than
2247      one conversions then we assume they would invalidate this
2248      transformation.  If that's not the case then they should have
2249      been folded before now.  */
2250   if (CONVERT_EXPR_CODE_P (rhs1_code))
2251     {
2252       conv1_stmt = rhs1_stmt;
2253       rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2254       if (TREE_CODE (rhs1) == SSA_NAME)
2255 	{
2256 	  rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2257 	  if (is_gimple_assign (rhs1_stmt))
2258 	    rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2259 	}
2260       else
2261 	return false;
2262     }
2263   if (CONVERT_EXPR_CODE_P (rhs2_code))
2264     {
2265       conv2_stmt = rhs2_stmt;
2266       rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2267       if (TREE_CODE (rhs2) == SSA_NAME)
2268 	{
2269 	  rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2270 	  if (is_gimple_assign (rhs2_stmt))
2271 	    rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2272 	}
2273       else
2274 	return false;
2275     }
2276 
2277   /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2278      is_widening_mult_p, but we still need the rhs returns.
2279 
2280      It might also appear that it would be sufficient to use the existing
2281      operands of the widening multiply, but that would limit the choice of
2282      multiply-and-accumulate instructions.  */
2283   if (code == PLUS_EXPR
2284       && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2285     {
2286       if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2287 			       &type2, &mult_rhs2))
2288 	return false;
2289       add_rhs = rhs2;
2290       conv_stmt = conv1_stmt;
2291     }
2292   else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2293     {
2294       if (!is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2295 			       &type2, &mult_rhs2))
2296 	return false;
2297       add_rhs = rhs1;
2298       conv_stmt = conv2_stmt;
2299     }
2300   else
2301     return false;
2302 
2303   to_mode = TYPE_MODE (type);
2304   from_mode = TYPE_MODE (type1);
2305   from_unsigned1 = TYPE_UNSIGNED (type1);
2306   from_unsigned2 = TYPE_UNSIGNED (type2);
2307   optype = type1;
2308 
2309   /* There's no such thing as a mixed sign madd yet, so use a wider mode.  */
2310   if (from_unsigned1 != from_unsigned2)
2311     {
2312       if (!INTEGRAL_TYPE_P (type))
2313 	return false;
2314       /* We can use a signed multiply with unsigned types as long as
2315 	 there is a wider mode to use, or it is the smaller of the two
2316 	 types that is unsigned.  Note that type1 >= type2, always.  */
2317       if ((from_unsigned1
2318 	   && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2319 	  || (from_unsigned2
2320 	      && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2321 	{
2322 	  from_mode = GET_MODE_WIDER_MODE (from_mode);
2323 	  if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2324 	    return false;
2325 	}
2326 
2327       from_unsigned1 = from_unsigned2 = false;
2328       optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2329 					       false);
2330     }
2331 
2332   /* If there was a conversion between the multiply and addition
2333      then we need to make sure it fits a multiply-and-accumulate.
2334      The should be a single mode change which does not change the
2335      value.  */
2336   if (conv_stmt)
2337     {
2338       /* We use the original, unmodified data types for this.  */
2339       tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2340       tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2341       int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2342       bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2343 
2344       if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2345 	{
2346 	  /* Conversion is a truncate.  */
2347 	  if (TYPE_PRECISION (to_type) < data_size)
2348 	    return false;
2349 	}
2350       else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2351 	{
2352 	  /* Conversion is an extend.  Check it's the right sort.  */
2353 	  if (TYPE_UNSIGNED (from_type) != is_unsigned
2354 	      && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2355 	    return false;
2356 	}
2357       /* else convert is a no-op for our purposes.  */
2358     }
2359 
2360   /* Verify that the machine can perform a widening multiply
2361      accumulate in this mode/signedness combination, otherwise
2362      this transformation is likely to pessimize code.  */
2363   this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2364   handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2365 						  from_mode, 0, &actual_mode);
2366 
2367   if (handler == CODE_FOR_nothing)
2368     return false;
2369 
2370   /* Ensure that the inputs to the handler are in the correct precison
2371      for the opcode.  This will be the full mode size.  */
2372   actual_precision = GET_MODE_PRECISION (actual_mode);
2373   if (actual_precision != TYPE_PRECISION (type1)
2374       || from_unsigned1 != TYPE_UNSIGNED (type1))
2375     {
2376       tmp = create_tmp_var (build_nonstandard_integer_type
2377 				(actual_precision, from_unsigned1),
2378 			    NULL);
2379       mult_rhs1 = build_and_insert_cast (gsi, loc, tmp, mult_rhs1);
2380     }
2381   if (actual_precision != TYPE_PRECISION (type2)
2382       || from_unsigned2 != TYPE_UNSIGNED (type2))
2383     {
2384       if (!tmp || from_unsigned1 != from_unsigned2)
2385 	tmp = create_tmp_var (build_nonstandard_integer_type
2386 				(actual_precision, from_unsigned2),
2387 			      NULL);
2388       mult_rhs2 = build_and_insert_cast (gsi, loc, tmp, mult_rhs2);
2389     }
2390 
2391   if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2392     add_rhs = build_and_insert_cast (gsi, loc, create_tmp_var (type, NULL),
2393 				     add_rhs);
2394 
2395   /* Handle constants.  */
2396   if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2397     mult_rhs1 = fold_convert (type1, mult_rhs1);
2398   if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2399     mult_rhs2 = fold_convert (type2, mult_rhs2);
2400 
2401   gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2402 				    add_rhs);
2403   update_stmt (gsi_stmt (*gsi));
2404   widen_mul_stats.maccs_inserted++;
2405   return true;
2406 }
2407 
2408 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2409    with uses in additions and subtractions to form fused multiply-add
2410    operations.  Returns true if successful and MUL_STMT should be removed.  */
2411 
2412 static bool
2413 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2414 {
2415   tree mul_result = gimple_get_lhs (mul_stmt);
2416   tree type = TREE_TYPE (mul_result);
2417   gimple use_stmt, neguse_stmt, fma_stmt;
2418   use_operand_p use_p;
2419   imm_use_iterator imm_iter;
2420 
2421   if (FLOAT_TYPE_P (type)
2422       && flag_fp_contract_mode == FP_CONTRACT_OFF)
2423     return false;
2424 
2425   /* We don't want to do bitfield reduction ops.  */
2426   if (INTEGRAL_TYPE_P (type)
2427       && (TYPE_PRECISION (type)
2428 	  != GET_MODE_PRECISION (TYPE_MODE (type))))
2429     return false;
2430 
2431   /* If the target doesn't support it, don't generate it.  We assume that
2432      if fma isn't available then fms, fnma or fnms are not either.  */
2433   if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2434     return false;
2435 
2436   /* If the multiplication has zero uses, it is kept around probably because
2437      of -fnon-call-exceptions.  Don't optimize it away in that case,
2438      it is DCE job.  */
2439   if (has_zero_uses (mul_result))
2440     return false;
2441 
2442   /* Make sure that the multiplication statement becomes dead after
2443      the transformation, thus that all uses are transformed to FMAs.
2444      This means we assume that an FMA operation has the same cost
2445      as an addition.  */
2446   FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2447     {
2448       enum tree_code use_code;
2449       tree result = mul_result;
2450       bool negate_p = false;
2451 
2452       use_stmt = USE_STMT (use_p);
2453 
2454       if (is_gimple_debug (use_stmt))
2455 	continue;
2456 
2457       /* For now restrict this operations to single basic blocks.  In theory
2458 	 we would want to support sinking the multiplication in
2459 	 m = a*b;
2460 	 if ()
2461 	   ma = m + c;
2462 	 else
2463 	   d = m;
2464 	 to form a fma in the then block and sink the multiplication to the
2465 	 else block.  */
2466       if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2467 	return false;
2468 
2469       if (!is_gimple_assign (use_stmt))
2470 	return false;
2471 
2472       use_code = gimple_assign_rhs_code (use_stmt);
2473 
2474       /* A negate on the multiplication leads to FNMA.  */
2475       if (use_code == NEGATE_EXPR)
2476 	{
2477 	  ssa_op_iter iter;
2478 	  use_operand_p usep;
2479 
2480 	  result = gimple_assign_lhs (use_stmt);
2481 
2482 	  /* Make sure the negate statement becomes dead with this
2483 	     single transformation.  */
2484 	  if (!single_imm_use (gimple_assign_lhs (use_stmt),
2485 			       &use_p, &neguse_stmt))
2486 	    return false;
2487 
2488 	  /* Make sure the multiplication isn't also used on that stmt.  */
2489 	  FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2490 	    if (USE_FROM_PTR (usep) == mul_result)
2491 	      return false;
2492 
2493 	  /* Re-validate.  */
2494 	  use_stmt = neguse_stmt;
2495 	  if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2496 	    return false;
2497 	  if (!is_gimple_assign (use_stmt))
2498 	    return false;
2499 
2500 	  use_code = gimple_assign_rhs_code (use_stmt);
2501 	  negate_p = true;
2502 	}
2503 
2504       switch (use_code)
2505 	{
2506 	case MINUS_EXPR:
2507 	  if (gimple_assign_rhs2 (use_stmt) == result)
2508 	    negate_p = !negate_p;
2509 	  break;
2510 	case PLUS_EXPR:
2511 	  break;
2512 	default:
2513 	  /* FMA can only be formed from PLUS and MINUS.  */
2514 	  return false;
2515 	}
2516 
2517       /* We can't handle a * b + a * b.  */
2518       if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2519 	return false;
2520 
2521       /* While it is possible to validate whether or not the exact form
2522 	 that we've recognized is available in the backend, the assumption
2523 	 is that the transformation is never a loss.  For instance, suppose
2524 	 the target only has the plain FMA pattern available.  Consider
2525 	 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2526 	 is still two operations.  Consider -(a*b)-c -> fma(-a,b,-c): we
2527 	 still have 3 operations, but in the FMA form the two NEGs are
2528 	 independant and could be run in parallel.  */
2529     }
2530 
2531   FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2532     {
2533       gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2534       enum tree_code use_code;
2535       tree addop, mulop1 = op1, result = mul_result;
2536       bool negate_p = false;
2537 
2538       if (is_gimple_debug (use_stmt))
2539 	continue;
2540 
2541       use_code = gimple_assign_rhs_code (use_stmt);
2542       if (use_code == NEGATE_EXPR)
2543 	{
2544 	  result = gimple_assign_lhs (use_stmt);
2545 	  single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2546 	  gsi_remove (&gsi, true);
2547 	  release_defs (use_stmt);
2548 
2549 	  use_stmt = neguse_stmt;
2550 	  gsi = gsi_for_stmt (use_stmt);
2551 	  use_code = gimple_assign_rhs_code (use_stmt);
2552 	  negate_p = true;
2553 	}
2554 
2555       if (gimple_assign_rhs1 (use_stmt) == result)
2556 	{
2557 	  addop = gimple_assign_rhs2 (use_stmt);
2558 	  /* a * b - c -> a * b + (-c)  */
2559 	  if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2560 	    addop = force_gimple_operand_gsi (&gsi,
2561 					      build1 (NEGATE_EXPR,
2562 						      type, addop),
2563 					      true, NULL_TREE, true,
2564 					      GSI_SAME_STMT);
2565 	}
2566       else
2567 	{
2568 	  addop = gimple_assign_rhs1 (use_stmt);
2569 	  /* a - b * c -> (-b) * c + a */
2570 	  if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2571 	    negate_p = !negate_p;
2572 	}
2573 
2574       if (negate_p)
2575 	mulop1 = force_gimple_operand_gsi (&gsi,
2576 					   build1 (NEGATE_EXPR,
2577 						   type, mulop1),
2578 					   true, NULL_TREE, true,
2579 					   GSI_SAME_STMT);
2580 
2581       fma_stmt = gimple_build_assign_with_ops3 (FMA_EXPR,
2582 						gimple_assign_lhs (use_stmt),
2583 						mulop1, op2,
2584 						addop);
2585       gsi_replace (&gsi, fma_stmt, true);
2586       widen_mul_stats.fmas_inserted++;
2587     }
2588 
2589   return true;
2590 }
2591 
2592 /* Find integer multiplications where the operands are extended from
2593    smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2594    where appropriate.  */
2595 
2596 static unsigned int
2597 execute_optimize_widening_mul (void)
2598 {
2599   basic_block bb;
2600   bool cfg_changed = false;
2601 
2602   memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2603 
2604   FOR_EACH_BB (bb)
2605     {
2606       gimple_stmt_iterator gsi;
2607 
2608       for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2609         {
2610 	  gimple stmt = gsi_stmt (gsi);
2611 	  enum tree_code code;
2612 
2613 	  if (is_gimple_assign (stmt))
2614 	    {
2615 	      code = gimple_assign_rhs_code (stmt);
2616 	      switch (code)
2617 		{
2618 		case MULT_EXPR:
2619 		  if (!convert_mult_to_widen (stmt, &gsi)
2620 		      && convert_mult_to_fma (stmt,
2621 					      gimple_assign_rhs1 (stmt),
2622 					      gimple_assign_rhs2 (stmt)))
2623 		    {
2624 		      gsi_remove (&gsi, true);
2625 		      release_defs (stmt);
2626 		      continue;
2627 		    }
2628 		  break;
2629 
2630 		case PLUS_EXPR:
2631 		case MINUS_EXPR:
2632 		  convert_plusminus_to_widen (&gsi, stmt, code);
2633 		  break;
2634 
2635 		default:;
2636 		}
2637 	    }
2638 	  else if (is_gimple_call (stmt)
2639 		   && gimple_call_lhs (stmt))
2640 	    {
2641 	      tree fndecl = gimple_call_fndecl (stmt);
2642 	      if (fndecl
2643 		  && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2644 		{
2645 		  switch (DECL_FUNCTION_CODE (fndecl))
2646 		    {
2647 		      case BUILT_IN_POWF:
2648 		      case BUILT_IN_POW:
2649 		      case BUILT_IN_POWL:
2650 			if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2651 			    && REAL_VALUES_EQUAL
2652 			         (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2653 				  dconst2)
2654 			    && convert_mult_to_fma (stmt,
2655 						    gimple_call_arg (stmt, 0),
2656 						    gimple_call_arg (stmt, 0)))
2657 			  {
2658 			    unlink_stmt_vdef (stmt);
2659 			    gsi_remove (&gsi, true);
2660 			    release_defs (stmt);
2661 			    if (gimple_purge_dead_eh_edges (bb))
2662 			      cfg_changed = true;
2663 			    continue;
2664 			  }
2665 			  break;
2666 
2667 		      default:;
2668 		    }
2669 		}
2670 	    }
2671 	  gsi_next (&gsi);
2672 	}
2673     }
2674 
2675   statistics_counter_event (cfun, "widening multiplications inserted",
2676 			    widen_mul_stats.widen_mults_inserted);
2677   statistics_counter_event (cfun, "widening maccs inserted",
2678 			    widen_mul_stats.maccs_inserted);
2679   statistics_counter_event (cfun, "fused multiply-adds inserted",
2680 			    widen_mul_stats.fmas_inserted);
2681 
2682   return cfg_changed ? TODO_cleanup_cfg : 0;
2683 }
2684 
2685 static bool
2686 gate_optimize_widening_mul (void)
2687 {
2688   return flag_expensive_optimizations && optimize;
2689 }
2690 
2691 struct gimple_opt_pass pass_optimize_widening_mul =
2692 {
2693  {
2694   GIMPLE_PASS,
2695   "widening_mul",			/* name */
2696   gate_optimize_widening_mul,		/* gate */
2697   execute_optimize_widening_mul,	/* execute */
2698   NULL,					/* sub */
2699   NULL,					/* next */
2700   0,					/* static_pass_number */
2701   TV_NONE,				/* tv_id */
2702   PROP_ssa,				/* properties_required */
2703   0,					/* properties_provided */
2704   0,					/* properties_destroyed */
2705   0,					/* todo_flags_start */
2706   TODO_verify_ssa
2707   | TODO_verify_stmts
2708   | TODO_update_ssa                     /* todo_flags_finish */
2709  }
2710 };
2711