xref: /dragonfly/contrib/gcc-8.0/gcc/bb-reorder.c (revision 7bcb6caf)
1 /* Basic block reordering routines for the GNU compiler.
2    Copyright (C) 2000-2018 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains the "reorder blocks" pass, which changes the control
21    flow of a function to encounter fewer branches; the "partition blocks"
22    pass, which divides the basic blocks into "hot" and "cold" partitions,
23    which are kept separate; and the "duplicate computed gotos" pass, which
24    duplicates blocks ending in an indirect jump.
25 
26    There are two algorithms for "reorder blocks": the "simple" algorithm,
27    which just rearranges blocks, trying to minimize the number of executed
28    unconditional branches; and the "software trace cache" algorithm, which
29    also copies code, and in general tries a lot harder to have long linear
30    pieces of machine code executed.  This algorithm is described next.  */
31 
32 /* This (greedy) algorithm constructs traces in several rounds.
33    The construction starts from "seeds".  The seed for the first round
34    is the entry point of the function.  When there are more than one seed,
35    the one with the lowest key in the heap is selected first (see bb_to_key).
36    Then the algorithm repeatedly adds the most probable successor to the end
37    of a trace.  Finally it connects the traces.
38 
39    There are two parameters: Branch Threshold and Exec Threshold.
40    If the probability of an edge to a successor of the current basic block is
41    lower than Branch Threshold or its count is lower than Exec Threshold,
42    then the successor will be the seed in one of the next rounds.
43    Each round has these parameters lower than the previous one.
44    The last round has to have these parameters set to zero so that the
45    remaining blocks are picked up.
46 
47    The algorithm selects the most probable successor from all unvisited
48    successors and successors that have been added to this trace.
49    The other successors (that has not been "sent" to the next round) will be
50    other seeds for this round and the secondary traces will start from them.
51    If the successor has not been visited in this trace, it is added to the
52    trace (however, there is some heuristic for simple branches).
53    If the successor has been visited in this trace, a loop has been found.
54    If the loop has many iterations, the loop is rotated so that the source
55    block of the most probable edge going out of the loop is the last block
56    of the trace.
57    If the loop has few iterations and there is no edge from the last block of
58    the loop going out of the loop, the loop header is duplicated.
59 
60    When connecting traces, the algorithm first checks whether there is an edge
61    from the last block of a trace to the first block of another trace.
62    When there are still some unconnected traces it checks whether there exists
63    a basic block BB such that BB is a successor of the last block of a trace
64    and BB is a predecessor of the first block of another trace.  In this case,
65    BB is duplicated, added at the end of the first trace and the traces are
66    connected through it.
67    The rest of traces are simply connected so there will be a jump to the
68    beginning of the rest of traces.
69 
70    The above description is for the full algorithm, which is used when the
71    function is optimized for speed.  When the function is optimized for size,
72    in order to reduce long jumps and connect more fallthru edges, the
73    algorithm is modified as follows:
74    (1) Break long traces to short ones.  A trace is broken at a block that has
75    multiple predecessors/ successors during trace discovery.  When connecting
76    traces, only connect Trace n with Trace n + 1.  This change reduces most
77    long jumps compared with the above algorithm.
78    (2) Ignore the edge probability and count for fallthru edges.
79    (3) Keep the original order of blocks when there is no chance to fall
80    through.  We rely on the results of cfg_cleanup.
81 
82    To implement the change for code size optimization, block's index is
83    selected as the key and all traces are found in one round.
84 
85    References:
86 
87    "Software Trace Cache"
88    A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
89    http://citeseer.nj.nec.com/15361.html
90 
91 */
92 
93 #include "config.h"
94 #define INCLUDE_ALGORITHM /* stable_sort */
95 #include "system.h"
96 #include "coretypes.h"
97 #include "backend.h"
98 #include "target.h"
99 #include "rtl.h"
100 #include "tree.h"
101 #include "cfghooks.h"
102 #include "df.h"
103 #include "memmodel.h"
104 #include "optabs.h"
105 #include "regs.h"
106 #include "emit-rtl.h"
107 #include "output.h"
108 #include "expr.h"
109 #include "params.h"
110 #include "tree-pass.h"
111 #include "cfgrtl.h"
112 #include "cfganal.h"
113 #include "cfgbuild.h"
114 #include "cfgcleanup.h"
115 #include "bb-reorder.h"
116 #include "except.h"
117 #include "fibonacci_heap.h"
118 #include "stringpool.h"
119 #include "attribs.h"
120 
121 /* The number of rounds.  In most cases there will only be 4 rounds, but
122    when partitioning hot and cold basic blocks into separate sections of
123    the object file there will be an extra round.  */
124 #define N_ROUNDS 5
125 
126 struct target_bb_reorder default_target_bb_reorder;
127 #if SWITCHABLE_TARGET
128 struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
129 #endif
130 
131 #define uncond_jump_length \
132   (this_target_bb_reorder->x_uncond_jump_length)
133 
134 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE.  */
135 static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
136 
137 /* Exec thresholds in thousandths (per mille) of the count of bb 0.  */
138 static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
139 
140 /* If edge count is lower than DUPLICATION_THRESHOLD per mille of entry
141    block the edge destination is not duplicated while connecting traces.  */
142 #define DUPLICATION_THRESHOLD 100
143 
144 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
145 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
146 
147 /* Structure to hold needed information for each basic block.  */
148 struct bbro_basic_block_data
149 {
150   /* Which trace is the bb start of (-1 means it is not a start of any).  */
151   int start_of_trace;
152 
153   /* Which trace is the bb end of (-1 means it is not an end of any).  */
154   int end_of_trace;
155 
156   /* Which trace is the bb in?  */
157   int in_trace;
158 
159   /* Which trace was this bb visited in?  */
160   int visited;
161 
162   /* Cached maximum frequency of interesting incoming edges.
163      Minus one means not yet computed.  */
164   int priority;
165 
166   /* Which heap is BB in (if any)?  */
167   bb_heap_t *heap;
168 
169   /* Which heap node is BB in (if any)?  */
170   bb_heap_node_t *node;
171 };
172 
173 /* The current size of the following dynamic array.  */
174 static int array_size;
175 
176 /* The array which holds needed information for basic blocks.  */
177 static bbro_basic_block_data *bbd;
178 
179 /* To avoid frequent reallocation the size of arrays is greater than needed,
180    the number of elements is (not less than) 1.25 * size_wanted.  */
181 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
182 
183 /* Free the memory and set the pointer to NULL.  */
184 #define FREE(P) (gcc_assert (P), free (P), P = 0)
185 
186 /* Structure for holding information about a trace.  */
187 struct trace
188 {
189   /* First and last basic block of the trace.  */
190   basic_block first, last;
191 
192   /* The round of the STC creation which this trace was found in.  */
193   int round;
194 
195   /* The length (i.e. the number of basic blocks) of the trace.  */
196   int length;
197 };
198 
199 /* Maximum count of one of the entry blocks.  */
200 static profile_count max_entry_count;
201 
202 /* Local function prototypes.  */
203 static void find_traces_1_round (int, profile_count, struct trace *, int *,
204 				 int, bb_heap_t **, int);
205 static basic_block copy_bb (basic_block, edge, basic_block, int);
206 static long bb_to_key (basic_block);
207 static bool better_edge_p (const_basic_block, const_edge, profile_probability,
208 			   profile_count, profile_probability, profile_count,
209 			   const_edge);
210 static bool copy_bb_p (const_basic_block, int);
211 
212 /* Return the trace number in which BB was visited.  */
213 
214 static int
215 bb_visited_trace (const_basic_block bb)
216 {
217   gcc_assert (bb->index < array_size);
218   return bbd[bb->index].visited;
219 }
220 
221 /* This function marks BB that it was visited in trace number TRACE.  */
222 
223 static void
224 mark_bb_visited (basic_block bb, int trace)
225 {
226   bbd[bb->index].visited = trace;
227   if (bbd[bb->index].heap)
228     {
229       bbd[bb->index].heap->delete_node (bbd[bb->index].node);
230       bbd[bb->index].heap = NULL;
231       bbd[bb->index].node = NULL;
232     }
233 }
234 
235 /* Check to see if bb should be pushed into the next round of trace
236    collections or not.  Reasons for pushing the block forward are 1).
237    If the block is cold, we are doing partitioning, and there will be
238    another round (cold partition blocks are not supposed to be
239    collected into traces until the very last round); or 2). There will
240    be another round, and the basic block is not "hot enough" for the
241    current round of trace collection.  */
242 
243 static bool
244 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
245 		      profile_count count_th)
246 {
247   bool there_exists_another_round;
248   bool block_not_hot_enough;
249 
250   there_exists_another_round = round < number_of_rounds - 1;
251 
252   block_not_hot_enough = (bb->count < count_th
253 			  || probably_never_executed_bb_p (cfun, bb));
254 
255   if (there_exists_another_round
256       && block_not_hot_enough)
257     return true;
258   else
259     return false;
260 }
261 
262 /* Find the traces for Software Trace Cache.  Chain each trace through
263    RBI()->next.  Store the number of traces to N_TRACES and description of
264    traces to TRACES.  */
265 
266 static void
267 find_traces (int *n_traces, struct trace *traces)
268 {
269   int i;
270   int number_of_rounds;
271   edge e;
272   edge_iterator ei;
273   bb_heap_t *heap = new bb_heap_t (LONG_MIN);
274 
275   /* Add one extra round of trace collection when partitioning hot/cold
276      basic blocks into separate sections.  The last round is for all the
277      cold blocks (and ONLY the cold blocks).  */
278 
279   number_of_rounds = N_ROUNDS - 1;
280 
281   /* Insert entry points of function into heap.  */
282   max_entry_count = profile_count::zero ();
283   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
284     {
285       bbd[e->dest->index].heap = heap;
286       bbd[e->dest->index].node = heap->insert (bb_to_key (e->dest), e->dest);
287       if (e->dest->count > max_entry_count)
288 	max_entry_count = e->dest->count;
289     }
290 
291   /* Find the traces.  */
292   for (i = 0; i < number_of_rounds; i++)
293     {
294       profile_count count_threshold;
295 
296       if (dump_file)
297 	fprintf (dump_file, "STC - round %d\n", i + 1);
298 
299       count_threshold = max_entry_count.apply_scale (exec_threshold[i], 1000);
300 
301       find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
302 			   count_threshold, traces, n_traces, i, &heap,
303 			   number_of_rounds);
304     }
305   delete heap;
306 
307   if (dump_file)
308     {
309       for (i = 0; i < *n_traces; i++)
310 	{
311 	  basic_block bb;
312 	  fprintf (dump_file, "Trace %d (round %d):  ", i + 1,
313 		   traces[i].round + 1);
314 	  for (bb = traces[i].first;
315 	       bb != traces[i].last;
316 	       bb = (basic_block) bb->aux)
317 	    {
318 	      fprintf (dump_file, "%d [", bb->index);
319 	      bb->count.dump (dump_file);
320 	      fprintf (dump_file, "] ");
321 	    }
322 	  fprintf (dump_file, "%d [", bb->index);
323 	  bb->count.dump (dump_file);
324 	  fprintf (dump_file, "]\n");
325 	}
326       fflush (dump_file);
327     }
328 }
329 
330 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
331    (with sequential number TRACE_N).  */
332 
333 static basic_block
334 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
335 {
336   basic_block bb;
337 
338   /* Information about the best end (end after rotation) of the loop.  */
339   basic_block best_bb = NULL;
340   edge best_edge = NULL;
341   profile_count best_count = profile_count::uninitialized ();
342   /* The best edge is preferred when its destination is not visited yet
343      or is a start block of some trace.  */
344   bool is_preferred = false;
345 
346   /* Find the most frequent edge that goes out from current trace.  */
347   bb = back_edge->dest;
348   do
349     {
350       edge e;
351       edge_iterator ei;
352 
353       FOR_EACH_EDGE (e, ei, bb->succs)
354 	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
355 	    && bb_visited_trace (e->dest) != trace_n
356 	    && (e->flags & EDGE_CAN_FALLTHRU)
357 	    && !(e->flags & EDGE_COMPLEX))
358 	{
359 	  if (is_preferred)
360 	    {
361 	      /* The best edge is preferred.  */
362 	      if (!bb_visited_trace (e->dest)
363 		  || bbd[e->dest->index].start_of_trace >= 0)
364 		{
365 		  /* The current edge E is also preferred.  */
366 		  if (e->count () > best_count)
367 		    {
368 		      best_count = e->count ();
369 		      best_edge = e;
370 		      best_bb = bb;
371 		    }
372 		}
373 	    }
374 	  else
375 	    {
376 	      if (!bb_visited_trace (e->dest)
377 		  || bbd[e->dest->index].start_of_trace >= 0)
378 		{
379 		  /* The current edge E is preferred.  */
380 		  is_preferred = true;
381 		  best_count = e->count ();
382 		  best_edge = e;
383 		  best_bb = bb;
384 		}
385 	      else
386 		{
387 		  if (!best_edge || e->count () > best_count)
388 		    {
389 		      best_count = e->count ();
390 		      best_edge = e;
391 		      best_bb = bb;
392 		    }
393 		}
394 	    }
395 	}
396       bb = (basic_block) bb->aux;
397     }
398   while (bb != back_edge->dest);
399 
400   if (best_bb)
401     {
402       /* Rotate the loop so that the BEST_EDGE goes out from the last block of
403 	 the trace.  */
404       if (back_edge->dest == trace->first)
405 	{
406 	  trace->first = (basic_block) best_bb->aux;
407 	}
408       else
409 	{
410 	  basic_block prev_bb;
411 
412 	  for (prev_bb = trace->first;
413 	       prev_bb->aux != back_edge->dest;
414 	       prev_bb = (basic_block) prev_bb->aux)
415 	    ;
416 	  prev_bb->aux = best_bb->aux;
417 
418 	  /* Try to get rid of uncond jump to cond jump.  */
419 	  if (single_succ_p (prev_bb))
420 	    {
421 	      basic_block header = single_succ (prev_bb);
422 
423 	      /* Duplicate HEADER if it is a small block containing cond jump
424 		 in the end.  */
425 	      if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
426 		  && !CROSSING_JUMP_P (BB_END (header)))
427 		copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
428 	    }
429 	}
430     }
431   else
432     {
433       /* We have not found suitable loop tail so do no rotation.  */
434       best_bb = back_edge->src;
435     }
436   best_bb->aux = NULL;
437   return best_bb;
438 }
439 
440 /* One round of finding traces.  Find traces for BRANCH_TH and EXEC_TH i.e. do
441    not include basic blocks whose probability is lower than BRANCH_TH or whose
442    count is lower than EXEC_TH into traces (or whose count is lower than
443    COUNT_TH).  Store the new traces into TRACES and modify the number of
444    traces *N_TRACES.  Set the round (which the trace belongs to) to ROUND.
445    The function expects starting basic blocks to be in *HEAP and will delete
446    *HEAP and store starting points for the next round into new *HEAP.  */
447 
448 static void
449 find_traces_1_round (int branch_th, profile_count count_th,
450 		     struct trace *traces, int *n_traces, int round,
451 		     bb_heap_t **heap, int number_of_rounds)
452 {
453   /* Heap for discarded basic blocks which are possible starting points for
454      the next round.  */
455   bb_heap_t *new_heap = new bb_heap_t (LONG_MIN);
456   bool for_size = optimize_function_for_size_p (cfun);
457 
458   while (!(*heap)->empty ())
459     {
460       basic_block bb;
461       struct trace *trace;
462       edge best_edge, e;
463       long key;
464       edge_iterator ei;
465 
466       bb = (*heap)->extract_min ();
467       bbd[bb->index].heap = NULL;
468       bbd[bb->index].node = NULL;
469 
470       if (dump_file)
471 	fprintf (dump_file, "Getting bb %d\n", bb->index);
472 
473       /* If the BB's count is too low, send BB to the next round.  When
474 	 partitioning hot/cold blocks into separate sections, make sure all
475 	 the cold blocks (and ONLY the cold blocks) go into the (extra) final
476 	 round.  When optimizing for size, do not push to next round.  */
477 
478       if (!for_size
479 	  && push_to_next_round_p (bb, round, number_of_rounds,
480 				   count_th))
481 	{
482 	  int key = bb_to_key (bb);
483 	  bbd[bb->index].heap = new_heap;
484 	  bbd[bb->index].node = new_heap->insert (key, bb);
485 
486 	  if (dump_file)
487 	    fprintf (dump_file,
488 		     "  Possible start point of next round: %d (key: %d)\n",
489 		     bb->index, key);
490 	  continue;
491 	}
492 
493       trace = traces + *n_traces;
494       trace->first = bb;
495       trace->round = round;
496       trace->length = 0;
497       bbd[bb->index].in_trace = *n_traces;
498       (*n_traces)++;
499 
500       do
501 	{
502 	  bool ends_in_call;
503 
504 	  /* The probability and count of the best edge.  */
505 	  profile_probability best_prob = profile_probability::uninitialized ();
506 	  profile_count best_count = profile_count::uninitialized ();
507 
508 	  best_edge = NULL;
509 	  mark_bb_visited (bb, *n_traces);
510 	  trace->length++;
511 
512 	  if (dump_file)
513 	    fprintf (dump_file, "Basic block %d was visited in trace %d\n",
514 		     bb->index, *n_traces);
515 
516 	  ends_in_call = block_ends_with_call_p (bb);
517 
518 	  /* Select the successor that will be placed after BB.  */
519 	  FOR_EACH_EDGE (e, ei, bb->succs)
520 	    {
521 	      gcc_assert (!(e->flags & EDGE_FAKE));
522 
523 	      if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
524 		continue;
525 
526 	      if (bb_visited_trace (e->dest)
527 		  && bb_visited_trace (e->dest) != *n_traces)
528 		continue;
529 
530 	      /* If partitioning hot/cold basic blocks, don't consider edges
531 		 that cross section boundaries.  */
532 	      if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
533 		continue;
534 
535 	      profile_probability prob = e->probability;
536 	      profile_count count = e->dest->count;
537 
538 	      /* The only sensible preference for a call instruction is the
539 		 fallthru edge.  Don't bother selecting anything else.  */
540 	      if (ends_in_call)
541 		{
542 		  if (e->flags & EDGE_CAN_FALLTHRU)
543 		    {
544 		      best_edge = e;
545 		      best_prob = prob;
546 		      best_count = count;
547 		    }
548 		  continue;
549 		}
550 
551 	      /* Edge that cannot be fallthru or improbable or infrequent
552 		 successor (i.e. it is unsuitable successor).  When optimizing
553 		 for size, ignore the probability and count.  */
554 	      if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
555 		  || !prob.initialized_p ()
556 		  || ((prob.to_reg_br_prob_base () < branch_th
557 		      || e->count () < count_th) && (!for_size)))
558 		continue;
559 
560 	      if (better_edge_p (bb, e, prob, count, best_prob, best_count,
561 				 best_edge))
562 		{
563 		  best_edge = e;
564 		  best_prob = prob;
565 		  best_count = count;
566 		}
567 	    }
568 
569 	  /* If the best destination has multiple predecessors and can be
570 	     duplicated cheaper than a jump, don't allow it to be added to
571 	     a trace; we'll duplicate it when connecting the traces later.
572 	     However, we need to check that this duplication wouldn't leave
573 	     the best destination with only crossing predecessors, because
574 	     this would change its effective partition from hot to cold.  */
575 	  if (best_edge
576 	      && EDGE_COUNT (best_edge->dest->preds) >= 2
577 	      && copy_bb_p (best_edge->dest, 0))
578 	    {
579 	      bool only_crossing_preds = true;
580 	      edge e;
581 	      edge_iterator ei;
582 	      FOR_EACH_EDGE (e, ei, best_edge->dest->preds)
583 		if (e != best_edge && !(e->flags & EDGE_CROSSING))
584 		  {
585 		    only_crossing_preds = false;
586 		    break;
587 		  }
588 	      if (!only_crossing_preds)
589 		best_edge = NULL;
590 	    }
591 
592 	  /* If the best destination has multiple successors or predecessors,
593 	     don't allow it to be added when optimizing for size.  This makes
594 	     sure predecessors with smaller index are handled before the best
595 	     destinarion.  It breaks long trace and reduces long jumps.
596 
597 	     Take if-then-else as an example.
598 		A
599 	       / \
600 	      B   C
601 	       \ /
602 		D
603 	     If we do not remove the best edge B->D/C->D, the final order might
604 	     be A B D ... C.  C is at the end of the program.  If D's successors
605 	     and D are complicated, might need long jumps for A->C and C->D.
606 	     Similar issue for order: A C D ... B.
607 
608 	     After removing the best edge, the final result will be ABCD/ ACBD.
609 	     It does not add jump compared with the previous order.  But it
610 	     reduces the possibility of long jumps.  */
611 	  if (best_edge && for_size
612 	      && (EDGE_COUNT (best_edge->dest->succs) > 1
613 		 || EDGE_COUNT (best_edge->dest->preds) > 1))
614 	    best_edge = NULL;
615 
616 	  /* Add all non-selected successors to the heaps.  */
617 	  FOR_EACH_EDGE (e, ei, bb->succs)
618 	    {
619 	      if (e == best_edge
620 		  || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
621 		  || bb_visited_trace (e->dest))
622 		continue;
623 
624 	      key = bb_to_key (e->dest);
625 
626 	      if (bbd[e->dest->index].heap)
627 		{
628 		  /* E->DEST is already in some heap.  */
629 		  if (key != bbd[e->dest->index].node->get_key ())
630 		    {
631 		      if (dump_file)
632 			{
633 			  fprintf (dump_file,
634 				   "Changing key for bb %d from %ld to %ld.\n",
635 				   e->dest->index,
636 				   (long) bbd[e->dest->index].node->get_key (),
637 				   key);
638 			}
639 		      bbd[e->dest->index].heap->replace_key
640 		        (bbd[e->dest->index].node, key);
641 		    }
642 		}
643 	      else
644 		{
645 		  bb_heap_t *which_heap = *heap;
646 
647 		  profile_probability prob = e->probability;
648 
649 		  if (!(e->flags & EDGE_CAN_FALLTHRU)
650 		      || (e->flags & EDGE_COMPLEX)
651 		      || !prob.initialized_p ()
652 		      || prob.to_reg_br_prob_base () < branch_th
653 		      || e->count () < count_th)
654 		    {
655 		      /* When partitioning hot/cold basic blocks, make sure
656 			 the cold blocks (and only the cold blocks) all get
657 			 pushed to the last round of trace collection.  When
658 			 optimizing for size, do not push to next round.  */
659 
660 		      if (!for_size && push_to_next_round_p (e->dest, round,
661 							     number_of_rounds,
662 							     count_th))
663 			which_heap = new_heap;
664 		    }
665 
666 		  bbd[e->dest->index].heap = which_heap;
667 		  bbd[e->dest->index].node = which_heap->insert (key, e->dest);
668 
669 		  if (dump_file)
670 		    {
671 		      fprintf (dump_file,
672 			       "  Possible start of %s round: %d (key: %ld)\n",
673 			       (which_heap == new_heap) ? "next" : "this",
674 			       e->dest->index, (long) key);
675 		    }
676 
677 		}
678 	    }
679 
680 	  if (best_edge) /* Suitable successor was found.  */
681 	    {
682 	      if (bb_visited_trace (best_edge->dest) == *n_traces)
683 		{
684 		  /* We do nothing with one basic block loops.  */
685 		  if (best_edge->dest != bb)
686 		    {
687 		      if (best_edge->count ()
688 			  > best_edge->dest->count.apply_scale (4, 5))
689 			{
690 			  /* The loop has at least 4 iterations.  If the loop
691 			     header is not the first block of the function
692 			     we can rotate the loop.  */
693 
694 			  if (best_edge->dest
695 			      != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
696 			    {
697 			      if (dump_file)
698 				{
699 				  fprintf (dump_file,
700 					   "Rotating loop %d - %d\n",
701 					   best_edge->dest->index, bb->index);
702 				}
703 			      bb->aux = best_edge->dest;
704 			      bbd[best_edge->dest->index].in_trace =
705 							     (*n_traces) - 1;
706 			      bb = rotate_loop (best_edge, trace, *n_traces);
707 			    }
708 			}
709 		      else
710 			{
711 			  /* The loop has less than 4 iterations.  */
712 
713 			  if (single_succ_p (bb)
714 			      && copy_bb_p (best_edge->dest,
715 			      		    optimize_edge_for_speed_p
716 			      		    (best_edge)))
717 			    {
718 			      bb = copy_bb (best_edge->dest, best_edge, bb,
719 					    *n_traces);
720 			      trace->length++;
721 			    }
722 			}
723 		    }
724 
725 		  /* Terminate the trace.  */
726 		  break;
727 		}
728 	      else
729 		{
730 		  /* Check for a situation
731 
732 		    A
733 		   /|
734 		  B |
735 		   \|
736 		    C
737 
738 		  where
739 		  AB->count () + BC->count () >= AC->count ().
740 		  (i.e. 2 * B->count >= AC->count )
741 		  Best ordering is then A B C.
742 
743 		  When optimizing for size, A B C is always the best order.
744 
745 		  This situation is created for example by:
746 
747 		  if (A) B;
748 		  C;
749 
750 		  */
751 
752 		  FOR_EACH_EDGE (e, ei, bb->succs)
753 		    if (e != best_edge
754 			&& (e->flags & EDGE_CAN_FALLTHRU)
755 			&& !(e->flags & EDGE_COMPLEX)
756 			&& !bb_visited_trace (e->dest)
757 			&& single_pred_p (e->dest)
758 			&& !(e->flags & EDGE_CROSSING)
759 			&& single_succ_p (e->dest)
760 			&& (single_succ_edge (e->dest)->flags
761 			    & EDGE_CAN_FALLTHRU)
762 			&& !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
763 			&& single_succ (e->dest) == best_edge->dest
764 			&& (e->dest->count.apply_scale (2, 1)
765 			    >= best_edge->count () || for_size))
766 		      {
767 			best_edge = e;
768 			if (dump_file)
769 			  fprintf (dump_file, "Selecting BB %d\n",
770 				   best_edge->dest->index);
771 			break;
772 		      }
773 
774 		  bb->aux = best_edge->dest;
775 		  bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
776 		  bb = best_edge->dest;
777 		}
778 	    }
779 	}
780       while (best_edge);
781       trace->last = bb;
782       bbd[trace->first->index].start_of_trace = *n_traces - 1;
783       if (bbd[trace->last->index].end_of_trace != *n_traces - 1)
784 	{
785 	  bbd[trace->last->index].end_of_trace = *n_traces - 1;
786 	  /* Update the cached maximum frequency for interesting predecessor
787 	     edges for successors of the new trace end.  */
788 	  FOR_EACH_EDGE (e, ei, trace->last->succs)
789 	    if (EDGE_FREQUENCY (e) > bbd[e->dest->index].priority)
790 	      bbd[e->dest->index].priority = EDGE_FREQUENCY (e);
791 	}
792 
793       /* The trace is terminated so we have to recount the keys in heap
794 	 (some block can have a lower key because now one of its predecessors
795 	 is an end of the trace).  */
796       FOR_EACH_EDGE (e, ei, bb->succs)
797 	{
798 	  if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
799 	      || bb_visited_trace (e->dest))
800 	    continue;
801 
802 	  if (bbd[e->dest->index].heap)
803 	    {
804 	      key = bb_to_key (e->dest);
805 	      if (key != bbd[e->dest->index].node->get_key ())
806 		{
807 		  if (dump_file)
808 		    {
809 		      fprintf (dump_file,
810 			       "Changing key for bb %d from %ld to %ld.\n",
811 			       e->dest->index,
812 			       (long) bbd[e->dest->index].node->get_key (), key);
813 		    }
814 		  bbd[e->dest->index].heap->replace_key
815 		    (bbd[e->dest->index].node, key);
816 		}
817 	    }
818 	}
819     }
820 
821   delete (*heap);
822 
823   /* "Return" the new heap.  */
824   *heap = new_heap;
825 }
826 
827 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
828    it to trace after BB, mark OLD_BB visited and update pass' data structures
829    (TRACE is a number of trace which OLD_BB is duplicated to).  */
830 
831 static basic_block
832 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
833 {
834   basic_block new_bb;
835 
836   new_bb = duplicate_block (old_bb, e, bb);
837   BB_COPY_PARTITION (new_bb, old_bb);
838 
839   gcc_assert (e->dest == new_bb);
840 
841   if (dump_file)
842     fprintf (dump_file,
843 	     "Duplicated bb %d (created bb %d)\n",
844 	     old_bb->index, new_bb->index);
845 
846   if (new_bb->index >= array_size
847       || last_basic_block_for_fn (cfun) > array_size)
848     {
849       int i;
850       int new_size;
851 
852       new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
853       new_size = GET_ARRAY_SIZE (new_size);
854       bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
855       for (i = array_size; i < new_size; i++)
856 	{
857 	  bbd[i].start_of_trace = -1;
858 	  bbd[i].end_of_trace = -1;
859 	  bbd[i].in_trace = -1;
860 	  bbd[i].visited = 0;
861 	  bbd[i].priority = -1;
862 	  bbd[i].heap = NULL;
863 	  bbd[i].node = NULL;
864 	}
865       array_size = new_size;
866 
867       if (dump_file)
868 	{
869 	  fprintf (dump_file,
870 		   "Growing the dynamic array to %d elements.\n",
871 		   array_size);
872 	}
873     }
874 
875   gcc_assert (!bb_visited_trace (e->dest));
876   mark_bb_visited (new_bb, trace);
877   new_bb->aux = bb->aux;
878   bb->aux = new_bb;
879 
880   bbd[new_bb->index].in_trace = trace;
881 
882   return new_bb;
883 }
884 
885 /* Compute and return the key (for the heap) of the basic block BB.  */
886 
887 static long
888 bb_to_key (basic_block bb)
889 {
890   edge e;
891   edge_iterator ei;
892 
893   /* Use index as key to align with its original order.  */
894   if (optimize_function_for_size_p (cfun))
895     return bb->index;
896 
897   /* Do not start in probably never executed blocks.  */
898 
899   if (BB_PARTITION (bb) == BB_COLD_PARTITION
900       || probably_never_executed_bb_p (cfun, bb))
901     return BB_FREQ_MAX;
902 
903   /* Prefer blocks whose predecessor is an end of some trace
904      or whose predecessor edge is EDGE_DFS_BACK.  */
905   int priority = bbd[bb->index].priority;
906   if (priority == -1)
907     {
908       priority = 0;
909       FOR_EACH_EDGE (e, ei, bb->preds)
910 	{
911 	  if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
912 	       && bbd[e->src->index].end_of_trace >= 0)
913 	      || (e->flags & EDGE_DFS_BACK))
914 	    {
915 	      int edge_freq = EDGE_FREQUENCY (e);
916 
917 	      if (edge_freq > priority)
918 		priority = edge_freq;
919 	    }
920 	}
921       bbd[bb->index].priority = priority;
922     }
923 
924   if (priority)
925     /* The block with priority should have significantly lower key.  */
926     return -(100 * BB_FREQ_MAX + 100 * priority + bb->count.to_frequency (cfun));
927 
928   return -bb->count.to_frequency (cfun);
929 }
930 
931 /* Return true when the edge E from basic block BB is better than the temporary
932    best edge (details are in function).  The probability of edge E is PROB. The
933    count of the successor is COUNT.  The current best probability is
934    BEST_PROB, the best count is BEST_COUNT.
935    The edge is considered to be equivalent when PROB does not differ much from
936    BEST_PROB; similarly for count.  */
937 
938 static bool
939 better_edge_p (const_basic_block bb, const_edge e, profile_probability prob,
940 	       profile_count count, profile_probability best_prob,
941 	       profile_count best_count, const_edge cur_best_edge)
942 {
943   bool is_better_edge;
944 
945   /* The BEST_* values do not have to be best, but can be a bit smaller than
946      maximum values.  */
947   profile_probability diff_prob = best_prob.apply_scale (1, 10);
948 
949   /* The smaller one is better to keep the original order.  */
950   if (optimize_function_for_size_p (cfun))
951     return !cur_best_edge
952 	   || cur_best_edge->dest->index > e->dest->index;
953 
954   /* Those edges are so expensive that continuing a trace is not useful
955      performance wise.  */
956   if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
957     return false;
958 
959   if (prob > best_prob + diff_prob
960       || (!best_prob.initialized_p ()
961 	  && prob > profile_probability::guessed_never ()))
962     /* The edge has higher probability than the temporary best edge.  */
963     is_better_edge = true;
964   else if (prob < best_prob - diff_prob)
965     /* The edge has lower probability than the temporary best edge.  */
966     is_better_edge = false;
967   else
968     {
969       profile_count diff_count = best_count.apply_scale (1, 10);
970       if (count < best_count - diff_count
971 	  || (!best_count.initialized_p ()
972 	      && count.nonzero_p ()))
973 	/* The edge and the temporary best edge  have almost equivalent
974 	   probabilities.  The higher countuency of a successor now means
975 	   that there is another edge going into that successor.
976 	   This successor has lower countuency so it is better.  */
977 	is_better_edge = true;
978       else if (count > best_count + diff_count)
979 	/* This successor has higher countuency so it is worse.  */
980 	is_better_edge = false;
981       else if (e->dest->prev_bb == bb)
982 	/* The edges have equivalent probabilities and the successors
983 	   have equivalent frequencies.  Select the previous successor.  */
984 	is_better_edge = true;
985       else
986 	is_better_edge = false;
987     }
988 
989   return is_better_edge;
990 }
991 
992 /* Return true when the edge E is better than the temporary best edge
993    CUR_BEST_EDGE.  If SRC_INDEX_P is true, the function compares the src bb of
994    E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
995    BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
996    TRACES record the information about traces.
997    When optimizing for size, the edge with smaller index is better.
998    When optimizing for speed, the edge with bigger probability or longer trace
999    is better.  */
1000 
1001 static bool
1002 connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
1003 		       const_edge cur_best_edge, struct trace *traces)
1004 {
1005   int e_index;
1006   int b_index;
1007   bool is_better_edge;
1008 
1009   if (!cur_best_edge)
1010     return true;
1011 
1012   if (optimize_function_for_size_p (cfun))
1013     {
1014       e_index = src_index_p ? e->src->index : e->dest->index;
1015       b_index = src_index_p ? cur_best_edge->src->index
1016 			      : cur_best_edge->dest->index;
1017       /* The smaller one is better to keep the original order.  */
1018       return b_index > e_index;
1019     }
1020 
1021   if (src_index_p)
1022     {
1023       e_index = e->src->index;
1024 
1025       /* We are looking for predecessor, so probabilities are not that
1026 	 informative.  We do not want to connect A to B becuse A has
1027 	 only one sucessor (probablity is 100%) while there is edge
1028 	 A' to B where probability is 90% but which is much more frequent.  */
1029       if (e->count () > cur_best_edge->count ())
1030 	/* The edge has higher probability than the temporary best edge.  */
1031 	is_better_edge = true;
1032       else if (e->count () < cur_best_edge->count ())
1033 	/* The edge has lower probability than the temporary best edge.  */
1034 	is_better_edge = false;
1035       if (e->probability > cur_best_edge->probability)
1036 	/* The edge has higher probability than the temporary best edge.  */
1037 	is_better_edge = true;
1038       else if (e->probability < cur_best_edge->probability)
1039 	/* The edge has lower probability than the temporary best edge.  */
1040 	is_better_edge = false;
1041       else if (traces[bbd[e_index].end_of_trace].length > best_len)
1042 	/* The edge and the temporary best edge have equivalent probabilities.
1043 	   The edge with longer trace is better.  */
1044 	is_better_edge = true;
1045       else
1046 	is_better_edge = false;
1047     }
1048   else
1049     {
1050       e_index = e->dest->index;
1051 
1052       if (e->probability > cur_best_edge->probability)
1053 	/* The edge has higher probability than the temporary best edge.  */
1054 	is_better_edge = true;
1055       else if (e->probability < cur_best_edge->probability)
1056 	/* The edge has lower probability than the temporary best edge.  */
1057 	is_better_edge = false;
1058       else if (traces[bbd[e_index].start_of_trace].length > best_len)
1059 	/* The edge and the temporary best edge have equivalent probabilities.
1060 	   The edge with longer trace is better.  */
1061 	is_better_edge = true;
1062       else
1063 	is_better_edge = false;
1064     }
1065 
1066   return is_better_edge;
1067 }
1068 
1069 /* Connect traces in array TRACES, N_TRACES is the count of traces.  */
1070 
1071 static void
1072 connect_traces (int n_traces, struct trace *traces)
1073 {
1074   int i;
1075   bool *connected;
1076   bool two_passes;
1077   int last_trace;
1078   int current_pass;
1079   int current_partition;
1080   profile_count count_threshold;
1081   bool for_size = optimize_function_for_size_p (cfun);
1082 
1083   count_threshold = max_entry_count.apply_scale (DUPLICATION_THRESHOLD, 1000);
1084 
1085   connected = XCNEWVEC (bool, n_traces);
1086   last_trace = -1;
1087   current_pass = 1;
1088   current_partition = BB_PARTITION (traces[0].first);
1089   two_passes = false;
1090 
1091   if (crtl->has_bb_partition)
1092     for (i = 0; i < n_traces && !two_passes; i++)
1093       if (BB_PARTITION (traces[0].first)
1094 	  != BB_PARTITION (traces[i].first))
1095 	two_passes = true;
1096 
1097   for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1098     {
1099       int t = i;
1100       int t2;
1101       edge e, best;
1102       int best_len;
1103 
1104       if (i >= n_traces)
1105 	{
1106 	  gcc_assert (two_passes && current_pass == 1);
1107 	  i = 0;
1108 	  t = i;
1109 	  current_pass = 2;
1110 	  if (current_partition == BB_HOT_PARTITION)
1111 	    current_partition = BB_COLD_PARTITION;
1112 	  else
1113 	    current_partition = BB_HOT_PARTITION;
1114 	}
1115 
1116       if (connected[t])
1117 	continue;
1118 
1119       if (two_passes
1120 	  && BB_PARTITION (traces[t].first) != current_partition)
1121 	continue;
1122 
1123       connected[t] = true;
1124 
1125       /* Find the predecessor traces.  */
1126       for (t2 = t; t2 > 0;)
1127 	{
1128 	  edge_iterator ei;
1129 	  best = NULL;
1130 	  best_len = 0;
1131 	  FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1132 	    {
1133 	      int si = e->src->index;
1134 
1135 	      if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1136 		  && (e->flags & EDGE_CAN_FALLTHRU)
1137 		  && !(e->flags & EDGE_COMPLEX)
1138 		  && bbd[si].end_of_trace >= 0
1139 		  && !connected[bbd[si].end_of_trace]
1140 		  && (BB_PARTITION (e->src) == current_partition)
1141 		  && connect_better_edge_p (e, true, best_len, best, traces))
1142 		{
1143 		  best = e;
1144 		  best_len = traces[bbd[si].end_of_trace].length;
1145 		}
1146 	    }
1147 	  if (best)
1148 	    {
1149 	      best->src->aux = best->dest;
1150 	      t2 = bbd[best->src->index].end_of_trace;
1151 	      connected[t2] = true;
1152 
1153 	      if (dump_file)
1154 		{
1155 		  fprintf (dump_file, "Connection: %d %d\n",
1156 			   best->src->index, best->dest->index);
1157 		}
1158 	    }
1159 	  else
1160 	    break;
1161 	}
1162 
1163       if (last_trace >= 0)
1164 	traces[last_trace].last->aux = traces[t2].first;
1165       last_trace = t;
1166 
1167       /* Find the successor traces.  */
1168       while (1)
1169 	{
1170 	  /* Find the continuation of the chain.  */
1171 	  edge_iterator ei;
1172 	  best = NULL;
1173 	  best_len = 0;
1174 	  FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1175 	    {
1176 	      int di = e->dest->index;
1177 
1178 	      if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1179 		  && (e->flags & EDGE_CAN_FALLTHRU)
1180 		  && !(e->flags & EDGE_COMPLEX)
1181 		  && bbd[di].start_of_trace >= 0
1182 		  && !connected[bbd[di].start_of_trace]
1183 		  && (BB_PARTITION (e->dest) == current_partition)
1184 		  && connect_better_edge_p (e, false, best_len, best, traces))
1185 		{
1186 		  best = e;
1187 		  best_len = traces[bbd[di].start_of_trace].length;
1188 		}
1189 	    }
1190 
1191 	  if (for_size)
1192 	    {
1193 	      if (!best)
1194 		/* Stop finding the successor traces.  */
1195 		break;
1196 
1197 	      /* It is OK to connect block n with block n + 1 or a block
1198 		 before n.  For others, only connect to the loop header.  */
1199 	      if (best->dest->index > (traces[t].last->index + 1))
1200 		{
1201 		  int count = EDGE_COUNT (best->dest->preds);
1202 
1203 		  FOR_EACH_EDGE (e, ei, best->dest->preds)
1204 		    if (e->flags & EDGE_DFS_BACK)
1205 		      count--;
1206 
1207 		  /* If dest has multiple predecessors, skip it.  We expect
1208 		     that one predecessor with smaller index connects with it
1209 		     later.  */
1210 		  if (count != 1)
1211 		    break;
1212 		}
1213 
1214 	      /* Only connect Trace n with Trace n + 1.  It is conservative
1215 		 to keep the order as close as possible to the original order.
1216 		 It also helps to reduce long jumps.  */
1217 	      if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1218 		break;
1219 
1220 	      if (dump_file)
1221 		fprintf (dump_file, "Connection: %d %d\n",
1222 			 best->src->index, best->dest->index);
1223 
1224 	      t = bbd[best->dest->index].start_of_trace;
1225 	      traces[last_trace].last->aux = traces[t].first;
1226 	      connected[t] = true;
1227 	      last_trace = t;
1228 	    }
1229 	  else if (best)
1230 	    {
1231 	      if (dump_file)
1232 		{
1233 		  fprintf (dump_file, "Connection: %d %d\n",
1234 			   best->src->index, best->dest->index);
1235 		}
1236 	      t = bbd[best->dest->index].start_of_trace;
1237 	      traces[last_trace].last->aux = traces[t].first;
1238 	      connected[t] = true;
1239 	      last_trace = t;
1240 	    }
1241 	  else
1242 	    {
1243 	      /* Try to connect the traces by duplication of 1 block.  */
1244 	      edge e2;
1245 	      basic_block next_bb = NULL;
1246 	      bool try_copy = false;
1247 
1248 	      FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1249 		if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1250 		    && (e->flags & EDGE_CAN_FALLTHRU)
1251 		    && !(e->flags & EDGE_COMPLEX)
1252 		    && (!best || e->probability > best->probability))
1253 		  {
1254 		    edge_iterator ei;
1255 		    edge best2 = NULL;
1256 		    int best2_len = 0;
1257 
1258 		    /* If the destination is a start of a trace which is only
1259 		       one block long, then no need to search the successor
1260 		       blocks of the trace.  Accept it.  */
1261 		    if (bbd[e->dest->index].start_of_trace >= 0
1262 			&& traces[bbd[e->dest->index].start_of_trace].length
1263 			   == 1)
1264 		      {
1265 			best = e;
1266 			try_copy = true;
1267 			continue;
1268 		      }
1269 
1270 		    FOR_EACH_EDGE (e2, ei, e->dest->succs)
1271 		      {
1272 			int di = e2->dest->index;
1273 
1274 			if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1275 			    || ((e2->flags & EDGE_CAN_FALLTHRU)
1276 				&& !(e2->flags & EDGE_COMPLEX)
1277 				&& bbd[di].start_of_trace >= 0
1278 				&& !connected[bbd[di].start_of_trace]
1279 				&& BB_PARTITION (e2->dest) == current_partition
1280 				&& e2->count () >= count_threshold
1281 				&& (!best2
1282 				    || e2->probability > best2->probability
1283 				    || (e2->probability == best2->probability
1284 					&& traces[bbd[di].start_of_trace].length
1285 					   > best2_len))))
1286 			  {
1287 			    best = e;
1288 			    best2 = e2;
1289 			    if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1290 			      best2_len = traces[bbd[di].start_of_trace].length;
1291 			    else
1292 			      best2_len = INT_MAX;
1293 			    next_bb = e2->dest;
1294 			    try_copy = true;
1295 			  }
1296 		      }
1297 		  }
1298 
1299 	      /* Copy tiny blocks always; copy larger blocks only when the
1300 		 edge is traversed frequently enough.  */
1301 	      if (try_copy
1302 		  && BB_PARTITION (best->src) == BB_PARTITION (best->dest)
1303 		  && copy_bb_p (best->dest,
1304 				optimize_edge_for_speed_p (best)
1305 				&& (!best->count ().initialized_p ()
1306 				    || best->count () >= count_threshold)))
1307 		{
1308 		  basic_block new_bb;
1309 
1310 		  if (dump_file)
1311 		    {
1312 		      fprintf (dump_file, "Connection: %d %d ",
1313 			       traces[t].last->index, best->dest->index);
1314 		      if (!next_bb)
1315 			fputc ('\n', dump_file);
1316 		      else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1317 			fprintf (dump_file, "exit\n");
1318 		      else
1319 			fprintf (dump_file, "%d\n", next_bb->index);
1320 		    }
1321 
1322 		  new_bb = copy_bb (best->dest, best, traces[t].last, t);
1323 		  traces[t].last = new_bb;
1324 		  if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1325 		    {
1326 		      t = bbd[next_bb->index].start_of_trace;
1327 		      traces[last_trace].last->aux = traces[t].first;
1328 		      connected[t] = true;
1329 		      last_trace = t;
1330 		    }
1331 		  else
1332 		    break;	/* Stop finding the successor traces.  */
1333 		}
1334 	      else
1335 		break;	/* Stop finding the successor traces.  */
1336 	    }
1337 	}
1338     }
1339 
1340   if (dump_file)
1341     {
1342       basic_block bb;
1343 
1344       fprintf (dump_file, "Final order:\n");
1345       for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1346 	fprintf (dump_file, "%d ", bb->index);
1347       fprintf (dump_file, "\n");
1348       fflush (dump_file);
1349     }
1350 
1351   FREE (connected);
1352 }
1353 
1354 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1355    when code size is allowed to grow by duplication.  */
1356 
1357 static bool
1358 copy_bb_p (const_basic_block bb, int code_may_grow)
1359 {
1360   int size = 0;
1361   int max_size = uncond_jump_length;
1362   rtx_insn *insn;
1363 
1364   if (EDGE_COUNT (bb->preds) < 2)
1365     return false;
1366   if (!can_duplicate_block_p (bb))
1367     return false;
1368 
1369   /* Avoid duplicating blocks which have many successors (PR/13430).  */
1370   if (EDGE_COUNT (bb->succs) > 8)
1371     return false;
1372 
1373   if (code_may_grow && optimize_bb_for_speed_p (bb))
1374     max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1375 
1376   FOR_BB_INSNS (bb, insn)
1377     {
1378       if (INSN_P (insn))
1379 	size += get_attr_min_length (insn);
1380     }
1381 
1382   if (size <= max_size)
1383     return true;
1384 
1385   if (dump_file)
1386     {
1387       fprintf (dump_file,
1388 	       "Block %d can't be copied because its size = %d.\n",
1389 	       bb->index, size);
1390     }
1391 
1392   return false;
1393 }
1394 
1395 /* Return the length of unconditional jump instruction.  */
1396 
1397 int
1398 get_uncond_jump_length (void)
1399 {
1400   int length;
1401 
1402   start_sequence ();
1403   rtx_code_label *label = emit_label (gen_label_rtx ());
1404   rtx_insn *jump = emit_jump_insn (targetm.gen_jump (label));
1405   length = get_attr_min_length (jump);
1406   end_sequence ();
1407 
1408   return length;
1409 }
1410 
1411 /* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1412    Add a new landing pad that will just jump to the old one and split the
1413    edges so that no EH edge crosses partitions.  */
1414 
1415 static void
1416 fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1417 {
1418   eh_landing_pad new_lp;
1419   basic_block new_bb, last_bb;
1420   rtx_insn *jump;
1421   unsigned new_partition;
1422   edge_iterator ei;
1423   edge e;
1424 
1425   /* Generate the new landing-pad structure.  */
1426   new_lp = gen_eh_landing_pad (old_lp->region);
1427   new_lp->post_landing_pad = old_lp->post_landing_pad;
1428   new_lp->landing_pad = gen_label_rtx ();
1429   LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1430 
1431   /* Put appropriate instructions in new bb.  */
1432   rtx_code_label *new_label = emit_label (new_lp->landing_pad);
1433 
1434   rtx_code_label *old_label = block_label (old_bb);
1435   jump = emit_jump_insn (targetm.gen_jump (old_label));
1436   JUMP_LABEL (jump) = old_label;
1437 
1438   /* Create new basic block to be dest for lp.  */
1439   last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1440   new_bb = create_basic_block (new_label, jump, last_bb);
1441   new_bb->aux = last_bb->aux;
1442   new_bb->count = old_bb->count;
1443   last_bb->aux = new_bb;
1444 
1445   emit_barrier_after_bb (new_bb);
1446 
1447   make_single_succ_edge (new_bb, old_bb, 0);
1448 
1449   /* Make sure new bb is in the other partition.  */
1450   new_partition = BB_PARTITION (old_bb);
1451   new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1452   BB_SET_PARTITION (new_bb, new_partition);
1453 
1454   /* Fix up the edges.  */
1455   for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1456     if (e->src != new_bb && BB_PARTITION (e->src) == new_partition)
1457       {
1458 	rtx_insn *insn = BB_END (e->src);
1459 	rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1460 
1461 	gcc_assert (note != NULL);
1462 	gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1463 	XEXP (note, 0) = GEN_INT (new_lp->index);
1464 
1465 	/* Adjust the edge to the new destination.  */
1466 	redirect_edge_succ (e, new_bb);
1467       }
1468     else
1469       ei_next (&ei);
1470 }
1471 
1472 
1473 /* Ensure that all hot bbs are included in a hot path through the
1474    procedure. This is done by calling this function twice, once
1475    with WALK_UP true (to look for paths from the entry to hot bbs) and
1476    once with WALK_UP false (to look for paths from hot bbs to the exit).
1477    Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1478    to BBS_IN_HOT_PARTITION.  */
1479 
1480 static unsigned int
1481 sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1482                     vec<basic_block> *bbs_in_hot_partition)
1483 {
1484   /* Callers check this.  */
1485   gcc_checking_assert (cold_bb_count);
1486 
1487   /* Keep examining hot bbs while we still have some left to check
1488      and there are remaining cold bbs.  */
1489   vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1490   while (! hot_bbs_to_check.is_empty ()
1491          && cold_bb_count)
1492     {
1493       basic_block bb = hot_bbs_to_check.pop ();
1494       vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1495       edge e;
1496       edge_iterator ei;
1497       profile_probability highest_probability
1498 				 = profile_probability::uninitialized ();
1499       profile_count highest_count = profile_count::uninitialized ();
1500       bool found = false;
1501 
1502       /* Walk the preds/succs and check if there is at least one already
1503          marked hot. Keep track of the most frequent pred/succ so that we
1504          can mark it hot if we don't find one.  */
1505       FOR_EACH_EDGE (e, ei, edges)
1506         {
1507           basic_block reach_bb = walk_up ? e->src : e->dest;
1508 
1509           if (e->flags & EDGE_DFS_BACK)
1510             continue;
1511 
1512 	  /* Do not expect profile insanities when profile was not adjusted.  */
1513 	  if (e->probability == profile_probability::never ()
1514 	      || e->count () == profile_count::zero ())
1515 	    continue;
1516 
1517           if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1518           {
1519             found = true;
1520             break;
1521           }
1522           /* The following loop will look for the hottest edge via
1523              the edge count, if it is non-zero, then fallback to
1524              the edge probability.  */
1525           if (!(e->count () > highest_count))
1526             highest_count = e->count ();
1527           if (!highest_probability.initialized_p ()
1528 	      || e->probability > highest_probability)
1529             highest_probability = e->probability;
1530         }
1531 
1532       /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1533          block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1534          then the most frequent pred (or succ) needs to be adjusted.  In the
1535          case where multiple preds/succs have the same frequency (e.g. a
1536          50-50 branch), then both will be adjusted.  */
1537       if (found)
1538         continue;
1539 
1540       FOR_EACH_EDGE (e, ei, edges)
1541         {
1542           if (e->flags & EDGE_DFS_BACK)
1543             continue;
1544 	  /* Do not expect profile insanities when profile was not adjusted.  */
1545 	  if (e->probability == profile_probability::never ()
1546 	      || e->count () == profile_count::zero ())
1547 	    continue;
1548           /* Select the hottest edge using the edge count, if it is non-zero,
1549              then fallback to the edge probability.  */
1550           if (highest_count.initialized_p ())
1551             {
1552               if (!(e->count () >= highest_count))
1553                 continue;
1554             }
1555           else if (!(e->probability >= highest_probability))
1556             continue;
1557 
1558           basic_block reach_bb = walk_up ? e->src : e->dest;
1559 
1560           /* We have a hot bb with an immediate dominator that is cold.
1561              The dominator needs to be re-marked hot.  */
1562           BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1563 	  if (dump_file)
1564 	    fprintf (dump_file, "Promoting bb %i to hot partition to sanitize "
1565 		     "profile of bb %i in %s walk\n", reach_bb->index,
1566 		     bb->index, walk_up ? "backward" : "forward");
1567           cold_bb_count--;
1568 
1569           /* Now we need to examine newly-hot reach_bb to see if it is also
1570              dominated by a cold bb.  */
1571           bbs_in_hot_partition->safe_push (reach_bb);
1572           hot_bbs_to_check.safe_push (reach_bb);
1573         }
1574     }
1575 
1576   return cold_bb_count;
1577 }
1578 
1579 
1580 /* Find the basic blocks that are rarely executed and need to be moved to
1581    a separate section of the .o file (to cut down on paging and improve
1582    cache locality).  Return a vector of all edges that cross.  */
1583 
1584 static vec<edge>
1585 find_rarely_executed_basic_blocks_and_crossing_edges (void)
1586 {
1587   vec<edge> crossing_edges = vNULL;
1588   basic_block bb;
1589   edge e;
1590   edge_iterator ei;
1591   unsigned int cold_bb_count = 0;
1592   auto_vec<basic_block> bbs_in_hot_partition;
1593 
1594   propagate_unlikely_bbs_forward ();
1595 
1596   /* Mark which partition (hot/cold) each basic block belongs in.  */
1597   FOR_EACH_BB_FN (bb, cfun)
1598     {
1599       bool cold_bb = false;
1600 
1601       if (probably_never_executed_bb_p (cfun, bb))
1602         {
1603           /* Handle profile insanities created by upstream optimizations
1604              by also checking the incoming edge weights. If there is a non-cold
1605              incoming edge, conservatively prevent this block from being split
1606              into the cold section.  */
1607           cold_bb = true;
1608           FOR_EACH_EDGE (e, ei, bb->preds)
1609             if (!probably_never_executed_edge_p (cfun, e))
1610               {
1611                 cold_bb = false;
1612                 break;
1613               }
1614         }
1615       if (cold_bb)
1616         {
1617           BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1618           cold_bb_count++;
1619         }
1620       else
1621         {
1622           BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1623           bbs_in_hot_partition.safe_push (bb);
1624         }
1625     }
1626 
1627   /* Ensure that hot bbs are included along a hot path from the entry to exit.
1628      Several different possibilities may include cold bbs along all paths
1629      to/from a hot bb. One is that there are edge weight insanities
1630      due to optimization phases that do not properly update basic block profile
1631      counts. The second is that the entry of the function may not be hot, because
1632      it is entered fewer times than the number of profile training runs, but there
1633      is a loop inside the function that causes blocks within the function to be
1634      above the threshold for hotness. This is fixed by walking up from hot bbs
1635      to the entry block, and then down from hot bbs to the exit, performing
1636      partitioning fixups as necessary.  */
1637   if (cold_bb_count)
1638     {
1639       mark_dfs_back_edges ();
1640       cold_bb_count = sanitize_hot_paths (true, cold_bb_count,
1641                                           &bbs_in_hot_partition);
1642       if (cold_bb_count)
1643         sanitize_hot_paths (false, cold_bb_count, &bbs_in_hot_partition);
1644 
1645       hash_set <basic_block> set;
1646       find_bbs_reachable_by_hot_paths (&set);
1647       FOR_EACH_BB_FN (bb, cfun)
1648 	if (!set.contains (bb))
1649 	  BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1650     }
1651 
1652   /* The format of .gcc_except_table does not allow landing pads to
1653      be in a different partition as the throw.  Fix this by either
1654      moving or duplicating the landing pads.  */
1655   if (cfun->eh->lp_array)
1656     {
1657       unsigned i;
1658       eh_landing_pad lp;
1659 
1660       FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1661 	{
1662 	  bool all_same, all_diff;
1663 
1664 	  if (lp == NULL
1665 	      || lp->landing_pad == NULL_RTX
1666 	      || !LABEL_P (lp->landing_pad))
1667 	    continue;
1668 
1669 	  all_same = all_diff = true;
1670 	  bb = BLOCK_FOR_INSN (lp->landing_pad);
1671 	  FOR_EACH_EDGE (e, ei, bb->preds)
1672 	    {
1673 	      gcc_assert (e->flags & EDGE_EH);
1674 	      if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1675 		all_diff = false;
1676 	      else
1677 		all_same = false;
1678 	    }
1679 
1680 	  if (all_same)
1681 	    ;
1682 	  else if (all_diff)
1683 	    {
1684 	      int which = BB_PARTITION (bb);
1685 	      which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1686 	      BB_SET_PARTITION (bb, which);
1687 	    }
1688 	  else
1689 	    fix_up_crossing_landing_pad (lp, bb);
1690 	}
1691     }
1692 
1693   /* Mark every edge that crosses between sections.  */
1694 
1695   FOR_EACH_BB_FN (bb, cfun)
1696     FOR_EACH_EDGE (e, ei, bb->succs)
1697       {
1698 	unsigned int flags = e->flags;
1699 
1700         /* We should never have EDGE_CROSSING set yet.  */
1701 	gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1702 
1703 	if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1704 	    && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1705 	    && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1706 	  {
1707 	    crossing_edges.safe_push (e);
1708 	    flags |= EDGE_CROSSING;
1709 	  }
1710 
1711 	/* Now that we've split eh edges as appropriate, allow landing pads
1712 	   to be merged with the post-landing pads.  */
1713 	flags &= ~EDGE_PRESERVE;
1714 
1715 	e->flags = flags;
1716       }
1717 
1718   return crossing_edges;
1719 }
1720 
1721 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru.  */
1722 
1723 static void
1724 set_edge_can_fallthru_flag (void)
1725 {
1726   basic_block bb;
1727 
1728   FOR_EACH_BB_FN (bb, cfun)
1729     {
1730       edge e;
1731       edge_iterator ei;
1732 
1733       FOR_EACH_EDGE (e, ei, bb->succs)
1734 	{
1735 	  e->flags &= ~EDGE_CAN_FALLTHRU;
1736 
1737 	  /* The FALLTHRU edge is also CAN_FALLTHRU edge.  */
1738 	  if (e->flags & EDGE_FALLTHRU)
1739 	    e->flags |= EDGE_CAN_FALLTHRU;
1740 	}
1741 
1742       /* If the BB ends with an invertible condjump all (2) edges are
1743 	 CAN_FALLTHRU edges.  */
1744       if (EDGE_COUNT (bb->succs) != 2)
1745 	continue;
1746       if (!any_condjump_p (BB_END (bb)))
1747 	continue;
1748 
1749       rtx_jump_insn *bb_end_jump = as_a <rtx_jump_insn *> (BB_END (bb));
1750       if (!invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0))
1751 	continue;
1752       invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0);
1753       EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1754       EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1755     }
1756 }
1757 
1758 /* If any destination of a crossing edge does not have a label, add label;
1759    Convert any easy fall-through crossing edges to unconditional jumps.  */
1760 
1761 static void
1762 add_labels_and_missing_jumps (vec<edge> crossing_edges)
1763 {
1764   size_t i;
1765   edge e;
1766 
1767   FOR_EACH_VEC_ELT (crossing_edges, i, e)
1768     {
1769       basic_block src = e->src;
1770       basic_block dest = e->dest;
1771       rtx_jump_insn *new_jump;
1772 
1773       if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1774 	continue;
1775 
1776       /* Make sure dest has a label.  */
1777       rtx_code_label *label = block_label (dest);
1778 
1779       /* Nothing to do for non-fallthru edges.  */
1780       if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1781 	continue;
1782       if ((e->flags & EDGE_FALLTHRU) == 0)
1783 	continue;
1784 
1785       /* If the block does not end with a control flow insn, then we
1786 	 can trivially add a jump to the end to fixup the crossing.
1787 	 Otherwise the jump will have to go in a new bb, which will
1788 	 be handled by fix_up_fall_thru_edges function.  */
1789       if (control_flow_insn_p (BB_END (src)))
1790 	continue;
1791 
1792       /* Make sure there's only one successor.  */
1793       gcc_assert (single_succ_p (src));
1794 
1795       new_jump = emit_jump_insn_after (targetm.gen_jump (label), BB_END (src));
1796       BB_END (src) = new_jump;
1797       JUMP_LABEL (new_jump) = label;
1798       LABEL_NUSES (label) += 1;
1799 
1800       emit_barrier_after_bb (src);
1801 
1802       /* Mark edge as non-fallthru.  */
1803       e->flags &= ~EDGE_FALLTHRU;
1804     }
1805 }
1806 
1807 /* Find any bb's where the fall-through edge is a crossing edge (note that
1808    these bb's must also contain a conditional jump or end with a call
1809    instruction; we've already dealt with fall-through edges for blocks
1810    that didn't have a conditional jump or didn't end with call instruction
1811    in the call to add_labels_and_missing_jumps).  Convert the fall-through
1812    edge to non-crossing edge by inserting a new bb to fall-through into.
1813    The new bb will contain an unconditional jump (crossing edge) to the
1814    original fall through destination.  */
1815 
1816 static void
1817 fix_up_fall_thru_edges (void)
1818 {
1819   basic_block cur_bb;
1820 
1821   FOR_EACH_BB_FN (cur_bb, cfun)
1822     {
1823       edge succ1;
1824       edge succ2;
1825       edge fall_thru = NULL;
1826       edge cond_jump = NULL;
1827 
1828       fall_thru = NULL;
1829       if (EDGE_COUNT (cur_bb->succs) > 0)
1830 	succ1 = EDGE_SUCC (cur_bb, 0);
1831       else
1832 	succ1 = NULL;
1833 
1834       if (EDGE_COUNT (cur_bb->succs) > 1)
1835 	succ2 = EDGE_SUCC (cur_bb, 1);
1836       else
1837 	succ2 = NULL;
1838 
1839       /* Find the fall-through edge.  */
1840 
1841       if (succ1
1842 	  && (succ1->flags & EDGE_FALLTHRU))
1843 	{
1844 	  fall_thru = succ1;
1845 	  cond_jump = succ2;
1846 	}
1847       else if (succ2
1848 	       && (succ2->flags & EDGE_FALLTHRU))
1849 	{
1850 	  fall_thru = succ2;
1851 	  cond_jump = succ1;
1852 	}
1853       else if (succ2 && EDGE_COUNT (cur_bb->succs) > 2)
1854 	fall_thru = find_fallthru_edge (cur_bb->succs);
1855 
1856       if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1857 	{
1858 	  /* Check to see if the fall-thru edge is a crossing edge.  */
1859 
1860 	  if (fall_thru->flags & EDGE_CROSSING)
1861 	    {
1862 	      /* The fall_thru edge crosses; now check the cond jump edge, if
1863 		 it exists.  */
1864 
1865 	      bool cond_jump_crosses = true;
1866 	      int invert_worked = 0;
1867 	      rtx_insn *old_jump = BB_END (cur_bb);
1868 
1869 	      /* Find the jump instruction, if there is one.  */
1870 
1871 	      if (cond_jump)
1872 		{
1873 		  if (!(cond_jump->flags & EDGE_CROSSING))
1874 		    cond_jump_crosses = false;
1875 
1876 		  /* We know the fall-thru edge crosses; if the cond
1877 		     jump edge does NOT cross, and its destination is the
1878 		     next block in the bb order, invert the jump
1879 		     (i.e. fix it so the fall through does not cross and
1880 		     the cond jump does).  */
1881 
1882 		  if (!cond_jump_crosses)
1883 		    {
1884 		      /* Find label in fall_thru block. We've already added
1885 			 any missing labels, so there must be one.  */
1886 
1887 		      rtx_code_label *fall_thru_label
1888 			= block_label (fall_thru->dest);
1889 
1890 		      if (old_jump && fall_thru_label)
1891 			{
1892 			  rtx_jump_insn *old_jump_insn
1893 			    = dyn_cast <rtx_jump_insn *> (old_jump);
1894 			  if (old_jump_insn)
1895 			    invert_worked = invert_jump (old_jump_insn,
1896 							 fall_thru_label, 0);
1897 			}
1898 
1899 		      if (invert_worked)
1900 			{
1901 			  fall_thru->flags &= ~EDGE_FALLTHRU;
1902 			  cond_jump->flags |= EDGE_FALLTHRU;
1903 			  update_br_prob_note (cur_bb);
1904 			  std::swap (fall_thru, cond_jump);
1905 			  cond_jump->flags |= EDGE_CROSSING;
1906 			  fall_thru->flags &= ~EDGE_CROSSING;
1907 			}
1908 		    }
1909 		}
1910 
1911 	      if (cond_jump_crosses || !invert_worked)
1912 		{
1913 		  /* This is the case where both edges out of the basic
1914 		     block are crossing edges. Here we will fix up the
1915 		     fall through edge. The jump edge will be taken care
1916 		     of later.  The EDGE_CROSSING flag of fall_thru edge
1917 		     is unset before the call to force_nonfallthru
1918 		     function because if a new basic-block is created
1919 		     this edge remains in the current section boundary
1920 		     while the edge between new_bb and the fall_thru->dest
1921 		     becomes EDGE_CROSSING.  */
1922 
1923 		  fall_thru->flags &= ~EDGE_CROSSING;
1924 		  basic_block new_bb = force_nonfallthru (fall_thru);
1925 
1926 		  if (new_bb)
1927 		    {
1928 		      new_bb->aux = cur_bb->aux;
1929 		      cur_bb->aux = new_bb;
1930 
1931                       /* This is done by force_nonfallthru_and_redirect.  */
1932 		      gcc_assert (BB_PARTITION (new_bb)
1933                                   == BB_PARTITION (cur_bb));
1934 
1935 		      single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1936 		    }
1937 		  else
1938 		    {
1939 		      /* If a new basic-block was not created; restore
1940 			 the EDGE_CROSSING flag.  */
1941 		      fall_thru->flags |= EDGE_CROSSING;
1942 		    }
1943 
1944 		  /* Add barrier after new jump */
1945 		  emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
1946 		}
1947 	    }
1948 	}
1949     }
1950 }
1951 
1952 /* This function checks the destination block of a "crossing jump" to
1953    see if it has any crossing predecessors that begin with a code label
1954    and end with an unconditional jump.  If so, it returns that predecessor
1955    block.  (This is to avoid creating lots of new basic blocks that all
1956    contain unconditional jumps to the same destination).  */
1957 
1958 static basic_block
1959 find_jump_block (basic_block jump_dest)
1960 {
1961   basic_block source_bb = NULL;
1962   edge e;
1963   rtx_insn *insn;
1964   edge_iterator ei;
1965 
1966   FOR_EACH_EDGE (e, ei, jump_dest->preds)
1967     if (e->flags & EDGE_CROSSING)
1968       {
1969 	basic_block src = e->src;
1970 
1971 	/* Check each predecessor to see if it has a label, and contains
1972 	   only one executable instruction, which is an unconditional jump.
1973 	   If so, we can use it.  */
1974 
1975 	if (LABEL_P (BB_HEAD (src)))
1976 	  for (insn = BB_HEAD (src);
1977 	       !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1978 	       insn = NEXT_INSN (insn))
1979 	    {
1980 	      if (INSN_P (insn)
1981 		  && insn == BB_END (src)
1982 		  && JUMP_P (insn)
1983 		  && !any_condjump_p (insn))
1984 		{
1985 		  source_bb = src;
1986 		  break;
1987 		}
1988 	    }
1989 
1990 	if (source_bb)
1991 	  break;
1992       }
1993 
1994   return source_bb;
1995 }
1996 
1997 /* Find all BB's with conditional jumps that are crossing edges;
1998    insert a new bb and make the conditional jump branch to the new
1999    bb instead (make the new bb same color so conditional branch won't
2000    be a 'crossing' edge).  Insert an unconditional jump from the
2001    new bb to the original destination of the conditional jump.  */
2002 
2003 static void
2004 fix_crossing_conditional_branches (void)
2005 {
2006   basic_block cur_bb;
2007   basic_block new_bb;
2008   basic_block dest;
2009   edge succ1;
2010   edge succ2;
2011   edge crossing_edge;
2012   edge new_edge;
2013   rtx set_src;
2014   rtx old_label = NULL_RTX;
2015   rtx_code_label *new_label;
2016 
2017   FOR_EACH_BB_FN (cur_bb, cfun)
2018     {
2019       crossing_edge = NULL;
2020       if (EDGE_COUNT (cur_bb->succs) > 0)
2021 	succ1 = EDGE_SUCC (cur_bb, 0);
2022       else
2023 	succ1 = NULL;
2024 
2025       if (EDGE_COUNT (cur_bb->succs) > 1)
2026 	succ2 = EDGE_SUCC (cur_bb, 1);
2027       else
2028 	succ2 = NULL;
2029 
2030       /* We already took care of fall-through edges, so only one successor
2031 	 can be a crossing edge.  */
2032 
2033       if (succ1 && (succ1->flags & EDGE_CROSSING))
2034 	crossing_edge = succ1;
2035       else if (succ2 && (succ2->flags & EDGE_CROSSING))
2036 	crossing_edge = succ2;
2037 
2038       if (crossing_edge)
2039 	{
2040 	  rtx_insn *old_jump = BB_END (cur_bb);
2041 
2042 	  /* Check to make sure the jump instruction is a
2043 	     conditional jump.  */
2044 
2045 	  set_src = NULL_RTX;
2046 
2047 	  if (any_condjump_p (old_jump))
2048 	    {
2049 	      if (GET_CODE (PATTERN (old_jump)) == SET)
2050 		set_src = SET_SRC (PATTERN (old_jump));
2051 	      else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2052 		{
2053 		  set_src = XVECEXP (PATTERN (old_jump), 0,0);
2054 		  if (GET_CODE (set_src) == SET)
2055 		    set_src = SET_SRC (set_src);
2056 		  else
2057 		    set_src = NULL_RTX;
2058 		}
2059 	    }
2060 
2061 	  if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2062 	    {
2063 	      rtx_jump_insn *old_jump_insn =
2064 			as_a <rtx_jump_insn *> (old_jump);
2065 
2066 	      if (GET_CODE (XEXP (set_src, 1)) == PC)
2067 		old_label = XEXP (set_src, 2);
2068 	      else if (GET_CODE (XEXP (set_src, 2)) == PC)
2069 		old_label = XEXP (set_src, 1);
2070 
2071 	      /* Check to see if new bb for jumping to that dest has
2072 		 already been created; if so, use it; if not, create
2073 		 a new one.  */
2074 
2075 	      new_bb = find_jump_block (crossing_edge->dest);
2076 
2077 	      if (new_bb)
2078 		new_label = block_label (new_bb);
2079 	      else
2080 		{
2081 		  basic_block last_bb;
2082 		  rtx_code_label *old_jump_target;
2083 		  rtx_jump_insn *new_jump;
2084 
2085 		  /* Create new basic block to be dest for
2086 		     conditional jump.  */
2087 
2088 		  /* Put appropriate instructions in new bb.  */
2089 
2090 		  new_label = gen_label_rtx ();
2091 		  emit_label (new_label);
2092 
2093 		  gcc_assert (GET_CODE (old_label) == LABEL_REF);
2094 		  old_jump_target = old_jump_insn->jump_target ();
2095 		  new_jump = as_a <rtx_jump_insn *>
2096 		    (emit_jump_insn (targetm.gen_jump (old_jump_target)));
2097 		  new_jump->set_jump_target (old_jump_target);
2098 
2099 		  last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2100 		  new_bb = create_basic_block (new_label, new_jump, last_bb);
2101 		  new_bb->aux = last_bb->aux;
2102 		  last_bb->aux = new_bb;
2103 
2104 		  emit_barrier_after_bb (new_bb);
2105 
2106 		  /* Make sure new bb is in same partition as source
2107 		     of conditional branch.  */
2108 		  BB_COPY_PARTITION (new_bb, cur_bb);
2109 		}
2110 
2111 	      /* Make old jump branch to new bb.  */
2112 
2113 	      redirect_jump (old_jump_insn, new_label, 0);
2114 
2115 	      /* Remove crossing_edge as predecessor of 'dest'.  */
2116 
2117 	      dest = crossing_edge->dest;
2118 
2119 	      redirect_edge_succ (crossing_edge, new_bb);
2120 
2121 	      /* Make a new edge from new_bb to old dest; new edge
2122 		 will be a successor for new_bb and a predecessor
2123 		 for 'dest'.  */
2124 
2125 	      if (EDGE_COUNT (new_bb->succs) == 0)
2126 		new_edge = make_single_succ_edge (new_bb, dest, 0);
2127 	      else
2128 		new_edge = EDGE_SUCC (new_bb, 0);
2129 
2130 	      crossing_edge->flags &= ~EDGE_CROSSING;
2131 	      new_edge->flags |= EDGE_CROSSING;
2132 	    }
2133 	}
2134     }
2135 }
2136 
2137 /* Find any unconditional branches that cross between hot and cold
2138    sections.  Convert them into indirect jumps instead.  */
2139 
2140 static void
2141 fix_crossing_unconditional_branches (void)
2142 {
2143   basic_block cur_bb;
2144   rtx_insn *last_insn;
2145   rtx label;
2146   rtx label_addr;
2147   rtx_insn *indirect_jump_sequence;
2148   rtx_insn *jump_insn = NULL;
2149   rtx new_reg;
2150   rtx_insn *cur_insn;
2151   edge succ;
2152 
2153   FOR_EACH_BB_FN (cur_bb, cfun)
2154     {
2155       last_insn = BB_END (cur_bb);
2156 
2157       if (EDGE_COUNT (cur_bb->succs) < 1)
2158 	continue;
2159 
2160       succ = EDGE_SUCC (cur_bb, 0);
2161 
2162       /* Check to see if bb ends in a crossing (unconditional) jump.  At
2163 	 this point, no crossing jumps should be conditional.  */
2164 
2165       if (JUMP_P (last_insn)
2166 	  && (succ->flags & EDGE_CROSSING))
2167 	{
2168 	  gcc_assert (!any_condjump_p (last_insn));
2169 
2170 	  /* Make sure the jump is not already an indirect or table jump.  */
2171 
2172 	  if (!computed_jump_p (last_insn)
2173 	      && !tablejump_p (last_insn, NULL, NULL))
2174 	    {
2175 	      /* We have found a "crossing" unconditional branch.  Now
2176 		 we must convert it to an indirect jump.  First create
2177 		 reference of label, as target for jump.  */
2178 
2179 	      label = JUMP_LABEL (last_insn);
2180 	      label_addr = gen_rtx_LABEL_REF (Pmode, label);
2181 	      LABEL_NUSES (label) += 1;
2182 
2183 	      /* Get a register to use for the indirect jump.  */
2184 
2185 	      new_reg = gen_reg_rtx (Pmode);
2186 
2187 	      /* Generate indirect the jump sequence.  */
2188 
2189 	      start_sequence ();
2190 	      emit_move_insn (new_reg, label_addr);
2191 	      emit_indirect_jump (new_reg);
2192 	      indirect_jump_sequence = get_insns ();
2193 	      end_sequence ();
2194 
2195 	      /* Make sure every instruction in the new jump sequence has
2196 		 its basic block set to be cur_bb.  */
2197 
2198 	      for (cur_insn = indirect_jump_sequence; cur_insn;
2199 		   cur_insn = NEXT_INSN (cur_insn))
2200 		{
2201 		  if (!BARRIER_P (cur_insn))
2202 		    BLOCK_FOR_INSN (cur_insn) = cur_bb;
2203 		  if (JUMP_P (cur_insn))
2204 		    jump_insn = cur_insn;
2205 		}
2206 
2207 	      /* Insert the new (indirect) jump sequence immediately before
2208 		 the unconditional jump, then delete the unconditional jump.  */
2209 
2210 	      emit_insn_before (indirect_jump_sequence, last_insn);
2211 	      delete_insn (last_insn);
2212 
2213 	      JUMP_LABEL (jump_insn) = label;
2214 	      LABEL_NUSES (label)++;
2215 
2216 	      /* Make BB_END for cur_bb be the jump instruction (NOT the
2217 		 barrier instruction at the end of the sequence...).  */
2218 
2219 	      BB_END (cur_bb) = jump_insn;
2220 	    }
2221 	}
2222     }
2223 }
2224 
2225 /* Update CROSSING_JUMP_P flags on all jump insns.  */
2226 
2227 static void
2228 update_crossing_jump_flags (void)
2229 {
2230   basic_block bb;
2231   edge e;
2232   edge_iterator ei;
2233 
2234   FOR_EACH_BB_FN (bb, cfun)
2235     FOR_EACH_EDGE (e, ei, bb->succs)
2236       if (e->flags & EDGE_CROSSING)
2237 	{
2238 	  if (JUMP_P (BB_END (bb)))
2239 	    CROSSING_JUMP_P (BB_END (bb)) = 1;
2240 	  break;
2241 	}
2242 }
2243 
2244 /* Reorder basic blocks using the software trace cache (STC) algorithm.  */
2245 
2246 static void
2247 reorder_basic_blocks_software_trace_cache (void)
2248 {
2249   if (dump_file)
2250     fprintf (dump_file, "\nReordering with the STC algorithm.\n\n");
2251 
2252   int n_traces;
2253   int i;
2254   struct trace *traces;
2255 
2256   /* We are estimating the length of uncond jump insn only once since the code
2257      for getting the insn length always returns the minimal length now.  */
2258   if (uncond_jump_length == 0)
2259     uncond_jump_length = get_uncond_jump_length ();
2260 
2261   /* We need to know some information for each basic block.  */
2262   array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
2263   bbd = XNEWVEC (bbro_basic_block_data, array_size);
2264   for (i = 0; i < array_size; i++)
2265     {
2266       bbd[i].start_of_trace = -1;
2267       bbd[i].end_of_trace = -1;
2268       bbd[i].in_trace = -1;
2269       bbd[i].visited = 0;
2270       bbd[i].priority = -1;
2271       bbd[i].heap = NULL;
2272       bbd[i].node = NULL;
2273     }
2274 
2275   traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2276   n_traces = 0;
2277   find_traces (&n_traces, traces);
2278   connect_traces (n_traces, traces);
2279   FREE (traces);
2280   FREE (bbd);
2281 }
2282 
2283 /* Return true if edge E1 is more desirable as a fallthrough edge than
2284    edge E2 is.  */
2285 
2286 static bool
2287 edge_order (edge e1, edge e2)
2288 {
2289   return e1->count () > e2->count ();
2290 }
2291 
2292 /* Reorder basic blocks using the "simple" algorithm.  This tries to
2293    maximize the dynamic number of branches that are fallthrough, without
2294    copying instructions.  The algorithm is greedy, looking at the most
2295    frequently executed branch first.  */
2296 
2297 static void
2298 reorder_basic_blocks_simple (void)
2299 {
2300   if (dump_file)
2301     fprintf (dump_file, "\nReordering with the \"simple\" algorithm.\n\n");
2302 
2303   edge *edges = new edge[2 * n_basic_blocks_for_fn (cfun)];
2304 
2305   /* First, collect all edges that can be optimized by reordering blocks:
2306      simple jumps and conditional jumps, as well as the function entry edge.  */
2307 
2308   int n = 0;
2309   edges[n++] = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2310 
2311   basic_block bb;
2312   FOR_EACH_BB_FN (bb, cfun)
2313     {
2314       rtx_insn *end = BB_END (bb);
2315 
2316       if (computed_jump_p (end) || tablejump_p (end, NULL, NULL))
2317 	continue;
2318 
2319       /* We cannot optimize asm goto.  */
2320       if (JUMP_P (end) && extract_asm_operands (end))
2321 	continue;
2322 
2323       if (single_succ_p (bb))
2324 	edges[n++] = EDGE_SUCC (bb, 0);
2325       else if (any_condjump_p (end))
2326 	{
2327 	  edge e0 = EDGE_SUCC (bb, 0);
2328 	  edge e1 = EDGE_SUCC (bb, 1);
2329 	  /* When optimizing for size it is best to keep the original
2330 	     fallthrough edges.  */
2331 	  if (e1->flags & EDGE_FALLTHRU)
2332 	    std::swap (e0, e1);
2333 	  edges[n++] = e0;
2334 	  edges[n++] = e1;
2335 	}
2336     }
2337 
2338   /* Sort the edges, the most desirable first.  When optimizing for size
2339      all edges are equally desirable.  */
2340 
2341   if (optimize_function_for_speed_p (cfun))
2342     std::stable_sort (edges, edges + n, edge_order);
2343 
2344   /* Now decide which of those edges to make fallthrough edges.  We set
2345      BB_VISITED if a block already has a fallthrough successor assigned
2346      to it.  We make ->AUX of an endpoint point to the opposite endpoint
2347      of a sequence of blocks that fall through, and ->AUX will be NULL
2348      for a block that is in such a sequence but not an endpoint anymore.
2349 
2350      To start with, everything points to itself, nothing is assigned yet.  */
2351 
2352   FOR_ALL_BB_FN (bb, cfun)
2353     {
2354       bb->aux = bb;
2355       bb->flags &= ~BB_VISITED;
2356     }
2357 
2358   EXIT_BLOCK_PTR_FOR_FN (cfun)->aux = 0;
2359 
2360   /* Now for all edges, the most desirable first, see if that edge can
2361      connect two sequences.  If it can, update AUX and BB_VISITED; if it
2362      cannot, zero out the edge in the table.  */
2363 
2364   for (int j = 0; j < n; j++)
2365     {
2366       edge e = edges[j];
2367 
2368       basic_block tail_a = e->src;
2369       basic_block head_b = e->dest;
2370       basic_block head_a = (basic_block) tail_a->aux;
2371       basic_block tail_b = (basic_block) head_b->aux;
2372 
2373       /* An edge cannot connect two sequences if:
2374 	 - it crosses partitions;
2375 	 - its src is not a current endpoint;
2376 	 - its dest is not a current endpoint;
2377 	 - or, it would create a loop.  */
2378 
2379       if (e->flags & EDGE_CROSSING
2380 	  || tail_a->flags & BB_VISITED
2381 	  || !tail_b
2382 	  || (!(head_b->flags & BB_VISITED) && head_b != tail_b)
2383 	  || tail_a == tail_b)
2384 	{
2385 	  edges[j] = 0;
2386 	  continue;
2387 	}
2388 
2389       tail_a->aux = 0;
2390       head_b->aux = 0;
2391       head_a->aux = tail_b;
2392       tail_b->aux = head_a;
2393       tail_a->flags |= BB_VISITED;
2394     }
2395 
2396   /* Put the pieces together, in the same order that the start blocks of
2397      the sequences already had.  The hot/cold partitioning gives a little
2398      complication: as a first pass only do this for blocks in the same
2399      partition as the start block, and (if there is anything left to do)
2400      in a second pass handle the other partition.  */
2401 
2402   basic_block last_tail = (basic_block) ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2403 
2404   int current_partition
2405     = BB_PARTITION (last_tail == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2406 		    ? EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
2407 		    : last_tail);
2408   bool need_another_pass = true;
2409 
2410   for (int pass = 0; pass < 2 && need_another_pass; pass++)
2411     {
2412       need_another_pass = false;
2413 
2414       FOR_EACH_BB_FN (bb, cfun)
2415 	if ((bb->flags & BB_VISITED && bb->aux) || bb->aux == bb)
2416 	  {
2417 	    if (BB_PARTITION (bb) != current_partition)
2418 	      {
2419 		need_another_pass = true;
2420 		continue;
2421 	      }
2422 
2423 	    last_tail->aux = bb;
2424 	    last_tail = (basic_block) bb->aux;
2425 	  }
2426 
2427       current_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
2428     }
2429 
2430   last_tail->aux = 0;
2431 
2432   /* Finally, link all the chosen fallthrough edges.  */
2433 
2434   for (int j = 0; j < n; j++)
2435     if (edges[j])
2436       edges[j]->src->aux = edges[j]->dest;
2437 
2438   delete[] edges;
2439 
2440   /* If the entry edge no longer falls through we have to make a new
2441      block so it can do so again.  */
2442 
2443   edge e = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2444   if (e->dest != ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux)
2445     {
2446       force_nonfallthru (e);
2447       e->src->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2448     }
2449 }
2450 
2451 /* Reorder basic blocks.  The main entry point to this file.  */
2452 
2453 static void
2454 reorder_basic_blocks (void)
2455 {
2456   gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2457 
2458   if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2459     return;
2460 
2461   set_edge_can_fallthru_flag ();
2462   mark_dfs_back_edges ();
2463 
2464   switch (flag_reorder_blocks_algorithm)
2465     {
2466     case REORDER_BLOCKS_ALGORITHM_SIMPLE:
2467       reorder_basic_blocks_simple ();
2468       break;
2469 
2470     case REORDER_BLOCKS_ALGORITHM_STC:
2471       reorder_basic_blocks_software_trace_cache ();
2472       break;
2473 
2474     default:
2475       gcc_unreachable ();
2476     }
2477 
2478   relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2479 
2480   if (dump_file)
2481     {
2482       if (dump_flags & TDF_DETAILS)
2483 	dump_reg_info (dump_file);
2484       dump_flow_info (dump_file, dump_flags);
2485     }
2486 
2487   /* Signal that rtl_verify_flow_info_1 can now verify that there
2488      is at most one switch between hot/cold sections.  */
2489   crtl->bb_reorder_complete = true;
2490 }
2491 
2492 /* Determine which partition the first basic block in the function
2493    belongs to, then find the first basic block in the current function
2494    that belongs to a different section, and insert a
2495    NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2496    instruction stream.  When writing out the assembly code,
2497    encountering this note will make the compiler switch between the
2498    hot and cold text sections.  */
2499 
2500 void
2501 insert_section_boundary_note (void)
2502 {
2503   basic_block bb;
2504   bool switched_sections = false;
2505   int current_partition = 0;
2506 
2507   if (!crtl->has_bb_partition)
2508     return;
2509 
2510   FOR_EACH_BB_FN (bb, cfun)
2511     {
2512       if (!current_partition)
2513 	current_partition = BB_PARTITION (bb);
2514       if (BB_PARTITION (bb) != current_partition)
2515 	{
2516 	  gcc_assert (!switched_sections);
2517           switched_sections = true;
2518           emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2519           current_partition = BB_PARTITION (bb);
2520 	}
2521     }
2522 
2523   /* Make sure crtl->has_bb_partition matches reality even if bbpart finds
2524      some hot and some cold basic blocks, but later one of those kinds is
2525      optimized away.  */
2526   crtl->has_bb_partition = switched_sections;
2527 }
2528 
2529 namespace {
2530 
2531 const pass_data pass_data_reorder_blocks =
2532 {
2533   RTL_PASS, /* type */
2534   "bbro", /* name */
2535   OPTGROUP_NONE, /* optinfo_flags */
2536   TV_REORDER_BLOCKS, /* tv_id */
2537   0, /* properties_required */
2538   0, /* properties_provided */
2539   0, /* properties_destroyed */
2540   0, /* todo_flags_start */
2541   0, /* todo_flags_finish */
2542 };
2543 
2544 class pass_reorder_blocks : public rtl_opt_pass
2545 {
2546 public:
2547   pass_reorder_blocks (gcc::context *ctxt)
2548     : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2549   {}
2550 
2551   /* opt_pass methods: */
2552   virtual bool gate (function *)
2553     {
2554       if (targetm.cannot_modify_jumps_p ())
2555 	return false;
2556       return (optimize > 0
2557 	      && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2558     }
2559 
2560   virtual unsigned int execute (function *);
2561 
2562 }; // class pass_reorder_blocks
2563 
2564 unsigned int
2565 pass_reorder_blocks::execute (function *fun)
2566 {
2567   basic_block bb;
2568 
2569   /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2570      splitting possibly introduced more crossjumping opportunities.  */
2571   cfg_layout_initialize (CLEANUP_EXPENSIVE);
2572 
2573   reorder_basic_blocks ();
2574   cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_NO_PARTITIONING);
2575 
2576   FOR_EACH_BB_FN (bb, fun)
2577     if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2578       bb->aux = bb->next_bb;
2579   cfg_layout_finalize ();
2580 
2581   return 0;
2582 }
2583 
2584 } // anon namespace
2585 
2586 rtl_opt_pass *
2587 make_pass_reorder_blocks (gcc::context *ctxt)
2588 {
2589   return new pass_reorder_blocks (ctxt);
2590 }
2591 
2592 /* Duplicate a block (that we already know ends in a computed jump) into its
2593    predecessors, where possible.  Return whether anything is changed.  */
2594 static bool
2595 maybe_duplicate_computed_goto (basic_block bb, int max_size)
2596 {
2597   if (single_pred_p (bb))
2598     return false;
2599 
2600   /* Make sure that the block is small enough.  */
2601   rtx_insn *insn;
2602   FOR_BB_INSNS (bb, insn)
2603     if (INSN_P (insn))
2604       {
2605 	max_size -= get_attr_min_length (insn);
2606 	if (max_size < 0)
2607 	   return false;
2608       }
2609 
2610   bool changed = false;
2611   edge e;
2612   edge_iterator ei;
2613   for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
2614     {
2615       basic_block pred = e->src;
2616 
2617       /* Do not duplicate BB into PRED if that is the last predecessor, or if
2618 	 we cannot merge a copy of BB with PRED.  */
2619       if (single_pred_p (bb)
2620 	  || !single_succ_p (pred)
2621 	  || e->flags & EDGE_COMPLEX
2622 	  || pred->index < NUM_FIXED_BLOCKS
2623 	  || (JUMP_P (BB_END (pred)) && !simplejump_p (BB_END (pred)))
2624 	  || (JUMP_P (BB_END (pred)) && CROSSING_JUMP_P (BB_END (pred))))
2625 	{
2626 	  ei_next (&ei);
2627 	  continue;
2628 	}
2629 
2630       if (dump_file)
2631 	fprintf (dump_file, "Duplicating computed goto bb %d into bb %d\n",
2632 		 bb->index, e->src->index);
2633 
2634       /* Remember if PRED can be duplicated; if so, the copy of BB merged
2635 	 with PRED can be duplicated as well.  */
2636       bool can_dup_more = can_duplicate_block_p (pred);
2637 
2638       /* Make a copy of BB, merge it into PRED.  */
2639       basic_block copy = duplicate_block (bb, e, NULL);
2640       emit_barrier_after_bb (copy);
2641       reorder_insns_nobb (BB_HEAD (copy), BB_END (copy), BB_END (pred));
2642       merge_blocks (pred, copy);
2643 
2644       changed = true;
2645 
2646       /* Try to merge the resulting merged PRED into further predecessors.  */
2647       if (can_dup_more)
2648 	maybe_duplicate_computed_goto (pred, max_size);
2649     }
2650 
2651   return changed;
2652 }
2653 
2654 /* Duplicate the blocks containing computed gotos.  This basically unfactors
2655    computed gotos that were factored early on in the compilation process to
2656    speed up edge based data flow.  We used to not unfactor them again, which
2657    can seriously pessimize code with many computed jumps in the source code,
2658    such as interpreters.  See e.g. PR15242.  */
2659 static void
2660 duplicate_computed_gotos (function *fun)
2661 {
2662   /* We are estimating the length of uncond jump insn only once
2663      since the code for getting the insn length always returns
2664      the minimal length now.  */
2665   if (uncond_jump_length == 0)
2666     uncond_jump_length = get_uncond_jump_length ();
2667 
2668   /* Never copy a block larger than this.  */
2669   int max_size
2670     = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2671 
2672   bool changed = false;
2673 
2674   /* Try to duplicate all blocks that end in a computed jump and that
2675      can be duplicated at all.  */
2676   basic_block bb;
2677   FOR_EACH_BB_FN (bb, fun)
2678     if (computed_jump_p (BB_END (bb)) && can_duplicate_block_p (bb))
2679       changed |= maybe_duplicate_computed_goto (bb, max_size);
2680 
2681   /* Duplicating blocks will redirect edges and may cause hot blocks
2682     previously reached by both hot and cold blocks to become dominated
2683     only by cold blocks.  */
2684   if (changed)
2685     fixup_partitions ();
2686 }
2687 
2688 namespace {
2689 
2690 const pass_data pass_data_duplicate_computed_gotos =
2691 {
2692   RTL_PASS, /* type */
2693   "compgotos", /* name */
2694   OPTGROUP_NONE, /* optinfo_flags */
2695   TV_REORDER_BLOCKS, /* tv_id */
2696   0, /* properties_required */
2697   0, /* properties_provided */
2698   0, /* properties_destroyed */
2699   0, /* todo_flags_start */
2700   0, /* todo_flags_finish */
2701 };
2702 
2703 class pass_duplicate_computed_gotos : public rtl_opt_pass
2704 {
2705 public:
2706   pass_duplicate_computed_gotos (gcc::context *ctxt)
2707     : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2708   {}
2709 
2710   /* opt_pass methods: */
2711   virtual bool gate (function *);
2712   virtual unsigned int execute (function *);
2713 
2714 }; // class pass_duplicate_computed_gotos
2715 
2716 bool
2717 pass_duplicate_computed_gotos::gate (function *fun)
2718 {
2719   if (targetm.cannot_modify_jumps_p ())
2720     return false;
2721   return (optimize > 0
2722 	  && flag_expensive_optimizations
2723 	  && ! optimize_function_for_size_p (fun));
2724 }
2725 
2726 unsigned int
2727 pass_duplicate_computed_gotos::execute (function *fun)
2728 {
2729   duplicate_computed_gotos (fun);
2730 
2731   return 0;
2732 }
2733 
2734 } // anon namespace
2735 
2736 rtl_opt_pass *
2737 make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2738 {
2739   return new pass_duplicate_computed_gotos (ctxt);
2740 }
2741 
2742 /* This function is the main 'entrance' for the optimization that
2743    partitions hot and cold basic blocks into separate sections of the
2744    .o file (to improve performance and cache locality).  Ideally it
2745    would be called after all optimizations that rearrange the CFG have
2746    been called.  However part of this optimization may introduce new
2747    register usage, so it must be called before register allocation has
2748    occurred.  This means that this optimization is actually called
2749    well before the optimization that reorders basic blocks (see
2750    function above).
2751 
2752    This optimization checks the feedback information to determine
2753    which basic blocks are hot/cold, updates flags on the basic blocks
2754    to indicate which section they belong in.  This information is
2755    later used for writing out sections in the .o file.  Because hot
2756    and cold sections can be arbitrarily large (within the bounds of
2757    memory), far beyond the size of a single function, it is necessary
2758    to fix up all edges that cross section boundaries, to make sure the
2759    instructions used can actually span the required distance.  The
2760    fixes are described below.
2761 
2762    Fall-through edges must be changed into jumps; it is not safe or
2763    legal to fall through across a section boundary.  Whenever a
2764    fall-through edge crossing a section boundary is encountered, a new
2765    basic block is inserted (in the same section as the fall-through
2766    source), and the fall through edge is redirected to the new basic
2767    block.  The new basic block contains an unconditional jump to the
2768    original fall-through target.  (If the unconditional jump is
2769    insufficient to cross section boundaries, that is dealt with a
2770    little later, see below).
2771 
2772    In order to deal with architectures that have short conditional
2773    branches (which cannot span all of memory) we take any conditional
2774    jump that attempts to cross a section boundary and add a level of
2775    indirection: it becomes a conditional jump to a new basic block, in
2776    the same section.  The new basic block contains an unconditional
2777    jump to the original target, in the other section.
2778 
2779    For those architectures whose unconditional branch is also
2780    incapable of reaching all of memory, those unconditional jumps are
2781    converted into indirect jumps, through a register.
2782 
2783    IMPORTANT NOTE: This optimization causes some messy interactions
2784    with the cfg cleanup optimizations; those optimizations want to
2785    merge blocks wherever possible, and to collapse indirect jump
2786    sequences (change "A jumps to B jumps to C" directly into "A jumps
2787    to C").  Those optimizations can undo the jump fixes that
2788    partitioning is required to make (see above), in order to ensure
2789    that jumps attempting to cross section boundaries are really able
2790    to cover whatever distance the jump requires (on many architectures
2791    conditional or unconditional jumps are not able to reach all of
2792    memory).  Therefore tests have to be inserted into each such
2793    optimization to make sure that it does not undo stuff necessary to
2794    cross partition boundaries.  This would be much less of a problem
2795    if we could perform this optimization later in the compilation, but
2796    unfortunately the fact that we may need to create indirect jumps
2797    (through registers) requires that this optimization be performed
2798    before register allocation.
2799 
2800    Hot and cold basic blocks are partitioned and put in separate
2801    sections of the .o file, to reduce paging and improve cache
2802    performance (hopefully).  This can result in bits of code from the
2803    same function being widely separated in the .o file.  However this
2804    is not obvious to the current bb structure.  Therefore we must take
2805    care to ensure that: 1). There are no fall_thru edges that cross
2806    between sections; 2). For those architectures which have "short"
2807    conditional branches, all conditional branches that attempt to
2808    cross between sections are converted to unconditional branches;
2809    and, 3). For those architectures which have "short" unconditional
2810    branches, all unconditional branches that attempt to cross between
2811    sections are converted to indirect jumps.
2812 
2813    The code for fixing up fall_thru edges that cross between hot and
2814    cold basic blocks does so by creating new basic blocks containing
2815    unconditional branches to the appropriate label in the "other"
2816    section.  The new basic block is then put in the same (hot or cold)
2817    section as the original conditional branch, and the fall_thru edge
2818    is modified to fall into the new basic block instead.  By adding
2819    this level of indirection we end up with only unconditional branches
2820    crossing between hot and cold sections.
2821 
2822    Conditional branches are dealt with by adding a level of indirection.
2823    A new basic block is added in the same (hot/cold) section as the
2824    conditional branch, and the conditional branch is retargeted to the
2825    new basic block.  The new basic block contains an unconditional branch
2826    to the original target of the conditional branch (in the other section).
2827 
2828    Unconditional branches are dealt with by converting them into
2829    indirect jumps.  */
2830 
2831 namespace {
2832 
2833 const pass_data pass_data_partition_blocks =
2834 {
2835   RTL_PASS, /* type */
2836   "bbpart", /* name */
2837   OPTGROUP_NONE, /* optinfo_flags */
2838   TV_REORDER_BLOCKS, /* tv_id */
2839   PROP_cfglayout, /* properties_required */
2840   0, /* properties_provided */
2841   0, /* properties_destroyed */
2842   0, /* todo_flags_start */
2843   0, /* todo_flags_finish */
2844 };
2845 
2846 class pass_partition_blocks : public rtl_opt_pass
2847 {
2848 public:
2849   pass_partition_blocks (gcc::context *ctxt)
2850     : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2851   {}
2852 
2853   /* opt_pass methods: */
2854   virtual bool gate (function *);
2855   virtual unsigned int execute (function *);
2856 
2857 }; // class pass_partition_blocks
2858 
2859 bool
2860 pass_partition_blocks::gate (function *fun)
2861 {
2862   /* The optimization to partition hot/cold basic blocks into separate
2863      sections of the .o file does not work well with linkonce or with
2864      user defined section attributes.  Don't call it if either case
2865      arises.  */
2866   return (flag_reorder_blocks_and_partition
2867 	  && optimize
2868 	  /* See pass_reorder_blocks::gate.  We should not partition if
2869 	     we are going to omit the reordering.  */
2870 	  && optimize_function_for_speed_p (fun)
2871 	  && !DECL_COMDAT_GROUP (current_function_decl)
2872 	  && !lookup_attribute ("section", DECL_ATTRIBUTES (fun->decl))
2873 	  /* Workaround a bug in GDB where read_partial_die doesn't cope
2874 	     with DIEs with DW_AT_ranges, see PR81115.  */
2875 	  && !(in_lto_p && MAIN_NAME_P (DECL_NAME (fun->decl))));
2876 }
2877 
2878 unsigned
2879 pass_partition_blocks::execute (function *fun)
2880 {
2881   vec<edge> crossing_edges;
2882 
2883   if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2884     return 0;
2885 
2886   df_set_flags (DF_DEFER_INSN_RESCAN);
2887 
2888   crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2889   if (!crossing_edges.exists ())
2890     /* Make sure to process deferred rescans and clear changeable df flags.  */
2891     return TODO_df_finish;
2892 
2893   crtl->has_bb_partition = true;
2894 
2895   /* Make sure the source of any crossing edge ends in a jump and the
2896      destination of any crossing edge has a label.  */
2897   add_labels_and_missing_jumps (crossing_edges);
2898 
2899   /* Convert all crossing fall_thru edges to non-crossing fall
2900      thrus to unconditional jumps (that jump to the original fall
2901      through dest).  */
2902   fix_up_fall_thru_edges ();
2903 
2904   /* If the architecture does not have conditional branches that can
2905      span all of memory, convert crossing conditional branches into
2906      crossing unconditional branches.  */
2907   if (!HAS_LONG_COND_BRANCH)
2908     fix_crossing_conditional_branches ();
2909 
2910   /* If the architecture does not have unconditional branches that
2911      can span all of memory, convert crossing unconditional branches
2912      into indirect jumps.  Since adding an indirect jump also adds
2913      a new register usage, update the register usage information as
2914      well.  */
2915   if (!HAS_LONG_UNCOND_BRANCH)
2916     fix_crossing_unconditional_branches ();
2917 
2918   update_crossing_jump_flags ();
2919 
2920   /* Clear bb->aux fields that the above routines were using.  */
2921   clear_aux_for_blocks ();
2922 
2923   crossing_edges.release ();
2924 
2925   /* ??? FIXME: DF generates the bb info for a block immediately.
2926      And by immediately, I mean *during* creation of the block.
2927 
2928 	#0  df_bb_refs_collect
2929 	#1  in df_bb_refs_record
2930 	#2  in create_basic_block_structure
2931 
2932      Which means that the bb_has_eh_pred test in df_bb_refs_collect
2933      will *always* fail, because no edges can have been added to the
2934      block yet.  Which of course means we don't add the right
2935      artificial refs, which means we fail df_verify (much) later.
2936 
2937      Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
2938      that we also shouldn't grab data from the new blocks those new
2939      insns are in either.  In this way one can create the block, link
2940      it up properly, and have everything Just Work later, when deferred
2941      insns are processed.
2942 
2943      In the meantime, we have no other option but to throw away all
2944      of the DF data and recompute it all.  */
2945   if (fun->eh->lp_array)
2946     {
2947       df_finish_pass (true);
2948       df_scan_alloc (NULL);
2949       df_scan_blocks ();
2950       /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
2951 	 data.  We blindly generated all of them when creating the new
2952 	 landing pad.  Delete those assignments we don't use.  */
2953       df_set_flags (DF_LR_RUN_DCE);
2954       df_analyze ();
2955     }
2956 
2957   /* Make sure to process deferred rescans and clear changeable df flags.  */
2958   return TODO_df_finish;
2959 }
2960 
2961 } // anon namespace
2962 
2963 rtl_opt_pass *
2964 make_pass_partition_blocks (gcc::context *ctxt)
2965 {
2966   return new pass_partition_blocks (ctxt);
2967 }
2968