1// <functional> -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4// 2011, 2012, 2013 Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 3, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
20
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24// <http://www.gnu.org/licenses/>.
25
26/*
27 * Copyright (c) 1997
28 * Silicon Graphics Computer Systems, Inc.
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation.  Silicon Graphics makes no
35 * representations about the suitability of this software for any
36 * purpose.  It is provided "as is" without express or implied warranty.
37 *
38 */
39
40/** @file include/functional
41 *  This is a Standard C++ Library header.
42 */
43
44#ifndef _GLIBCXX_FUNCTIONAL
45#define _GLIBCXX_FUNCTIONAL 1
46
47#pragma GCC system_header
48
49#include <bits/c++config.h>
50#include <bits/stl_function.h>
51
52#ifdef __GXX_EXPERIMENTAL_CXX0X__
53
54#include <typeinfo>
55#include <new>
56#include <tuple>
57#include <type_traits>
58#include <bits/functexcept.h>
59#include <bits/functional_hash.h>
60
61namespace std _GLIBCXX_VISIBILITY(default)
62{
63_GLIBCXX_BEGIN_NAMESPACE_VERSION
64
65  template<typename _MemberPointer>
66    class _Mem_fn;
67  template<typename _Tp, typename _Class>
68    _Mem_fn<_Tp _Class::*>
69    mem_fn(_Tp _Class::*);
70
71_GLIBCXX_HAS_NESTED_TYPE(result_type)
72
73  /// If we have found a result_type, extract it.
74  template<bool _Has_result_type, typename _Functor>
75    struct _Maybe_get_result_type
76    { };
77
78  template<typename _Functor>
79    struct _Maybe_get_result_type<true, _Functor>
80    { typedef typename _Functor::result_type result_type; };
81
82  /**
83   *  Base class for any function object that has a weak result type, as
84   *  defined in 3.3/3 of TR1.
85  */
86  template<typename _Functor>
87    struct _Weak_result_type_impl
88    : _Maybe_get_result_type<__has_result_type<_Functor>::value, _Functor>
89    { };
90
91  /// Retrieve the result type for a function type.
92  template<typename _Res, typename... _ArgTypes>
93    struct _Weak_result_type_impl<_Res(_ArgTypes...)>
94    { typedef _Res result_type; };
95
96  template<typename _Res, typename... _ArgTypes>
97    struct _Weak_result_type_impl<_Res(_ArgTypes......)>
98    { typedef _Res result_type; };
99
100  template<typename _Res, typename... _ArgTypes>
101    struct _Weak_result_type_impl<_Res(_ArgTypes...) const>
102    { typedef _Res result_type; };
103
104  template<typename _Res, typename... _ArgTypes>
105    struct _Weak_result_type_impl<_Res(_ArgTypes......) const>
106    { typedef _Res result_type; };
107
108  template<typename _Res, typename... _ArgTypes>
109    struct _Weak_result_type_impl<_Res(_ArgTypes...) volatile>
110    { typedef _Res result_type; };
111
112  template<typename _Res, typename... _ArgTypes>
113    struct _Weak_result_type_impl<_Res(_ArgTypes......) volatile>
114    { typedef _Res result_type; };
115
116  template<typename _Res, typename... _ArgTypes>
117    struct _Weak_result_type_impl<_Res(_ArgTypes...) const volatile>
118    { typedef _Res result_type; };
119
120  template<typename _Res, typename... _ArgTypes>
121    struct _Weak_result_type_impl<_Res(_ArgTypes......) const volatile>
122    { typedef _Res result_type; };
123
124  /// Retrieve the result type for a function reference.
125  template<typename _Res, typename... _ArgTypes>
126    struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
127    { typedef _Res result_type; };
128
129  template<typename _Res, typename... _ArgTypes>
130    struct _Weak_result_type_impl<_Res(&)(_ArgTypes......)>
131    { typedef _Res result_type; };
132
133  /// Retrieve the result type for a function pointer.
134  template<typename _Res, typename... _ArgTypes>
135    struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
136    { typedef _Res result_type; };
137
138  template<typename _Res, typename... _ArgTypes>
139    struct _Weak_result_type_impl<_Res(*)(_ArgTypes......)>
140    { typedef _Res result_type; };
141
142  /// Retrieve result type for a member function pointer.
143  template<typename _Res, typename _Class, typename... _ArgTypes>
144    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
145    { typedef _Res result_type; };
146
147  template<typename _Res, typename _Class, typename... _ArgTypes>
148    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)>
149    { typedef _Res result_type; };
150
151  /// Retrieve result type for a const member function pointer.
152  template<typename _Res, typename _Class, typename... _ArgTypes>
153    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
154    { typedef _Res result_type; };
155
156  template<typename _Res, typename _Class, typename... _ArgTypes>
157    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) const>
158    { typedef _Res result_type; };
159
160  /// Retrieve result type for a volatile member function pointer.
161  template<typename _Res, typename _Class, typename... _ArgTypes>
162    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
163    { typedef _Res result_type; };
164
165  template<typename _Res, typename _Class, typename... _ArgTypes>
166    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......) volatile>
167    { typedef _Res result_type; };
168
169  /// Retrieve result type for a const volatile member function pointer.
170  template<typename _Res, typename _Class, typename... _ArgTypes>
171    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)
172				  const volatile>
173    { typedef _Res result_type; };
174
175  template<typename _Res, typename _Class, typename... _ArgTypes>
176    struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes......)
177				  const volatile>
178    { typedef _Res result_type; };
179
180  /**
181   *  Strip top-level cv-qualifiers from the function object and let
182   *  _Weak_result_type_impl perform the real work.
183  */
184  template<typename _Functor>
185    struct _Weak_result_type
186    : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
187    { };
188
189  /// Determines if the type _Tp derives from unary_function.
190  template<typename _Tp>
191    struct _Derives_from_unary_function : __sfinae_types
192    {
193    private:
194      template<typename _T1, typename _Res>
195	static __one __test(const volatile unary_function<_T1, _Res>*);
196
197      // It's tempting to change "..." to const volatile void*, but
198      // that fails when _Tp is a function type.
199      static __two __test(...);
200
201    public:
202      static const bool value = sizeof(__test((_Tp*)0)) == 1;
203    };
204
205  /// Determines if the type _Tp derives from binary_function.
206  template<typename _Tp>
207    struct _Derives_from_binary_function : __sfinae_types
208    {
209    private:
210      template<typename _T1, typename _T2, typename _Res>
211	static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
212
213      // It's tempting to change "..." to const volatile void*, but
214      // that fails when _Tp is a function type.
215      static __two __test(...);
216
217    public:
218      static const bool value = sizeof(__test((_Tp*)0)) == 1;
219    };
220
221  /**
222   * Invoke a function object, which may be either a member pointer or a
223   * function object. The first parameter will tell which.
224   */
225  template<typename _Functor, typename... _Args>
226    inline
227    typename enable_if<
228	     (!is_member_pointer<_Functor>::value
229	      && !is_function<_Functor>::value
230	      && !is_function<typename remove_pointer<_Functor>::type>::value),
231	     typename result_of<_Functor(_Args&&...)>::type
232	   >::type
233    __invoke(_Functor& __f, _Args&&... __args)
234    {
235      return __f(std::forward<_Args>(__args)...);
236    }
237
238  template<typename _Functor, typename... _Args>
239    inline
240    typename enable_if<
241             (is_member_pointer<_Functor>::value
242              && !is_function<_Functor>::value
243              && !is_function<typename remove_pointer<_Functor>::type>::value),
244             typename result_of<_Functor(_Args&&...)>::type
245           >::type
246    __invoke(_Functor& __f, _Args&&... __args)
247    {
248      return std::mem_fn(__f)(std::forward<_Args>(__args)...);
249    }
250
251  // To pick up function references (that will become function pointers)
252  template<typename _Functor, typename... _Args>
253    inline
254    typename enable_if<
255	     (is_pointer<_Functor>::value
256	      && is_function<typename remove_pointer<_Functor>::type>::value),
257	     typename result_of<_Functor(_Args&&...)>::type
258	   >::type
259    __invoke(_Functor __f, _Args&&... __args)
260    {
261      return __f(std::forward<_Args>(__args)...);
262    }
263
264  /**
265   *  Knowing which of unary_function and binary_function _Tp derives
266   *  from, derives from the same and ensures that reference_wrapper
267   *  will have a weak result type. See cases below.
268   */
269  template<bool _Unary, bool _Binary, typename _Tp>
270    struct _Reference_wrapper_base_impl;
271
272  // None of the nested argument types.
273  template<typename _Tp>
274    struct _Reference_wrapper_base_impl<false, false, _Tp>
275    : _Weak_result_type<_Tp>
276    { };
277
278  // Nested argument_type only.
279  template<typename _Tp>
280    struct _Reference_wrapper_base_impl<true, false, _Tp>
281    : _Weak_result_type<_Tp>
282    {
283      typedef typename _Tp::argument_type argument_type;
284    };
285
286  // Nested first_argument_type and second_argument_type only.
287  template<typename _Tp>
288    struct _Reference_wrapper_base_impl<false, true, _Tp>
289    : _Weak_result_type<_Tp>
290    {
291      typedef typename _Tp::first_argument_type first_argument_type;
292      typedef typename _Tp::second_argument_type second_argument_type;
293    };
294
295  // All the nested argument types.
296   template<typename _Tp>
297    struct _Reference_wrapper_base_impl<true, true, _Tp>
298    : _Weak_result_type<_Tp>
299    {
300      typedef typename _Tp::argument_type argument_type;
301      typedef typename _Tp::first_argument_type first_argument_type;
302      typedef typename _Tp::second_argument_type second_argument_type;
303    };
304
305  _GLIBCXX_HAS_NESTED_TYPE(argument_type)
306  _GLIBCXX_HAS_NESTED_TYPE(first_argument_type)
307  _GLIBCXX_HAS_NESTED_TYPE(second_argument_type)
308
309  /**
310   *  Derives from unary_function or binary_function when it
311   *  can. Specializations handle all of the easy cases. The primary
312   *  template determines what to do with a class type, which may
313   *  derive from both unary_function and binary_function.
314  */
315  template<typename _Tp>
316    struct _Reference_wrapper_base
317    : _Reference_wrapper_base_impl<
318      __has_argument_type<_Tp>::value,
319      __has_first_argument_type<_Tp>::value
320      && __has_second_argument_type<_Tp>::value,
321      _Tp>
322    { };
323
324  // - a function type (unary)
325  template<typename _Res, typename _T1>
326    struct _Reference_wrapper_base<_Res(_T1)>
327    : unary_function<_T1, _Res>
328    { };
329
330  template<typename _Res, typename _T1>
331    struct _Reference_wrapper_base<_Res(_T1) const>
332    : unary_function<_T1, _Res>
333    { };
334
335  template<typename _Res, typename _T1>
336    struct _Reference_wrapper_base<_Res(_T1) volatile>
337    : unary_function<_T1, _Res>
338    { };
339
340  template<typename _Res, typename _T1>
341    struct _Reference_wrapper_base<_Res(_T1) const volatile>
342    : unary_function<_T1, _Res>
343    { };
344
345  // - a function type (binary)
346  template<typename _Res, typename _T1, typename _T2>
347    struct _Reference_wrapper_base<_Res(_T1, _T2)>
348    : binary_function<_T1, _T2, _Res>
349    { };
350
351  template<typename _Res, typename _T1, typename _T2>
352    struct _Reference_wrapper_base<_Res(_T1, _T2) const>
353    : binary_function<_T1, _T2, _Res>
354    { };
355
356  template<typename _Res, typename _T1, typename _T2>
357    struct _Reference_wrapper_base<_Res(_T1, _T2) volatile>
358    : binary_function<_T1, _T2, _Res>
359    { };
360
361  template<typename _Res, typename _T1, typename _T2>
362    struct _Reference_wrapper_base<_Res(_T1, _T2) const volatile>
363    : binary_function<_T1, _T2, _Res>
364    { };
365
366  // - a function pointer type (unary)
367  template<typename _Res, typename _T1>
368    struct _Reference_wrapper_base<_Res(*)(_T1)>
369    : unary_function<_T1, _Res>
370    { };
371
372  // - a function pointer type (binary)
373  template<typename _Res, typename _T1, typename _T2>
374    struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
375    : binary_function<_T1, _T2, _Res>
376    { };
377
378  // - a pointer to member function type (unary, no qualifiers)
379  template<typename _Res, typename _T1>
380    struct _Reference_wrapper_base<_Res (_T1::*)()>
381    : unary_function<_T1*, _Res>
382    { };
383
384  // - a pointer to member function type (binary, no qualifiers)
385  template<typename _Res, typename _T1, typename _T2>
386    struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
387    : binary_function<_T1*, _T2, _Res>
388    { };
389
390  // - a pointer to member function type (unary, const)
391  template<typename _Res, typename _T1>
392    struct _Reference_wrapper_base<_Res (_T1::*)() const>
393    : unary_function<const _T1*, _Res>
394    { };
395
396  // - a pointer to member function type (binary, const)
397  template<typename _Res, typename _T1, typename _T2>
398    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
399    : binary_function<const _T1*, _T2, _Res>
400    { };
401
402  // - a pointer to member function type (unary, volatile)
403  template<typename _Res, typename _T1>
404    struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
405    : unary_function<volatile _T1*, _Res>
406    { };
407
408  // - a pointer to member function type (binary, volatile)
409  template<typename _Res, typename _T1, typename _T2>
410    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
411    : binary_function<volatile _T1*, _T2, _Res>
412    { };
413
414  // - a pointer to member function type (unary, const volatile)
415  template<typename _Res, typename _T1>
416    struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
417    : unary_function<const volatile _T1*, _Res>
418    { };
419
420  // - a pointer to member function type (binary, const volatile)
421  template<typename _Res, typename _T1, typename _T2>
422    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
423    : binary_function<const volatile _T1*, _T2, _Res>
424    { };
425
426  /**
427   *  @brief Primary class template for reference_wrapper.
428   *  @ingroup functors
429   *  @{
430   */
431  template<typename _Tp>
432    class reference_wrapper
433    : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
434    {
435      _Tp* _M_data;
436
437    public:
438      typedef _Tp type;
439
440      reference_wrapper(_Tp& __indata) noexcept
441      : _M_data(std::__addressof(__indata))
442      { }
443
444      reference_wrapper(_Tp&&) = delete;
445
446      reference_wrapper(const reference_wrapper<_Tp>& __inref) noexcept
447      : _M_data(__inref._M_data)
448      { }
449
450      reference_wrapper&
451      operator=(const reference_wrapper<_Tp>& __inref) noexcept
452      {
453	_M_data = __inref._M_data;
454	return *this;
455      }
456
457      operator _Tp&() const noexcept
458      { return this->get(); }
459
460      _Tp&
461      get() const noexcept
462      { return *_M_data; }
463
464      template<typename... _Args>
465	typename result_of<_Tp&(_Args&&...)>::type
466	operator()(_Args&&... __args) const
467	{
468	  return __invoke(get(), std::forward<_Args>(__args)...);
469	}
470    };
471
472
473  /// Denotes a reference should be taken to a variable.
474  template<typename _Tp>
475    inline reference_wrapper<_Tp>
476    ref(_Tp& __t) noexcept
477    { return reference_wrapper<_Tp>(__t); }
478
479  /// Denotes a const reference should be taken to a variable.
480  template<typename _Tp>
481    inline reference_wrapper<const _Tp>
482    cref(const _Tp& __t) noexcept
483    { return reference_wrapper<const _Tp>(__t); }
484
485  template<typename _Tp>
486    void ref(const _Tp&&) = delete;
487
488  template<typename _Tp>
489    void cref(const _Tp&&) = delete;
490
491  /// Partial specialization.
492  template<typename _Tp>
493    inline reference_wrapper<_Tp>
494    ref(reference_wrapper<_Tp> __t) noexcept
495    { return ref(__t.get()); }
496
497  /// Partial specialization.
498  template<typename _Tp>
499    inline reference_wrapper<const _Tp>
500    cref(reference_wrapper<_Tp> __t) noexcept
501    { return cref(__t.get()); }
502
503  // @} group functors
504
505  /**
506   * Derives from @c unary_function or @c binary_function, or perhaps
507   * nothing, depending on the number of arguments provided. The
508   * primary template is the basis case, which derives nothing.
509   */
510  template<typename _Res, typename... _ArgTypes>
511    struct _Maybe_unary_or_binary_function { };
512
513  /// Derives from @c unary_function, as appropriate.
514  template<typename _Res, typename _T1>
515    struct _Maybe_unary_or_binary_function<_Res, _T1>
516    : std::unary_function<_T1, _Res> { };
517
518  /// Derives from @c binary_function, as appropriate.
519  template<typename _Res, typename _T1, typename _T2>
520    struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
521    : std::binary_function<_T1, _T2, _Res> { };
522
523  /// Implementation of @c mem_fn for member function pointers.
524  template<typename _Res, typename _Class, typename... _ArgTypes>
525    class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
526    : public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
527    {
528      typedef _Res (_Class::*_Functor)(_ArgTypes...);
529
530      template<typename _Tp>
531	_Res
532	_M_call(_Tp& __object, const volatile _Class *,
533		_ArgTypes... __args) const
534	{ return (__object.*__pmf)(std::forward<_ArgTypes>(__args)...); }
535
536      template<typename _Tp>
537	_Res
538	_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
539	{ return ((*__ptr).*__pmf)(std::forward<_ArgTypes>(__args)...); }
540
541    public:
542      typedef _Res result_type;
543
544      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
545
546      // Handle objects
547      _Res
548      operator()(_Class& __object, _ArgTypes... __args) const
549      { return (__object.*__pmf)(std::forward<_ArgTypes>(__args)...); }
550
551      // Handle pointers
552      _Res
553      operator()(_Class* __object, _ArgTypes... __args) const
554      { return (__object->*__pmf)(std::forward<_ArgTypes>(__args)...); }
555
556      // Handle smart pointers, references and pointers to derived
557      template<typename _Tp>
558	_Res
559	operator()(_Tp& __object, _ArgTypes... __args) const
560	{
561	  return _M_call(__object, &__object,
562	      std::forward<_ArgTypes>(__args)...);
563	}
564
565    private:
566      _Functor __pmf;
567    };
568
569  /// Implementation of @c mem_fn for const member function pointers.
570  template<typename _Res, typename _Class, typename... _ArgTypes>
571    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
572    : public _Maybe_unary_or_binary_function<_Res, const _Class*,
573					     _ArgTypes...>
574    {
575      typedef _Res (_Class::*_Functor)(_ArgTypes...) const;
576
577      template<typename _Tp>
578	_Res
579	_M_call(_Tp& __object, const volatile _Class *,
580		_ArgTypes... __args) const
581	{ return (__object.*__pmf)(std::forward<_ArgTypes>(__args)...); }
582
583      template<typename _Tp>
584	_Res
585	_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
586	{ return ((*__ptr).*__pmf)(std::forward<_ArgTypes>(__args)...); }
587
588    public:
589      typedef _Res result_type;
590
591      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
592
593      // Handle objects
594      _Res
595      operator()(const _Class& __object, _ArgTypes... __args) const
596      { return (__object.*__pmf)(std::forward<_ArgTypes>(__args)...); }
597
598      // Handle pointers
599      _Res
600      operator()(const _Class* __object, _ArgTypes... __args) const
601      { return (__object->*__pmf)(std::forward<_ArgTypes>(__args)...); }
602
603      // Handle smart pointers, references and pointers to derived
604      template<typename _Tp>
605	_Res operator()(_Tp& __object, _ArgTypes... __args) const
606	{
607	  return _M_call(__object, &__object,
608	      std::forward<_ArgTypes>(__args)...);
609	}
610
611    private:
612      _Functor __pmf;
613    };
614
615  /// Implementation of @c mem_fn for volatile member function pointers.
616  template<typename _Res, typename _Class, typename... _ArgTypes>
617    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
618    : public _Maybe_unary_or_binary_function<_Res, volatile _Class*,
619					     _ArgTypes...>
620    {
621      typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;
622
623      template<typename _Tp>
624	_Res
625	_M_call(_Tp& __object, const volatile _Class *,
626		_ArgTypes... __args) const
627	{ return (__object.*__pmf)(std::forward<_ArgTypes>(__args)...); }
628
629      template<typename _Tp>
630	_Res
631	_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
632	{ return ((*__ptr).*__pmf)(std::forward<_ArgTypes>(__args)...); }
633
634    public:
635      typedef _Res result_type;
636
637      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
638
639      // Handle objects
640      _Res
641      operator()(volatile _Class& __object, _ArgTypes... __args) const
642      { return (__object.*__pmf)(std::forward<_ArgTypes>(__args)...); }
643
644      // Handle pointers
645      _Res
646      operator()(volatile _Class* __object, _ArgTypes... __args) const
647      { return (__object->*__pmf)(std::forward<_ArgTypes>(__args)...); }
648
649      // Handle smart pointers, references and pointers to derived
650      template<typename _Tp>
651	_Res
652	operator()(_Tp& __object, _ArgTypes... __args) const
653	{
654	  return _M_call(__object, &__object,
655	      std::forward<_ArgTypes>(__args)...);
656	}
657
658    private:
659      _Functor __pmf;
660    };
661
662  /// Implementation of @c mem_fn for const volatile member function pointers.
663  template<typename _Res, typename _Class, typename... _ArgTypes>
664    class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
665    : public _Maybe_unary_or_binary_function<_Res, const volatile _Class*,
666					     _ArgTypes...>
667    {
668      typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;
669
670      template<typename _Tp>
671	_Res
672	_M_call(_Tp& __object, const volatile _Class *,
673		_ArgTypes... __args) const
674	{ return (__object.*__pmf)(std::forward<_ArgTypes>(__args)...); }
675
676      template<typename _Tp>
677	_Res
678	_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
679	{ return ((*__ptr).*__pmf)(std::forward<_ArgTypes>(__args)...); }
680
681    public:
682      typedef _Res result_type;
683
684      explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
685
686      // Handle objects
687      _Res
688      operator()(const volatile _Class& __object, _ArgTypes... __args) const
689      { return (__object.*__pmf)(std::forward<_ArgTypes>(__args)...); }
690
691      // Handle pointers
692      _Res
693      operator()(const volatile _Class* __object, _ArgTypes... __args) const
694      { return (__object->*__pmf)(std::forward<_ArgTypes>(__args)...); }
695
696      // Handle smart pointers, references and pointers to derived
697      template<typename _Tp>
698	_Res operator()(_Tp& __object, _ArgTypes... __args) const
699	{
700	  return _M_call(__object, &__object,
701	      std::forward<_ArgTypes>(__args)...);
702	}
703
704    private:
705      _Functor __pmf;
706    };
707
708
709  template<typename _Tp, bool>
710    struct _Mem_fn_const_or_non
711    {
712      typedef const _Tp& type;
713    };
714
715  template<typename _Tp>
716    struct _Mem_fn_const_or_non<_Tp, false>
717    {
718      typedef _Tp& type;
719    };
720
721  template<typename _Res, typename _Class>
722    class _Mem_fn<_Res _Class::*>
723    {
724      // This bit of genius is due to Peter Dimov, improved slightly by
725      // Douglas Gregor.
726      template<typename _Tp>
727	_Res&
728	_M_call(_Tp& __object, _Class *) const
729	{ return __object.*__pm; }
730
731      template<typename _Tp, typename _Up>
732	_Res&
733	_M_call(_Tp& __object, _Up * const *) const
734	{ return (*__object).*__pm; }
735
736      template<typename _Tp, typename _Up>
737	const _Res&
738	_M_call(_Tp& __object, const _Up * const *) const
739	{ return (*__object).*__pm; }
740
741      template<typename _Tp>
742	const _Res&
743	_M_call(_Tp& __object, const _Class *) const
744	{ return __object.*__pm; }
745
746      template<typename _Tp>
747	const _Res&
748	_M_call(_Tp& __ptr, const volatile void*) const
749	{ return (*__ptr).*__pm; }
750
751      template<typename _Tp> static _Tp& __get_ref();
752
753      template<typename _Tp>
754	static __sfinae_types::__one __check_const(_Tp&, _Class*);
755      template<typename _Tp, typename _Up>
756	static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
757      template<typename _Tp, typename _Up>
758	static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
759      template<typename _Tp>
760	static __sfinae_types::__two __check_const(_Tp&, const _Class*);
761      template<typename _Tp>
762	static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
763
764    public:
765      template<typename _Tp>
766	struct _Result_type
767	: _Mem_fn_const_or_non<_Res,
768	  (sizeof(__sfinae_types::__two)
769	   == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
770	{ };
771
772      template<typename _Signature>
773	struct result;
774
775      template<typename _CVMem, typename _Tp>
776	struct result<_CVMem(_Tp)>
777	: public _Result_type<_Tp> { };
778
779      template<typename _CVMem, typename _Tp>
780	struct result<_CVMem(_Tp&)>
781	: public _Result_type<_Tp> { };
782
783      explicit
784      _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
785
786      // Handle objects
787      _Res&
788      operator()(_Class& __object) const
789      { return __object.*__pm; }
790
791      const _Res&
792      operator()(const _Class& __object) const
793      { return __object.*__pm; }
794
795      // Handle pointers
796      _Res&
797      operator()(_Class* __object) const
798      { return __object->*__pm; }
799
800      const _Res&
801      operator()(const _Class* __object) const
802      { return __object->*__pm; }
803
804      // Handle smart pointers and derived
805      template<typename _Tp>
806	typename _Result_type<_Tp>::type
807	operator()(_Tp& __unknown) const
808	{ return _M_call(__unknown, &__unknown); }
809
810    private:
811      _Res _Class::*__pm;
812    };
813
814  /**
815   *  @brief Returns a function object that forwards to the member
816   *  pointer @a pm.
817   *  @ingroup functors
818   */
819  template<typename _Tp, typename _Class>
820    inline _Mem_fn<_Tp _Class::*>
821    mem_fn(_Tp _Class::* __pm)
822    {
823      return _Mem_fn<_Tp _Class::*>(__pm);
824    }
825
826  /**
827   *  @brief Determines if the given type _Tp is a function object
828   *  should be treated as a subexpression when evaluating calls to
829   *  function objects returned by bind(). [TR1 3.6.1]
830   *  @ingroup binders
831   */
832  template<typename _Tp>
833    struct is_bind_expression
834    : public false_type { };
835
836  /**
837   *  @brief Determines if the given type _Tp is a placeholder in a
838   *  bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
839   *  @ingroup binders
840   */
841  template<typename _Tp>
842    struct is_placeholder
843    : public integral_constant<int, 0>
844    { };
845
846  /** @brief The type of placeholder objects defined by libstdc++.
847   *  @ingroup binders
848   */
849  template<int _Num> struct _Placeholder { };
850
851  _GLIBCXX_END_NAMESPACE_VERSION
852
853  /** @namespace std::placeholders
854   *  @brief ISO C++11 entities sub-namespace for functional.
855   *  @ingroup binders
856   */
857  namespace placeholders
858  {
859  _GLIBCXX_BEGIN_NAMESPACE_VERSION
860  /* Define a large number of placeholders. There is no way to
861   * simplify this with variadic templates, because we're introducing
862   * unique names for each.
863   */
864    extern const _Placeholder<1> _1;
865    extern const _Placeholder<2> _2;
866    extern const _Placeholder<3> _3;
867    extern const _Placeholder<4> _4;
868    extern const _Placeholder<5> _5;
869    extern const _Placeholder<6> _6;
870    extern const _Placeholder<7> _7;
871    extern const _Placeholder<8> _8;
872    extern const _Placeholder<9> _9;
873    extern const _Placeholder<10> _10;
874    extern const _Placeholder<11> _11;
875    extern const _Placeholder<12> _12;
876    extern const _Placeholder<13> _13;
877    extern const _Placeholder<14> _14;
878    extern const _Placeholder<15> _15;
879    extern const _Placeholder<16> _16;
880    extern const _Placeholder<17> _17;
881    extern const _Placeholder<18> _18;
882    extern const _Placeholder<19> _19;
883    extern const _Placeholder<20> _20;
884    extern const _Placeholder<21> _21;
885    extern const _Placeholder<22> _22;
886    extern const _Placeholder<23> _23;
887    extern const _Placeholder<24> _24;
888    extern const _Placeholder<25> _25;
889    extern const _Placeholder<26> _26;
890    extern const _Placeholder<27> _27;
891    extern const _Placeholder<28> _28;
892    extern const _Placeholder<29> _29;
893  _GLIBCXX_END_NAMESPACE_VERSION
894  }
895
896  _GLIBCXX_BEGIN_NAMESPACE_VERSION
897
898  /**
899   *  Partial specialization of is_placeholder that provides the placeholder
900   *  number for the placeholder objects defined by libstdc++.
901   *  @ingroup binders
902   */
903  template<int _Num>
904    struct is_placeholder<_Placeholder<_Num> >
905    : public integral_constant<int, _Num>
906    { };
907
908  template<int _Num>
909    struct is_placeholder<const _Placeholder<_Num> >
910    : public integral_constant<int, _Num>
911    { };
912
913  /**
914   * Used by _Safe_tuple_element to indicate that there is no tuple
915   * element at this position.
916   */
917  struct _No_tuple_element;
918
919  /**
920   * Implementation helper for _Safe_tuple_element. This primary
921   * template handles the case where it is safe to use @c
922   * tuple_element.
923   */
924  template<std::size_t __i, typename _Tuple, bool _IsSafe>
925    struct _Safe_tuple_element_impl
926    : tuple_element<__i, _Tuple> { };
927
928  /**
929   * Implementation helper for _Safe_tuple_element. This partial
930   * specialization handles the case where it is not safe to use @c
931   * tuple_element. We just return @c _No_tuple_element.
932   */
933  template<std::size_t __i, typename _Tuple>
934    struct _Safe_tuple_element_impl<__i, _Tuple, false>
935    {
936      typedef _No_tuple_element type;
937    };
938
939  /**
940   * Like tuple_element, but returns @c _No_tuple_element when
941   * tuple_element would return an error.
942   */
943 template<std::size_t __i, typename _Tuple>
944   struct _Safe_tuple_element
945   : _Safe_tuple_element_impl<__i, _Tuple,
946			      (__i < tuple_size<_Tuple>::value)>
947   { };
948
949  /**
950   *  Maps an argument to bind() into an actual argument to the bound
951   *  function object [TR1 3.6.3/5]. Only the first parameter should
952   *  be specified: the rest are used to determine among the various
953   *  implementations. Note that, although this class is a function
954   *  object, it isn't entirely normal because it takes only two
955   *  parameters regardless of the number of parameters passed to the
956   *  bind expression. The first parameter is the bound argument and
957   *  the second parameter is a tuple containing references to the
958   *  rest of the arguments.
959   */
960  template<typename _Arg,
961	   bool _IsBindExp = is_bind_expression<_Arg>::value,
962	   bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
963    class _Mu;
964
965  /**
966   *  If the argument is reference_wrapper<_Tp>, returns the
967   *  underlying reference. [TR1 3.6.3/5 bullet 1]
968   */
969  template<typename _Tp>
970    class _Mu<reference_wrapper<_Tp>, false, false>
971    {
972    public:
973      typedef _Tp& result_type;
974
975      /* Note: This won't actually work for const volatile
976       * reference_wrappers, because reference_wrapper::get() is const
977       * but not volatile-qualified. This might be a defect in the TR.
978       */
979      template<typename _CVRef, typename _Tuple>
980	result_type
981	operator()(_CVRef& __arg, _Tuple&) const volatile
982	{ return __arg.get(); }
983    };
984
985  /**
986   *  If the argument is a bind expression, we invoke the underlying
987   *  function object with the same cv-qualifiers as we are given and
988   *  pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
989   */
990  template<typename _Arg>
991    class _Mu<_Arg, true, false>
992    {
993    public:
994      template<typename _CVArg, typename... _Args>
995	auto
996	operator()(_CVArg& __arg,
997		   tuple<_Args...>& __tuple) const volatile
998	-> decltype(__arg(declval<_Args>()...))
999	{
1000	  // Construct an index tuple and forward to __call
1001	  typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
1002	    _Indexes;
1003	  return this->__call(__arg, __tuple, _Indexes());
1004	}
1005
1006    private:
1007      // Invokes the underlying function object __arg by unpacking all
1008      // of the arguments in the tuple.
1009      template<typename _CVArg, typename... _Args, std::size_t... _Indexes>
1010	auto
1011	__call(_CVArg& __arg, tuple<_Args...>& __tuple,
1012	       const _Index_tuple<_Indexes...>&) const volatile
1013	-> decltype(__arg(declval<_Args>()...))
1014	{
1015	  return __arg(std::forward<_Args>(get<_Indexes>(__tuple))...);
1016	}
1017    };
1018
1019  /**
1020   *  If the argument is a placeholder for the Nth argument, returns
1021   *  a reference to the Nth argument to the bind function object.
1022   *  [TR1 3.6.3/5 bullet 3]
1023   */
1024  template<typename _Arg>
1025    class _Mu<_Arg, false, true>
1026    {
1027    public:
1028      template<typename _Signature> class result;
1029
1030      template<typename _CVMu, typename _CVArg, typename _Tuple>
1031	class result<_CVMu(_CVArg, _Tuple)>
1032	{
1033	  // Add a reference, if it hasn't already been done for us.
1034	  // This allows us to be a little bit sloppy in constructing
1035	  // the tuple that we pass to result_of<...>.
1036	  typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
1037						- 1), _Tuple>::type
1038	    __base_type;
1039
1040	public:
1041	  typedef typename add_rvalue_reference<__base_type>::type type;
1042	};
1043
1044      template<typename _Tuple>
1045	typename result<_Mu(_Arg, _Tuple)>::type
1046	operator()(const volatile _Arg&, _Tuple& __tuple) const volatile
1047	{
1048	  return std::forward<typename result<_Mu(_Arg, _Tuple)>::type>(
1049	      ::std::get<(is_placeholder<_Arg>::value - 1)>(__tuple));
1050	}
1051    };
1052
1053  /**
1054   *  If the argument is just a value, returns a reference to that
1055   *  value. The cv-qualifiers on the reference are the same as the
1056   *  cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
1057   */
1058  template<typename _Arg>
1059    class _Mu<_Arg, false, false>
1060    {
1061    public:
1062      template<typename _Signature> struct result;
1063
1064      template<typename _CVMu, typename _CVArg, typename _Tuple>
1065	struct result<_CVMu(_CVArg, _Tuple)>
1066	{
1067	  typedef typename add_lvalue_reference<_CVArg>::type type;
1068	};
1069
1070      // Pick up the cv-qualifiers of the argument
1071      template<typename _CVArg, typename _Tuple>
1072	_CVArg&&
1073	operator()(_CVArg&& __arg, _Tuple&) const volatile
1074	{ return std::forward<_CVArg>(__arg); }
1075    };
1076
1077  /**
1078   *  Maps member pointers into instances of _Mem_fn but leaves all
1079   *  other function objects untouched. Used by tr1::bind(). The
1080   *  primary template handles the non--member-pointer case.
1081   */
1082  template<typename _Tp>
1083    struct _Maybe_wrap_member_pointer
1084    {
1085      typedef _Tp type;
1086
1087      static const _Tp&
1088      __do_wrap(const _Tp& __x)
1089      { return __x; }
1090
1091      static _Tp&&
1092      __do_wrap(_Tp&& __x)
1093      { return static_cast<_Tp&&>(__x); }
1094    };
1095
1096  /**
1097   *  Maps member pointers into instances of _Mem_fn but leaves all
1098   *  other function objects untouched. Used by tr1::bind(). This
1099   *  partial specialization handles the member pointer case.
1100   */
1101  template<typename _Tp, typename _Class>
1102    struct _Maybe_wrap_member_pointer<_Tp _Class::*>
1103    {
1104      typedef _Mem_fn<_Tp _Class::*> type;
1105
1106      static type
1107      __do_wrap(_Tp _Class::* __pm)
1108      { return type(__pm); }
1109    };
1110
1111  // Specialization needed to prevent "forming reference to void" errors when
1112  // bind<void>() is called, because argument deduction instantiates
1113  // _Maybe_wrap_member_pointer<void> outside the immediate context where
1114  // SFINAE applies.
1115  template<>
1116    struct _Maybe_wrap_member_pointer<void>
1117    {
1118      typedef void type;
1119    };
1120
1121  // std::get<I> for volatile-qualified tuples
1122  template<std::size_t _Ind, typename... _Tp>
1123    inline auto
1124    __volget(volatile tuple<_Tp...>& __tuple)
1125    -> typename tuple_element<_Ind, tuple<_Tp...>>::type volatile&
1126    { return std::get<_Ind>(const_cast<tuple<_Tp...>&>(__tuple)); }
1127
1128  // std::get<I> for const-volatile-qualified tuples
1129  template<std::size_t _Ind, typename... _Tp>
1130    inline auto
1131    __volget(const volatile tuple<_Tp...>& __tuple)
1132    -> typename tuple_element<_Ind, tuple<_Tp...>>::type const volatile&
1133    { return std::get<_Ind>(const_cast<const tuple<_Tp...>&>(__tuple)); }
1134
1135  /// Type of the function object returned from bind().
1136  template<typename _Signature>
1137    struct _Bind;
1138
1139   template<typename _Functor, typename... _Bound_args>
1140    class _Bind<_Functor(_Bound_args...)>
1141    : public _Weak_result_type<_Functor>
1142    {
1143      typedef _Bind __self_type;
1144      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
1145	_Bound_indexes;
1146
1147      _Functor _M_f;
1148      tuple<_Bound_args...> _M_bound_args;
1149
1150      // Call unqualified
1151      template<typename _Result, typename... _Args, std::size_t... _Indexes>
1152	_Result
1153	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>)
1154	{
1155	  return _M_f(_Mu<_Bound_args>()
1156		      (get<_Indexes>(_M_bound_args), __args)...);
1157	}
1158
1159      // Call as const
1160      template<typename _Result, typename... _Args, std::size_t... _Indexes>
1161	_Result
1162	__call_c(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>) const
1163	{
1164	  return _M_f(_Mu<_Bound_args>()
1165		      (get<_Indexes>(_M_bound_args), __args)...);
1166	}
1167
1168      // Call as volatile
1169      template<typename _Result, typename... _Args, std::size_t... _Indexes>
1170	_Result
1171	__call_v(tuple<_Args...>&& __args,
1172		 _Index_tuple<_Indexes...>) volatile
1173	{
1174	  return _M_f(_Mu<_Bound_args>()
1175		      (__volget<_Indexes>(_M_bound_args), __args)...);
1176	}
1177
1178      // Call as const volatile
1179      template<typename _Result, typename... _Args, std::size_t... _Indexes>
1180	_Result
1181	__call_c_v(tuple<_Args...>&& __args,
1182		   _Index_tuple<_Indexes...>) const volatile
1183	{
1184	  return _M_f(_Mu<_Bound_args>()
1185		      (__volget<_Indexes>(_M_bound_args), __args)...);
1186	}
1187
1188     public:
1189      template<typename... _Args>
1190	explicit _Bind(const _Functor& __f, _Args&&... __args)
1191	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
1192	{ }
1193
1194      template<typename... _Args>
1195	explicit _Bind(_Functor&& __f, _Args&&... __args)
1196	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
1197	{ }
1198
1199      _Bind(const _Bind&) = default;
1200
1201      _Bind(_Bind&& __b)
1202      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
1203      { }
1204
1205      // Call unqualified
1206      template<typename... _Args, typename _Result
1207	= decltype( std::declval<_Functor>()(
1208	      _Mu<_Bound_args>()( std::declval<_Bound_args&>(),
1209				  std::declval<tuple<_Args...>&>() )... ) )>
1210	_Result
1211	operator()(_Args&&... __args)
1212	{
1213	  return this->__call<_Result>(
1214	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1215	      _Bound_indexes());
1216	}
1217
1218      // Call as const
1219      template<typename... _Args, typename _Result
1220	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1221		       typename add_const<_Functor>::type>::type>()(
1222	      _Mu<_Bound_args>()( std::declval<const _Bound_args&>(),
1223				  std::declval<tuple<_Args...>&>() )... ) )>
1224	_Result
1225	operator()(_Args&&... __args) const
1226	{
1227	  return this->__call_c<_Result>(
1228	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1229	      _Bound_indexes());
1230	}
1231
1232      // Call as volatile
1233      template<typename... _Args, typename _Result
1234	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1235                       typename add_volatile<_Functor>::type>::type>()(
1236	      _Mu<_Bound_args>()( std::declval<volatile _Bound_args&>(),
1237				  std::declval<tuple<_Args...>&>() )... ) )>
1238	_Result
1239	operator()(_Args&&... __args) volatile
1240	{
1241	  return this->__call_v<_Result>(
1242	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1243	      _Bound_indexes());
1244	}
1245
1246      // Call as const volatile
1247      template<typename... _Args, typename _Result
1248	= decltype( std::declval<typename enable_if<(sizeof...(_Args) >= 0),
1249                       typename add_cv<_Functor>::type>::type>()(
1250	      _Mu<_Bound_args>()( std::declval<const volatile _Bound_args&>(),
1251				  std::declval<tuple<_Args...>&>() )... ) )>
1252	_Result
1253	operator()(_Args&&... __args) const volatile
1254	{
1255	  return this->__call_c_v<_Result>(
1256	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1257	      _Bound_indexes());
1258	}
1259    };
1260
1261  /// Type of the function object returned from bind<R>().
1262  template<typename _Result, typename _Signature>
1263    struct _Bind_result;
1264
1265  template<typename _Result, typename _Functor, typename... _Bound_args>
1266    class _Bind_result<_Result, _Functor(_Bound_args...)>
1267    {
1268      typedef _Bind_result __self_type;
1269      typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
1270	_Bound_indexes;
1271
1272      _Functor _M_f;
1273      tuple<_Bound_args...> _M_bound_args;
1274
1275      // sfinae types
1276      template<typename _Res>
1277	struct __enable_if_void : enable_if<is_void<_Res>::value, int> { };
1278      template<typename _Res>
1279	struct __disable_if_void : enable_if<!is_void<_Res>::value, int> { };
1280
1281      // Call unqualified
1282      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1283	_Result
1284	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1285	    typename __disable_if_void<_Res>::type = 0)
1286	{
1287	  return _M_f(_Mu<_Bound_args>()
1288		      (get<_Indexes>(_M_bound_args), __args)...);
1289	}
1290
1291      // Call unqualified, return void
1292      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1293	void
1294	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1295	    typename __enable_if_void<_Res>::type = 0)
1296	{
1297	  _M_f(_Mu<_Bound_args>()
1298	       (get<_Indexes>(_M_bound_args), __args)...);
1299	}
1300
1301      // Call as const
1302      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1303	_Result
1304	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1305	    typename __disable_if_void<_Res>::type = 0) const
1306	{
1307	  return _M_f(_Mu<_Bound_args>()
1308		      (get<_Indexes>(_M_bound_args), __args)...);
1309	}
1310
1311      // Call as const, return void
1312      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1313	void
1314	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1315	    typename __enable_if_void<_Res>::type = 0) const
1316	{
1317	  _M_f(_Mu<_Bound_args>()
1318	       (get<_Indexes>(_M_bound_args),  __args)...);
1319	}
1320
1321      // Call as volatile
1322      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1323	_Result
1324	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1325	    typename __disable_if_void<_Res>::type = 0) volatile
1326	{
1327	  return _M_f(_Mu<_Bound_args>()
1328		      (__volget<_Indexes>(_M_bound_args), __args)...);
1329	}
1330
1331      // Call as volatile, return void
1332      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1333	void
1334	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1335	    typename __enable_if_void<_Res>::type = 0) volatile
1336	{
1337	  _M_f(_Mu<_Bound_args>()
1338	       (__volget<_Indexes>(_M_bound_args), __args)...);
1339	}
1340
1341      // Call as const volatile
1342      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1343	_Result
1344	__call(tuple<_Args...>&& __args, _Index_tuple<_Indexes...>,
1345	    typename __disable_if_void<_Res>::type = 0) const volatile
1346	{
1347	  return _M_f(_Mu<_Bound_args>()
1348		      (__volget<_Indexes>(_M_bound_args), __args)...);
1349	}
1350
1351      // Call as const volatile, return void
1352      template<typename _Res, typename... _Args, std::size_t... _Indexes>
1353	void
1354	__call(tuple<_Args...>&& __args,
1355	       _Index_tuple<_Indexes...>,
1356	    typename __enable_if_void<_Res>::type = 0) const volatile
1357	{
1358	  _M_f(_Mu<_Bound_args>()
1359	       (__volget<_Indexes>(_M_bound_args), __args)...);
1360	}
1361
1362    public:
1363      typedef _Result result_type;
1364
1365      template<typename... _Args>
1366	explicit _Bind_result(const _Functor& __f, _Args&&... __args)
1367	: _M_f(__f), _M_bound_args(std::forward<_Args>(__args)...)
1368	{ }
1369
1370      template<typename... _Args>
1371	explicit _Bind_result(_Functor&& __f, _Args&&... __args)
1372	: _M_f(std::move(__f)), _M_bound_args(std::forward<_Args>(__args)...)
1373	{ }
1374
1375      _Bind_result(const _Bind_result&) = default;
1376
1377      _Bind_result(_Bind_result&& __b)
1378      : _M_f(std::move(__b._M_f)), _M_bound_args(std::move(__b._M_bound_args))
1379      { }
1380
1381      // Call unqualified
1382      template<typename... _Args>
1383	result_type
1384	operator()(_Args&&... __args)
1385	{
1386	  return this->__call<_Result>(
1387	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1388	      _Bound_indexes());
1389	}
1390
1391      // Call as const
1392      template<typename... _Args>
1393	result_type
1394	operator()(_Args&&... __args) const
1395	{
1396	  return this->__call<_Result>(
1397	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1398	      _Bound_indexes());
1399	}
1400
1401      // Call as volatile
1402      template<typename... _Args>
1403	result_type
1404	operator()(_Args&&... __args) volatile
1405	{
1406	  return this->__call<_Result>(
1407	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1408	      _Bound_indexes());
1409	}
1410
1411      // Call as const volatile
1412      template<typename... _Args>
1413	result_type
1414	operator()(_Args&&... __args) const volatile
1415	{
1416	  return this->__call<_Result>(
1417	      std::forward_as_tuple(std::forward<_Args>(__args)...),
1418	      _Bound_indexes());
1419	}
1420    };
1421
1422  /**
1423   *  @brief Class template _Bind is always a bind expression.
1424   *  @ingroup binders
1425   */
1426  template<typename _Signature>
1427    struct is_bind_expression<_Bind<_Signature> >
1428    : public true_type { };
1429
1430  /**
1431   *  @brief Class template _Bind is always a bind expression.
1432   *  @ingroup binders
1433   */
1434  template<typename _Signature>
1435    struct is_bind_expression<const _Bind<_Signature> >
1436    : public true_type { };
1437
1438  /**
1439   *  @brief Class template _Bind is always a bind expression.
1440   *  @ingroup binders
1441   */
1442  template<typename _Signature>
1443    struct is_bind_expression<volatile _Bind<_Signature> >
1444    : public true_type { };
1445
1446  /**
1447   *  @brief Class template _Bind is always a bind expression.
1448   *  @ingroup binders
1449   */
1450  template<typename _Signature>
1451    struct is_bind_expression<const volatile _Bind<_Signature>>
1452    : public true_type { };
1453
1454  /**
1455   *  @brief Class template _Bind_result is always a bind expression.
1456   *  @ingroup binders
1457   */
1458  template<typename _Result, typename _Signature>
1459    struct is_bind_expression<_Bind_result<_Result, _Signature>>
1460    : public true_type { };
1461
1462  /**
1463   *  @brief Class template _Bind_result is always a bind expression.
1464   *  @ingroup binders
1465   */
1466  template<typename _Result, typename _Signature>
1467    struct is_bind_expression<const _Bind_result<_Result, _Signature>>
1468    : public true_type { };
1469
1470  /**
1471   *  @brief Class template _Bind_result is always a bind expression.
1472   *  @ingroup binders
1473   */
1474  template<typename _Result, typename _Signature>
1475    struct is_bind_expression<volatile _Bind_result<_Result, _Signature>>
1476    : public true_type { };
1477
1478  /**
1479   *  @brief Class template _Bind_result is always a bind expression.
1480   *  @ingroup binders
1481   */
1482  template<typename _Result, typename _Signature>
1483    struct is_bind_expression<const volatile _Bind_result<_Result, _Signature>>
1484    : public true_type { };
1485
1486  // Trait type used to remove std::bind() from overload set via SFINAE
1487  // when first argument has integer type, so that std::bind() will
1488  // not be a better match than ::bind() from the BSD Sockets API.
1489  template<typename _Tp>
1490    class __is_socketlike
1491    {
1492      typedef typename decay<_Tp>::type _Tp2;
1493    public:
1494      static const bool value =
1495	is_integral<_Tp2>::value || is_enum<_Tp2>::value;
1496    };
1497
1498  template<bool _SocketLike, typename _Func, typename... _BoundArgs>
1499    struct _Bind_helper
1500    {
1501      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1502	__maybe_type;
1503      typedef typename __maybe_type::type __func_type;
1504      typedef _Bind<__func_type(typename decay<_BoundArgs>::type...)> type;
1505    };
1506
1507  // Partial specialization for is_socketlike == true, does not define
1508  // nested type so std::bind() will not participate in overload resolution
1509  // when the first argument might be a socket file descriptor.
1510  template<typename _Func, typename... _BoundArgs>
1511    struct _Bind_helper<true, _Func, _BoundArgs...>
1512    { };
1513
1514  /**
1515   *  @brief Function template for std::bind.
1516   *  @ingroup binders
1517   */
1518  template<typename _Func, typename... _BoundArgs>
1519    inline typename
1520    _Bind_helper<__is_socketlike<_Func>::value, _Func, _BoundArgs...>::type
1521    bind(_Func&& __f, _BoundArgs&&... __args)
1522    {
1523      typedef _Bind_helper<false, _Func, _BoundArgs...> __helper_type;
1524      typedef typename __helper_type::__maybe_type __maybe_type;
1525      typedef typename __helper_type::type __result_type;
1526      return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
1527			   std::forward<_BoundArgs>(__args)...);
1528    }
1529
1530  template<typename _Result, typename _Func, typename... _BoundArgs>
1531    struct _Bindres_helper
1532    {
1533      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1534	__maybe_type;
1535      typedef typename __maybe_type::type __functor_type;
1536      typedef _Bind_result<_Result,
1537			   __functor_type(typename decay<_BoundArgs>::type...)>
1538	type;
1539    };
1540
1541  /**
1542   *  @brief Function template for std::bind<R>.
1543   *  @ingroup binders
1544   */
1545  template<typename _Result, typename _Func, typename... _BoundArgs>
1546    inline
1547    typename _Bindres_helper<_Result, _Func, _BoundArgs...>::type
1548    bind(_Func&& __f, _BoundArgs&&... __args)
1549    {
1550      typedef _Bindres_helper<_Result, _Func, _BoundArgs...> __helper_type;
1551      typedef typename __helper_type::__maybe_type __maybe_type;
1552      typedef typename __helper_type::type __result_type;
1553      return __result_type(__maybe_type::__do_wrap(std::forward<_Func>(__f)),
1554			   std::forward<_BoundArgs>(__args)...);
1555    }
1556
1557  template<typename _Signature>
1558    struct _Bind_simple;
1559
1560  template<typename _Callable, typename... _Args>
1561    struct _Bind_simple<_Callable(_Args...)>
1562    {
1563      typedef typename result_of<_Callable(_Args...)>::type result_type;
1564
1565      template<typename... _Args2, typename = typename
1566               enable_if< sizeof...(_Args) == sizeof...(_Args2)>::type>
1567        explicit
1568        _Bind_simple(const _Callable& __callable, _Args2&&... __args)
1569        : _M_bound(__callable, std::forward<_Args2>(__args)...)
1570        { }
1571
1572      template<typename... _Args2, typename = typename
1573               enable_if< sizeof...(_Args) == sizeof...(_Args2)>::type>
1574        explicit
1575        _Bind_simple(_Callable&& __callable, _Args2&&... __args)
1576        : _M_bound(std::move(__callable), std::forward<_Args2>(__args)...)
1577        { }
1578
1579      _Bind_simple(const _Bind_simple&) = default;
1580      _Bind_simple(_Bind_simple&&) = default;
1581
1582      result_type
1583      operator()()
1584      {
1585        typedef typename _Build_index_tuple<sizeof...(_Args)>::__type _Indices;
1586        return _M_invoke(_Indices());
1587      }
1588
1589    private:
1590
1591      template<std::size_t... _Indices>
1592        typename result_of<_Callable(_Args...)>::type
1593        _M_invoke(_Index_tuple<_Indices...>)
1594        {
1595	  // std::bind always forwards bound arguments as lvalues,
1596	  // but this type can call functions which only accept rvalues.
1597          return std::forward<_Callable>(std::get<0>(_M_bound))(
1598              std::forward<_Args>(std::get<_Indices+1>(_M_bound))...);
1599        }
1600
1601      std::tuple<_Callable, _Args...> _M_bound;
1602    };
1603
1604  template<typename _Func, typename... _BoundArgs>
1605    struct _Bind_simple_helper
1606    {
1607      typedef _Maybe_wrap_member_pointer<typename decay<_Func>::type>
1608        __maybe_type;
1609      typedef typename __maybe_type::type __func_type;
1610      typedef _Bind_simple<__func_type(typename decay<_BoundArgs>::type...)>
1611       	__type;
1612    };
1613
1614  // Simplified version of std::bind for internal use, without support for
1615  // unbound arguments, placeholders or nested bind expressions.
1616  template<typename _Callable, typename... _Args>
1617    typename _Bind_simple_helper<_Callable, _Args...>::__type
1618    __bind_simple(_Callable&& __callable, _Args&&... __args)
1619    {
1620      typedef _Bind_simple_helper<_Callable, _Args...> __helper_type;
1621      typedef typename __helper_type::__maybe_type __maybe_type;
1622      typedef typename __helper_type::__type __result_type;
1623      return __result_type(
1624          __maybe_type::__do_wrap( std::forward<_Callable>(__callable)),
1625          std::forward<_Args>(__args)...);
1626    }
1627
1628  /**
1629   *  @brief Exception class thrown when class template function's
1630   *  operator() is called with an empty target.
1631   *  @ingroup exceptions
1632   */
1633  class bad_function_call : public std::exception
1634  {
1635  public:
1636    virtual ~bad_function_call() noexcept;
1637  };
1638
1639  /**
1640   *  Trait identifying "location-invariant" types, meaning that the
1641   *  address of the object (or any of its members) will not escape.
1642   *  Also implies a trivial copy constructor and assignment operator.
1643   */
1644  template<typename _Tp>
1645    struct __is_location_invariant
1646    : integral_constant<bool, (is_pointer<_Tp>::value
1647			       || is_member_pointer<_Tp>::value)>
1648    { };
1649
1650  class _Undefined_class;
1651
1652  union _Nocopy_types
1653  {
1654    void*       _M_object;
1655    const void* _M_const_object;
1656    void (*_M_function_pointer)();
1657    void (_Undefined_class::*_M_member_pointer)();
1658  };
1659
1660  union _Any_data
1661  {
1662    void*       _M_access()       { return &_M_pod_data[0]; }
1663    const void* _M_access() const { return &_M_pod_data[0]; }
1664
1665    template<typename _Tp>
1666      _Tp&
1667      _M_access()
1668      { return *static_cast<_Tp*>(_M_access()); }
1669
1670    template<typename _Tp>
1671      const _Tp&
1672      _M_access() const
1673      { return *static_cast<const _Tp*>(_M_access()); }
1674
1675    _Nocopy_types _M_unused;
1676    char _M_pod_data[sizeof(_Nocopy_types)];
1677  };
1678
1679  enum _Manager_operation
1680  {
1681    __get_type_info,
1682    __get_functor_ptr,
1683    __clone_functor,
1684    __destroy_functor
1685  };
1686
1687  // Simple type wrapper that helps avoid annoying const problems
1688  // when casting between void pointers and pointers-to-pointers.
1689  template<typename _Tp>
1690    struct _Simple_type_wrapper
1691    {
1692      _Simple_type_wrapper(_Tp __value) : __value(__value) { }
1693
1694      _Tp __value;
1695    };
1696
1697  template<typename _Tp>
1698    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
1699    : __is_location_invariant<_Tp>
1700    { };
1701
1702  // Converts a reference to a function object into a callable
1703  // function object.
1704  template<typename _Functor>
1705    inline _Functor&
1706    __callable_functor(_Functor& __f)
1707    { return __f; }
1708
1709  template<typename _Member, typename _Class>
1710    inline _Mem_fn<_Member _Class::*>
1711    __callable_functor(_Member _Class::* &__p)
1712    { return std::mem_fn(__p); }
1713
1714  template<typename _Member, typename _Class>
1715    inline _Mem_fn<_Member _Class::*>
1716    __callable_functor(_Member _Class::* const &__p)
1717    { return std::mem_fn(__p); }
1718
1719  template<typename _Signature>
1720    class function;
1721
1722  /// Base class of all polymorphic function object wrappers.
1723  class _Function_base
1724  {
1725  public:
1726    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
1727    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
1728
1729    template<typename _Functor>
1730      class _Base_manager
1731      {
1732      protected:
1733	static const bool __stored_locally =
1734	(__is_location_invariant<_Functor>::value
1735	 && sizeof(_Functor) <= _M_max_size
1736	 && __alignof__(_Functor) <= _M_max_align
1737	 && (_M_max_align % __alignof__(_Functor) == 0));
1738
1739	typedef integral_constant<bool, __stored_locally> _Local_storage;
1740
1741	// Retrieve a pointer to the function object
1742	static _Functor*
1743	_M_get_pointer(const _Any_data& __source)
1744	{
1745	  const _Functor* __ptr =
1746	    __stored_locally? std::__addressof(__source._M_access<_Functor>())
1747	    /* have stored a pointer */ : __source._M_access<_Functor*>();
1748	  return const_cast<_Functor*>(__ptr);
1749	}
1750
1751	// Clone a location-invariant function object that fits within
1752	// an _Any_data structure.
1753	static void
1754	_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
1755	{
1756	  new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
1757	}
1758
1759	// Clone a function object that is not location-invariant or
1760	// that cannot fit into an _Any_data structure.
1761	static void
1762	_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
1763	{
1764	  __dest._M_access<_Functor*>() =
1765	    new _Functor(*__source._M_access<_Functor*>());
1766	}
1767
1768	// Destroying a location-invariant object may still require
1769	// destruction.
1770	static void
1771	_M_destroy(_Any_data& __victim, true_type)
1772	{
1773	  __victim._M_access<_Functor>().~_Functor();
1774	}
1775
1776	// Destroying an object located on the heap.
1777	static void
1778	_M_destroy(_Any_data& __victim, false_type)
1779	{
1780	  delete __victim._M_access<_Functor*>();
1781	}
1782
1783      public:
1784	static bool
1785	_M_manager(_Any_data& __dest, const _Any_data& __source,
1786		   _Manager_operation __op)
1787	{
1788	  switch (__op)
1789	    {
1790#ifdef __GXX_RTTI
1791	    case __get_type_info:
1792	      __dest._M_access<const type_info*>() = &typeid(_Functor);
1793	      break;
1794#endif
1795	    case __get_functor_ptr:
1796	      __dest._M_access<_Functor*>() = _M_get_pointer(__source);
1797	      break;
1798
1799	    case __clone_functor:
1800	      _M_clone(__dest, __source, _Local_storage());
1801	      break;
1802
1803	    case __destroy_functor:
1804	      _M_destroy(__dest, _Local_storage());
1805	      break;
1806	    }
1807	  return false;
1808	}
1809
1810	static void
1811	_M_init_functor(_Any_data& __functor, _Functor&& __f)
1812	{ _M_init_functor(__functor, std::move(__f), _Local_storage()); }
1813
1814	template<typename _Signature>
1815	  static bool
1816	  _M_not_empty_function(const function<_Signature>& __f)
1817	  { return static_cast<bool>(__f); }
1818
1819	template<typename _Tp>
1820	  static bool
1821	  _M_not_empty_function(const _Tp*& __fp)
1822	  { return __fp; }
1823
1824	template<typename _Class, typename _Tp>
1825	  static bool
1826	  _M_not_empty_function(_Tp _Class::* const& __mp)
1827	  { return __mp; }
1828
1829	template<typename _Tp>
1830	  static bool
1831	  _M_not_empty_function(const _Tp&)
1832	  { return true; }
1833
1834      private:
1835	static void
1836	_M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
1837	{ new (__functor._M_access()) _Functor(std::move(__f)); }
1838
1839	static void
1840	_M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
1841	{ __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
1842      };
1843
1844    template<typename _Functor>
1845      class _Ref_manager : public _Base_manager<_Functor*>
1846      {
1847	typedef _Function_base::_Base_manager<_Functor*> _Base;
1848
1849    public:
1850	static bool
1851	_M_manager(_Any_data& __dest, const _Any_data& __source,
1852		   _Manager_operation __op)
1853	{
1854	  switch (__op)
1855	    {
1856#ifdef __GXX_RTTI
1857	    case __get_type_info:
1858	      __dest._M_access<const type_info*>() = &typeid(_Functor);
1859	      break;
1860#endif
1861	    case __get_functor_ptr:
1862	      __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
1863	      return is_const<_Functor>::value;
1864	      break;
1865
1866	    default:
1867	      _Base::_M_manager(__dest, __source, __op);
1868	    }
1869	  return false;
1870	}
1871
1872	static void
1873	_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
1874	{
1875	  _Base::_M_init_functor(__functor, std::__addressof(__f.get()));
1876	}
1877      };
1878
1879    _Function_base() : _M_manager(0) { }
1880
1881    ~_Function_base()
1882    {
1883      if (_M_manager)
1884	_M_manager(_M_functor, _M_functor, __destroy_functor);
1885    }
1886
1887
1888    bool _M_empty() const { return !_M_manager; }
1889
1890    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
1891				  _Manager_operation);
1892
1893    _Any_data     _M_functor;
1894    _Manager_type _M_manager;
1895  };
1896
1897  template<typename _Signature, typename _Functor>
1898    class _Function_handler;
1899
1900  template<typename _Res, typename _Functor, typename... _ArgTypes>
1901    class _Function_handler<_Res(_ArgTypes...), _Functor>
1902    : public _Function_base::_Base_manager<_Functor>
1903    {
1904      typedef _Function_base::_Base_manager<_Functor> _Base;
1905
1906    public:
1907      static _Res
1908      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1909      {
1910	return (*_Base::_M_get_pointer(__functor))(
1911	    std::forward<_ArgTypes>(__args)...);
1912      }
1913    };
1914
1915  template<typename _Functor, typename... _ArgTypes>
1916    class _Function_handler<void(_ArgTypes...), _Functor>
1917    : public _Function_base::_Base_manager<_Functor>
1918    {
1919      typedef _Function_base::_Base_manager<_Functor> _Base;
1920
1921     public:
1922      static void
1923      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1924      {
1925	(*_Base::_M_get_pointer(__functor))(
1926	    std::forward<_ArgTypes>(__args)...);
1927      }
1928    };
1929
1930  template<typename _Res, typename _Functor, typename... _ArgTypes>
1931    class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
1932    : public _Function_base::_Ref_manager<_Functor>
1933    {
1934      typedef _Function_base::_Ref_manager<_Functor> _Base;
1935
1936     public:
1937      static _Res
1938      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1939      {
1940	return __callable_functor(**_Base::_M_get_pointer(__functor))(
1941	      std::forward<_ArgTypes>(__args)...);
1942      }
1943    };
1944
1945  template<typename _Functor, typename... _ArgTypes>
1946    class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
1947    : public _Function_base::_Ref_manager<_Functor>
1948    {
1949      typedef _Function_base::_Ref_manager<_Functor> _Base;
1950
1951     public:
1952      static void
1953      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1954      {
1955	__callable_functor(**_Base::_M_get_pointer(__functor))(
1956	    std::forward<_ArgTypes>(__args)...);
1957      }
1958    };
1959
1960  template<typename _Class, typename _Member, typename _Res,
1961	   typename... _ArgTypes>
1962    class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
1963    : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
1964    {
1965      typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
1966	_Base;
1967
1968     public:
1969      static _Res
1970      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
1971      {
1972	return std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
1973	    std::forward<_ArgTypes>(__args)...);
1974      }
1975    };
1976
1977  template<typename _Class, typename _Member, typename... _ArgTypes>
1978    class _Function_handler<void(_ArgTypes...), _Member _Class::*>
1979    : public _Function_base::_Base_manager<
1980		 _Simple_type_wrapper< _Member _Class::* > >
1981    {
1982      typedef _Member _Class::* _Functor;
1983      typedef _Simple_type_wrapper<_Functor> _Wrapper;
1984      typedef _Function_base::_Base_manager<_Wrapper> _Base;
1985
1986     public:
1987      static bool
1988      _M_manager(_Any_data& __dest, const _Any_data& __source,
1989		 _Manager_operation __op)
1990      {
1991	switch (__op)
1992	  {
1993#ifdef __GXX_RTTI
1994	  case __get_type_info:
1995	    __dest._M_access<const type_info*>() = &typeid(_Functor);
1996	    break;
1997#endif
1998	  case __get_functor_ptr:
1999	    __dest._M_access<_Functor*>() =
2000	      &_Base::_M_get_pointer(__source)->__value;
2001	    break;
2002
2003	  default:
2004	    _Base::_M_manager(__dest, __source, __op);
2005	  }
2006	return false;
2007      }
2008
2009      static void
2010      _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
2011      {
2012	std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(
2013	    std::forward<_ArgTypes>(__args)...);
2014      }
2015    };
2016
2017  /**
2018   *  @brief Primary class template for std::function.
2019   *  @ingroup functors
2020   *
2021   *  Polymorphic function wrapper.
2022   */
2023  template<typename _Res, typename... _ArgTypes>
2024    class function<_Res(_ArgTypes...)>
2025    : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
2026      private _Function_base
2027    {
2028      typedef _Res _Signature_type(_ArgTypes...);
2029
2030      struct _Useless { };
2031
2032    public:
2033      typedef _Res result_type;
2034
2035      // [3.7.2.1] construct/copy/destroy
2036
2037      /**
2038       *  @brief Default construct creates an empty function call wrapper.
2039       *  @post @c !(bool)*this
2040       */
2041      function() noexcept
2042      : _Function_base() { }
2043
2044      /**
2045       *  @brief Creates an empty function call wrapper.
2046       *  @post @c !(bool)*this
2047       */
2048      function(nullptr_t) noexcept
2049      : _Function_base() { }
2050
2051      /**
2052       *  @brief %Function copy constructor.
2053       *  @param __x A %function object with identical call signature.
2054       *  @post @c bool(*this) == bool(__x)
2055       *
2056       *  The newly-created %function contains a copy of the target of @a
2057       *  __x (if it has one).
2058       */
2059      function(const function& __x);
2060
2061      /**
2062       *  @brief %Function move constructor.
2063       *  @param __x A %function object rvalue with identical call signature.
2064       *
2065       *  The newly-created %function contains the target of @a __x
2066       *  (if it has one).
2067       */
2068      function(function&& __x) : _Function_base()
2069      {
2070	__x.swap(*this);
2071      }
2072
2073      // TODO: needs allocator_arg_t
2074
2075      /**
2076       *  @brief Builds a %function that targets a copy of the incoming
2077       *  function object.
2078       *  @param __f A %function object that is callable with parameters of
2079       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
2080       *  to @c Res.
2081       *
2082       *  The newly-created %function object will target a copy of
2083       *  @a __f. If @a __f is @c reference_wrapper<F>, then this function
2084       *  object will contain a reference to the function object @c
2085       *  __f.get(). If @a __f is a NULL function pointer or NULL
2086       *  pointer-to-member, the newly-created object will be empty.
2087       *
2088       *  If @a __f is a non-NULL function pointer or an object of type @c
2089       *  reference_wrapper<F>, this function will not throw.
2090       */
2091      template<typename _Functor>
2092	function(_Functor __f,
2093		 typename enable_if<
2094			   !is_integral<_Functor>::value, _Useless>::type
2095		   = _Useless());
2096
2097      /**
2098       *  @brief %Function assignment operator.
2099       *  @param __x A %function with identical call signature.
2100       *  @post @c (bool)*this == (bool)x
2101       *  @returns @c *this
2102       *
2103       *  The target of @a __x is copied to @c *this. If @a __x has no
2104       *  target, then @c *this will be empty.
2105       *
2106       *  If @a __x targets a function pointer or a reference to a function
2107       *  object, then this operation will not throw an %exception.
2108       */
2109      function&
2110      operator=(const function& __x)
2111      {
2112	function(__x).swap(*this);
2113	return *this;
2114      }
2115
2116      /**
2117       *  @brief %Function move-assignment operator.
2118       *  @param __x A %function rvalue with identical call signature.
2119       *  @returns @c *this
2120       *
2121       *  The target of @a __x is moved to @c *this. If @a __x has no
2122       *  target, then @c *this will be empty.
2123       *
2124       *  If @a __x targets a function pointer or a reference to a function
2125       *  object, then this operation will not throw an %exception.
2126       */
2127      function&
2128      operator=(function&& __x)
2129      {
2130	function(std::move(__x)).swap(*this);
2131	return *this;
2132      }
2133
2134      /**
2135       *  @brief %Function assignment to zero.
2136       *  @post @c !(bool)*this
2137       *  @returns @c *this
2138       *
2139       *  The target of @c *this is deallocated, leaving it empty.
2140       */
2141      function&
2142      operator=(nullptr_t)
2143      {
2144	if (_M_manager)
2145	  {
2146	    _M_manager(_M_functor, _M_functor, __destroy_functor);
2147	    _M_manager = 0;
2148	    _M_invoker = 0;
2149	  }
2150	return *this;
2151      }
2152
2153      /**
2154       *  @brief %Function assignment to a new target.
2155       *  @param __f A %function object that is callable with parameters of
2156       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
2157       *  to @c Res.
2158       *  @return @c *this
2159       *
2160       *  This  %function object wrapper will target a copy of @a
2161       *  __f. If @a __f is @c reference_wrapper<F>, then this function
2162       *  object will contain a reference to the function object @c
2163       *  __f.get(). If @a __f is a NULL function pointer or NULL
2164       *  pointer-to-member, @c this object will be empty.
2165       *
2166       *  If @a __f is a non-NULL function pointer or an object of type @c
2167       *  reference_wrapper<F>, this function will not throw.
2168       */
2169      template<typename _Functor>
2170	typename enable_if<!is_integral<_Functor>::value, function&>::type
2171	operator=(_Functor&& __f)
2172	{
2173	  function(std::forward<_Functor>(__f)).swap(*this);
2174	  return *this;
2175	}
2176
2177      /// @overload
2178      template<typename _Functor>
2179	typename enable_if<!is_integral<_Functor>::value, function&>::type
2180	operator=(reference_wrapper<_Functor> __f) noexcept
2181	{
2182	  function(__f).swap(*this);
2183	  return *this;
2184	}
2185
2186      // [3.7.2.2] function modifiers
2187
2188      /**
2189       *  @brief Swap the targets of two %function objects.
2190       *  @param __x A %function with identical call signature.
2191       *
2192       *  Swap the targets of @c this function object and @a __f. This
2193       *  function will not throw an %exception.
2194       */
2195      void swap(function& __x)
2196      {
2197	std::swap(_M_functor, __x._M_functor);
2198	std::swap(_M_manager, __x._M_manager);
2199	std::swap(_M_invoker, __x._M_invoker);
2200      }
2201
2202      // TODO: needs allocator_arg_t
2203      /*
2204      template<typename _Functor, typename _Alloc>
2205	void
2206	assign(_Functor&& __f, const _Alloc& __a)
2207	{
2208	  function(allocator_arg, __a,
2209		   std::forward<_Functor>(__f)).swap(*this);
2210	}
2211      */
2212
2213      // [3.7.2.3] function capacity
2214
2215      /**
2216       *  @brief Determine if the %function wrapper has a target.
2217       *
2218       *  @return @c true when this %function object contains a target,
2219       *  or @c false when it is empty.
2220       *
2221       *  This function will not throw an %exception.
2222       */
2223      explicit operator bool() const noexcept
2224      { return !_M_empty(); }
2225
2226      // [3.7.2.4] function invocation
2227
2228      /**
2229       *  @brief Invokes the function targeted by @c *this.
2230       *  @returns the result of the target.
2231       *  @throws bad_function_call when @c !(bool)*this
2232       *
2233       *  The function call operator invokes the target function object
2234       *  stored by @c this.
2235       */
2236      _Res operator()(_ArgTypes... __args) const;
2237
2238#ifdef __GXX_RTTI
2239      // [3.7.2.5] function target access
2240      /**
2241       *  @brief Determine the type of the target of this function object
2242       *  wrapper.
2243       *
2244       *  @returns the type identifier of the target function object, or
2245       *  @c typeid(void) if @c !(bool)*this.
2246       *
2247       *  This function will not throw an %exception.
2248       */
2249      const type_info& target_type() const noexcept;
2250
2251      /**
2252       *  @brief Access the stored target function object.
2253       *
2254       *  @return Returns a pointer to the stored target function object,
2255       *  if @c typeid(Functor).equals(target_type()); otherwise, a NULL
2256       *  pointer.
2257       *
2258       * This function will not throw an %exception.
2259       */
2260      template<typename _Functor>       _Functor* target() noexcept;
2261
2262      /// @overload
2263      template<typename _Functor> const _Functor* target() const noexcept;
2264#endif
2265
2266    private:
2267      typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
2268      _Invoker_type _M_invoker;
2269  };
2270
2271  // Out-of-line member definitions.
2272  template<typename _Res, typename... _ArgTypes>
2273    function<_Res(_ArgTypes...)>::
2274    function(const function& __x)
2275    : _Function_base()
2276    {
2277      if (static_cast<bool>(__x))
2278	{
2279	  _M_invoker = __x._M_invoker;
2280	  _M_manager = __x._M_manager;
2281	  __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
2282	}
2283    }
2284
2285  template<typename _Res, typename... _ArgTypes>
2286    template<typename _Functor>
2287      function<_Res(_ArgTypes...)>::
2288      function(_Functor __f,
2289	       typename enable_if<
2290			!is_integral<_Functor>::value, _Useless>::type)
2291      : _Function_base()
2292      {
2293	typedef _Function_handler<_Signature_type, _Functor> _My_handler;
2294
2295	if (_My_handler::_M_not_empty_function(__f))
2296	  {
2297	    _My_handler::_M_init_functor(_M_functor, std::move(__f));
2298	    _M_invoker = &_My_handler::_M_invoke;
2299	    _M_manager = &_My_handler::_M_manager;
2300	  }
2301      }
2302
2303  template<typename _Res, typename... _ArgTypes>
2304    _Res
2305    function<_Res(_ArgTypes...)>::
2306    operator()(_ArgTypes... __args) const
2307    {
2308      if (_M_empty())
2309	__throw_bad_function_call();
2310      return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
2311    }
2312
2313#ifdef __GXX_RTTI
2314  template<typename _Res, typename... _ArgTypes>
2315    const type_info&
2316    function<_Res(_ArgTypes...)>::
2317    target_type() const noexcept
2318    {
2319      if (_M_manager)
2320	{
2321	  _Any_data __typeinfo_result;
2322	  _M_manager(__typeinfo_result, _M_functor, __get_type_info);
2323	  return *__typeinfo_result._M_access<const type_info*>();
2324	}
2325      else
2326	return typeid(void);
2327    }
2328
2329  template<typename _Res, typename... _ArgTypes>
2330    template<typename _Functor>
2331      _Functor*
2332      function<_Res(_ArgTypes...)>::
2333      target() noexcept
2334      {
2335	if (typeid(_Functor) == target_type() && _M_manager)
2336	  {
2337	    _Any_data __ptr;
2338	    if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
2339		&& !is_const<_Functor>::value)
2340	      return 0;
2341	    else
2342	      return __ptr._M_access<_Functor*>();
2343	  }
2344	else
2345	  return 0;
2346      }
2347
2348  template<typename _Res, typename... _ArgTypes>
2349    template<typename _Functor>
2350      const _Functor*
2351      function<_Res(_ArgTypes...)>::
2352      target() const noexcept
2353      {
2354	if (typeid(_Functor) == target_type() && _M_manager)
2355	  {
2356	    _Any_data __ptr;
2357	    _M_manager(__ptr, _M_functor, __get_functor_ptr);
2358	    return __ptr._M_access<const _Functor*>();
2359	  }
2360	else
2361	  return 0;
2362      }
2363#endif
2364
2365  // [20.7.15.2.6] null pointer comparisons
2366
2367  /**
2368   *  @brief Compares a polymorphic function object wrapper against 0
2369   *  (the NULL pointer).
2370   *  @returns @c true if the wrapper has no target, @c false otherwise
2371   *
2372   *  This function will not throw an %exception.
2373   */
2374  template<typename _Res, typename... _Args>
2375    inline bool
2376    operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
2377    { return !static_cast<bool>(__f); }
2378
2379  /// @overload
2380  template<typename _Res, typename... _Args>
2381    inline bool
2382    operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
2383    { return !static_cast<bool>(__f); }
2384
2385  /**
2386   *  @brief Compares a polymorphic function object wrapper against 0
2387   *  (the NULL pointer).
2388   *  @returns @c false if the wrapper has no target, @c true otherwise
2389   *
2390   *  This function will not throw an %exception.
2391   */
2392  template<typename _Res, typename... _Args>
2393    inline bool
2394    operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
2395    { return static_cast<bool>(__f); }
2396
2397  /// @overload
2398  template<typename _Res, typename... _Args>
2399    inline bool
2400    operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
2401    { return static_cast<bool>(__f); }
2402
2403  // [20.7.15.2.7] specialized algorithms
2404
2405  /**
2406   *  @brief Swap the targets of two polymorphic function object wrappers.
2407   *
2408   *  This function will not throw an %exception.
2409   */
2410  template<typename _Res, typename... _Args>
2411    inline void
2412    swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y)
2413    { __x.swap(__y); }
2414
2415_GLIBCXX_END_NAMESPACE_VERSION
2416} // namespace std
2417
2418#endif // __GXX_EXPERIMENTAL_CXX0X__
2419
2420#endif // _GLIBCXX_FUNCTIONAL
2421