xref: /dragonfly/contrib/gcc-4.7/gcc/tree-vrp.c (revision cfd1aba3)
1 /* Support routines for Value Range Propagation (VRP).
2    Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4    Contributed by Diego Novillo <dnovillo@redhat.com>.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
43 #include "expr.h"
44 #include "optabs.h"
45 
46 
47 /* Type of value ranges.  See value_range_d for a description of these
48    types.  */
49 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
50 
51 /* Range of values that can be associated with an SSA_NAME after VRP
52    has executed.  */
53 struct value_range_d
54 {
55   /* Lattice value represented by this range.  */
56   enum value_range_type type;
57 
58   /* Minimum and maximum values represented by this range.  These
59      values should be interpreted as follows:
60 
61 	- If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
62 	  be NULL.
63 
64 	- If TYPE == VR_RANGE then MIN holds the minimum value and
65 	  MAX holds the maximum value of the range [MIN, MAX].
66 
67 	- If TYPE == ANTI_RANGE the variable is known to NOT
68 	  take any values in the range [MIN, MAX].  */
69   tree min;
70   tree max;
71 
72   /* Set of SSA names whose value ranges are equivalent to this one.
73      This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE.  */
74   bitmap equiv;
75 };
76 
77 typedef struct value_range_d value_range_t;
78 
79 /* Set of SSA names found live during the RPO traversal of the function
80    for still active basic-blocks.  */
81 static sbitmap *live;
82 
83 /* Return true if the SSA name NAME is live on the edge E.  */
84 
85 static bool
86 live_on_edge (edge e, tree name)
87 {
88   return (live[e->dest->index]
89 	  && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
90 }
91 
92 /* Local functions.  */
93 static int compare_values (tree val1, tree val2);
94 static int compare_values_warnv (tree val1, tree val2, bool *);
95 static void vrp_meet (value_range_t *, value_range_t *);
96 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
97 						     tree, tree, bool, bool *,
98 						     bool *);
99 
100 /* Location information for ASSERT_EXPRs.  Each instance of this
101    structure describes an ASSERT_EXPR for an SSA name.  Since a single
102    SSA name may have more than one assertion associated with it, these
103    locations are kept in a linked list attached to the corresponding
104    SSA name.  */
105 struct assert_locus_d
106 {
107   /* Basic block where the assertion would be inserted.  */
108   basic_block bb;
109 
110   /* Some assertions need to be inserted on an edge (e.g., assertions
111      generated by COND_EXPRs).  In those cases, BB will be NULL.  */
112   edge e;
113 
114   /* Pointer to the statement that generated this assertion.  */
115   gimple_stmt_iterator si;
116 
117   /* Predicate code for the ASSERT_EXPR.  Must be COMPARISON_CLASS_P.  */
118   enum tree_code comp_code;
119 
120   /* Value being compared against.  */
121   tree val;
122 
123   /* Expression to compare.  */
124   tree expr;
125 
126   /* Next node in the linked list.  */
127   struct assert_locus_d *next;
128 };
129 
130 typedef struct assert_locus_d *assert_locus_t;
131 
132 /* If bit I is present, it means that SSA name N_i has a list of
133    assertions that should be inserted in the IL.  */
134 static bitmap need_assert_for;
135 
136 /* Array of locations lists where to insert assertions.  ASSERTS_FOR[I]
137    holds a list of ASSERT_LOCUS_T nodes that describe where
138    ASSERT_EXPRs for SSA name N_I should be inserted.  */
139 static assert_locus_t *asserts_for;
140 
141 /* Value range array.  After propagation, VR_VALUE[I] holds the range
142    of values that SSA name N_I may take.  */
143 static unsigned num_vr_values;
144 static value_range_t **vr_value;
145 static bool values_propagated;
146 
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148    number of executable edges we saw the last time we visited the
149    node.  */
150 static int *vr_phi_edge_counts;
151 
152 typedef struct {
153   gimple stmt;
154   tree vec;
155 } switch_update;
156 
157 static VEC (edge, heap) *to_remove_edges;
158 DEF_VEC_O(switch_update);
159 DEF_VEC_ALLOC_O(switch_update, heap);
160 static VEC (switch_update, heap) *to_update_switch_stmts;
161 
162 
163 /* Return the maximum value for TYPE.  */
164 
165 static inline tree
166 vrp_val_max (const_tree type)
167 {
168   if (!INTEGRAL_TYPE_P (type))
169     return NULL_TREE;
170 
171   return TYPE_MAX_VALUE (type);
172 }
173 
174 /* Return the minimum value for TYPE.  */
175 
176 static inline tree
177 vrp_val_min (const_tree type)
178 {
179   if (!INTEGRAL_TYPE_P (type))
180     return NULL_TREE;
181 
182   return TYPE_MIN_VALUE (type);
183 }
184 
185 /* Return whether VAL is equal to the maximum value of its type.  This
186    will be true for a positive overflow infinity.  We can't do a
187    simple equality comparison with TYPE_MAX_VALUE because C typedefs
188    and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189    to the integer constant with the same value in the type.  */
190 
191 static inline bool
192 vrp_val_is_max (const_tree val)
193 {
194   tree type_max = vrp_val_max (TREE_TYPE (val));
195   return (val == type_max
196 	  || (type_max != NULL_TREE
197 	      && operand_equal_p (val, type_max, 0)));
198 }
199 
200 /* Return whether VAL is equal to the minimum value of its type.  This
201    will be true for a negative overflow infinity.  */
202 
203 static inline bool
204 vrp_val_is_min (const_tree val)
205 {
206   tree type_min = vrp_val_min (TREE_TYPE (val));
207   return (val == type_min
208 	  || (type_min != NULL_TREE
209 	      && operand_equal_p (val, type_min, 0)));
210 }
211 
212 
213 /* Return whether TYPE should use an overflow infinity distinct from
214    TYPE_{MIN,MAX}_VALUE.  We use an overflow infinity value to
215    represent a signed overflow during VRP computations.  An infinity
216    is distinct from a half-range, which will go from some number to
217    TYPE_{MIN,MAX}_VALUE.  */
218 
219 static inline bool
220 needs_overflow_infinity (const_tree type)
221 {
222   return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
223 }
224 
225 /* Return whether TYPE can support our overflow infinity
226    representation: we use the TREE_OVERFLOW flag, which only exists
227    for constants.  If TYPE doesn't support this, we don't optimize
228    cases which would require signed overflow--we drop them to
229    VARYING.  */
230 
231 static inline bool
232 supports_overflow_infinity (const_tree type)
233 {
234   tree min = vrp_val_min (type), max = vrp_val_max (type);
235 #ifdef ENABLE_CHECKING
236   gcc_assert (needs_overflow_infinity (type));
237 #endif
238   return (min != NULL_TREE
239 	  && CONSTANT_CLASS_P (min)
240 	  && max != NULL_TREE
241 	  && CONSTANT_CLASS_P (max));
242 }
243 
244 /* VAL is the maximum or minimum value of a type.  Return a
245    corresponding overflow infinity.  */
246 
247 static inline tree
248 make_overflow_infinity (tree val)
249 {
250   gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
251   val = copy_node (val);
252   TREE_OVERFLOW (val) = 1;
253   return val;
254 }
255 
256 /* Return a negative overflow infinity for TYPE.  */
257 
258 static inline tree
259 negative_overflow_infinity (tree type)
260 {
261   gcc_checking_assert (supports_overflow_infinity (type));
262   return make_overflow_infinity (vrp_val_min (type));
263 }
264 
265 /* Return a positive overflow infinity for TYPE.  */
266 
267 static inline tree
268 positive_overflow_infinity (tree type)
269 {
270   gcc_checking_assert (supports_overflow_infinity (type));
271   return make_overflow_infinity (vrp_val_max (type));
272 }
273 
274 /* Return whether VAL is a negative overflow infinity.  */
275 
276 static inline bool
277 is_negative_overflow_infinity (const_tree val)
278 {
279   return (needs_overflow_infinity (TREE_TYPE (val))
280 	  && CONSTANT_CLASS_P (val)
281 	  && TREE_OVERFLOW (val)
282 	  && vrp_val_is_min (val));
283 }
284 
285 /* Return whether VAL is a positive overflow infinity.  */
286 
287 static inline bool
288 is_positive_overflow_infinity (const_tree val)
289 {
290   return (needs_overflow_infinity (TREE_TYPE (val))
291 	  && CONSTANT_CLASS_P (val)
292 	  && TREE_OVERFLOW (val)
293 	  && vrp_val_is_max (val));
294 }
295 
296 /* Return whether VAL is a positive or negative overflow infinity.  */
297 
298 static inline bool
299 is_overflow_infinity (const_tree val)
300 {
301   return (needs_overflow_infinity (TREE_TYPE (val))
302 	  && CONSTANT_CLASS_P (val)
303 	  && TREE_OVERFLOW (val)
304 	  && (vrp_val_is_min (val) || vrp_val_is_max (val)));
305 }
306 
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
308 
309 static inline bool
310 stmt_overflow_infinity (gimple stmt)
311 {
312   if (is_gimple_assign (stmt)
313       && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
314       GIMPLE_SINGLE_RHS)
315     return is_overflow_infinity (gimple_assign_rhs1 (stmt));
316   return false;
317 }
318 
319 /* If VAL is now an overflow infinity, return VAL.  Otherwise, return
320    the same value with TREE_OVERFLOW clear.  This can be used to avoid
321    confusing a regular value with an overflow value.  */
322 
323 static inline tree
324 avoid_overflow_infinity (tree val)
325 {
326   if (!is_overflow_infinity (val))
327     return val;
328 
329   if (vrp_val_is_max (val))
330     return vrp_val_max (TREE_TYPE (val));
331   else
332     {
333       gcc_checking_assert (vrp_val_is_min (val));
334       return vrp_val_min (TREE_TYPE (val));
335     }
336 }
337 
338 
339 /* Return true if ARG is marked with the nonnull attribute in the
340    current function signature.  */
341 
342 static bool
343 nonnull_arg_p (const_tree arg)
344 {
345   tree t, attrs, fntype;
346   unsigned HOST_WIDE_INT arg_num;
347 
348   gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
349 
350   /* The static chain decl is always non null.  */
351   if (arg == cfun->static_chain_decl)
352     return true;
353 
354   fntype = TREE_TYPE (current_function_decl);
355   attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
356 
357   /* If "nonnull" wasn't specified, we know nothing about the argument.  */
358   if (attrs == NULL_TREE)
359     return false;
360 
361   /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
362   if (TREE_VALUE (attrs) == NULL_TREE)
363     return true;
364 
365   /* Get the position number for ARG in the function signature.  */
366   for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
367        t;
368        t = DECL_CHAIN (t), arg_num++)
369     {
370       if (t == arg)
371 	break;
372     }
373 
374   gcc_assert (t == arg);
375 
376   /* Now see if ARG_NUM is mentioned in the nonnull list.  */
377   for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
378     {
379       if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
380 	return true;
381     }
382 
383   return false;
384 }
385 
386 
387 /* Set value range VR to VR_VARYING.  */
388 
389 static inline void
390 set_value_range_to_varying (value_range_t *vr)
391 {
392   vr->type = VR_VARYING;
393   vr->min = vr->max = NULL_TREE;
394   if (vr->equiv)
395     bitmap_clear (vr->equiv);
396 }
397 
398 
399 /* Set value range VR to {T, MIN, MAX, EQUIV}.  */
400 
401 static void
402 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
403 		 tree max, bitmap equiv)
404 {
405 #if defined ENABLE_CHECKING
406   /* Check the validity of the range.  */
407   if (t == VR_RANGE || t == VR_ANTI_RANGE)
408     {
409       int cmp;
410 
411       gcc_assert (min && max);
412 
413       if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
414 	gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
415 
416       cmp = compare_values (min, max);
417       gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
418 
419       if (needs_overflow_infinity (TREE_TYPE (min)))
420 	gcc_assert (!is_overflow_infinity (min)
421 		    || !is_overflow_infinity (max));
422     }
423 
424   if (t == VR_UNDEFINED || t == VR_VARYING)
425     gcc_assert (min == NULL_TREE && max == NULL_TREE);
426 
427   if (t == VR_UNDEFINED || t == VR_VARYING)
428     gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
429 #endif
430 
431   vr->type = t;
432   vr->min = min;
433   vr->max = max;
434 
435   /* Since updating the equivalence set involves deep copying the
436      bitmaps, only do it if absolutely necessary.  */
437   if (vr->equiv == NULL
438       && equiv != NULL)
439     vr->equiv = BITMAP_ALLOC (NULL);
440 
441   if (equiv != vr->equiv)
442     {
443       if (equiv && !bitmap_empty_p (equiv))
444 	bitmap_copy (vr->equiv, equiv);
445       else
446 	bitmap_clear (vr->equiv);
447     }
448 }
449 
450 
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452    This means adjusting T, MIN and MAX representing the case of a
453    wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454    as anti-rage ~[MAX+1, MIN-1].  Likewise for wrapping anti-ranges.
455    In corner cases where MAX+1 or MIN-1 wraps this will fall back
456    to varying.
457    This routine exists to ease canonicalization in the case where we
458    extract ranges from var + CST op limit.  */
459 
460 static void
461 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
462 				  tree min, tree max, bitmap equiv)
463 {
464   /* Nothing to canonicalize for symbolic or unknown or varying ranges.  */
465   if ((t != VR_RANGE
466        && t != VR_ANTI_RANGE)
467       || TREE_CODE (min) != INTEGER_CST
468       || TREE_CODE (max) != INTEGER_CST)
469     {
470       set_value_range (vr, t, min, max, equiv);
471       return;
472     }
473 
474   /* Wrong order for min and max, to swap them and the VR type we need
475      to adjust them.  */
476   if (tree_int_cst_lt (max, min))
477     {
478       tree one = build_int_cst (TREE_TYPE (min), 1);
479       tree tmp = int_const_binop (PLUS_EXPR, max, one);
480       max = int_const_binop (MINUS_EXPR, min, one);
481       min = tmp;
482 
483       /* There's one corner case, if we had [C+1, C] before we now have
484 	 that again.  But this represents an empty value range, so drop
485 	 to varying in this case.  */
486       if (tree_int_cst_lt (max, min))
487 	{
488 	  set_value_range_to_varying (vr);
489 	  return;
490 	}
491 
492       t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
493     }
494 
495   /* Anti-ranges that can be represented as ranges should be so.  */
496   if (t == VR_ANTI_RANGE)
497     {
498       bool is_min = vrp_val_is_min (min);
499       bool is_max = vrp_val_is_max (max);
500 
501       if (is_min && is_max)
502 	{
503 	  /* We cannot deal with empty ranges, drop to varying.  */
504 	  set_value_range_to_varying (vr);
505 	  return;
506 	}
507       else if (is_min
508 	       /* As a special exception preserve non-null ranges.  */
509 	       && !(TYPE_UNSIGNED (TREE_TYPE (min))
510 		    && integer_zerop (max)))
511         {
512 	  tree one = build_int_cst (TREE_TYPE (max), 1);
513 	  min = int_const_binop (PLUS_EXPR, max, one);
514 	  max = vrp_val_max (TREE_TYPE (max));
515 	  t = VR_RANGE;
516         }
517       else if (is_max)
518         {
519 	  tree one = build_int_cst (TREE_TYPE (min), 1);
520 	  max = int_const_binop (MINUS_EXPR, min, one);
521 	  min = vrp_val_min (TREE_TYPE (min));
522 	  t = VR_RANGE;
523         }
524     }
525 
526   set_value_range (vr, t, min, max, equiv);
527 }
528 
529 /* Copy value range FROM into value range TO.  */
530 
531 static inline void
532 copy_value_range (value_range_t *to, value_range_t *from)
533 {
534   set_value_range (to, from->type, from->min, from->max, from->equiv);
535 }
536 
537 /* Set value range VR to a single value.  This function is only called
538    with values we get from statements, and exists to clear the
539    TREE_OVERFLOW flag so that we don't think we have an overflow
540    infinity when we shouldn't.  */
541 
542 static inline void
543 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
544 {
545   gcc_assert (is_gimple_min_invariant (val));
546   val = avoid_overflow_infinity (val);
547   set_value_range (vr, VR_RANGE, val, val, equiv);
548 }
549 
550 /* Set value range VR to a non-negative range of type TYPE.
551    OVERFLOW_INFINITY indicates whether to use an overflow infinity
552    rather than TYPE_MAX_VALUE; this should be true if we determine
553    that the range is nonnegative based on the assumption that signed
554    overflow does not occur.  */
555 
556 static inline void
557 set_value_range_to_nonnegative (value_range_t *vr, tree type,
558 				bool overflow_infinity)
559 {
560   tree zero;
561 
562   if (overflow_infinity && !supports_overflow_infinity (type))
563     {
564       set_value_range_to_varying (vr);
565       return;
566     }
567 
568   zero = build_int_cst (type, 0);
569   set_value_range (vr, VR_RANGE, zero,
570 		   (overflow_infinity
571 		    ? positive_overflow_infinity (type)
572 		    : TYPE_MAX_VALUE (type)),
573 		   vr->equiv);
574 }
575 
576 /* Set value range VR to a non-NULL range of type TYPE.  */
577 
578 static inline void
579 set_value_range_to_nonnull (value_range_t *vr, tree type)
580 {
581   tree zero = build_int_cst (type, 0);
582   set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
583 }
584 
585 
586 /* Set value range VR to a NULL range of type TYPE.  */
587 
588 static inline void
589 set_value_range_to_null (value_range_t *vr, tree type)
590 {
591   set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
592 }
593 
594 
595 /* Set value range VR to a range of a truthvalue of type TYPE.  */
596 
597 static inline void
598 set_value_range_to_truthvalue (value_range_t *vr, tree type)
599 {
600   if (TYPE_PRECISION (type) == 1)
601     set_value_range_to_varying (vr);
602   else
603     set_value_range (vr, VR_RANGE,
604 		     build_int_cst (type, 0), build_int_cst (type, 1),
605 		     vr->equiv);
606 }
607 
608 
609 /* Set value range VR to VR_UNDEFINED.  */
610 
611 static inline void
612 set_value_range_to_undefined (value_range_t *vr)
613 {
614   vr->type = VR_UNDEFINED;
615   vr->min = vr->max = NULL_TREE;
616   if (vr->equiv)
617     bitmap_clear (vr->equiv);
618 }
619 
620 
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622    abs (min) >= abs (max), set VR to [-min, min].  */
623 
624 static void
625 abs_extent_range (value_range_t *vr, tree min, tree max)
626 {
627   int cmp;
628 
629   gcc_assert (TREE_CODE (min) == INTEGER_CST);
630   gcc_assert (TREE_CODE (max) == INTEGER_CST);
631   gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
632   gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
633   min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
634   max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
635   if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
636     {
637       set_value_range_to_varying (vr);
638       return;
639     }
640   cmp = compare_values (min, max);
641   if (cmp == -1)
642     min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
643   else if (cmp == 0 || cmp == 1)
644     {
645       max = min;
646       min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
647     }
648   else
649     {
650       set_value_range_to_varying (vr);
651       return;
652     }
653   set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
654 }
655 
656 
657 /* Return value range information for VAR.
658 
659    If we have no values ranges recorded (ie, VRP is not running), then
660    return NULL.  Otherwise create an empty range if none existed for VAR.  */
661 
662 static value_range_t *
663 get_value_range (const_tree var)
664 {
665   static const struct value_range_d vr_const_varying
666     = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
667   value_range_t *vr;
668   tree sym;
669   unsigned ver = SSA_NAME_VERSION (var);
670 
671   /* If we have no recorded ranges, then return NULL.  */
672   if (! vr_value)
673     return NULL;
674 
675   /* If we query the range for a new SSA name return an unmodifiable VARYING.
676      We should get here at most from the substitute-and-fold stage which
677      will never try to change values.  */
678   if (ver >= num_vr_values)
679     return CONST_CAST (value_range_t *, &vr_const_varying);
680 
681   vr = vr_value[ver];
682   if (vr)
683     return vr;
684 
685   /* After propagation finished do not allocate new value-ranges.  */
686   if (values_propagated)
687     return CONST_CAST (value_range_t *, &vr_const_varying);
688 
689   /* Create a default value range.  */
690   vr_value[ver] = vr = XCNEW (value_range_t);
691 
692   /* Defer allocating the equivalence set.  */
693   vr->equiv = NULL;
694 
695   /* If VAR is a default definition of a parameter, the variable can
696      take any value in VAR's type.  */
697   sym = SSA_NAME_VAR (var);
698   if (SSA_NAME_IS_DEFAULT_DEF (var))
699     {
700       if (TREE_CODE (sym) == PARM_DECL)
701 	{
702 	  /* Try to use the "nonnull" attribute to create ~[0, 0]
703 	     anti-ranges for pointers.  Note that this is only valid with
704 	     default definitions of PARM_DECLs.  */
705 	  if (POINTER_TYPE_P (TREE_TYPE (sym))
706 	      && nonnull_arg_p (sym))
707 	    set_value_range_to_nonnull (vr, TREE_TYPE (sym));
708 	  else
709 	    set_value_range_to_varying (vr);
710 	}
711       else if (TREE_CODE (sym) == RESULT_DECL
712 	       && DECL_BY_REFERENCE (sym))
713 	set_value_range_to_nonnull (vr, TREE_TYPE (sym));
714     }
715 
716   return vr;
717 }
718 
719 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes.  */
720 
721 static inline bool
722 vrp_operand_equal_p (const_tree val1, const_tree val2)
723 {
724   if (val1 == val2)
725     return true;
726   if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
727     return false;
728   if (is_overflow_infinity (val1))
729     return is_overflow_infinity (val2);
730   return true;
731 }
732 
733 /* Return true, if the bitmaps B1 and B2 are equal.  */
734 
735 static inline bool
736 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
737 {
738   return (b1 == b2
739 	  || ((!b1 || bitmap_empty_p (b1))
740 	      && (!b2 || bitmap_empty_p (b2)))
741 	  || (b1 && b2
742 	      && bitmap_equal_p (b1, b2)));
743 }
744 
745 /* Update the value range and equivalence set for variable VAR to
746    NEW_VR.  Return true if NEW_VR is different from VAR's previous
747    value.
748 
749    NOTE: This function assumes that NEW_VR is a temporary value range
750    object created for the sole purpose of updating VAR's range.  The
751    storage used by the equivalence set from NEW_VR will be freed by
752    this function.  Do not call update_value_range when NEW_VR
753    is the range object associated with another SSA name.  */
754 
755 static inline bool
756 update_value_range (const_tree var, value_range_t *new_vr)
757 {
758   value_range_t *old_vr;
759   bool is_new;
760 
761   /* Update the value range, if necessary.  */
762   old_vr = get_value_range (var);
763   is_new = old_vr->type != new_vr->type
764 	   || !vrp_operand_equal_p (old_vr->min, new_vr->min)
765 	   || !vrp_operand_equal_p (old_vr->max, new_vr->max)
766 	   || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
767 
768   if (is_new)
769     set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
770 	             new_vr->equiv);
771 
772   BITMAP_FREE (new_vr->equiv);
773 
774   return is_new;
775 }
776 
777 
778 /* Add VAR and VAR's equivalence set to EQUIV.  This is the central
779    point where equivalence processing can be turned on/off.  */
780 
781 static void
782 add_equivalence (bitmap *equiv, const_tree var)
783 {
784   unsigned ver = SSA_NAME_VERSION (var);
785   value_range_t *vr = vr_value[ver];
786 
787   if (*equiv == NULL)
788     *equiv = BITMAP_ALLOC (NULL);
789   bitmap_set_bit (*equiv, ver);
790   if (vr && vr->equiv)
791     bitmap_ior_into (*equiv, vr->equiv);
792 }
793 
794 
795 /* Return true if VR is ~[0, 0].  */
796 
797 static inline bool
798 range_is_nonnull (value_range_t *vr)
799 {
800   return vr->type == VR_ANTI_RANGE
801 	 && integer_zerop (vr->min)
802 	 && integer_zerop (vr->max);
803 }
804 
805 
806 /* Return true if VR is [0, 0].  */
807 
808 static inline bool
809 range_is_null (value_range_t *vr)
810 {
811   return vr->type == VR_RANGE
812 	 && integer_zerop (vr->min)
813 	 && integer_zerop (vr->max);
814 }
815 
816 /* Return true if max and min of VR are INTEGER_CST.  It's not necessary
817    a singleton.  */
818 
819 static inline bool
820 range_int_cst_p (value_range_t *vr)
821 {
822   return (vr->type == VR_RANGE
823 	  && TREE_CODE (vr->max) == INTEGER_CST
824 	  && TREE_CODE (vr->min) == INTEGER_CST
825 	  && !TREE_OVERFLOW (vr->max)
826 	  && !TREE_OVERFLOW (vr->min));
827 }
828 
829 /* Return true if VR is a INTEGER_CST singleton.  */
830 
831 static inline bool
832 range_int_cst_singleton_p (value_range_t *vr)
833 {
834   return (range_int_cst_p (vr)
835 	  && tree_int_cst_equal (vr->min, vr->max));
836 }
837 
838 /* Return true if value range VR involves at least one symbol.  */
839 
840 static inline bool
841 symbolic_range_p (value_range_t *vr)
842 {
843   return (!is_gimple_min_invariant (vr->min)
844           || !is_gimple_min_invariant (vr->max));
845 }
846 
847 /* Return true if value range VR uses an overflow infinity.  */
848 
849 static inline bool
850 overflow_infinity_range_p (value_range_t *vr)
851 {
852   return (vr->type == VR_RANGE
853 	  && (is_overflow_infinity (vr->min)
854 	      || is_overflow_infinity (vr->max)));
855 }
856 
857 /* Return false if we can not make a valid comparison based on VR;
858    this will be the case if it uses an overflow infinity and overflow
859    is not undefined (i.e., -fno-strict-overflow is in effect).
860    Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
861    uses an overflow infinity.  */
862 
863 static bool
864 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
865 {
866   gcc_assert (vr->type == VR_RANGE);
867   if (is_overflow_infinity (vr->min))
868     {
869       *strict_overflow_p = true;
870       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
871 	return false;
872     }
873   if (is_overflow_infinity (vr->max))
874     {
875       *strict_overflow_p = true;
876       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
877 	return false;
878     }
879   return true;
880 }
881 
882 
883 /* Return true if the result of assignment STMT is know to be non-negative.
884    If the return value is based on the assumption that signed overflow is
885    undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
886    *STRICT_OVERFLOW_P.*/
887 
888 static bool
889 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
890 {
891   enum tree_code code = gimple_assign_rhs_code (stmt);
892   switch (get_gimple_rhs_class (code))
893     {
894     case GIMPLE_UNARY_RHS:
895       return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
896 					     gimple_expr_type (stmt),
897 					     gimple_assign_rhs1 (stmt),
898 					     strict_overflow_p);
899     case GIMPLE_BINARY_RHS:
900       return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
901 					      gimple_expr_type (stmt),
902 					      gimple_assign_rhs1 (stmt),
903 					      gimple_assign_rhs2 (stmt),
904 					      strict_overflow_p);
905     case GIMPLE_TERNARY_RHS:
906       return false;
907     case GIMPLE_SINGLE_RHS:
908       return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
909 					      strict_overflow_p);
910     case GIMPLE_INVALID_RHS:
911       gcc_unreachable ();
912     default:
913       gcc_unreachable ();
914     }
915 }
916 
917 /* Return true if return value of call STMT is know to be non-negative.
918    If the return value is based on the assumption that signed overflow is
919    undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
920    *STRICT_OVERFLOW_P.*/
921 
922 static bool
923 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
924 {
925   tree arg0 = gimple_call_num_args (stmt) > 0 ?
926     gimple_call_arg (stmt, 0) : NULL_TREE;
927   tree arg1 = gimple_call_num_args (stmt) > 1 ?
928     gimple_call_arg (stmt, 1) : NULL_TREE;
929 
930   return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
931 					gimple_call_fndecl (stmt),
932 					arg0,
933 					arg1,
934 					strict_overflow_p);
935 }
936 
937 /* Return true if STMT is know to to compute a non-negative value.
938    If the return value is based on the assumption that signed overflow is
939    undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
940    *STRICT_OVERFLOW_P.*/
941 
942 static bool
943 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
944 {
945   switch (gimple_code (stmt))
946     {
947     case GIMPLE_ASSIGN:
948       return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
949     case GIMPLE_CALL:
950       return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
951     default:
952       gcc_unreachable ();
953     }
954 }
955 
956 /* Return true if the result of assignment STMT is know to be non-zero.
957    If the return value is based on the assumption that signed overflow is
958    undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
959    *STRICT_OVERFLOW_P.*/
960 
961 static bool
962 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
963 {
964   enum tree_code code = gimple_assign_rhs_code (stmt);
965   switch (get_gimple_rhs_class (code))
966     {
967     case GIMPLE_UNARY_RHS:
968       return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
969 					 gimple_expr_type (stmt),
970 					 gimple_assign_rhs1 (stmt),
971 					 strict_overflow_p);
972     case GIMPLE_BINARY_RHS:
973       return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
974 					  gimple_expr_type (stmt),
975 					  gimple_assign_rhs1 (stmt),
976 					  gimple_assign_rhs2 (stmt),
977 					  strict_overflow_p);
978     case GIMPLE_TERNARY_RHS:
979       return false;
980     case GIMPLE_SINGLE_RHS:
981       return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
982 					  strict_overflow_p);
983     case GIMPLE_INVALID_RHS:
984       gcc_unreachable ();
985     default:
986       gcc_unreachable ();
987     }
988 }
989 
990 /* Return true if STMT is know to to compute a non-zero value.
991    If the return value is based on the assumption that signed overflow is
992    undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
993    *STRICT_OVERFLOW_P.*/
994 
995 static bool
996 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
997 {
998   switch (gimple_code (stmt))
999     {
1000     case GIMPLE_ASSIGN:
1001       return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1002     case GIMPLE_CALL:
1003       return gimple_alloca_call_p (stmt);
1004     default:
1005       gcc_unreachable ();
1006     }
1007 }
1008 
1009 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1010    obtained so far.  */
1011 
1012 static bool
1013 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1014 {
1015   if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1016     return true;
1017 
1018   /* If we have an expression of the form &X->a, then the expression
1019      is nonnull if X is nonnull.  */
1020   if (is_gimple_assign (stmt)
1021       && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1022     {
1023       tree expr = gimple_assign_rhs1 (stmt);
1024       tree base = get_base_address (TREE_OPERAND (expr, 0));
1025 
1026       if (base != NULL_TREE
1027 	  && TREE_CODE (base) == MEM_REF
1028 	  && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1029 	{
1030 	  value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1031 	  if (range_is_nonnull (vr))
1032 	    return true;
1033 	}
1034     }
1035 
1036   return false;
1037 }
1038 
1039 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1040    a gimple invariant, or SSA_NAME +- CST.  */
1041 
1042 static bool
1043 valid_value_p (tree expr)
1044 {
1045   if (TREE_CODE (expr) == SSA_NAME)
1046     return true;
1047 
1048   if (TREE_CODE (expr) == PLUS_EXPR
1049       || TREE_CODE (expr) == MINUS_EXPR)
1050     return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1051 	    && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1052 
1053   return is_gimple_min_invariant (expr);
1054 }
1055 
1056 /* Return
1057    1 if VAL < VAL2
1058    0 if !(VAL < VAL2)
1059    -2 if those are incomparable.  */
1060 static inline int
1061 operand_less_p (tree val, tree val2)
1062 {
1063   /* LT is folded faster than GE and others.  Inline the common case.  */
1064   if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1065     {
1066       if (TYPE_UNSIGNED (TREE_TYPE (val)))
1067 	return INT_CST_LT_UNSIGNED (val, val2);
1068       else
1069 	{
1070 	  if (INT_CST_LT (val, val2))
1071 	    return 1;
1072 	}
1073     }
1074   else
1075     {
1076       tree tcmp;
1077 
1078       fold_defer_overflow_warnings ();
1079 
1080       tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1081 
1082       fold_undefer_and_ignore_overflow_warnings ();
1083 
1084       if (!tcmp
1085 	  || TREE_CODE (tcmp) != INTEGER_CST)
1086 	return -2;
1087 
1088       if (!integer_zerop (tcmp))
1089 	return 1;
1090     }
1091 
1092   /* val >= val2, not considering overflow infinity.  */
1093   if (is_negative_overflow_infinity (val))
1094     return is_negative_overflow_infinity (val2) ? 0 : 1;
1095   else if (is_positive_overflow_infinity (val2))
1096     return is_positive_overflow_infinity (val) ? 0 : 1;
1097 
1098   return 0;
1099 }
1100 
1101 /* Compare two values VAL1 and VAL2.  Return
1102 
1103    	-2 if VAL1 and VAL2 cannot be compared at compile-time,
1104    	-1 if VAL1 < VAL2,
1105    	 0 if VAL1 == VAL2,
1106 	+1 if VAL1 > VAL2, and
1107 	+2 if VAL1 != VAL2
1108 
1109    This is similar to tree_int_cst_compare but supports pointer values
1110    and values that cannot be compared at compile time.
1111 
1112    If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1113    true if the return value is only valid if we assume that signed
1114    overflow is undefined.  */
1115 
1116 static int
1117 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1118 {
1119   if (val1 == val2)
1120     return 0;
1121 
1122   /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1123      both integers.  */
1124   gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1125 	      == POINTER_TYPE_P (TREE_TYPE (val2)));
1126   /* Convert the two values into the same type.  This is needed because
1127      sizetype causes sign extension even for unsigned types.  */
1128   val2 = fold_convert (TREE_TYPE (val1), val2);
1129   STRIP_USELESS_TYPE_CONVERSION (val2);
1130 
1131   if ((TREE_CODE (val1) == SSA_NAME
1132        || TREE_CODE (val1) == PLUS_EXPR
1133        || TREE_CODE (val1) == MINUS_EXPR)
1134       && (TREE_CODE (val2) == SSA_NAME
1135 	  || TREE_CODE (val2) == PLUS_EXPR
1136 	  || TREE_CODE (val2) == MINUS_EXPR))
1137     {
1138       tree n1, c1, n2, c2;
1139       enum tree_code code1, code2;
1140 
1141       /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1142 	 return -1 or +1 accordingly.  If VAL1 and VAL2 don't use the
1143 	 same name, return -2.  */
1144       if (TREE_CODE (val1) == SSA_NAME)
1145 	{
1146 	  code1 = SSA_NAME;
1147 	  n1 = val1;
1148 	  c1 = NULL_TREE;
1149 	}
1150       else
1151 	{
1152 	  code1 = TREE_CODE (val1);
1153 	  n1 = TREE_OPERAND (val1, 0);
1154 	  c1 = TREE_OPERAND (val1, 1);
1155 	  if (tree_int_cst_sgn (c1) == -1)
1156 	    {
1157 	      if (is_negative_overflow_infinity (c1))
1158 		return -2;
1159 	      c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1160 	      if (!c1)
1161 		return -2;
1162 	      code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1163 	    }
1164 	}
1165 
1166       if (TREE_CODE (val2) == SSA_NAME)
1167 	{
1168 	  code2 = SSA_NAME;
1169 	  n2 = val2;
1170 	  c2 = NULL_TREE;
1171 	}
1172       else
1173 	{
1174 	  code2 = TREE_CODE (val2);
1175 	  n2 = TREE_OPERAND (val2, 0);
1176 	  c2 = TREE_OPERAND (val2, 1);
1177 	  if (tree_int_cst_sgn (c2) == -1)
1178 	    {
1179 	      if (is_negative_overflow_infinity (c2))
1180 		return -2;
1181 	      c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1182 	      if (!c2)
1183 		return -2;
1184 	      code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1185 	    }
1186 	}
1187 
1188       /* Both values must use the same name.  */
1189       if (n1 != n2)
1190 	return -2;
1191 
1192       if (code1 == SSA_NAME
1193 	  && code2 == SSA_NAME)
1194 	/* NAME == NAME  */
1195 	return 0;
1196 
1197       /* If overflow is defined we cannot simplify more.  */
1198       if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1199 	return -2;
1200 
1201       if (strict_overflow_p != NULL
1202 	  && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1203 	  && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1204 	*strict_overflow_p = true;
1205 
1206       if (code1 == SSA_NAME)
1207 	{
1208 	  if (code2 == PLUS_EXPR)
1209 	    /* NAME < NAME + CST  */
1210 	    return -1;
1211 	  else if (code2 == MINUS_EXPR)
1212 	    /* NAME > NAME - CST  */
1213 	    return 1;
1214 	}
1215       else if (code1 == PLUS_EXPR)
1216 	{
1217 	  if (code2 == SSA_NAME)
1218 	    /* NAME + CST > NAME  */
1219 	    return 1;
1220 	  else if (code2 == PLUS_EXPR)
1221 	    /* NAME + CST1 > NAME + CST2, if CST1 > CST2  */
1222 	    return compare_values_warnv (c1, c2, strict_overflow_p);
1223 	  else if (code2 == MINUS_EXPR)
1224 	    /* NAME + CST1 > NAME - CST2  */
1225 	    return 1;
1226 	}
1227       else if (code1 == MINUS_EXPR)
1228 	{
1229 	  if (code2 == SSA_NAME)
1230 	    /* NAME - CST < NAME  */
1231 	    return -1;
1232 	  else if (code2 == PLUS_EXPR)
1233 	    /* NAME - CST1 < NAME + CST2  */
1234 	    return -1;
1235 	  else if (code2 == MINUS_EXPR)
1236 	    /* NAME - CST1 > NAME - CST2, if CST1 < CST2.  Notice that
1237 	       C1 and C2 are swapped in the call to compare_values.  */
1238 	    return compare_values_warnv (c2, c1, strict_overflow_p);
1239 	}
1240 
1241       gcc_unreachable ();
1242     }
1243 
1244   /* We cannot compare non-constants.  */
1245   if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1246     return -2;
1247 
1248   if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1249     {
1250       /* We cannot compare overflowed values, except for overflow
1251 	 infinities.  */
1252       if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1253 	{
1254 	  if (strict_overflow_p != NULL)
1255 	    *strict_overflow_p = true;
1256 	  if (is_negative_overflow_infinity (val1))
1257 	    return is_negative_overflow_infinity (val2) ? 0 : -1;
1258 	  else if (is_negative_overflow_infinity (val2))
1259 	    return 1;
1260 	  else if (is_positive_overflow_infinity (val1))
1261 	    return is_positive_overflow_infinity (val2) ? 0 : 1;
1262 	  else if (is_positive_overflow_infinity (val2))
1263 	    return -1;
1264 	  return -2;
1265 	}
1266 
1267       return tree_int_cst_compare (val1, val2);
1268     }
1269   else
1270     {
1271       tree t;
1272 
1273       /* First see if VAL1 and VAL2 are not the same.  */
1274       if (val1 == val2 || operand_equal_p (val1, val2, 0))
1275 	return 0;
1276 
1277       /* If VAL1 is a lower address than VAL2, return -1.  */
1278       if (operand_less_p (val1, val2) == 1)
1279 	return -1;
1280 
1281       /* If VAL1 is a higher address than VAL2, return +1.  */
1282       if (operand_less_p (val2, val1) == 1)
1283 	return 1;
1284 
1285       /* If VAL1 is different than VAL2, return +2.
1286 	 For integer constants we either have already returned -1 or 1
1287 	 or they are equivalent.  We still might succeed in proving
1288 	 something about non-trivial operands.  */
1289       if (TREE_CODE (val1) != INTEGER_CST
1290 	  || TREE_CODE (val2) != INTEGER_CST)
1291 	{
1292           t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1293 	  if (t && integer_onep (t))
1294 	    return 2;
1295 	}
1296 
1297       return -2;
1298     }
1299 }
1300 
1301 /* Compare values like compare_values_warnv, but treat comparisons of
1302    nonconstants which rely on undefined overflow as incomparable.  */
1303 
1304 static int
1305 compare_values (tree val1, tree val2)
1306 {
1307   bool sop;
1308   int ret;
1309 
1310   sop = false;
1311   ret = compare_values_warnv (val1, val2, &sop);
1312   if (sop
1313       && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1314     ret = -2;
1315   return ret;
1316 }
1317 
1318 
1319 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1320           0 if VAL is not inside [MIN, MAX],
1321 	 -2 if we cannot tell either way.
1322 
1323    Benchmark compile/20001226-1.c compilation time after changing this
1324    function.  */
1325 
1326 static inline int
1327 value_inside_range (tree val, tree min, tree max)
1328 {
1329   int cmp1, cmp2;
1330 
1331   cmp1 = operand_less_p (val, min);
1332   if (cmp1 == -2)
1333     return -2;
1334   if (cmp1 == 1)
1335     return 0;
1336 
1337   cmp2 = operand_less_p (max, val);
1338   if (cmp2 == -2)
1339     return -2;
1340 
1341   return !cmp2;
1342 }
1343 
1344 
1345 /* Return true if value ranges VR0 and VR1 have a non-empty
1346    intersection.
1347 
1348    Benchmark compile/20001226-1.c compilation time after changing this
1349    function.
1350    */
1351 
1352 static inline bool
1353 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1354 {
1355   /* The value ranges do not intersect if the maximum of the first range is
1356      less than the minimum of the second range or vice versa.
1357      When those relations are unknown, we can't do any better.  */
1358   if (operand_less_p (vr0->max, vr1->min) != 0)
1359     return false;
1360   if (operand_less_p (vr1->max, vr0->min) != 0)
1361     return false;
1362   return true;
1363 }
1364 
1365 
1366 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1367    include the value zero, -2 if we cannot tell.  */
1368 
1369 static inline int
1370 range_includes_zero_p (tree min, tree max)
1371 {
1372   tree zero = build_int_cst (TREE_TYPE (min), 0);
1373   return value_inside_range (zero, min, max);
1374 }
1375 
1376 /* Return true if *VR is know to only contain nonnegative values.  */
1377 
1378 static inline bool
1379 value_range_nonnegative_p (value_range_t *vr)
1380 {
1381   /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1382      which would return a useful value should be encoded as a
1383      VR_RANGE.  */
1384   if (vr->type == VR_RANGE)
1385     {
1386       int result = compare_values (vr->min, integer_zero_node);
1387       return (result == 0 || result == 1);
1388     }
1389 
1390   return false;
1391 }
1392 
1393 /* Return true if T, an SSA_NAME, is known to be nonnegative.  Return
1394    false otherwise or if no value range information is available.  */
1395 
1396 bool
1397 ssa_name_nonnegative_p (const_tree t)
1398 {
1399   value_range_t *vr = get_value_range (t);
1400 
1401   if (INTEGRAL_TYPE_P (t)
1402       && TYPE_UNSIGNED (t))
1403     return true;
1404 
1405   if (!vr)
1406     return false;
1407 
1408   return value_range_nonnegative_p (vr);
1409 }
1410 
1411 /* If *VR has a value rante that is a single constant value return that,
1412    otherwise return NULL_TREE.  */
1413 
1414 static tree
1415 value_range_constant_singleton (value_range_t *vr)
1416 {
1417   if (vr->type == VR_RANGE
1418       && operand_equal_p (vr->min, vr->max, 0)
1419       && is_gimple_min_invariant (vr->min))
1420     return vr->min;
1421 
1422   return NULL_TREE;
1423 }
1424 
1425 /* If OP has a value range with a single constant value return that,
1426    otherwise return NULL_TREE.  This returns OP itself if OP is a
1427    constant.  */
1428 
1429 static tree
1430 op_with_constant_singleton_value_range (tree op)
1431 {
1432   if (is_gimple_min_invariant (op))
1433     return op;
1434 
1435   if (TREE_CODE (op) != SSA_NAME)
1436     return NULL_TREE;
1437 
1438   return value_range_constant_singleton (get_value_range (op));
1439 }
1440 
1441 /* Return true if op is in a boolean [0, 1] value-range.  */
1442 
1443 static bool
1444 op_with_boolean_value_range_p (tree op)
1445 {
1446   value_range_t *vr;
1447 
1448   if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1449     return true;
1450 
1451   if (integer_zerop (op)
1452       || integer_onep (op))
1453     return true;
1454 
1455   if (TREE_CODE (op) != SSA_NAME)
1456     return false;
1457 
1458   vr = get_value_range (op);
1459   return (vr->type == VR_RANGE
1460 	  && integer_zerop (vr->min)
1461 	  && integer_onep (vr->max));
1462 }
1463 
1464 /* Extract value range information from an ASSERT_EXPR EXPR and store
1465    it in *VR_P.  */
1466 
1467 static void
1468 extract_range_from_assert (value_range_t *vr_p, tree expr)
1469 {
1470   tree var, cond, limit, min, max, type;
1471   value_range_t *var_vr, *limit_vr;
1472   enum tree_code cond_code;
1473 
1474   var = ASSERT_EXPR_VAR (expr);
1475   cond = ASSERT_EXPR_COND (expr);
1476 
1477   gcc_assert (COMPARISON_CLASS_P (cond));
1478 
1479   /* Find VAR in the ASSERT_EXPR conditional.  */
1480   if (var == TREE_OPERAND (cond, 0)
1481       || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1482       || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1483     {
1484       /* If the predicate is of the form VAR COMP LIMIT, then we just
1485 	 take LIMIT from the RHS and use the same comparison code.  */
1486       cond_code = TREE_CODE (cond);
1487       limit = TREE_OPERAND (cond, 1);
1488       cond = TREE_OPERAND (cond, 0);
1489     }
1490   else
1491     {
1492       /* If the predicate is of the form LIMIT COMP VAR, then we need
1493 	 to flip around the comparison code to create the proper range
1494 	 for VAR.  */
1495       cond_code = swap_tree_comparison (TREE_CODE (cond));
1496       limit = TREE_OPERAND (cond, 0);
1497       cond = TREE_OPERAND (cond, 1);
1498     }
1499 
1500   limit = avoid_overflow_infinity (limit);
1501 
1502   type = TREE_TYPE (var);
1503   gcc_assert (limit != var);
1504 
1505   /* For pointer arithmetic, we only keep track of pointer equality
1506      and inequality.  */
1507   if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1508     {
1509       set_value_range_to_varying (vr_p);
1510       return;
1511     }
1512 
1513   /* If LIMIT is another SSA name and LIMIT has a range of its own,
1514      try to use LIMIT's range to avoid creating symbolic ranges
1515      unnecessarily. */
1516   limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1517 
1518   /* LIMIT's range is only interesting if it has any useful information.  */
1519   if (limit_vr
1520       && (limit_vr->type == VR_UNDEFINED
1521 	  || limit_vr->type == VR_VARYING
1522 	  || symbolic_range_p (limit_vr)))
1523     limit_vr = NULL;
1524 
1525   /* Initially, the new range has the same set of equivalences of
1526      VAR's range.  This will be revised before returning the final
1527      value.  Since assertions may be chained via mutually exclusive
1528      predicates, we will need to trim the set of equivalences before
1529      we are done.  */
1530   gcc_assert (vr_p->equiv == NULL);
1531   add_equivalence (&vr_p->equiv, var);
1532 
1533   /* Extract a new range based on the asserted comparison for VAR and
1534      LIMIT's value range.  Notice that if LIMIT has an anti-range, we
1535      will only use it for equality comparisons (EQ_EXPR).  For any
1536      other kind of assertion, we cannot derive a range from LIMIT's
1537      anti-range that can be used to describe the new range.  For
1538      instance, ASSERT_EXPR <x_2, x_2 <= b_4>.  If b_4 is ~[2, 10],
1539      then b_4 takes on the ranges [-INF, 1] and [11, +INF].  There is
1540      no single range for x_2 that could describe LE_EXPR, so we might
1541      as well build the range [b_4, +INF] for it.
1542      One special case we handle is extracting a range from a
1543      range test encoded as (unsigned)var + CST <= limit.  */
1544   if (TREE_CODE (cond) == NOP_EXPR
1545       || TREE_CODE (cond) == PLUS_EXPR)
1546     {
1547       if (TREE_CODE (cond) == PLUS_EXPR)
1548         {
1549           min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1550 			     TREE_OPERAND (cond, 1));
1551           max = int_const_binop (PLUS_EXPR, limit, min);
1552 	  cond = TREE_OPERAND (cond, 0);
1553 	}
1554       else
1555 	{
1556 	  min = build_int_cst (TREE_TYPE (var), 0);
1557 	  max = limit;
1558 	}
1559 
1560       /* Make sure to not set TREE_OVERFLOW on the final type
1561 	 conversion.  We are willingly interpreting large positive
1562 	 unsigned values as negative singed values here.  */
1563       min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1564 				   0, false);
1565       max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1566 				   0, false);
1567 
1568       /* We can transform a max, min range to an anti-range or
1569          vice-versa.  Use set_and_canonicalize_value_range which does
1570 	 this for us.  */
1571       if (cond_code == LE_EXPR)
1572         set_and_canonicalize_value_range (vr_p, VR_RANGE,
1573 					  min, max, vr_p->equiv);
1574       else if (cond_code == GT_EXPR)
1575         set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1576 					  min, max, vr_p->equiv);
1577       else
1578 	gcc_unreachable ();
1579     }
1580   else if (cond_code == EQ_EXPR)
1581     {
1582       enum value_range_type range_type;
1583 
1584       if (limit_vr)
1585 	{
1586 	  range_type = limit_vr->type;
1587 	  min = limit_vr->min;
1588 	  max = limit_vr->max;
1589 	}
1590       else
1591 	{
1592 	  range_type = VR_RANGE;
1593 	  min = limit;
1594 	  max = limit;
1595 	}
1596 
1597       set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1598 
1599       /* When asserting the equality VAR == LIMIT and LIMIT is another
1600 	 SSA name, the new range will also inherit the equivalence set
1601 	 from LIMIT.  */
1602       if (TREE_CODE (limit) == SSA_NAME)
1603 	add_equivalence (&vr_p->equiv, limit);
1604     }
1605   else if (cond_code == NE_EXPR)
1606     {
1607       /* As described above, when LIMIT's range is an anti-range and
1608 	 this assertion is an inequality (NE_EXPR), then we cannot
1609 	 derive anything from the anti-range.  For instance, if
1610 	 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1611 	 not imply that VAR's range is [0, 0].  So, in the case of
1612 	 anti-ranges, we just assert the inequality using LIMIT and
1613 	 not its anti-range.
1614 
1615 	 If LIMIT_VR is a range, we can only use it to build a new
1616 	 anti-range if LIMIT_VR is a single-valued range.  For
1617 	 instance, if LIMIT_VR is [0, 1], the predicate
1618 	 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1619 	 Rather, it means that for value 0 VAR should be ~[0, 0]
1620 	 and for value 1, VAR should be ~[1, 1].  We cannot
1621 	 represent these ranges.
1622 
1623 	 The only situation in which we can build a valid
1624 	 anti-range is when LIMIT_VR is a single-valued range
1625 	 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX).  In that case,
1626 	 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX].  */
1627       if (limit_vr
1628 	  && limit_vr->type == VR_RANGE
1629 	  && compare_values (limit_vr->min, limit_vr->max) == 0)
1630 	{
1631 	  min = limit_vr->min;
1632 	  max = limit_vr->max;
1633 	}
1634       else
1635 	{
1636 	  /* In any other case, we cannot use LIMIT's range to build a
1637 	     valid anti-range.  */
1638 	  min = max = limit;
1639 	}
1640 
1641       /* If MIN and MAX cover the whole range for their type, then
1642 	 just use the original LIMIT.  */
1643       if (INTEGRAL_TYPE_P (type)
1644 	  && vrp_val_is_min (min)
1645 	  && vrp_val_is_max (max))
1646 	min = max = limit;
1647 
1648       set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1649     }
1650   else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1651     {
1652       min = TYPE_MIN_VALUE (type);
1653 
1654       if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1655 	max = limit;
1656       else
1657 	{
1658 	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1659 	     range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1660 	     LT_EXPR.  */
1661 	  max = limit_vr->max;
1662 	}
1663 
1664       /* If the maximum value forces us to be out of bounds, simply punt.
1665 	 It would be pointless to try and do anything more since this
1666 	 all should be optimized away above us.  */
1667       if ((cond_code == LT_EXPR
1668 	   && compare_values (max, min) == 0)
1669 	  || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1670 	set_value_range_to_varying (vr_p);
1671       else
1672 	{
1673 	  /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
1674 	  if (cond_code == LT_EXPR)
1675 	    {
1676 	      if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1677 		  && !TYPE_UNSIGNED (TREE_TYPE (max)))
1678 		max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1679 				   build_int_cst (TREE_TYPE (max), -1));
1680 	      else
1681 		max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1682 				   build_int_cst (TREE_TYPE (max), 1));
1683 	      if (EXPR_P (max))
1684 		TREE_NO_WARNING (max) = 1;
1685 	    }
1686 
1687 	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1688 	}
1689     }
1690   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1691     {
1692       max = TYPE_MAX_VALUE (type);
1693 
1694       if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1695 	min = limit;
1696       else
1697 	{
1698 	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
1699 	     range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1700 	     GT_EXPR.  */
1701 	  min = limit_vr->min;
1702 	}
1703 
1704       /* If the minimum value forces us to be out of bounds, simply punt.
1705 	 It would be pointless to try and do anything more since this
1706 	 all should be optimized away above us.  */
1707       if ((cond_code == GT_EXPR
1708 	   && compare_values (min, max) == 0)
1709 	  || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1710 	set_value_range_to_varying (vr_p);
1711       else
1712 	{
1713 	  /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
1714 	  if (cond_code == GT_EXPR)
1715 	    {
1716 	      if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1717 		  && !TYPE_UNSIGNED (TREE_TYPE (min)))
1718 		min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1719 				   build_int_cst (TREE_TYPE (min), -1));
1720 	      else
1721 		min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1722 				   build_int_cst (TREE_TYPE (min), 1));
1723 	      if (EXPR_P (min))
1724 		TREE_NO_WARNING (min) = 1;
1725 	    }
1726 
1727 	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1728 	}
1729     }
1730   else
1731     gcc_unreachable ();
1732 
1733   /* If VAR already had a known range, it may happen that the new
1734      range we have computed and VAR's range are not compatible.  For
1735      instance,
1736 
1737 	if (p_5 == NULL)
1738 	  p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1739 	  x_7 = p_6->fld;
1740 	  p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1741 
1742      While the above comes from a faulty program, it will cause an ICE
1743      later because p_8 and p_6 will have incompatible ranges and at
1744      the same time will be considered equivalent.  A similar situation
1745      would arise from
1746 
1747      	if (i_5 > 10)
1748 	  i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1749 	  if (i_5 < 5)
1750 	    i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1751 
1752      Again i_6 and i_7 will have incompatible ranges.  It would be
1753      pointless to try and do anything with i_7's range because
1754      anything dominated by 'if (i_5 < 5)' will be optimized away.
1755      Note, due to the wa in which simulation proceeds, the statement
1756      i_7 = ASSERT_EXPR <...> we would never be visited because the
1757      conditional 'if (i_5 < 5)' always evaluates to false.  However,
1758      this extra check does not hurt and may protect against future
1759      changes to VRP that may get into a situation similar to the
1760      NULL pointer dereference example.
1761 
1762      Note that these compatibility tests are only needed when dealing
1763      with ranges or a mix of range and anti-range.  If VAR_VR and VR_P
1764      are both anti-ranges, they will always be compatible, because two
1765      anti-ranges will always have a non-empty intersection.  */
1766 
1767   var_vr = get_value_range (var);
1768 
1769   /* We may need to make adjustments when VR_P and VAR_VR are numeric
1770      ranges or anti-ranges.  */
1771   if (vr_p->type == VR_VARYING
1772       || vr_p->type == VR_UNDEFINED
1773       || var_vr->type == VR_VARYING
1774       || var_vr->type == VR_UNDEFINED
1775       || symbolic_range_p (vr_p)
1776       || symbolic_range_p (var_vr))
1777     return;
1778 
1779   if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1780     {
1781       /* If the two ranges have a non-empty intersection, we can
1782 	 refine the resulting range.  Since the assert expression
1783 	 creates an equivalency and at the same time it asserts a
1784 	 predicate, we can take the intersection of the two ranges to
1785 	 get better precision.  */
1786       if (value_ranges_intersect_p (var_vr, vr_p))
1787 	{
1788 	  /* Use the larger of the two minimums.  */
1789 	  if (compare_values (vr_p->min, var_vr->min) == -1)
1790 	    min = var_vr->min;
1791 	  else
1792 	    min = vr_p->min;
1793 
1794 	  /* Use the smaller of the two maximums.  */
1795 	  if (compare_values (vr_p->max, var_vr->max) == 1)
1796 	    max = var_vr->max;
1797 	  else
1798 	    max = vr_p->max;
1799 
1800 	  set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1801 	}
1802       else
1803 	{
1804 	  /* The two ranges do not intersect, set the new range to
1805 	     VARYING, because we will not be able to do anything
1806 	     meaningful with it.  */
1807 	  set_value_range_to_varying (vr_p);
1808 	}
1809     }
1810   else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1811            || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1812     {
1813       /* A range and an anti-range will cancel each other only if
1814 	 their ends are the same.  For instance, in the example above,
1815 	 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1816 	 so VR_P should be set to VR_VARYING.  */
1817       if (compare_values (var_vr->min, vr_p->min) == 0
1818 	  && compare_values (var_vr->max, vr_p->max) == 0)
1819 	set_value_range_to_varying (vr_p);
1820       else
1821 	{
1822 	  tree min, max, anti_min, anti_max, real_min, real_max;
1823 	  int cmp;
1824 
1825 	  /* We want to compute the logical AND of the two ranges;
1826 	     there are three cases to consider.
1827 
1828 
1829 	     1. The VR_ANTI_RANGE range is completely within the
1830 		VR_RANGE and the endpoints of the ranges are
1831 		different.  In that case the resulting range
1832 		should be whichever range is more precise.
1833 		Typically that will be the VR_RANGE.
1834 
1835 	     2. The VR_ANTI_RANGE is completely disjoint from
1836 		the VR_RANGE.  In this case the resulting range
1837 		should be the VR_RANGE.
1838 
1839 	     3. There is some overlap between the VR_ANTI_RANGE
1840 		and the VR_RANGE.
1841 
1842 		3a. If the high limit of the VR_ANTI_RANGE resides
1843 		    within the VR_RANGE, then the result is a new
1844 		    VR_RANGE starting at the high limit of the
1845 		    VR_ANTI_RANGE + 1 and extending to the
1846 		    high limit of the original VR_RANGE.
1847 
1848 		3b. If the low limit of the VR_ANTI_RANGE resides
1849 		    within the VR_RANGE, then the result is a new
1850 		    VR_RANGE starting at the low limit of the original
1851 		    VR_RANGE and extending to the low limit of the
1852 		    VR_ANTI_RANGE - 1.  */
1853 	  if (vr_p->type == VR_ANTI_RANGE)
1854 	    {
1855 	      anti_min = vr_p->min;
1856 	      anti_max = vr_p->max;
1857 	      real_min = var_vr->min;
1858 	      real_max = var_vr->max;
1859 	    }
1860 	  else
1861 	    {
1862 	      anti_min = var_vr->min;
1863 	      anti_max = var_vr->max;
1864 	      real_min = vr_p->min;
1865 	      real_max = vr_p->max;
1866 	    }
1867 
1868 
1869 	  /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1870 	     not including any endpoints.  */
1871 	  if (compare_values (anti_max, real_max) == -1
1872 	      && compare_values (anti_min, real_min) == 1)
1873 	    {
1874 	      /* If the range is covering the whole valid range of
1875 		 the type keep the anti-range.  */
1876 	      if (!vrp_val_is_min (real_min)
1877 		  || !vrp_val_is_max (real_max))
1878 	        set_value_range (vr_p, VR_RANGE, real_min,
1879 				 real_max, vr_p->equiv);
1880 	    }
1881 	  /* Case 2, VR_ANTI_RANGE completely disjoint from
1882 	     VR_RANGE.  */
1883 	  else if (compare_values (anti_min, real_max) == 1
1884 		   || compare_values (anti_max, real_min) == -1)
1885 	    {
1886 	      set_value_range (vr_p, VR_RANGE, real_min,
1887 			       real_max, vr_p->equiv);
1888 	    }
1889 	  /* Case 3a, the anti-range extends into the low
1890 	     part of the real range.  Thus creating a new
1891 	     low for the real range.  */
1892 	  else if (((cmp = compare_values (anti_max, real_min)) == 1
1893 		    || cmp == 0)
1894 		   && compare_values (anti_max, real_max) == -1)
1895 	    {
1896 	      gcc_assert (!is_positive_overflow_infinity (anti_max));
1897 	      if (needs_overflow_infinity (TREE_TYPE (anti_max))
1898 		  && vrp_val_is_max (anti_max))
1899 		{
1900 		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1901 		    {
1902 		      set_value_range_to_varying (vr_p);
1903 		      return;
1904 		    }
1905 		  min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1906 		}
1907 	      else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1908 		{
1909 		  if (TYPE_PRECISION (TREE_TYPE (var_vr->min)) == 1
1910 		      && !TYPE_UNSIGNED (TREE_TYPE (var_vr->min)))
1911 		    min = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1912 				       anti_max,
1913 				       build_int_cst (TREE_TYPE (var_vr->min),
1914 						      -1));
1915 		  else
1916 		    min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1917 				       anti_max,
1918 				       build_int_cst (TREE_TYPE (var_vr->min),
1919 						      1));
1920 		}
1921 	      else
1922 		min = fold_build_pointer_plus_hwi (anti_max, 1);
1923 	      max = real_max;
1924 	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1925 	    }
1926 	  /* Case 3b, the anti-range extends into the high
1927 	     part of the real range.  Thus creating a new
1928 	     higher for the real range.  */
1929 	  else if (compare_values (anti_min, real_min) == 1
1930 		   && ((cmp = compare_values (anti_min, real_max)) == -1
1931 		       || cmp == 0))
1932 	    {
1933 	      gcc_assert (!is_negative_overflow_infinity (anti_min));
1934 	      if (needs_overflow_infinity (TREE_TYPE (anti_min))
1935 		  && vrp_val_is_min (anti_min))
1936 		{
1937 		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1938 		    {
1939 		      set_value_range_to_varying (vr_p);
1940 		      return;
1941 		    }
1942 		  max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1943 		}
1944 	      else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1945 		{
1946 		  if (TYPE_PRECISION (TREE_TYPE (var_vr->min)) == 1
1947 		      && !TYPE_UNSIGNED (TREE_TYPE (var_vr->min)))
1948 		    max = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1949 				       anti_min,
1950 				       build_int_cst (TREE_TYPE (var_vr->min),
1951 						      -1));
1952 		  else
1953 		    max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1954 				       anti_min,
1955 				       build_int_cst (TREE_TYPE (var_vr->min),
1956 						      1));
1957 		}
1958 	      else
1959 		max = fold_build_pointer_plus_hwi (anti_min, -1);
1960 	      min = real_min;
1961 	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1962 	    }
1963 	}
1964     }
1965 }
1966 
1967 
1968 /* Extract range information from SSA name VAR and store it in VR.  If
1969    VAR has an interesting range, use it.  Otherwise, create the
1970    range [VAR, VAR] and return it.  This is useful in situations where
1971    we may have conditionals testing values of VARYING names.  For
1972    instance,
1973 
1974    	x_3 = y_5;
1975 	if (x_3 > y_5)
1976 	  ...
1977 
1978     Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1979     always false.  */
1980 
1981 static void
1982 extract_range_from_ssa_name (value_range_t *vr, tree var)
1983 {
1984   value_range_t *var_vr = get_value_range (var);
1985 
1986   if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1987     copy_value_range (vr, var_vr);
1988   else
1989     set_value_range (vr, VR_RANGE, var, var, NULL);
1990 
1991   add_equivalence (&vr->equiv, var);
1992 }
1993 
1994 
1995 /* Wrapper around int_const_binop.  If the operation overflows and we
1996    are not using wrapping arithmetic, then adjust the result to be
1997    -INF or +INF depending on CODE, VAL1 and VAL2.  This can return
1998    NULL_TREE if we need to use an overflow infinity representation but
1999    the type does not support it.  */
2000 
2001 static tree
2002 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
2003 {
2004   tree res;
2005 
2006   res = int_const_binop (code, val1, val2);
2007 
2008   /* If we are using unsigned arithmetic, operate symbolically
2009      on -INF and +INF as int_const_binop only handles signed overflow.  */
2010   if (TYPE_UNSIGNED (TREE_TYPE (val1)))
2011     {
2012       int checkz = compare_values (res, val1);
2013       bool overflow = false;
2014 
2015       /* Ensure that res = val1 [+*] val2 >= val1
2016          or that res = val1 - val2 <= val1.  */
2017       if ((code == PLUS_EXPR
2018 	   && !(checkz == 1 || checkz == 0))
2019           || (code == MINUS_EXPR
2020 	      && !(checkz == 0 || checkz == -1)))
2021 	{
2022 	  overflow = true;
2023 	}
2024       /* Checking for multiplication overflow is done by dividing the
2025 	 output of the multiplication by the first input of the
2026 	 multiplication.  If the result of that division operation is
2027 	 not equal to the second input of the multiplication, then the
2028 	 multiplication overflowed.  */
2029       else if (code == MULT_EXPR && !integer_zerop (val1))
2030 	{
2031 	  tree tmp = int_const_binop (TRUNC_DIV_EXPR,
2032 				      res,
2033 				      val1);
2034 	  int check = compare_values (tmp, val2);
2035 
2036 	  if (check != 0)
2037 	    overflow = true;
2038 	}
2039 
2040       if (overflow)
2041 	{
2042 	  res = copy_node (res);
2043 	  TREE_OVERFLOW (res) = 1;
2044 	}
2045 
2046     }
2047   else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2048     /* If the singed operation wraps then int_const_binop has done
2049        everything we want.  */
2050     ;
2051   else if ((TREE_OVERFLOW (res)
2052 	    && !TREE_OVERFLOW (val1)
2053 	    && !TREE_OVERFLOW (val2))
2054 	   || is_overflow_infinity (val1)
2055 	   || is_overflow_infinity (val2))
2056     {
2057       /* If the operation overflowed but neither VAL1 nor VAL2 are
2058 	 overflown, return -INF or +INF depending on the operation
2059 	 and the combination of signs of the operands.  */
2060       int sgn1 = tree_int_cst_sgn (val1);
2061       int sgn2 = tree_int_cst_sgn (val2);
2062 
2063       if (needs_overflow_infinity (TREE_TYPE (res))
2064 	  && !supports_overflow_infinity (TREE_TYPE (res)))
2065 	return NULL_TREE;
2066 
2067       /* We have to punt on adding infinities of different signs,
2068 	 since we can't tell what the sign of the result should be.
2069 	 Likewise for subtracting infinities of the same sign.  */
2070       if (((code == PLUS_EXPR && sgn1 != sgn2)
2071 	   || (code == MINUS_EXPR && sgn1 == sgn2))
2072 	  && is_overflow_infinity (val1)
2073 	  && is_overflow_infinity (val2))
2074 	return NULL_TREE;
2075 
2076       /* Don't try to handle division or shifting of infinities.  */
2077       if ((code == TRUNC_DIV_EXPR
2078 	   || code == FLOOR_DIV_EXPR
2079 	   || code == CEIL_DIV_EXPR
2080 	   || code == EXACT_DIV_EXPR
2081 	   || code == ROUND_DIV_EXPR
2082 	   || code == RSHIFT_EXPR)
2083 	  && (is_overflow_infinity (val1)
2084 	      || is_overflow_infinity (val2)))
2085 	return NULL_TREE;
2086 
2087       /* Notice that we only need to handle the restricted set of
2088 	 operations handled by extract_range_from_binary_expr.
2089 	 Among them, only multiplication, addition and subtraction
2090 	 can yield overflow without overflown operands because we
2091 	 are working with integral types only... except in the
2092 	 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2093 	 for division too.  */
2094 
2095       /* For multiplication, the sign of the overflow is given
2096 	 by the comparison of the signs of the operands.  */
2097       if ((code == MULT_EXPR && sgn1 == sgn2)
2098           /* For addition, the operands must be of the same sign
2099 	     to yield an overflow.  Its sign is therefore that
2100 	     of one of the operands, for example the first.  For
2101 	     infinite operands X + -INF is negative, not positive.  */
2102 	  || (code == PLUS_EXPR
2103 	      && (sgn1 >= 0
2104 		  ? !is_negative_overflow_infinity (val2)
2105 		  : is_positive_overflow_infinity (val2)))
2106 	  /* For subtraction, non-infinite operands must be of
2107 	     different signs to yield an overflow.  Its sign is
2108 	     therefore that of the first operand or the opposite of
2109 	     that of the second operand.  A first operand of 0 counts
2110 	     as positive here, for the corner case 0 - (-INF), which
2111 	     overflows, but must yield +INF.  For infinite operands 0
2112 	     - INF is negative, not positive.  */
2113 	  || (code == MINUS_EXPR
2114 	      && (sgn1 >= 0
2115 		  ? !is_positive_overflow_infinity (val2)
2116 		  : is_negative_overflow_infinity (val2)))
2117 	  /* We only get in here with positive shift count, so the
2118 	     overflow direction is the same as the sign of val1.
2119 	     Actually rshift does not overflow at all, but we only
2120 	     handle the case of shifting overflowed -INF and +INF.  */
2121 	  || (code == RSHIFT_EXPR
2122 	      && sgn1 >= 0)
2123 	  /* For division, the only case is -INF / -1 = +INF.  */
2124 	  || code == TRUNC_DIV_EXPR
2125 	  || code == FLOOR_DIV_EXPR
2126 	  || code == CEIL_DIV_EXPR
2127 	  || code == EXACT_DIV_EXPR
2128 	  || code == ROUND_DIV_EXPR)
2129 	return (needs_overflow_infinity (TREE_TYPE (res))
2130 		? positive_overflow_infinity (TREE_TYPE (res))
2131 		: TYPE_MAX_VALUE (TREE_TYPE (res)));
2132       else
2133 	return (needs_overflow_infinity (TREE_TYPE (res))
2134 		? negative_overflow_infinity (TREE_TYPE (res))
2135 		: TYPE_MIN_VALUE (TREE_TYPE (res)));
2136     }
2137 
2138   return res;
2139 }
2140 
2141 
2142 /* For range VR compute two double_int bitmasks.  In *MAY_BE_NONZERO
2143    bitmask if some bit is unset, it means for all numbers in the range
2144    the bit is 0, otherwise it might be 0 or 1.  In *MUST_BE_NONZERO
2145    bitmask if some bit is set, it means for all numbers in the range
2146    the bit is 1, otherwise it might be 0 or 1.  */
2147 
2148 static bool
2149 zero_nonzero_bits_from_vr (value_range_t *vr,
2150 			   double_int *may_be_nonzero,
2151 			   double_int *must_be_nonzero)
2152 {
2153   *may_be_nonzero = double_int_minus_one;
2154   *must_be_nonzero = double_int_zero;
2155   if (!range_int_cst_p (vr))
2156     return false;
2157 
2158   if (range_int_cst_singleton_p (vr))
2159     {
2160       *may_be_nonzero = tree_to_double_int (vr->min);
2161       *must_be_nonzero = *may_be_nonzero;
2162     }
2163   else if (tree_int_cst_sgn (vr->min) >= 0
2164 	   || tree_int_cst_sgn (vr->max) < 0)
2165     {
2166       double_int dmin = tree_to_double_int (vr->min);
2167       double_int dmax = tree_to_double_int (vr->max);
2168       double_int xor_mask = double_int_xor (dmin, dmax);
2169       *may_be_nonzero = double_int_ior (dmin, dmax);
2170       *must_be_nonzero = double_int_and (dmin, dmax);
2171       if (xor_mask.high != 0)
2172 	{
2173 	  unsigned HOST_WIDE_INT mask
2174 	      = ((unsigned HOST_WIDE_INT) 1
2175 		 << floor_log2 (xor_mask.high)) - 1;
2176 	  may_be_nonzero->low = ALL_ONES;
2177 	  may_be_nonzero->high |= mask;
2178 	  must_be_nonzero->low = 0;
2179 	  must_be_nonzero->high &= ~mask;
2180 	}
2181       else if (xor_mask.low != 0)
2182 	{
2183 	  unsigned HOST_WIDE_INT mask
2184 	      = ((unsigned HOST_WIDE_INT) 1
2185 		 << floor_log2 (xor_mask.low)) - 1;
2186 	  may_be_nonzero->low |= mask;
2187 	  must_be_nonzero->low &= ~mask;
2188 	}
2189     }
2190 
2191   return true;
2192 }
2193 
2194 /* Helper to extract a value-range *VR for a multiplicative operation
2195    *VR0 CODE *VR1.  */
2196 
2197 static void
2198 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2199 					enum tree_code code,
2200 					value_range_t *vr0, value_range_t *vr1)
2201 {
2202   enum value_range_type type;
2203   tree val[4];
2204   size_t i;
2205   tree min, max;
2206   bool sop;
2207   int cmp;
2208 
2209   /* Multiplications, divisions and shifts are a bit tricky to handle,
2210      depending on the mix of signs we have in the two ranges, we
2211      need to operate on different values to get the minimum and
2212      maximum values for the new range.  One approach is to figure
2213      out all the variations of range combinations and do the
2214      operations.
2215 
2216      However, this involves several calls to compare_values and it
2217      is pretty convoluted.  It's simpler to do the 4 operations
2218      (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2219      MAX1) and then figure the smallest and largest values to form
2220      the new range.  */
2221   gcc_assert (code == MULT_EXPR
2222 	      || code == TRUNC_DIV_EXPR
2223 	      || code == FLOOR_DIV_EXPR
2224 	      || code == CEIL_DIV_EXPR
2225 	      || code == EXACT_DIV_EXPR
2226 	      || code == ROUND_DIV_EXPR
2227 	      || code == RSHIFT_EXPR);
2228   gcc_assert ((vr0->type == VR_RANGE
2229 	       || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2230 	      && vr0->type == vr1->type);
2231 
2232   type = vr0->type;
2233 
2234   /* Compute the 4 cross operations.  */
2235   sop = false;
2236   val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2237   if (val[0] == NULL_TREE)
2238     sop = true;
2239 
2240   if (vr1->max == vr1->min)
2241     val[1] = NULL_TREE;
2242   else
2243     {
2244       val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2245       if (val[1] == NULL_TREE)
2246 	sop = true;
2247     }
2248 
2249   if (vr0->max == vr0->min)
2250     val[2] = NULL_TREE;
2251   else
2252     {
2253       val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2254       if (val[2] == NULL_TREE)
2255 	sop = true;
2256     }
2257 
2258   if (vr0->min == vr0->max || vr1->min == vr1->max)
2259     val[3] = NULL_TREE;
2260   else
2261     {
2262       val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2263       if (val[3] == NULL_TREE)
2264 	sop = true;
2265     }
2266 
2267   if (sop)
2268     {
2269       set_value_range_to_varying (vr);
2270       return;
2271     }
2272 
2273   /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2274      of VAL[i].  */
2275   min = val[0];
2276   max = val[0];
2277   for (i = 1; i < 4; i++)
2278     {
2279       if (!is_gimple_min_invariant (min)
2280 	  || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2281 	  || !is_gimple_min_invariant (max)
2282 	  || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2283 	break;
2284 
2285       if (val[i])
2286 	{
2287 	  if (!is_gimple_min_invariant (val[i])
2288 	      || (TREE_OVERFLOW (val[i])
2289 		  && !is_overflow_infinity (val[i])))
2290 	    {
2291 	      /* If we found an overflowed value, set MIN and MAX
2292 		 to it so that we set the resulting range to
2293 		 VARYING.  */
2294 	      min = max = val[i];
2295 	      break;
2296 	    }
2297 
2298 	  if (compare_values (val[i], min) == -1)
2299 	    min = val[i];
2300 
2301 	  if (compare_values (val[i], max) == 1)
2302 	    max = val[i];
2303 	}
2304     }
2305 
2306   /* If either MIN or MAX overflowed, then set the resulting range to
2307      VARYING.  But we do accept an overflow infinity
2308      representation.  */
2309   if (min == NULL_TREE
2310       || !is_gimple_min_invariant (min)
2311       || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2312       || max == NULL_TREE
2313       || !is_gimple_min_invariant (max)
2314       || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2315     {
2316       set_value_range_to_varying (vr);
2317       return;
2318     }
2319 
2320   /* We punt if:
2321      1) [-INF, +INF]
2322      2) [-INF, +-INF(OVF)]
2323      3) [+-INF(OVF), +INF]
2324      4) [+-INF(OVF), +-INF(OVF)]
2325      We learn nothing when we have INF and INF(OVF) on both sides.
2326      Note that we do accept [-INF, -INF] and [+INF, +INF] without
2327      overflow.  */
2328   if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2329       && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2330     {
2331       set_value_range_to_varying (vr);
2332       return;
2333     }
2334 
2335   cmp = compare_values (min, max);
2336   if (cmp == -2 || cmp == 1)
2337     {
2338       /* If the new range has its limits swapped around (MIN > MAX),
2339 	 then the operation caused one of them to wrap around, mark
2340 	 the new range VARYING.  */
2341       set_value_range_to_varying (vr);
2342     }
2343   else
2344     set_value_range (vr, type, min, max, NULL);
2345 }
2346 
2347 /* Extract range information from a binary operation CODE based on
2348    the ranges of each of its operands, *VR0 and *VR1 with resulting
2349    type EXPR_TYPE.  The resulting range is stored in *VR.  */
2350 
2351 static void
2352 extract_range_from_binary_expr_1 (value_range_t *vr,
2353 				  enum tree_code code, tree expr_type,
2354 				  value_range_t *vr0_, value_range_t *vr1_)
2355 {
2356   value_range_t vr0 = *vr0_, vr1 = *vr1_;
2357   enum value_range_type type;
2358   tree min = NULL_TREE, max = NULL_TREE;
2359   int cmp;
2360 
2361   if (!INTEGRAL_TYPE_P (expr_type)
2362       && !POINTER_TYPE_P (expr_type))
2363     {
2364       set_value_range_to_varying (vr);
2365       return;
2366     }
2367 
2368   /* Not all binary expressions can be applied to ranges in a
2369      meaningful way.  Handle only arithmetic operations.  */
2370   if (code != PLUS_EXPR
2371       && code != MINUS_EXPR
2372       && code != POINTER_PLUS_EXPR
2373       && code != MULT_EXPR
2374       && code != TRUNC_DIV_EXPR
2375       && code != FLOOR_DIV_EXPR
2376       && code != CEIL_DIV_EXPR
2377       && code != EXACT_DIV_EXPR
2378       && code != ROUND_DIV_EXPR
2379       && code != TRUNC_MOD_EXPR
2380       && code != RSHIFT_EXPR
2381       && code != MIN_EXPR
2382       && code != MAX_EXPR
2383       && code != BIT_AND_EXPR
2384       && code != BIT_IOR_EXPR
2385       && code != BIT_XOR_EXPR)
2386     {
2387       set_value_range_to_varying (vr);
2388       return;
2389     }
2390 
2391   /* If both ranges are UNDEFINED, so is the result.  */
2392   if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2393     {
2394       set_value_range_to_undefined (vr);
2395       return;
2396     }
2397   /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2398      code.  At some point we may want to special-case operations that
2399      have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2400      operand.  */
2401   else if (vr0.type == VR_UNDEFINED)
2402     set_value_range_to_varying (&vr0);
2403   else if (vr1.type == VR_UNDEFINED)
2404     set_value_range_to_varying (&vr1);
2405 
2406   /* The type of the resulting value range defaults to VR0.TYPE.  */
2407   type = vr0.type;
2408 
2409   /* Refuse to operate on VARYING ranges, ranges of different kinds
2410      and symbolic ranges.  As an exception, we allow BIT_AND_EXPR
2411      because we may be able to derive a useful range even if one of
2412      the operands is VR_VARYING or symbolic range.  Similarly for
2413      divisions.  TODO, we may be able to derive anti-ranges in
2414      some cases.  */
2415   if (code != BIT_AND_EXPR
2416       && code != BIT_IOR_EXPR
2417       && code != TRUNC_DIV_EXPR
2418       && code != FLOOR_DIV_EXPR
2419       && code != CEIL_DIV_EXPR
2420       && code != EXACT_DIV_EXPR
2421       && code != ROUND_DIV_EXPR
2422       && code != TRUNC_MOD_EXPR
2423       && (vr0.type == VR_VARYING
2424 	  || vr1.type == VR_VARYING
2425 	  || vr0.type != vr1.type
2426 	  || symbolic_range_p (&vr0)
2427 	  || symbolic_range_p (&vr1)))
2428     {
2429       set_value_range_to_varying (vr);
2430       return;
2431     }
2432 
2433   /* Now evaluate the expression to determine the new range.  */
2434   if (POINTER_TYPE_P (expr_type))
2435     {
2436       if (code == MIN_EXPR || code == MAX_EXPR)
2437 	{
2438 	  /* For MIN/MAX expressions with pointers, we only care about
2439 	     nullness, if both are non null, then the result is nonnull.
2440 	     If both are null, then the result is null. Otherwise they
2441 	     are varying.  */
2442 	  if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2443 	    set_value_range_to_nonnull (vr, expr_type);
2444 	  else if (range_is_null (&vr0) && range_is_null (&vr1))
2445 	    set_value_range_to_null (vr, expr_type);
2446 	  else
2447 	    set_value_range_to_varying (vr);
2448 	}
2449       else if (code == POINTER_PLUS_EXPR)
2450 	{
2451 	  /* For pointer types, we are really only interested in asserting
2452 	     whether the expression evaluates to non-NULL.  */
2453 	  if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2454 	    set_value_range_to_nonnull (vr, expr_type);
2455 	  else if (range_is_null (&vr0) && range_is_null (&vr1))
2456 	    set_value_range_to_null (vr, expr_type);
2457 	  else
2458 	    set_value_range_to_varying (vr);
2459 	}
2460       else if (code == BIT_AND_EXPR)
2461 	{
2462 	  /* For pointer types, we are really only interested in asserting
2463 	     whether the expression evaluates to non-NULL.  */
2464 	  if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2465 	    set_value_range_to_nonnull (vr, expr_type);
2466 	  else if (range_is_null (&vr0) || range_is_null (&vr1))
2467 	    set_value_range_to_null (vr, expr_type);
2468 	  else
2469 	    set_value_range_to_varying (vr);
2470 	}
2471       else
2472 	set_value_range_to_varying (vr);
2473 
2474       return;
2475     }
2476 
2477   /* For integer ranges, apply the operation to each end of the
2478      range and see what we end up with.  */
2479   if (code == PLUS_EXPR)
2480     {
2481       /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2482 	 VR_VARYING.  It would take more effort to compute a precise
2483 	 range for such a case.  For example, if we have op0 == 1 and
2484 	 op1 == -1 with their ranges both being ~[0,0], we would have
2485 	 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2486 	 Note that we are guaranteed to have vr0.type == vr1.type at
2487 	 this point.  */
2488       if (vr0.type == VR_ANTI_RANGE)
2489 	{
2490 	  set_value_range_to_varying (vr);
2491 	  return;
2492 	}
2493 
2494       /* For operations that make the resulting range directly
2495 	 proportional to the original ranges, apply the operation to
2496 	 the same end of each range.  */
2497       min = vrp_int_const_binop (code, vr0.min, vr1.min);
2498       max = vrp_int_const_binop (code, vr0.max, vr1.max);
2499 
2500       /* If both additions overflowed the range kind is still correct.
2501 	 This happens regularly with subtracting something in unsigned
2502 	 arithmetic.
2503          ???  See PR30318 for all the cases we do not handle.  */
2504       if ((TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2505 	  && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2506 	{
2507 	  min = build_int_cst_wide (TREE_TYPE (min),
2508 				    TREE_INT_CST_LOW (min),
2509 				    TREE_INT_CST_HIGH (min));
2510 	  max = build_int_cst_wide (TREE_TYPE (max),
2511 				    TREE_INT_CST_LOW (max),
2512 				    TREE_INT_CST_HIGH (max));
2513 	}
2514     }
2515   else if (code == MIN_EXPR
2516 	   || code == MAX_EXPR)
2517     {
2518       if (vr0.type == VR_ANTI_RANGE)
2519 	{
2520 	  /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2521 	     the resulting VR_ANTI_RANGE is the same - intersection
2522 	     of the two ranges.  */
2523 	  min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2524 	  max = vrp_int_const_binop (MIN_EXPR, vr0.max, vr1.max);
2525 	}
2526       else
2527 	{
2528 	  /* For operations that make the resulting range directly
2529 	     proportional to the original ranges, apply the operation to
2530 	     the same end of each range.  */
2531 	  min = vrp_int_const_binop (code, vr0.min, vr1.min);
2532 	  max = vrp_int_const_binop (code, vr0.max, vr1.max);
2533 	}
2534     }
2535   else if (code == MULT_EXPR)
2536     {
2537       /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2538 	 drop to VR_VARYING.  It would take more effort to compute a
2539 	 precise range for such a case.  For example, if we have
2540 	 op0 == 65536 and op1 == 65536 with their ranges both being
2541 	 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2542 	 we cannot claim that the product is in ~[0,0].  Note that we
2543 	 are guaranteed to have vr0.type == vr1.type at this
2544 	 point.  */
2545       if (vr0.type == VR_ANTI_RANGE
2546 	  && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2547 	{
2548 	  set_value_range_to_varying (vr);
2549 	  return;
2550 	}
2551 
2552       extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2553       return;
2554     }
2555   else if (code == RSHIFT_EXPR)
2556     {
2557       /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2558 	 then drop to VR_VARYING.  Outside of this range we get undefined
2559 	 behavior from the shift operation.  We cannot even trust
2560 	 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2561 	 shifts, and the operation at the tree level may be widened.  */
2562       if (vr1.type != VR_RANGE
2563 	  || !value_range_nonnegative_p (&vr1)
2564 	  || TREE_CODE (vr1.max) != INTEGER_CST
2565 	  || compare_tree_int (vr1.max, TYPE_PRECISION (expr_type) - 1) == 1)
2566 	{
2567 	  set_value_range_to_varying (vr);
2568 	  return;
2569 	}
2570 
2571       extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2572       return;
2573     }
2574   else if (code == TRUNC_DIV_EXPR
2575 	   || code == FLOOR_DIV_EXPR
2576 	   || code == CEIL_DIV_EXPR
2577 	   || code == EXACT_DIV_EXPR
2578 	   || code == ROUND_DIV_EXPR)
2579     {
2580       if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2581 	{
2582 	  /* For division, if op1 has VR_RANGE but op0 does not, something
2583 	     can be deduced just from that range.  Say [min, max] / [4, max]
2584 	     gives [min / 4, max / 4] range.  */
2585 	  if (vr1.type == VR_RANGE
2586 	      && !symbolic_range_p (&vr1)
2587 	      && range_includes_zero_p (vr1.min, vr1.max) == 0)
2588 	    {
2589 	      vr0.type = type = VR_RANGE;
2590 	      vr0.min = vrp_val_min (expr_type);
2591 	      vr0.max = vrp_val_max (expr_type);
2592 	    }
2593 	  else
2594 	    {
2595 	      set_value_range_to_varying (vr);
2596 	      return;
2597 	    }
2598 	}
2599 
2600       /* For divisions, if flag_non_call_exceptions is true, we must
2601 	 not eliminate a division by zero.  */
2602       if (cfun->can_throw_non_call_exceptions
2603 	  && (vr1.type != VR_RANGE
2604 	      || range_includes_zero_p (vr1.min, vr1.max) != 0))
2605 	{
2606 	  set_value_range_to_varying (vr);
2607 	  return;
2608 	}
2609 
2610       /* For divisions, if op0 is VR_RANGE, we can deduce a range
2611 	 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2612 	 include 0.  */
2613       if (vr0.type == VR_RANGE
2614 	  && (vr1.type != VR_RANGE
2615 	      || range_includes_zero_p (vr1.min, vr1.max) != 0))
2616 	{
2617 	  tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2618 	  int cmp;
2619 
2620 	  min = NULL_TREE;
2621 	  max = NULL_TREE;
2622 	  if (TYPE_UNSIGNED (expr_type)
2623 	      || value_range_nonnegative_p (&vr1))
2624 	    {
2625 	      /* For unsigned division or when divisor is known
2626 		 to be non-negative, the range has to cover
2627 		 all numbers from 0 to max for positive max
2628 		 and all numbers from min to 0 for negative min.  */
2629 	      cmp = compare_values (vr0.max, zero);
2630 	      if (cmp == -1)
2631 		max = zero;
2632 	      else if (cmp == 0 || cmp == 1)
2633 		max = vr0.max;
2634 	      else
2635 		type = VR_VARYING;
2636 	      cmp = compare_values (vr0.min, zero);
2637 	      if (cmp == 1)
2638 		min = zero;
2639 	      else if (cmp == 0 || cmp == -1)
2640 		min = vr0.min;
2641 	      else
2642 		type = VR_VARYING;
2643 	    }
2644 	  else
2645 	    {
2646 	      /* Otherwise the range is -max .. max or min .. -min
2647 		 depending on which bound is bigger in absolute value,
2648 		 as the division can change the sign.  */
2649 	      abs_extent_range (vr, vr0.min, vr0.max);
2650 	      return;
2651 	    }
2652 	  if (type == VR_VARYING)
2653 	    {
2654 	      set_value_range_to_varying (vr);
2655 	      return;
2656 	    }
2657 	}
2658       else
2659 	{
2660 	  extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2661 	  return;
2662 	}
2663     }
2664   else if (code == TRUNC_MOD_EXPR)
2665     {
2666       if (vr1.type != VR_RANGE
2667 	  || range_includes_zero_p (vr1.min, vr1.max) != 0
2668 	  || vrp_val_is_min (vr1.min))
2669 	{
2670 	  set_value_range_to_varying (vr);
2671 	  return;
2672 	}
2673       type = VR_RANGE;
2674       /* Compute MAX <|vr1.min|, |vr1.max|> - 1.  */
2675       max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
2676       if (tree_int_cst_lt (max, vr1.max))
2677 	max = vr1.max;
2678       max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2679       /* If the dividend is non-negative the modulus will be
2680 	 non-negative as well.  */
2681       if (TYPE_UNSIGNED (expr_type)
2682 	  || value_range_nonnegative_p (&vr0))
2683 	min = build_int_cst (TREE_TYPE (max), 0);
2684       else
2685 	min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
2686     }
2687   else if (code == MINUS_EXPR)
2688     {
2689       /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2690 	 VR_VARYING.  It would take more effort to compute a precise
2691 	 range for such a case.  For example, if we have op0 == 1 and
2692 	 op1 == 1 with their ranges both being ~[0,0], we would have
2693 	 op0 - op1 == 0, so we cannot claim that the difference is in
2694 	 ~[0,0].  Note that we are guaranteed to have
2695 	 vr0.type == vr1.type at this point.  */
2696       if (vr0.type == VR_ANTI_RANGE)
2697 	{
2698 	  set_value_range_to_varying (vr);
2699 	  return;
2700 	}
2701 
2702       /* For MINUS_EXPR, apply the operation to the opposite ends of
2703 	 each range.  */
2704       min = vrp_int_const_binop (code, vr0.min, vr1.max);
2705       max = vrp_int_const_binop (code, vr0.max, vr1.min);
2706     }
2707   else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2708     {
2709       bool int_cst_range0, int_cst_range1;
2710       double_int may_be_nonzero0, may_be_nonzero1;
2711       double_int must_be_nonzero0, must_be_nonzero1;
2712 
2713       int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2714 						  &must_be_nonzero0);
2715       int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2716 						  &must_be_nonzero1);
2717 
2718       type = VR_RANGE;
2719       if (code == BIT_AND_EXPR)
2720 	{
2721 	  double_int dmax;
2722 	  min = double_int_to_tree (expr_type,
2723 				    double_int_and (must_be_nonzero0,
2724 						    must_be_nonzero1));
2725 	  dmax = double_int_and (may_be_nonzero0, may_be_nonzero1);
2726 	  /* If both input ranges contain only negative values we can
2727 	     truncate the result range maximum to the minimum of the
2728 	     input range maxima.  */
2729 	  if (int_cst_range0 && int_cst_range1
2730 	      && tree_int_cst_sgn (vr0.max) < 0
2731 	      && tree_int_cst_sgn (vr1.max) < 0)
2732 	    {
2733 	      dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2734 				     TYPE_UNSIGNED (expr_type));
2735 	      dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2736 				     TYPE_UNSIGNED (expr_type));
2737 	    }
2738 	  /* If either input range contains only non-negative values
2739 	     we can truncate the result range maximum to the respective
2740 	     maximum of the input range.  */
2741 	  if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2742 	    dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2743 				   TYPE_UNSIGNED (expr_type));
2744 	  if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2745 	    dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2746 				   TYPE_UNSIGNED (expr_type));
2747 	  max = double_int_to_tree (expr_type, dmax);
2748 	}
2749       else if (code == BIT_IOR_EXPR)
2750 	{
2751 	  double_int dmin;
2752 	  max = double_int_to_tree (expr_type,
2753 				    double_int_ior (may_be_nonzero0,
2754 						    may_be_nonzero1));
2755 	  dmin = double_int_ior (must_be_nonzero0, must_be_nonzero1);
2756 	  /* If the input ranges contain only positive values we can
2757 	     truncate the minimum of the result range to the maximum
2758 	     of the input range minima.  */
2759 	  if (int_cst_range0 && int_cst_range1
2760 	      && tree_int_cst_sgn (vr0.min) >= 0
2761 	      && tree_int_cst_sgn (vr1.min) >= 0)
2762 	    {
2763 	      dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2764 				     TYPE_UNSIGNED (expr_type));
2765 	      dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2766 				     TYPE_UNSIGNED (expr_type));
2767 	    }
2768 	  /* If either input range contains only negative values
2769 	     we can truncate the minimum of the result range to the
2770 	     respective minimum range.  */
2771 	  if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
2772 	    dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2773 				   TYPE_UNSIGNED (expr_type));
2774 	  if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
2775 	    dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2776 				   TYPE_UNSIGNED (expr_type));
2777 	  min = double_int_to_tree (expr_type, dmin);
2778 	}
2779       else if (code == BIT_XOR_EXPR)
2780 	{
2781 	  double_int result_zero_bits, result_one_bits;
2782 	  result_zero_bits
2783 	    = double_int_ior (double_int_and (must_be_nonzero0,
2784 					      must_be_nonzero1),
2785 			      double_int_not
2786 			        (double_int_ior (may_be_nonzero0,
2787 						 may_be_nonzero1)));
2788 	  result_one_bits
2789 	    = double_int_ior (double_int_and
2790 			        (must_be_nonzero0,
2791 				 double_int_not (may_be_nonzero1)),
2792 			      double_int_and
2793 			        (must_be_nonzero1,
2794 				 double_int_not (may_be_nonzero0)));
2795 	  max = double_int_to_tree (expr_type,
2796 				    double_int_not (result_zero_bits));
2797 	  min = double_int_to_tree (expr_type, result_one_bits);
2798 	  /* If the range has all positive or all negative values the
2799 	     result is better than VARYING.  */
2800 	  if (tree_int_cst_sgn (min) < 0
2801 	      || tree_int_cst_sgn (max) >= 0)
2802 	    ;
2803 	  else
2804 	    max = min = NULL_TREE;
2805 	}
2806     }
2807   else
2808     gcc_unreachable ();
2809 
2810   /* If either MIN or MAX overflowed, then set the resulting range to
2811      VARYING.  But we do accept an overflow infinity
2812      representation.  */
2813   if (min == NULL_TREE
2814       || !is_gimple_min_invariant (min)
2815       || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2816       || max == NULL_TREE
2817       || !is_gimple_min_invariant (max)
2818       || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2819     {
2820       set_value_range_to_varying (vr);
2821       return;
2822     }
2823 
2824   /* We punt if:
2825      1) [-INF, +INF]
2826      2) [-INF, +-INF(OVF)]
2827      3) [+-INF(OVF), +INF]
2828      4) [+-INF(OVF), +-INF(OVF)]
2829      We learn nothing when we have INF and INF(OVF) on both sides.
2830      Note that we do accept [-INF, -INF] and [+INF, +INF] without
2831      overflow.  */
2832   if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2833       && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2834     {
2835       set_value_range_to_varying (vr);
2836       return;
2837     }
2838 
2839   cmp = compare_values (min, max);
2840   if (cmp == -2 || cmp == 1)
2841     {
2842       /* If the new range has its limits swapped around (MIN > MAX),
2843 	 then the operation caused one of them to wrap around, mark
2844 	 the new range VARYING.  */
2845       set_value_range_to_varying (vr);
2846     }
2847   else
2848     set_value_range (vr, type, min, max, NULL);
2849 }
2850 
2851 /* Extract range information from a binary expression OP0 CODE OP1 based on
2852    the ranges of each of its operands with resulting type EXPR_TYPE.
2853    The resulting range is stored in *VR.  */
2854 
2855 static void
2856 extract_range_from_binary_expr (value_range_t *vr,
2857 				enum tree_code code,
2858 				tree expr_type, tree op0, tree op1)
2859 {
2860   value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2861   value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2862 
2863   /* Get value ranges for each operand.  For constant operands, create
2864      a new value range with the operand to simplify processing.  */
2865   if (TREE_CODE (op0) == SSA_NAME)
2866     vr0 = *(get_value_range (op0));
2867   else if (is_gimple_min_invariant (op0))
2868     set_value_range_to_value (&vr0, op0, NULL);
2869   else
2870     set_value_range_to_varying (&vr0);
2871 
2872   if (TREE_CODE (op1) == SSA_NAME)
2873     vr1 = *(get_value_range (op1));
2874   else if (is_gimple_min_invariant (op1))
2875     set_value_range_to_value (&vr1, op1, NULL);
2876   else
2877     set_value_range_to_varying (&vr1);
2878 
2879   extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
2880 }
2881 
2882 /* Extract range information from a unary operation CODE based on
2883    the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2884    The The resulting range is stored in *VR.  */
2885 
2886 static void
2887 extract_range_from_unary_expr_1 (value_range_t *vr,
2888 				 enum tree_code code, tree type,
2889 				 value_range_t *vr0_, tree op0_type)
2890 {
2891   value_range_t vr0 = *vr0_;
2892 
2893   /* VRP only operates on integral and pointer types.  */
2894   if (!(INTEGRAL_TYPE_P (op0_type)
2895 	|| POINTER_TYPE_P (op0_type))
2896       || !(INTEGRAL_TYPE_P (type)
2897 	   || POINTER_TYPE_P (type)))
2898     {
2899       set_value_range_to_varying (vr);
2900       return;
2901     }
2902 
2903   /* If VR0 is UNDEFINED, so is the result.  */
2904   if (vr0.type == VR_UNDEFINED)
2905     {
2906       set_value_range_to_undefined (vr);
2907       return;
2908     }
2909 
2910   if (CONVERT_EXPR_CODE_P (code))
2911     {
2912       tree inner_type = op0_type;
2913       tree outer_type = type;
2914 
2915       /* If the expression evaluates to a pointer, we are only interested in
2916 	 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).  */
2917       if (POINTER_TYPE_P (type))
2918 	{
2919 	  if (range_is_nonnull (&vr0))
2920 	    set_value_range_to_nonnull (vr, type);
2921 	  else if (range_is_null (&vr0))
2922 	    set_value_range_to_null (vr, type);
2923 	  else
2924 	    set_value_range_to_varying (vr);
2925 	  return;
2926 	}
2927 
2928       /* If VR0 is varying and we increase the type precision, assume
2929 	 a full range for the following transformation.  */
2930       if (vr0.type == VR_VARYING
2931 	  && INTEGRAL_TYPE_P (inner_type)
2932 	  && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2933 	{
2934 	  vr0.type = VR_RANGE;
2935 	  vr0.min = TYPE_MIN_VALUE (inner_type);
2936 	  vr0.max = TYPE_MAX_VALUE (inner_type);
2937 	}
2938 
2939       /* If VR0 is a constant range or anti-range and the conversion is
2940 	 not truncating we can convert the min and max values and
2941 	 canonicalize the resulting range.  Otherwise we can do the
2942 	 conversion if the size of the range is less than what the
2943 	 precision of the target type can represent and the range is
2944 	 not an anti-range.  */
2945       if ((vr0.type == VR_RANGE
2946 	   || vr0.type == VR_ANTI_RANGE)
2947 	  && TREE_CODE (vr0.min) == INTEGER_CST
2948 	  && TREE_CODE (vr0.max) == INTEGER_CST
2949 	  && (!is_overflow_infinity (vr0.min)
2950 	      || (vr0.type == VR_RANGE
2951 		  && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2952 		  && needs_overflow_infinity (outer_type)
2953 		  && supports_overflow_infinity (outer_type)))
2954 	  && (!is_overflow_infinity (vr0.max)
2955 	      || (vr0.type == VR_RANGE
2956 		  && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2957 		  && needs_overflow_infinity (outer_type)
2958 		  && supports_overflow_infinity (outer_type)))
2959 	  && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2960 	      || (vr0.type == VR_RANGE
2961 		  && integer_zerop (int_const_binop (RSHIFT_EXPR,
2962 		       int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
2963 		         size_int (TYPE_PRECISION (outer_type)))))))
2964 	{
2965 	  tree new_min, new_max;
2966 	  if (is_overflow_infinity (vr0.min))
2967 	    new_min = negative_overflow_infinity (outer_type);
2968 	  else
2969 	    new_min = force_fit_type_double (outer_type,
2970 					     tree_to_double_int (vr0.min),
2971 					     0, false);
2972 	  if (is_overflow_infinity (vr0.max))
2973 	    new_max = positive_overflow_infinity (outer_type);
2974 	  else
2975 	    new_max = force_fit_type_double (outer_type,
2976 					     tree_to_double_int (vr0.max),
2977 					     0, false);
2978 	  set_and_canonicalize_value_range (vr, vr0.type,
2979 					    new_min, new_max, NULL);
2980 	  return;
2981 	}
2982 
2983       set_value_range_to_varying (vr);
2984       return;
2985     }
2986   else if (code == NEGATE_EXPR)
2987     {
2988       /* -X is simply 0 - X, so re-use existing code that also handles
2989          anti-ranges fine.  */
2990       value_range_t zero = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2991       set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
2992       extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
2993       return;
2994     }
2995   else if (code == ABS_EXPR)
2996     {
2997       tree min, max;
2998       int cmp;
2999 
3000       /* Pass through vr0 in the easy cases.  */
3001       if (TYPE_UNSIGNED (type)
3002 	  || value_range_nonnegative_p (&vr0))
3003 	{
3004 	  copy_value_range (vr, &vr0);
3005 	  return;
3006 	}
3007 
3008       /* For the remaining varying or symbolic ranges we can't do anything
3009 	 useful.  */
3010       if (vr0.type == VR_VARYING
3011 	  || symbolic_range_p (&vr0))
3012 	{
3013 	  set_value_range_to_varying (vr);
3014 	  return;
3015 	}
3016 
3017       /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3018          useful range.  */
3019       if (!TYPE_OVERFLOW_UNDEFINED (type)
3020 	  && ((vr0.type == VR_RANGE
3021 	       && vrp_val_is_min (vr0.min))
3022 	      || (vr0.type == VR_ANTI_RANGE
3023 		  && !vrp_val_is_min (vr0.min))))
3024 	{
3025 	  set_value_range_to_varying (vr);
3026 	  return;
3027 	}
3028 
3029       /* ABS_EXPR may flip the range around, if the original range
3030 	 included negative values.  */
3031       if (is_overflow_infinity (vr0.min))
3032 	min = positive_overflow_infinity (type);
3033       else if (!vrp_val_is_min (vr0.min))
3034 	min = fold_unary_to_constant (code, type, vr0.min);
3035       else if (!needs_overflow_infinity (type))
3036 	min = TYPE_MAX_VALUE (type);
3037       else if (supports_overflow_infinity (type))
3038 	min = positive_overflow_infinity (type);
3039       else
3040 	{
3041 	  set_value_range_to_varying (vr);
3042 	  return;
3043 	}
3044 
3045       if (is_overflow_infinity (vr0.max))
3046 	max = positive_overflow_infinity (type);
3047       else if (!vrp_val_is_min (vr0.max))
3048 	max = fold_unary_to_constant (code, type, vr0.max);
3049       else if (!needs_overflow_infinity (type))
3050 	max = TYPE_MAX_VALUE (type);
3051       else if (supports_overflow_infinity (type)
3052 	       /* We shouldn't generate [+INF, +INF] as set_value_range
3053 		  doesn't like this and ICEs.  */
3054 	       && !is_positive_overflow_infinity (min))
3055 	max = positive_overflow_infinity (type);
3056       else
3057 	{
3058 	  set_value_range_to_varying (vr);
3059 	  return;
3060 	}
3061 
3062       cmp = compare_values (min, max);
3063 
3064       /* If a VR_ANTI_RANGEs contains zero, then we have
3065 	 ~[-INF, min(MIN, MAX)].  */
3066       if (vr0.type == VR_ANTI_RANGE)
3067 	{
3068 	  if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3069 	    {
3070 	      /* Take the lower of the two values.  */
3071 	      if (cmp != 1)
3072 		max = min;
3073 
3074 	      /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3075 	         or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3076 		 flag_wrapv is set and the original anti-range doesn't include
3077 	         TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE.  */
3078 	      if (TYPE_OVERFLOW_WRAPS (type))
3079 		{
3080 		  tree type_min_value = TYPE_MIN_VALUE (type);
3081 
3082 		  min = (vr0.min != type_min_value
3083 			 ? int_const_binop (PLUS_EXPR, type_min_value,
3084 					    integer_one_node)
3085 			 : type_min_value);
3086 		}
3087 	      else
3088 		{
3089 		  if (overflow_infinity_range_p (&vr0))
3090 		    min = negative_overflow_infinity (type);
3091 		  else
3092 		    min = TYPE_MIN_VALUE (type);
3093 		}
3094 	    }
3095 	  else
3096 	    {
3097 	      /* All else has failed, so create the range [0, INF], even for
3098 	         flag_wrapv since TYPE_MIN_VALUE is in the original
3099 	         anti-range.  */
3100 	      vr0.type = VR_RANGE;
3101 	      min = build_int_cst (type, 0);
3102 	      if (needs_overflow_infinity (type))
3103 		{
3104 		  if (supports_overflow_infinity (type))
3105 		    max = positive_overflow_infinity (type);
3106 		  else
3107 		    {
3108 		      set_value_range_to_varying (vr);
3109 		      return;
3110 		    }
3111 		}
3112 	      else
3113 		max = TYPE_MAX_VALUE (type);
3114 	    }
3115 	}
3116 
3117       /* If the range contains zero then we know that the minimum value in the
3118          range will be zero.  */
3119       else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3120 	{
3121 	  if (cmp == 1)
3122 	    max = min;
3123 	  min = build_int_cst (type, 0);
3124 	}
3125       else
3126 	{
3127           /* If the range was reversed, swap MIN and MAX.  */
3128 	  if (cmp == 1)
3129 	    {
3130 	      tree t = min;
3131 	      min = max;
3132 	      max = t;
3133 	    }
3134 	}
3135 
3136       cmp = compare_values (min, max);
3137       if (cmp == -2 || cmp == 1)
3138 	{
3139 	  /* If the new range has its limits swapped around (MIN > MAX),
3140 	     then the operation caused one of them to wrap around, mark
3141 	     the new range VARYING.  */
3142 	  set_value_range_to_varying (vr);
3143 	}
3144       else
3145 	set_value_range (vr, vr0.type, min, max, NULL);
3146       return;
3147     }
3148   else if (code == BIT_NOT_EXPR)
3149     {
3150       /* ~X is simply -1 - X, so re-use existing code that also handles
3151          anti-ranges fine.  */
3152       value_range_t minusone = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3153       set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3154       extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3155 					type, &minusone, &vr0);
3156       return;
3157     }
3158   else if (code == PAREN_EXPR)
3159     {
3160       copy_value_range (vr, &vr0);
3161       return;
3162     }
3163 
3164   /* For unhandled operations fall back to varying.  */
3165   set_value_range_to_varying (vr);
3166   return;
3167 }
3168 
3169 
3170 /* Extract range information from a unary expression CODE OP0 based on
3171    the range of its operand with resulting type TYPE.
3172    The resulting range is stored in *VR.  */
3173 
3174 static void
3175 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3176 			       tree type, tree op0)
3177 {
3178   value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3179 
3180   /* Get value ranges for the operand.  For constant operands, create
3181      a new value range with the operand to simplify processing.  */
3182   if (TREE_CODE (op0) == SSA_NAME)
3183     vr0 = *(get_value_range (op0));
3184   else if (is_gimple_min_invariant (op0))
3185     set_value_range_to_value (&vr0, op0, NULL);
3186   else
3187     set_value_range_to_varying (&vr0);
3188 
3189   extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3190 }
3191 
3192 
3193 /* Extract range information from a conditional expression STMT based on
3194    the ranges of each of its operands and the expression code.  */
3195 
3196 static void
3197 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3198 {
3199   tree op0, op1;
3200   value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3201   value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3202 
3203   /* Get value ranges for each operand.  For constant operands, create
3204      a new value range with the operand to simplify processing.  */
3205   op0 = gimple_assign_rhs2 (stmt);
3206   if (TREE_CODE (op0) == SSA_NAME)
3207     vr0 = *(get_value_range (op0));
3208   else if (is_gimple_min_invariant (op0))
3209     set_value_range_to_value (&vr0, op0, NULL);
3210   else
3211     set_value_range_to_varying (&vr0);
3212 
3213   op1 = gimple_assign_rhs3 (stmt);
3214   if (TREE_CODE (op1) == SSA_NAME)
3215     vr1 = *(get_value_range (op1));
3216   else if (is_gimple_min_invariant (op1))
3217     set_value_range_to_value (&vr1, op1, NULL);
3218   else
3219     set_value_range_to_varying (&vr1);
3220 
3221   /* The resulting value range is the union of the operand ranges */
3222   copy_value_range (vr, &vr0);
3223   vrp_meet (vr, &vr1);
3224 }
3225 
3226 
3227 /* Extract range information from a comparison expression EXPR based
3228    on the range of its operand and the expression code.  */
3229 
3230 static void
3231 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3232 			       tree type, tree op0, tree op1)
3233 {
3234   bool sop = false;
3235   tree val;
3236 
3237   val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3238   						 NULL);
3239 
3240   /* A disadvantage of using a special infinity as an overflow
3241      representation is that we lose the ability to record overflow
3242      when we don't have an infinity.  So we have to ignore a result
3243      which relies on overflow.  */
3244 
3245   if (val && !is_overflow_infinity (val) && !sop)
3246     {
3247       /* Since this expression was found on the RHS of an assignment,
3248 	 its type may be different from _Bool.  Convert VAL to EXPR's
3249 	 type.  */
3250       val = fold_convert (type, val);
3251       if (is_gimple_min_invariant (val))
3252 	set_value_range_to_value (vr, val, vr->equiv);
3253       else
3254 	set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3255     }
3256   else
3257     /* The result of a comparison is always true or false.  */
3258     set_value_range_to_truthvalue (vr, type);
3259 }
3260 
3261 /* Try to derive a nonnegative or nonzero range out of STMT relying
3262    primarily on generic routines in fold in conjunction with range data.
3263    Store the result in *VR */
3264 
3265 static void
3266 extract_range_basic (value_range_t *vr, gimple stmt)
3267 {
3268   bool sop = false;
3269   tree type = gimple_expr_type (stmt);
3270 
3271   /* If the call is __builtin_constant_p and the argument is a
3272      function parameter resolve it to false.  This avoids bogus
3273      array bound warnings.
3274      ???  We could do this as early as inlining is finished.  */
3275   if (gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P))
3276     {
3277       tree arg = gimple_call_arg (stmt, 0);
3278       if (TREE_CODE (arg) == SSA_NAME
3279 	  && SSA_NAME_IS_DEFAULT_DEF (arg)
3280 	  && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3281 	set_value_range_to_null (vr, type);
3282     }
3283   else if (INTEGRAL_TYPE_P (type)
3284 	   && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3285     set_value_range_to_nonnegative (vr, type,
3286 				    sop || stmt_overflow_infinity (stmt));
3287   else if (vrp_stmt_computes_nonzero (stmt, &sop)
3288 	   && !sop)
3289     set_value_range_to_nonnull (vr, type);
3290   else
3291     set_value_range_to_varying (vr);
3292 }
3293 
3294 
3295 /* Try to compute a useful range out of assignment STMT and store it
3296    in *VR.  */
3297 
3298 static void
3299 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3300 {
3301   enum tree_code code = gimple_assign_rhs_code (stmt);
3302 
3303   if (code == ASSERT_EXPR)
3304     extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3305   else if (code == SSA_NAME)
3306     extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3307   else if (TREE_CODE_CLASS (code) == tcc_binary)
3308     extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3309 				    gimple_expr_type (stmt),
3310 				    gimple_assign_rhs1 (stmt),
3311 				    gimple_assign_rhs2 (stmt));
3312   else if (TREE_CODE_CLASS (code) == tcc_unary)
3313     extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3314 				   gimple_expr_type (stmt),
3315 				   gimple_assign_rhs1 (stmt));
3316   else if (code == COND_EXPR)
3317     extract_range_from_cond_expr (vr, stmt);
3318   else if (TREE_CODE_CLASS (code) == tcc_comparison)
3319     extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3320 				   gimple_expr_type (stmt),
3321 				   gimple_assign_rhs1 (stmt),
3322 				   gimple_assign_rhs2 (stmt));
3323   else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3324 	   && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3325     set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3326   else
3327     set_value_range_to_varying (vr);
3328 
3329   if (vr->type == VR_VARYING)
3330     extract_range_basic (vr, stmt);
3331 }
3332 
3333 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3334    would be profitable to adjust VR using scalar evolution information
3335    for VAR.  If so, update VR with the new limits.  */
3336 
3337 static void
3338 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3339 			gimple stmt, tree var)
3340 {
3341   tree init, step, chrec, tmin, tmax, min, max, type, tem;
3342   enum ev_direction dir;
3343 
3344   /* TODO.  Don't adjust anti-ranges.  An anti-range may provide
3345      better opportunities than a regular range, but I'm not sure.  */
3346   if (vr->type == VR_ANTI_RANGE)
3347     return;
3348 
3349   chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3350 
3351   /* Like in PR19590, scev can return a constant function.  */
3352   if (is_gimple_min_invariant (chrec))
3353     {
3354       set_value_range_to_value (vr, chrec, vr->equiv);
3355       return;
3356     }
3357 
3358   if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3359     return;
3360 
3361   init = initial_condition_in_loop_num (chrec, loop->num);
3362   tem = op_with_constant_singleton_value_range (init);
3363   if (tem)
3364     init = tem;
3365   step = evolution_part_in_loop_num (chrec, loop->num);
3366   tem = op_with_constant_singleton_value_range (step);
3367   if (tem)
3368     step = tem;
3369 
3370   /* If STEP is symbolic, we can't know whether INIT will be the
3371      minimum or maximum value in the range.  Also, unless INIT is
3372      a simple expression, compare_values and possibly other functions
3373      in tree-vrp won't be able to handle it.  */
3374   if (step == NULL_TREE
3375       || !is_gimple_min_invariant (step)
3376       || !valid_value_p (init))
3377     return;
3378 
3379   dir = scev_direction (chrec);
3380   if (/* Do not adjust ranges if we do not know whether the iv increases
3381 	 or decreases,  ... */
3382       dir == EV_DIR_UNKNOWN
3383       /* ... or if it may wrap.  */
3384       || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3385 				true))
3386     return;
3387 
3388   /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3389      negative_overflow_infinity and positive_overflow_infinity,
3390      because we have concluded that the loop probably does not
3391      wrap.  */
3392 
3393   type = TREE_TYPE (var);
3394   if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3395     tmin = lower_bound_in_type (type, type);
3396   else
3397     tmin = TYPE_MIN_VALUE (type);
3398   if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3399     tmax = upper_bound_in_type (type, type);
3400   else
3401     tmax = TYPE_MAX_VALUE (type);
3402 
3403   /* Try to use estimated number of iterations for the loop to constrain the
3404      final value in the evolution.  */
3405   if (TREE_CODE (step) == INTEGER_CST
3406       && is_gimple_val (init)
3407       && (TREE_CODE (init) != SSA_NAME
3408 	  || get_value_range (init)->type == VR_RANGE))
3409     {
3410       double_int nit;
3411 
3412       if (estimated_loop_iterations (loop, true, &nit))
3413 	{
3414 	  value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3415 	  double_int dtmp;
3416 	  bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3417 	  int overflow = 0;
3418 
3419 	  dtmp = double_int_mul_with_sign (tree_to_double_int (step), nit,
3420 					   unsigned_p, &overflow);
3421 	  /* If the multiplication overflowed we can't do a meaningful
3422 	     adjustment.  Likewise if the result doesn't fit in the type
3423 	     of the induction variable.  For a signed type we have to
3424 	     check whether the result has the expected signedness which
3425 	     is that of the step as number of iterations is unsigned.  */
3426 	  if (!overflow
3427 	      && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3428 	      && (unsigned_p
3429 		  || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3430 	    {
3431 	      tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3432 	      extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3433 					      TREE_TYPE (init), init, tem);
3434 	      /* Likewise if the addition did.  */
3435 	      if (maxvr.type == VR_RANGE)
3436 		{
3437 		  tmin = maxvr.min;
3438 		  tmax = maxvr.max;
3439 		}
3440 	    }
3441 	}
3442     }
3443 
3444   if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3445     {
3446       min = tmin;
3447       max = tmax;
3448 
3449       /* For VARYING or UNDEFINED ranges, just about anything we get
3450 	 from scalar evolutions should be better.  */
3451 
3452       if (dir == EV_DIR_DECREASES)
3453 	max = init;
3454       else
3455 	min = init;
3456 
3457       /* If we would create an invalid range, then just assume we
3458 	 know absolutely nothing.  This may be over-conservative,
3459 	 but it's clearly safe, and should happen only in unreachable
3460          parts of code, or for invalid programs.  */
3461       if (compare_values (min, max) == 1)
3462 	return;
3463 
3464       set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3465     }
3466   else if (vr->type == VR_RANGE)
3467     {
3468       min = vr->min;
3469       max = vr->max;
3470 
3471       if (dir == EV_DIR_DECREASES)
3472 	{
3473 	  /* INIT is the maximum value.  If INIT is lower than VR->MAX
3474 	     but no smaller than VR->MIN, set VR->MAX to INIT.  */
3475 	  if (compare_values (init, max) == -1)
3476 	    max = init;
3477 
3478 	  /* According to the loop information, the variable does not
3479 	     overflow.  If we think it does, probably because of an
3480 	     overflow due to arithmetic on a different INF value,
3481 	     reset now.  */
3482 	  if (is_negative_overflow_infinity (min)
3483 	      || compare_values (min, tmin) == -1)
3484 	    min = tmin;
3485 
3486 	}
3487       else
3488 	{
3489 	  /* If INIT is bigger than VR->MIN, set VR->MIN to INIT.  */
3490 	  if (compare_values (init, min) == 1)
3491 	    min = init;
3492 
3493 	  if (is_positive_overflow_infinity (max)
3494 	      || compare_values (tmax, max) == -1)
3495 	    max = tmax;
3496 	}
3497 
3498       /* If we just created an invalid range with the minimum
3499 	 greater than the maximum, we fail conservatively.
3500 	 This should happen only in unreachable
3501 	 parts of code, or for invalid programs.  */
3502       if (compare_values (min, max) == 1)
3503 	return;
3504 
3505       set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3506     }
3507 }
3508 
3509 /* Return true if VAR may overflow at STMT.  This checks any available
3510    loop information to see if we can determine that VAR does not
3511    overflow.  */
3512 
3513 static bool
3514 vrp_var_may_overflow (tree var, gimple stmt)
3515 {
3516   struct loop *l;
3517   tree chrec, init, step;
3518 
3519   if (current_loops == NULL)
3520     return true;
3521 
3522   l = loop_containing_stmt (stmt);
3523   if (l == NULL
3524       || !loop_outer (l))
3525     return true;
3526 
3527   chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3528   if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3529     return true;
3530 
3531   init = initial_condition_in_loop_num (chrec, l->num);
3532   step = evolution_part_in_loop_num (chrec, l->num);
3533 
3534   if (step == NULL_TREE
3535       || !is_gimple_min_invariant (step)
3536       || !valid_value_p (init))
3537     return true;
3538 
3539   /* If we get here, we know something useful about VAR based on the
3540      loop information.  If it wraps, it may overflow.  */
3541 
3542   if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3543 			     true))
3544     return true;
3545 
3546   if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3547     {
3548       print_generic_expr (dump_file, var, 0);
3549       fprintf (dump_file, ": loop information indicates does not overflow\n");
3550     }
3551 
3552   return false;
3553 }
3554 
3555 
3556 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3557 
3558    - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3559      all the values in the ranges.
3560 
3561    - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3562 
3563    - Return NULL_TREE if it is not always possible to determine the
3564      value of the comparison.
3565 
3566    Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3567    overflow infinity was used in the test.  */
3568 
3569 
3570 static tree
3571 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3572 		bool *strict_overflow_p)
3573 {
3574   /* VARYING or UNDEFINED ranges cannot be compared.  */
3575   if (vr0->type == VR_VARYING
3576       || vr0->type == VR_UNDEFINED
3577       || vr1->type == VR_VARYING
3578       || vr1->type == VR_UNDEFINED)
3579     return NULL_TREE;
3580 
3581   /* Anti-ranges need to be handled separately.  */
3582   if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3583     {
3584       /* If both are anti-ranges, then we cannot compute any
3585 	 comparison.  */
3586       if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3587 	return NULL_TREE;
3588 
3589       /* These comparisons are never statically computable.  */
3590       if (comp == GT_EXPR
3591 	  || comp == GE_EXPR
3592 	  || comp == LT_EXPR
3593 	  || comp == LE_EXPR)
3594 	return NULL_TREE;
3595 
3596       /* Equality can be computed only between a range and an
3597 	 anti-range.  ~[VAL1, VAL2] == [VAL1, VAL2] is always false.  */
3598       if (vr0->type == VR_RANGE)
3599 	{
3600 	  /* To simplify processing, make VR0 the anti-range.  */
3601 	  value_range_t *tmp = vr0;
3602 	  vr0 = vr1;
3603 	  vr1 = tmp;
3604 	}
3605 
3606       gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3607 
3608       if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3609 	  && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3610 	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3611 
3612       return NULL_TREE;
3613     }
3614 
3615   if (!usable_range_p (vr0, strict_overflow_p)
3616       || !usable_range_p (vr1, strict_overflow_p))
3617     return NULL_TREE;
3618 
3619   /* Simplify processing.  If COMP is GT_EXPR or GE_EXPR, switch the
3620      operands around and change the comparison code.  */
3621   if (comp == GT_EXPR || comp == GE_EXPR)
3622     {
3623       value_range_t *tmp;
3624       comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3625       tmp = vr0;
3626       vr0 = vr1;
3627       vr1 = tmp;
3628     }
3629 
3630   if (comp == EQ_EXPR)
3631     {
3632       /* Equality may only be computed if both ranges represent
3633 	 exactly one value.  */
3634       if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3635 	  && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3636 	{
3637 	  int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3638 					      strict_overflow_p);
3639 	  int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3640 					      strict_overflow_p);
3641 	  if (cmp_min == 0 && cmp_max == 0)
3642 	    return boolean_true_node;
3643 	  else if (cmp_min != -2 && cmp_max != -2)
3644 	    return boolean_false_node;
3645 	}
3646       /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1.  */
3647       else if (compare_values_warnv (vr0->min, vr1->max,
3648 				     strict_overflow_p) == 1
3649 	       || compare_values_warnv (vr1->min, vr0->max,
3650 					strict_overflow_p) == 1)
3651 	return boolean_false_node;
3652 
3653       return NULL_TREE;
3654     }
3655   else if (comp == NE_EXPR)
3656     {
3657       int cmp1, cmp2;
3658 
3659       /* If VR0 is completely to the left or completely to the right
3660 	 of VR1, they are always different.  Notice that we need to
3661 	 make sure that both comparisons yield similar results to
3662 	 avoid comparing values that cannot be compared at
3663 	 compile-time.  */
3664       cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3665       cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3666       if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3667 	return boolean_true_node;
3668 
3669       /* If VR0 and VR1 represent a single value and are identical,
3670 	 return false.  */
3671       else if (compare_values_warnv (vr0->min, vr0->max,
3672 				     strict_overflow_p) == 0
3673 	       && compare_values_warnv (vr1->min, vr1->max,
3674 					strict_overflow_p) == 0
3675 	       && compare_values_warnv (vr0->min, vr1->min,
3676 					strict_overflow_p) == 0
3677 	       && compare_values_warnv (vr0->max, vr1->max,
3678 					strict_overflow_p) == 0)
3679 	return boolean_false_node;
3680 
3681       /* Otherwise, they may or may not be different.  */
3682       else
3683 	return NULL_TREE;
3684     }
3685   else if (comp == LT_EXPR || comp == LE_EXPR)
3686     {
3687       int tst;
3688 
3689       /* If VR0 is to the left of VR1, return true.  */
3690       tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3691       if ((comp == LT_EXPR && tst == -1)
3692 	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3693 	{
3694 	  if (overflow_infinity_range_p (vr0)
3695 	      || overflow_infinity_range_p (vr1))
3696 	    *strict_overflow_p = true;
3697 	  return boolean_true_node;
3698 	}
3699 
3700       /* If VR0 is to the right of VR1, return false.  */
3701       tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3702       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3703 	  || (comp == LE_EXPR && tst == 1))
3704 	{
3705 	  if (overflow_infinity_range_p (vr0)
3706 	      || overflow_infinity_range_p (vr1))
3707 	    *strict_overflow_p = true;
3708 	  return boolean_false_node;
3709 	}
3710 
3711       /* Otherwise, we don't know.  */
3712       return NULL_TREE;
3713     }
3714 
3715   gcc_unreachable ();
3716 }
3717 
3718 
3719 /* Given a value range VR, a value VAL and a comparison code COMP, return
3720    BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3721    values in VR.  Return BOOLEAN_FALSE_NODE if the comparison
3722    always returns false.  Return NULL_TREE if it is not always
3723    possible to determine the value of the comparison.  Also set
3724    *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3725    infinity was used in the test.  */
3726 
3727 static tree
3728 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3729 			  bool *strict_overflow_p)
3730 {
3731   if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3732     return NULL_TREE;
3733 
3734   /* Anti-ranges need to be handled separately.  */
3735   if (vr->type == VR_ANTI_RANGE)
3736     {
3737       /* For anti-ranges, the only predicates that we can compute at
3738 	 compile time are equality and inequality.  */
3739       if (comp == GT_EXPR
3740 	  || comp == GE_EXPR
3741 	  || comp == LT_EXPR
3742 	  || comp == LE_EXPR)
3743 	return NULL_TREE;
3744 
3745       /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2.  */
3746       if (value_inside_range (val, vr->min, vr->max) == 1)
3747 	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3748 
3749       return NULL_TREE;
3750     }
3751 
3752   if (!usable_range_p (vr, strict_overflow_p))
3753     return NULL_TREE;
3754 
3755   if (comp == EQ_EXPR)
3756     {
3757       /* EQ_EXPR may only be computed if VR represents exactly
3758 	 one value.  */
3759       if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3760 	{
3761 	  int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3762 	  if (cmp == 0)
3763 	    return boolean_true_node;
3764 	  else if (cmp == -1 || cmp == 1 || cmp == 2)
3765 	    return boolean_false_node;
3766 	}
3767       else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3768 	       || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3769 	return boolean_false_node;
3770 
3771       return NULL_TREE;
3772     }
3773   else if (comp == NE_EXPR)
3774     {
3775       /* If VAL is not inside VR, then they are always different.  */
3776       if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3777 	  || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3778 	return boolean_true_node;
3779 
3780       /* If VR represents exactly one value equal to VAL, then return
3781 	 false.  */
3782       if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3783 	  && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3784 	return boolean_false_node;
3785 
3786       /* Otherwise, they may or may not be different.  */
3787       return NULL_TREE;
3788     }
3789   else if (comp == LT_EXPR || comp == LE_EXPR)
3790     {
3791       int tst;
3792 
3793       /* If VR is to the left of VAL, return true.  */
3794       tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3795       if ((comp == LT_EXPR && tst == -1)
3796 	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3797 	{
3798 	  if (overflow_infinity_range_p (vr))
3799 	    *strict_overflow_p = true;
3800 	  return boolean_true_node;
3801 	}
3802 
3803       /* If VR is to the right of VAL, return false.  */
3804       tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3805       if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3806 	  || (comp == LE_EXPR && tst == 1))
3807 	{
3808 	  if (overflow_infinity_range_p (vr))
3809 	    *strict_overflow_p = true;
3810 	  return boolean_false_node;
3811 	}
3812 
3813       /* Otherwise, we don't know.  */
3814       return NULL_TREE;
3815     }
3816   else if (comp == GT_EXPR || comp == GE_EXPR)
3817     {
3818       int tst;
3819 
3820       /* If VR is to the right of VAL, return true.  */
3821       tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3822       if ((comp == GT_EXPR && tst == 1)
3823 	  || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3824 	{
3825 	  if (overflow_infinity_range_p (vr))
3826 	    *strict_overflow_p = true;
3827 	  return boolean_true_node;
3828 	}
3829 
3830       /* If VR is to the left of VAL, return false.  */
3831       tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3832       if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3833 	  || (comp == GE_EXPR && tst == -1))
3834 	{
3835 	  if (overflow_infinity_range_p (vr))
3836 	    *strict_overflow_p = true;
3837 	  return boolean_false_node;
3838 	}
3839 
3840       /* Otherwise, we don't know.  */
3841       return NULL_TREE;
3842     }
3843 
3844   gcc_unreachable ();
3845 }
3846 
3847 
3848 /* Debugging dumps.  */
3849 
3850 void dump_value_range (FILE *, value_range_t *);
3851 void debug_value_range (value_range_t *);
3852 void dump_all_value_ranges (FILE *);
3853 void debug_all_value_ranges (void);
3854 void dump_vr_equiv (FILE *, bitmap);
3855 void debug_vr_equiv (bitmap);
3856 
3857 
3858 /* Dump value range VR to FILE.  */
3859 
3860 void
3861 dump_value_range (FILE *file, value_range_t *vr)
3862 {
3863   if (vr == NULL)
3864     fprintf (file, "[]");
3865   else if (vr->type == VR_UNDEFINED)
3866     fprintf (file, "UNDEFINED");
3867   else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3868     {
3869       tree type = TREE_TYPE (vr->min);
3870 
3871       fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3872 
3873       if (is_negative_overflow_infinity (vr->min))
3874 	fprintf (file, "-INF(OVF)");
3875       else if (INTEGRAL_TYPE_P (type)
3876 	       && !TYPE_UNSIGNED (type)
3877 	       && vrp_val_is_min (vr->min))
3878 	fprintf (file, "-INF");
3879       else
3880 	print_generic_expr (file, vr->min, 0);
3881 
3882       fprintf (file, ", ");
3883 
3884       if (is_positive_overflow_infinity (vr->max))
3885 	fprintf (file, "+INF(OVF)");
3886       else if (INTEGRAL_TYPE_P (type)
3887 	       && vrp_val_is_max (vr->max))
3888 	fprintf (file, "+INF");
3889       else
3890 	print_generic_expr (file, vr->max, 0);
3891 
3892       fprintf (file, "]");
3893 
3894       if (vr->equiv)
3895 	{
3896 	  bitmap_iterator bi;
3897 	  unsigned i, c = 0;
3898 
3899 	  fprintf (file, "  EQUIVALENCES: { ");
3900 
3901 	  EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3902 	    {
3903 	      print_generic_expr (file, ssa_name (i), 0);
3904 	      fprintf (file, " ");
3905 	      c++;
3906 	    }
3907 
3908 	  fprintf (file, "} (%u elements)", c);
3909 	}
3910     }
3911   else if (vr->type == VR_VARYING)
3912     fprintf (file, "VARYING");
3913   else
3914     fprintf (file, "INVALID RANGE");
3915 }
3916 
3917 
3918 /* Dump value range VR to stderr.  */
3919 
3920 DEBUG_FUNCTION void
3921 debug_value_range (value_range_t *vr)
3922 {
3923   dump_value_range (stderr, vr);
3924   fprintf (stderr, "\n");
3925 }
3926 
3927 
3928 /* Dump value ranges of all SSA_NAMEs to FILE.  */
3929 
3930 void
3931 dump_all_value_ranges (FILE *file)
3932 {
3933   size_t i;
3934 
3935   for (i = 0; i < num_vr_values; i++)
3936     {
3937       if (vr_value[i])
3938 	{
3939 	  print_generic_expr (file, ssa_name (i), 0);
3940 	  fprintf (file, ": ");
3941 	  dump_value_range (file, vr_value[i]);
3942 	  fprintf (file, "\n");
3943 	}
3944     }
3945 
3946   fprintf (file, "\n");
3947 }
3948 
3949 
3950 /* Dump all value ranges to stderr.  */
3951 
3952 DEBUG_FUNCTION void
3953 debug_all_value_ranges (void)
3954 {
3955   dump_all_value_ranges (stderr);
3956 }
3957 
3958 
3959 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3960    create a new SSA name N and return the assertion assignment
3961    'V = ASSERT_EXPR <V, V OP W>'.  */
3962 
3963 static gimple
3964 build_assert_expr_for (tree cond, tree v)
3965 {
3966   tree n;
3967   gimple assertion;
3968 
3969   gcc_assert (TREE_CODE (v) == SSA_NAME);
3970   n = duplicate_ssa_name (v, NULL);
3971 
3972   if (COMPARISON_CLASS_P (cond))
3973     {
3974       tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3975       assertion = gimple_build_assign (n, a);
3976     }
3977   else if (TREE_CODE (cond) == SSA_NAME)
3978     {
3979       /* Given V, build the assignment N = true.  */
3980       gcc_assert (v == cond);
3981       assertion = gimple_build_assign (n, boolean_true_node);
3982     }
3983   else
3984     gcc_unreachable ();
3985 
3986   SSA_NAME_DEF_STMT (n) = assertion;
3987 
3988   /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3989      operand of the ASSERT_EXPR. Register the new name and the old one
3990      in the replacement table so that we can fix the SSA web after
3991      adding all the ASSERT_EXPRs.  */
3992   register_new_name_mapping (n, v);
3993 
3994   return assertion;
3995 }
3996 
3997 
3998 /* Return false if EXPR is a predicate expression involving floating
3999    point values.  */
4000 
4001 static inline bool
4002 fp_predicate (gimple stmt)
4003 {
4004   GIMPLE_CHECK (stmt, GIMPLE_COND);
4005 
4006   return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4007 }
4008 
4009 
4010 /* If the range of values taken by OP can be inferred after STMT executes,
4011    return the comparison code (COMP_CODE_P) and value (VAL_P) that
4012    describes the inferred range.  Return true if a range could be
4013    inferred.  */
4014 
4015 static bool
4016 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4017 {
4018   *val_p = NULL_TREE;
4019   *comp_code_p = ERROR_MARK;
4020 
4021   /* Do not attempt to infer anything in names that flow through
4022      abnormal edges.  */
4023   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4024     return false;
4025 
4026   /* Similarly, don't infer anything from statements that may throw
4027      exceptions.  */
4028   if (stmt_could_throw_p (stmt))
4029     return false;
4030 
4031   /* If STMT is the last statement of a basic block with no
4032      successors, there is no point inferring anything about any of its
4033      operands.  We would not be able to find a proper insertion point
4034      for the assertion, anyway.  */
4035   if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4036     return false;
4037 
4038   /* We can only assume that a pointer dereference will yield
4039      non-NULL if -fdelete-null-pointer-checks is enabled.  */
4040   if (flag_delete_null_pointer_checks
4041       && POINTER_TYPE_P (TREE_TYPE (op))
4042       && gimple_code (stmt) != GIMPLE_ASM)
4043     {
4044       unsigned num_uses, num_loads, num_stores;
4045 
4046       count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4047       if (num_loads + num_stores > 0)
4048 	{
4049 	  *val_p = build_int_cst (TREE_TYPE (op), 0);
4050 	  *comp_code_p = NE_EXPR;
4051 	  return true;
4052 	}
4053     }
4054 
4055   return false;
4056 }
4057 
4058 
4059 void dump_asserts_for (FILE *, tree);
4060 void debug_asserts_for (tree);
4061 void dump_all_asserts (FILE *);
4062 void debug_all_asserts (void);
4063 
4064 /* Dump all the registered assertions for NAME to FILE.  */
4065 
4066 void
4067 dump_asserts_for (FILE *file, tree name)
4068 {
4069   assert_locus_t loc;
4070 
4071   fprintf (file, "Assertions to be inserted for ");
4072   print_generic_expr (file, name, 0);
4073   fprintf (file, "\n");
4074 
4075   loc = asserts_for[SSA_NAME_VERSION (name)];
4076   while (loc)
4077     {
4078       fprintf (file, "\t");
4079       print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4080       fprintf (file, "\n\tBB #%d", loc->bb->index);
4081       if (loc->e)
4082 	{
4083 	  fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4084 	           loc->e->dest->index);
4085 	  dump_edge_info (file, loc->e, 0);
4086 	}
4087       fprintf (file, "\n\tPREDICATE: ");
4088       print_generic_expr (file, name, 0);
4089       fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4090       print_generic_expr (file, loc->val, 0);
4091       fprintf (file, "\n\n");
4092       loc = loc->next;
4093     }
4094 
4095   fprintf (file, "\n");
4096 }
4097 
4098 
4099 /* Dump all the registered assertions for NAME to stderr.  */
4100 
4101 DEBUG_FUNCTION void
4102 debug_asserts_for (tree name)
4103 {
4104   dump_asserts_for (stderr, name);
4105 }
4106 
4107 
4108 /* Dump all the registered assertions for all the names to FILE.  */
4109 
4110 void
4111 dump_all_asserts (FILE *file)
4112 {
4113   unsigned i;
4114   bitmap_iterator bi;
4115 
4116   fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4117   EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4118     dump_asserts_for (file, ssa_name (i));
4119   fprintf (file, "\n");
4120 }
4121 
4122 
4123 /* Dump all the registered assertions for all the names to stderr.  */
4124 
4125 DEBUG_FUNCTION void
4126 debug_all_asserts (void)
4127 {
4128   dump_all_asserts (stderr);
4129 }
4130 
4131 
4132 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4133    'EXPR COMP_CODE VAL' at a location that dominates block BB or
4134    E->DEST, then register this location as a possible insertion point
4135    for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4136 
4137    BB, E and SI provide the exact insertion point for the new
4138    ASSERT_EXPR.  If BB is NULL, then the ASSERT_EXPR is to be inserted
4139    on edge E.  Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4140    BB.  If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4141    must not be NULL.  */
4142 
4143 static void
4144 register_new_assert_for (tree name, tree expr,
4145 			 enum tree_code comp_code,
4146 			 tree val,
4147 			 basic_block bb,
4148 			 edge e,
4149 			 gimple_stmt_iterator si)
4150 {
4151   assert_locus_t n, loc, last_loc;
4152   basic_block dest_bb;
4153 
4154   gcc_checking_assert (bb == NULL || e == NULL);
4155 
4156   if (e == NULL)
4157     gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4158 			 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4159 
4160   /* Never build an assert comparing against an integer constant with
4161      TREE_OVERFLOW set.  This confuses our undefined overflow warning
4162      machinery.  */
4163   if (TREE_CODE (val) == INTEGER_CST
4164       && TREE_OVERFLOW (val))
4165     val = build_int_cst_wide (TREE_TYPE (val),
4166 			      TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4167 
4168   /* The new assertion A will be inserted at BB or E.  We need to
4169      determine if the new location is dominated by a previously
4170      registered location for A.  If we are doing an edge insertion,
4171      assume that A will be inserted at E->DEST.  Note that this is not
4172      necessarily true.
4173 
4174      If E is a critical edge, it will be split.  But even if E is
4175      split, the new block will dominate the same set of blocks that
4176      E->DEST dominates.
4177 
4178      The reverse, however, is not true, blocks dominated by E->DEST
4179      will not be dominated by the new block created to split E.  So,
4180      if the insertion location is on a critical edge, we will not use
4181      the new location to move another assertion previously registered
4182      at a block dominated by E->DEST.  */
4183   dest_bb = (bb) ? bb : e->dest;
4184 
4185   /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4186      VAL at a block dominating DEST_BB, then we don't need to insert a new
4187      one.  Similarly, if the same assertion already exists at a block
4188      dominated by DEST_BB and the new location is not on a critical
4189      edge, then update the existing location for the assertion (i.e.,
4190      move the assertion up in the dominance tree).
4191 
4192      Note, this is implemented as a simple linked list because there
4193      should not be more than a handful of assertions registered per
4194      name.  If this becomes a performance problem, a table hashed by
4195      COMP_CODE and VAL could be implemented.  */
4196   loc = asserts_for[SSA_NAME_VERSION (name)];
4197   last_loc = loc;
4198   while (loc)
4199     {
4200       if (loc->comp_code == comp_code
4201 	  && (loc->val == val
4202 	      || operand_equal_p (loc->val, val, 0))
4203 	  && (loc->expr == expr
4204 	      || operand_equal_p (loc->expr, expr, 0)))
4205 	{
4206 	  /* If the assertion NAME COMP_CODE VAL has already been
4207 	     registered at a basic block that dominates DEST_BB, then
4208 	     we don't need to insert the same assertion again.  Note
4209 	     that we don't check strict dominance here to avoid
4210 	     replicating the same assertion inside the same basic
4211 	     block more than once (e.g., when a pointer is
4212 	     dereferenced several times inside a block).
4213 
4214 	     An exception to this rule are edge insertions.  If the
4215 	     new assertion is to be inserted on edge E, then it will
4216 	     dominate all the other insertions that we may want to
4217 	     insert in DEST_BB.  So, if we are doing an edge
4218 	     insertion, don't do this dominance check.  */
4219           if (e == NULL
4220 	      && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4221 	    return;
4222 
4223 	  /* Otherwise, if E is not a critical edge and DEST_BB
4224 	     dominates the existing location for the assertion, move
4225 	     the assertion up in the dominance tree by updating its
4226 	     location information.  */
4227 	  if ((e == NULL || !EDGE_CRITICAL_P (e))
4228 	      && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4229 	    {
4230 	      loc->bb = dest_bb;
4231 	      loc->e = e;
4232 	      loc->si = si;
4233 	      return;
4234 	    }
4235 	}
4236 
4237       /* Update the last node of the list and move to the next one.  */
4238       last_loc = loc;
4239       loc = loc->next;
4240     }
4241 
4242   /* If we didn't find an assertion already registered for
4243      NAME COMP_CODE VAL, add a new one at the end of the list of
4244      assertions associated with NAME.  */
4245   n = XNEW (struct assert_locus_d);
4246   n->bb = dest_bb;
4247   n->e = e;
4248   n->si = si;
4249   n->comp_code = comp_code;
4250   n->val = val;
4251   n->expr = expr;
4252   n->next = NULL;
4253 
4254   if (last_loc)
4255     last_loc->next = n;
4256   else
4257     asserts_for[SSA_NAME_VERSION (name)] = n;
4258 
4259   bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4260 }
4261 
4262 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4263    Extract a suitable test code and value and store them into *CODE_P and
4264    *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4265 
4266    If no extraction was possible, return FALSE, otherwise return TRUE.
4267 
4268    If INVERT is true, then we invert the result stored into *CODE_P.  */
4269 
4270 static bool
4271 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4272 					 tree cond_op0, tree cond_op1,
4273 					 bool invert, enum tree_code *code_p,
4274 					 tree *val_p)
4275 {
4276   enum tree_code comp_code;
4277   tree val;
4278 
4279   /* Otherwise, we have a comparison of the form NAME COMP VAL
4280      or VAL COMP NAME.  */
4281   if (name == cond_op1)
4282     {
4283       /* If the predicate is of the form VAL COMP NAME, flip
4284 	 COMP around because we need to register NAME as the
4285 	 first operand in the predicate.  */
4286       comp_code = swap_tree_comparison (cond_code);
4287       val = cond_op0;
4288     }
4289   else
4290     {
4291       /* The comparison is of the form NAME COMP VAL, so the
4292 	 comparison code remains unchanged.  */
4293       comp_code = cond_code;
4294       val = cond_op1;
4295     }
4296 
4297   /* Invert the comparison code as necessary.  */
4298   if (invert)
4299     comp_code = invert_tree_comparison (comp_code, 0);
4300 
4301   /* VRP does not handle float types.  */
4302   if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4303     return false;
4304 
4305   /* Do not register always-false predicates.
4306      FIXME:  this works around a limitation in fold() when dealing with
4307      enumerations.  Given 'enum { N1, N2 } x;', fold will not
4308      fold 'if (x > N2)' to 'if (0)'.  */
4309   if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4310       && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4311     {
4312       tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4313       tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4314 
4315       if (comp_code == GT_EXPR
4316 	  && (!max
4317 	      || compare_values (val, max) == 0))
4318 	return false;
4319 
4320       if (comp_code == LT_EXPR
4321 	  && (!min
4322 	      || compare_values (val, min) == 0))
4323 	return false;
4324     }
4325   *code_p = comp_code;
4326   *val_p = val;
4327   return true;
4328 }
4329 
4330 /* Try to register an edge assertion for SSA name NAME on edge E for
4331    the condition COND contributing to the conditional jump pointed to by BSI.
4332    Invert the condition COND if INVERT is true.
4333    Return true if an assertion for NAME could be registered.  */
4334 
4335 static bool
4336 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4337 			    enum tree_code cond_code,
4338 			    tree cond_op0, tree cond_op1, bool invert)
4339 {
4340   tree val;
4341   enum tree_code comp_code;
4342   bool retval = false;
4343 
4344   if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4345 						cond_op0,
4346 						cond_op1,
4347 						invert, &comp_code, &val))
4348     return false;
4349 
4350   /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4351      reachable from E.  */
4352   if (live_on_edge (e, name)
4353       && !has_single_use (name))
4354     {
4355       register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4356       retval = true;
4357     }
4358 
4359   /* In the case of NAME <= CST and NAME being defined as
4360      NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4361      and NAME2 <= CST - CST2.  We can do the same for NAME > CST.
4362      This catches range and anti-range tests.  */
4363   if ((comp_code == LE_EXPR
4364        || comp_code == GT_EXPR)
4365       && TREE_CODE (val) == INTEGER_CST
4366       && TYPE_UNSIGNED (TREE_TYPE (val)))
4367     {
4368       gimple def_stmt = SSA_NAME_DEF_STMT (name);
4369       tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4370 
4371       /* Extract CST2 from the (optional) addition.  */
4372       if (is_gimple_assign (def_stmt)
4373 	  && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4374 	{
4375 	  name2 = gimple_assign_rhs1 (def_stmt);
4376 	  cst2 = gimple_assign_rhs2 (def_stmt);
4377 	  if (TREE_CODE (name2) == SSA_NAME
4378 	      && TREE_CODE (cst2) == INTEGER_CST)
4379 	    def_stmt = SSA_NAME_DEF_STMT (name2);
4380 	}
4381 
4382       /* Extract NAME2 from the (optional) sign-changing cast.  */
4383       if (gimple_assign_cast_p (def_stmt))
4384 	{
4385 	  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4386 	      && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4387 	      && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4388 		  == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4389 	    name3 = gimple_assign_rhs1 (def_stmt);
4390 	}
4391 
4392       /* If name3 is used later, create an ASSERT_EXPR for it.  */
4393       if (name3 != NULL_TREE
4394       	  && TREE_CODE (name3) == SSA_NAME
4395 	  && (cst2 == NULL_TREE
4396 	      || TREE_CODE (cst2) == INTEGER_CST)
4397 	  && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4398 	  && live_on_edge (e, name3)
4399 	  && !has_single_use (name3))
4400 	{
4401 	  tree tmp;
4402 
4403 	  /* Build an expression for the range test.  */
4404 	  tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4405 	  if (cst2 != NULL_TREE)
4406 	    tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4407 
4408 	  if (dump_file)
4409 	    {
4410 	      fprintf (dump_file, "Adding assert for ");
4411 	      print_generic_expr (dump_file, name3, 0);
4412 	      fprintf (dump_file, " from ");
4413 	      print_generic_expr (dump_file, tmp, 0);
4414 	      fprintf (dump_file, "\n");
4415 	    }
4416 
4417 	  register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4418 
4419 	  retval = true;
4420 	}
4421 
4422       /* If name2 is used later, create an ASSERT_EXPR for it.  */
4423       if (name2 != NULL_TREE
4424       	  && TREE_CODE (name2) == SSA_NAME
4425 	  && TREE_CODE (cst2) == INTEGER_CST
4426 	  && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4427 	  && live_on_edge (e, name2)
4428 	  && !has_single_use (name2))
4429 	{
4430 	  tree tmp;
4431 
4432 	  /* Build an expression for the range test.  */
4433 	  tmp = name2;
4434 	  if (TREE_TYPE (name) != TREE_TYPE (name2))
4435 	    tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4436 	  if (cst2 != NULL_TREE)
4437 	    tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4438 
4439 	  if (dump_file)
4440 	    {
4441 	      fprintf (dump_file, "Adding assert for ");
4442 	      print_generic_expr (dump_file, name2, 0);
4443 	      fprintf (dump_file, " from ");
4444 	      print_generic_expr (dump_file, tmp, 0);
4445 	      fprintf (dump_file, "\n");
4446 	    }
4447 
4448 	  register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4449 
4450 	  retval = true;
4451 	}
4452     }
4453 
4454   return retval;
4455 }
4456 
4457 /* OP is an operand of a truth value expression which is known to have
4458    a particular value.  Register any asserts for OP and for any
4459    operands in OP's defining statement.
4460 
4461    If CODE is EQ_EXPR, then we want to register OP is zero (false),
4462    if CODE is NE_EXPR, then we want to register OP is nonzero (true).   */
4463 
4464 static bool
4465 register_edge_assert_for_1 (tree op, enum tree_code code,
4466 			    edge e, gimple_stmt_iterator bsi)
4467 {
4468   bool retval = false;
4469   gimple op_def;
4470   tree val;
4471   enum tree_code rhs_code;
4472 
4473   /* We only care about SSA_NAMEs.  */
4474   if (TREE_CODE (op) != SSA_NAME)
4475     return false;
4476 
4477   /* We know that OP will have a zero or nonzero value.  If OP is used
4478      more than once go ahead and register an assert for OP.
4479 
4480      The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4481      it will always be set for OP (because OP is used in a COND_EXPR in
4482      the subgraph).  */
4483   if (!has_single_use (op))
4484     {
4485       val = build_int_cst (TREE_TYPE (op), 0);
4486       register_new_assert_for (op, op, code, val, NULL, e, bsi);
4487       retval = true;
4488     }
4489 
4490   /* Now look at how OP is set.  If it's set from a comparison,
4491      a truth operation or some bit operations, then we may be able
4492      to register information about the operands of that assignment.  */
4493   op_def = SSA_NAME_DEF_STMT (op);
4494   if (gimple_code (op_def) != GIMPLE_ASSIGN)
4495     return retval;
4496 
4497   rhs_code = gimple_assign_rhs_code (op_def);
4498 
4499   if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4500     {
4501       bool invert = (code == EQ_EXPR ? true : false);
4502       tree op0 = gimple_assign_rhs1 (op_def);
4503       tree op1 = gimple_assign_rhs2 (op_def);
4504 
4505       if (TREE_CODE (op0) == SSA_NAME)
4506         retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4507 					      invert);
4508       if (TREE_CODE (op1) == SSA_NAME)
4509         retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4510 					      invert);
4511     }
4512   else if ((code == NE_EXPR
4513 	    && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
4514 	   || (code == EQ_EXPR
4515 	       && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
4516     {
4517       /* Recurse on each operand.  */
4518       retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4519 					    code, e, bsi);
4520       retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4521 					    code, e, bsi);
4522     }
4523   else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
4524 	   && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
4525     {
4526       /* Recurse, flipping CODE.  */
4527       code = invert_tree_comparison (code, false);
4528       retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4529 					    code, e, bsi);
4530     }
4531   else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4532     {
4533       /* Recurse through the copy.  */
4534       retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4535 					    code, e, bsi);
4536     }
4537   else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4538     {
4539       /* Recurse through the type conversion.  */
4540       retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4541 					    code, e, bsi);
4542     }
4543 
4544   return retval;
4545 }
4546 
4547 /* Try to register an edge assertion for SSA name NAME on edge E for
4548    the condition COND contributing to the conditional jump pointed to by SI.
4549    Return true if an assertion for NAME could be registered.  */
4550 
4551 static bool
4552 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4553 			  enum tree_code cond_code, tree cond_op0,
4554 			  tree cond_op1)
4555 {
4556   tree val;
4557   enum tree_code comp_code;
4558   bool retval = false;
4559   bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4560 
4561   /* Do not attempt to infer anything in names that flow through
4562      abnormal edges.  */
4563   if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4564     return false;
4565 
4566   if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4567 						cond_op0, cond_op1,
4568 						is_else_edge,
4569 						&comp_code, &val))
4570     return false;
4571 
4572   /* Register ASSERT_EXPRs for name.  */
4573   retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4574 					cond_op1, is_else_edge);
4575 
4576 
4577   /* If COND is effectively an equality test of an SSA_NAME against
4578      the value zero or one, then we may be able to assert values
4579      for SSA_NAMEs which flow into COND.  */
4580 
4581   /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
4582      statement of NAME we can assert both operands of the BIT_AND_EXPR
4583      have nonzero value.  */
4584   if (((comp_code == EQ_EXPR && integer_onep (val))
4585        || (comp_code == NE_EXPR && integer_zerop (val))))
4586     {
4587       gimple def_stmt = SSA_NAME_DEF_STMT (name);
4588 
4589       if (is_gimple_assign (def_stmt)
4590 	  && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
4591 	{
4592 	  tree op0 = gimple_assign_rhs1 (def_stmt);
4593 	  tree op1 = gimple_assign_rhs2 (def_stmt);
4594 	  retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4595 	  retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4596 	}
4597     }
4598 
4599   /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
4600      statement of NAME we can assert both operands of the BIT_IOR_EXPR
4601      have zero value.  */
4602   if (((comp_code == EQ_EXPR && integer_zerop (val))
4603        || (comp_code == NE_EXPR && integer_onep (val))))
4604     {
4605       gimple def_stmt = SSA_NAME_DEF_STMT (name);
4606 
4607       /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4608 	 necessarily zero value, or if type-precision is one.  */
4609       if (is_gimple_assign (def_stmt)
4610 	  && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
4611 	      && (TYPE_PRECISION (TREE_TYPE (name)) == 1
4612 	          || comp_code == EQ_EXPR)))
4613 	{
4614 	  tree op0 = gimple_assign_rhs1 (def_stmt);
4615 	  tree op1 = gimple_assign_rhs2 (def_stmt);
4616 	  retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4617 	  retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4618 	}
4619     }
4620 
4621   return retval;
4622 }
4623 
4624 
4625 /* Determine whether the outgoing edges of BB should receive an
4626    ASSERT_EXPR for each of the operands of BB's LAST statement.
4627    The last statement of BB must be a COND_EXPR.
4628 
4629    If any of the sub-graphs rooted at BB have an interesting use of
4630    the predicate operands, an assert location node is added to the
4631    list of assertions for the corresponding operands.  */
4632 
4633 static bool
4634 find_conditional_asserts (basic_block bb, gimple last)
4635 {
4636   bool need_assert;
4637   gimple_stmt_iterator bsi;
4638   tree op;
4639   edge_iterator ei;
4640   edge e;
4641   ssa_op_iter iter;
4642 
4643   need_assert = false;
4644   bsi = gsi_for_stmt (last);
4645 
4646   /* Look for uses of the operands in each of the sub-graphs
4647      rooted at BB.  We need to check each of the outgoing edges
4648      separately, so that we know what kind of ASSERT_EXPR to
4649      insert.  */
4650   FOR_EACH_EDGE (e, ei, bb->succs)
4651     {
4652       if (e->dest == bb)
4653 	continue;
4654 
4655       /* Register the necessary assertions for each operand in the
4656 	 conditional predicate.  */
4657       FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4658 	{
4659 	  need_assert |= register_edge_assert_for (op, e, bsi,
4660 						   gimple_cond_code (last),
4661 						   gimple_cond_lhs (last),
4662 						   gimple_cond_rhs (last));
4663 	}
4664     }
4665 
4666   return need_assert;
4667 }
4668 
4669 struct case_info
4670 {
4671   tree expr;
4672   basic_block bb;
4673 };
4674 
4675 /* Compare two case labels sorting first by the destination bb index
4676    and then by the case value.  */
4677 
4678 static int
4679 compare_case_labels (const void *p1, const void *p2)
4680 {
4681   const struct case_info *ci1 = (const struct case_info *) p1;
4682   const struct case_info *ci2 = (const struct case_info *) p2;
4683   int idx1 = ci1->bb->index;
4684   int idx2 = ci2->bb->index;
4685 
4686   if (idx1 < idx2)
4687     return -1;
4688   else if (idx1 == idx2)
4689     {
4690       /* Make sure the default label is first in a group.  */
4691       if (!CASE_LOW (ci1->expr))
4692 	return -1;
4693       else if (!CASE_LOW (ci2->expr))
4694 	return 1;
4695       else
4696 	return tree_int_cst_compare (CASE_LOW (ci1->expr),
4697 				     CASE_LOW (ci2->expr));
4698     }
4699   else
4700     return 1;
4701 }
4702 
4703 /* Determine whether the outgoing edges of BB should receive an
4704    ASSERT_EXPR for each of the operands of BB's LAST statement.
4705    The last statement of BB must be a SWITCH_EXPR.
4706 
4707    If any of the sub-graphs rooted at BB have an interesting use of
4708    the predicate operands, an assert location node is added to the
4709    list of assertions for the corresponding operands.  */
4710 
4711 static bool
4712 find_switch_asserts (basic_block bb, gimple last)
4713 {
4714   bool need_assert;
4715   gimple_stmt_iterator bsi;
4716   tree op;
4717   edge e;
4718   struct case_info *ci;
4719   size_t n = gimple_switch_num_labels (last);
4720 #if GCC_VERSION >= 4000
4721   unsigned int idx;
4722 #else
4723   /* Work around GCC 3.4 bug (PR 37086).  */
4724   volatile unsigned int idx;
4725 #endif
4726 
4727   need_assert = false;
4728   bsi = gsi_for_stmt (last);
4729   op = gimple_switch_index (last);
4730   if (TREE_CODE (op) != SSA_NAME)
4731     return false;
4732 
4733   /* Build a vector of case labels sorted by destination label.  */
4734   ci = XNEWVEC (struct case_info, n);
4735   for (idx = 0; idx < n; ++idx)
4736     {
4737       ci[idx].expr = gimple_switch_label (last, idx);
4738       ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
4739     }
4740   qsort (ci, n, sizeof (struct case_info), compare_case_labels);
4741 
4742   for (idx = 0; idx < n; ++idx)
4743     {
4744       tree min, max;
4745       tree cl = ci[idx].expr;
4746       basic_block cbb = ci[idx].bb;
4747 
4748       min = CASE_LOW (cl);
4749       max = CASE_HIGH (cl);
4750 
4751       /* If there are multiple case labels with the same destination
4752 	 we need to combine them to a single value range for the edge.  */
4753       if (idx + 1 < n && cbb == ci[idx + 1].bb)
4754 	{
4755 	  /* Skip labels until the last of the group.  */
4756 	  do {
4757 	    ++idx;
4758 	  } while (idx < n && cbb == ci[idx].bb);
4759 	  --idx;
4760 
4761 	  /* Pick up the maximum of the case label range.  */
4762 	  if (CASE_HIGH (ci[idx].expr))
4763 	    max = CASE_HIGH (ci[idx].expr);
4764 	  else
4765 	    max = CASE_LOW (ci[idx].expr);
4766 	}
4767 
4768       /* Nothing to do if the range includes the default label until we
4769 	 can register anti-ranges.  */
4770       if (min == NULL_TREE)
4771 	continue;
4772 
4773       /* Find the edge to register the assert expr on.  */
4774       e = find_edge (bb, cbb);
4775 
4776       /* Register the necessary assertions for the operand in the
4777 	 SWITCH_EXPR.  */
4778       need_assert |= register_edge_assert_for (op, e, bsi,
4779 					       max ? GE_EXPR : EQ_EXPR,
4780 					       op,
4781 					       fold_convert (TREE_TYPE (op),
4782 							     min));
4783       if (max)
4784 	{
4785 	  need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4786 						   op,
4787 						   fold_convert (TREE_TYPE (op),
4788 								 max));
4789 	}
4790     }
4791 
4792   XDELETEVEC (ci);
4793   return need_assert;
4794 }
4795 
4796 
4797 /* Traverse all the statements in block BB looking for statements that
4798    may generate useful assertions for the SSA names in their operand.
4799    If a statement produces a useful assertion A for name N_i, then the
4800    list of assertions already generated for N_i is scanned to
4801    determine if A is actually needed.
4802 
4803    If N_i already had the assertion A at a location dominating the
4804    current location, then nothing needs to be done.  Otherwise, the
4805    new location for A is recorded instead.
4806 
4807    1- For every statement S in BB, all the variables used by S are
4808       added to bitmap FOUND_IN_SUBGRAPH.
4809 
4810    2- If statement S uses an operand N in a way that exposes a known
4811       value range for N, then if N was not already generated by an
4812       ASSERT_EXPR, create a new assert location for N.  For instance,
4813       if N is a pointer and the statement dereferences it, we can
4814       assume that N is not NULL.
4815 
4816    3- COND_EXPRs are a special case of #2.  We can derive range
4817       information from the predicate but need to insert different
4818       ASSERT_EXPRs for each of the sub-graphs rooted at the
4819       conditional block.  If the last statement of BB is a conditional
4820       expression of the form 'X op Y', then
4821 
4822       a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4823 
4824       b) If the conditional is the only entry point to the sub-graph
4825 	 corresponding to the THEN_CLAUSE, recurse into it.  On
4826 	 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4827 	 an ASSERT_EXPR is added for the corresponding variable.
4828 
4829       c) Repeat step (b) on the ELSE_CLAUSE.
4830 
4831       d) Mark X and Y in FOUND_IN_SUBGRAPH.
4832 
4833       For instance,
4834 
4835 	    if (a == 9)
4836 	      b = a;
4837 	    else
4838 	      b = c + 1;
4839 
4840       In this case, an assertion on the THEN clause is useful to
4841       determine that 'a' is always 9 on that edge.  However, an assertion
4842       on the ELSE clause would be unnecessary.
4843 
4844    4- If BB does not end in a conditional expression, then we recurse
4845       into BB's dominator children.
4846 
4847    At the end of the recursive traversal, every SSA name will have a
4848    list of locations where ASSERT_EXPRs should be added.  When a new
4849    location for name N is found, it is registered by calling
4850    register_new_assert_for.  That function keeps track of all the
4851    registered assertions to prevent adding unnecessary assertions.
4852    For instance, if a pointer P_4 is dereferenced more than once in a
4853    dominator tree, only the location dominating all the dereference of
4854    P_4 will receive an ASSERT_EXPR.
4855 
4856    If this function returns true, then it means that there are names
4857    for which we need to generate ASSERT_EXPRs.  Those assertions are
4858    inserted by process_assert_insertions.  */
4859 
4860 static bool
4861 find_assert_locations_1 (basic_block bb, sbitmap live)
4862 {
4863   gimple_stmt_iterator si;
4864   gimple last;
4865   gimple phi;
4866   bool need_assert;
4867 
4868   need_assert = false;
4869   last = last_stmt (bb);
4870 
4871   /* If BB's last statement is a conditional statement involving integer
4872      operands, determine if we need to add ASSERT_EXPRs.  */
4873   if (last
4874       && gimple_code (last) == GIMPLE_COND
4875       && !fp_predicate (last)
4876       && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4877     need_assert |= find_conditional_asserts (bb, last);
4878 
4879   /* If BB's last statement is a switch statement involving integer
4880      operands, determine if we need to add ASSERT_EXPRs.  */
4881   if (last
4882       && gimple_code (last) == GIMPLE_SWITCH
4883       && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4884     need_assert |= find_switch_asserts (bb, last);
4885 
4886   /* Traverse all the statements in BB marking used names and looking
4887      for statements that may infer assertions for their used operands.  */
4888   for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4889     {
4890       gimple stmt;
4891       tree op;
4892       ssa_op_iter i;
4893 
4894       stmt = gsi_stmt (si);
4895 
4896       if (is_gimple_debug (stmt))
4897 	continue;
4898 
4899       /* See if we can derive an assertion for any of STMT's operands.  */
4900       FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4901 	{
4902 	  tree value;
4903 	  enum tree_code comp_code;
4904 
4905 	  /* Mark OP in our live bitmap.  */
4906 	  SET_BIT (live, SSA_NAME_VERSION (op));
4907 
4908 	  /* If OP is used in such a way that we can infer a value
4909 	     range for it, and we don't find a previous assertion for
4910 	     it, create a new assertion location node for OP.  */
4911 	  if (infer_value_range (stmt, op, &comp_code, &value))
4912 	    {
4913 	      /* If we are able to infer a nonzero value range for OP,
4914 		 then walk backwards through the use-def chain to see if OP
4915 		 was set via a typecast.
4916 
4917 		 If so, then we can also infer a nonzero value range
4918 		 for the operand of the NOP_EXPR.  */
4919 	      if (comp_code == NE_EXPR && integer_zerop (value))
4920 		{
4921 		  tree t = op;
4922 		  gimple def_stmt = SSA_NAME_DEF_STMT (t);
4923 
4924 		  while (is_gimple_assign (def_stmt)
4925 			 && gimple_assign_rhs_code (def_stmt)  == NOP_EXPR
4926 			 && TREE_CODE
4927 			     (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4928 			 && POINTER_TYPE_P
4929 			     (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4930 		    {
4931 		      t = gimple_assign_rhs1 (def_stmt);
4932 		      def_stmt = SSA_NAME_DEF_STMT (t);
4933 
4934 		      /* Note we want to register the assert for the
4935 			 operand of the NOP_EXPR after SI, not after the
4936 			 conversion.  */
4937 		      if (! has_single_use (t))
4938 			{
4939 			  register_new_assert_for (t, t, comp_code, value,
4940 						   bb, NULL, si);
4941 			  need_assert = true;
4942 			}
4943 		    }
4944 		}
4945 
4946 	      /* If OP is used only once, namely in this STMT, don't
4947 		 bother creating an ASSERT_EXPR for it.  Such an
4948 		 ASSERT_EXPR would do nothing but increase compile time.  */
4949 	      if (!has_single_use (op))
4950 		{
4951 		  register_new_assert_for (op, op, comp_code, value,
4952 					   bb, NULL, si);
4953 		  need_assert = true;
4954 		}
4955 	    }
4956 	}
4957     }
4958 
4959   /* Traverse all PHI nodes in BB marking used operands.  */
4960   for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4961     {
4962       use_operand_p arg_p;
4963       ssa_op_iter i;
4964       phi = gsi_stmt (si);
4965 
4966       FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4967 	{
4968 	  tree arg = USE_FROM_PTR (arg_p);
4969 	  if (TREE_CODE (arg) == SSA_NAME)
4970 	    SET_BIT (live, SSA_NAME_VERSION (arg));
4971 	}
4972     }
4973 
4974   return need_assert;
4975 }
4976 
4977 /* Do an RPO walk over the function computing SSA name liveness
4978    on-the-fly and deciding on assert expressions to insert.
4979    Returns true if there are assert expressions to be inserted.  */
4980 
4981 static bool
4982 find_assert_locations (void)
4983 {
4984   int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4985   int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4986   int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4987   int rpo_cnt, i;
4988   bool need_asserts;
4989 
4990   live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4991   rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4992   for (i = 0; i < rpo_cnt; ++i)
4993     bb_rpo[rpo[i]] = i;
4994 
4995   need_asserts = false;
4996   for (i = rpo_cnt-1; i >= 0; --i)
4997     {
4998       basic_block bb = BASIC_BLOCK (rpo[i]);
4999       edge e;
5000       edge_iterator ei;
5001 
5002       if (!live[rpo[i]])
5003 	{
5004 	  live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5005 	  sbitmap_zero (live[rpo[i]]);
5006 	}
5007 
5008       /* Process BB and update the live information with uses in
5009          this block.  */
5010       need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5011 
5012       /* Merge liveness into the predecessor blocks and free it.  */
5013       if (!sbitmap_empty_p (live[rpo[i]]))
5014 	{
5015 	  int pred_rpo = i;
5016 	  FOR_EACH_EDGE (e, ei, bb->preds)
5017 	    {
5018 	      int pred = e->src->index;
5019 	      if (e->flags & EDGE_DFS_BACK)
5020 		continue;
5021 
5022 	      if (!live[pred])
5023 		{
5024 		  live[pred] = sbitmap_alloc (num_ssa_names);
5025 		  sbitmap_zero (live[pred]);
5026 		}
5027 	      sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5028 
5029 	      if (bb_rpo[pred] < pred_rpo)
5030 		pred_rpo = bb_rpo[pred];
5031 	    }
5032 
5033 	  /* Record the RPO number of the last visited block that needs
5034 	     live information from this block.  */
5035 	  last_rpo[rpo[i]] = pred_rpo;
5036 	}
5037       else
5038 	{
5039 	  sbitmap_free (live[rpo[i]]);
5040 	  live[rpo[i]] = NULL;
5041 	}
5042 
5043       /* We can free all successors live bitmaps if all their
5044          predecessors have been visited already.  */
5045       FOR_EACH_EDGE (e, ei, bb->succs)
5046 	if (last_rpo[e->dest->index] == i
5047 	    && live[e->dest->index])
5048 	  {
5049 	    sbitmap_free (live[e->dest->index]);
5050 	    live[e->dest->index] = NULL;
5051 	  }
5052     }
5053 
5054   XDELETEVEC (rpo);
5055   XDELETEVEC (bb_rpo);
5056   XDELETEVEC (last_rpo);
5057   for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5058     if (live[i])
5059       sbitmap_free (live[i]);
5060   XDELETEVEC (live);
5061 
5062   return need_asserts;
5063 }
5064 
5065 /* Create an ASSERT_EXPR for NAME and insert it in the location
5066    indicated by LOC.  Return true if we made any edge insertions.  */
5067 
5068 static bool
5069 process_assert_insertions_for (tree name, assert_locus_t loc)
5070 {
5071   /* Build the comparison expression NAME_i COMP_CODE VAL.  */
5072   gimple stmt;
5073   tree cond;
5074   gimple assert_stmt;
5075   edge_iterator ei;
5076   edge e;
5077 
5078   /* If we have X <=> X do not insert an assert expr for that.  */
5079   if (loc->expr == loc->val)
5080     return false;
5081 
5082   cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5083   assert_stmt = build_assert_expr_for (cond, name);
5084   if (loc->e)
5085     {
5086       /* We have been asked to insert the assertion on an edge.  This
5087 	 is used only by COND_EXPR and SWITCH_EXPR assertions.  */
5088       gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5089 			   || (gimple_code (gsi_stmt (loc->si))
5090 			       == GIMPLE_SWITCH));
5091 
5092       gsi_insert_on_edge (loc->e, assert_stmt);
5093       return true;
5094     }
5095 
5096   /* Otherwise, we can insert right after LOC->SI iff the
5097      statement must not be the last statement in the block.  */
5098   stmt = gsi_stmt (loc->si);
5099   if (!stmt_ends_bb_p (stmt))
5100     {
5101       gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5102       return false;
5103     }
5104 
5105   /* If STMT must be the last statement in BB, we can only insert new
5106      assertions on the non-abnormal edge out of BB.  Note that since
5107      STMT is not control flow, there may only be one non-abnormal edge
5108      out of BB.  */
5109   FOR_EACH_EDGE (e, ei, loc->bb->succs)
5110     if (!(e->flags & EDGE_ABNORMAL))
5111       {
5112 	gsi_insert_on_edge (e, assert_stmt);
5113 	return true;
5114       }
5115 
5116   gcc_unreachable ();
5117 }
5118 
5119 
5120 /* Process all the insertions registered for every name N_i registered
5121    in NEED_ASSERT_FOR.  The list of assertions to be inserted are
5122    found in ASSERTS_FOR[i].  */
5123 
5124 static void
5125 process_assert_insertions (void)
5126 {
5127   unsigned i;
5128   bitmap_iterator bi;
5129   bool update_edges_p = false;
5130   int num_asserts = 0;
5131 
5132   if (dump_file && (dump_flags & TDF_DETAILS))
5133     dump_all_asserts (dump_file);
5134 
5135   EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5136     {
5137       assert_locus_t loc = asserts_for[i];
5138       gcc_assert (loc);
5139 
5140       while (loc)
5141 	{
5142 	  assert_locus_t next = loc->next;
5143 	  update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5144 	  free (loc);
5145 	  loc = next;
5146 	  num_asserts++;
5147 	}
5148     }
5149 
5150   if (update_edges_p)
5151     gsi_commit_edge_inserts ();
5152 
5153   statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5154 			    num_asserts);
5155 }
5156 
5157 
5158 /* Traverse the flowgraph looking for conditional jumps to insert range
5159    expressions.  These range expressions are meant to provide information
5160    to optimizations that need to reason in terms of value ranges.  They
5161    will not be expanded into RTL.  For instance, given:
5162 
5163    x = ...
5164    y = ...
5165    if (x < y)
5166      y = x - 2;
5167    else
5168      x = y + 3;
5169 
5170    this pass will transform the code into:
5171 
5172    x = ...
5173    y = ...
5174    if (x < y)
5175     {
5176       x = ASSERT_EXPR <x, x < y>
5177       y = x - 2
5178     }
5179    else
5180     {
5181       y = ASSERT_EXPR <y, x <= y>
5182       x = y + 3
5183     }
5184 
5185    The idea is that once copy and constant propagation have run, other
5186    optimizations will be able to determine what ranges of values can 'x'
5187    take in different paths of the code, simply by checking the reaching
5188    definition of 'x'.  */
5189 
5190 static void
5191 insert_range_assertions (void)
5192 {
5193   need_assert_for = BITMAP_ALLOC (NULL);
5194   asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5195 
5196   calculate_dominance_info (CDI_DOMINATORS);
5197 
5198   if (find_assert_locations ())
5199     {
5200       process_assert_insertions ();
5201       update_ssa (TODO_update_ssa_no_phi);
5202     }
5203 
5204   if (dump_file && (dump_flags & TDF_DETAILS))
5205     {
5206       fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5207       dump_function_to_file (current_function_decl, dump_file, dump_flags);
5208     }
5209 
5210   free (asserts_for);
5211   BITMAP_FREE (need_assert_for);
5212 }
5213 
5214 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5215    and "struct" hacks. If VRP can determine that the
5216    array subscript is a constant, check if it is outside valid
5217    range. If the array subscript is a RANGE, warn if it is
5218    non-overlapping with valid range.
5219    IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR.  */
5220 
5221 static void
5222 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5223 {
5224   value_range_t* vr = NULL;
5225   tree low_sub, up_sub;
5226   tree low_bound, up_bound, up_bound_p1;
5227   tree base;
5228 
5229   if (TREE_NO_WARNING (ref))
5230     return;
5231 
5232   low_sub = up_sub = TREE_OPERAND (ref, 1);
5233   up_bound = array_ref_up_bound (ref);
5234 
5235   /* Can not check flexible arrays.  */
5236   if (!up_bound
5237       || TREE_CODE (up_bound) != INTEGER_CST)
5238     return;
5239 
5240   /* Accesses to trailing arrays via pointers may access storage
5241      beyond the types array bounds.  */
5242   base = get_base_address (ref);
5243   if (base && TREE_CODE (base) == MEM_REF)
5244     {
5245       tree cref, next = NULL_TREE;
5246 
5247       if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5248 	return;
5249 
5250       cref = TREE_OPERAND (ref, 0);
5251       if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5252 	for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5253 	     next && TREE_CODE (next) != FIELD_DECL;
5254 	     next = DECL_CHAIN (next))
5255 	  ;
5256 
5257       /* If this is the last field in a struct type or a field in a
5258 	 union type do not warn.  */
5259       if (!next)
5260 	return;
5261     }
5262 
5263   low_bound = array_ref_low_bound (ref);
5264   up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5265 
5266   if (TREE_CODE (low_sub) == SSA_NAME)
5267     {
5268       vr = get_value_range (low_sub);
5269       if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5270         {
5271           low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5272           up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5273         }
5274     }
5275 
5276   if (vr && vr->type == VR_ANTI_RANGE)
5277     {
5278       if (TREE_CODE (up_sub) == INTEGER_CST
5279           && tree_int_cst_lt (up_bound, up_sub)
5280           && TREE_CODE (low_sub) == INTEGER_CST
5281           && tree_int_cst_lt (low_sub, low_bound))
5282         {
5283           warning_at (location, OPT_Warray_bounds,
5284 		      "array subscript is outside array bounds");
5285           TREE_NO_WARNING (ref) = 1;
5286         }
5287     }
5288   else if (TREE_CODE (up_sub) == INTEGER_CST
5289 	   && (ignore_off_by_one
5290 	       ? (tree_int_cst_lt (up_bound, up_sub)
5291 		  && !tree_int_cst_equal (up_bound_p1, up_sub))
5292 	       : (tree_int_cst_lt (up_bound, up_sub)
5293 		  || tree_int_cst_equal (up_bound_p1, up_sub))))
5294     {
5295       warning_at (location, OPT_Warray_bounds,
5296 		  "array subscript is above array bounds");
5297       TREE_NO_WARNING (ref) = 1;
5298     }
5299   else if (TREE_CODE (low_sub) == INTEGER_CST
5300            && tree_int_cst_lt (low_sub, low_bound))
5301     {
5302       warning_at (location, OPT_Warray_bounds,
5303 		  "array subscript is below array bounds");
5304       TREE_NO_WARNING (ref) = 1;
5305     }
5306 }
5307 
5308 /* Searches if the expr T, located at LOCATION computes
5309    address of an ARRAY_REF, and call check_array_ref on it.  */
5310 
5311 static void
5312 search_for_addr_array (tree t, location_t location)
5313 {
5314   while (TREE_CODE (t) == SSA_NAME)
5315     {
5316       gimple g = SSA_NAME_DEF_STMT (t);
5317 
5318       if (gimple_code (g) != GIMPLE_ASSIGN)
5319 	return;
5320 
5321       if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5322 	  != GIMPLE_SINGLE_RHS)
5323 	return;
5324 
5325       t = gimple_assign_rhs1 (g);
5326     }
5327 
5328 
5329   /* We are only interested in addresses of ARRAY_REF's.  */
5330   if (TREE_CODE (t) != ADDR_EXPR)
5331     return;
5332 
5333   /* Check each ARRAY_REFs in the reference chain. */
5334   do
5335     {
5336       if (TREE_CODE (t) == ARRAY_REF)
5337 	check_array_ref (location, t, true /*ignore_off_by_one*/);
5338 
5339       t = TREE_OPERAND (t, 0);
5340     }
5341   while (handled_component_p (t));
5342 
5343   if (TREE_CODE (t) == MEM_REF
5344       && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5345       && !TREE_NO_WARNING (t))
5346     {
5347       tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5348       tree low_bound, up_bound, el_sz;
5349       double_int idx;
5350       if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5351 	  || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5352 	  || !TYPE_DOMAIN (TREE_TYPE (tem)))
5353 	return;
5354 
5355       low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5356       up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5357       el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5358       if (!low_bound
5359 	  || TREE_CODE (low_bound) != INTEGER_CST
5360 	  || !up_bound
5361 	  || TREE_CODE (up_bound) != INTEGER_CST
5362 	  || !el_sz
5363 	  || TREE_CODE (el_sz) != INTEGER_CST)
5364 	return;
5365 
5366       idx = mem_ref_offset (t);
5367       idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5368       if (double_int_scmp (idx, double_int_zero) < 0)
5369 	{
5370 	  warning_at (location, OPT_Warray_bounds,
5371 		      "array subscript is below array bounds");
5372 	  TREE_NO_WARNING (t) = 1;
5373 	}
5374       else if (double_int_scmp (idx,
5375 				double_int_add
5376 				  (double_int_add
5377 				    (tree_to_double_int (up_bound),
5378 				     double_int_neg
5379 				       (tree_to_double_int (low_bound))),
5380 				    double_int_one)) > 0)
5381 	{
5382 	  warning_at (location, OPT_Warray_bounds,
5383 		      "array subscript is above array bounds");
5384 	  TREE_NO_WARNING (t) = 1;
5385 	}
5386     }
5387 }
5388 
5389 /* walk_tree() callback that checks if *TP is
5390    an ARRAY_REF inside an ADDR_EXPR (in which an array
5391    subscript one outside the valid range is allowed). Call
5392    check_array_ref for each ARRAY_REF found. The location is
5393    passed in DATA.  */
5394 
5395 static tree
5396 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5397 {
5398   tree t = *tp;
5399   struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5400   location_t location;
5401 
5402   if (EXPR_HAS_LOCATION (t))
5403     location = EXPR_LOCATION (t);
5404   else
5405     {
5406       location_t *locp = (location_t *) wi->info;
5407       location = *locp;
5408     }
5409 
5410   *walk_subtree = TRUE;
5411 
5412   if (TREE_CODE (t) == ARRAY_REF)
5413     check_array_ref (location, t, false /*ignore_off_by_one*/);
5414 
5415   if (TREE_CODE (t) == MEM_REF
5416       || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5417     search_for_addr_array (TREE_OPERAND (t, 0), location);
5418 
5419   if (TREE_CODE (t) == ADDR_EXPR)
5420     *walk_subtree = FALSE;
5421 
5422   return NULL_TREE;
5423 }
5424 
5425 /* Walk over all statements of all reachable BBs and call check_array_bounds
5426    on them.  */
5427 
5428 static void
5429 check_all_array_refs (void)
5430 {
5431   basic_block bb;
5432   gimple_stmt_iterator si;
5433 
5434   FOR_EACH_BB (bb)
5435     {
5436       edge_iterator ei;
5437       edge e;
5438       bool executable = false;
5439 
5440       /* Skip blocks that were found to be unreachable.  */
5441       FOR_EACH_EDGE (e, ei, bb->preds)
5442 	executable |= !!(e->flags & EDGE_EXECUTABLE);
5443       if (!executable)
5444 	continue;
5445 
5446       for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5447 	{
5448 	  gimple stmt = gsi_stmt (si);
5449 	  struct walk_stmt_info wi;
5450 	  if (!gimple_has_location (stmt))
5451 	    continue;
5452 
5453 	  if (is_gimple_call (stmt))
5454 	    {
5455 	      size_t i;
5456 	      size_t n = gimple_call_num_args (stmt);
5457 	      for (i = 0; i < n; i++)
5458 		{
5459 		  tree arg = gimple_call_arg (stmt, i);
5460 		  search_for_addr_array (arg, gimple_location (stmt));
5461 		}
5462 	    }
5463 	  else
5464 	    {
5465 	      memset (&wi, 0, sizeof (wi));
5466 	      wi.info = CONST_CAST (void *, (const void *)
5467 				    gimple_location_ptr (stmt));
5468 
5469 	      walk_gimple_op (gsi_stmt (si),
5470 			      check_array_bounds,
5471 			      &wi);
5472 	    }
5473 	}
5474     }
5475 }
5476 
5477 /* Convert range assertion expressions into the implied copies and
5478    copy propagate away the copies.  Doing the trivial copy propagation
5479    here avoids the need to run the full copy propagation pass after
5480    VRP.
5481 
5482    FIXME, this will eventually lead to copy propagation removing the
5483    names that had useful range information attached to them.  For
5484    instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5485    then N_i will have the range [3, +INF].
5486 
5487    However, by converting the assertion into the implied copy
5488    operation N_i = N_j, we will then copy-propagate N_j into the uses
5489    of N_i and lose the range information.  We may want to hold on to
5490    ASSERT_EXPRs a little while longer as the ranges could be used in
5491    things like jump threading.
5492 
5493    The problem with keeping ASSERT_EXPRs around is that passes after
5494    VRP need to handle them appropriately.
5495 
5496    Another approach would be to make the range information a first
5497    class property of the SSA_NAME so that it can be queried from
5498    any pass.  This is made somewhat more complex by the need for
5499    multiple ranges to be associated with one SSA_NAME.  */
5500 
5501 static void
5502 remove_range_assertions (void)
5503 {
5504   basic_block bb;
5505   gimple_stmt_iterator si;
5506 
5507   /* Note that the BSI iterator bump happens at the bottom of the
5508      loop and no bump is necessary if we're removing the statement
5509      referenced by the current BSI.  */
5510   FOR_EACH_BB (bb)
5511     for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5512       {
5513 	gimple stmt = gsi_stmt (si);
5514 	gimple use_stmt;
5515 
5516 	if (is_gimple_assign (stmt)
5517 	    && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5518 	  {
5519 	    tree rhs = gimple_assign_rhs1 (stmt);
5520 	    tree var;
5521 	    tree cond = fold (ASSERT_EXPR_COND (rhs));
5522 	    use_operand_p use_p;
5523 	    imm_use_iterator iter;
5524 
5525 	    gcc_assert (cond != boolean_false_node);
5526 
5527 	    /* Propagate the RHS into every use of the LHS.  */
5528 	    var = ASSERT_EXPR_VAR (rhs);
5529 	    FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5530 				   gimple_assign_lhs (stmt))
5531 	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5532 		{
5533 		  SET_USE (use_p, var);
5534 		  gcc_assert (TREE_CODE (var) == SSA_NAME);
5535 		}
5536 
5537 	    /* And finally, remove the copy, it is not needed.  */
5538 	    gsi_remove (&si, true);
5539 	    release_defs (stmt);
5540 	  }
5541 	else
5542 	  gsi_next (&si);
5543       }
5544 }
5545 
5546 
5547 /* Return true if STMT is interesting for VRP.  */
5548 
5549 static bool
5550 stmt_interesting_for_vrp (gimple stmt)
5551 {
5552   if (gimple_code (stmt) == GIMPLE_PHI
5553       && is_gimple_reg (gimple_phi_result (stmt))
5554       && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5555 	  || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5556     return true;
5557   else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5558     {
5559       tree lhs = gimple_get_lhs (stmt);
5560 
5561       /* In general, assignments with virtual operands are not useful
5562 	 for deriving ranges, with the obvious exception of calls to
5563 	 builtin functions.  */
5564       if (lhs && TREE_CODE (lhs) == SSA_NAME
5565 	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5566 	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
5567 	  && ((is_gimple_call (stmt)
5568 	       && gimple_call_fndecl (stmt) != NULL_TREE
5569 	       && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
5570 	      || !gimple_vuse (stmt)))
5571 	return true;
5572     }
5573   else if (gimple_code (stmt) == GIMPLE_COND
5574 	   || gimple_code (stmt) == GIMPLE_SWITCH)
5575     return true;
5576 
5577   return false;
5578 }
5579 
5580 
5581 /* Initialize local data structures for VRP.  */
5582 
5583 static void
5584 vrp_initialize (void)
5585 {
5586   basic_block bb;
5587 
5588   values_propagated = false;
5589   num_vr_values = num_ssa_names;
5590   vr_value = XCNEWVEC (value_range_t *, num_vr_values);
5591   vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5592 
5593   FOR_EACH_BB (bb)
5594     {
5595       gimple_stmt_iterator si;
5596 
5597       for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5598 	{
5599 	  gimple phi = gsi_stmt (si);
5600 	  if (!stmt_interesting_for_vrp (phi))
5601 	    {
5602 	      tree lhs = PHI_RESULT (phi);
5603 	      set_value_range_to_varying (get_value_range (lhs));
5604 	      prop_set_simulate_again (phi, false);
5605 	    }
5606 	  else
5607 	    prop_set_simulate_again (phi, true);
5608 	}
5609 
5610       for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5611         {
5612 	  gimple stmt = gsi_stmt (si);
5613 
5614  	  /* If the statement is a control insn, then we do not
5615  	     want to avoid simulating the statement once.  Failure
5616  	     to do so means that those edges will never get added.  */
5617 	  if (stmt_ends_bb_p (stmt))
5618 	    prop_set_simulate_again (stmt, true);
5619 	  else if (!stmt_interesting_for_vrp (stmt))
5620 	    {
5621 	      ssa_op_iter i;
5622 	      tree def;
5623 	      FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5624 		set_value_range_to_varying (get_value_range (def));
5625 	      prop_set_simulate_again (stmt, false);
5626 	    }
5627 	  else
5628 	    prop_set_simulate_again (stmt, true);
5629 	}
5630     }
5631 }
5632 
5633 /* Return the singleton value-range for NAME or NAME.  */
5634 
5635 static inline tree
5636 vrp_valueize (tree name)
5637 {
5638   if (TREE_CODE (name) == SSA_NAME)
5639     {
5640       value_range_t *vr = get_value_range (name);
5641       if (vr->type == VR_RANGE
5642 	  && (vr->min == vr->max
5643 	      || operand_equal_p (vr->min, vr->max, 0)))
5644 	return vr->min;
5645     }
5646   return name;
5647 }
5648 
5649 /* Visit assignment STMT.  If it produces an interesting range, record
5650    the SSA name in *OUTPUT_P.  */
5651 
5652 static enum ssa_prop_result
5653 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5654 {
5655   tree def, lhs;
5656   ssa_op_iter iter;
5657   enum gimple_code code = gimple_code (stmt);
5658   lhs = gimple_get_lhs (stmt);
5659 
5660   /* We only keep track of ranges in integral and pointer types.  */
5661   if (TREE_CODE (lhs) == SSA_NAME
5662       && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5663 	   /* It is valid to have NULL MIN/MAX values on a type.  See
5664 	      build_range_type.  */
5665 	   && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5666 	   && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5667 	  || POINTER_TYPE_P (TREE_TYPE (lhs))))
5668     {
5669       value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5670 
5671       /* Try folding the statement to a constant first.  */
5672       tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
5673       if (tem && !is_overflow_infinity (tem))
5674 	set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
5675       /* Then dispatch to value-range extracting functions.  */
5676       else if (code == GIMPLE_CALL)
5677 	extract_range_basic (&new_vr, stmt);
5678       else
5679 	extract_range_from_assignment (&new_vr, stmt);
5680 
5681       if (update_value_range (lhs, &new_vr))
5682 	{
5683 	  *output_p = lhs;
5684 
5685 	  if (dump_file && (dump_flags & TDF_DETAILS))
5686 	    {
5687 	      fprintf (dump_file, "Found new range for ");
5688 	      print_generic_expr (dump_file, lhs, 0);
5689 	      fprintf (dump_file, ": ");
5690 	      dump_value_range (dump_file, &new_vr);
5691 	      fprintf (dump_file, "\n\n");
5692 	    }
5693 
5694 	  if (new_vr.type == VR_VARYING)
5695 	    return SSA_PROP_VARYING;
5696 
5697 	  return SSA_PROP_INTERESTING;
5698 	}
5699 
5700       return SSA_PROP_NOT_INTERESTING;
5701     }
5702 
5703   /* Every other statement produces no useful ranges.  */
5704   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5705     set_value_range_to_varying (get_value_range (def));
5706 
5707   return SSA_PROP_VARYING;
5708 }
5709 
5710 /* Helper that gets the value range of the SSA_NAME with version I
5711    or a symbolic range containing the SSA_NAME only if the value range
5712    is varying or undefined.  */
5713 
5714 static inline value_range_t
5715 get_vr_for_comparison (int i)
5716 {
5717   value_range_t vr = *get_value_range (ssa_name (i));
5718 
5719   /* If name N_i does not have a valid range, use N_i as its own
5720      range.  This allows us to compare against names that may
5721      have N_i in their ranges.  */
5722   if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5723     {
5724       vr.type = VR_RANGE;
5725       vr.min = ssa_name (i);
5726       vr.max = ssa_name (i);
5727     }
5728 
5729   return vr;
5730 }
5731 
5732 /* Compare all the value ranges for names equivalent to VAR with VAL
5733    using comparison code COMP.  Return the same value returned by
5734    compare_range_with_value, including the setting of
5735    *STRICT_OVERFLOW_P.  */
5736 
5737 static tree
5738 compare_name_with_value (enum tree_code comp, tree var, tree val,
5739 			 bool *strict_overflow_p)
5740 {
5741   bitmap_iterator bi;
5742   unsigned i;
5743   bitmap e;
5744   tree retval, t;
5745   int used_strict_overflow;
5746   bool sop;
5747   value_range_t equiv_vr;
5748 
5749   /* Get the set of equivalences for VAR.  */
5750   e = get_value_range (var)->equiv;
5751 
5752   /* Start at -1.  Set it to 0 if we do a comparison without relying
5753      on overflow, or 1 if all comparisons rely on overflow.  */
5754   used_strict_overflow = -1;
5755 
5756   /* Compare vars' value range with val.  */
5757   equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5758   sop = false;
5759   retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5760   if (retval)
5761     used_strict_overflow = sop ? 1 : 0;
5762 
5763   /* If the equiv set is empty we have done all work we need to do.  */
5764   if (e == NULL)
5765     {
5766       if (retval
5767 	  && used_strict_overflow > 0)
5768 	*strict_overflow_p = true;
5769       return retval;
5770     }
5771 
5772   EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5773     {
5774       equiv_vr = get_vr_for_comparison (i);
5775       sop = false;
5776       t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5777       if (t)
5778 	{
5779 	  /* If we get different answers from different members
5780 	     of the equivalence set this check must be in a dead
5781 	     code region.  Folding it to a trap representation
5782 	     would be correct here.  For now just return don't-know.  */
5783 	  if (retval != NULL
5784 	      && t != retval)
5785 	    {
5786 	      retval = NULL_TREE;
5787 	      break;
5788 	    }
5789 	  retval = t;
5790 
5791 	  if (!sop)
5792 	    used_strict_overflow = 0;
5793 	  else if (used_strict_overflow < 0)
5794 	    used_strict_overflow = 1;
5795 	}
5796     }
5797 
5798   if (retval
5799       && used_strict_overflow > 0)
5800     *strict_overflow_p = true;
5801 
5802   return retval;
5803 }
5804 
5805 
5806 /* Given a comparison code COMP and names N1 and N2, compare all the
5807    ranges equivalent to N1 against all the ranges equivalent to N2
5808    to determine the value of N1 COMP N2.  Return the same value
5809    returned by compare_ranges.  Set *STRICT_OVERFLOW_P to indicate
5810    whether we relied on an overflow infinity in the comparison.  */
5811 
5812 
5813 static tree
5814 compare_names (enum tree_code comp, tree n1, tree n2,
5815 	       bool *strict_overflow_p)
5816 {
5817   tree t, retval;
5818   bitmap e1, e2;
5819   bitmap_iterator bi1, bi2;
5820   unsigned i1, i2;
5821   int used_strict_overflow;
5822   static bitmap_obstack *s_obstack = NULL;
5823   static bitmap s_e1 = NULL, s_e2 = NULL;
5824 
5825   /* Compare the ranges of every name equivalent to N1 against the
5826      ranges of every name equivalent to N2.  */
5827   e1 = get_value_range (n1)->equiv;
5828   e2 = get_value_range (n2)->equiv;
5829 
5830   /* Use the fake bitmaps if e1 or e2 are not available.  */
5831   if (s_obstack == NULL)
5832     {
5833       s_obstack = XNEW (bitmap_obstack);
5834       bitmap_obstack_initialize (s_obstack);
5835       s_e1 = BITMAP_ALLOC (s_obstack);
5836       s_e2 = BITMAP_ALLOC (s_obstack);
5837     }
5838   if (e1 == NULL)
5839     e1 = s_e1;
5840   if (e2 == NULL)
5841     e2 = s_e2;
5842 
5843   /* Add N1 and N2 to their own set of equivalences to avoid
5844      duplicating the body of the loop just to check N1 and N2
5845      ranges.  */
5846   bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5847   bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5848 
5849   /* If the equivalence sets have a common intersection, then the two
5850      names can be compared without checking their ranges.  */
5851   if (bitmap_intersect_p (e1, e2))
5852     {
5853       bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5854       bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5855 
5856       return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5857 	     ? boolean_true_node
5858 	     : boolean_false_node;
5859     }
5860 
5861   /* Start at -1.  Set it to 0 if we do a comparison without relying
5862      on overflow, or 1 if all comparisons rely on overflow.  */
5863   used_strict_overflow = -1;
5864 
5865   /* Otherwise, compare all the equivalent ranges.  First, add N1 and
5866      N2 to their own set of equivalences to avoid duplicating the body
5867      of the loop just to check N1 and N2 ranges.  */
5868   EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5869     {
5870       value_range_t vr1 = get_vr_for_comparison (i1);
5871 
5872       t = retval = NULL_TREE;
5873       EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5874 	{
5875 	  bool sop = false;
5876 
5877 	  value_range_t vr2 = get_vr_for_comparison (i2);
5878 
5879 	  t = compare_ranges (comp, &vr1, &vr2, &sop);
5880 	  if (t)
5881 	    {
5882 	      /* If we get different answers from different members
5883 		 of the equivalence set this check must be in a dead
5884 		 code region.  Folding it to a trap representation
5885 		 would be correct here.  For now just return don't-know.  */
5886 	      if (retval != NULL
5887 		  && t != retval)
5888 		{
5889 		  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5890 		  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5891 		  return NULL_TREE;
5892 		}
5893 	      retval = t;
5894 
5895 	      if (!sop)
5896 		used_strict_overflow = 0;
5897 	      else if (used_strict_overflow < 0)
5898 		used_strict_overflow = 1;
5899 	    }
5900 	}
5901 
5902       if (retval)
5903 	{
5904 	  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5905 	  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5906 	  if (used_strict_overflow > 0)
5907 	    *strict_overflow_p = true;
5908 	  return retval;
5909 	}
5910     }
5911 
5912   /* None of the equivalent ranges are useful in computing this
5913      comparison.  */
5914   bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5915   bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5916   return NULL_TREE;
5917 }
5918 
5919 /* Helper function for vrp_evaluate_conditional_warnv.  */
5920 
5921 static tree
5922 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5923 						      tree op0, tree op1,
5924 						      bool * strict_overflow_p)
5925 {
5926   value_range_t *vr0, *vr1;
5927 
5928   vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5929   vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5930 
5931   if (vr0 && vr1)
5932     return compare_ranges (code, vr0, vr1, strict_overflow_p);
5933   else if (vr0 && vr1 == NULL)
5934     return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5935   else if (vr0 == NULL && vr1)
5936     return (compare_range_with_value
5937 	    (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5938   return NULL;
5939 }
5940 
5941 /* Helper function for vrp_evaluate_conditional_warnv. */
5942 
5943 static tree
5944 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5945 					 tree op1, bool use_equiv_p,
5946 					 bool *strict_overflow_p, bool *only_ranges)
5947 {
5948   tree ret;
5949   if (only_ranges)
5950     *only_ranges = true;
5951 
5952   /* We only deal with integral and pointer types.  */
5953   if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5954       && !POINTER_TYPE_P (TREE_TYPE (op0)))
5955     return NULL_TREE;
5956 
5957   if (use_equiv_p)
5958     {
5959       if (only_ranges
5960           && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5961 	              (code, op0, op1, strict_overflow_p)))
5962 	return ret;
5963       *only_ranges = false;
5964       if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5965 	return compare_names (code, op0, op1, strict_overflow_p);
5966       else if (TREE_CODE (op0) == SSA_NAME)
5967 	return compare_name_with_value (code, op0, op1, strict_overflow_p);
5968       else if (TREE_CODE (op1) == SSA_NAME)
5969 	return (compare_name_with_value
5970 		(swap_tree_comparison (code), op1, op0, strict_overflow_p));
5971     }
5972   else
5973     return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5974 								 strict_overflow_p);
5975   return NULL_TREE;
5976 }
5977 
5978 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5979    information.  Return NULL if the conditional can not be evaluated.
5980    The ranges of all the names equivalent with the operands in COND
5981    will be used when trying to compute the value.  If the result is
5982    based on undefined signed overflow, issue a warning if
5983    appropriate.  */
5984 
5985 static tree
5986 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5987 {
5988   bool sop;
5989   tree ret;
5990   bool only_ranges;
5991 
5992   /* Some passes and foldings leak constants with overflow flag set
5993      into the IL.  Avoid doing wrong things with these and bail out.  */
5994   if ((TREE_CODE (op0) == INTEGER_CST
5995        && TREE_OVERFLOW (op0))
5996       || (TREE_CODE (op1) == INTEGER_CST
5997 	  && TREE_OVERFLOW (op1)))
5998     return NULL_TREE;
5999 
6000   sop = false;
6001   ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
6002   						 &only_ranges);
6003 
6004   if (ret && sop)
6005     {
6006       enum warn_strict_overflow_code wc;
6007       const char* warnmsg;
6008 
6009       if (is_gimple_min_invariant (ret))
6010 	{
6011 	  wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6012 	  warnmsg = G_("assuming signed overflow does not occur when "
6013 		       "simplifying conditional to constant");
6014 	}
6015       else
6016 	{
6017 	  wc = WARN_STRICT_OVERFLOW_COMPARISON;
6018 	  warnmsg = G_("assuming signed overflow does not occur when "
6019 		       "simplifying conditional");
6020 	}
6021 
6022       if (issue_strict_overflow_warning (wc))
6023 	{
6024 	  location_t location;
6025 
6026 	  if (!gimple_has_location (stmt))
6027 	    location = input_location;
6028 	  else
6029 	    location = gimple_location (stmt);
6030 	  warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6031 	}
6032     }
6033 
6034   if (warn_type_limits
6035       && ret && only_ranges
6036       && TREE_CODE_CLASS (code) == tcc_comparison
6037       && TREE_CODE (op0) == SSA_NAME)
6038     {
6039       /* If the comparison is being folded and the operand on the LHS
6040 	 is being compared against a constant value that is outside of
6041 	 the natural range of OP0's type, then the predicate will
6042 	 always fold regardless of the value of OP0.  If -Wtype-limits
6043 	 was specified, emit a warning.  */
6044       tree type = TREE_TYPE (op0);
6045       value_range_t *vr0 = get_value_range (op0);
6046 
6047       if (vr0->type != VR_VARYING
6048 	  && INTEGRAL_TYPE_P (type)
6049 	  && vrp_val_is_min (vr0->min)
6050 	  && vrp_val_is_max (vr0->max)
6051 	  && is_gimple_min_invariant (op1))
6052 	{
6053 	  location_t location;
6054 
6055 	  if (!gimple_has_location (stmt))
6056 	    location = input_location;
6057 	  else
6058 	    location = gimple_location (stmt);
6059 
6060 	  warning_at (location, OPT_Wtype_limits,
6061 		      integer_zerop (ret)
6062 		      ? G_("comparison always false "
6063                            "due to limited range of data type")
6064 		      : G_("comparison always true "
6065                            "due to limited range of data type"));
6066 	}
6067     }
6068 
6069   return ret;
6070 }
6071 
6072 
6073 /* Visit conditional statement STMT.  If we can determine which edge
6074    will be taken out of STMT's basic block, record it in
6075    *TAKEN_EDGE_P and return SSA_PROP_INTERESTING.  Otherwise, return
6076    SSA_PROP_VARYING.  */
6077 
6078 static enum ssa_prop_result
6079 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6080 {
6081   tree val;
6082   bool sop;
6083 
6084   *taken_edge_p = NULL;
6085 
6086   if (dump_file && (dump_flags & TDF_DETAILS))
6087     {
6088       tree use;
6089       ssa_op_iter i;
6090 
6091       fprintf (dump_file, "\nVisiting conditional with predicate: ");
6092       print_gimple_stmt (dump_file, stmt, 0, 0);
6093       fprintf (dump_file, "\nWith known ranges\n");
6094 
6095       FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6096 	{
6097 	  fprintf (dump_file, "\t");
6098 	  print_generic_expr (dump_file, use, 0);
6099 	  fprintf (dump_file, ": ");
6100 	  dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6101 	}
6102 
6103       fprintf (dump_file, "\n");
6104     }
6105 
6106   /* Compute the value of the predicate COND by checking the known
6107      ranges of each of its operands.
6108 
6109      Note that we cannot evaluate all the equivalent ranges here
6110      because those ranges may not yet be final and with the current
6111      propagation strategy, we cannot determine when the value ranges
6112      of the names in the equivalence set have changed.
6113 
6114      For instance, given the following code fragment
6115 
6116         i_5 = PHI <8, i_13>
6117 	...
6118      	i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6119 	if (i_14 == 1)
6120 	  ...
6121 
6122      Assume that on the first visit to i_14, i_5 has the temporary
6123      range [8, 8] because the second argument to the PHI function is
6124      not yet executable.  We derive the range ~[0, 0] for i_14 and the
6125      equivalence set { i_5 }.  So, when we visit 'if (i_14 == 1)' for
6126      the first time, since i_14 is equivalent to the range [8, 8], we
6127      determine that the predicate is always false.
6128 
6129      On the next round of propagation, i_13 is determined to be
6130      VARYING, which causes i_5 to drop down to VARYING.  So, another
6131      visit to i_14 is scheduled.  In this second visit, we compute the
6132      exact same range and equivalence set for i_14, namely ~[0, 0] and
6133      { i_5 }.  But we did not have the previous range for i_5
6134      registered, so vrp_visit_assignment thinks that the range for
6135      i_14 has not changed.  Therefore, the predicate 'if (i_14 == 1)'
6136      is not visited again, which stops propagation from visiting
6137      statements in the THEN clause of that if().
6138 
6139      To properly fix this we would need to keep the previous range
6140      value for the names in the equivalence set.  This way we would've
6141      discovered that from one visit to the other i_5 changed from
6142      range [8, 8] to VR_VARYING.
6143 
6144      However, fixing this apparent limitation may not be worth the
6145      additional checking.  Testing on several code bases (GCC, DLV,
6146      MICO, TRAMP3D and SPEC2000) showed that doing this results in
6147      4 more predicates folded in SPEC.  */
6148   sop = false;
6149 
6150   val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6151 						 gimple_cond_lhs (stmt),
6152 						 gimple_cond_rhs (stmt),
6153 						 false, &sop, NULL);
6154   if (val)
6155     {
6156       if (!sop)
6157 	*taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6158       else
6159 	{
6160 	  if (dump_file && (dump_flags & TDF_DETAILS))
6161 	    fprintf (dump_file,
6162 		     "\nIgnoring predicate evaluation because "
6163 		     "it assumes that signed overflow is undefined");
6164 	  val = NULL_TREE;
6165 	}
6166     }
6167 
6168   if (dump_file && (dump_flags & TDF_DETAILS))
6169     {
6170       fprintf (dump_file, "\nPredicate evaluates to: ");
6171       if (val == NULL_TREE)
6172 	fprintf (dump_file, "DON'T KNOW\n");
6173       else
6174 	print_generic_stmt (dump_file, val, 0);
6175     }
6176 
6177   return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6178 }
6179 
6180 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6181    that includes the value VAL.  The search is restricted to the range
6182    [START_IDX, n - 1] where n is the size of VEC.
6183 
6184    If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6185    returned.
6186 
6187    If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6188    it is placed in IDX and false is returned.
6189 
6190    If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6191    returned. */
6192 
6193 static bool
6194 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6195 {
6196   size_t n = gimple_switch_num_labels (stmt);
6197   size_t low, high;
6198 
6199   /* Find case label for minimum of the value range or the next one.
6200      At each iteration we are searching in [low, high - 1]. */
6201 
6202   for (low = start_idx, high = n; high != low; )
6203     {
6204       tree t;
6205       int cmp;
6206       /* Note that i != high, so we never ask for n. */
6207       size_t i = (high + low) / 2;
6208       t = gimple_switch_label (stmt, i);
6209 
6210       /* Cache the result of comparing CASE_LOW and val.  */
6211       cmp = tree_int_cst_compare (CASE_LOW (t), val);
6212 
6213       if (cmp == 0)
6214 	{
6215 	  /* Ranges cannot be empty. */
6216 	  *idx = i;
6217 	  return true;
6218 	}
6219       else if (cmp > 0)
6220         high = i;
6221       else
6222 	{
6223 	  low = i + 1;
6224 	  if (CASE_HIGH (t) != NULL
6225 	      && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6226 	    {
6227 	      *idx = i;
6228 	      return true;
6229 	    }
6230         }
6231     }
6232 
6233   *idx = high;
6234   return false;
6235 }
6236 
6237 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6238    for values between MIN and MAX. The first index is placed in MIN_IDX. The
6239    last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6240    then MAX_IDX < MIN_IDX.
6241    Returns true if the default label is not needed. */
6242 
6243 static bool
6244 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6245 		       size_t *max_idx)
6246 {
6247   size_t i, j;
6248   bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6249   bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6250 
6251   if (i == j
6252       && min_take_default
6253       && max_take_default)
6254     {
6255       /* Only the default case label reached.
6256          Return an empty range. */
6257       *min_idx = 1;
6258       *max_idx = 0;
6259       return false;
6260     }
6261   else
6262     {
6263       bool take_default = min_take_default || max_take_default;
6264       tree low, high;
6265       size_t k;
6266 
6267       if (max_take_default)
6268 	j--;
6269 
6270       /* If the case label range is continuous, we do not need
6271 	 the default case label.  Verify that.  */
6272       high = CASE_LOW (gimple_switch_label (stmt, i));
6273       if (CASE_HIGH (gimple_switch_label (stmt, i)))
6274 	high = CASE_HIGH (gimple_switch_label (stmt, i));
6275       for (k = i + 1; k <= j; ++k)
6276 	{
6277 	  low = CASE_LOW (gimple_switch_label (stmt, k));
6278 	  if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
6279 	    {
6280 	      take_default = true;
6281 	      break;
6282 	    }
6283 	  high = low;
6284 	  if (CASE_HIGH (gimple_switch_label (stmt, k)))
6285 	    high = CASE_HIGH (gimple_switch_label (stmt, k));
6286 	}
6287 
6288       *min_idx = i;
6289       *max_idx = j;
6290       return !take_default;
6291     }
6292 }
6293 
6294 /* Visit switch statement STMT.  If we can determine which edge
6295    will be taken out of STMT's basic block, record it in
6296    *TAKEN_EDGE_P and return SSA_PROP_INTERESTING.  Otherwise, return
6297    SSA_PROP_VARYING.  */
6298 
6299 static enum ssa_prop_result
6300 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6301 {
6302   tree op, val;
6303   value_range_t *vr;
6304   size_t i = 0, j = 0;
6305   bool take_default;
6306 
6307   *taken_edge_p = NULL;
6308   op = gimple_switch_index (stmt);
6309   if (TREE_CODE (op) != SSA_NAME)
6310     return SSA_PROP_VARYING;
6311 
6312   vr = get_value_range (op);
6313   if (dump_file && (dump_flags & TDF_DETAILS))
6314     {
6315       fprintf (dump_file, "\nVisiting switch expression with operand ");
6316       print_generic_expr (dump_file, op, 0);
6317       fprintf (dump_file, " with known range ");
6318       dump_value_range (dump_file, vr);
6319       fprintf (dump_file, "\n");
6320     }
6321 
6322   if (vr->type != VR_RANGE
6323       || symbolic_range_p (vr))
6324     return SSA_PROP_VARYING;
6325 
6326   /* Find the single edge that is taken from the switch expression.  */
6327   take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6328 
6329   /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6330      label */
6331   if (j < i)
6332     {
6333       gcc_assert (take_default);
6334       val = gimple_switch_default_label (stmt);
6335     }
6336   else
6337     {
6338       /* Check if labels with index i to j and maybe the default label
6339 	 are all reaching the same label.  */
6340 
6341       val = gimple_switch_label (stmt, i);
6342       if (take_default
6343 	  && CASE_LABEL (gimple_switch_default_label (stmt))
6344 	  != CASE_LABEL (val))
6345 	{
6346 	  if (dump_file && (dump_flags & TDF_DETAILS))
6347 	    fprintf (dump_file, "  not a single destination for this "
6348 		     "range\n");
6349           return SSA_PROP_VARYING;
6350 	}
6351       for (++i; i <= j; ++i)
6352         {
6353           if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6354 	    {
6355 	      if (dump_file && (dump_flags & TDF_DETAILS))
6356 		fprintf (dump_file, "  not a single destination for this "
6357 			 "range\n");
6358 	      return SSA_PROP_VARYING;
6359 	    }
6360         }
6361     }
6362 
6363   *taken_edge_p = find_edge (gimple_bb (stmt),
6364 			     label_to_block (CASE_LABEL (val)));
6365 
6366   if (dump_file && (dump_flags & TDF_DETAILS))
6367     {
6368       fprintf (dump_file, "  will take edge to ");
6369       print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6370     }
6371 
6372   return SSA_PROP_INTERESTING;
6373 }
6374 
6375 
6376 /* Evaluate statement STMT.  If the statement produces a useful range,
6377    return SSA_PROP_INTERESTING and record the SSA name with the
6378    interesting range into *OUTPUT_P.
6379 
6380    If STMT is a conditional branch and we can determine its truth
6381    value, the taken edge is recorded in *TAKEN_EDGE_P.
6382 
6383    If STMT produces a varying value, return SSA_PROP_VARYING.  */
6384 
6385 static enum ssa_prop_result
6386 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6387 {
6388   tree def;
6389   ssa_op_iter iter;
6390 
6391   if (dump_file && (dump_flags & TDF_DETAILS))
6392     {
6393       fprintf (dump_file, "\nVisiting statement:\n");
6394       print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6395       fprintf (dump_file, "\n");
6396     }
6397 
6398   if (!stmt_interesting_for_vrp (stmt))
6399     gcc_assert (stmt_ends_bb_p (stmt));
6400   else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6401     {
6402       /* In general, assignments with virtual operands are not useful
6403 	 for deriving ranges, with the obvious exception of calls to
6404 	 builtin functions.  */
6405       if ((is_gimple_call (stmt)
6406 	   && gimple_call_fndecl (stmt) != NULL_TREE
6407 	   && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
6408 	  || !gimple_vuse (stmt))
6409 	return vrp_visit_assignment_or_call (stmt, output_p);
6410     }
6411   else if (gimple_code (stmt) == GIMPLE_COND)
6412     return vrp_visit_cond_stmt (stmt, taken_edge_p);
6413   else if (gimple_code (stmt) == GIMPLE_SWITCH)
6414     return vrp_visit_switch_stmt (stmt, taken_edge_p);
6415 
6416   /* All other statements produce nothing of interest for VRP, so mark
6417      their outputs varying and prevent further simulation.  */
6418   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6419     set_value_range_to_varying (get_value_range (def));
6420 
6421   return SSA_PROP_VARYING;
6422 }
6423 
6424 
6425 /* Meet operation for value ranges.  Given two value ranges VR0 and
6426    VR1, store in VR0 a range that contains both VR0 and VR1.  This
6427    may not be the smallest possible such range.  */
6428 
6429 static void
6430 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6431 {
6432   if (vr0->type == VR_UNDEFINED)
6433     {
6434       /* Drop equivalences.  See PR53465.  */
6435       set_value_range (vr0, vr1->type, vr1->min, vr1->max, NULL);
6436       return;
6437     }
6438 
6439   if (vr1->type == VR_UNDEFINED)
6440     {
6441       /* VR0 already has the resulting range, just drop equivalences.
6442 	 See PR53465.  */
6443       if (vr0->equiv)
6444 	bitmap_clear (vr0->equiv);
6445       return;
6446     }
6447 
6448   if (vr0->type == VR_VARYING)
6449     {
6450       /* Nothing to do.  VR0 already has the resulting range.  */
6451       return;
6452     }
6453 
6454   if (vr1->type == VR_VARYING)
6455     {
6456       set_value_range_to_varying (vr0);
6457       return;
6458     }
6459 
6460   if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6461     {
6462       int cmp;
6463       tree min, max;
6464 
6465       /* Compute the convex hull of the ranges.  The lower limit of
6466          the new range is the minimum of the two ranges.  If they
6467 	 cannot be compared, then give up.  */
6468       cmp = compare_values (vr0->min, vr1->min);
6469       if (cmp == 0 || cmp == 1)
6470         min = vr1->min;
6471       else if (cmp == -1)
6472         min = vr0->min;
6473       else
6474 	goto give_up;
6475 
6476       /* Similarly, the upper limit of the new range is the maximum
6477          of the two ranges.  If they cannot be compared, then
6478 	 give up.  */
6479       cmp = compare_values (vr0->max, vr1->max);
6480       if (cmp == 0 || cmp == -1)
6481         max = vr1->max;
6482       else if (cmp == 1)
6483         max = vr0->max;
6484       else
6485 	goto give_up;
6486 
6487       /* Check for useless ranges.  */
6488       if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6489 	  && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6490 	      && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6491 	goto give_up;
6492 
6493       /* The resulting set of equivalences is the intersection of
6494 	 the two sets.  */
6495       if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6496         bitmap_and_into (vr0->equiv, vr1->equiv);
6497       else if (vr0->equiv && !vr1->equiv)
6498         bitmap_clear (vr0->equiv);
6499 
6500       set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6501     }
6502   else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6503     {
6504       /* Two anti-ranges meet only if their complements intersect.
6505          Only handle the case of identical ranges.  */
6506       if (compare_values (vr0->min, vr1->min) == 0
6507 	  && compare_values (vr0->max, vr1->max) == 0
6508 	  && compare_values (vr0->min, vr0->max) == 0)
6509 	{
6510 	  /* The resulting set of equivalences is the intersection of
6511 	     the two sets.  */
6512 	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6513 	    bitmap_and_into (vr0->equiv, vr1->equiv);
6514 	  else if (vr0->equiv && !vr1->equiv)
6515 	    bitmap_clear (vr0->equiv);
6516 	}
6517       else
6518 	goto give_up;
6519     }
6520   else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6521     {
6522       /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6523          only handle the case where the ranges have an empty intersection.
6524 	 The result of the meet operation is the anti-range.  */
6525       if (!symbolic_range_p (vr0)
6526 	  && !symbolic_range_p (vr1)
6527 	  && !value_ranges_intersect_p (vr0, vr1))
6528 	{
6529 	  /* Copy most of VR1 into VR0.  Don't copy VR1's equivalence
6530 	     set.  We need to compute the intersection of the two
6531 	     equivalence sets.  */
6532 	  if (vr1->type == VR_ANTI_RANGE)
6533 	    set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6534 
6535 	  /* The resulting set of equivalences is the intersection of
6536 	     the two sets.  */
6537 	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6538 	    bitmap_and_into (vr0->equiv, vr1->equiv);
6539 	  else if (vr0->equiv && !vr1->equiv)
6540 	    bitmap_clear (vr0->equiv);
6541 	}
6542       else
6543 	goto give_up;
6544     }
6545   else
6546     gcc_unreachable ();
6547 
6548   return;
6549 
6550 give_up:
6551   /* Failed to find an efficient meet.  Before giving up and setting
6552      the result to VARYING, see if we can at least derive a useful
6553      anti-range.  FIXME, all this nonsense about distinguishing
6554      anti-ranges from ranges is necessary because of the odd
6555      semantics of range_includes_zero_p and friends.  */
6556   if (!symbolic_range_p (vr0)
6557       && ((vr0->type == VR_RANGE
6558 	   && range_includes_zero_p (vr0->min, vr0->max) == 0)
6559 	  || (vr0->type == VR_ANTI_RANGE
6560 	      && range_includes_zero_p (vr0->min, vr0->max) == 1))
6561       && !symbolic_range_p (vr1)
6562       && ((vr1->type == VR_RANGE
6563 	   && range_includes_zero_p (vr1->min, vr1->max) == 0)
6564 	  || (vr1->type == VR_ANTI_RANGE
6565 	      && range_includes_zero_p (vr1->min, vr1->max) == 1)))
6566     {
6567       set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6568 
6569       /* Since this meet operation did not result from the meeting of
6570 	 two equivalent names, VR0 cannot have any equivalences.  */
6571       if (vr0->equiv)
6572 	bitmap_clear (vr0->equiv);
6573     }
6574   else
6575     set_value_range_to_varying (vr0);
6576 }
6577 
6578 
6579 /* Visit all arguments for PHI node PHI that flow through executable
6580    edges.  If a valid value range can be derived from all the incoming
6581    value ranges, set a new range for the LHS of PHI.  */
6582 
6583 static enum ssa_prop_result
6584 vrp_visit_phi_node (gimple phi)
6585 {
6586   size_t i;
6587   tree lhs = PHI_RESULT (phi);
6588   value_range_t *lhs_vr = get_value_range (lhs);
6589   value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6590   bool first = true;
6591   int edges, old_edges;
6592   struct loop *l;
6593 
6594   if (dump_file && (dump_flags & TDF_DETAILS))
6595     {
6596       fprintf (dump_file, "\nVisiting PHI node: ");
6597       print_gimple_stmt (dump_file, phi, 0, dump_flags);
6598     }
6599 
6600   edges = 0;
6601   for (i = 0; i < gimple_phi_num_args (phi); i++)
6602     {
6603       edge e = gimple_phi_arg_edge (phi, i);
6604 
6605       if (dump_file && (dump_flags & TDF_DETAILS))
6606 	{
6607 	  fprintf (dump_file,
6608 	      "\n    Argument #%d (%d -> %d %sexecutable)\n",
6609 	      (int) i, e->src->index, e->dest->index,
6610 	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6611 	}
6612 
6613       if (e->flags & EDGE_EXECUTABLE)
6614 	{
6615 	  tree arg = PHI_ARG_DEF (phi, i);
6616 	  value_range_t vr_arg;
6617 
6618 	  ++edges;
6619 
6620 	  if (TREE_CODE (arg) == SSA_NAME)
6621 	    {
6622 	      vr_arg = *(get_value_range (arg));
6623 	      /* Do not allow equivalences or symbolic ranges to leak in from
6624 		 backedges.  That creates invalid equivalencies.  */
6625 	      if (e->flags & EDGE_DFS_BACK
6626 		  && (vr_arg.type == VR_RANGE
6627 		      || vr_arg.type == VR_ANTI_RANGE))
6628 		{
6629 		  vr_arg.equiv = NULL;
6630 		  if (symbolic_range_p (&vr_arg))
6631 		    {
6632 		      vr_arg.type = VR_VARYING;
6633 		      vr_arg.min = NULL_TREE;
6634 		      vr_arg.max = NULL_TREE;
6635 		    }
6636 		}
6637 	    }
6638 	  else
6639 	    {
6640 	      if (is_overflow_infinity (arg))
6641 		{
6642 		  arg = copy_node (arg);
6643 		  TREE_OVERFLOW (arg) = 0;
6644 		}
6645 
6646 	      vr_arg.type = VR_RANGE;
6647 	      vr_arg.min = arg;
6648 	      vr_arg.max = arg;
6649 	      vr_arg.equiv = NULL;
6650 	    }
6651 
6652 	  if (dump_file && (dump_flags & TDF_DETAILS))
6653 	    {
6654 	      fprintf (dump_file, "\t");
6655 	      print_generic_expr (dump_file, arg, dump_flags);
6656 	      fprintf (dump_file, "\n\tValue: ");
6657 	      dump_value_range (dump_file, &vr_arg);
6658 	      fprintf (dump_file, "\n");
6659 	    }
6660 
6661 	  if (first)
6662 	    copy_value_range (&vr_result, &vr_arg);
6663 	  else
6664 	    vrp_meet (&vr_result, &vr_arg);
6665 	  first = false;
6666 
6667 	  if (vr_result.type == VR_VARYING)
6668 	    break;
6669 	}
6670     }
6671 
6672   if (vr_result.type == VR_VARYING)
6673     goto varying;
6674   else if (vr_result.type == VR_UNDEFINED)
6675     goto update_range;
6676 
6677   old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6678   vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6679 
6680   /* To prevent infinite iterations in the algorithm, derive ranges
6681      when the new value is slightly bigger or smaller than the
6682      previous one.  We don't do this if we have seen a new executable
6683      edge; this helps us avoid an overflow infinity for conditionals
6684      which are not in a loop.  */
6685   if (edges > 0
6686       && gimple_phi_num_args (phi) > 1
6687       && edges == old_edges)
6688     {
6689       int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6690       int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6691 
6692       /* For non VR_RANGE or for pointers fall back to varying if
6693 	 the range changed.  */
6694       if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6695 	   || POINTER_TYPE_P (TREE_TYPE (lhs)))
6696 	  && (cmp_min != 0 || cmp_max != 0))
6697 	goto varying;
6698 
6699       /* If the new minimum is smaller or larger than the previous
6700 	 one, go all the way to -INF.  In the first case, to avoid
6701 	 iterating millions of times to reach -INF, and in the
6702 	 other case to avoid infinite bouncing between different
6703 	 minimums.  */
6704       if (cmp_min > 0 || cmp_min < 0)
6705 	{
6706 	  if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6707 	      || !vrp_var_may_overflow (lhs, phi))
6708 	    vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6709 	  else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6710 	    vr_result.min =
6711 		negative_overflow_infinity (TREE_TYPE (vr_result.min));
6712 	}
6713 
6714       /* Similarly, if the new maximum is smaller or larger than
6715 	 the previous one, go all the way to +INF.  */
6716       if (cmp_max < 0 || cmp_max > 0)
6717 	{
6718 	  if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6719 	      || !vrp_var_may_overflow (lhs, phi))
6720 	    vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6721 	  else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6722 	    vr_result.max =
6723 		positive_overflow_infinity (TREE_TYPE (vr_result.max));
6724 	}
6725 
6726       /* If we dropped either bound to +-INF then if this is a loop
6727 	 PHI node SCEV may known more about its value-range.  */
6728       if ((cmp_min > 0 || cmp_min < 0
6729 	   || cmp_max < 0 || cmp_max > 0)
6730 	  && current_loops
6731 	  && (l = loop_containing_stmt (phi))
6732 	  && l->header == gimple_bb (phi))
6733 	adjust_range_with_scev (&vr_result, l, phi, lhs);
6734 
6735       /* If we will end up with a (-INF, +INF) range, set it to
6736 	 VARYING.  Same if the previous max value was invalid for
6737 	 the type and we end up with vr_result.min > vr_result.max.  */
6738       if ((vrp_val_is_max (vr_result.max)
6739 	   && vrp_val_is_min (vr_result.min))
6740 	  || compare_values (vr_result.min,
6741 			     vr_result.max) > 0)
6742 	goto varying;
6743     }
6744 
6745   /* If the new range is different than the previous value, keep
6746      iterating.  */
6747 update_range:
6748   if (update_value_range (lhs, &vr_result))
6749     {
6750       if (dump_file && (dump_flags & TDF_DETAILS))
6751 	{
6752 	  fprintf (dump_file, "Found new range for ");
6753 	  print_generic_expr (dump_file, lhs, 0);
6754 	  fprintf (dump_file, ": ");
6755 	  dump_value_range (dump_file, &vr_result);
6756 	  fprintf (dump_file, "\n\n");
6757 	}
6758 
6759       return SSA_PROP_INTERESTING;
6760     }
6761 
6762   /* Nothing changed, don't add outgoing edges.  */
6763   return SSA_PROP_NOT_INTERESTING;
6764 
6765   /* No match found.  Set the LHS to VARYING.  */
6766 varying:
6767   set_value_range_to_varying (lhs_vr);
6768   return SSA_PROP_VARYING;
6769 }
6770 
6771 /* Simplify boolean operations if the source is known
6772    to be already a boolean.  */
6773 static bool
6774 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6775 {
6776   enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6777   tree lhs, op0, op1;
6778   bool need_conversion;
6779 
6780   /* We handle only !=/== case here.  */
6781   gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
6782 
6783   op0 = gimple_assign_rhs1 (stmt);
6784   if (!op_with_boolean_value_range_p (op0))
6785     return false;
6786 
6787   op1 = gimple_assign_rhs2 (stmt);
6788   if (!op_with_boolean_value_range_p (op1))
6789     return false;
6790 
6791   /* Reduce number of cases to handle to NE_EXPR.  As there is no
6792      BIT_XNOR_EXPR we cannot replace A == B with a single statement.  */
6793   if (rhs_code == EQ_EXPR)
6794     {
6795       if (TREE_CODE (op1) == INTEGER_CST)
6796 	op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
6797       else
6798 	return false;
6799     }
6800 
6801   lhs = gimple_assign_lhs (stmt);
6802   need_conversion
6803     = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
6804 
6805   /* Make sure to not sign-extend a 1-bit 1 when converting the result.  */
6806   if (need_conversion
6807       && !TYPE_UNSIGNED (TREE_TYPE (op0))
6808       && TYPE_PRECISION (TREE_TYPE (op0)) == 1
6809       && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
6810     return false;
6811 
6812   /* For A != 0 we can substitute A itself.  */
6813   if (integer_zerop (op1))
6814     gimple_assign_set_rhs_with_ops (gsi,
6815 				    need_conversion
6816 				    ? NOP_EXPR : TREE_CODE (op0),
6817 				    op0, NULL_TREE);
6818   /* For A != B we substitute A ^ B.  Either with conversion.  */
6819   else if (need_conversion)
6820     {
6821       gimple newop;
6822       tree tem = create_tmp_reg (TREE_TYPE (op0), NULL);
6823       newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
6824       tem = make_ssa_name (tem, newop);
6825       gimple_assign_set_lhs (newop, tem);
6826       gsi_insert_before (gsi, newop, GSI_SAME_STMT);
6827       update_stmt (newop);
6828       gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
6829     }
6830   /* Or without.  */
6831   else
6832     gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
6833   update_stmt (gsi_stmt (*gsi));
6834 
6835   return true;
6836 }
6837 
6838 /* Simplify a division or modulo operator to a right shift or
6839    bitwise and if the first operand is unsigned or is greater
6840    than zero and the second operand is an exact power of two.  */
6841 
6842 static bool
6843 simplify_div_or_mod_using_ranges (gimple stmt)
6844 {
6845   enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6846   tree val = NULL;
6847   tree op0 = gimple_assign_rhs1 (stmt);
6848   tree op1 = gimple_assign_rhs2 (stmt);
6849   value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6850 
6851   if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6852     {
6853       val = integer_one_node;
6854     }
6855   else
6856     {
6857       bool sop = false;
6858 
6859       val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6860 
6861       if (val
6862 	  && sop
6863 	  && integer_onep (val)
6864 	  && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6865 	{
6866 	  location_t location;
6867 
6868 	  if (!gimple_has_location (stmt))
6869 	    location = input_location;
6870 	  else
6871 	    location = gimple_location (stmt);
6872 	  warning_at (location, OPT_Wstrict_overflow,
6873 		      "assuming signed overflow does not occur when "
6874 		      "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6875 	}
6876     }
6877 
6878   if (val && integer_onep (val))
6879     {
6880       tree t;
6881 
6882       if (rhs_code == TRUNC_DIV_EXPR)
6883 	{
6884 	  t = build_int_cst (integer_type_node, tree_log2 (op1));
6885 	  gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6886 	  gimple_assign_set_rhs1 (stmt, op0);
6887 	  gimple_assign_set_rhs2 (stmt, t);
6888 	}
6889       else
6890 	{
6891 	  t = build_int_cst (TREE_TYPE (op1), 1);
6892 	  t = int_const_binop (MINUS_EXPR, op1, t);
6893 	  t = fold_convert (TREE_TYPE (op0), t);
6894 
6895 	  gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6896 	  gimple_assign_set_rhs1 (stmt, op0);
6897 	  gimple_assign_set_rhs2 (stmt, t);
6898 	}
6899 
6900       update_stmt (stmt);
6901       return true;
6902     }
6903 
6904   return false;
6905 }
6906 
6907 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6908    ABS_EXPR.  If the operand is <= 0, then simplify the
6909    ABS_EXPR into a NEGATE_EXPR.  */
6910 
6911 static bool
6912 simplify_abs_using_ranges (gimple stmt)
6913 {
6914   tree val = NULL;
6915   tree op = gimple_assign_rhs1 (stmt);
6916   tree type = TREE_TYPE (op);
6917   value_range_t *vr = get_value_range (op);
6918 
6919   if (TYPE_UNSIGNED (type))
6920     {
6921       val = integer_zero_node;
6922     }
6923   else if (vr)
6924     {
6925       bool sop = false;
6926 
6927       val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6928       if (!val)
6929 	{
6930 	  sop = false;
6931 	  val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6932 					  &sop);
6933 
6934 	  if (val)
6935 	    {
6936 	      if (integer_zerop (val))
6937 		val = integer_one_node;
6938 	      else if (integer_onep (val))
6939 		val = integer_zero_node;
6940 	    }
6941 	}
6942 
6943       if (val
6944 	  && (integer_onep (val) || integer_zerop (val)))
6945 	{
6946 	  if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6947 	    {
6948 	      location_t location;
6949 
6950 	      if (!gimple_has_location (stmt))
6951 		location = input_location;
6952 	      else
6953 		location = gimple_location (stmt);
6954 	      warning_at (location, OPT_Wstrict_overflow,
6955 			  "assuming signed overflow does not occur when "
6956 			  "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6957 	    }
6958 
6959 	  gimple_assign_set_rhs1 (stmt, op);
6960 	  if (integer_onep (val))
6961 	    gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6962 	  else
6963 	    gimple_assign_set_rhs_code (stmt, SSA_NAME);
6964 	  update_stmt (stmt);
6965 	  return true;
6966 	}
6967     }
6968 
6969   return false;
6970 }
6971 
6972 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6973    If all the bits that are being cleared by & are already
6974    known to be zero from VR, or all the bits that are being
6975    set by | are already known to be one from VR, the bit
6976    operation is redundant.  */
6977 
6978 static bool
6979 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6980 {
6981   tree op0 = gimple_assign_rhs1 (stmt);
6982   tree op1 = gimple_assign_rhs2 (stmt);
6983   tree op = NULL_TREE;
6984   value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6985   value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6986   double_int may_be_nonzero0, may_be_nonzero1;
6987   double_int must_be_nonzero0, must_be_nonzero1;
6988   double_int mask;
6989 
6990   if (TREE_CODE (op0) == SSA_NAME)
6991     vr0 = *(get_value_range (op0));
6992   else if (is_gimple_min_invariant (op0))
6993     set_value_range_to_value (&vr0, op0, NULL);
6994   else
6995     return false;
6996 
6997   if (TREE_CODE (op1) == SSA_NAME)
6998     vr1 = *(get_value_range (op1));
6999   else if (is_gimple_min_invariant (op1))
7000     set_value_range_to_value (&vr1, op1, NULL);
7001   else
7002     return false;
7003 
7004   if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
7005     return false;
7006   if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
7007     return false;
7008 
7009   switch (gimple_assign_rhs_code (stmt))
7010     {
7011     case BIT_AND_EXPR:
7012       mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7013       if (double_int_zero_p (mask))
7014 	{
7015 	  op = op0;
7016 	  break;
7017 	}
7018       mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7019       if (double_int_zero_p (mask))
7020 	{
7021 	  op = op1;
7022 	  break;
7023 	}
7024       break;
7025     case BIT_IOR_EXPR:
7026       mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7027       if (double_int_zero_p (mask))
7028 	{
7029 	  op = op1;
7030 	  break;
7031 	}
7032       mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7033       if (double_int_zero_p (mask))
7034 	{
7035 	  op = op0;
7036 	  break;
7037 	}
7038       break;
7039     default:
7040       gcc_unreachable ();
7041     }
7042 
7043   if (op == NULL_TREE)
7044     return false;
7045 
7046   gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7047   update_stmt (gsi_stmt (*gsi));
7048   return true;
7049 }
7050 
7051 /* We are comparing trees OP0 and OP1 using COND_CODE.  OP0 has
7052    a known value range VR.
7053 
7054    If there is one and only one value which will satisfy the
7055    conditional, then return that value.  Else return NULL.  */
7056 
7057 static tree
7058 test_for_singularity (enum tree_code cond_code, tree op0,
7059 		      tree op1, value_range_t *vr)
7060 {
7061   tree min = NULL;
7062   tree max = NULL;
7063 
7064   /* Extract minimum/maximum values which satisfy the
7065      the conditional as it was written.  */
7066   if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7067     {
7068       /* This should not be negative infinity; there is no overflow
7069 	 here.  */
7070       min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7071 
7072       max = op1;
7073       if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7074 	{
7075 	  tree one = build_int_cst (TREE_TYPE (op0), 1);
7076 	  max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7077 	  if (EXPR_P (max))
7078 	    TREE_NO_WARNING (max) = 1;
7079 	}
7080     }
7081   else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7082     {
7083       /* This should not be positive infinity; there is no overflow
7084 	 here.  */
7085       max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7086 
7087       min = op1;
7088       if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7089 	{
7090 	  tree one = build_int_cst (TREE_TYPE (op0), 1);
7091 	  min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7092 	  if (EXPR_P (min))
7093 	    TREE_NO_WARNING (min) = 1;
7094 	}
7095     }
7096 
7097   /* Now refine the minimum and maximum values using any
7098      value range information we have for op0.  */
7099   if (min && max)
7100     {
7101       if (compare_values (vr->min, min) == 1)
7102 	min = vr->min;
7103       if (compare_values (vr->max, max) == -1)
7104 	max = vr->max;
7105 
7106       /* If the new min/max values have converged to a single value,
7107 	 then there is only one value which can satisfy the condition,
7108 	 return that value.  */
7109       if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7110 	return min;
7111     }
7112   return NULL;
7113 }
7114 
7115 /* Simplify a conditional using a relational operator to an equality
7116    test if the range information indicates only one value can satisfy
7117    the original conditional.  */
7118 
7119 static bool
7120 simplify_cond_using_ranges (gimple stmt)
7121 {
7122   tree op0 = gimple_cond_lhs (stmt);
7123   tree op1 = gimple_cond_rhs (stmt);
7124   enum tree_code cond_code = gimple_cond_code (stmt);
7125 
7126   if (cond_code != NE_EXPR
7127       && cond_code != EQ_EXPR
7128       && TREE_CODE (op0) == SSA_NAME
7129       && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7130       && is_gimple_min_invariant (op1))
7131     {
7132       value_range_t *vr = get_value_range (op0);
7133 
7134       /* If we have range information for OP0, then we might be
7135 	 able to simplify this conditional. */
7136       if (vr->type == VR_RANGE)
7137 	{
7138 	  tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7139 
7140 	  if (new_tree)
7141 	    {
7142 	      if (dump_file)
7143 		{
7144 		  fprintf (dump_file, "Simplified relational ");
7145 		  print_gimple_stmt (dump_file, stmt, 0, 0);
7146 		  fprintf (dump_file, " into ");
7147 		}
7148 
7149 	      gimple_cond_set_code (stmt, EQ_EXPR);
7150 	      gimple_cond_set_lhs (stmt, op0);
7151 	      gimple_cond_set_rhs (stmt, new_tree);
7152 
7153 	      update_stmt (stmt);
7154 
7155 	      if (dump_file)
7156 		{
7157 		  print_gimple_stmt (dump_file, stmt, 0, 0);
7158 		  fprintf (dump_file, "\n");
7159 		}
7160 
7161 	      return true;
7162 	    }
7163 
7164 	  /* Try again after inverting the condition.  We only deal
7165 	     with integral types here, so no need to worry about
7166 	     issues with inverting FP comparisons.  */
7167 	  cond_code = invert_tree_comparison (cond_code, false);
7168 	  new_tree = test_for_singularity (cond_code, op0, op1, vr);
7169 
7170 	  if (new_tree)
7171 	    {
7172 	      if (dump_file)
7173 		{
7174 		  fprintf (dump_file, "Simplified relational ");
7175 		  print_gimple_stmt (dump_file, stmt, 0, 0);
7176 		  fprintf (dump_file, " into ");
7177 		}
7178 
7179 	      gimple_cond_set_code (stmt, NE_EXPR);
7180 	      gimple_cond_set_lhs (stmt, op0);
7181 	      gimple_cond_set_rhs (stmt, new_tree);
7182 
7183 	      update_stmt (stmt);
7184 
7185 	      if (dump_file)
7186 		{
7187 		  print_gimple_stmt (dump_file, stmt, 0, 0);
7188 		  fprintf (dump_file, "\n");
7189 		}
7190 
7191 	      return true;
7192 	    }
7193 	}
7194     }
7195 
7196   return false;
7197 }
7198 
7199 /* Simplify a switch statement using the value range of the switch
7200    argument.  */
7201 
7202 static bool
7203 simplify_switch_using_ranges (gimple stmt)
7204 {
7205   tree op = gimple_switch_index (stmt);
7206   value_range_t *vr;
7207   bool take_default;
7208   edge e;
7209   edge_iterator ei;
7210   size_t i = 0, j = 0, n, n2;
7211   tree vec2;
7212   switch_update su;
7213 
7214   if (TREE_CODE (op) == SSA_NAME)
7215     {
7216       vr = get_value_range (op);
7217 
7218       /* We can only handle integer ranges.  */
7219       if (vr->type != VR_RANGE
7220 	  || symbolic_range_p (vr))
7221 	return false;
7222 
7223       /* Find case label for min/max of the value range.  */
7224       take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7225     }
7226   else if (TREE_CODE (op) == INTEGER_CST)
7227     {
7228       take_default = !find_case_label_index (stmt, 1, op, &i);
7229       if (take_default)
7230 	{
7231 	  i = 1;
7232 	  j = 0;
7233 	}
7234       else
7235 	{
7236 	  j = i;
7237 	}
7238     }
7239   else
7240     return false;
7241 
7242   n = gimple_switch_num_labels (stmt);
7243 
7244   /* Bail out if this is just all edges taken.  */
7245   if (i == 1
7246       && j == n - 1
7247       && take_default)
7248     return false;
7249 
7250   /* Build a new vector of taken case labels.  */
7251   vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7252   n2 = 0;
7253 
7254   /* Add the default edge, if necessary.  */
7255   if (take_default)
7256     TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7257 
7258   for (; i <= j; ++i, ++n2)
7259     TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7260 
7261   /* Mark needed edges.  */
7262   for (i = 0; i < n2; ++i)
7263     {
7264       e = find_edge (gimple_bb (stmt),
7265 		     label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7266       e->aux = (void *)-1;
7267     }
7268 
7269   /* Queue not needed edges for later removal.  */
7270   FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7271     {
7272       if (e->aux == (void *)-1)
7273 	{
7274 	  e->aux = NULL;
7275 	  continue;
7276 	}
7277 
7278       if (dump_file && (dump_flags & TDF_DETAILS))
7279 	{
7280 	  fprintf (dump_file, "removing unreachable case label\n");
7281 	}
7282       VEC_safe_push (edge, heap, to_remove_edges, e);
7283       e->flags &= ~EDGE_EXECUTABLE;
7284     }
7285 
7286   /* And queue an update for the stmt.  */
7287   su.stmt = stmt;
7288   su.vec = vec2;
7289   VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7290   return false;
7291 }
7292 
7293 /* Simplify an integral conversion from an SSA name in STMT.  */
7294 
7295 static bool
7296 simplify_conversion_using_ranges (gimple stmt)
7297 {
7298   tree innerop, middleop, finaltype;
7299   gimple def_stmt;
7300   value_range_t *innervr;
7301   bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
7302   unsigned inner_prec, middle_prec, final_prec;
7303   double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
7304 
7305   finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
7306   if (!INTEGRAL_TYPE_P (finaltype))
7307     return false;
7308   middleop = gimple_assign_rhs1 (stmt);
7309   def_stmt = SSA_NAME_DEF_STMT (middleop);
7310   if (!is_gimple_assign (def_stmt)
7311       || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
7312     return false;
7313   innerop = gimple_assign_rhs1 (def_stmt);
7314   if (TREE_CODE (innerop) != SSA_NAME)
7315     return false;
7316 
7317   /* Get the value-range of the inner operand.  */
7318   innervr = get_value_range (innerop);
7319   if (innervr->type != VR_RANGE
7320       || TREE_CODE (innervr->min) != INTEGER_CST
7321       || TREE_CODE (innervr->max) != INTEGER_CST)
7322     return false;
7323 
7324   /* Simulate the conversion chain to check if the result is equal if
7325      the middle conversion is removed.  */
7326   innermin = tree_to_double_int (innervr->min);
7327   innermax = tree_to_double_int (innervr->max);
7328 
7329   inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
7330   middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
7331   final_prec = TYPE_PRECISION (finaltype);
7332 
7333   /* If the first conversion is not injective, the second must not
7334      be widening.  */
7335   if (double_int_cmp (double_int_sub (innermax, innermin),
7336 		      double_int_mask (middle_prec), true) > 0
7337       && middle_prec < final_prec)
7338     return false;
7339   /* We also want a medium value so that we can track the effect that
7340      narrowing conversions with sign change have.  */
7341   inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
7342   if (inner_unsigned_p)
7343     innermed = double_int_rshift (double_int_mask (inner_prec),
7344 				  1, inner_prec, false);
7345   else
7346     innermed = double_int_zero;
7347   if (double_int_cmp (innermin, innermed, inner_unsigned_p) >= 0
7348       || double_int_cmp (innermed, innermax, inner_unsigned_p) >= 0)
7349     innermed = innermin;
7350 
7351   middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
7352   middlemin = double_int_ext (innermin, middle_prec, middle_unsigned_p);
7353   middlemed = double_int_ext (innermed, middle_prec, middle_unsigned_p);
7354   middlemax = double_int_ext (innermax, middle_prec, middle_unsigned_p);
7355 
7356   /* Require that the final conversion applied to both the original
7357      and the intermediate range produces the same result.  */
7358   final_unsigned_p = TYPE_UNSIGNED (finaltype);
7359   if (!double_int_equal_p (double_int_ext (middlemin,
7360 					   final_prec, final_unsigned_p),
7361 			   double_int_ext (innermin,
7362 					   final_prec, final_unsigned_p))
7363       || !double_int_equal_p (double_int_ext (middlemed,
7364 					      final_prec, final_unsigned_p),
7365 			      double_int_ext (innermed,
7366 					      final_prec, final_unsigned_p))
7367       || !double_int_equal_p (double_int_ext (middlemax,
7368 					      final_prec, final_unsigned_p),
7369 			      double_int_ext (innermax,
7370 					      final_prec, final_unsigned_p)))
7371     return false;
7372 
7373   gimple_assign_set_rhs1 (stmt, innerop);
7374   update_stmt (stmt);
7375   return true;
7376 }
7377 
7378 /* Return whether the value range *VR fits in an integer type specified
7379    by PRECISION and UNSIGNED_P.  */
7380 
7381 static bool
7382 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
7383 {
7384   tree src_type;
7385   unsigned src_precision;
7386   double_int tem;
7387 
7388   /* We can only handle integral and pointer types.  */
7389   src_type = TREE_TYPE (vr->min);
7390   if (!INTEGRAL_TYPE_P (src_type)
7391       && !POINTER_TYPE_P (src_type))
7392     return false;
7393 
7394   /* An extension is always fine, so is an identity transform.  */
7395   src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
7396   if (src_precision < precision
7397       || (src_precision == precision
7398 	  && TYPE_UNSIGNED (src_type) == unsigned_p))
7399     return true;
7400 
7401   /* Now we can only handle ranges with constant bounds.  */
7402   if (vr->type != VR_RANGE
7403       || TREE_CODE (vr->min) != INTEGER_CST
7404       || TREE_CODE (vr->max) != INTEGER_CST)
7405     return false;
7406 
7407   /* For precision-preserving sign-changes the MSB of the double-int
7408      has to be clear.  */
7409   if (src_precision == precision
7410       && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
7411     return false;
7412 
7413   /* Then we can perform the conversion on both ends and compare
7414      the result for equality.  */
7415   tem = double_int_ext (tree_to_double_int (vr->min), precision, unsigned_p);
7416   if (!double_int_equal_p (tree_to_double_int (vr->min), tem))
7417     return false;
7418   tem = double_int_ext (tree_to_double_int (vr->max), precision, unsigned_p);
7419   if (!double_int_equal_p (tree_to_double_int (vr->max), tem))
7420     return false;
7421 
7422   return true;
7423 }
7424 
7425 /* Simplify a conversion from integral SSA name to float in STMT.  */
7426 
7427 static bool
7428 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7429 {
7430   tree rhs1 = gimple_assign_rhs1 (stmt);
7431   value_range_t *vr = get_value_range (rhs1);
7432   enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
7433   enum machine_mode mode;
7434   tree tem;
7435   gimple conv;
7436 
7437   /* We can only handle constant ranges.  */
7438   if (vr->type != VR_RANGE
7439       || TREE_CODE (vr->min) != INTEGER_CST
7440       || TREE_CODE (vr->max) != INTEGER_CST)
7441     return false;
7442 
7443   /* First check if we can use a signed type in place of an unsigned.  */
7444   if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
7445       && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
7446 	  != CODE_FOR_nothing)
7447       && range_fits_type_p (vr, GET_MODE_PRECISION
7448 			          (TYPE_MODE (TREE_TYPE (rhs1))), 0))
7449     mode = TYPE_MODE (TREE_TYPE (rhs1));
7450   /* If we can do the conversion in the current input mode do nothing.  */
7451   else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
7452 			TYPE_UNSIGNED (TREE_TYPE (rhs1))))
7453     return false;
7454   /* Otherwise search for a mode we can use, starting from the narrowest
7455      integer mode available.  */
7456   else
7457     {
7458       mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
7459       do
7460 	{
7461 	  /* If we cannot do a signed conversion to float from mode
7462 	     or if the value-range does not fit in the signed type
7463 	     try with a wider mode.  */
7464 	  if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
7465 	      && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
7466 	    break;
7467 
7468 	  mode = GET_MODE_WIDER_MODE (mode);
7469 	  /* But do not widen the input.  Instead leave that to the
7470 	     optabs expansion code.  */
7471 	  if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
7472 	    return false;
7473 	}
7474       while (mode != VOIDmode);
7475       if (mode == VOIDmode)
7476 	return false;
7477     }
7478 
7479   /* It works, insert a truncation or sign-change before the
7480      float conversion.  */
7481   tem = create_tmp_var (build_nonstandard_integer_type
7482 			  (GET_MODE_PRECISION (mode), 0), NULL);
7483   conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
7484   tem = make_ssa_name (tem, conv);
7485   gimple_assign_set_lhs (conv, tem);
7486   gsi_insert_before (gsi, conv, GSI_SAME_STMT);
7487   gimple_assign_set_rhs1 (stmt, tem);
7488   update_stmt (stmt);
7489 
7490   return true;
7491 }
7492 
7493 /* Simplify STMT using ranges if possible.  */
7494 
7495 static bool
7496 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7497 {
7498   gimple stmt = gsi_stmt (*gsi);
7499   if (is_gimple_assign (stmt))
7500     {
7501       enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7502       tree rhs1 = gimple_assign_rhs1 (stmt);
7503 
7504       switch (rhs_code)
7505 	{
7506 	case EQ_EXPR:
7507 	case NE_EXPR:
7508           /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7509 	     if the RHS is zero or one, and the LHS are known to be boolean
7510 	     values.  */
7511 	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7512 	    return simplify_truth_ops_using_ranges (gsi, stmt);
7513 	  break;
7514 
7515       /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7516 	 and BIT_AND_EXPR respectively if the first operand is greater
7517 	 than zero and the second operand is an exact power of two.  */
7518 	case TRUNC_DIV_EXPR:
7519 	case TRUNC_MOD_EXPR:
7520 	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
7521 	      && integer_pow2p (gimple_assign_rhs2 (stmt)))
7522 	    return simplify_div_or_mod_using_ranges (stmt);
7523 	  break;
7524 
7525       /* Transform ABS (X) into X or -X as appropriate.  */
7526 	case ABS_EXPR:
7527 	  if (TREE_CODE (rhs1) == SSA_NAME
7528 	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7529 	    return simplify_abs_using_ranges (stmt);
7530 	  break;
7531 
7532 	case BIT_AND_EXPR:
7533 	case BIT_IOR_EXPR:
7534 	  /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7535 	     if all the bits being cleared are already cleared or
7536 	     all the bits being set are already set.  */
7537 	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7538 	    return simplify_bit_ops_using_ranges (gsi, stmt);
7539 	  break;
7540 
7541 	CASE_CONVERT:
7542 	  if (TREE_CODE (rhs1) == SSA_NAME
7543 	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7544 	    return simplify_conversion_using_ranges (stmt);
7545 	  break;
7546 
7547 	case FLOAT_EXPR:
7548 	  if (TREE_CODE (rhs1) == SSA_NAME
7549 	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7550 	    return simplify_float_conversion_using_ranges (gsi, stmt);
7551 	  break;
7552 
7553 	default:
7554 	  break;
7555 	}
7556     }
7557   else if (gimple_code (stmt) == GIMPLE_COND)
7558     return simplify_cond_using_ranges (stmt);
7559   else if (gimple_code (stmt) == GIMPLE_SWITCH)
7560     return simplify_switch_using_ranges (stmt);
7561 
7562   return false;
7563 }
7564 
7565 /* If the statement pointed by SI has a predicate whose value can be
7566    computed using the value range information computed by VRP, compute
7567    its value and return true.  Otherwise, return false.  */
7568 
7569 static bool
7570 fold_predicate_in (gimple_stmt_iterator *si)
7571 {
7572   bool assignment_p = false;
7573   tree val;
7574   gimple stmt = gsi_stmt (*si);
7575 
7576   if (is_gimple_assign (stmt)
7577       && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7578     {
7579       assignment_p = true;
7580       val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7581 				      gimple_assign_rhs1 (stmt),
7582 				      gimple_assign_rhs2 (stmt),
7583 				      stmt);
7584     }
7585   else if (gimple_code (stmt) == GIMPLE_COND)
7586     val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7587 				    gimple_cond_lhs (stmt),
7588 				    gimple_cond_rhs (stmt),
7589 				    stmt);
7590   else
7591     return false;
7592 
7593   if (val)
7594     {
7595       if (assignment_p)
7596         val = fold_convert (gimple_expr_type (stmt), val);
7597 
7598       if (dump_file)
7599 	{
7600 	  fprintf (dump_file, "Folding predicate ");
7601 	  print_gimple_expr (dump_file, stmt, 0, 0);
7602 	  fprintf (dump_file, " to ");
7603 	  print_generic_expr (dump_file, val, 0);
7604 	  fprintf (dump_file, "\n");
7605 	}
7606 
7607       if (is_gimple_assign (stmt))
7608 	gimple_assign_set_rhs_from_tree (si, val);
7609       else
7610 	{
7611 	  gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7612 	  if (integer_zerop (val))
7613 	    gimple_cond_make_false (stmt);
7614 	  else if (integer_onep (val))
7615 	    gimple_cond_make_true (stmt);
7616 	  else
7617 	    gcc_unreachable ();
7618 	}
7619 
7620       return true;
7621     }
7622 
7623   return false;
7624 }
7625 
7626 /* Callback for substitute_and_fold folding the stmt at *SI.  */
7627 
7628 static bool
7629 vrp_fold_stmt (gimple_stmt_iterator *si)
7630 {
7631   if (fold_predicate_in (si))
7632     return true;
7633 
7634   return simplify_stmt_using_ranges (si);
7635 }
7636 
7637 /* Stack of dest,src equivalency pairs that need to be restored after
7638    each attempt to thread a block's incoming edge to an outgoing edge.
7639 
7640    A NULL entry is used to mark the end of pairs which need to be
7641    restored.  */
7642 static VEC(tree,heap) *stack;
7643 
7644 /* A trivial wrapper so that we can present the generic jump threading
7645    code with a simple API for simplifying statements.  STMT is the
7646    statement we want to simplify, WITHIN_STMT provides the location
7647    for any overflow warnings.  */
7648 
7649 static tree
7650 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7651 {
7652   /* We only use VRP information to simplify conditionals.  This is
7653      overly conservative, but it's unclear if doing more would be
7654      worth the compile time cost.  */
7655   if (gimple_code (stmt) != GIMPLE_COND)
7656     return NULL;
7657 
7658   return vrp_evaluate_conditional (gimple_cond_code (stmt),
7659 				   gimple_cond_lhs (stmt),
7660 				   gimple_cond_rhs (stmt), within_stmt);
7661 }
7662 
7663 /* Blocks which have more than one predecessor and more than
7664    one successor present jump threading opportunities, i.e.,
7665    when the block is reached from a specific predecessor, we
7666    may be able to determine which of the outgoing edges will
7667    be traversed.  When this optimization applies, we are able
7668    to avoid conditionals at runtime and we may expose secondary
7669    optimization opportunities.
7670 
7671    This routine is effectively a driver for the generic jump
7672    threading code.  It basically just presents the generic code
7673    with edges that may be suitable for jump threading.
7674 
7675    Unlike DOM, we do not iterate VRP if jump threading was successful.
7676    While iterating may expose new opportunities for VRP, it is expected
7677    those opportunities would be very limited and the compile time cost
7678    to expose those opportunities would be significant.
7679 
7680    As jump threading opportunities are discovered, they are registered
7681    for later realization.  */
7682 
7683 static void
7684 identify_jump_threads (void)
7685 {
7686   basic_block bb;
7687   gimple dummy;
7688   int i;
7689   edge e;
7690 
7691   /* Ugh.  When substituting values earlier in this pass we can
7692      wipe the dominance information.  So rebuild the dominator
7693      information as we need it within the jump threading code.  */
7694   calculate_dominance_info (CDI_DOMINATORS);
7695 
7696   /* We do not allow VRP information to be used for jump threading
7697      across a back edge in the CFG.  Otherwise it becomes too
7698      difficult to avoid eliminating loop exit tests.  Of course
7699      EDGE_DFS_BACK is not accurate at this time so we have to
7700      recompute it.  */
7701   mark_dfs_back_edges ();
7702 
7703   /* Do not thread across edges we are about to remove.  Just marking
7704      them as EDGE_DFS_BACK will do.  */
7705   FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7706     e->flags |= EDGE_DFS_BACK;
7707 
7708   /* Allocate our unwinder stack to unwind any temporary equivalences
7709      that might be recorded.  */
7710   stack = VEC_alloc (tree, heap, 20);
7711 
7712   /* To avoid lots of silly node creation, we create a single
7713      conditional and just modify it in-place when attempting to
7714      thread jumps.  */
7715   dummy = gimple_build_cond (EQ_EXPR,
7716 			     integer_zero_node, integer_zero_node,
7717 			     NULL, NULL);
7718 
7719   /* Walk through all the blocks finding those which present a
7720      potential jump threading opportunity.  We could set this up
7721      as a dominator walker and record data during the walk, but
7722      I doubt it's worth the effort for the classes of jump
7723      threading opportunities we are trying to identify at this
7724      point in compilation.  */
7725   FOR_EACH_BB (bb)
7726     {
7727       gimple last;
7728 
7729       /* If the generic jump threading code does not find this block
7730 	 interesting, then there is nothing to do.  */
7731       if (! potentially_threadable_block (bb))
7732 	continue;
7733 
7734       /* We only care about blocks ending in a COND_EXPR.  While there
7735 	 may be some value in handling SWITCH_EXPR here, I doubt it's
7736 	 terribly important.  */
7737       last = gsi_stmt (gsi_last_bb (bb));
7738 
7739       /* We're basically looking for a switch or any kind of conditional with
7740 	 integral or pointer type arguments.  Note the type of the second
7741 	 argument will be the same as the first argument, so no need to
7742 	 check it explicitly.  */
7743       if (gimple_code (last) == GIMPLE_SWITCH
7744 	  || (gimple_code (last) == GIMPLE_COND
7745       	      && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7746 	      && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7747 		  || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
7748 	      && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7749 		  || is_gimple_min_invariant (gimple_cond_rhs (last)))))
7750 	{
7751 	  edge_iterator ei;
7752 
7753 	  /* We've got a block with multiple predecessors and multiple
7754 	     successors which also ends in a suitable conditional or
7755 	     switch statement.  For each predecessor, see if we can thread
7756 	     it to a specific successor.  */
7757 	  FOR_EACH_EDGE (e, ei, bb->preds)
7758 	    {
7759 	      /* Do not thread across back edges or abnormal edges
7760 		 in the CFG.  */
7761 	      if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7762 		continue;
7763 
7764 	      thread_across_edge (dummy, e, true, &stack,
7765 				  simplify_stmt_for_jump_threading);
7766 	    }
7767 	}
7768     }
7769 
7770   /* We do not actually update the CFG or SSA graphs at this point as
7771      ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7772      handle ASSERT_EXPRs gracefully.  */
7773 }
7774 
7775 /* We identified all the jump threading opportunities earlier, but could
7776    not transform the CFG at that time.  This routine transforms the
7777    CFG and arranges for the dominator tree to be rebuilt if necessary.
7778 
7779    Note the SSA graph update will occur during the normal TODO
7780    processing by the pass manager.  */
7781 static void
7782 finalize_jump_threads (void)
7783 {
7784   thread_through_all_blocks (false);
7785   VEC_free (tree, heap, stack);
7786 }
7787 
7788 
7789 /* Traverse all the blocks folding conditionals with known ranges.  */
7790 
7791 static void
7792 vrp_finalize (void)
7793 {
7794   size_t i;
7795 
7796   values_propagated = true;
7797 
7798   if (dump_file)
7799     {
7800       fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7801       dump_all_value_ranges (dump_file);
7802       fprintf (dump_file, "\n");
7803     }
7804 
7805   substitute_and_fold (op_with_constant_singleton_value_range,
7806 		       vrp_fold_stmt, false);
7807 
7808   if (warn_array_bounds)
7809     check_all_array_refs ();
7810 
7811   /* We must identify jump threading opportunities before we release
7812      the datastructures built by VRP.  */
7813   identify_jump_threads ();
7814 
7815   /* Free allocated memory.  */
7816   for (i = 0; i < num_vr_values; i++)
7817     if (vr_value[i])
7818       {
7819 	BITMAP_FREE (vr_value[i]->equiv);
7820 	free (vr_value[i]);
7821       }
7822 
7823   free (vr_value);
7824   free (vr_phi_edge_counts);
7825 
7826   /* So that we can distinguish between VRP data being available
7827      and not available.  */
7828   vr_value = NULL;
7829   vr_phi_edge_counts = NULL;
7830 }
7831 
7832 
7833 /* Main entry point to VRP (Value Range Propagation).  This pass is
7834    loosely based on J. R. C. Patterson, ``Accurate Static Branch
7835    Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7836    Programming Language Design and Implementation, pp. 67-78, 1995.
7837    Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7838 
7839    This is essentially an SSA-CCP pass modified to deal with ranges
7840    instead of constants.
7841 
7842    While propagating ranges, we may find that two or more SSA name
7843    have equivalent, though distinct ranges.  For instance,
7844 
7845      1	x_9 = p_3->a;
7846      2	p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7847      3	if (p_4 == q_2)
7848      4	  p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7849      5	endif
7850      6	if (q_2)
7851 
7852    In the code above, pointer p_5 has range [q_2, q_2], but from the
7853    code we can also determine that p_5 cannot be NULL and, if q_2 had
7854    a non-varying range, p_5's range should also be compatible with it.
7855 
7856    These equivalences are created by two expressions: ASSERT_EXPR and
7857    copy operations.  Since p_5 is an assertion on p_4, and p_4 was the
7858    result of another assertion, then we can use the fact that p_5 and
7859    p_4 are equivalent when evaluating p_5's range.
7860 
7861    Together with value ranges, we also propagate these equivalences
7862    between names so that we can take advantage of information from
7863    multiple ranges when doing final replacement.  Note that this
7864    equivalency relation is transitive but not symmetric.
7865 
7866    In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7867    cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7868    in contexts where that assertion does not hold (e.g., in line 6).
7869 
7870    TODO, the main difference between this pass and Patterson's is that
7871    we do not propagate edge probabilities.  We only compute whether
7872    edges can be taken or not.  That is, instead of having a spectrum
7873    of jump probabilities between 0 and 1, we only deal with 0, 1 and
7874    DON'T KNOW.  In the future, it may be worthwhile to propagate
7875    probabilities to aid branch prediction.  */
7876 
7877 static unsigned int
7878 execute_vrp (void)
7879 {
7880   int i;
7881   edge e;
7882   switch_update *su;
7883 
7884   loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7885   rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7886   scev_initialize ();
7887 
7888   /* ???  This ends up using stale EDGE_DFS_BACK for liveness computation.
7889      Inserting assertions may split edges which will invalidate
7890      EDGE_DFS_BACK.  */
7891   insert_range_assertions ();
7892 
7893   /* Estimate number of iterations - but do not use undefined behavior
7894      for this.  We can't do this lazily as other functions may compute
7895      this using undefined behavior.  */
7896   free_numbers_of_iterations_estimates ();
7897   estimate_numbers_of_iterations (false);
7898 
7899   to_remove_edges = VEC_alloc (edge, heap, 10);
7900   to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7901   threadedge_initialize_values ();
7902 
7903   /* For visiting PHI nodes we need EDGE_DFS_BACK computed.  */
7904   mark_dfs_back_edges ();
7905 
7906   vrp_initialize ();
7907   ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7908   vrp_finalize ();
7909 
7910   free_numbers_of_iterations_estimates ();
7911 
7912   /* ASSERT_EXPRs must be removed before finalizing jump threads
7913      as finalizing jump threads calls the CFG cleanup code which
7914      does not properly handle ASSERT_EXPRs.  */
7915   remove_range_assertions ();
7916 
7917   /* If we exposed any new variables, go ahead and put them into
7918      SSA form now, before we handle jump threading.  This simplifies
7919      interactions between rewriting of _DECL nodes into SSA form
7920      and rewriting SSA_NAME nodes into SSA form after block
7921      duplication and CFG manipulation.  */
7922   update_ssa (TODO_update_ssa);
7923 
7924   finalize_jump_threads ();
7925 
7926   /* Remove dead edges from SWITCH_EXPR optimization.  This leaves the
7927      CFG in a broken state and requires a cfg_cleanup run.  */
7928   FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7929     remove_edge (e);
7930   /* Update SWITCH_EXPR case label vector.  */
7931   FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7932     {
7933       size_t j;
7934       size_t n = TREE_VEC_LENGTH (su->vec);
7935       tree label;
7936       gimple_switch_set_num_labels (su->stmt, n);
7937       for (j = 0; j < n; j++)
7938 	gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7939       /* As we may have replaced the default label with a regular one
7940 	 make sure to make it a real default label again.  This ensures
7941 	 optimal expansion.  */
7942       label = gimple_switch_default_label (su->stmt);
7943       CASE_LOW (label) = NULL_TREE;
7944       CASE_HIGH (label) = NULL_TREE;
7945     }
7946 
7947   if (VEC_length (edge, to_remove_edges) > 0)
7948     free_dominance_info (CDI_DOMINATORS);
7949 
7950   VEC_free (edge, heap, to_remove_edges);
7951   VEC_free (switch_update, heap, to_update_switch_stmts);
7952   threadedge_finalize_values ();
7953 
7954   scev_finalize ();
7955   loop_optimizer_finalize ();
7956   return 0;
7957 }
7958 
7959 static bool
7960 gate_vrp (void)
7961 {
7962   return flag_tree_vrp != 0;
7963 }
7964 
7965 struct gimple_opt_pass pass_vrp =
7966 {
7967  {
7968   GIMPLE_PASS,
7969   "vrp",				/* name */
7970   gate_vrp,				/* gate */
7971   execute_vrp,				/* execute */
7972   NULL,					/* sub */
7973   NULL,					/* next */
7974   0,					/* static_pass_number */
7975   TV_TREE_VRP,				/* tv_id */
7976   PROP_ssa,				/* properties_required */
7977   0,					/* properties_provided */
7978   0,					/* properties_destroyed */
7979   0,					/* todo_flags_start */
7980   TODO_cleanup_cfg
7981     | TODO_update_ssa
7982     | TODO_verify_ssa
7983     | TODO_verify_flow
7984     | TODO_ggc_collect			/* todo_flags_finish */
7985  }
7986 };
7987