xref: /dragonfly/contrib/gcc-4.7/libgcc/libgcc2.c (revision f2c43266)
1 /* More subroutines needed by GCC output code on some machines.  */
2 /* Compile this one with gcc.  */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4    2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
5    Free Software Foundation, Inc.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 Under Section 7 of GPL version 3, you are granted additional
20 permissions described in the GCC Runtime Library Exception, version
21 3.1, as published by the Free Software Foundation.
22 
23 You should have received a copy of the GNU General Public License and
24 a copy of the GCC Runtime Library Exception along with this program;
25 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
26 <http://www.gnu.org/licenses/>.  */
27 
28 #include "tconfig.h"
29 #include "tsystem.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "libgcc_tm.h"
33 
34 #ifdef HAVE_GAS_HIDDEN
35 #define ATTRIBUTE_HIDDEN  __attribute__ ((__visibility__ ("hidden")))
36 #else
37 #define ATTRIBUTE_HIDDEN
38 #endif
39 
40 /* Work out the largest "word" size that we can deal with on this target.  */
41 #if MIN_UNITS_PER_WORD > 4
42 # define LIBGCC2_MAX_UNITS_PER_WORD 8
43 #elif (MIN_UNITS_PER_WORD > 2 \
44        || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
45 # define LIBGCC2_MAX_UNITS_PER_WORD 4
46 #else
47 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
48 #endif
49 
50 /* Work out what word size we are using for this compilation.
51    The value can be set on the command line.  */
52 #ifndef LIBGCC2_UNITS_PER_WORD
53 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
54 #endif
55 
56 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
57 
58 #include "libgcc2.h"
59 
60 #ifdef DECLARE_LIBRARY_RENAMES
61   DECLARE_LIBRARY_RENAMES
62 #endif
63 
64 #if defined (L_negdi2)
65 DWtype
66 __negdi2 (DWtype u)
67 {
68   const DWunion uu = {.ll = u};
69   const DWunion w = { {.low = -uu.s.low,
70 		       .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
71 
72   return w.ll;
73 }
74 #endif
75 
76 #ifdef L_addvsi3
77 Wtype
78 __addvSI3 (Wtype a, Wtype b)
79 {
80   const Wtype w = (UWtype) a + (UWtype) b;
81 
82   if (b >= 0 ? w < a : w > a)
83     abort ();
84 
85   return w;
86 }
87 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
88 SItype
89 __addvsi3 (SItype a, SItype b)
90 {
91   const SItype w = (USItype) a + (USItype) b;
92 
93   if (b >= 0 ? w < a : w > a)
94     abort ();
95 
96   return w;
97 }
98 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
99 #endif
100 
101 #ifdef L_addvdi3
102 DWtype
103 __addvDI3 (DWtype a, DWtype b)
104 {
105   const DWtype w = (UDWtype) a + (UDWtype) b;
106 
107   if (b >= 0 ? w < a : w > a)
108     abort ();
109 
110   return w;
111 }
112 #endif
113 
114 #ifdef L_subvsi3
115 Wtype
116 __subvSI3 (Wtype a, Wtype b)
117 {
118   const Wtype w = (UWtype) a - (UWtype) b;
119 
120   if (b >= 0 ? w > a : w < a)
121     abort ();
122 
123   return w;
124 }
125 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
126 SItype
127 __subvsi3 (SItype a, SItype b)
128 {
129   const SItype w = (USItype) a - (USItype) b;
130 
131   if (b >= 0 ? w > a : w < a)
132     abort ();
133 
134   return w;
135 }
136 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
137 #endif
138 
139 #ifdef L_subvdi3
140 DWtype
141 __subvDI3 (DWtype a, DWtype b)
142 {
143   const DWtype w = (UDWtype) a - (UDWtype) b;
144 
145   if (b >= 0 ? w > a : w < a)
146     abort ();
147 
148   return w;
149 }
150 #endif
151 
152 #ifdef L_mulvsi3
153 Wtype
154 __mulvSI3 (Wtype a, Wtype b)
155 {
156   const DWtype w = (DWtype) a * (DWtype) b;
157 
158   if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
159     abort ();
160 
161   return w;
162 }
163 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
164 #undef WORD_SIZE
165 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
166 SItype
167 __mulvsi3 (SItype a, SItype b)
168 {
169   const DItype w = (DItype) a * (DItype) b;
170 
171   if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
172     abort ();
173 
174   return w;
175 }
176 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
177 #endif
178 
179 #ifdef L_negvsi2
180 Wtype
181 __negvSI2 (Wtype a)
182 {
183   const Wtype w = -(UWtype) a;
184 
185   if (a >= 0 ? w > 0 : w < 0)
186     abort ();
187 
188    return w;
189 }
190 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
191 SItype
192 __negvsi2 (SItype a)
193 {
194   const SItype w = -(USItype) a;
195 
196   if (a >= 0 ? w > 0 : w < 0)
197     abort ();
198 
199    return w;
200 }
201 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
202 #endif
203 
204 #ifdef L_negvdi2
205 DWtype
206 __negvDI2 (DWtype a)
207 {
208   const DWtype w = -(UDWtype) a;
209 
210   if (a >= 0 ? w > 0 : w < 0)
211     abort ();
212 
213   return w;
214 }
215 #endif
216 
217 #ifdef L_absvsi2
218 Wtype
219 __absvSI2 (Wtype a)
220 {
221   Wtype w = a;
222 
223   if (a < 0)
224 #ifdef L_negvsi2
225     w = __negvSI2 (a);
226 #else
227     w = -(UWtype) a;
228 
229   if (w < 0)
230     abort ();
231 #endif
232 
233    return w;
234 }
235 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
236 SItype
237 __absvsi2 (SItype a)
238 {
239   SItype w = a;
240 
241   if (a < 0)
242 #ifdef L_negvsi2
243     w = __negvsi2 (a);
244 #else
245     w = -(USItype) a;
246 
247   if (w < 0)
248     abort ();
249 #endif
250 
251    return w;
252 }
253 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
254 #endif
255 
256 #ifdef L_absvdi2
257 DWtype
258 __absvDI2 (DWtype a)
259 {
260   DWtype w = a;
261 
262   if (a < 0)
263 #ifdef L_negvdi2
264     w = __negvDI2 (a);
265 #else
266     w = -(UDWtype) a;
267 
268   if (w < 0)
269     abort ();
270 #endif
271 
272   return w;
273 }
274 #endif
275 
276 #ifdef L_mulvdi3
277 DWtype
278 __mulvDI3 (DWtype u, DWtype v)
279 {
280   /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
281      but the checked multiplication needs only two.  */
282   const DWunion uu = {.ll = u};
283   const DWunion vv = {.ll = v};
284 
285   if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
286     {
287       /* u fits in a single Wtype.  */
288       if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
289 	{
290 	  /* v fits in a single Wtype as well.  */
291 	  /* A single multiplication.  No overflow risk.  */
292 	  return (DWtype) uu.s.low * (DWtype) vv.s.low;
293 	}
294       else
295 	{
296 	  /* Two multiplications.  */
297 	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
298 			* (UDWtype) (UWtype) vv.s.low};
299 	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
300 			* (UDWtype) (UWtype) vv.s.high};
301 
302 	  if (vv.s.high < 0)
303 	    w1.s.high -= uu.s.low;
304 	  if (uu.s.low < 0)
305 	    w1.ll -= vv.ll;
306 	  w1.ll += (UWtype) w0.s.high;
307 	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
308 	    {
309 	      w0.s.high = w1.s.low;
310 	      return w0.ll;
311 	    }
312 	}
313     }
314   else
315     {
316       if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
317 	{
318 	  /* v fits into a single Wtype.  */
319 	  /* Two multiplications.  */
320 	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
321 			* (UDWtype) (UWtype) vv.s.low};
322 	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
323 			* (UDWtype) (UWtype) vv.s.low};
324 
325 	  if (uu.s.high < 0)
326 	    w1.s.high -= vv.s.low;
327 	  if (vv.s.low < 0)
328 	    w1.ll -= uu.ll;
329 	  w1.ll += (UWtype) w0.s.high;
330 	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
331 	    {
332 	      w0.s.high = w1.s.low;
333 	      return w0.ll;
334 	    }
335 	}
336       else
337 	{
338 	  /* A few sign checks and a single multiplication.  */
339 	  if (uu.s.high >= 0)
340 	    {
341 	      if (vv.s.high >= 0)
342 		{
343 		  if (uu.s.high == 0 && vv.s.high == 0)
344 		    {
345 		      const DWtype w = (UDWtype) (UWtype) uu.s.low
346 			* (UDWtype) (UWtype) vv.s.low;
347 		      if (__builtin_expect (w >= 0, 1))
348 			return w;
349 		    }
350 		}
351 	      else
352 		{
353 		  if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
354 		    {
355 		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
356 				    * (UDWtype) (UWtype) vv.s.low};
357 
358 		      ww.s.high -= uu.s.low;
359 		      if (__builtin_expect (ww.s.high < 0, 1))
360 			return ww.ll;
361 		    }
362 		}
363 	    }
364 	  else
365 	    {
366 	      if (vv.s.high >= 0)
367 		{
368 		  if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
369 		    {
370 		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
371 				    * (UDWtype) (UWtype) vv.s.low};
372 
373 		      ww.s.high -= vv.s.low;
374 		      if (__builtin_expect (ww.s.high < 0, 1))
375 			return ww.ll;
376 		    }
377 		}
378 	      else
379 		{
380 		  if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
381 		    {
382 		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
383 				    * (UDWtype) (UWtype) vv.s.low};
384 
385 		      ww.s.high -= uu.s.low;
386 		      ww.s.high -= vv.s.low;
387 		      if (__builtin_expect (ww.s.high >= 0, 1))
388 			return ww.ll;
389 		    }
390 		}
391 	    }
392 	}
393     }
394 
395   /* Overflow.  */
396   abort ();
397 }
398 #endif
399 
400 
401 /* Unless shift functions are defined with full ANSI prototypes,
402    parameter b will be promoted to int if shift_count_type is smaller than an int.  */
403 #ifdef L_lshrdi3
404 DWtype
405 __lshrdi3 (DWtype u, shift_count_type b)
406 {
407   if (b == 0)
408     return u;
409 
410   const DWunion uu = {.ll = u};
411   const shift_count_type bm = W_TYPE_SIZE - b;
412   DWunion w;
413 
414   if (bm <= 0)
415     {
416       w.s.high = 0;
417       w.s.low = (UWtype) uu.s.high >> -bm;
418     }
419   else
420     {
421       const UWtype carries = (UWtype) uu.s.high << bm;
422 
423       w.s.high = (UWtype) uu.s.high >> b;
424       w.s.low = ((UWtype) uu.s.low >> b) | carries;
425     }
426 
427   return w.ll;
428 }
429 #endif
430 
431 #ifdef L_ashldi3
432 DWtype
433 __ashldi3 (DWtype u, shift_count_type b)
434 {
435   if (b == 0)
436     return u;
437 
438   const DWunion uu = {.ll = u};
439   const shift_count_type bm = W_TYPE_SIZE - b;
440   DWunion w;
441 
442   if (bm <= 0)
443     {
444       w.s.low = 0;
445       w.s.high = (UWtype) uu.s.low << -bm;
446     }
447   else
448     {
449       const UWtype carries = (UWtype) uu.s.low >> bm;
450 
451       w.s.low = (UWtype) uu.s.low << b;
452       w.s.high = ((UWtype) uu.s.high << b) | carries;
453     }
454 
455   return w.ll;
456 }
457 #endif
458 
459 #ifdef L_ashrdi3
460 DWtype
461 __ashrdi3 (DWtype u, shift_count_type b)
462 {
463   if (b == 0)
464     return u;
465 
466   const DWunion uu = {.ll = u};
467   const shift_count_type bm = W_TYPE_SIZE - b;
468   DWunion w;
469 
470   if (bm <= 0)
471     {
472       /* w.s.high = 1..1 or 0..0 */
473       w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
474       w.s.low = uu.s.high >> -bm;
475     }
476   else
477     {
478       const UWtype carries = (UWtype) uu.s.high << bm;
479 
480       w.s.high = uu.s.high >> b;
481       w.s.low = ((UWtype) uu.s.low >> b) | carries;
482     }
483 
484   return w.ll;
485 }
486 #endif
487 
488 #ifdef L_bswapsi2
489 SItype
490 __bswapsi2 (SItype u)
491 {
492   return ((((u) & 0xff000000) >> 24)
493 	  | (((u) & 0x00ff0000) >>  8)
494 	  | (((u) & 0x0000ff00) <<  8)
495 	  | (((u) & 0x000000ff) << 24));
496 }
497 #endif
498 #ifdef L_bswapdi2
499 DItype
500 __bswapdi2 (DItype u)
501 {
502   return ((((u) & 0xff00000000000000ull) >> 56)
503 	  | (((u) & 0x00ff000000000000ull) >> 40)
504 	  | (((u) & 0x0000ff0000000000ull) >> 24)
505 	  | (((u) & 0x000000ff00000000ull) >>  8)
506 	  | (((u) & 0x00000000ff000000ull) <<  8)
507 	  | (((u) & 0x0000000000ff0000ull) << 24)
508 	  | (((u) & 0x000000000000ff00ull) << 40)
509 	  | (((u) & 0x00000000000000ffull) << 56));
510 }
511 #endif
512 #ifdef L_ffssi2
513 #undef int
514 int
515 __ffsSI2 (UWtype u)
516 {
517   UWtype count;
518 
519   if (u == 0)
520     return 0;
521 
522   count_trailing_zeros (count, u);
523   return count + 1;
524 }
525 #endif
526 
527 #ifdef L_ffsdi2
528 #undef int
529 int
530 __ffsDI2 (DWtype u)
531 {
532   const DWunion uu = {.ll = u};
533   UWtype word, count, add;
534 
535   if (uu.s.low != 0)
536     word = uu.s.low, add = 0;
537   else if (uu.s.high != 0)
538     word = uu.s.high, add = W_TYPE_SIZE;
539   else
540     return 0;
541 
542   count_trailing_zeros (count, word);
543   return count + add + 1;
544 }
545 #endif
546 
547 #ifdef L_muldi3
548 DWtype
549 __muldi3 (DWtype u, DWtype v)
550 {
551   const DWunion uu = {.ll = u};
552   const DWunion vv = {.ll = v};
553   DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
554 
555   w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
556 	       + (UWtype) uu.s.high * (UWtype) vv.s.low);
557 
558   return w.ll;
559 }
560 #endif
561 
562 #if (defined (L_udivdi3) || defined (L_divdi3) || \
563      defined (L_umoddi3) || defined (L_moddi3))
564 #if defined (sdiv_qrnnd)
565 #define L_udiv_w_sdiv
566 #endif
567 #endif
568 
569 #ifdef L_udiv_w_sdiv
570 #if defined (sdiv_qrnnd)
571 #if (defined (L_udivdi3) || defined (L_divdi3) || \
572      defined (L_umoddi3) || defined (L_moddi3))
573 static inline __attribute__ ((__always_inline__))
574 #endif
575 UWtype
576 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
577 {
578   UWtype q, r;
579   UWtype c0, c1, b1;
580 
581   if ((Wtype) d >= 0)
582     {
583       if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
584 	{
585 	  /* Dividend, divisor, and quotient are nonnegative.  */
586 	  sdiv_qrnnd (q, r, a1, a0, d);
587 	}
588       else
589 	{
590 	  /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d.  */
591 	  sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
592 	  /* Divide (c1*2^32 + c0) by d.  */
593 	  sdiv_qrnnd (q, r, c1, c0, d);
594 	  /* Add 2^31 to quotient.  */
595 	  q += (UWtype) 1 << (W_TYPE_SIZE - 1);
596 	}
597     }
598   else
599     {
600       b1 = d >> 1;			/* d/2, between 2^30 and 2^31 - 1 */
601       c1 = a1 >> 1;			/* A/2 */
602       c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
603 
604       if (a1 < b1)			/* A < 2^32*b1, so A/2 < 2^31*b1 */
605 	{
606 	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
607 
608 	  r = 2*r + (a0 & 1);		/* Remainder from A/(2*b1) */
609 	  if ((d & 1) != 0)
610 	    {
611 	      if (r >= q)
612 		r = r - q;
613 	      else if (q - r <= d)
614 		{
615 		  r = r - q + d;
616 		  q--;
617 		}
618 	      else
619 		{
620 		  r = r - q + 2*d;
621 		  q -= 2;
622 		}
623 	    }
624 	}
625       else if (c1 < b1)			/* So 2^31 <= (A/2)/b1 < 2^32 */
626 	{
627 	  c1 = (b1 - 1) - c1;
628 	  c0 = ~c0;			/* logical NOT */
629 
630 	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
631 
632 	  q = ~q;			/* (A/2)/b1 */
633 	  r = (b1 - 1) - r;
634 
635 	  r = 2*r + (a0 & 1);		/* A/(2*b1) */
636 
637 	  if ((d & 1) != 0)
638 	    {
639 	      if (r >= q)
640 		r = r - q;
641 	      else if (q - r <= d)
642 		{
643 		  r = r - q + d;
644 		  q--;
645 		}
646 	      else
647 		{
648 		  r = r - q + 2*d;
649 		  q -= 2;
650 		}
651 	    }
652 	}
653       else				/* Implies c1 = b1 */
654 	{				/* Hence a1 = d - 1 = 2*b1 - 1 */
655 	  if (a0 >= -d)
656 	    {
657 	      q = -1;
658 	      r = a0 + d;
659 	    }
660 	  else
661 	    {
662 	      q = -2;
663 	      r = a0 + 2*d;
664 	    }
665 	}
666     }
667 
668   *rp = r;
669   return q;
670 }
671 #else
672 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv.  */
673 UWtype
674 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
675 	       UWtype a1 __attribute__ ((__unused__)),
676 	       UWtype a0 __attribute__ ((__unused__)),
677 	       UWtype d __attribute__ ((__unused__)))
678 {
679   return 0;
680 }
681 #endif
682 #endif
683 
684 #if (defined (L_udivdi3) || defined (L_divdi3) || \
685      defined (L_umoddi3) || defined (L_moddi3))
686 #define L_udivmoddi4
687 #endif
688 
689 #ifdef L_clz
690 const UQItype __clz_tab[256] =
691 {
692   0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
693   6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
694   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
695   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
696   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
697   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
698   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
699   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
700 };
701 #endif
702 
703 #ifdef L_clzsi2
704 #undef int
705 int
706 __clzSI2 (UWtype x)
707 {
708   Wtype ret;
709 
710   count_leading_zeros (ret, x);
711 
712   return ret;
713 }
714 #endif
715 
716 #ifdef L_clzdi2
717 #undef int
718 int
719 __clzDI2 (UDWtype x)
720 {
721   const DWunion uu = {.ll = x};
722   UWtype word;
723   Wtype ret, add;
724 
725   if (uu.s.high)
726     word = uu.s.high, add = 0;
727   else
728     word = uu.s.low, add = W_TYPE_SIZE;
729 
730   count_leading_zeros (ret, word);
731   return ret + add;
732 }
733 #endif
734 
735 #ifdef L_ctzsi2
736 #undef int
737 int
738 __ctzSI2 (UWtype x)
739 {
740   Wtype ret;
741 
742   count_trailing_zeros (ret, x);
743 
744   return ret;
745 }
746 #endif
747 
748 #ifdef L_ctzdi2
749 #undef int
750 int
751 __ctzDI2 (UDWtype x)
752 {
753   const DWunion uu = {.ll = x};
754   UWtype word;
755   Wtype ret, add;
756 
757   if (uu.s.low)
758     word = uu.s.low, add = 0;
759   else
760     word = uu.s.high, add = W_TYPE_SIZE;
761 
762   count_trailing_zeros (ret, word);
763   return ret + add;
764 }
765 #endif
766 
767 #ifdef L_clrsbsi2
768 #undef int
769 int
770 __clrsbSI2 (Wtype x)
771 {
772   Wtype ret;
773 
774   if (x < 0)
775     x = ~x;
776   if (x == 0)
777     return W_TYPE_SIZE - 1;
778   count_leading_zeros (ret, x);
779   return ret - 1;
780 }
781 #endif
782 
783 #ifdef L_clrsbdi2
784 #undef int
785 int
786 __clrsbDI2 (DWtype x)
787 {
788   const DWunion uu = {.ll = x};
789   UWtype word;
790   Wtype ret, add;
791 
792   if (uu.s.high == 0)
793     word = uu.s.low, add = W_TYPE_SIZE;
794   else if (uu.s.high == -1)
795     word = ~uu.s.low, add = W_TYPE_SIZE;
796   else if (uu.s.high >= 0)
797     word = uu.s.high, add = 0;
798   else
799     word = ~uu.s.high, add = 0;
800 
801   if (word == 0)
802     ret = W_TYPE_SIZE;
803   else
804     count_leading_zeros (ret, word);
805 
806   return ret + add - 1;
807 }
808 #endif
809 
810 #ifdef L_popcount_tab
811 const UQItype __popcount_tab[256] =
812 {
813     0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
814     1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
815     1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
816     2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
817     1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
818     2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
819     2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
820     3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
821 };
822 #endif
823 
824 #ifdef L_popcountsi2
825 #undef int
826 int
827 __popcountSI2 (UWtype x)
828 {
829   int i, ret = 0;
830 
831   for (i = 0; i < W_TYPE_SIZE; i += 8)
832     ret += __popcount_tab[(x >> i) & 0xff];
833 
834   return ret;
835 }
836 #endif
837 
838 #ifdef L_popcountdi2
839 #undef int
840 int
841 __popcountDI2 (UDWtype x)
842 {
843   int i, ret = 0;
844 
845   for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
846     ret += __popcount_tab[(x >> i) & 0xff];
847 
848   return ret;
849 }
850 #endif
851 
852 #ifdef L_paritysi2
853 #undef int
854 int
855 __paritySI2 (UWtype x)
856 {
857 #if W_TYPE_SIZE > 64
858 # error "fill out the table"
859 #endif
860 #if W_TYPE_SIZE > 32
861   x ^= x >> 32;
862 #endif
863 #if W_TYPE_SIZE > 16
864   x ^= x >> 16;
865 #endif
866   x ^= x >> 8;
867   x ^= x >> 4;
868   x &= 0xf;
869   return (0x6996 >> x) & 1;
870 }
871 #endif
872 
873 #ifdef L_paritydi2
874 #undef int
875 int
876 __parityDI2 (UDWtype x)
877 {
878   const DWunion uu = {.ll = x};
879   UWtype nx = uu.s.low ^ uu.s.high;
880 
881 #if W_TYPE_SIZE > 64
882 # error "fill out the table"
883 #endif
884 #if W_TYPE_SIZE > 32
885   nx ^= nx >> 32;
886 #endif
887 #if W_TYPE_SIZE > 16
888   nx ^= nx >> 16;
889 #endif
890   nx ^= nx >> 8;
891   nx ^= nx >> 4;
892   nx &= 0xf;
893   return (0x6996 >> nx) & 1;
894 }
895 #endif
896 
897 #ifdef L_udivmoddi4
898 
899 #if (defined (L_udivdi3) || defined (L_divdi3) || \
900      defined (L_umoddi3) || defined (L_moddi3))
901 static inline __attribute__ ((__always_inline__))
902 #endif
903 UDWtype
904 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
905 {
906   const DWunion nn = {.ll = n};
907   const DWunion dd = {.ll = d};
908   DWunion rr;
909   UWtype d0, d1, n0, n1, n2;
910   UWtype q0, q1;
911   UWtype b, bm;
912 
913   d0 = dd.s.low;
914   d1 = dd.s.high;
915   n0 = nn.s.low;
916   n1 = nn.s.high;
917 
918 #if !UDIV_NEEDS_NORMALIZATION
919   if (d1 == 0)
920     {
921       if (d0 > n1)
922 	{
923 	  /* 0q = nn / 0D */
924 
925 	  udiv_qrnnd (q0, n0, n1, n0, d0);
926 	  q1 = 0;
927 
928 	  /* Remainder in n0.  */
929 	}
930       else
931 	{
932 	  /* qq = NN / 0d */
933 
934 	  if (d0 == 0)
935 	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
936 
937 	  udiv_qrnnd (q1, n1, 0, n1, d0);
938 	  udiv_qrnnd (q0, n0, n1, n0, d0);
939 
940 	  /* Remainder in n0.  */
941 	}
942 
943       if (rp != 0)
944 	{
945 	  rr.s.low = n0;
946 	  rr.s.high = 0;
947 	  *rp = rr.ll;
948 	}
949     }
950 
951 #else /* UDIV_NEEDS_NORMALIZATION */
952 
953   if (d1 == 0)
954     {
955       if (d0 > n1)
956 	{
957 	  /* 0q = nn / 0D */
958 
959 	  count_leading_zeros (bm, d0);
960 
961 	  if (bm != 0)
962 	    {
963 	      /* Normalize, i.e. make the most significant bit of the
964 		 denominator set.  */
965 
966 	      d0 = d0 << bm;
967 	      n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
968 	      n0 = n0 << bm;
969 	    }
970 
971 	  udiv_qrnnd (q0, n0, n1, n0, d0);
972 	  q1 = 0;
973 
974 	  /* Remainder in n0 >> bm.  */
975 	}
976       else
977 	{
978 	  /* qq = NN / 0d */
979 
980 	  if (d0 == 0)
981 	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
982 
983 	  count_leading_zeros (bm, d0);
984 
985 	  if (bm == 0)
986 	    {
987 	      /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
988 		 conclude (the most significant bit of n1 is set) /\ (the
989 		 leading quotient digit q1 = 1).
990 
991 		 This special case is necessary, not an optimization.
992 		 (Shifts counts of W_TYPE_SIZE are undefined.)  */
993 
994 	      n1 -= d0;
995 	      q1 = 1;
996 	    }
997 	  else
998 	    {
999 	      /* Normalize.  */
1000 
1001 	      b = W_TYPE_SIZE - bm;
1002 
1003 	      d0 = d0 << bm;
1004 	      n2 = n1 >> b;
1005 	      n1 = (n1 << bm) | (n0 >> b);
1006 	      n0 = n0 << bm;
1007 
1008 	      udiv_qrnnd (q1, n1, n2, n1, d0);
1009 	    }
1010 
1011 	  /* n1 != d0...  */
1012 
1013 	  udiv_qrnnd (q0, n0, n1, n0, d0);
1014 
1015 	  /* Remainder in n0 >> bm.  */
1016 	}
1017 
1018       if (rp != 0)
1019 	{
1020 	  rr.s.low = n0 >> bm;
1021 	  rr.s.high = 0;
1022 	  *rp = rr.ll;
1023 	}
1024     }
1025 #endif /* UDIV_NEEDS_NORMALIZATION */
1026 
1027   else
1028     {
1029       if (d1 > n1)
1030 	{
1031 	  /* 00 = nn / DD */
1032 
1033 	  q0 = 0;
1034 	  q1 = 0;
1035 
1036 	  /* Remainder in n1n0.  */
1037 	  if (rp != 0)
1038 	    {
1039 	      rr.s.low = n0;
1040 	      rr.s.high = n1;
1041 	      *rp = rr.ll;
1042 	    }
1043 	}
1044       else
1045 	{
1046 	  /* 0q = NN / dd */
1047 
1048 	  count_leading_zeros (bm, d1);
1049 	  if (bm == 0)
1050 	    {
1051 	      /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1052 		 conclude (the most significant bit of n1 is set) /\ (the
1053 		 quotient digit q0 = 0 or 1).
1054 
1055 		 This special case is necessary, not an optimization.  */
1056 
1057 	      /* The condition on the next line takes advantage of that
1058 		 n1 >= d1 (true due to program flow).  */
1059 	      if (n1 > d1 || n0 >= d0)
1060 		{
1061 		  q0 = 1;
1062 		  sub_ddmmss (n1, n0, n1, n0, d1, d0);
1063 		}
1064 	      else
1065 		q0 = 0;
1066 
1067 	      q1 = 0;
1068 
1069 	      if (rp != 0)
1070 		{
1071 		  rr.s.low = n0;
1072 		  rr.s.high = n1;
1073 		  *rp = rr.ll;
1074 		}
1075 	    }
1076 	  else
1077 	    {
1078 	      UWtype m1, m0;
1079 	      /* Normalize.  */
1080 
1081 	      b = W_TYPE_SIZE - bm;
1082 
1083 	      d1 = (d1 << bm) | (d0 >> b);
1084 	      d0 = d0 << bm;
1085 	      n2 = n1 >> b;
1086 	      n1 = (n1 << bm) | (n0 >> b);
1087 	      n0 = n0 << bm;
1088 
1089 	      udiv_qrnnd (q0, n1, n2, n1, d1);
1090 	      umul_ppmm (m1, m0, q0, d0);
1091 
1092 	      if (m1 > n1 || (m1 == n1 && m0 > n0))
1093 		{
1094 		  q0--;
1095 		  sub_ddmmss (m1, m0, m1, m0, d1, d0);
1096 		}
1097 
1098 	      q1 = 0;
1099 
1100 	      /* Remainder in (n1n0 - m1m0) >> bm.  */
1101 	      if (rp != 0)
1102 		{
1103 		  sub_ddmmss (n1, n0, n1, n0, m1, m0);
1104 		  rr.s.low = (n1 << b) | (n0 >> bm);
1105 		  rr.s.high = n1 >> bm;
1106 		  *rp = rr.ll;
1107 		}
1108 	    }
1109 	}
1110     }
1111 
1112   const DWunion ww = {{.low = q0, .high = q1}};
1113   return ww.ll;
1114 }
1115 #endif
1116 
1117 #ifdef L_divdi3
1118 DWtype
1119 __divdi3 (DWtype u, DWtype v)
1120 {
1121   Wtype c = 0;
1122   DWunion uu = {.ll = u};
1123   DWunion vv = {.ll = v};
1124   DWtype w;
1125 
1126   if (uu.s.high < 0)
1127     c = ~c,
1128     uu.ll = -uu.ll;
1129   if (vv.s.high < 0)
1130     c = ~c,
1131     vv.ll = -vv.ll;
1132 
1133   w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1134   if (c)
1135     w = -w;
1136 
1137   return w;
1138 }
1139 #endif
1140 
1141 #ifdef L_moddi3
1142 DWtype
1143 __moddi3 (DWtype u, DWtype v)
1144 {
1145   Wtype c = 0;
1146   DWunion uu = {.ll = u};
1147   DWunion vv = {.ll = v};
1148   DWtype w;
1149 
1150   if (uu.s.high < 0)
1151     c = ~c,
1152     uu.ll = -uu.ll;
1153   if (vv.s.high < 0)
1154     vv.ll = -vv.ll;
1155 
1156   (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1157   if (c)
1158     w = -w;
1159 
1160   return w;
1161 }
1162 #endif
1163 
1164 #ifdef L_umoddi3
1165 UDWtype
1166 __umoddi3 (UDWtype u, UDWtype v)
1167 {
1168   UDWtype w;
1169 
1170   (void) __udivmoddi4 (u, v, &w);
1171 
1172   return w;
1173 }
1174 #endif
1175 
1176 #ifdef L_udivdi3
1177 UDWtype
1178 __udivdi3 (UDWtype n, UDWtype d)
1179 {
1180   return __udivmoddi4 (n, d, (UDWtype *) 0);
1181 }
1182 #endif
1183 
1184 #ifdef L_cmpdi2
1185 cmp_return_type
1186 __cmpdi2 (DWtype a, DWtype b)
1187 {
1188   const DWunion au = {.ll = a};
1189   const DWunion bu = {.ll = b};
1190 
1191   if (au.s.high < bu.s.high)
1192     return 0;
1193   else if (au.s.high > bu.s.high)
1194     return 2;
1195   if ((UWtype) au.s.low < (UWtype) bu.s.low)
1196     return 0;
1197   else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1198     return 2;
1199   return 1;
1200 }
1201 #endif
1202 
1203 #ifdef L_ucmpdi2
1204 cmp_return_type
1205 __ucmpdi2 (DWtype a, DWtype b)
1206 {
1207   const DWunion au = {.ll = a};
1208   const DWunion bu = {.ll = b};
1209 
1210   if ((UWtype) au.s.high < (UWtype) bu.s.high)
1211     return 0;
1212   else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1213     return 2;
1214   if ((UWtype) au.s.low < (UWtype) bu.s.low)
1215     return 0;
1216   else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1217     return 2;
1218   return 1;
1219 }
1220 #endif
1221 
1222 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1223 UDWtype
1224 __fixunstfDI (TFtype a)
1225 {
1226   if (a < 0)
1227     return 0;
1228 
1229   /* Compute high word of result, as a flonum.  */
1230   const TFtype b = (a / Wtype_MAXp1_F);
1231   /* Convert that to fixed (but not to DWtype!),
1232      and shift it into the high word.  */
1233   UDWtype v = (UWtype) b;
1234   v <<= W_TYPE_SIZE;
1235   /* Remove high part from the TFtype, leaving the low part as flonum.  */
1236   a -= (TFtype)v;
1237   /* Convert that to fixed (but not to DWtype!) and add it in.
1238      Sometimes A comes out negative.  This is significant, since
1239      A has more bits than a long int does.  */
1240   if (a < 0)
1241     v -= (UWtype) (- a);
1242   else
1243     v += (UWtype) a;
1244   return v;
1245 }
1246 #endif
1247 
1248 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1249 DWtype
1250 __fixtfdi (TFtype a)
1251 {
1252   if (a < 0)
1253     return - __fixunstfDI (-a);
1254   return __fixunstfDI (a);
1255 }
1256 #endif
1257 
1258 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1259 UDWtype
1260 __fixunsxfDI (XFtype a)
1261 {
1262   if (a < 0)
1263     return 0;
1264 
1265   /* Compute high word of result, as a flonum.  */
1266   const XFtype b = (a / Wtype_MAXp1_F);
1267   /* Convert that to fixed (but not to DWtype!),
1268      and shift it into the high word.  */
1269   UDWtype v = (UWtype) b;
1270   v <<= W_TYPE_SIZE;
1271   /* Remove high part from the XFtype, leaving the low part as flonum.  */
1272   a -= (XFtype)v;
1273   /* Convert that to fixed (but not to DWtype!) and add it in.
1274      Sometimes A comes out negative.  This is significant, since
1275      A has more bits than a long int does.  */
1276   if (a < 0)
1277     v -= (UWtype) (- a);
1278   else
1279     v += (UWtype) a;
1280   return v;
1281 }
1282 #endif
1283 
1284 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1285 DWtype
1286 __fixxfdi (XFtype a)
1287 {
1288   if (a < 0)
1289     return - __fixunsxfDI (-a);
1290   return __fixunsxfDI (a);
1291 }
1292 #endif
1293 
1294 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1295 UDWtype
1296 __fixunsdfDI (DFtype a)
1297 {
1298   /* Get high part of result.  The division here will just moves the radix
1299      point and will not cause any rounding.  Then the conversion to integral
1300      type chops result as desired.  */
1301   const UWtype hi = a / Wtype_MAXp1_F;
1302 
1303   /* Get low part of result.  Convert `hi' to floating type and scale it back,
1304      then subtract this from the number being converted.  This leaves the low
1305      part.  Convert that to integral type.  */
1306   const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1307 
1308   /* Assemble result from the two parts.  */
1309   return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1310 }
1311 #endif
1312 
1313 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1314 DWtype
1315 __fixdfdi (DFtype a)
1316 {
1317   if (a < 0)
1318     return - __fixunsdfDI (-a);
1319   return __fixunsdfDI (a);
1320 }
1321 #endif
1322 
1323 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1324 UDWtype
1325 __fixunssfDI (SFtype a)
1326 {
1327 #if LIBGCC2_HAS_DF_MODE
1328   /* Convert the SFtype to a DFtype, because that is surely not going
1329      to lose any bits.  Some day someone else can write a faster version
1330      that avoids converting to DFtype, and verify it really works right.  */
1331   const DFtype dfa = a;
1332 
1333   /* Get high part of result.  The division here will just moves the radix
1334      point and will not cause any rounding.  Then the conversion to integral
1335      type chops result as desired.  */
1336   const UWtype hi = dfa / Wtype_MAXp1_F;
1337 
1338   /* Get low part of result.  Convert `hi' to floating type and scale it back,
1339      then subtract this from the number being converted.  This leaves the low
1340      part.  Convert that to integral type.  */
1341   const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1342 
1343   /* Assemble result from the two parts.  */
1344   return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1345 #elif FLT_MANT_DIG < W_TYPE_SIZE
1346   if (a < 1)
1347     return 0;
1348   if (a < Wtype_MAXp1_F)
1349     return (UWtype)a;
1350   if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1351     {
1352       /* Since we know that there are fewer significant bits in the SFmode
1353 	 quantity than in a word, we know that we can convert out all the
1354 	 significant bits in one step, and thus avoid losing bits.  */
1355 
1356       /* ??? This following loop essentially performs frexpf.  If we could
1357 	 use the real libm function, or poke at the actual bits of the fp
1358 	 format, it would be significantly faster.  */
1359 
1360       UWtype shift = 0, counter;
1361       SFtype msb;
1362 
1363       a /= Wtype_MAXp1_F;
1364       for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1365 	{
1366 	  SFtype counterf = (UWtype)1 << counter;
1367 	  if (a >= counterf)
1368 	    {
1369 	      shift |= counter;
1370 	      a /= counterf;
1371 	    }
1372 	}
1373 
1374       /* Rescale into the range of one word, extract the bits of that
1375 	 one word, and shift the result into position.  */
1376       a *= Wtype_MAXp1_F;
1377       counter = a;
1378       return (DWtype)counter << shift;
1379     }
1380   return -1;
1381 #else
1382 # error
1383 #endif
1384 }
1385 #endif
1386 
1387 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1388 DWtype
1389 __fixsfdi (SFtype a)
1390 {
1391   if (a < 0)
1392     return - __fixunssfDI (-a);
1393   return __fixunssfDI (a);
1394 }
1395 #endif
1396 
1397 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1398 XFtype
1399 __floatdixf (DWtype u)
1400 {
1401 #if W_TYPE_SIZE > XF_SIZE
1402 # error
1403 #endif
1404   XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1405   d *= Wtype_MAXp1_F;
1406   d += (UWtype)u;
1407   return d;
1408 }
1409 #endif
1410 
1411 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1412 XFtype
1413 __floatundixf (UDWtype u)
1414 {
1415 #if W_TYPE_SIZE > XF_SIZE
1416 # error
1417 #endif
1418   XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1419   d *= Wtype_MAXp1_F;
1420   d += (UWtype)u;
1421   return d;
1422 }
1423 #endif
1424 
1425 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1426 TFtype
1427 __floatditf (DWtype u)
1428 {
1429 #if W_TYPE_SIZE > TF_SIZE
1430 # error
1431 #endif
1432   TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1433   d *= Wtype_MAXp1_F;
1434   d += (UWtype)u;
1435   return d;
1436 }
1437 #endif
1438 
1439 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1440 TFtype
1441 __floatunditf (UDWtype u)
1442 {
1443 #if W_TYPE_SIZE > TF_SIZE
1444 # error
1445 #endif
1446   TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1447   d *= Wtype_MAXp1_F;
1448   d += (UWtype)u;
1449   return d;
1450 }
1451 #endif
1452 
1453 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE)	\
1454      || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1455 #define DI_SIZE (W_TYPE_SIZE * 2)
1456 #define F_MODE_OK(SIZE) \
1457   (SIZE < DI_SIZE							\
1458    && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
1459    && !AVOID_FP_TYPE_CONVERSION(SIZE))
1460 #if defined(L_floatdisf)
1461 #define FUNC __floatdisf
1462 #define FSTYPE SFtype
1463 #define FSSIZE SF_SIZE
1464 #else
1465 #define FUNC __floatdidf
1466 #define FSTYPE DFtype
1467 #define FSSIZE DF_SIZE
1468 #endif
1469 
1470 FSTYPE
1471 FUNC (DWtype u)
1472 {
1473 #if FSSIZE >= W_TYPE_SIZE
1474   /* When the word size is small, we never get any rounding error.  */
1475   FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1476   f *= Wtype_MAXp1_F;
1477   f += (UWtype)u;
1478   return f;
1479 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))	\
1480      || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))	\
1481      || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1482 
1483 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1484 # define FSIZE DF_SIZE
1485 # define FTYPE DFtype
1486 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1487 # define FSIZE XF_SIZE
1488 # define FTYPE XFtype
1489 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1490 # define FSIZE TF_SIZE
1491 # define FTYPE TFtype
1492 #else
1493 # error
1494 #endif
1495 
1496 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1497 
1498   /* Protect against double-rounding error.
1499      Represent any low-order bits, that might be truncated by a bit that
1500      won't be lost.  The bit can go in anywhere below the rounding position
1501      of the FSTYPE.  A fixed mask and bit position handles all usual
1502      configurations.  */
1503   if (! (- ((DWtype) 1 << FSIZE) < u
1504 	 && u < ((DWtype) 1 << FSIZE)))
1505     {
1506       if ((UDWtype) u & (REP_BIT - 1))
1507 	{
1508 	  u &= ~ (REP_BIT - 1);
1509 	  u |= REP_BIT;
1510 	}
1511     }
1512 
1513   /* Do the calculation in a wider type so that we don't lose any of
1514      the precision of the high word while multiplying it.  */
1515   FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1516   f *= Wtype_MAXp1_F;
1517   f += (UWtype)u;
1518   return (FSTYPE) f;
1519 #else
1520 #if FSSIZE >= W_TYPE_SIZE - 2
1521 # error
1522 #endif
1523   /* Finally, the word size is larger than the number of bits in the
1524      required FSTYPE, and we've got no suitable wider type.  The only
1525      way to avoid double rounding is to special case the
1526      extraction.  */
1527 
1528   /* If there are no high bits set, fall back to one conversion.  */
1529   if ((Wtype)u == u)
1530     return (FSTYPE)(Wtype)u;
1531 
1532   /* Otherwise, find the power of two.  */
1533   Wtype hi = u >> W_TYPE_SIZE;
1534   if (hi < 0)
1535     hi = -hi;
1536 
1537   UWtype count, shift;
1538   count_leading_zeros (count, hi);
1539 
1540   /* No leading bits means u == minimum.  */
1541   if (count == 0)
1542     return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1543 
1544   shift = 1 + W_TYPE_SIZE - count;
1545 
1546   /* Shift down the most significant bits.  */
1547   hi = u >> shift;
1548 
1549   /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
1550   if ((UWtype)u << (W_TYPE_SIZE - shift))
1551     hi |= 1;
1552 
1553   /* Convert the one word of data, and rescale.  */
1554   FSTYPE f = hi, e;
1555   if (shift == W_TYPE_SIZE)
1556     e = Wtype_MAXp1_F;
1557   /* The following two cases could be merged if we knew that the target
1558      supported a native unsigned->float conversion.  More often, we only
1559      have a signed conversion, and have to add extra fixup code.  */
1560   else if (shift == W_TYPE_SIZE - 1)
1561     e = Wtype_MAXp1_F / 2;
1562   else
1563     e = (Wtype)1 << shift;
1564   return f * e;
1565 #endif
1566 }
1567 #endif
1568 
1569 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE)	\
1570      || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1571 #define DI_SIZE (W_TYPE_SIZE * 2)
1572 #define F_MODE_OK(SIZE) \
1573   (SIZE < DI_SIZE							\
1574    && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
1575    && !AVOID_FP_TYPE_CONVERSION(SIZE))
1576 #if defined(L_floatundisf)
1577 #define FUNC __floatundisf
1578 #define FSTYPE SFtype
1579 #define FSSIZE SF_SIZE
1580 #else
1581 #define FUNC __floatundidf
1582 #define FSTYPE DFtype
1583 #define FSSIZE DF_SIZE
1584 #endif
1585 
1586 FSTYPE
1587 FUNC (UDWtype u)
1588 {
1589 #if FSSIZE >= W_TYPE_SIZE
1590   /* When the word size is small, we never get any rounding error.  */
1591   FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1592   f *= Wtype_MAXp1_F;
1593   f += (UWtype)u;
1594   return f;
1595 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))	\
1596      || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))	\
1597      || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1598 
1599 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1600 # define FSIZE DF_SIZE
1601 # define FTYPE DFtype
1602 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1603 # define FSIZE XF_SIZE
1604 # define FTYPE XFtype
1605 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1606 # define FSIZE TF_SIZE
1607 # define FTYPE TFtype
1608 #else
1609 # error
1610 #endif
1611 
1612 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1613 
1614   /* Protect against double-rounding error.
1615      Represent any low-order bits, that might be truncated by a bit that
1616      won't be lost.  The bit can go in anywhere below the rounding position
1617      of the FSTYPE.  A fixed mask and bit position handles all usual
1618      configurations.  */
1619   if (u >= ((UDWtype) 1 << FSIZE))
1620     {
1621       if ((UDWtype) u & (REP_BIT - 1))
1622 	{
1623 	  u &= ~ (REP_BIT - 1);
1624 	  u |= REP_BIT;
1625 	}
1626     }
1627 
1628   /* Do the calculation in a wider type so that we don't lose any of
1629      the precision of the high word while multiplying it.  */
1630   FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1631   f *= Wtype_MAXp1_F;
1632   f += (UWtype)u;
1633   return (FSTYPE) f;
1634 #else
1635 #if FSSIZE == W_TYPE_SIZE - 1
1636 # error
1637 #endif
1638   /* Finally, the word size is larger than the number of bits in the
1639      required FSTYPE, and we've got no suitable wider type.  The only
1640      way to avoid double rounding is to special case the
1641      extraction.  */
1642 
1643   /* If there are no high bits set, fall back to one conversion.  */
1644   if ((UWtype)u == u)
1645     return (FSTYPE)(UWtype)u;
1646 
1647   /* Otherwise, find the power of two.  */
1648   UWtype hi = u >> W_TYPE_SIZE;
1649 
1650   UWtype count, shift;
1651   count_leading_zeros (count, hi);
1652 
1653   shift = W_TYPE_SIZE - count;
1654 
1655   /* Shift down the most significant bits.  */
1656   hi = u >> shift;
1657 
1658   /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
1659   if ((UWtype)u << (W_TYPE_SIZE - shift))
1660     hi |= 1;
1661 
1662   /* Convert the one word of data, and rescale.  */
1663   FSTYPE f = hi, e;
1664   if (shift == W_TYPE_SIZE)
1665     e = Wtype_MAXp1_F;
1666   /* The following two cases could be merged if we knew that the target
1667      supported a native unsigned->float conversion.  More often, we only
1668      have a signed conversion, and have to add extra fixup code.  */
1669   else if (shift == W_TYPE_SIZE - 1)
1670     e = Wtype_MAXp1_F / 2;
1671   else
1672     e = (Wtype)1 << shift;
1673   return f * e;
1674 #endif
1675 }
1676 #endif
1677 
1678 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1679 /* Reenable the normal types, in case limits.h needs them.  */
1680 #undef char
1681 #undef short
1682 #undef int
1683 #undef long
1684 #undef unsigned
1685 #undef float
1686 #undef double
1687 #undef MIN
1688 #undef MAX
1689 #include <limits.h>
1690 
1691 UWtype
1692 __fixunsxfSI (XFtype a)
1693 {
1694   if (a >= - (DFtype) Wtype_MIN)
1695     return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1696   return (Wtype) a;
1697 }
1698 #endif
1699 
1700 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1701 /* Reenable the normal types, in case limits.h needs them.  */
1702 #undef char
1703 #undef short
1704 #undef int
1705 #undef long
1706 #undef unsigned
1707 #undef float
1708 #undef double
1709 #undef MIN
1710 #undef MAX
1711 #include <limits.h>
1712 
1713 UWtype
1714 __fixunsdfSI (DFtype a)
1715 {
1716   if (a >= - (DFtype) Wtype_MIN)
1717     return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1718   return (Wtype) a;
1719 }
1720 #endif
1721 
1722 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1723 /* Reenable the normal types, in case limits.h needs them.  */
1724 #undef char
1725 #undef short
1726 #undef int
1727 #undef long
1728 #undef unsigned
1729 #undef float
1730 #undef double
1731 #undef MIN
1732 #undef MAX
1733 #include <limits.h>
1734 
1735 UWtype
1736 __fixunssfSI (SFtype a)
1737 {
1738   if (a >= - (SFtype) Wtype_MIN)
1739     return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1740   return (Wtype) a;
1741 }
1742 #endif
1743 
1744 /* Integer power helper used from __builtin_powi for non-constant
1745    exponents.  */
1746 
1747 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1748     || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1749     || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1750     || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1751 # if defined(L_powisf2)
1752 #  define TYPE SFtype
1753 #  define NAME __powisf2
1754 # elif defined(L_powidf2)
1755 #  define TYPE DFtype
1756 #  define NAME __powidf2
1757 # elif defined(L_powixf2)
1758 #  define TYPE XFtype
1759 #  define NAME __powixf2
1760 # elif defined(L_powitf2)
1761 #  define TYPE TFtype
1762 #  define NAME __powitf2
1763 # endif
1764 
1765 #undef int
1766 #undef unsigned
1767 TYPE
1768 NAME (TYPE x, int m)
1769 {
1770   unsigned int n = m < 0 ? -m : m;
1771   TYPE y = n % 2 ? x : 1;
1772   while (n >>= 1)
1773     {
1774       x = x * x;
1775       if (n % 2)
1776 	y = y * x;
1777     }
1778   return m < 0 ? 1/y : y;
1779 }
1780 
1781 #endif
1782 
1783 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1784     || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1785     || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1786     || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1787 
1788 #undef float
1789 #undef double
1790 #undef long
1791 
1792 #if defined(L_mulsc3) || defined(L_divsc3)
1793 # define MTYPE	SFtype
1794 # define CTYPE	SCtype
1795 # define MODE	sc
1796 # define CEXT	f
1797 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1798 #elif defined(L_muldc3) || defined(L_divdc3)
1799 # define MTYPE	DFtype
1800 # define CTYPE	DCtype
1801 # define MODE	dc
1802 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1803 #  define CEXT	l
1804 #  define NOTRUNC 1
1805 # else
1806 #  define CEXT
1807 #  define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1808 # endif
1809 #elif defined(L_mulxc3) || defined(L_divxc3)
1810 # define MTYPE	XFtype
1811 # define CTYPE	XCtype
1812 # define MODE	xc
1813 # define CEXT	l
1814 # define NOTRUNC 1
1815 #elif defined(L_multc3) || defined(L_divtc3)
1816 # define MTYPE	TFtype
1817 # define CTYPE	TCtype
1818 # define MODE	tc
1819 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128
1820 #  define CEXT l
1821 # else
1822 #  define CEXT LIBGCC2_TF_CEXT
1823 # endif
1824 # define NOTRUNC 1
1825 #else
1826 # error
1827 #endif
1828 
1829 #define CONCAT3(A,B,C)	_CONCAT3(A,B,C)
1830 #define _CONCAT3(A,B,C)	A##B##C
1831 
1832 #define CONCAT2(A,B)	_CONCAT2(A,B)
1833 #define _CONCAT2(A,B)	A##B
1834 
1835 /* All of these would be present in a full C99 implementation of <math.h>
1836    and <complex.h>.  Our problem is that only a few systems have such full
1837    implementations.  Further, libgcc_s.so isn't currently linked against
1838    libm.so, and even for systems that do provide full C99, the extra overhead
1839    of all programs using libgcc having to link against libm.  So avoid it.  */
1840 
1841 #define isnan(x)	__builtin_expect ((x) != (x), 0)
1842 #define isfinite(x)	__builtin_expect (!isnan((x) - (x)), 1)
1843 #define isinf(x)	__builtin_expect (!isnan(x) & !isfinite(x), 0)
1844 
1845 #define INFINITY	CONCAT2(__builtin_huge_val, CEXT) ()
1846 #define I		1i
1847 
1848 /* Helpers to make the following code slightly less gross.  */
1849 #define COPYSIGN	CONCAT2(__builtin_copysign, CEXT)
1850 #define FABS		CONCAT2(__builtin_fabs, CEXT)
1851 
1852 /* Verify that MTYPE matches up with CEXT.  */
1853 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1854 
1855 /* Ensure that we've lost any extra precision.  */
1856 #if NOTRUNC
1857 # define TRUNC(x)
1858 #else
1859 # define TRUNC(x)	__asm__ ("" : "=m"(x) : "m"(x))
1860 #endif
1861 
1862 #if defined(L_mulsc3) || defined(L_muldc3) \
1863     || defined(L_mulxc3) || defined(L_multc3)
1864 
1865 CTYPE
1866 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1867 {
1868   MTYPE ac, bd, ad, bc, x, y;
1869   CTYPE res;
1870 
1871   ac = a * c;
1872   bd = b * d;
1873   ad = a * d;
1874   bc = b * c;
1875 
1876   TRUNC (ac);
1877   TRUNC (bd);
1878   TRUNC (ad);
1879   TRUNC (bc);
1880 
1881   x = ac - bd;
1882   y = ad + bc;
1883 
1884   if (isnan (x) && isnan (y))
1885     {
1886       /* Recover infinities that computed as NaN + iNaN.  */
1887       _Bool recalc = 0;
1888       if (isinf (a) || isinf (b))
1889 	{
1890 	  /* z is infinite.  "Box" the infinity and change NaNs in
1891 	     the other factor to 0.  */
1892 	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
1893 	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
1894 	  if (isnan (c)) c = COPYSIGN (0, c);
1895 	  if (isnan (d)) d = COPYSIGN (0, d);
1896           recalc = 1;
1897 	}
1898      if (isinf (c) || isinf (d))
1899 	{
1900 	  /* w is infinite.  "Box" the infinity and change NaNs in
1901 	     the other factor to 0.  */
1902 	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
1903 	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
1904 	  if (isnan (a)) a = COPYSIGN (0, a);
1905 	  if (isnan (b)) b = COPYSIGN (0, b);
1906 	  recalc = 1;
1907 	}
1908      if (!recalc
1909 	  && (isinf (ac) || isinf (bd)
1910 	      || isinf (ad) || isinf (bc)))
1911 	{
1912 	  /* Recover infinities from overflow by changing NaNs to 0.  */
1913 	  if (isnan (a)) a = COPYSIGN (0, a);
1914 	  if (isnan (b)) b = COPYSIGN (0, b);
1915 	  if (isnan (c)) c = COPYSIGN (0, c);
1916 	  if (isnan (d)) d = COPYSIGN (0, d);
1917 	  recalc = 1;
1918 	}
1919       if (recalc)
1920 	{
1921 	  x = INFINITY * (a * c - b * d);
1922 	  y = INFINITY * (a * d + b * c);
1923 	}
1924     }
1925 
1926   __real__ res = x;
1927   __imag__ res = y;
1928   return res;
1929 }
1930 #endif /* complex multiply */
1931 
1932 #if defined(L_divsc3) || defined(L_divdc3) \
1933     || defined(L_divxc3) || defined(L_divtc3)
1934 
1935 CTYPE
1936 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1937 {
1938   MTYPE denom, ratio, x, y;
1939   CTYPE res;
1940 
1941   /* ??? We can get better behavior from logarithmic scaling instead of
1942      the division.  But that would mean starting to link libgcc against
1943      libm.  We could implement something akin to ldexp/frexp as gcc builtins
1944      fairly easily...  */
1945   if (FABS (c) < FABS (d))
1946     {
1947       ratio = c / d;
1948       denom = (c * ratio) + d;
1949       x = ((a * ratio) + b) / denom;
1950       y = ((b * ratio) - a) / denom;
1951     }
1952   else
1953     {
1954       ratio = d / c;
1955       denom = (d * ratio) + c;
1956       x = ((b * ratio) + a) / denom;
1957       y = (b - (a * ratio)) / denom;
1958     }
1959 
1960   /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1961      are nonzero/zero, infinite/finite, and finite/infinite.  */
1962   if (isnan (x) && isnan (y))
1963     {
1964       if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
1965 	{
1966 	  x = COPYSIGN (INFINITY, c) * a;
1967 	  y = COPYSIGN (INFINITY, c) * b;
1968 	}
1969       else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1970 	{
1971 	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
1972 	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
1973 	  x = INFINITY * (a * c + b * d);
1974 	  y = INFINITY * (b * c - a * d);
1975 	}
1976       else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1977 	{
1978 	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
1979 	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
1980 	  x = 0.0 * (a * c + b * d);
1981 	  y = 0.0 * (b * c - a * d);
1982 	}
1983     }
1984 
1985   __real__ res = x;
1986   __imag__ res = y;
1987   return res;
1988 }
1989 #endif /* complex divide */
1990 
1991 #endif /* all complex float routines */
1992 
1993 /* From here on down, the routines use normal data types.  */
1994 
1995 #define SItype bogus_type
1996 #define USItype bogus_type
1997 #define DItype bogus_type
1998 #define UDItype bogus_type
1999 #define SFtype bogus_type
2000 #define DFtype bogus_type
2001 #undef Wtype
2002 #undef UWtype
2003 #undef HWtype
2004 #undef UHWtype
2005 #undef DWtype
2006 #undef UDWtype
2007 
2008 #undef char
2009 #undef short
2010 #undef int
2011 #undef long
2012 #undef unsigned
2013 #undef float
2014 #undef double
2015 
2016 #ifdef L__gcc_bcmp
2017 
2018 /* Like bcmp except the sign is meaningful.
2019    Result is negative if S1 is less than S2,
2020    positive if S1 is greater, 0 if S1 and S2 are equal.  */
2021 
2022 int
2023 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
2024 {
2025   while (size > 0)
2026     {
2027       const unsigned char c1 = *s1++, c2 = *s2++;
2028       if (c1 != c2)
2029 	return c1 - c2;
2030       size--;
2031     }
2032   return 0;
2033 }
2034 
2035 #endif
2036 
2037 /* __eprintf used to be used by GCC's private version of <assert.h>.
2038    We no longer provide that header, but this routine remains in libgcc.a
2039    for binary backward compatibility.  Note that it is not included in
2040    the shared version of libgcc.  */
2041 #ifdef L_eprintf
2042 #ifndef inhibit_libc
2043 
2044 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch.  */
2045 #include <stdio.h>
2046 
2047 void
2048 __eprintf (const char *string, const char *expression,
2049 	   unsigned int line, const char *filename)
2050 {
2051   fprintf (stderr, string, expression, line, filename);
2052   fflush (stderr);
2053   abort ();
2054 }
2055 
2056 #endif
2057 #endif
2058 
2059 
2060 #ifdef L_clear_cache
2061 /* Clear part of an instruction cache.  */
2062 
2063 void
2064 __clear_cache (char *beg __attribute__((__unused__)),
2065 	       char *end __attribute__((__unused__)))
2066 {
2067 #ifdef CLEAR_INSN_CACHE
2068   CLEAR_INSN_CACHE (beg, end);
2069 #endif /* CLEAR_INSN_CACHE */
2070 }
2071 
2072 #endif /* L_clear_cache */
2073 
2074 #ifdef L_trampoline
2075 
2076 /* Jump to a trampoline, loading the static chain address.  */
2077 
2078 #if defined(WINNT) && ! defined(__CYGWIN__)
2079 #include <windows.h>
2080 int getpagesize (void);
2081 int mprotect (char *,int, int);
2082 
2083 int
2084 getpagesize (void)
2085 {
2086 #ifdef _ALPHA_
2087   return 8192;
2088 #else
2089   return 4096;
2090 #endif
2091 }
2092 
2093 int
2094 mprotect (char *addr, int len, int prot)
2095 {
2096   DWORD np, op;
2097 
2098   if (prot == 7)
2099     np = 0x40;
2100   else if (prot == 5)
2101     np = 0x20;
2102   else if (prot == 4)
2103     np = 0x10;
2104   else if (prot == 3)
2105     np = 0x04;
2106   else if (prot == 1)
2107     np = 0x02;
2108   else if (prot == 0)
2109     np = 0x01;
2110   else
2111     return -1;
2112 
2113   if (VirtualProtect (addr, len, np, &op))
2114     return 0;
2115   else
2116     return -1;
2117 }
2118 
2119 #endif /* WINNT && ! __CYGWIN__ */
2120 
2121 #ifdef TRANSFER_FROM_TRAMPOLINE
2122 TRANSFER_FROM_TRAMPOLINE
2123 #endif
2124 #endif /* L_trampoline */
2125 
2126 #ifndef __CYGWIN__
2127 #ifdef L__main
2128 
2129 #include "gbl-ctors.h"
2130 
2131 /* Some systems use __main in a way incompatible with its use in gcc, in these
2132    cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2133    give the same symbol without quotes for an alternative entry point.  You
2134    must define both, or neither.  */
2135 #ifndef NAME__MAIN
2136 #define NAME__MAIN "__main"
2137 #define SYMBOL__MAIN __main
2138 #endif
2139 
2140 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2141 #undef HAS_INIT_SECTION
2142 #define HAS_INIT_SECTION
2143 #endif
2144 
2145 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2146 
2147 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2148    code to run constructors.  In that case, we need to handle EH here, too.  */
2149 
2150 #ifdef EH_FRAME_SECTION_NAME
2151 #include "unwind-dw2-fde.h"
2152 extern unsigned char __EH_FRAME_BEGIN__[];
2153 #endif
2154 
2155 /* Run all the global destructors on exit from the program.  */
2156 
2157 void
2158 __do_global_dtors (void)
2159 {
2160 #ifdef DO_GLOBAL_DTORS_BODY
2161   DO_GLOBAL_DTORS_BODY;
2162 #else
2163   static func_ptr *p = __DTOR_LIST__ + 1;
2164   while (*p)
2165     {
2166       p++;
2167       (*(p-1)) ();
2168     }
2169 #endif
2170 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2171   {
2172     static int completed = 0;
2173     if (! completed)
2174       {
2175 	completed = 1;
2176 	__deregister_frame_info (__EH_FRAME_BEGIN__);
2177       }
2178   }
2179 #endif
2180 }
2181 #endif
2182 
2183 #ifndef HAS_INIT_SECTION
2184 /* Run all the global constructors on entry to the program.  */
2185 
2186 void
2187 __do_global_ctors (void)
2188 {
2189 #ifdef EH_FRAME_SECTION_NAME
2190   {
2191     static struct object object;
2192     __register_frame_info (__EH_FRAME_BEGIN__, &object);
2193   }
2194 #endif
2195   DO_GLOBAL_CTORS_BODY;
2196   atexit (__do_global_dtors);
2197 }
2198 #endif /* no HAS_INIT_SECTION */
2199 
2200 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2201 /* Subroutine called automatically by `main'.
2202    Compiling a global function named `main'
2203    produces an automatic call to this function at the beginning.
2204 
2205    For many systems, this routine calls __do_global_ctors.
2206    For systems which support a .init section we use the .init section
2207    to run __do_global_ctors, so we need not do anything here.  */
2208 
2209 extern void SYMBOL__MAIN (void);
2210 void
2211 SYMBOL__MAIN (void)
2212 {
2213   /* Support recursive calls to `main': run initializers just once.  */
2214   static int initialized;
2215   if (! initialized)
2216     {
2217       initialized = 1;
2218       __do_global_ctors ();
2219     }
2220 }
2221 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2222 
2223 #endif /* L__main */
2224 #endif /* __CYGWIN__ */
2225 
2226 #ifdef L_ctors
2227 
2228 #include "gbl-ctors.h"
2229 
2230 /* Provide default definitions for the lists of constructors and
2231    destructors, so that we don't get linker errors.  These symbols are
2232    intentionally bss symbols, so that gld and/or collect will provide
2233    the right values.  */
2234 
2235 /* We declare the lists here with two elements each,
2236    so that they are valid empty lists if no other definition is loaded.
2237 
2238    If we are using the old "set" extensions to have the gnu linker
2239    collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2240    must be in the bss/common section.
2241 
2242    Long term no port should use those extensions.  But many still do.  */
2243 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2244 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2245 func_ptr __CTOR_LIST__[2] = {0, 0};
2246 func_ptr __DTOR_LIST__[2] = {0, 0};
2247 #else
2248 func_ptr __CTOR_LIST__[2];
2249 func_ptr __DTOR_LIST__[2];
2250 #endif
2251 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2252 #endif /* L_ctors */
2253 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */
2254