xref: /dragonfly/contrib/gcc-8.0/gcc/c/c-aux-info.c (revision 7ff0fc30)
1 /* Generate information regarding function declarations and definitions based
2    on information stored in GCC's tree structure.  This code implements the
3    -aux-info option.
4    Copyright (C) 1989-2018 Free Software Foundation, Inc.
5    Contributed by Ron Guilmette (rfg@segfault.us.com).
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "c-tree.h"
28 
29 enum formals_style {
30   ansi,
31   k_and_r_names,
32   k_and_r_decls
33 };
34 
35 
36 static const char *data_type;
37 
38 static char *affix_data_type (const char *) ATTRIBUTE_MALLOC;
39 static const char *gen_formal_list_for_type (tree, formals_style);
40 static const char *gen_formal_list_for_func_def (tree, formals_style);
41 static const char *gen_type (const char *, tree, formals_style);
42 static const char *gen_decl (tree, int, formals_style);
43 
44 /* Given a string representing an entire type or an entire declaration
45    which only lacks the actual "data-type" specifier (at its left end),
46    affix the data-type specifier to the left end of the given type
47    specification or object declaration.
48 
49    Because of C language weirdness, the data-type specifier (which normally
50    goes in at the very left end) may have to be slipped in just to the
51    right of any leading "const" or "volatile" qualifiers (there may be more
52    than one).  Actually this may not be strictly necessary because it seems
53    that GCC (at least) accepts `<data-type> const foo;' and treats it the
54    same as `const <data-type> foo;' but people are accustomed to seeing
55    `const char *foo;' and *not* `char const *foo;' so we try to create types
56    that look as expected.  */
57 
58 static char *
59 affix_data_type (const char *param)
60 {
61   char *const type_or_decl = ASTRDUP (param);
62   char *p = type_or_decl;
63   char *qualifiers_then_data_type;
64   char saved;
65 
66   /* Skip as many leading const's or volatile's as there are.  */
67 
68   for (;;)
69     {
70       if (!strncmp (p, "volatile ", 9))
71 	{
72 	  p += 9;
73 	  continue;
74 	}
75       if (!strncmp (p, "const ", 6))
76 	{
77 	  p += 6;
78 	  continue;
79 	}
80       break;
81     }
82 
83   /* p now points to the place where we can insert the data type.  We have to
84      add a blank after the data-type of course.  */
85 
86   if (p == type_or_decl)
87     return concat (data_type, " ", type_or_decl, NULL);
88 
89   saved = *p;
90   *p = '\0';
91   qualifiers_then_data_type = concat (type_or_decl, data_type, NULL);
92   *p = saved;
93   return reconcat (qualifiers_then_data_type,
94 		   qualifiers_then_data_type, " ", p, NULL);
95 }
96 
97 /* Given a tree node which represents some "function type", generate the
98    source code version of a formal parameter list (of some given style) for
99    this function type.  Return the whole formal parameter list (including
100    a pair of surrounding parens) as a string.   Note that if the style
101    we are currently aiming for is non-ansi, then we just return a pair
102    of empty parens here.  */
103 
104 static const char *
105 gen_formal_list_for_type (tree fntype, formals_style style)
106 {
107   const char *formal_list = "";
108   tree formal_type;
109 
110   if (style != ansi)
111     return "()";
112 
113   formal_type = TYPE_ARG_TYPES (fntype);
114   while (formal_type && TREE_VALUE (formal_type) != void_type_node)
115     {
116       const char *this_type;
117 
118       if (*formal_list)
119 	formal_list = concat (formal_list, ", ", NULL);
120 
121       this_type = gen_type ("", TREE_VALUE (formal_type), ansi);
122       formal_list
123 	= ((strlen (this_type))
124 	   ? concat (formal_list, affix_data_type (this_type), NULL)
125 	   : concat (formal_list, data_type, NULL));
126 
127       formal_type = TREE_CHAIN (formal_type);
128     }
129 
130   /* If we got to here, then we are trying to generate an ANSI style formal
131      parameters list.
132 
133      New style prototyped ANSI formal parameter lists should in theory always
134      contain some stuff between the opening and closing parens, even if it is
135      only "void".
136 
137      The brutal truth though is that there is lots of old K&R code out there
138      which contains declarations of "pointer-to-function" parameters and
139      these almost never have fully specified formal parameter lists associated
140      with them.  That is, the pointer-to-function parameters are declared
141      with just empty parameter lists.
142 
143      In cases such as these, protoize should really insert *something* into
144      the vacant parameter lists, but what?  It has no basis on which to insert
145      anything in particular.
146 
147      Here, we make life easy for protoize by trying to distinguish between
148      K&R empty parameter lists and new-style prototyped parameter lists
149      that actually contain "void".  In the latter case we (obviously) want
150      to output the "void" verbatim, and that what we do.  In the former case,
151      we do our best to give protoize something nice to insert.
152 
153      This "something nice" should be something that is still valid (when
154      re-compiled) but something that can clearly indicate to the user that
155      more typing information (for the parameter list) should be added (by
156      hand) at some convenient moment.
157 
158      The string chosen here is a comment with question marks in it.  */
159 
160   if (!*formal_list)
161     {
162       if (prototype_p (fntype))
163 	/* assert (TREE_VALUE (TYPE_ARG_TYPES (fntype)) == void_type_node);  */
164 	formal_list = "void";
165       else
166 	formal_list = "/* ??? */";
167     }
168   else
169     {
170       /* If there were at least some parameters, and if the formals-types-list
171 	 petered out to a NULL (i.e. without being terminated by a
172 	 void_type_node) then we need to tack on an ellipsis.  */
173       if (!formal_type)
174 	formal_list = concat (formal_list, ", ...", NULL);
175     }
176 
177   return concat (" (", formal_list, ")", NULL);
178 }
179 
180 /* Generate a parameter list for a function definition (in some given style).
181 
182    Note that this routine has to be separate (and different) from the code that
183    generates the prototype parameter lists for function declarations, because
184    in the case of a function declaration, all we have to go on is a tree node
185    representing the function's own "function type".  This can tell us the types
186    of all of the formal parameters for the function, but it cannot tell us the
187    actual *names* of each of the formal parameters.  We need to output those
188    parameter names for each function definition.
189 
190    This routine gets a pointer to a tree node which represents the actual
191    declaration of the given function, and this DECL node has a list of formal
192    parameter (variable) declarations attached to it.  These formal parameter
193    (variable) declaration nodes give us the actual names of the formal
194    parameters for the given function definition.
195 
196    This routine returns a string which is the source form for the entire
197    function formal parameter list.  */
198 
199 static const char *
200 gen_formal_list_for_func_def (tree fndecl, formals_style style)
201 {
202   const char *formal_list = "";
203   tree formal_decl;
204 
205   formal_decl = DECL_ARGUMENTS (fndecl);
206   while (formal_decl)
207     {
208       const char *this_formal;
209 
210       if (*formal_list && ((style == ansi) || (style == k_and_r_names)))
211 	formal_list = concat (formal_list, ", ", NULL);
212       this_formal = gen_decl (formal_decl, 0, style);
213       if (style == k_and_r_decls)
214 	formal_list = concat (formal_list, this_formal, "; ", NULL);
215       else
216 	formal_list = concat (formal_list, this_formal, NULL);
217       formal_decl = TREE_CHAIN (formal_decl);
218     }
219   if (style == ansi)
220     {
221       if (!DECL_ARGUMENTS (fndecl))
222 	formal_list = concat (formal_list, "void", NULL);
223       if (stdarg_p (TREE_TYPE (fndecl)))
224 	formal_list = concat (formal_list, ", ...", NULL);
225     }
226   if ((style == ansi) || (style == k_and_r_names))
227     formal_list = concat (" (", formal_list, ")", NULL);
228   return formal_list;
229 }
230 
231 /* Generate a string which is the source code form for a given type (t).  This
232    routine is ugly and complex because the C syntax for declarations is ugly
233    and complex.  This routine is straightforward so long as *no* pointer types,
234    array types, or function types are involved.
235 
236    In the simple cases, this routine will return the (string) value which was
237    passed in as the "ret_val" argument.  Usually, this starts out either as an
238    empty string, or as the name of the declared item (i.e. the formal function
239    parameter variable).
240 
241    This routine will also return with the global variable "data_type" set to
242    some string value which is the "basic" data-type of the given complete type.
243    This "data_type" string can be concatenated onto the front of the returned
244    string after this routine returns to its caller.
245 
246    In complicated cases involving pointer types, array types, or function
247    types, the C declaration syntax requires an "inside out" approach, i.e. if
248    you have a type which is a "pointer-to-function" type, you need to handle
249    the "pointer" part first, but it also has to be "innermost" (relative to
250    the declaration stuff for the "function" type).  Thus, is this case, you
251    must prepend a "(*" and append a ")" to the name of the item (i.e. formal
252    variable).  Then you must append and prepend the other info for the
253    "function type" part of the overall type.
254 
255    To handle the "innermost precedence" rules of complicated C declarators, we
256    do the following (in this routine).  The input parameter called "ret_val"
257    is treated as a "seed".  Each time gen_type is called (perhaps recursively)
258    some additional strings may be appended or prepended (or both) to the "seed"
259    string.  If yet another (lower) level of the GCC tree exists for the given
260    type (as in the case of a pointer type, an array type, or a function type)
261    then the (wrapped) seed is passed to a (recursive) invocation of gen_type()
262    this recursive invocation may again "wrap" the (new) seed with yet more
263    declarator stuff, by appending, prepending (or both).  By the time the
264    recursion bottoms out, the "seed value" at that point will have a value
265    which is (almost) the complete source version of the declarator (except
266    for the data_type info).  Thus, this deepest "seed" value is simply passed
267    back up through all of the recursive calls until it is given (as the return
268    value) to the initial caller of the gen_type() routine.  All that remains
269    to do at this point is for the initial caller to prepend the "data_type"
270    string onto the returned "seed".  */
271 
272 static const char *
273 gen_type (const char *ret_val, tree t, formals_style style)
274 {
275   tree chain_p;
276 
277   /* If there is a typedef name for this type, use it.  */
278   if (TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
279     data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
280   else
281     {
282       switch (TREE_CODE (t))
283 	{
284 	case POINTER_TYPE:
285 	  if (TYPE_ATOMIC (t))
286 	    ret_val = concat ("_Atomic ", ret_val, NULL);
287 	  if (TYPE_READONLY (t))
288 	    ret_val = concat ("const ", ret_val, NULL);
289 	  if (TYPE_VOLATILE (t))
290 	    ret_val = concat ("volatile ", ret_val, NULL);
291 
292 	  ret_val = concat ("*", ret_val, NULL);
293 
294 	  if (TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
295 	    ret_val = concat ("(", ret_val, ")", NULL);
296 
297 	  ret_val = gen_type (ret_val, TREE_TYPE (t), style);
298 
299 	  return ret_val;
300 
301 	case ARRAY_TYPE:
302 	  if (!COMPLETE_TYPE_P (t) || TREE_CODE (TYPE_SIZE (t)) != INTEGER_CST)
303 	    ret_val = gen_type (concat (ret_val, "[]", NULL),
304 				TREE_TYPE (t), style);
305 	  else if (int_size_in_bytes (t) == 0)
306 	    ret_val = gen_type (concat (ret_val, "[0]", NULL),
307 				TREE_TYPE (t), style);
308 	  else
309 	    {
310 	      char buff[23];
311 	      sprintf (buff, "[" HOST_WIDE_INT_PRINT_DEC"]",
312 		       int_size_in_bytes (t)
313 		       / int_size_in_bytes (TREE_TYPE (t)));
314 	      ret_val = gen_type (concat (ret_val, buff, NULL),
315 				  TREE_TYPE (t), style);
316 	    }
317 	  break;
318 
319 	case FUNCTION_TYPE:
320 	  ret_val = gen_type (concat (ret_val,
321 				      gen_formal_list_for_type (t, style),
322 				      NULL),
323 			      TREE_TYPE (t), style);
324 	  break;
325 
326 	case IDENTIFIER_NODE:
327 	  data_type = IDENTIFIER_POINTER (t);
328 	  break;
329 
330 	/* The following three cases are complicated by the fact that a
331 	   user may do something really stupid, like creating a brand new
332 	   "anonymous" type specification in a formal argument list (or as
333 	   part of a function return type specification).  For example:
334 
335 		int f (enum { red, green, blue } color);
336 
337 	   In such cases, we have no name that we can put into the prototype
338 	   to represent the (anonymous) type.  Thus, we have to generate the
339 	   whole darn type specification.  Yuck!  */
340 
341 	case RECORD_TYPE:
342 	  if (TYPE_NAME (t))
343 	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
344 	  else
345 	    {
346 	      data_type = "";
347 	      chain_p = TYPE_FIELDS (t);
348 	      while (chain_p)
349 		{
350 		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi),
351 				      NULL);
352 		  chain_p = TREE_CHAIN (chain_p);
353 		  data_type = concat (data_type, "; ", NULL);
354 		}
355 	      data_type = concat ("{ ", data_type, "}", NULL);
356 	    }
357 	  data_type = concat ("struct ", data_type, NULL);
358 	  break;
359 
360 	case UNION_TYPE:
361 	  if (TYPE_NAME (t))
362 	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
363 	  else
364 	    {
365 	      data_type = "";
366 	      chain_p = TYPE_FIELDS (t);
367 	      while (chain_p)
368 		{
369 		  data_type = concat (data_type, gen_decl (chain_p, 0, ansi),
370 				      NULL);
371 		  chain_p = TREE_CHAIN (chain_p);
372 		  data_type = concat (data_type, "; ", NULL);
373 		}
374 	      data_type = concat ("{ ", data_type, "}", NULL);
375 	    }
376 	  data_type = concat ("union ", data_type, NULL);
377 	  break;
378 
379 	case ENUMERAL_TYPE:
380 	  if (TYPE_NAME (t))
381 	    data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
382 	  else
383 	    {
384 	      data_type = "";
385 	      chain_p = TYPE_VALUES (t);
386 	      while (chain_p)
387 		{
388 		  data_type = concat (data_type,
389 			IDENTIFIER_POINTER (TREE_PURPOSE (chain_p)), NULL);
390 		  chain_p = TREE_CHAIN (chain_p);
391 		  if (chain_p)
392 		    data_type = concat (data_type, ", ", NULL);
393 		}
394 	      data_type = concat ("{ ", data_type, " }", NULL);
395 	    }
396 	  data_type = concat ("enum ", data_type, NULL);
397 	  break;
398 
399 	case TYPE_DECL:
400 	  data_type = IDENTIFIER_POINTER (DECL_NAME (t));
401 	  break;
402 
403 	case INTEGER_TYPE:
404 	case FIXED_POINT_TYPE:
405 	  data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
406 	  /* Normally, `unsigned' is part of the deal.  Not so if it comes
407 	     with a type qualifier.  */
408 	  if (TYPE_UNSIGNED (t) && TYPE_QUALS (t))
409 	    data_type = concat ("unsigned ", data_type, NULL);
410 	  break;
411 
412 	case REAL_TYPE:
413 	  data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
414 	  break;
415 
416 	case VOID_TYPE:
417 	  data_type = "void";
418 	  break;
419 
420 	case ERROR_MARK:
421 	  data_type = "[ERROR]";
422 	  break;
423 
424 	default:
425 	  gcc_unreachable ();
426 	}
427     }
428   if (TYPE_ATOMIC (t))
429     ret_val = concat ("_Atomic ", ret_val, NULL);
430   if (TYPE_READONLY (t))
431     ret_val = concat ("const ", ret_val, NULL);
432   if (TYPE_VOLATILE (t))
433     ret_val = concat ("volatile ", ret_val, NULL);
434   if (TYPE_RESTRICT (t))
435     ret_val = concat ("restrict ", ret_val, NULL);
436   return ret_val;
437 }
438 
439 /* Generate a string (source) representation of an entire entity declaration
440    (using some particular style for function types).
441 
442    The given entity may be either a variable or a function.
443 
444    If the "is_func_definition" parameter is nonzero, assume that the thing
445    we are generating a declaration for is a FUNCTION_DECL node which is
446    associated with a function definition.  In this case, we can assume that
447    an attached list of DECL nodes for function formal arguments is present.  */
448 
449 static const char *
450 gen_decl (tree decl, int is_func_definition, formals_style style)
451 {
452   const char *ret_val;
453 
454   if (DECL_NAME (decl))
455     ret_val = IDENTIFIER_POINTER (DECL_NAME (decl));
456   else
457     ret_val = "";
458 
459   /* If we are just generating a list of names of formal parameters, we can
460      simply return the formal parameter name (with no typing information
461      attached to it) now.  */
462 
463   if (style == k_and_r_names)
464     return ret_val;
465 
466   /* Note that for the declaration of some entity (either a function or a
467      data object, like for instance a parameter) if the entity itself was
468      declared as either const or volatile, then const and volatile properties
469      are associated with just the declaration of the entity, and *not* with
470      the `type' of the entity.  Thus, for such declared entities, we have to
471      generate the qualifiers here.  */
472 
473   if (TREE_THIS_VOLATILE (decl))
474     ret_val = concat ("volatile ", ret_val, NULL);
475   if (TREE_READONLY (decl))
476     ret_val = concat ("const ", ret_val, NULL);
477 
478   data_type = "";
479 
480   /* For FUNCTION_DECL nodes, there are two possible cases here.  First, if
481      this FUNCTION_DECL node was generated from a function "definition", then
482      we will have a list of DECL_NODE's, one for each of the function's formal
483      parameters.  In this case, we can print out not only the types of each
484      formal, but also each formal's name.  In the second case, this
485      FUNCTION_DECL node came from an actual function declaration (and *not*
486      a definition).  In this case, we do nothing here because the formal
487      argument type-list will be output later, when the "type" of the function
488      is added to the string we are building.  Note that the ANSI-style formal
489      parameter list is considered to be a (suffix) part of the "type" of the
490      function.  */
491 
492   if (TREE_CODE (decl) == FUNCTION_DECL && is_func_definition)
493     {
494       ret_val = concat (ret_val, gen_formal_list_for_func_def (decl, ansi),
495 			NULL);
496 
497       /* Since we have already added in the formals list stuff, here we don't
498 	 add the whole "type" of the function we are considering (which
499 	 would include its parameter-list info), rather, we only add in
500 	 the "type" of the "type" of the function, which is really just
501 	 the return-type of the function (and does not include the parameter
502 	 list info).  */
503 
504       ret_val = gen_type (ret_val, TREE_TYPE (TREE_TYPE (decl)), style);
505     }
506   else
507     ret_val = gen_type (ret_val, TREE_TYPE (decl), style);
508 
509   ret_val = affix_data_type (ret_val);
510 
511   if (TREE_CODE (decl) != FUNCTION_DECL && C_DECL_REGISTER (decl))
512     ret_val = concat ("register ", ret_val, NULL);
513   if (TREE_PUBLIC (decl))
514     ret_val = concat ("extern ", ret_val, NULL);
515   if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl))
516     ret_val = concat ("static ", ret_val, NULL);
517 
518   return ret_val;
519 }
520 
521 extern FILE *aux_info_file;
522 
523 /* Generate and write a new line of info to the aux-info (.X) file.  This
524    routine is called once for each function declaration, and once for each
525    function definition (even the implicit ones).  */
526 
527 void
528 gen_aux_info_record (tree fndecl, int is_definition, int is_implicit,
529 		     int is_prototyped)
530 {
531   if (flag_gen_aux_info)
532     {
533       static int compiled_from_record = 0;
534       expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (fndecl));
535 
536       /* Each output .X file must have a header line.  Write one now if we
537 	 have not yet done so.  */
538 
539       if (!compiled_from_record++)
540 	{
541 	  /* The first line tells which directory file names are relative to.
542 	     Currently, -aux-info works only for files in the working
543 	     directory, so just use a `.' as a placeholder for now.  */
544 	  fprintf (aux_info_file, "/* compiled from: . */\n");
545 	}
546 
547       /* Write the actual line of auxiliary info.  */
548 
549       fprintf (aux_info_file, "/* %s:%d:%c%c */ %s;",
550 	       xloc.file, xloc.line,
551 	       (is_implicit) ? 'I' : (is_prototyped) ? 'N' : 'O',
552 	       (is_definition) ? 'F' : 'C',
553 	       gen_decl (fndecl, is_definition, ansi));
554 
555       /* If this is an explicit function declaration, we need to also write
556 	 out an old-style (i.e. K&R) function header, just in case the user
557 	 wants to run unprotoize.  */
558 
559       if (is_definition)
560 	{
561 	  fprintf (aux_info_file, " /*%s %s*/",
562 		   gen_formal_list_for_func_def (fndecl, k_and_r_names),
563 		   gen_formal_list_for_func_def (fndecl, k_and_r_decls));
564 	}
565 
566       fprintf (aux_info_file, "\n");
567     }
568 }
569