xref: /dragonfly/contrib/gcc-8.0/gcc/alias.c (revision ec21d9fb)
1 /* Alias analysis for GNU C
2    Copyright (C) 1997-2018 Free Software Foundation, Inc.
3    Contributed by John Carr (jfc@mit.edu).
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 
43 /* The aliasing API provided here solves related but different problems:
44 
45    Say there exists (in c)
46 
47    struct X {
48      struct Y y1;
49      struct Z z2;
50    } x1, *px1,  *px2;
51 
52    struct Y y2, *py;
53    struct Z z2, *pz;
54 
55 
56    py = &x1.y1;
57    px2 = &x1;
58 
59    Consider the four questions:
60 
61    Can a store to x1 interfere with px2->y1?
62    Can a store to x1 interfere with px2->z2?
63    Can a store to x1 change the value pointed to by with py?
64    Can a store to x1 change the value pointed to by with pz?
65 
66    The answer to these questions can be yes, yes, yes, and maybe.
67 
68    The first two questions can be answered with a simple examination
69    of the type system.  If structure X contains a field of type Y then
70    a store through a pointer to an X can overwrite any field that is
71    contained (recursively) in an X (unless we know that px1 != px2).
72 
73    The last two questions can be solved in the same way as the first
74    two questions but this is too conservative.  The observation is
75    that in some cases we can know which (if any) fields are addressed
76    and if those addresses are used in bad ways.  This analysis may be
77    language specific.  In C, arbitrary operations may be applied to
78    pointers.  However, there is some indication that this may be too
79    conservative for some C++ types.
80 
81    The pass ipa-type-escape does this analysis for the types whose
82    instances do not escape across the compilation boundary.
83 
84    Historically in GCC, these two problems were combined and a single
85    data structure that was used to represent the solution to these
86    problems.  We now have two similar but different data structures,
87    The data structure to solve the last two questions is similar to
88    the first, but does not contain the fields whose address are never
89    taken.  For types that do escape the compilation unit, the data
90    structures will have identical information.
91 */
92 
93 /* The alias sets assigned to MEMs assist the back-end in determining
94    which MEMs can alias which other MEMs.  In general, two MEMs in
95    different alias sets cannot alias each other, with one important
96    exception.  Consider something like:
97 
98      struct S { int i; double d; };
99 
100    a store to an `S' can alias something of either type `int' or type
101    `double'.  (However, a store to an `int' cannot alias a `double'
102    and vice versa.)  We indicate this via a tree structure that looks
103    like:
104 	   struct S
105 	    /   \
106 	   /     \
107 	 |/_     _\|
108 	 int    double
109 
110    (The arrows are directed and point downwards.)
111     In this situation we say the alias set for `struct S' is the
112    `superset' and that those for `int' and `double' are `subsets'.
113 
114    To see whether two alias sets can point to the same memory, we must
115    see if either alias set is a subset of the other. We need not trace
116    past immediate descendants, however, since we propagate all
117    grandchildren up one level.
118 
119    Alias set zero is implicitly a superset of all other alias sets.
120    However, this is no actual entry for alias set zero.  It is an
121    error to attempt to explicitly construct a subset of zero.  */
122 
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
124 
125 struct GTY(()) alias_set_entry {
126   /* The alias set number, as stored in MEM_ALIAS_SET.  */
127   alias_set_type alias_set;
128 
129   /* Nonzero if would have a child of zero: this effectively makes this
130      alias set the same as alias set zero.  */
131   bool has_zero_child;
132   /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133      aggregate contaiing pointer.
134      This is used for a special case where we need an universal pointer type
135      compatible with all other pointer types.  */
136   bool is_pointer;
137   /* Nonzero if is_pointer or if one of childs have has_pointer set.  */
138   bool has_pointer;
139 
140   /* The children of the alias set.  These are not just the immediate
141      children, but, in fact, all descendants.  So, if we have:
142 
143        struct T { struct S s; float f; }
144 
145      continuing our example above, the children here will be all of
146      `int', `double', `float', and `struct S'.  */
147   hash_map<alias_set_hash, int> *children;
148 };
149 
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 			     machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static alias_set_entry *get_alias_set_entry (alias_set_type);
157 static tree decl_for_component_ref (tree);
158 static int write_dependence_p (const_rtx,
159 			       const_rtx, machine_mode, rtx,
160 			       bool, bool, bool);
161 static int compare_base_symbol_refs (const_rtx, const_rtx);
162 
163 static void memory_modified_1 (rtx, const_rtx, void *);
164 
165 /* Query statistics for the different low-level disambiguators.
166    A high-level query may trigger multiple of them.  */
167 
168 static struct {
169   unsigned long long num_alias_zero;
170   unsigned long long num_same_alias_set;
171   unsigned long long num_same_objects;
172   unsigned long long num_volatile;
173   unsigned long long num_dag;
174   unsigned long long num_universal;
175   unsigned long long num_disambiguated;
176 } alias_stats;
177 
178 
179 /* Set up all info needed to perform alias analysis on memory references.  */
180 
181 /* Returns the size in bytes of the mode of X.  */
182 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
183 
184 /* Cap the number of passes we make over the insns propagating alias
185    information through set chains.
186    ??? 10 is a completely arbitrary choice.  This should be based on the
187    maximum loop depth in the CFG, but we do not have this information
188    available (even if current_loops _is_ available).  */
189 #define MAX_ALIAS_LOOP_PASSES 10
190 
191 /* reg_base_value[N] gives an address to which register N is related.
192    If all sets after the first add or subtract to the current value
193    or otherwise modify it so it does not point to a different top level
194    object, reg_base_value[N] is equal to the address part of the source
195    of the first set.
196 
197    A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
198    expressions represent three types of base:
199 
200      1. incoming arguments.  There is just one ADDRESS to represent all
201 	arguments, since we do not know at this level whether accesses
202 	based on different arguments can alias.  The ADDRESS has id 0.
203 
204      2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
205 	(if distinct from frame_pointer_rtx) and arg_pointer_rtx.
206 	Each of these rtxes has a separate ADDRESS associated with it,
207 	each with a negative id.
208 
209 	GCC is (and is required to be) precise in which register it
210 	chooses to access a particular region of stack.  We can therefore
211 	assume that accesses based on one of these rtxes do not alias
212 	accesses based on another of these rtxes.
213 
214      3. bases that are derived from malloc()ed memory (REG_NOALIAS).
215 	Each such piece of memory has a separate ADDRESS associated
216 	with it, each with an id greater than 0.
217 
218    Accesses based on one ADDRESS do not alias accesses based on other
219    ADDRESSes.  Accesses based on ADDRESSes in groups (2) and (3) do not
220    alias globals either; the ADDRESSes have Pmode to indicate this.
221    The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
222    indicate this.  */
223 
224 static GTY(()) vec<rtx, va_gc> *reg_base_value;
225 static rtx *new_reg_base_value;
226 
227 /* The single VOIDmode ADDRESS that represents all argument bases.
228    It has id 0.  */
229 static GTY(()) rtx arg_base_value;
230 
231 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS.  */
232 static int unique_id;
233 
234 /* We preserve the copy of old array around to avoid amount of garbage
235    produced.  About 8% of garbage produced were attributed to this
236    array.  */
237 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
238 
239 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
240    registers.  */
241 #define UNIQUE_BASE_VALUE_SP	-1
242 #define UNIQUE_BASE_VALUE_ARGP	-2
243 #define UNIQUE_BASE_VALUE_FP	-3
244 #define UNIQUE_BASE_VALUE_HFP	-4
245 
246 #define static_reg_base_value \
247   (this_target_rtl->x_static_reg_base_value)
248 
249 #define REG_BASE_VALUE(X)					\
250   (REGNO (X) < vec_safe_length (reg_base_value)			\
251    ? (*reg_base_value)[REGNO (X)] : 0)
252 
253 /* Vector indexed by N giving the initial (unchanging) value known for
254    pseudo-register N.  This vector is initialized in init_alias_analysis,
255    and does not change until end_alias_analysis is called.  */
256 static GTY(()) vec<rtx, va_gc> *reg_known_value;
257 
258 /* Vector recording for each reg_known_value whether it is due to a
259    REG_EQUIV note.  Future passes (viz., reload) may replace the
260    pseudo with the equivalent expression and so we account for the
261    dependences that would be introduced if that happens.
262 
263    The REG_EQUIV notes created in assign_parms may mention the arg
264    pointer, and there are explicit insns in the RTL that modify the
265    arg pointer.  Thus we must ensure that such insns don't get
266    scheduled across each other because that would invalidate the
267    REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
268    wrong, but solving the problem in the scheduler will likely give
269    better code, so we do it here.  */
270 static sbitmap reg_known_equiv_p;
271 
272 /* True when scanning insns from the start of the rtl to the
273    NOTE_INSN_FUNCTION_BEG note.  */
274 static bool copying_arguments;
275 
276 
277 /* The splay-tree used to store the various alias set entries.  */
278 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
279 
280 /* Build a decomposed reference object for querying the alias-oracle
281    from the MEM rtx and store it in *REF.
282    Returns false if MEM is not suitable for the alias-oracle.  */
283 
284 static bool
285 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
286 {
287   tree expr = MEM_EXPR (mem);
288   tree base;
289 
290   if (!expr)
291     return false;
292 
293   ao_ref_init (ref, expr);
294 
295   /* Get the base of the reference and see if we have to reject or
296      adjust it.  */
297   base = ao_ref_base (ref);
298   if (base == NULL_TREE)
299     return false;
300 
301   /* The tree oracle doesn't like bases that are neither decls
302      nor indirect references of SSA names.  */
303   if (!(DECL_P (base)
304 	|| (TREE_CODE (base) == MEM_REF
305 	    && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
306 	|| (TREE_CODE (base) == TARGET_MEM_REF
307 	    && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
308     return false;
309 
310   /* If this is a reference based on a partitioned decl replace the
311      base with a MEM_REF of the pointer representative we
312      created during stack slot partitioning.  */
313   if (VAR_P (base)
314       && ! is_global_var (base)
315       && cfun->gimple_df->decls_to_pointers != NULL)
316     {
317       tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
318       if (namep)
319 	ref->base = build_simple_mem_ref (*namep);
320     }
321 
322   ref->ref_alias_set = MEM_ALIAS_SET (mem);
323 
324   /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
325      is conservative, so trust it.  */
326   if (!MEM_OFFSET_KNOWN_P (mem)
327       || !MEM_SIZE_KNOWN_P (mem))
328     return true;
329 
330   /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
331      drop ref->ref.  */
332   if (maybe_lt (MEM_OFFSET (mem), 0)
333       || (ref->max_size_known_p ()
334 	  && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
335 		       ref->max_size)))
336     ref->ref = NULL_TREE;
337 
338   /* Refine size and offset we got from analyzing MEM_EXPR by using
339      MEM_SIZE and MEM_OFFSET.  */
340 
341   ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
342   ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
343 
344   /* The MEM may extend into adjacent fields, so adjust max_size if
345      necessary.  */
346   if (ref->max_size_known_p ())
347     ref->max_size = upper_bound (ref->max_size, ref->size);
348 
349   /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
350      the MEM_EXPR punt.  This happens for STRICT_ALIGNMENT targets a lot.  */
351   if (MEM_EXPR (mem) != get_spill_slot_decl (false)
352       && (maybe_lt (ref->offset, 0)
353 	  || (DECL_P (ref->base)
354 	      && (DECL_SIZE (ref->base) == NULL_TREE
355 		  || !poly_int_tree_p (DECL_SIZE (ref->base))
356 		  || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
357 			       ref->offset + ref->size)))))
358     return false;
359 
360   return true;
361 }
362 
363 /* Query the alias-oracle on whether the two memory rtx X and MEM may
364    alias.  If TBAA_P is set also apply TBAA.  Returns true if the
365    two rtxen may alias, false otherwise.  */
366 
367 static bool
368 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
369 {
370   ao_ref ref1, ref2;
371 
372   if (!ao_ref_from_mem (&ref1, x)
373       || !ao_ref_from_mem (&ref2, mem))
374     return true;
375 
376   return refs_may_alias_p_1 (&ref1, &ref2,
377 			     tbaa_p
378 			     && MEM_ALIAS_SET (x) != 0
379 			     && MEM_ALIAS_SET (mem) != 0);
380 }
381 
382 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
383    such an entry, or NULL otherwise.  */
384 
385 static inline alias_set_entry *
386 get_alias_set_entry (alias_set_type alias_set)
387 {
388   return (*alias_sets)[alias_set];
389 }
390 
391 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
392    the two MEMs cannot alias each other.  */
393 
394 static inline int
395 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
396 {
397   return (flag_strict_aliasing
398 	  && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
399 				      MEM_ALIAS_SET (mem2)));
400 }
401 
402 /* Return true if the first alias set is a subset of the second.  */
403 
404 bool
405 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
406 {
407   alias_set_entry *ase2;
408 
409   /* Disable TBAA oracle with !flag_strict_aliasing.  */
410   if (!flag_strict_aliasing)
411     return true;
412 
413   /* Everything is a subset of the "aliases everything" set.  */
414   if (set2 == 0)
415     return true;
416 
417   /* Check if set1 is a subset of set2.  */
418   ase2 = get_alias_set_entry (set2);
419   if (ase2 != 0
420       && (ase2->has_zero_child
421 	  || (ase2->children && ase2->children->get (set1))))
422     return true;
423 
424   /* As a special case we consider alias set of "void *" to be both subset
425      and superset of every alias set of a pointer.  This extra symmetry does
426      not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
427      to return true on the following testcase:
428 
429      void *ptr;
430      char **ptr2=(char **)&ptr;
431      *ptr2 = ...
432 
433      Additionally if a set contains universal pointer, we consider every pointer
434      to be a subset of it, but we do not represent this explicitely - doing so
435      would require us to update transitive closure each time we introduce new
436      pointer type.  This makes aliasing_component_refs_p to return true
437      on the following testcase:
438 
439      struct a {void *ptr;}
440      char **ptr = (char **)&a.ptr;
441      ptr = ...
442 
443      This makes void * truly universal pointer type.  See pointer handling in
444      get_alias_set for more details.  */
445   if (ase2 && ase2->has_pointer)
446     {
447       alias_set_entry *ase1 = get_alias_set_entry (set1);
448 
449       if (ase1 && ase1->is_pointer)
450 	{
451           alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
452 	  /* If one is ptr_type_node and other is pointer, then we consider
453  	     them subset of each other.  */
454 	  if (set1 == voidptr_set || set2 == voidptr_set)
455 	    return true;
456 	  /* If SET2 contains universal pointer's alias set, then we consdier
457  	     every (non-universal) pointer.  */
458 	  if (ase2->children && set1 != voidptr_set
459 	      && ase2->children->get (voidptr_set))
460 	    return true;
461 	}
462     }
463   return false;
464 }
465 
466 /* Return 1 if the two specified alias sets may conflict.  */
467 
468 int
469 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
470 {
471   alias_set_entry *ase1;
472   alias_set_entry *ase2;
473 
474   /* The easy case.  */
475   if (alias_sets_must_conflict_p (set1, set2))
476     return 1;
477 
478   /* See if the first alias set is a subset of the second.  */
479   ase1 = get_alias_set_entry (set1);
480   if (ase1 != 0
481       && ase1->children && ase1->children->get (set2))
482     {
483       ++alias_stats.num_dag;
484       return 1;
485     }
486 
487   /* Now do the same, but with the alias sets reversed.  */
488   ase2 = get_alias_set_entry (set2);
489   if (ase2 != 0
490       && ase2->children && ase2->children->get (set1))
491     {
492       ++alias_stats.num_dag;
493       return 1;
494     }
495 
496   /* We want void * to be compatible with any other pointer without
497      really dropping it to alias set 0. Doing so would make it
498      compatible with all non-pointer types too.
499 
500      This is not strictly necessary by the C/C++ language
501      standards, but avoids common type punning mistakes.  In
502      addition to that, we need the existence of such universal
503      pointer to implement Fortran's C_PTR type (which is defined as
504      type compatible with all C pointers).  */
505   if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
506     {
507       alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
508 
509       /* If one of the sets corresponds to universal pointer,
510  	 we consider it to conflict with anything that is
511 	 or contains pointer.  */
512       if (set1 == voidptr_set || set2 == voidptr_set)
513 	{
514 	  ++alias_stats.num_universal;
515 	  return true;
516 	}
517      /* If one of sets is (non-universal) pointer and the other
518  	contains universal pointer, we also get conflict.  */
519      if (ase1->is_pointer && set2 != voidptr_set
520 	 && ase2->children && ase2->children->get (voidptr_set))
521 	{
522 	  ++alias_stats.num_universal;
523 	  return true;
524 	}
525      if (ase2->is_pointer && set1 != voidptr_set
526 	 && ase1->children && ase1->children->get (voidptr_set))
527 	{
528 	  ++alias_stats.num_universal;
529 	  return true;
530 	}
531     }
532 
533   ++alias_stats.num_disambiguated;
534 
535   /* The two alias sets are distinct and neither one is the
536      child of the other.  Therefore, they cannot conflict.  */
537   return 0;
538 }
539 
540 /* Return 1 if the two specified alias sets will always conflict.  */
541 
542 int
543 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
544 {
545   /* Disable TBAA oracle with !flag_strict_aliasing.  */
546   if (!flag_strict_aliasing)
547     return 1;
548   if (set1 == 0 || set2 == 0)
549     {
550       ++alias_stats.num_alias_zero;
551       return 1;
552     }
553   if (set1 == set2)
554     {
555       ++alias_stats.num_same_alias_set;
556       return 1;
557     }
558 
559   return 0;
560 }
561 
562 /* Return 1 if any MEM object of type T1 will always conflict (using the
563    dependency routines in this file) with any MEM object of type T2.
564    This is used when allocating temporary storage.  If T1 and/or T2 are
565    NULL_TREE, it means we know nothing about the storage.  */
566 
567 int
568 objects_must_conflict_p (tree t1, tree t2)
569 {
570   alias_set_type set1, set2;
571 
572   /* If neither has a type specified, we don't know if they'll conflict
573      because we may be using them to store objects of various types, for
574      example the argument and local variables areas of inlined functions.  */
575   if (t1 == 0 && t2 == 0)
576     return 0;
577 
578   /* If they are the same type, they must conflict.  */
579   if (t1 == t2)
580     {
581       ++alias_stats.num_same_objects;
582       return 1;
583     }
584   /* Likewise if both are volatile.  */
585   if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
586     {
587       ++alias_stats.num_volatile;
588       return 1;
589     }
590 
591   set1 = t1 ? get_alias_set (t1) : 0;
592   set2 = t2 ? get_alias_set (t2) : 0;
593 
594   /* We can't use alias_sets_conflict_p because we must make sure
595      that every subtype of t1 will conflict with every subtype of
596      t2 for which a pair of subobjects of these respective subtypes
597      overlaps on the stack.  */
598   return alias_sets_must_conflict_p (set1, set2);
599 }
600 
601 /* Return the outermost parent of component present in the chain of
602    component references handled by get_inner_reference in T with the
603    following property:
604      - the component is non-addressable, or
605      - the parent has alias set zero,
606    or NULL_TREE if no such parent exists.  In the former cases, the alias
607    set of this parent is the alias set that must be used for T itself.  */
608 
609 tree
610 component_uses_parent_alias_set_from (const_tree t)
611 {
612   const_tree found = NULL_TREE;
613 
614   if (AGGREGATE_TYPE_P (TREE_TYPE (t))
615       && TYPE_TYPELESS_STORAGE (TREE_TYPE (t)))
616     return const_cast <tree> (t);
617 
618   while (handled_component_p (t))
619     {
620       switch (TREE_CODE (t))
621 	{
622 	case COMPONENT_REF:
623 	  if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
624 	    found = t;
625 	  /* Permit type-punning when accessing a union, provided the access
626 	     is directly through the union.  For example, this code does not
627 	     permit taking the address of a union member and then storing
628 	     through it.  Even the type-punning allowed here is a GCC
629 	     extension, albeit a common and useful one; the C standard says
630 	     that such accesses have implementation-defined behavior.  */
631 	  else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
632 	    found = t;
633 	  break;
634 
635 	case ARRAY_REF:
636 	case ARRAY_RANGE_REF:
637 	  if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
638 	    found = t;
639 	  break;
640 
641 	case REALPART_EXPR:
642 	case IMAGPART_EXPR:
643 	  break;
644 
645 	case BIT_FIELD_REF:
646 	case VIEW_CONVERT_EXPR:
647 	  /* Bitfields and casts are never addressable.  */
648 	  found = t;
649 	  break;
650 
651 	default:
652 	  gcc_unreachable ();
653 	}
654 
655       if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
656 	found = t;
657 
658       t = TREE_OPERAND (t, 0);
659     }
660 
661   if (found)
662     return TREE_OPERAND (found, 0);
663 
664   return NULL_TREE;
665 }
666 
667 
668 /* Return whether the pointer-type T effective for aliasing may
669    access everything and thus the reference has to be assigned
670    alias-set zero.  */
671 
672 static bool
673 ref_all_alias_ptr_type_p (const_tree t)
674 {
675   return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
676 	  || TYPE_REF_CAN_ALIAS_ALL (t));
677 }
678 
679 /* Return the alias set for the memory pointed to by T, which may be
680    either a type or an expression.  Return -1 if there is nothing
681    special about dereferencing T.  */
682 
683 static alias_set_type
684 get_deref_alias_set_1 (tree t)
685 {
686   /* All we care about is the type.  */
687   if (! TYPE_P (t))
688     t = TREE_TYPE (t);
689 
690   /* If we have an INDIRECT_REF via a void pointer, we don't
691      know anything about what that might alias.  Likewise if the
692      pointer is marked that way.  */
693   if (ref_all_alias_ptr_type_p (t))
694     return 0;
695 
696   return -1;
697 }
698 
699 /* Return the alias set for the memory pointed to by T, which may be
700    either a type or an expression.  */
701 
702 alias_set_type
703 get_deref_alias_set (tree t)
704 {
705   /* If we're not doing any alias analysis, just assume everything
706      aliases everything else.  */
707   if (!flag_strict_aliasing)
708     return 0;
709 
710   alias_set_type set = get_deref_alias_set_1 (t);
711 
712   /* Fall back to the alias-set of the pointed-to type.  */
713   if (set == -1)
714     {
715       if (! TYPE_P (t))
716 	t = TREE_TYPE (t);
717       set = get_alias_set (TREE_TYPE (t));
718     }
719 
720   return set;
721 }
722 
723 /* Return the pointer-type relevant for TBAA purposes from the
724    memory reference tree *T or NULL_TREE in which case *T is
725    adjusted to point to the outermost component reference that
726    can be used for assigning an alias set.  */
727 
728 static tree
729 reference_alias_ptr_type_1 (tree *t)
730 {
731   tree inner;
732 
733   /* Get the base object of the reference.  */
734   inner = *t;
735   while (handled_component_p (inner))
736     {
737       /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
738 	 the type of any component references that wrap it to
739 	 determine the alias-set.  */
740       if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
741 	*t = TREE_OPERAND (inner, 0);
742       inner = TREE_OPERAND (inner, 0);
743     }
744 
745   /* Handle pointer dereferences here, they can override the
746      alias-set.  */
747   if (INDIRECT_REF_P (inner)
748       && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
749     return TREE_TYPE (TREE_OPERAND (inner, 0));
750   else if (TREE_CODE (inner) == TARGET_MEM_REF)
751     return TREE_TYPE (TMR_OFFSET (inner));
752   else if (TREE_CODE (inner) == MEM_REF
753 	   && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
754     return TREE_TYPE (TREE_OPERAND (inner, 1));
755 
756   /* If the innermost reference is a MEM_REF that has a
757      conversion embedded treat it like a VIEW_CONVERT_EXPR above,
758      using the memory access type for determining the alias-set.  */
759   if (TREE_CODE (inner) == MEM_REF
760       && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
761 	  != TYPE_MAIN_VARIANT
762 	       (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
763     return TREE_TYPE (TREE_OPERAND (inner, 1));
764 
765   /* Otherwise, pick up the outermost object that we could have
766      a pointer to.  */
767   tree tem = component_uses_parent_alias_set_from (*t);
768   if (tem)
769     *t = tem;
770 
771   return NULL_TREE;
772 }
773 
774 /* Return the pointer-type relevant for TBAA purposes from the
775    gimple memory reference tree T.  This is the type to be used for
776    the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
777    and guarantees that get_alias_set will return the same alias
778    set for T and the replacement.  */
779 
780 tree
781 reference_alias_ptr_type (tree t)
782 {
783   /* If the frontend assigns this alias-set zero, preserve that.  */
784   if (lang_hooks.get_alias_set (t) == 0)
785     return ptr_type_node;
786 
787   tree ptype = reference_alias_ptr_type_1 (&t);
788   /* If there is a given pointer type for aliasing purposes, return it.  */
789   if (ptype != NULL_TREE)
790     return ptype;
791 
792   /* Otherwise build one from the outermost component reference we
793      may use.  */
794   if (TREE_CODE (t) == MEM_REF
795       || TREE_CODE (t) == TARGET_MEM_REF)
796     return TREE_TYPE (TREE_OPERAND (t, 1));
797   else
798     return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
799 }
800 
801 /* Return whether the pointer-types T1 and T2 used to determine
802    two alias sets of two references will yield the same answer
803    from get_deref_alias_set.  */
804 
805 bool
806 alias_ptr_types_compatible_p (tree t1, tree t2)
807 {
808   if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
809     return true;
810 
811   if (ref_all_alias_ptr_type_p (t1)
812       || ref_all_alias_ptr_type_p (t2))
813     return false;
814 
815   return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
816 	  == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
817 }
818 
819 /* Create emptry alias set entry.  */
820 
821 alias_set_entry *
822 init_alias_set_entry (alias_set_type set)
823 {
824   alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
825   ase->alias_set = set;
826   ase->children = NULL;
827   ase->has_zero_child = false;
828   ase->is_pointer = false;
829   ase->has_pointer = false;
830   gcc_checking_assert (!get_alias_set_entry (set));
831   (*alias_sets)[set] = ase;
832   return ase;
833 }
834 
835 /* Return the alias set for T, which may be either a type or an
836    expression.  Call language-specific routine for help, if needed.  */
837 
838 alias_set_type
839 get_alias_set (tree t)
840 {
841   alias_set_type set;
842 
843   /* We can not give up with -fno-strict-aliasing because we need to build
844      proper type representation for possible functions which are build with
845      -fstrict-aliasing.  */
846 
847   /* return 0 if this or its type is an error.  */
848   if (t == error_mark_node
849       || (! TYPE_P (t)
850 	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
851     return 0;
852 
853   /* We can be passed either an expression or a type.  This and the
854      language-specific routine may make mutually-recursive calls to each other
855      to figure out what to do.  At each juncture, we see if this is a tree
856      that the language may need to handle specially.  First handle things that
857      aren't types.  */
858   if (! TYPE_P (t))
859     {
860       /* Give the language a chance to do something with this tree
861 	 before we look at it.  */
862       STRIP_NOPS (t);
863       set = lang_hooks.get_alias_set (t);
864       if (set != -1)
865 	return set;
866 
867       /* Get the alias pointer-type to use or the outermost object
868          that we could have a pointer to.  */
869       tree ptype = reference_alias_ptr_type_1 (&t);
870       if (ptype != NULL)
871 	return get_deref_alias_set (ptype);
872 
873       /* If we've already determined the alias set for a decl, just return
874 	 it.  This is necessary for C++ anonymous unions, whose component
875 	 variables don't look like union members (boo!).  */
876       if (VAR_P (t)
877 	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
878 	return MEM_ALIAS_SET (DECL_RTL (t));
879 
880       /* Now all we care about is the type.  */
881       t = TREE_TYPE (t);
882     }
883 
884   /* Variant qualifiers don't affect the alias set, so get the main
885      variant.  */
886   t = TYPE_MAIN_VARIANT (t);
887 
888   if (AGGREGATE_TYPE_P (t)
889       && TYPE_TYPELESS_STORAGE (t))
890     return 0;
891 
892   /* Always use the canonical type as well.  If this is a type that
893      requires structural comparisons to identify compatible types
894      use alias set zero.  */
895   if (TYPE_STRUCTURAL_EQUALITY_P (t))
896     {
897       /* Allow the language to specify another alias set for this
898 	 type.  */
899       set = lang_hooks.get_alias_set (t);
900       if (set != -1)
901 	return set;
902       /* Handle structure type equality for pointer types, arrays and vectors.
903 	 This is easy to do, because the code bellow ignore canonical types on
904 	 these anyway.  This is important for LTO, where TYPE_CANONICAL for
905 	 pointers can not be meaningfuly computed by the frotnend.  */
906       if (canonical_type_used_p (t))
907 	{
908 	  /* In LTO we set canonical types for all types where it makes
909 	     sense to do so.  Double check we did not miss some type.  */
910 	  gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
911           return 0;
912 	}
913     }
914   else
915     {
916       t = TYPE_CANONICAL (t);
917       gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
918     }
919 
920   /* If this is a type with a known alias set, return it.  */
921   gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
922   if (TYPE_ALIAS_SET_KNOWN_P (t))
923     return TYPE_ALIAS_SET (t);
924 
925   /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
926   if (!COMPLETE_TYPE_P (t))
927     {
928       /* For arrays with unknown size the conservative answer is the
929 	 alias set of the element type.  */
930       if (TREE_CODE (t) == ARRAY_TYPE)
931 	return get_alias_set (TREE_TYPE (t));
932 
933       /* But return zero as a conservative answer for incomplete types.  */
934       return 0;
935     }
936 
937   /* See if the language has special handling for this type.  */
938   set = lang_hooks.get_alias_set (t);
939   if (set != -1)
940     return set;
941 
942   /* There are no objects of FUNCTION_TYPE, so there's no point in
943      using up an alias set for them.  (There are, of course, pointers
944      and references to functions, but that's different.)  */
945   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
946     set = 0;
947 
948   /* Unless the language specifies otherwise, let vector types alias
949      their components.  This avoids some nasty type punning issues in
950      normal usage.  And indeed lets vectors be treated more like an
951      array slice.  */
952   else if (TREE_CODE (t) == VECTOR_TYPE)
953     set = get_alias_set (TREE_TYPE (t));
954 
955   /* Unless the language specifies otherwise, treat array types the
956      same as their components.  This avoids the asymmetry we get
957      through recording the components.  Consider accessing a
958      character(kind=1) through a reference to a character(kind=1)[1:1].
959      Or consider if we want to assign integer(kind=4)[0:D.1387] and
960      integer(kind=4)[4] the same alias set or not.
961      Just be pragmatic here and make sure the array and its element
962      type get the same alias set assigned.  */
963   else if (TREE_CODE (t) == ARRAY_TYPE
964 	   && (!TYPE_NONALIASED_COMPONENT (t)
965 	       || TYPE_STRUCTURAL_EQUALITY_P (t)))
966     set = get_alias_set (TREE_TYPE (t));
967 
968   /* From the former common C and C++ langhook implementation:
969 
970      Unfortunately, there is no canonical form of a pointer type.
971      In particular, if we have `typedef int I', then `int *', and
972      `I *' are different types.  So, we have to pick a canonical
973      representative.  We do this below.
974 
975      Technically, this approach is actually more conservative that
976      it needs to be.  In particular, `const int *' and `int *'
977      should be in different alias sets, according to the C and C++
978      standard, since their types are not the same, and so,
979      technically, an `int **' and `const int **' cannot point at
980      the same thing.
981 
982      But, the standard is wrong.  In particular, this code is
983      legal C++:
984 
985      int *ip;
986      int **ipp = &ip;
987      const int* const* cipp = ipp;
988      And, it doesn't make sense for that to be legal unless you
989      can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
990      the pointed-to types.  This issue has been reported to the
991      C++ committee.
992 
993      For this reason go to canonical type of the unqalified pointer type.
994      Until GCC 6 this code set all pointers sets to have alias set of
995      ptr_type_node but that is a bad idea, because it prevents disabiguations
996      in between pointers.  For Firefox this accounts about 20% of all
997      disambiguations in the program.  */
998   else if (POINTER_TYPE_P (t) && t != ptr_type_node)
999     {
1000       tree p;
1001       auto_vec <bool, 8> reference;
1002 
1003       /* Unnest all pointers and references.
1004 	 We also want to make pointer to array/vector equivalent to pointer to
1005 	 its element (see the reasoning above). Skip all those types, too.  */
1006       for (p = t; POINTER_TYPE_P (p)
1007 	   || (TREE_CODE (p) == ARRAY_TYPE
1008 	       && (!TYPE_NONALIASED_COMPONENT (p)
1009 		   || !COMPLETE_TYPE_P (p)
1010 		   || TYPE_STRUCTURAL_EQUALITY_P (p)))
1011 	   || TREE_CODE (p) == VECTOR_TYPE;
1012 	   p = TREE_TYPE (p))
1013 	{
1014 	  /* Ada supports recusive pointers.  Instead of doing recrusion check
1015 	     just give up once the preallocated space of 8 elements is up.
1016 	     In this case just punt to void * alias set.  */
1017 	  if (reference.length () == 8)
1018 	    {
1019 	      p = ptr_type_node;
1020 	      break;
1021 	    }
1022 	  if (TREE_CODE (p) == REFERENCE_TYPE)
1023 	    /* In LTO we want languages that use references to be compatible
1024  	       with languages that use pointers.  */
1025 	    reference.safe_push (true && !in_lto_p);
1026 	  if (TREE_CODE (p) == POINTER_TYPE)
1027 	    reference.safe_push (false);
1028 	}
1029       p = TYPE_MAIN_VARIANT (p);
1030 
1031       /* Make void * compatible with char * and also void **.
1032 	 Programs are commonly violating TBAA by this.
1033 
1034 	 We also make void * to conflict with every pointer
1035 	 (see record_component_aliases) and thus it is safe it to use it for
1036 	 pointers to types with TYPE_STRUCTURAL_EQUALITY_P.  */
1037       if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1038 	set = get_alias_set (ptr_type_node);
1039       else
1040 	{
1041 	  /* Rebuild pointer type starting from canonical types using
1042 	     unqualified pointers and references only.  This way all such
1043 	     pointers will have the same alias set and will conflict with
1044 	     each other.
1045 
1046 	     Most of time we already have pointers or references of a given type.
1047 	     If not we build new one just to be sure that if someone later
1048 	     (probably only middle-end can, as we should assign all alias
1049 	     classes only after finishing translation unit) builds the pointer
1050 	     type, the canonical type will match.  */
1051 	  p = TYPE_CANONICAL (p);
1052 	  while (!reference.is_empty ())
1053 	    {
1054 	      if (reference.pop ())
1055 		p = build_reference_type (p);
1056 	      else
1057 		p = build_pointer_type (p);
1058 	      gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1059 	      /* build_pointer_type should always return the canonical type.
1060 		 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1061 		 them.  Be sure that frontends do not glob canonical types of
1062 		 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1063 		 in all other cases.  */
1064 	      gcc_checking_assert (!TYPE_CANONICAL (p)
1065 				   || p == TYPE_CANONICAL (p));
1066 	    }
1067 
1068 	  /* Assign the alias set to both p and t.
1069 	     We can not call get_alias_set (p) here as that would trigger
1070 	     infinite recursion when p == t.  In other cases it would just
1071 	     trigger unnecesary legwork of rebuilding the pointer again.  */
1072 	  gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1073 	  if (TYPE_ALIAS_SET_KNOWN_P (p))
1074 	    set = TYPE_ALIAS_SET (p);
1075 	  else
1076 	    {
1077 	      set = new_alias_set ();
1078 	      TYPE_ALIAS_SET (p) = set;
1079 	    }
1080 	}
1081     }
1082   /* Alias set of ptr_type_node is special and serve as universal pointer which
1083      is TBAA compatible with every other pointer type.  Be sure we have the
1084      alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1085      of pointer types NULL.  */
1086   else if (t == ptr_type_node)
1087     set = new_alias_set ();
1088 
1089   /* Otherwise make a new alias set for this type.  */
1090   else
1091     {
1092       /* Each canonical type gets its own alias set, so canonical types
1093 	 shouldn't form a tree.  It doesn't really matter for types
1094 	 we handle specially above, so only check it where it possibly
1095 	 would result in a bogus alias set.  */
1096       gcc_checking_assert (TYPE_CANONICAL (t) == t);
1097 
1098       set = new_alias_set ();
1099     }
1100 
1101   TYPE_ALIAS_SET (t) = set;
1102 
1103   /* If this is an aggregate type or a complex type, we must record any
1104      component aliasing information.  */
1105   if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1106     record_component_aliases (t);
1107 
1108   /* We treat pointer types specially in alias_set_subset_of.  */
1109   if (POINTER_TYPE_P (t) && set)
1110     {
1111       alias_set_entry *ase = get_alias_set_entry (set);
1112       if (!ase)
1113 	ase = init_alias_set_entry (set);
1114       ase->is_pointer = true;
1115       ase->has_pointer = true;
1116     }
1117 
1118   return set;
1119 }
1120 
1121 /* Return a brand-new alias set.  */
1122 
1123 alias_set_type
1124 new_alias_set (void)
1125 {
1126   if (alias_sets == 0)
1127     vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1128   vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1129   return alias_sets->length () - 1;
1130 }
1131 
1132 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1133    not everything that aliases SUPERSET also aliases SUBSET.  For example,
1134    in C, a store to an `int' can alias a load of a structure containing an
1135    `int', and vice versa.  But it can't alias a load of a 'double' member
1136    of the same structure.  Here, the structure would be the SUPERSET and
1137    `int' the SUBSET.  This relationship is also described in the comment at
1138    the beginning of this file.
1139 
1140    This function should be called only once per SUPERSET/SUBSET pair.
1141 
1142    It is illegal for SUPERSET to be zero; everything is implicitly a
1143    subset of alias set zero.  */
1144 
1145 void
1146 record_alias_subset (alias_set_type superset, alias_set_type subset)
1147 {
1148   alias_set_entry *superset_entry;
1149   alias_set_entry *subset_entry;
1150 
1151   /* It is possible in complex type situations for both sets to be the same,
1152      in which case we can ignore this operation.  */
1153   if (superset == subset)
1154     return;
1155 
1156   gcc_assert (superset);
1157 
1158   superset_entry = get_alias_set_entry (superset);
1159   if (superset_entry == 0)
1160     {
1161       /* Create an entry for the SUPERSET, so that we have a place to
1162 	 attach the SUBSET.  */
1163       superset_entry = init_alias_set_entry (superset);
1164     }
1165 
1166   if (subset == 0)
1167     superset_entry->has_zero_child = 1;
1168   else
1169     {
1170       subset_entry = get_alias_set_entry (subset);
1171       if (!superset_entry->children)
1172 	superset_entry->children
1173 	  = hash_map<alias_set_hash, int>::create_ggc (64);
1174       /* If there is an entry for the subset, enter all of its children
1175 	 (if they are not already present) as children of the SUPERSET.  */
1176       if (subset_entry)
1177 	{
1178 	  if (subset_entry->has_zero_child)
1179 	    superset_entry->has_zero_child = true;
1180           if (subset_entry->has_pointer)
1181 	    superset_entry->has_pointer = true;
1182 
1183 	  if (subset_entry->children)
1184 	    {
1185 	      hash_map<alias_set_hash, int>::iterator iter
1186 		= subset_entry->children->begin ();
1187 	      for (; iter != subset_entry->children->end (); ++iter)
1188 		superset_entry->children->put ((*iter).first, (*iter).second);
1189 	    }
1190 	}
1191 
1192       /* Enter the SUBSET itself as a child of the SUPERSET.  */
1193       superset_entry->children->put (subset, 0);
1194     }
1195 }
1196 
1197 /* Record that component types of TYPE, if any, are part of that type for
1198    aliasing purposes.  For record types, we only record component types
1199    for fields that are not marked non-addressable.  For array types, we
1200    only record the component type if it is not marked non-aliased.  */
1201 
1202 void
1203 record_component_aliases (tree type)
1204 {
1205   alias_set_type superset = get_alias_set (type);
1206   tree field;
1207 
1208   if (superset == 0)
1209     return;
1210 
1211   switch (TREE_CODE (type))
1212     {
1213     case RECORD_TYPE:
1214     case UNION_TYPE:
1215     case QUAL_UNION_TYPE:
1216       for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1217 	if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1218 	  {
1219 	    /* LTO type merging does not make any difference between
1220 	       component pointer types.  We may have
1221 
1222 	       struct foo {int *a;};
1223 
1224 	       as TYPE_CANONICAL of
1225 
1226 	       struct bar {float *a;};
1227 
1228 	       Because accesses to int * and float * do not alias, we would get
1229 	       false negative when accessing the same memory location by
1230 	       float ** and bar *. We thus record the canonical type as:
1231 
1232 	       struct {void *a;};
1233 
1234 	       void * is special cased and works as a universal pointer type.
1235 	       Accesses to it conflicts with accesses to any other pointer
1236 	       type.  */
1237 	    tree t = TREE_TYPE (field);
1238 	    if (in_lto_p)
1239 	      {
1240 		/* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1241 		   element type and that type has to be normalized to void *,
1242 		   too, in the case it is a pointer. */
1243 		while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1244 		  {
1245 		    gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1246 		    t = TREE_TYPE (t);
1247 		  }
1248 		if (POINTER_TYPE_P (t))
1249 		  t = ptr_type_node;
1250 		else if (flag_checking)
1251 		  gcc_checking_assert (get_alias_set (t)
1252 				       == get_alias_set (TREE_TYPE (field)));
1253 	      }
1254 
1255 	    record_alias_subset (superset, get_alias_set (t));
1256 	  }
1257       break;
1258 
1259     case COMPLEX_TYPE:
1260       record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1261       break;
1262 
1263     /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1264        element type.  */
1265 
1266     default:
1267       break;
1268     }
1269 }
1270 
1271 /* Allocate an alias set for use in storing and reading from the varargs
1272    spill area.  */
1273 
1274 static GTY(()) alias_set_type varargs_set = -1;
1275 
1276 alias_set_type
1277 get_varargs_alias_set (void)
1278 {
1279 #if 1
1280   /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1281      varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1282      consistently use the varargs alias set for loads from the varargs
1283      area.  So don't use it anywhere.  */
1284   return 0;
1285 #else
1286   if (varargs_set == -1)
1287     varargs_set = new_alias_set ();
1288 
1289   return varargs_set;
1290 #endif
1291 }
1292 
1293 /* Likewise, but used for the fixed portions of the frame, e.g., register
1294    save areas.  */
1295 
1296 static GTY(()) alias_set_type frame_set = -1;
1297 
1298 alias_set_type
1299 get_frame_alias_set (void)
1300 {
1301   if (frame_set == -1)
1302     frame_set = new_alias_set ();
1303 
1304   return frame_set;
1305 }
1306 
1307 /* Create a new, unique base with id ID.  */
1308 
1309 static rtx
1310 unique_base_value (HOST_WIDE_INT id)
1311 {
1312   return gen_rtx_ADDRESS (Pmode, id);
1313 }
1314 
1315 /* Return true if accesses based on any other base value cannot alias
1316    those based on X.  */
1317 
1318 static bool
1319 unique_base_value_p (rtx x)
1320 {
1321   return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1322 }
1323 
1324 /* Return true if X is known to be a base value.  */
1325 
1326 static bool
1327 known_base_value_p (rtx x)
1328 {
1329   switch (GET_CODE (x))
1330     {
1331     case LABEL_REF:
1332     case SYMBOL_REF:
1333       return true;
1334 
1335     case ADDRESS:
1336       /* Arguments may or may not be bases; we don't know for sure.  */
1337       return GET_MODE (x) != VOIDmode;
1338 
1339     default:
1340       return false;
1341     }
1342 }
1343 
1344 /* Inside SRC, the source of a SET, find a base address.  */
1345 
1346 static rtx
1347 find_base_value (rtx src)
1348 {
1349   unsigned int regno;
1350   scalar_int_mode int_mode;
1351 
1352 #if defined (FIND_BASE_TERM)
1353   /* Try machine-dependent ways to find the base term.  */
1354   src = FIND_BASE_TERM (src);
1355 #endif
1356 
1357   switch (GET_CODE (src))
1358     {
1359     case SYMBOL_REF:
1360     case LABEL_REF:
1361       return src;
1362 
1363     case REG:
1364       regno = REGNO (src);
1365       /* At the start of a function, argument registers have known base
1366 	 values which may be lost later.  Returning an ADDRESS
1367 	 expression here allows optimization based on argument values
1368 	 even when the argument registers are used for other purposes.  */
1369       if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1370 	return new_reg_base_value[regno];
1371 
1372       /* If a pseudo has a known base value, return it.  Do not do this
1373 	 for non-fixed hard regs since it can result in a circular
1374 	 dependency chain for registers which have values at function entry.
1375 
1376 	 The test above is not sufficient because the scheduler may move
1377 	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
1378       if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1379 	  && regno < vec_safe_length (reg_base_value))
1380 	{
1381 	  /* If we're inside init_alias_analysis, use new_reg_base_value
1382 	     to reduce the number of relaxation iterations.  */
1383 	  if (new_reg_base_value && new_reg_base_value[regno]
1384 	      && DF_REG_DEF_COUNT (regno) == 1)
1385 	    return new_reg_base_value[regno];
1386 
1387 	  if ((*reg_base_value)[regno])
1388 	    return (*reg_base_value)[regno];
1389 	}
1390 
1391       return 0;
1392 
1393     case MEM:
1394       /* Check for an argument passed in memory.  Only record in the
1395 	 copying-arguments block; it is too hard to track changes
1396 	 otherwise.  */
1397       if (copying_arguments
1398 	  && (XEXP (src, 0) == arg_pointer_rtx
1399 	      || (GET_CODE (XEXP (src, 0)) == PLUS
1400 		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1401 	return arg_base_value;
1402       return 0;
1403 
1404     case CONST:
1405       src = XEXP (src, 0);
1406       if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1407 	break;
1408 
1409       /* fall through */
1410 
1411     case PLUS:
1412     case MINUS:
1413       {
1414 	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1415 
1416 	/* If either operand is a REG that is a known pointer, then it
1417 	   is the base.  */
1418 	if (REG_P (src_0) && REG_POINTER (src_0))
1419 	  return find_base_value (src_0);
1420 	if (REG_P (src_1) && REG_POINTER (src_1))
1421 	  return find_base_value (src_1);
1422 
1423 	/* If either operand is a REG, then see if we already have
1424 	   a known value for it.  */
1425 	if (REG_P (src_0))
1426 	  {
1427 	    temp = find_base_value (src_0);
1428 	    if (temp != 0)
1429 	      src_0 = temp;
1430 	  }
1431 
1432 	if (REG_P (src_1))
1433 	  {
1434 	    temp = find_base_value (src_1);
1435 	    if (temp!= 0)
1436 	      src_1 = temp;
1437 	  }
1438 
1439 	/* If either base is named object or a special address
1440 	   (like an argument or stack reference), then use it for the
1441 	   base term.  */
1442 	if (src_0 != 0 && known_base_value_p (src_0))
1443 	  return src_0;
1444 
1445 	if (src_1 != 0 && known_base_value_p (src_1))
1446 	  return src_1;
1447 
1448 	/* Guess which operand is the base address:
1449 	   If either operand is a symbol, then it is the base.  If
1450 	   either operand is a CONST_INT, then the other is the base.  */
1451 	if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1452 	  return find_base_value (src_0);
1453 	else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1454 	  return find_base_value (src_1);
1455 
1456 	return 0;
1457       }
1458 
1459     case LO_SUM:
1460       /* The standard form is (lo_sum reg sym) so look only at the
1461 	 second operand.  */
1462       return find_base_value (XEXP (src, 1));
1463 
1464     case AND:
1465       /* If the second operand is constant set the base
1466 	 address to the first operand.  */
1467       if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1468 	return find_base_value (XEXP (src, 0));
1469       return 0;
1470 
1471     case TRUNCATE:
1472       /* As we do not know which address space the pointer is referring to, we can
1473 	 handle this only if the target does not support different pointer or
1474 	 address modes depending on the address space.  */
1475       if (!target_default_pointer_address_modes_p ())
1476 	break;
1477       if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1478 	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1479 	break;
1480       /* Fall through.  */
1481     case HIGH:
1482     case PRE_INC:
1483     case PRE_DEC:
1484     case POST_INC:
1485     case POST_DEC:
1486     case PRE_MODIFY:
1487     case POST_MODIFY:
1488       return find_base_value (XEXP (src, 0));
1489 
1490     case ZERO_EXTEND:
1491     case SIGN_EXTEND:	/* used for NT/Alpha pointers */
1492       /* As we do not know which address space the pointer is referring to, we can
1493 	 handle this only if the target does not support different pointer or
1494 	 address modes depending on the address space.  */
1495       if (!target_default_pointer_address_modes_p ())
1496 	break;
1497 
1498       {
1499 	rtx temp = find_base_value (XEXP (src, 0));
1500 
1501 	if (temp != 0 && CONSTANT_P (temp))
1502 	  temp = convert_memory_address (Pmode, temp);
1503 
1504 	return temp;
1505       }
1506 
1507     default:
1508       break;
1509     }
1510 
1511   return 0;
1512 }
1513 
1514 /* Called from init_alias_analysis indirectly through note_stores,
1515    or directly if DEST is a register with a REG_NOALIAS note attached.
1516    SET is null in the latter case.  */
1517 
1518 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1519    register N has been set in this function.  */
1520 static sbitmap reg_seen;
1521 
1522 static void
1523 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1524 {
1525   unsigned regno;
1526   rtx src;
1527   int n;
1528 
1529   if (!REG_P (dest))
1530     return;
1531 
1532   regno = REGNO (dest);
1533 
1534   gcc_checking_assert (regno < reg_base_value->length ());
1535 
1536   n = REG_NREGS (dest);
1537   if (n != 1)
1538     {
1539       while (--n >= 0)
1540 	{
1541 	  bitmap_set_bit (reg_seen, regno + n);
1542 	  new_reg_base_value[regno + n] = 0;
1543 	}
1544       return;
1545     }
1546 
1547   if (set)
1548     {
1549       /* A CLOBBER wipes out any old value but does not prevent a previously
1550 	 unset register from acquiring a base address (i.e. reg_seen is not
1551 	 set).  */
1552       if (GET_CODE (set) == CLOBBER)
1553 	{
1554 	  new_reg_base_value[regno] = 0;
1555 	  return;
1556 	}
1557       src = SET_SRC (set);
1558     }
1559   else
1560     {
1561       /* There's a REG_NOALIAS note against DEST.  */
1562       if (bitmap_bit_p (reg_seen, regno))
1563 	{
1564 	  new_reg_base_value[regno] = 0;
1565 	  return;
1566 	}
1567       bitmap_set_bit (reg_seen, regno);
1568       new_reg_base_value[regno] = unique_base_value (unique_id++);
1569       return;
1570     }
1571 
1572   /* If this is not the first set of REGNO, see whether the new value
1573      is related to the old one.  There are two cases of interest:
1574 
1575 	(1) The register might be assigned an entirely new value
1576 	    that has the same base term as the original set.
1577 
1578 	(2) The set might be a simple self-modification that
1579 	    cannot change REGNO's base value.
1580 
1581      If neither case holds, reject the original base value as invalid.
1582      Note that the following situation is not detected:
1583 
1584 	 extern int x, y;  int *p = &x; p += (&y-&x);
1585 
1586      ANSI C does not allow computing the difference of addresses
1587      of distinct top level objects.  */
1588   if (new_reg_base_value[regno] != 0
1589       && find_base_value (src) != new_reg_base_value[regno])
1590     switch (GET_CODE (src))
1591       {
1592       case LO_SUM:
1593       case MINUS:
1594 	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1595 	  new_reg_base_value[regno] = 0;
1596 	break;
1597       case PLUS:
1598 	/* If the value we add in the PLUS is also a valid base value,
1599 	   this might be the actual base value, and the original value
1600 	   an index.  */
1601 	{
1602 	  rtx other = NULL_RTX;
1603 
1604 	  if (XEXP (src, 0) == dest)
1605 	    other = XEXP (src, 1);
1606 	  else if (XEXP (src, 1) == dest)
1607 	    other = XEXP (src, 0);
1608 
1609 	  if (! other || find_base_value (other))
1610 	    new_reg_base_value[regno] = 0;
1611 	  break;
1612 	}
1613       case AND:
1614 	if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1615 	  new_reg_base_value[regno] = 0;
1616 	break;
1617       default:
1618 	new_reg_base_value[regno] = 0;
1619 	break;
1620       }
1621   /* If this is the first set of a register, record the value.  */
1622   else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1623 	   && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1624     new_reg_base_value[regno] = find_base_value (src);
1625 
1626   bitmap_set_bit (reg_seen, regno);
1627 }
1628 
1629 /* Return REG_BASE_VALUE for REGNO.  Selective scheduler uses this to avoid
1630    using hard registers with non-null REG_BASE_VALUE for renaming.  */
1631 rtx
1632 get_reg_base_value (unsigned int regno)
1633 {
1634   return (*reg_base_value)[regno];
1635 }
1636 
1637 /* If a value is known for REGNO, return it.  */
1638 
1639 rtx
1640 get_reg_known_value (unsigned int regno)
1641 {
1642   if (regno >= FIRST_PSEUDO_REGISTER)
1643     {
1644       regno -= FIRST_PSEUDO_REGISTER;
1645       if (regno < vec_safe_length (reg_known_value))
1646 	return (*reg_known_value)[regno];
1647     }
1648   return NULL;
1649 }
1650 
1651 /* Set it.  */
1652 
1653 static void
1654 set_reg_known_value (unsigned int regno, rtx val)
1655 {
1656   if (regno >= FIRST_PSEUDO_REGISTER)
1657     {
1658       regno -= FIRST_PSEUDO_REGISTER;
1659       if (regno < vec_safe_length (reg_known_value))
1660 	(*reg_known_value)[regno] = val;
1661     }
1662 }
1663 
1664 /* Similarly for reg_known_equiv_p.  */
1665 
1666 bool
1667 get_reg_known_equiv_p (unsigned int regno)
1668 {
1669   if (regno >= FIRST_PSEUDO_REGISTER)
1670     {
1671       regno -= FIRST_PSEUDO_REGISTER;
1672       if (regno < vec_safe_length (reg_known_value))
1673 	return bitmap_bit_p (reg_known_equiv_p, regno);
1674     }
1675   return false;
1676 }
1677 
1678 static void
1679 set_reg_known_equiv_p (unsigned int regno, bool val)
1680 {
1681   if (regno >= FIRST_PSEUDO_REGISTER)
1682     {
1683       regno -= FIRST_PSEUDO_REGISTER;
1684       if (regno < vec_safe_length (reg_known_value))
1685 	{
1686 	  if (val)
1687 	    bitmap_set_bit (reg_known_equiv_p, regno);
1688 	  else
1689 	    bitmap_clear_bit (reg_known_equiv_p, regno);
1690 	}
1691     }
1692 }
1693 
1694 
1695 /* Returns a canonical version of X, from the point of view alias
1696    analysis.  (For example, if X is a MEM whose address is a register,
1697    and the register has a known value (say a SYMBOL_REF), then a MEM
1698    whose address is the SYMBOL_REF is returned.)  */
1699 
1700 rtx
1701 canon_rtx (rtx x)
1702 {
1703   /* Recursively look for equivalences.  */
1704   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1705     {
1706       rtx t = get_reg_known_value (REGNO (x));
1707       if (t == x)
1708 	return x;
1709       if (t)
1710 	return canon_rtx (t);
1711     }
1712 
1713   if (GET_CODE (x) == PLUS)
1714     {
1715       rtx x0 = canon_rtx (XEXP (x, 0));
1716       rtx x1 = canon_rtx (XEXP (x, 1));
1717 
1718       if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1719 	return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1720     }
1721 
1722   /* This gives us much better alias analysis when called from
1723      the loop optimizer.   Note we want to leave the original
1724      MEM alone, but need to return the canonicalized MEM with
1725      all the flags with their original values.  */
1726   else if (MEM_P (x))
1727     x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1728 
1729   return x;
1730 }
1731 
1732 /* Return 1 if X and Y are identical-looking rtx's.
1733    Expect that X and Y has been already canonicalized.
1734 
1735    We use the data in reg_known_value above to see if two registers with
1736    different numbers are, in fact, equivalent.  */
1737 
1738 static int
1739 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1740 {
1741   int i;
1742   int j;
1743   enum rtx_code code;
1744   const char *fmt;
1745 
1746   if (x == 0 && y == 0)
1747     return 1;
1748   if (x == 0 || y == 0)
1749     return 0;
1750 
1751   if (x == y)
1752     return 1;
1753 
1754   code = GET_CODE (x);
1755   /* Rtx's of different codes cannot be equal.  */
1756   if (code != GET_CODE (y))
1757     return 0;
1758 
1759   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1760      (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1761 
1762   if (GET_MODE (x) != GET_MODE (y))
1763     return 0;
1764 
1765   /* Some RTL can be compared without a recursive examination.  */
1766   switch (code)
1767     {
1768     case REG:
1769       return REGNO (x) == REGNO (y);
1770 
1771     case LABEL_REF:
1772       return label_ref_label (x) == label_ref_label (y);
1773 
1774     case SYMBOL_REF:
1775       return compare_base_symbol_refs (x, y) == 1;
1776 
1777     case ENTRY_VALUE:
1778       /* This is magic, don't go through canonicalization et al.  */
1779       return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1780 
1781     case VALUE:
1782     CASE_CONST_UNIQUE:
1783       /* Pointer equality guarantees equality for these nodes.  */
1784       return 0;
1785 
1786     default:
1787       break;
1788     }
1789 
1790   /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
1791   if (code == PLUS)
1792     return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1793 	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1794 	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1795 		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1796   /* For commutative operations, the RTX match if the operand match in any
1797      order.  Also handle the simple binary and unary cases without a loop.  */
1798   if (COMMUTATIVE_P (x))
1799     {
1800       rtx xop0 = canon_rtx (XEXP (x, 0));
1801       rtx yop0 = canon_rtx (XEXP (y, 0));
1802       rtx yop1 = canon_rtx (XEXP (y, 1));
1803 
1804       return ((rtx_equal_for_memref_p (xop0, yop0)
1805 	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1806 	      || (rtx_equal_for_memref_p (xop0, yop1)
1807 		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1808     }
1809   else if (NON_COMMUTATIVE_P (x))
1810     {
1811       return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1812 				      canon_rtx (XEXP (y, 0)))
1813 	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1814 					 canon_rtx (XEXP (y, 1))));
1815     }
1816   else if (UNARY_P (x))
1817     return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1818 				   canon_rtx (XEXP (y, 0)));
1819 
1820   /* Compare the elements.  If any pair of corresponding elements
1821      fail to match, return 0 for the whole things.
1822 
1823      Limit cases to types which actually appear in addresses.  */
1824 
1825   fmt = GET_RTX_FORMAT (code);
1826   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1827     {
1828       switch (fmt[i])
1829 	{
1830 	case 'i':
1831 	  if (XINT (x, i) != XINT (y, i))
1832 	    return 0;
1833 	  break;
1834 
1835 	case 'p':
1836 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1837 	    return 0;
1838 	  break;
1839 
1840 	case 'E':
1841 	  /* Two vectors must have the same length.  */
1842 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1843 	    return 0;
1844 
1845 	  /* And the corresponding elements must match.  */
1846 	  for (j = 0; j < XVECLEN (x, i); j++)
1847 	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1848 					canon_rtx (XVECEXP (y, i, j))) == 0)
1849 	      return 0;
1850 	  break;
1851 
1852 	case 'e':
1853 	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1854 				      canon_rtx (XEXP (y, i))) == 0)
1855 	    return 0;
1856 	  break;
1857 
1858 	  /* This can happen for asm operands.  */
1859 	case 's':
1860 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1861 	    return 0;
1862 	  break;
1863 
1864 	/* This can happen for an asm which clobbers memory.  */
1865 	case '0':
1866 	  break;
1867 
1868 	  /* It is believed that rtx's at this level will never
1869 	     contain anything but integers and other rtx's,
1870 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1871 	default:
1872 	  gcc_unreachable ();
1873 	}
1874     }
1875   return 1;
1876 }
1877 
1878 static rtx
1879 find_base_term (rtx x, vec<std::pair<cselib_val *,
1880 				     struct elt_loc_list *> > &visited_vals)
1881 {
1882   cselib_val *val;
1883   struct elt_loc_list *l, *f;
1884   rtx ret;
1885   scalar_int_mode int_mode;
1886 
1887 #if defined (FIND_BASE_TERM)
1888   /* Try machine-dependent ways to find the base term.  */
1889   x = FIND_BASE_TERM (x);
1890 #endif
1891 
1892   switch (GET_CODE (x))
1893     {
1894     case REG:
1895       return REG_BASE_VALUE (x);
1896 
1897     case TRUNCATE:
1898       /* As we do not know which address space the pointer is referring to, we can
1899 	 handle this only if the target does not support different pointer or
1900 	 address modes depending on the address space.  */
1901       if (!target_default_pointer_address_modes_p ())
1902 	return 0;
1903       if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1904 	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1905 	return 0;
1906       /* Fall through.  */
1907     case HIGH:
1908     case PRE_INC:
1909     case PRE_DEC:
1910     case POST_INC:
1911     case POST_DEC:
1912     case PRE_MODIFY:
1913     case POST_MODIFY:
1914       return find_base_term (XEXP (x, 0), visited_vals);
1915 
1916     case ZERO_EXTEND:
1917     case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
1918       /* As we do not know which address space the pointer is referring to, we can
1919 	 handle this only if the target does not support different pointer or
1920 	 address modes depending on the address space.  */
1921       if (!target_default_pointer_address_modes_p ())
1922 	return 0;
1923 
1924       {
1925 	rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1926 
1927 	if (temp != 0 && CONSTANT_P (temp))
1928 	  temp = convert_memory_address (Pmode, temp);
1929 
1930 	return temp;
1931       }
1932 
1933     case VALUE:
1934       val = CSELIB_VAL_PTR (x);
1935       ret = NULL_RTX;
1936 
1937       if (!val)
1938 	return ret;
1939 
1940       if (cselib_sp_based_value_p (val))
1941 	return static_reg_base_value[STACK_POINTER_REGNUM];
1942 
1943       f = val->locs;
1944       /* Reset val->locs to avoid infinite recursion.  */
1945       if (f)
1946 	visited_vals.safe_push (std::make_pair (val, f));
1947       val->locs = NULL;
1948 
1949       for (l = f; l; l = l->next)
1950 	if (GET_CODE (l->loc) == VALUE
1951 	    && CSELIB_VAL_PTR (l->loc)->locs
1952 	    && !CSELIB_VAL_PTR (l->loc)->locs->next
1953 	    && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1954 	  continue;
1955 	else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
1956 	  break;
1957 
1958       return ret;
1959 
1960     case LO_SUM:
1961       /* The standard form is (lo_sum reg sym) so look only at the
1962          second operand.  */
1963       return find_base_term (XEXP (x, 1), visited_vals);
1964 
1965     case CONST:
1966       x = XEXP (x, 0);
1967       if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1968 	return 0;
1969       /* Fall through.  */
1970     case PLUS:
1971     case MINUS:
1972       {
1973 	rtx tmp1 = XEXP (x, 0);
1974 	rtx tmp2 = XEXP (x, 1);
1975 
1976 	/* This is a little bit tricky since we have to determine which of
1977 	   the two operands represents the real base address.  Otherwise this
1978 	   routine may return the index register instead of the base register.
1979 
1980 	   That may cause us to believe no aliasing was possible, when in
1981 	   fact aliasing is possible.
1982 
1983 	   We use a few simple tests to guess the base register.  Additional
1984 	   tests can certainly be added.  For example, if one of the operands
1985 	   is a shift or multiply, then it must be the index register and the
1986 	   other operand is the base register.  */
1987 
1988 	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1989 	  return find_base_term (tmp2, visited_vals);
1990 
1991 	/* If either operand is known to be a pointer, then prefer it
1992 	   to determine the base term.  */
1993 	if (REG_P (tmp1) && REG_POINTER (tmp1))
1994 	  ;
1995 	else if (REG_P (tmp2) && REG_POINTER (tmp2))
1996 	  std::swap (tmp1, tmp2);
1997 	/* If second argument is constant which has base term, prefer it
1998 	   over variable tmp1.  See PR64025.  */
1999 	else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2000 	  std::swap (tmp1, tmp2);
2001 
2002 	/* Go ahead and find the base term for both operands.  If either base
2003 	   term is from a pointer or is a named object or a special address
2004 	   (like an argument or stack reference), then use it for the
2005 	   base term.  */
2006 	rtx base = find_base_term (tmp1, visited_vals);
2007 	if (base != NULL_RTX
2008 	    && ((REG_P (tmp1) && REG_POINTER (tmp1))
2009 		 || known_base_value_p (base)))
2010 	  return base;
2011 	base = find_base_term (tmp2, visited_vals);
2012 	if (base != NULL_RTX
2013 	    && ((REG_P (tmp2) && REG_POINTER (tmp2))
2014 		 || known_base_value_p (base)))
2015 	  return base;
2016 
2017 	/* We could not determine which of the two operands was the
2018 	   base register and which was the index.  So we can determine
2019 	   nothing from the base alias check.  */
2020 	return 0;
2021       }
2022 
2023     case AND:
2024       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2025 	return find_base_term (XEXP (x, 0), visited_vals);
2026       return 0;
2027 
2028     case SYMBOL_REF:
2029     case LABEL_REF:
2030       return x;
2031 
2032     default:
2033       return 0;
2034     }
2035 }
2036 
2037 /* Wrapper around the worker above which removes locs from visited VALUEs
2038    to avoid visiting them multiple times.  We unwind that changes here.  */
2039 
2040 static rtx
2041 find_base_term (rtx x)
2042 {
2043   auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2044   rtx res = find_base_term (x, visited_vals);
2045   for (unsigned i = 0; i < visited_vals.length (); ++i)
2046     visited_vals[i].first->locs = visited_vals[i].second;
2047   return res;
2048 }
2049 
2050 /* Return true if accesses to address X may alias accesses based
2051    on the stack pointer.  */
2052 
2053 bool
2054 may_be_sp_based_p (rtx x)
2055 {
2056   rtx base = find_base_term (x);
2057   return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2058 }
2059 
2060 /* BASE1 and BASE2 are decls.  Return 1 if they refer to same object, 0
2061    if they refer to different objects and -1 if we can not decide.  */
2062 
2063 int
2064 compare_base_decls (tree base1, tree base2)
2065 {
2066   int ret;
2067   gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2068   if (base1 == base2)
2069     return 1;
2070 
2071   /* If we have two register decls with register specification we
2072      cannot decide unless their assembler names are the same.  */
2073   if (DECL_REGISTER (base1)
2074       && DECL_REGISTER (base2)
2075       && HAS_DECL_ASSEMBLER_NAME_P (base1)
2076       && HAS_DECL_ASSEMBLER_NAME_P (base2)
2077       && DECL_ASSEMBLER_NAME_SET_P (base1)
2078       && DECL_ASSEMBLER_NAME_SET_P (base2))
2079     {
2080       if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2081 	return 1;
2082       return -1;
2083     }
2084 
2085   /* Declarations of non-automatic variables may have aliases.  All other
2086      decls are unique.  */
2087   if (!decl_in_symtab_p (base1)
2088       || !decl_in_symtab_p (base2))
2089     return 0;
2090 
2091   /* Don't cause symbols to be inserted by the act of checking.  */
2092   symtab_node *node1 = symtab_node::get (base1);
2093   if (!node1)
2094     return 0;
2095   symtab_node *node2 = symtab_node::get (base2);
2096   if (!node2)
2097     return 0;
2098 
2099   ret = node1->equal_address_to (node2, true);
2100   return ret;
2101 }
2102 
2103 /* Same as compare_base_decls but for SYMBOL_REF.  */
2104 
2105 static int
2106 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2107 {
2108   tree x_decl = SYMBOL_REF_DECL (x_base);
2109   tree y_decl = SYMBOL_REF_DECL (y_base);
2110   bool binds_def = true;
2111 
2112   if (XSTR (x_base, 0) == XSTR (y_base, 0))
2113     return 1;
2114   if (x_decl && y_decl)
2115     return compare_base_decls (x_decl, y_decl);
2116   if (x_decl || y_decl)
2117     {
2118       if (!x_decl)
2119 	{
2120 	  std::swap (x_decl, y_decl);
2121 	  std::swap (x_base, y_base);
2122 	}
2123       /* We handle specially only section anchors and assume that other
2124  	 labels may overlap with user variables in an arbitrary way.  */
2125       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2126         return -1;
2127       /* Anchors contains static VAR_DECLs and CONST_DECLs.  We are safe
2128 	 to ignore CONST_DECLs because they are readonly.  */
2129       if (!VAR_P (x_decl)
2130 	  || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2131 	return 0;
2132 
2133       symtab_node *x_node = symtab_node::get_create (x_decl)
2134 			    ->ultimate_alias_target ();
2135       /* External variable can not be in section anchor.  */
2136       if (!x_node->definition)
2137 	return 0;
2138       x_base = XEXP (DECL_RTL (x_node->decl), 0);
2139       /* If not in anchor, we can disambiguate.  */
2140       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2141 	return 0;
2142 
2143       /* We have an alias of anchored variable.  If it can be interposed;
2144  	 we must assume it may or may not alias its anchor.  */
2145       binds_def = decl_binds_to_current_def_p (x_decl);
2146     }
2147   /* If we have variable in section anchor, we can compare by offset.  */
2148   if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2149       && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2150     {
2151       if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2152 	return 0;
2153       if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2154 	return binds_def ? 1 : -1;
2155       if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2156 	return -1;
2157       return 0;
2158     }
2159   /* In general we assume that memory locations pointed to by different labels
2160      may overlap in undefined ways.  */
2161   return -1;
2162 }
2163 
2164 /* Return 0 if the addresses X and Y are known to point to different
2165    objects, 1 if they might be pointers to the same object.  */
2166 
2167 static int
2168 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2169 		  machine_mode x_mode, machine_mode y_mode)
2170 {
2171   /* If the address itself has no known base see if a known equivalent
2172      value has one.  If either address still has no known base, nothing
2173      is known about aliasing.  */
2174   if (x_base == 0)
2175     {
2176       rtx x_c;
2177 
2178       if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2179 	return 1;
2180 
2181       x_base = find_base_term (x_c);
2182       if (x_base == 0)
2183 	return 1;
2184     }
2185 
2186   if (y_base == 0)
2187     {
2188       rtx y_c;
2189       if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2190 	return 1;
2191 
2192       y_base = find_base_term (y_c);
2193       if (y_base == 0)
2194 	return 1;
2195     }
2196 
2197   /* If the base addresses are equal nothing is known about aliasing.  */
2198   if (rtx_equal_p (x_base, y_base))
2199     return 1;
2200 
2201   /* The base addresses are different expressions.  If they are not accessed
2202      via AND, there is no conflict.  We can bring knowledge of object
2203      alignment into play here.  For example, on alpha, "char a, b;" can
2204      alias one another, though "char a; long b;" cannot.  AND addresses may
2205      implicitly alias surrounding objects; i.e. unaligned access in DImode
2206      via AND address can alias all surrounding object types except those
2207      with aligment 8 or higher.  */
2208   if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2209     return 1;
2210   if (GET_CODE (x) == AND
2211       && (!CONST_INT_P (XEXP (x, 1))
2212 	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2213     return 1;
2214   if (GET_CODE (y) == AND
2215       && (!CONST_INT_P (XEXP (y, 1))
2216 	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2217     return 1;
2218 
2219   /* Differing symbols not accessed via AND never alias.  */
2220   if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2221     return compare_base_symbol_refs (x_base, y_base) != 0;
2222 
2223   if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2224     return 0;
2225 
2226   if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2227     return 0;
2228 
2229   return 1;
2230 }
2231 
2232 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2233    (or equal to) that of V.  */
2234 
2235 static bool
2236 refs_newer_value_p (const_rtx expr, rtx v)
2237 {
2238   int minuid = CSELIB_VAL_PTR (v)->uid;
2239   subrtx_iterator::array_type array;
2240   FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2241     if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2242       return true;
2243   return false;
2244 }
2245 
2246 /* Convert the address X into something we can use.  This is done by returning
2247    it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2248    we call cselib to get a more useful rtx.  */
2249 
2250 rtx
2251 get_addr (rtx x)
2252 {
2253   cselib_val *v;
2254   struct elt_loc_list *l;
2255 
2256   if (GET_CODE (x) != VALUE)
2257     {
2258       if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2259 	  && GET_CODE (XEXP (x, 0)) == VALUE
2260 	  && CONST_SCALAR_INT_P (XEXP (x, 1)))
2261 	{
2262 	  rtx op0 = get_addr (XEXP (x, 0));
2263 	  if (op0 != XEXP (x, 0))
2264 	    {
2265 	      if (GET_CODE (x) == PLUS
2266 		  && GET_CODE (XEXP (x, 1)) == CONST_INT)
2267 		return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2268 	      return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2269 					  op0, XEXP (x, 1));
2270 	    }
2271 	}
2272       return x;
2273     }
2274   v = CSELIB_VAL_PTR (x);
2275   if (v)
2276     {
2277       bool have_equivs = cselib_have_permanent_equivalences ();
2278       if (have_equivs)
2279 	v = canonical_cselib_val (v);
2280       for (l = v->locs; l; l = l->next)
2281 	if (CONSTANT_P (l->loc))
2282 	  return l->loc;
2283       for (l = v->locs; l; l = l->next)
2284 	if (!REG_P (l->loc) && !MEM_P (l->loc)
2285 	    /* Avoid infinite recursion when potentially dealing with
2286 	       var-tracking artificial equivalences, by skipping the
2287 	       equivalences themselves, and not choosing expressions
2288 	       that refer to newer VALUEs.  */
2289 	    && (!have_equivs
2290 		|| (GET_CODE (l->loc) != VALUE
2291 		    && !refs_newer_value_p (l->loc, x))))
2292 	  return l->loc;
2293       if (have_equivs)
2294 	{
2295 	  for (l = v->locs; l; l = l->next)
2296 	    if (REG_P (l->loc)
2297 		|| (GET_CODE (l->loc) != VALUE
2298 		    && !refs_newer_value_p (l->loc, x)))
2299 	      return l->loc;
2300 	  /* Return the canonical value.  */
2301 	  return v->val_rtx;
2302 	}
2303       if (v->locs)
2304 	return v->locs->loc;
2305     }
2306   return x;
2307 }
2308 
2309 /*  Return the address of the (N_REFS + 1)th memory reference to ADDR
2310     where SIZE is the size in bytes of the memory reference.  If ADDR
2311     is not modified by the memory reference then ADDR is returned.  */
2312 
2313 static rtx
2314 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2315 {
2316   poly_int64 offset = 0;
2317 
2318   switch (GET_CODE (addr))
2319     {
2320     case PRE_INC:
2321       offset = (n_refs + 1) * size;
2322       break;
2323     case PRE_DEC:
2324       offset = -(n_refs + 1) * size;
2325       break;
2326     case POST_INC:
2327       offset = n_refs * size;
2328       break;
2329     case POST_DEC:
2330       offset = -n_refs * size;
2331       break;
2332 
2333     default:
2334       return addr;
2335     }
2336 
2337   addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2338   addr = canon_rtx (addr);
2339 
2340   return addr;
2341 }
2342 
2343 /* Return TRUE if an object X sized at XSIZE bytes and another object
2344    Y sized at YSIZE bytes, starting C bytes after X, may overlap.  If
2345    any of the sizes is zero, assume an overlap, otherwise use the
2346    absolute value of the sizes as the actual sizes.  */
2347 
2348 static inline bool
2349 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2350 {
2351   if (known_eq (xsize, 0) || known_eq (ysize, 0))
2352     return true;
2353 
2354   if (maybe_ge (c, 0))
2355     return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2356   else
2357     return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2358 }
2359 
2360 /* Return one if X and Y (memory addresses) reference the
2361    same location in memory or if the references overlap.
2362    Return zero if they do not overlap, else return
2363    minus one in which case they still might reference the same location.
2364 
2365    C is an offset accumulator.  When
2366    C is nonzero, we are testing aliases between X and Y + C.
2367    XSIZE is the size in bytes of the X reference,
2368    similarly YSIZE is the size in bytes for Y.
2369    Expect that canon_rtx has been already called for X and Y.
2370 
2371    If XSIZE or YSIZE is zero, we do not know the amount of memory being
2372    referenced (the reference was BLKmode), so make the most pessimistic
2373    assumptions.
2374 
2375    If XSIZE or YSIZE is negative, we may access memory outside the object
2376    being referenced as a side effect.  This can happen when using AND to
2377    align memory references, as is done on the Alpha.
2378 
2379    Nice to notice that varying addresses cannot conflict with fp if no
2380    local variables had their addresses taken, but that's too hard now.
2381 
2382    ???  Contrary to the tree alias oracle this does not return
2383    one for X + non-constant and Y + non-constant when X and Y are equal.
2384    If that is fixed the TBAA hack for union type-punning can be removed.  */
2385 
2386 static int
2387 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2388 		    poly_int64 c)
2389 {
2390   if (GET_CODE (x) == VALUE)
2391     {
2392       if (REG_P (y))
2393 	{
2394 	  struct elt_loc_list *l = NULL;
2395 	  if (CSELIB_VAL_PTR (x))
2396 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2397 		 l; l = l->next)
2398 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2399 		break;
2400 	  if (l)
2401 	    x = y;
2402 	  else
2403 	    x = get_addr (x);
2404 	}
2405       /* Don't call get_addr if y is the same VALUE.  */
2406       else if (x != y)
2407 	x = get_addr (x);
2408     }
2409   if (GET_CODE (y) == VALUE)
2410     {
2411       if (REG_P (x))
2412 	{
2413 	  struct elt_loc_list *l = NULL;
2414 	  if (CSELIB_VAL_PTR (y))
2415 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2416 		 l; l = l->next)
2417 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2418 		break;
2419 	  if (l)
2420 	    y = x;
2421 	  else
2422 	    y = get_addr (y);
2423 	}
2424       /* Don't call get_addr if x is the same VALUE.  */
2425       else if (y != x)
2426 	y = get_addr (y);
2427     }
2428   if (GET_CODE (x) == HIGH)
2429     x = XEXP (x, 0);
2430   else if (GET_CODE (x) == LO_SUM)
2431     x = XEXP (x, 1);
2432   else
2433     x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2434   if (GET_CODE (y) == HIGH)
2435     y = XEXP (y, 0);
2436   else if (GET_CODE (y) == LO_SUM)
2437     y = XEXP (y, 1);
2438   else
2439     y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2440 
2441   if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2442     {
2443       int cmp = compare_base_symbol_refs (x,y);
2444 
2445       /* If both decls are the same, decide by offsets.  */
2446       if (cmp == 1)
2447         return offset_overlap_p (c, xsize, ysize);
2448       /* Assume a potential overlap for symbolic addresses that went
2449 	 through alignment adjustments (i.e., that have negative
2450 	 sizes), because we can't know how far they are from each
2451 	 other.  */
2452       if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2453 	return -1;
2454       /* If decls are different or we know by offsets that there is no overlap,
2455 	 we win.  */
2456       if (!cmp || !offset_overlap_p (c, xsize, ysize))
2457 	return 0;
2458       /* Decls may or may not be different and offsets overlap....*/
2459       return -1;
2460     }
2461   else if (rtx_equal_for_memref_p (x, y))
2462     {
2463       return offset_overlap_p (c, xsize, ysize);
2464     }
2465 
2466   /* This code used to check for conflicts involving stack references and
2467      globals but the base address alias code now handles these cases.  */
2468 
2469   if (GET_CODE (x) == PLUS)
2470     {
2471       /* The fact that X is canonicalized means that this
2472 	 PLUS rtx is canonicalized.  */
2473       rtx x0 = XEXP (x, 0);
2474       rtx x1 = XEXP (x, 1);
2475 
2476       /* However, VALUEs might end up in different positions even in
2477 	 canonical PLUSes.  Comparing their addresses is enough.  */
2478       if (x0 == y)
2479 	return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2480       else if (x1 == y)
2481 	return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2482 
2483       poly_int64 cx1, cy1;
2484       if (GET_CODE (y) == PLUS)
2485 	{
2486 	  /* The fact that Y is canonicalized means that this
2487 	     PLUS rtx is canonicalized.  */
2488 	  rtx y0 = XEXP (y, 0);
2489 	  rtx y1 = XEXP (y, 1);
2490 
2491 	  if (x0 == y1)
2492 	    return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2493 	  if (x1 == y0)
2494 	    return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2495 
2496 	  if (rtx_equal_for_memref_p (x1, y1))
2497 	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2498 	  if (rtx_equal_for_memref_p (x0, y0))
2499 	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2500 	  if (poly_int_rtx_p (x1, &cx1))
2501 	    {
2502 	      if (poly_int_rtx_p (y1, &cy1))
2503 		return memrefs_conflict_p (xsize, x0, ysize, y0,
2504 					   c - cx1 + cy1);
2505 	      else
2506 		return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2507 	    }
2508 	  else if (poly_int_rtx_p (y1, &cy1))
2509 	    return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2510 
2511 	  return -1;
2512 	}
2513       else if (poly_int_rtx_p (x1, &cx1))
2514 	return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2515     }
2516   else if (GET_CODE (y) == PLUS)
2517     {
2518       /* The fact that Y is canonicalized means that this
2519 	 PLUS rtx is canonicalized.  */
2520       rtx y0 = XEXP (y, 0);
2521       rtx y1 = XEXP (y, 1);
2522 
2523       if (x == y0)
2524 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2525       if (x == y1)
2526 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2527 
2528       poly_int64 cy1;
2529       if (poly_int_rtx_p (y1, &cy1))
2530 	return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2531       else
2532 	return -1;
2533     }
2534 
2535   if (GET_CODE (x) == GET_CODE (y))
2536     switch (GET_CODE (x))
2537       {
2538       case MULT:
2539 	{
2540 	  /* Handle cases where we expect the second operands to be the
2541 	     same, and check only whether the first operand would conflict
2542 	     or not.  */
2543 	  rtx x0, y0;
2544 	  rtx x1 = canon_rtx (XEXP (x, 1));
2545 	  rtx y1 = canon_rtx (XEXP (y, 1));
2546 	  if (! rtx_equal_for_memref_p (x1, y1))
2547 	    return -1;
2548 	  x0 = canon_rtx (XEXP (x, 0));
2549 	  y0 = canon_rtx (XEXP (y, 0));
2550 	  if (rtx_equal_for_memref_p (x0, y0))
2551 	    return offset_overlap_p (c, xsize, ysize);
2552 
2553 	  /* Can't properly adjust our sizes.  */
2554 	  if (!CONST_INT_P (x1)
2555 	      || !can_div_trunc_p (xsize, INTVAL (x1), &xsize)
2556 	      || !can_div_trunc_p (ysize, INTVAL (x1), &ysize)
2557 	      || !can_div_trunc_p (c, INTVAL (x1), &c))
2558 	    return -1;
2559 	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2560 	}
2561 
2562       default:
2563 	break;
2564       }
2565 
2566   /* Deal with alignment ANDs by adjusting offset and size so as to
2567      cover the maximum range, without taking any previously known
2568      alignment into account.  Make a size negative after such an
2569      adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2570      assume a potential overlap, because they may end up in contiguous
2571      memory locations and the stricter-alignment access may span over
2572      part of both.  */
2573   if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2574     {
2575       HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2576       unsigned HOST_WIDE_INT uc = sc;
2577       if (sc < 0 && pow2_or_zerop (-uc))
2578 	{
2579 	  if (maybe_gt (xsize, 0))
2580 	    xsize = -xsize;
2581 	  if (maybe_ne (xsize, 0))
2582 	    xsize += sc + 1;
2583 	  c -= sc + 1;
2584 	  return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2585 				     ysize, y, c);
2586 	}
2587     }
2588   if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2589     {
2590       HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2591       unsigned HOST_WIDE_INT uc = sc;
2592       if (sc < 0 && pow2_or_zerop (-uc))
2593 	{
2594 	  if (maybe_gt (ysize, 0))
2595 	    ysize = -ysize;
2596 	  if (maybe_ne (ysize, 0))
2597 	    ysize += sc + 1;
2598 	  c += sc + 1;
2599 	  return memrefs_conflict_p (xsize, x,
2600 				     ysize, canon_rtx (XEXP (y, 0)), c);
2601 	}
2602     }
2603 
2604   if (CONSTANT_P (x))
2605     {
2606       poly_int64 cx, cy;
2607       if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2608 	{
2609 	  c += cy - cx;
2610 	  return offset_overlap_p (c, xsize, ysize);
2611 	}
2612 
2613       if (GET_CODE (x) == CONST)
2614 	{
2615 	  if (GET_CODE (y) == CONST)
2616 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2617 				       ysize, canon_rtx (XEXP (y, 0)), c);
2618 	  else
2619 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2620 				       ysize, y, c);
2621 	}
2622       if (GET_CODE (y) == CONST)
2623 	return memrefs_conflict_p (xsize, x, ysize,
2624 				   canon_rtx (XEXP (y, 0)), c);
2625 
2626       /* Assume a potential overlap for symbolic addresses that went
2627 	 through alignment adjustments (i.e., that have negative
2628 	 sizes), because we can't know how far they are from each
2629 	 other.  */
2630       if (CONSTANT_P (y))
2631 	return (maybe_lt (xsize, 0)
2632 		|| maybe_lt (ysize, 0)
2633 		|| offset_overlap_p (c, xsize, ysize));
2634 
2635       return -1;
2636     }
2637 
2638   return -1;
2639 }
2640 
2641 /* Functions to compute memory dependencies.
2642 
2643    Since we process the insns in execution order, we can build tables
2644    to keep track of what registers are fixed (and not aliased), what registers
2645    are varying in known ways, and what registers are varying in unknown
2646    ways.
2647 
2648    If both memory references are volatile, then there must always be a
2649    dependence between the two references, since their order can not be
2650    changed.  A volatile and non-volatile reference can be interchanged
2651    though.
2652 
2653    We also must allow AND addresses, because they may generate accesses
2654    outside the object being referenced.  This is used to generate aligned
2655    addresses from unaligned addresses, for instance, the alpha
2656    storeqi_unaligned pattern.  */
2657 
2658 /* Read dependence: X is read after read in MEM takes place.  There can
2659    only be a dependence here if both reads are volatile, or if either is
2660    an explicit barrier.  */
2661 
2662 int
2663 read_dependence (const_rtx mem, const_rtx x)
2664 {
2665   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2666     return true;
2667   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2668       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2669     return true;
2670   return false;
2671 }
2672 
2673 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
2674 
2675 static tree
2676 decl_for_component_ref (tree x)
2677 {
2678   do
2679     {
2680       x = TREE_OPERAND (x, 0);
2681     }
2682   while (x && TREE_CODE (x) == COMPONENT_REF);
2683 
2684   return x && DECL_P (x) ? x : NULL_TREE;
2685 }
2686 
2687 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2688    for the offset of the field reference.  *KNOWN_P says whether the
2689    offset is known.  */
2690 
2691 static void
2692 adjust_offset_for_component_ref (tree x, bool *known_p,
2693 				 poly_int64 *offset)
2694 {
2695   if (!*known_p)
2696     return;
2697   do
2698     {
2699       tree xoffset = component_ref_field_offset (x);
2700       tree field = TREE_OPERAND (x, 1);
2701       if (TREE_CODE (xoffset) != INTEGER_CST)
2702 	{
2703 	  *known_p = false;
2704 	  return;
2705 	}
2706 
2707       offset_int woffset
2708 	= (wi::to_offset (xoffset)
2709 	   + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2710 	      >> LOG2_BITS_PER_UNIT));
2711       if (!wi::fits_uhwi_p (woffset))
2712 	{
2713 	  *known_p = false;
2714 	  return;
2715 	}
2716       *offset += woffset.to_uhwi ();
2717 
2718       x = TREE_OPERAND (x, 0);
2719     }
2720   while (x && TREE_CODE (x) == COMPONENT_REF);
2721 }
2722 
2723 /* Return nonzero if we can determine the exprs corresponding to memrefs
2724    X and Y and they do not overlap.
2725    If LOOP_VARIANT is set, skip offset-based disambiguation */
2726 
2727 int
2728 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2729 {
2730   tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2731   rtx rtlx, rtly;
2732   rtx basex, basey;
2733   bool moffsetx_known_p, moffsety_known_p;
2734   poly_int64 moffsetx = 0, moffsety = 0;
2735   poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2736 
2737   /* Unless both have exprs, we can't tell anything.  */
2738   if (exprx == 0 || expry == 0)
2739     return 0;
2740 
2741   /* For spill-slot accesses make sure we have valid offsets.  */
2742   if ((exprx == get_spill_slot_decl (false)
2743        && ! MEM_OFFSET_KNOWN_P (x))
2744       || (expry == get_spill_slot_decl (false)
2745 	  && ! MEM_OFFSET_KNOWN_P (y)))
2746     return 0;
2747 
2748   /* If the field reference test failed, look at the DECLs involved.  */
2749   moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2750   if (moffsetx_known_p)
2751     moffsetx = MEM_OFFSET (x);
2752   if (TREE_CODE (exprx) == COMPONENT_REF)
2753     {
2754       tree t = decl_for_component_ref (exprx);
2755       if (! t)
2756 	return 0;
2757       adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2758       exprx = t;
2759     }
2760 
2761   moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2762   if (moffsety_known_p)
2763     moffsety = MEM_OFFSET (y);
2764   if (TREE_CODE (expry) == COMPONENT_REF)
2765     {
2766       tree t = decl_for_component_ref (expry);
2767       if (! t)
2768 	return 0;
2769       adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2770       expry = t;
2771     }
2772 
2773   if (! DECL_P (exprx) || ! DECL_P (expry))
2774     return 0;
2775 
2776   /* If we refer to different gimple registers, or one gimple register
2777      and one non-gimple-register, we know they can't overlap.  First,
2778      gimple registers don't have their addresses taken.  Now, there
2779      could be more than one stack slot for (different versions of) the
2780      same gimple register, but we can presumably tell they don't
2781      overlap based on offsets from stack base addresses elsewhere.
2782      It's important that we don't proceed to DECL_RTL, because gimple
2783      registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2784      able to do anything about them since no SSA information will have
2785      remained to guide it.  */
2786   if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2787     return exprx != expry
2788       || (moffsetx_known_p && moffsety_known_p
2789 	  && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2790 	  && !offset_overlap_p (moffsety - moffsetx,
2791 				MEM_SIZE (x), MEM_SIZE (y)));
2792 
2793   /* With invalid code we can end up storing into the constant pool.
2794      Bail out to avoid ICEing when creating RTL for this.
2795      See gfortran.dg/lto/20091028-2_0.f90.  */
2796   if (TREE_CODE (exprx) == CONST_DECL
2797       || TREE_CODE (expry) == CONST_DECL)
2798     return 1;
2799 
2800   /* If one decl is known to be a function or label in a function and
2801      the other is some kind of data, they can't overlap.  */
2802   if ((TREE_CODE (exprx) == FUNCTION_DECL
2803        || TREE_CODE (exprx) == LABEL_DECL)
2804       != (TREE_CODE (expry) == FUNCTION_DECL
2805 	  || TREE_CODE (expry) == LABEL_DECL))
2806     return 1;
2807 
2808   /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2809      living in multiple places), we can't tell anything.  Exception
2810      are FUNCTION_DECLs for which we can create DECL_RTL on demand.  */
2811   if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2812       || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2813     return 0;
2814 
2815   rtlx = DECL_RTL (exprx);
2816   rtly = DECL_RTL (expry);
2817 
2818   /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2819      can't overlap unless they are the same because we never reuse that part
2820      of the stack frame used for locals for spilled pseudos.  */
2821   if ((!MEM_P (rtlx) || !MEM_P (rtly))
2822       && ! rtx_equal_p (rtlx, rtly))
2823     return 1;
2824 
2825   /* If we have MEMs referring to different address spaces (which can
2826      potentially overlap), we cannot easily tell from the addresses
2827      whether the references overlap.  */
2828   if (MEM_P (rtlx) && MEM_P (rtly)
2829       && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2830     return 0;
2831 
2832   /* Get the base and offsets of both decls.  If either is a register, we
2833      know both are and are the same, so use that as the base.  The only
2834      we can avoid overlap is if we can deduce that they are nonoverlapping
2835      pieces of that decl, which is very rare.  */
2836   basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2837   basex = strip_offset_and_add (basex, &offsetx);
2838 
2839   basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2840   basey = strip_offset_and_add (basey, &offsety);
2841 
2842   /* If the bases are different, we know they do not overlap if both
2843      are constants or if one is a constant and the other a pointer into the
2844      stack frame.  Otherwise a different base means we can't tell if they
2845      overlap or not.  */
2846   if (compare_base_decls (exprx, expry) == 0)
2847     return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2848 	    || (CONSTANT_P (basex) && REG_P (basey)
2849 		&& REGNO_PTR_FRAME_P (REGNO (basey)))
2850 	    || (CONSTANT_P (basey) && REG_P (basex)
2851 		&& REGNO_PTR_FRAME_P (REGNO (basex))));
2852 
2853   /* Offset based disambiguation not appropriate for loop invariant */
2854   if (loop_invariant)
2855     return 0;
2856 
2857   /* Offset based disambiguation is OK even if we do not know that the
2858      declarations are necessarily different
2859     (i.e. compare_base_decls (exprx, expry) == -1)  */
2860 
2861   sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2862 	   : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2863 	   : -1);
2864   sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2865 	   : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2866 	   : -1);
2867 
2868   /* If we have an offset for either memref, it can update the values computed
2869      above.  */
2870   if (moffsetx_known_p)
2871     offsetx += moffsetx, sizex -= moffsetx;
2872   if (moffsety_known_p)
2873     offsety += moffsety, sizey -= moffsety;
2874 
2875   /* If a memref has both a size and an offset, we can use the smaller size.
2876      We can't do this if the offset isn't known because we must view this
2877      memref as being anywhere inside the DECL's MEM.  */
2878   if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2879     sizex = MEM_SIZE (x);
2880   if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2881     sizey = MEM_SIZE (y);
2882 
2883   return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2884 }
2885 
2886 /* Helper for true_dependence and canon_true_dependence.
2887    Checks for true dependence: X is read after store in MEM takes place.
2888 
2889    If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2890    NULL_RTX, and the canonical addresses of MEM and X are both computed
2891    here.  If MEM_CANONICALIZED, then MEM must be already canonicalized.
2892 
2893    If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2894 
2895    Returns 1 if there is a true dependence, 0 otherwise.  */
2896 
2897 static int
2898 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2899 		   const_rtx x, rtx x_addr, bool mem_canonicalized)
2900 {
2901   rtx true_mem_addr;
2902   rtx base;
2903   int ret;
2904 
2905   gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2906 		       : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2907 
2908   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2909     return 1;
2910 
2911   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2912      This is used in epilogue deallocation functions, and in cselib.  */
2913   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2914     return 1;
2915   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2916     return 1;
2917   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2918       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2919     return 1;
2920 
2921   if (! x_addr)
2922     x_addr = XEXP (x, 0);
2923   x_addr = get_addr (x_addr);
2924 
2925   if (! mem_addr)
2926     {
2927       mem_addr = XEXP (mem, 0);
2928       if (mem_mode == VOIDmode)
2929 	mem_mode = GET_MODE (mem);
2930     }
2931   true_mem_addr = get_addr (mem_addr);
2932 
2933   /* Read-only memory is by definition never modified, and therefore can't
2934      conflict with anything.  However, don't assume anything when AND
2935      addresses are involved and leave to the code below to determine
2936      dependence.  We don't expect to find read-only set on MEM, but
2937      stupid user tricks can produce them, so don't die.  */
2938   if (MEM_READONLY_P (x)
2939       && GET_CODE (x_addr) != AND
2940       && GET_CODE (true_mem_addr) != AND)
2941     return 0;
2942 
2943   /* If we have MEMs referring to different address spaces (which can
2944      potentially overlap), we cannot easily tell from the addresses
2945      whether the references overlap.  */
2946   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2947     return 1;
2948 
2949   base = find_base_term (x_addr);
2950   if (base && (GET_CODE (base) == LABEL_REF
2951 	       || (GET_CODE (base) == SYMBOL_REF
2952 		   && CONSTANT_POOL_ADDRESS_P (base))))
2953     return 0;
2954 
2955   rtx mem_base = find_base_term (true_mem_addr);
2956   if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2957 			  GET_MODE (x), mem_mode))
2958     return 0;
2959 
2960   x_addr = canon_rtx (x_addr);
2961   if (!mem_canonicalized)
2962     mem_addr = canon_rtx (true_mem_addr);
2963 
2964   if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2965 				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2966     return ret;
2967 
2968   if (mems_in_disjoint_alias_sets_p (x, mem))
2969     return 0;
2970 
2971   if (nonoverlapping_memrefs_p (mem, x, false))
2972     return 0;
2973 
2974   return rtx_refs_may_alias_p (x, mem, true);
2975 }
2976 
2977 /* True dependence: X is read after store in MEM takes place.  */
2978 
2979 int
2980 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2981 {
2982   return true_dependence_1 (mem, mem_mode, NULL_RTX,
2983 			    x, NULL_RTX, /*mem_canonicalized=*/false);
2984 }
2985 
2986 /* Canonical true dependence: X is read after store in MEM takes place.
2987    Variant of true_dependence which assumes MEM has already been
2988    canonicalized (hence we no longer do that here).
2989    The mem_addr argument has been added, since true_dependence_1 computed
2990    this value prior to canonicalizing.  */
2991 
2992 int
2993 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2994 		       const_rtx x, rtx x_addr)
2995 {
2996   return true_dependence_1 (mem, mem_mode, mem_addr,
2997 			    x, x_addr, /*mem_canonicalized=*/true);
2998 }
2999 
3000 /* Returns nonzero if a write to X might alias a previous read from
3001    (or, if WRITEP is true, a write to) MEM.
3002    If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3003    and X_MODE the mode for that access.
3004    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3005 
3006 static int
3007 write_dependence_p (const_rtx mem,
3008 		    const_rtx x, machine_mode x_mode, rtx x_addr,
3009 		    bool mem_canonicalized, bool x_canonicalized, bool writep)
3010 {
3011   rtx mem_addr;
3012   rtx true_mem_addr, true_x_addr;
3013   rtx base;
3014   int ret;
3015 
3016   gcc_checking_assert (x_canonicalized
3017 		       ? (x_addr != NULL_RTX
3018 			  && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3019 		       : (x_addr == NULL_RTX && x_mode == VOIDmode));
3020 
3021   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3022     return 1;
3023 
3024   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3025      This is used in epilogue deallocation functions.  */
3026   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3027     return 1;
3028   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3029     return 1;
3030   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3031       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3032     return 1;
3033 
3034   if (!x_addr)
3035     x_addr = XEXP (x, 0);
3036   true_x_addr = get_addr (x_addr);
3037 
3038   mem_addr = XEXP (mem, 0);
3039   true_mem_addr = get_addr (mem_addr);
3040 
3041   /* A read from read-only memory can't conflict with read-write memory.
3042      Don't assume anything when AND addresses are involved and leave to
3043      the code below to determine dependence.  */
3044   if (!writep
3045       && MEM_READONLY_P (mem)
3046       && GET_CODE (true_x_addr) != AND
3047       && GET_CODE (true_mem_addr) != AND)
3048     return 0;
3049 
3050   /* If we have MEMs referring to different address spaces (which can
3051      potentially overlap), we cannot easily tell from the addresses
3052      whether the references overlap.  */
3053   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3054     return 1;
3055 
3056   base = find_base_term (true_mem_addr);
3057   if (! writep
3058       && base
3059       && (GET_CODE (base) == LABEL_REF
3060 	  || (GET_CODE (base) == SYMBOL_REF
3061 	      && CONSTANT_POOL_ADDRESS_P (base))))
3062     return 0;
3063 
3064   rtx x_base = find_base_term (true_x_addr);
3065   if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3066 			  GET_MODE (x), GET_MODE (mem)))
3067     return 0;
3068 
3069   if (!x_canonicalized)
3070     {
3071       x_addr = canon_rtx (true_x_addr);
3072       x_mode = GET_MODE (x);
3073     }
3074   if (!mem_canonicalized)
3075     mem_addr = canon_rtx (true_mem_addr);
3076 
3077   if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3078 				 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3079     return ret;
3080 
3081   if (nonoverlapping_memrefs_p (x, mem, false))
3082     return 0;
3083 
3084   return rtx_refs_may_alias_p (x, mem, false);
3085 }
3086 
3087 /* Anti dependence: X is written after read in MEM takes place.  */
3088 
3089 int
3090 anti_dependence (const_rtx mem, const_rtx x)
3091 {
3092   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3093 			     /*mem_canonicalized=*/false,
3094 			     /*x_canonicalized*/false, /*writep=*/false);
3095 }
3096 
3097 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3098    Also, consider X in X_MODE (which might be from an enclosing
3099    STRICT_LOW_PART / ZERO_EXTRACT).
3100    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3101 
3102 int
3103 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3104 		       const_rtx x, machine_mode x_mode, rtx x_addr)
3105 {
3106   return write_dependence_p (mem, x, x_mode, x_addr,
3107 			     mem_canonicalized, /*x_canonicalized=*/true,
3108 			     /*writep=*/false);
3109 }
3110 
3111 /* Output dependence: X is written after store in MEM takes place.  */
3112 
3113 int
3114 output_dependence (const_rtx mem, const_rtx x)
3115 {
3116   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3117 			     /*mem_canonicalized=*/false,
3118 			     /*x_canonicalized*/false, /*writep=*/true);
3119 }
3120 
3121 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3122    Also, consider X in X_MODE (which might be from an enclosing
3123    STRICT_LOW_PART / ZERO_EXTRACT).
3124    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3125 
3126 int
3127 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3128 			 const_rtx x, machine_mode x_mode, rtx x_addr)
3129 {
3130   return write_dependence_p (mem, x, x_mode, x_addr,
3131 			     mem_canonicalized, /*x_canonicalized=*/true,
3132 			     /*writep=*/true);
3133 }
3134 
3135 
3136 
3137 /* Check whether X may be aliased with MEM.  Don't do offset-based
3138   memory disambiguation & TBAA.  */
3139 int
3140 may_alias_p (const_rtx mem, const_rtx x)
3141 {
3142   rtx x_addr, mem_addr;
3143 
3144   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3145     return 1;
3146 
3147   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3148      This is used in epilogue deallocation functions.  */
3149   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3150     return 1;
3151   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3152     return 1;
3153   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3154       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3155     return 1;
3156 
3157   x_addr = XEXP (x, 0);
3158   x_addr = get_addr (x_addr);
3159 
3160   mem_addr = XEXP (mem, 0);
3161   mem_addr = get_addr (mem_addr);
3162 
3163   /* Read-only memory is by definition never modified, and therefore can't
3164      conflict with anything.  However, don't assume anything when AND
3165      addresses are involved and leave to the code below to determine
3166      dependence.  We don't expect to find read-only set on MEM, but
3167      stupid user tricks can produce them, so don't die.  */
3168   if (MEM_READONLY_P (x)
3169       && GET_CODE (x_addr) != AND
3170       && GET_CODE (mem_addr) != AND)
3171     return 0;
3172 
3173   /* If we have MEMs referring to different address spaces (which can
3174      potentially overlap), we cannot easily tell from the addresses
3175      whether the references overlap.  */
3176   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3177     return 1;
3178 
3179   rtx x_base = find_base_term (x_addr);
3180   rtx mem_base = find_base_term (mem_addr);
3181   if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3182 			  GET_MODE (x), GET_MODE (mem_addr)))
3183     return 0;
3184 
3185   if (nonoverlapping_memrefs_p (mem, x, true))
3186     return 0;
3187 
3188   /* TBAA not valid for loop_invarint */
3189   return rtx_refs_may_alias_p (x, mem, false);
3190 }
3191 
3192 void
3193 init_alias_target (void)
3194 {
3195   int i;
3196 
3197   if (!arg_base_value)
3198     arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3199 
3200   memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3201 
3202   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3203     /* Check whether this register can hold an incoming pointer
3204        argument.  FUNCTION_ARG_REGNO_P tests outgoing register
3205        numbers, so translate if necessary due to register windows.  */
3206     if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3207 	&& targetm.hard_regno_mode_ok (i, Pmode))
3208       static_reg_base_value[i] = arg_base_value;
3209 
3210   /* RTL code is required to be consistent about whether it uses the
3211      stack pointer, the frame pointer or the argument pointer to
3212      access a given area of the frame.  We can therefore use the
3213      base address to distinguish between the different areas.  */
3214   static_reg_base_value[STACK_POINTER_REGNUM]
3215     = unique_base_value (UNIQUE_BASE_VALUE_SP);
3216   static_reg_base_value[ARG_POINTER_REGNUM]
3217     = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3218   static_reg_base_value[FRAME_POINTER_REGNUM]
3219     = unique_base_value (UNIQUE_BASE_VALUE_FP);
3220 
3221   /* The above rules extend post-reload, with eliminations applying
3222      consistently to each of the three pointers.  Cope with cases in
3223      which the frame pointer is eliminated to the hard frame pointer
3224      rather than the stack pointer.  */
3225   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3226     static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3227       = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3228 }
3229 
3230 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3231    to be memory reference.  */
3232 static bool memory_modified;
3233 static void
3234 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3235 {
3236   if (MEM_P (x))
3237     {
3238       if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3239 	memory_modified = true;
3240     }
3241 }
3242 
3243 
3244 /* Return true when INSN possibly modify memory contents of MEM
3245    (i.e. address can be modified).  */
3246 bool
3247 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3248 {
3249   if (!INSN_P (insn))
3250     return false;
3251   /* Conservatively assume all non-readonly MEMs might be modified in
3252      calls.  */
3253   if (CALL_P (insn))
3254     return true;
3255   memory_modified = false;
3256   note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3257   return memory_modified;
3258 }
3259 
3260 /* Return TRUE if the destination of a set is rtx identical to
3261    ITEM.  */
3262 static inline bool
3263 set_dest_equal_p (const_rtx set, const_rtx item)
3264 {
3265   rtx dest = SET_DEST (set);
3266   return rtx_equal_p (dest, item);
3267 }
3268 
3269 /* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
3270    array.  */
3271 
3272 void
3273 init_alias_analysis (void)
3274 {
3275   unsigned int maxreg = max_reg_num ();
3276   int changed, pass;
3277   int i;
3278   unsigned int ui;
3279   rtx_insn *insn;
3280   rtx val;
3281   int rpo_cnt;
3282   int *rpo;
3283 
3284   timevar_push (TV_ALIAS_ANALYSIS);
3285 
3286   vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3287   reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3288   bitmap_clear (reg_known_equiv_p);
3289 
3290   /* If we have memory allocated from the previous run, use it.  */
3291   if (old_reg_base_value)
3292     reg_base_value = old_reg_base_value;
3293 
3294   if (reg_base_value)
3295     reg_base_value->truncate (0);
3296 
3297   vec_safe_grow_cleared (reg_base_value, maxreg);
3298 
3299   new_reg_base_value = XNEWVEC (rtx, maxreg);
3300   reg_seen = sbitmap_alloc (maxreg);
3301 
3302   /* The basic idea is that each pass through this loop will use the
3303      "constant" information from the previous pass to propagate alias
3304      information through another level of assignments.
3305 
3306      The propagation is done on the CFG in reverse post-order, to propagate
3307      things forward as far as possible in each iteration.
3308 
3309      This could get expensive if the assignment chains are long.  Maybe
3310      we should throttle the number of iterations, possibly based on
3311      the optimization level or flag_expensive_optimizations.
3312 
3313      We could propagate more information in the first pass by making use
3314      of DF_REG_DEF_COUNT to determine immediately that the alias information
3315      for a pseudo is "constant".
3316 
3317      A program with an uninitialized variable can cause an infinite loop
3318      here.  Instead of doing a full dataflow analysis to detect such problems
3319      we just cap the number of iterations for the loop.
3320 
3321      The state of the arrays for the set chain in question does not matter
3322      since the program has undefined behavior.  */
3323 
3324   rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3325   rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3326 
3327   /* The prologue/epilogue insns are not threaded onto the
3328      insn chain until after reload has completed.  Thus,
3329      there is no sense wasting time checking if INSN is in
3330      the prologue/epilogue until after reload has completed.  */
3331   bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3332 				      || targetm.have_epilogue ())
3333 				     && reload_completed);
3334 
3335   pass = 0;
3336   do
3337     {
3338       /* Assume nothing will change this iteration of the loop.  */
3339       changed = 0;
3340 
3341       /* We want to assign the same IDs each iteration of this loop, so
3342 	 start counting from one each iteration of the loop.  */
3343       unique_id = 1;
3344 
3345       /* We're at the start of the function each iteration through the
3346 	 loop, so we're copying arguments.  */
3347       copying_arguments = true;
3348 
3349       /* Wipe the potential alias information clean for this pass.  */
3350       memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3351 
3352       /* Wipe the reg_seen array clean.  */
3353       bitmap_clear (reg_seen);
3354 
3355       /* Initialize the alias information for this pass.  */
3356       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3357 	if (static_reg_base_value[i]
3358 	    /* Don't treat the hard frame pointer as special if we
3359 	       eliminated the frame pointer to the stack pointer instead.  */
3360 	    && !(i == HARD_FRAME_POINTER_REGNUM
3361 		 && reload_completed
3362 		 && !frame_pointer_needed
3363 		 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3364 					   STACK_POINTER_REGNUM)))
3365 	  {
3366 	    new_reg_base_value[i] = static_reg_base_value[i];
3367 	    bitmap_set_bit (reg_seen, i);
3368 	  }
3369 
3370       /* Walk the insns adding values to the new_reg_base_value array.  */
3371       for (i = 0; i < rpo_cnt; i++)
3372 	{
3373 	  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3374 	  FOR_BB_INSNS (bb, insn)
3375 	    {
3376 	      if (NONDEBUG_INSN_P (insn))
3377 		{
3378 		  rtx note, set;
3379 
3380 		  if (could_be_prologue_epilogue
3381 		      && prologue_epilogue_contains (insn))
3382 		    continue;
3383 
3384 		  /* If this insn has a noalias note, process it,  Otherwise,
3385 		     scan for sets.  A simple set will have no side effects
3386 		     which could change the base value of any other register.  */
3387 
3388 		  if (GET_CODE (PATTERN (insn)) == SET
3389 		      && REG_NOTES (insn) != 0
3390 		      && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3391 		    record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3392 		  else
3393 		    note_stores (PATTERN (insn), record_set, NULL);
3394 
3395 		  set = single_set (insn);
3396 
3397 		  if (set != 0
3398 		      && REG_P (SET_DEST (set))
3399 		      && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3400 		    {
3401 		      unsigned int regno = REGNO (SET_DEST (set));
3402 		      rtx src = SET_SRC (set);
3403 		      rtx t;
3404 
3405 		      note = find_reg_equal_equiv_note (insn);
3406 		      if (note && REG_NOTE_KIND (note) == REG_EQUAL
3407 			  && DF_REG_DEF_COUNT (regno) != 1)
3408 			note = NULL_RTX;
3409 
3410 		      if (note != NULL_RTX
3411 			  && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3412 			  && ! rtx_varies_p (XEXP (note, 0), 1)
3413 			  && ! reg_overlap_mentioned_p (SET_DEST (set),
3414 							XEXP (note, 0)))
3415 			{
3416 			  set_reg_known_value (regno, XEXP (note, 0));
3417 			  set_reg_known_equiv_p (regno,
3418 						 REG_NOTE_KIND (note) == REG_EQUIV);
3419 			}
3420 		      else if (DF_REG_DEF_COUNT (regno) == 1
3421 			       && GET_CODE (src) == PLUS
3422 			       && REG_P (XEXP (src, 0))
3423 			       && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3424 			       && CONST_INT_P (XEXP (src, 1)))
3425 			{
3426 			  t = plus_constant (GET_MODE (src), t,
3427 					     INTVAL (XEXP (src, 1)));
3428 			  set_reg_known_value (regno, t);
3429 			  set_reg_known_equiv_p (regno, false);
3430 			}
3431 		      else if (DF_REG_DEF_COUNT (regno) == 1
3432 			       && ! rtx_varies_p (src, 1))
3433 			{
3434 			  set_reg_known_value (regno, src);
3435 			  set_reg_known_equiv_p (regno, false);
3436 			}
3437 		    }
3438 		}
3439 	      else if (NOTE_P (insn)
3440 		       && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3441 		copying_arguments = false;
3442 	    }
3443 	}
3444 
3445       /* Now propagate values from new_reg_base_value to reg_base_value.  */
3446       gcc_assert (maxreg == (unsigned int) max_reg_num ());
3447 
3448       for (ui = 0; ui < maxreg; ui++)
3449 	{
3450 	  if (new_reg_base_value[ui]
3451 	      && new_reg_base_value[ui] != (*reg_base_value)[ui]
3452 	      && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3453 	    {
3454 	      (*reg_base_value)[ui] = new_reg_base_value[ui];
3455 	      changed = 1;
3456 	    }
3457 	}
3458     }
3459   while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3460   XDELETEVEC (rpo);
3461 
3462   /* Fill in the remaining entries.  */
3463   FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3464     {
3465       int regno = i + FIRST_PSEUDO_REGISTER;
3466       if (! val)
3467 	set_reg_known_value (regno, regno_reg_rtx[regno]);
3468     }
3469 
3470   /* Clean up.  */
3471   free (new_reg_base_value);
3472   new_reg_base_value = 0;
3473   sbitmap_free (reg_seen);
3474   reg_seen = 0;
3475   timevar_pop (TV_ALIAS_ANALYSIS);
3476 }
3477 
3478 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3479    Special API for var-tracking pass purposes.  */
3480 
3481 void
3482 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3483 {
3484   (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3485 }
3486 
3487 void
3488 end_alias_analysis (void)
3489 {
3490   old_reg_base_value = reg_base_value;
3491   vec_free (reg_known_value);
3492   sbitmap_free (reg_known_equiv_p);
3493 }
3494 
3495 void
3496 dump_alias_stats_in_alias_c (FILE *s)
3497 {
3498   fprintf (s, "  TBAA oracle: %llu disambiguations %llu queries\n"
3499 	      "               %llu are in alias set 0\n"
3500 	      "               %llu queries asked about the same object\n"
3501 	      "               %llu queries asked about the same alias set\n"
3502 	      "               %llu access volatile\n"
3503 	      "               %llu are dependent in the DAG\n"
3504 	      "               %llu are aritificially in conflict with void *\n",
3505 	   alias_stats.num_disambiguated,
3506 	   alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3507 	   + alias_stats.num_same_objects + alias_stats.num_volatile
3508 	   + alias_stats.num_dag + alias_stats.num_disambiguated
3509 	   + alias_stats.num_universal,
3510 	   alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3511 	   alias_stats.num_same_objects, alias_stats.num_volatile,
3512 	   alias_stats.num_dag, alias_stats.num_universal);
3513 }
3514 #include "gt-alias.h"
3515