1 // Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010, 2011 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/hashtable_policy.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly.
28  *  @headername{tr1/unordered_map, tr1/unordered_set}
29  */
30 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 namespace tr1
34 {
35 namespace __detail
36 {
37 _GLIBCXX_BEGIN_NAMESPACE_VERSION
38 
39   // Helper function: return distance(first, last) for forward
40   // iterators, or 0 for input iterators.
41   template<class _Iterator>
42     inline typename std::iterator_traits<_Iterator>::difference_type
43     __distance_fw(_Iterator __first, _Iterator __last,
44 		  std::input_iterator_tag)
45     { return 0; }
46 
47   template<class _Iterator>
48     inline typename std::iterator_traits<_Iterator>::difference_type
49     __distance_fw(_Iterator __first, _Iterator __last,
50 		  std::forward_iterator_tag)
51     { return std::distance(__first, __last); }
52 
53   template<class _Iterator>
54     inline typename std::iterator_traits<_Iterator>::difference_type
55     __distance_fw(_Iterator __first, _Iterator __last)
56     {
57       typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
58       return __distance_fw(__first, __last, _Tag());
59     }
60 
61   // Auxiliary types used for all instantiations of _Hashtable: nodes
62   // and iterators.
63 
64   // Nodes, used to wrap elements stored in the hash table.  A policy
65   // template parameter of class template _Hashtable controls whether
66   // nodes also store a hash code. In some cases (e.g. strings) this
67   // may be a performance win.
68   template<typename _Value, bool __cache_hash_code>
69     struct _Hash_node;
70 
71   template<typename _Value>
72     struct _Hash_node<_Value, true>
73     {
74       _Value       _M_v;
75       std::size_t  _M_hash_code;
76       _Hash_node*  _M_next;
77     };
78 
79   template<typename _Value>
80     struct _Hash_node<_Value, false>
81     {
82       _Value       _M_v;
83       _Hash_node*  _M_next;
84     };
85 
86   // Local iterators, used to iterate within a bucket but not between
87   // buckets.
88   template<typename _Value, bool __cache>
89     struct _Node_iterator_base
90     {
91       _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
92       : _M_cur(__p) { }
93 
94       void
95       _M_incr()
96       { _M_cur = _M_cur->_M_next; }
97 
98       _Hash_node<_Value, __cache>*  _M_cur;
99     };
100 
101   template<typename _Value, bool __cache>
102     inline bool
103     operator==(const _Node_iterator_base<_Value, __cache>& __x,
104 	       const _Node_iterator_base<_Value, __cache>& __y)
105     { return __x._M_cur == __y._M_cur; }
106 
107   template<typename _Value, bool __cache>
108     inline bool
109     operator!=(const _Node_iterator_base<_Value, __cache>& __x,
110 	       const _Node_iterator_base<_Value, __cache>& __y)
111     { return __x._M_cur != __y._M_cur; }
112 
113   template<typename _Value, bool __constant_iterators, bool __cache>
114     struct _Node_iterator
115     : public _Node_iterator_base<_Value, __cache>
116     {
117       typedef _Value                                   value_type;
118       typedef typename
119       __gnu_cxx::__conditional_type<__constant_iterators,
120 				    const _Value*, _Value*>::__type
121                                                        pointer;
122       typedef typename
123       __gnu_cxx::__conditional_type<__constant_iterators,
124 				    const _Value&, _Value&>::__type
125                                                        reference;
126       typedef std::ptrdiff_t                           difference_type;
127       typedef std::forward_iterator_tag                iterator_category;
128 
129       _Node_iterator()
130       : _Node_iterator_base<_Value, __cache>(0) { }
131 
132       explicit
133       _Node_iterator(_Hash_node<_Value, __cache>* __p)
134       : _Node_iterator_base<_Value, __cache>(__p) { }
135 
136       reference
137       operator*() const
138       { return this->_M_cur->_M_v; }
139 
140       pointer
141       operator->() const
142       { return std::__addressof(this->_M_cur->_M_v); }
143 
144       _Node_iterator&
145       operator++()
146       {
147 	this->_M_incr();
148 	return *this;
149       }
150 
151       _Node_iterator
152       operator++(int)
153       {
154 	_Node_iterator __tmp(*this);
155 	this->_M_incr();
156 	return __tmp;
157       }
158     };
159 
160   template<typename _Value, bool __constant_iterators, bool __cache>
161     struct _Node_const_iterator
162     : public _Node_iterator_base<_Value, __cache>
163     {
164       typedef _Value                                   value_type;
165       typedef const _Value*                            pointer;
166       typedef const _Value&                            reference;
167       typedef std::ptrdiff_t                           difference_type;
168       typedef std::forward_iterator_tag                iterator_category;
169 
170       _Node_const_iterator()
171       : _Node_iterator_base<_Value, __cache>(0) { }
172 
173       explicit
174       _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
175       : _Node_iterator_base<_Value, __cache>(__p) { }
176 
177       _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
178 			   __cache>& __x)
179       : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
180 
181       reference
182       operator*() const
183       { return this->_M_cur->_M_v; }
184 
185       pointer
186       operator->() const
187       { return std::__addressof(this->_M_cur->_M_v); }
188 
189       _Node_const_iterator&
190       operator++()
191       {
192 	this->_M_incr();
193 	return *this;
194       }
195 
196       _Node_const_iterator
197       operator++(int)
198       {
199 	_Node_const_iterator __tmp(*this);
200 	this->_M_incr();
201 	return __tmp;
202       }
203     };
204 
205   template<typename _Value, bool __cache>
206     struct _Hashtable_iterator_base
207     {
208       _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
209 			       _Hash_node<_Value, __cache>** __bucket)
210       : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
211 
212       void
213       _M_incr()
214       {
215 	_M_cur_node = _M_cur_node->_M_next;
216 	if (!_M_cur_node)
217 	  _M_incr_bucket();
218       }
219 
220       void
221       _M_incr_bucket();
222 
223       _Hash_node<_Value, __cache>*   _M_cur_node;
224       _Hash_node<_Value, __cache>**  _M_cur_bucket;
225     };
226 
227   // Global iterators, used for arbitrary iteration within a hash
228   // table.  Larger and more expensive than local iterators.
229   template<typename _Value, bool __cache>
230     void
231     _Hashtable_iterator_base<_Value, __cache>::
232     _M_incr_bucket()
233     {
234       ++_M_cur_bucket;
235 
236       // This loop requires the bucket array to have a non-null sentinel.
237       while (!*_M_cur_bucket)
238 	++_M_cur_bucket;
239       _M_cur_node = *_M_cur_bucket;
240     }
241 
242   template<typename _Value, bool __cache>
243     inline bool
244     operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
245 	       const _Hashtable_iterator_base<_Value, __cache>& __y)
246     { return __x._M_cur_node == __y._M_cur_node; }
247 
248   template<typename _Value, bool __cache>
249     inline bool
250     operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
251 	       const _Hashtable_iterator_base<_Value, __cache>& __y)
252     { return __x._M_cur_node != __y._M_cur_node; }
253 
254   template<typename _Value, bool __constant_iterators, bool __cache>
255     struct _Hashtable_iterator
256     : public _Hashtable_iterator_base<_Value, __cache>
257     {
258       typedef _Value                                   value_type;
259       typedef typename
260       __gnu_cxx::__conditional_type<__constant_iterators,
261 				    const _Value*, _Value*>::__type
262                                                        pointer;
263       typedef typename
264       __gnu_cxx::__conditional_type<__constant_iterators,
265 				    const _Value&, _Value&>::__type
266                                                        reference;
267       typedef std::ptrdiff_t                           difference_type;
268       typedef std::forward_iterator_tag                iterator_category;
269 
270       _Hashtable_iterator()
271       : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
272 
273       _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
274 			  _Hash_node<_Value, __cache>** __b)
275       : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
276 
277       explicit
278       _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
279       : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
280 
281       reference
282       operator*() const
283       { return this->_M_cur_node->_M_v; }
284 
285       pointer
286       operator->() const
287       { return std::__addressof(this->_M_cur_node->_M_v); }
288 
289       _Hashtable_iterator&
290       operator++()
291       {
292 	this->_M_incr();
293 	return *this;
294       }
295 
296       _Hashtable_iterator
297       operator++(int)
298       {
299 	_Hashtable_iterator __tmp(*this);
300 	this->_M_incr();
301 	return __tmp;
302       }
303     };
304 
305   template<typename _Value, bool __constant_iterators, bool __cache>
306     struct _Hashtable_const_iterator
307     : public _Hashtable_iterator_base<_Value, __cache>
308     {
309       typedef _Value                                   value_type;
310       typedef const _Value*                            pointer;
311       typedef const _Value&                            reference;
312       typedef std::ptrdiff_t                           difference_type;
313       typedef std::forward_iterator_tag                iterator_category;
314 
315       _Hashtable_const_iterator()
316       : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
317 
318       _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
319 				_Hash_node<_Value, __cache>** __b)
320       : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
321 
322       explicit
323       _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
324       : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
325 
326       _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
327 				__constant_iterators, __cache>& __x)
328       : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
329 						  __x._M_cur_bucket) { }
330 
331       reference
332       operator*() const
333       { return this->_M_cur_node->_M_v; }
334 
335       pointer
336       operator->() const
337       { return std::__addressof(this->_M_cur_node->_M_v); }
338 
339       _Hashtable_const_iterator&
340       operator++()
341       {
342 	this->_M_incr();
343 	return *this;
344       }
345 
346       _Hashtable_const_iterator
347       operator++(int)
348       {
349 	_Hashtable_const_iterator __tmp(*this);
350 	this->_M_incr();
351 	return __tmp;
352       }
353     };
354 
355 
356   // Many of class template _Hashtable's template parameters are policy
357   // classes.  These are defaults for the policies.
358 
359   // Default range hashing function: use division to fold a large number
360   // into the range [0, N).
361   struct _Mod_range_hashing
362   {
363     typedef std::size_t first_argument_type;
364     typedef std::size_t second_argument_type;
365     typedef std::size_t result_type;
366 
367     result_type
368     operator()(first_argument_type __num, second_argument_type __den) const
369     { return __num % __den; }
370   };
371 
372   // Default ranged hash function H.  In principle it should be a
373   // function object composed from objects of type H1 and H2 such that
374   // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
375   // h1 and h2.  So instead we'll just use a tag to tell class template
376   // hashtable to do that composition.
377   struct _Default_ranged_hash { };
378 
379   // Default value for rehash policy.  Bucket size is (usually) the
380   // smallest prime that keeps the load factor small enough.
381   struct _Prime_rehash_policy
382   {
383     _Prime_rehash_policy(float __z = 1.0)
384     : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
385 
386     float
387     max_load_factor() const
388     { return _M_max_load_factor; }
389 
390     // Return a bucket size no smaller than n.
391     std::size_t
392     _M_next_bkt(std::size_t __n) const;
393 
394     // Return a bucket count appropriate for n elements
395     std::size_t
396     _M_bkt_for_elements(std::size_t __n) const;
397 
398     // __n_bkt is current bucket count, __n_elt is current element count,
399     // and __n_ins is number of elements to be inserted.  Do we need to
400     // increase bucket count?  If so, return make_pair(true, n), where n
401     // is the new bucket count.  If not, return make_pair(false, 0).
402     std::pair<bool, std::size_t>
403     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
404 		   std::size_t __n_ins) const;
405 
406     enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
407 
408     float                _M_max_load_factor;
409     float                _M_growth_factor;
410     mutable std::size_t  _M_next_resize;
411   };
412 
413   extern const unsigned long __prime_list[];
414 
415   // XXX This is a hack.  There's no good reason for any of
416   // _Prime_rehash_policy's member functions to be inline.
417 
418   // Return a prime no smaller than n.
419   inline std::size_t
420   _Prime_rehash_policy::
421   _M_next_bkt(std::size_t __n) const
422   {
423     const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
424 						+ _S_n_primes, __n);
425     _M_next_resize =
426       static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
427     return *__p;
428   }
429 
430   // Return the smallest prime p such that alpha p >= n, where alpha
431   // is the load factor.
432   inline std::size_t
433   _Prime_rehash_policy::
434   _M_bkt_for_elements(std::size_t __n) const
435   {
436     const float __min_bkts = __n / _M_max_load_factor;
437     const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
438 						+ _S_n_primes, __min_bkts);
439     _M_next_resize =
440       static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
441     return *__p;
442   }
443 
444   // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
445   // If p > __n_bkt, return make_pair(true, p); otherwise return
446   // make_pair(false, 0).  In principle this isn't very different from
447   // _M_bkt_for_elements.
448 
449   // The only tricky part is that we're caching the element count at
450   // which we need to rehash, so we don't have to do a floating-point
451   // multiply for every insertion.
452 
453   inline std::pair<bool, std::size_t>
454   _Prime_rehash_policy::
455   _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
456 		 std::size_t __n_ins) const
457   {
458     if (__n_elt + __n_ins > _M_next_resize)
459       {
460 	float __min_bkts = ((float(__n_ins) + float(__n_elt))
461 			    / _M_max_load_factor);
462 	if (__min_bkts > __n_bkt)
463 	  {
464 	    __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
465 	    const unsigned long* __p =
466 	      std::lower_bound(__prime_list, __prime_list + _S_n_primes,
467 			       __min_bkts);
468 	    _M_next_resize = static_cast<std::size_t>
469 	      (__builtin_ceil(*__p * _M_max_load_factor));
470 	    return std::make_pair(true, *__p);
471 	  }
472 	else
473 	  {
474 	    _M_next_resize = static_cast<std::size_t>
475 	      (__builtin_ceil(__n_bkt * _M_max_load_factor));
476 	    return std::make_pair(false, 0);
477 	  }
478       }
479     else
480       return std::make_pair(false, 0);
481   }
482 
483   // Base classes for std::tr1::_Hashtable.  We define these base
484   // classes because in some cases we want to do different things
485   // depending on the value of a policy class.  In some cases the
486   // policy class affects which member functions and nested typedefs
487   // are defined; we handle that by specializing base class templates.
488   // Several of the base class templates need to access other members
489   // of class template _Hashtable, so we use the "curiously recurring
490   // template pattern" for them.
491 
492   // class template _Map_base.  If the hashtable has a value type of the
493   // form pair<T1, T2> and a key extraction policy that returns the
494   // first part of the pair, the hashtable gets a mapped_type typedef.
495   // If it satisfies those criteria and also has unique keys, then it
496   // also gets an operator[].
497   template<typename _Key, typename _Value, typename _Ex, bool __unique,
498 	   typename _Hashtable>
499     struct _Map_base { };
500 
501   template<typename _Key, typename _Pair, typename _Hashtable>
502     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
503     {
504       typedef typename _Pair::second_type mapped_type;
505     };
506 
507   template<typename _Key, typename _Pair, typename _Hashtable>
508     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
509     {
510       typedef typename _Pair::second_type mapped_type;
511 
512       mapped_type&
513       operator[](const _Key& __k);
514     };
515 
516   template<typename _Key, typename _Pair, typename _Hashtable>
517     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
518 		       true, _Hashtable>::mapped_type&
519     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
520     operator[](const _Key& __k)
521     {
522       _Hashtable* __h = static_cast<_Hashtable*>(this);
523       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
524       std::size_t __n = __h->_M_bucket_index(__k, __code,
525 					     __h->_M_bucket_count);
526 
527       typename _Hashtable::_Node* __p =
528 	__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
529       if (!__p)
530 	return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
531 				     __n, __code)->second;
532       return (__p->_M_v).second;
533     }
534 
535   // class template _Rehash_base.  Give hashtable the max_load_factor
536   // functions iff the rehash policy is _Prime_rehash_policy.
537   template<typename _RehashPolicy, typename _Hashtable>
538     struct _Rehash_base { };
539 
540   template<typename _Hashtable>
541     struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
542     {
543       float
544       max_load_factor() const
545       {
546 	const _Hashtable* __this = static_cast<const _Hashtable*>(this);
547 	return __this->__rehash_policy().max_load_factor();
548       }
549 
550       void
551       max_load_factor(float __z)
552       {
553 	_Hashtable* __this = static_cast<_Hashtable*>(this);
554 	__this->__rehash_policy(_Prime_rehash_policy(__z));
555       }
556     };
557 
558   // Class template _Hash_code_base.  Encapsulates two policy issues that
559   // aren't quite orthogonal.
560   //   (1) the difference between using a ranged hash function and using
561   //       the combination of a hash function and a range-hashing function.
562   //       In the former case we don't have such things as hash codes, so
563   //       we have a dummy type as placeholder.
564   //   (2) Whether or not we cache hash codes.  Caching hash codes is
565   //       meaningless if we have a ranged hash function.
566   // We also put the key extraction and equality comparison function
567   // objects here, for convenience.
568 
569   // Primary template: unused except as a hook for specializations.
570   template<typename _Key, typename _Value,
571 	   typename _ExtractKey, typename _Equal,
572 	   typename _H1, typename _H2, typename _Hash,
573 	   bool __cache_hash_code>
574     struct _Hash_code_base;
575 
576   // Specialization: ranged hash function, no caching hash codes.  H1
577   // and H2 are provided but ignored.  We define a dummy hash code type.
578   template<typename _Key, typename _Value,
579 	   typename _ExtractKey, typename _Equal,
580 	   typename _H1, typename _H2, typename _Hash>
581     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
582 			   _Hash, false>
583     {
584     protected:
585       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
586 		      const _H1&, const _H2&, const _Hash& __h)
587       : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
588 
589       typedef void* _Hash_code_type;
590 
591       _Hash_code_type
592       _M_hash_code(const _Key& __key) const
593       { return 0; }
594 
595       std::size_t
596       _M_bucket_index(const _Key& __k, _Hash_code_type,
597 		      std::size_t __n) const
598       { return _M_ranged_hash(__k, __n); }
599 
600       std::size_t
601       _M_bucket_index(const _Hash_node<_Value, false>* __p,
602 		      std::size_t __n) const
603       { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
604 
605       bool
606       _M_compare(const _Key& __k, _Hash_code_type,
607 		 _Hash_node<_Value, false>* __n) const
608       { return _M_eq(__k, _M_extract(__n->_M_v)); }
609 
610       void
611       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
612       { }
613 
614       void
615       _M_copy_code(_Hash_node<_Value, false>*,
616 		   const _Hash_node<_Value, false>*) const
617       { }
618 
619       void
620       _M_swap(_Hash_code_base& __x)
621       {
622 	std::swap(_M_extract, __x._M_extract);
623 	std::swap(_M_eq, __x._M_eq);
624 	std::swap(_M_ranged_hash, __x._M_ranged_hash);
625       }
626 
627     protected:
628       _ExtractKey  _M_extract;
629       _Equal       _M_eq;
630       _Hash        _M_ranged_hash;
631     };
632 
633 
634   // No specialization for ranged hash function while caching hash codes.
635   // That combination is meaningless, and trying to do it is an error.
636 
637 
638   // Specialization: ranged hash function, cache hash codes.  This
639   // combination is meaningless, so we provide only a declaration
640   // and no definition.
641   template<typename _Key, typename _Value,
642 	   typename _ExtractKey, typename _Equal,
643 	   typename _H1, typename _H2, typename _Hash>
644     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
645 			   _Hash, true>;
646 
647   // Specialization: hash function and range-hashing function, no
648   // caching of hash codes.  H is provided but ignored.  Provides
649   // typedef and accessor required by TR1.
650   template<typename _Key, typename _Value,
651 	   typename _ExtractKey, typename _Equal,
652 	   typename _H1, typename _H2>
653     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
654 			   _Default_ranged_hash, false>
655     {
656       typedef _H1 hasher;
657 
658       hasher
659       hash_function() const
660       { return _M_h1; }
661 
662     protected:
663       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
664 		      const _H1& __h1, const _H2& __h2,
665 		      const _Default_ranged_hash&)
666       : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
667 
668       typedef std::size_t _Hash_code_type;
669 
670       _Hash_code_type
671       _M_hash_code(const _Key& __k) const
672       { return _M_h1(__k); }
673 
674       std::size_t
675       _M_bucket_index(const _Key&, _Hash_code_type __c,
676 		      std::size_t __n) const
677       { return _M_h2(__c, __n); }
678 
679       std::size_t
680       _M_bucket_index(const _Hash_node<_Value, false>* __p,
681 		      std::size_t __n) const
682       { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
683 
684       bool
685       _M_compare(const _Key& __k, _Hash_code_type,
686 		 _Hash_node<_Value, false>* __n) const
687       { return _M_eq(__k, _M_extract(__n->_M_v)); }
688 
689       void
690       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
691       { }
692 
693       void
694       _M_copy_code(_Hash_node<_Value, false>*,
695 		   const _Hash_node<_Value, false>*) const
696       { }
697 
698       void
699       _M_swap(_Hash_code_base& __x)
700       {
701 	std::swap(_M_extract, __x._M_extract);
702 	std::swap(_M_eq, __x._M_eq);
703 	std::swap(_M_h1, __x._M_h1);
704 	std::swap(_M_h2, __x._M_h2);
705       }
706 
707     protected:
708       _ExtractKey  _M_extract;
709       _Equal       _M_eq;
710       _H1          _M_h1;
711       _H2          _M_h2;
712     };
713 
714   // Specialization: hash function and range-hashing function,
715   // caching hash codes.  H is provided but ignored.  Provides
716   // typedef and accessor required by TR1.
717   template<typename _Key, typename _Value,
718 	   typename _ExtractKey, typename _Equal,
719 	   typename _H1, typename _H2>
720     struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
721 			   _Default_ranged_hash, true>
722     {
723       typedef _H1 hasher;
724 
725       hasher
726       hash_function() const
727       { return _M_h1; }
728 
729     protected:
730       _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
731 		      const _H1& __h1, const _H2& __h2,
732 		      const _Default_ranged_hash&)
733       : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
734 
735       typedef std::size_t _Hash_code_type;
736 
737       _Hash_code_type
738       _M_hash_code(const _Key& __k) const
739       { return _M_h1(__k); }
740 
741       std::size_t
742       _M_bucket_index(const _Key&, _Hash_code_type __c,
743 		      std::size_t __n) const
744       { return _M_h2(__c, __n); }
745 
746       std::size_t
747       _M_bucket_index(const _Hash_node<_Value, true>* __p,
748 		      std::size_t __n) const
749       { return _M_h2(__p->_M_hash_code, __n); }
750 
751       bool
752       _M_compare(const _Key& __k, _Hash_code_type __c,
753 		 _Hash_node<_Value, true>* __n) const
754       { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
755 
756       void
757       _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
758       { __n->_M_hash_code = __c; }
759 
760       void
761       _M_copy_code(_Hash_node<_Value, true>* __to,
762 		   const _Hash_node<_Value, true>* __from) const
763       { __to->_M_hash_code = __from->_M_hash_code; }
764 
765       void
766       _M_swap(_Hash_code_base& __x)
767       {
768 	std::swap(_M_extract, __x._M_extract);
769 	std::swap(_M_eq, __x._M_eq);
770 	std::swap(_M_h1, __x._M_h1);
771 	std::swap(_M_h2, __x._M_h2);
772       }
773 
774     protected:
775       _ExtractKey  _M_extract;
776       _Equal       _M_eq;
777       _H1          _M_h1;
778       _H2          _M_h2;
779     };
780 _GLIBCXX_END_NAMESPACE_VERSION
781 } // namespace __detail
782 }
783 }
784