xref: /dragonfly/contrib/gcc-8.0/gcc/caller-save.c (revision 2b3f93ea)
1 /* Save and restore call-clobbered registers which are live across a call.
2    Copyright (C) 1989-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "predict.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "reload.h"
35 #include "alias.h"
36 #include "addresses.h"
37 #include "dumpfile.h"
38 #include "rtl-iter.h"
39 #include "target.h"
40 
41 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
42 
43 #define regno_save_mode \
44   (this_target_reload->x_regno_save_mode)
45 #define cached_reg_save_code \
46   (this_target_reload->x_cached_reg_save_code)
47 #define cached_reg_restore_code \
48   (this_target_reload->x_cached_reg_restore_code)
49 
50 /* For each hard register, a place on the stack where it can be saved,
51    if needed.  */
52 
53 static rtx
54   regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
55 
56 /* The number of elements in the subsequent array.  */
57 static int save_slots_num;
58 
59 /* Allocated slots so far.  */
60 static rtx save_slots[FIRST_PSEUDO_REGISTER];
61 
62 /* Set of hard regs currently residing in save area (during insn scan).  */
63 
64 static HARD_REG_SET hard_regs_saved;
65 
66 /* Number of registers currently in hard_regs_saved.  */
67 
68 static int n_regs_saved;
69 
70 /* Computed by mark_referenced_regs, all regs referenced in a given
71    insn.  */
72 static HARD_REG_SET referenced_regs;
73 
74 
75 typedef void refmarker_fn (rtx *loc, machine_mode mode, int hardregno,
76 			   void *mark_arg);
77 
78 static int reg_save_code (int, machine_mode);
79 static int reg_restore_code (int, machine_mode);
80 
81 struct saved_hard_reg;
82 static void initiate_saved_hard_regs (void);
83 static void new_saved_hard_reg (int, int);
84 static void finish_saved_hard_regs (void);
85 static int saved_hard_reg_compare_func (const void *, const void *);
86 
87 static void mark_set_regs (rtx, const_rtx, void *);
88 static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
89 static refmarker_fn mark_reg_as_referenced;
90 static refmarker_fn replace_reg_with_saved_mem;
91 static int insert_save (struct insn_chain *, int, HARD_REG_SET *,
92 			machine_mode *);
93 static int insert_restore (struct insn_chain *, int, int, int,
94 			   machine_mode *);
95 static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
96 					   rtx);
97 static void add_stored_regs (rtx, const_rtx, void *);
98 
99 
100 
101 static GTY(()) rtx savepat;
102 static GTY(()) rtx restpat;
103 static GTY(()) rtx test_reg;
104 static GTY(()) rtx test_mem;
105 static GTY(()) rtx_insn *saveinsn;
106 static GTY(()) rtx_insn *restinsn;
107 
108 /* Return the INSN_CODE used to save register REG in mode MODE.  */
109 static int
110 reg_save_code (int reg, machine_mode mode)
111 {
112   bool ok;
113   if (cached_reg_save_code[reg][mode])
114      return cached_reg_save_code[reg][mode];
115   if (!targetm.hard_regno_mode_ok (reg, mode))
116     {
117       /* Depending on how targetm.hard_regno_mode_ok is defined, range
118 	 propagation might deduce here that reg >= FIRST_PSEUDO_REGISTER.
119 	 So the assert below silences a warning.  */
120       gcc_assert (reg < FIRST_PSEUDO_REGISTER);
121       cached_reg_save_code[reg][mode] = -1;
122       cached_reg_restore_code[reg][mode] = -1;
123       return -1;
124     }
125 
126   /* Update the register number and modes of the register
127      and memory operand.  */
128   set_mode_and_regno (test_reg, mode, reg);
129   PUT_MODE (test_mem, mode);
130 
131   /* Force re-recognition of the modified insns.  */
132   INSN_CODE (saveinsn) = -1;
133   INSN_CODE (restinsn) = -1;
134 
135   cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
136   cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
137 
138   /* Now extract both insns and see if we can meet their
139      constraints.  We don't know here whether the save and restore will
140      be in size- or speed-tuned code, so just use the set of enabled
141      alternatives.  */
142   ok = (cached_reg_save_code[reg][mode] != -1
143 	&& cached_reg_restore_code[reg][mode] != -1);
144   if (ok)
145     {
146       extract_insn (saveinsn);
147       ok = constrain_operands (1, get_enabled_alternatives (saveinsn));
148       extract_insn (restinsn);
149       ok &= constrain_operands (1, get_enabled_alternatives (restinsn));
150     }
151 
152   if (! ok)
153     {
154       cached_reg_save_code[reg][mode] = -1;
155       cached_reg_restore_code[reg][mode] = -1;
156     }
157   gcc_assert (cached_reg_save_code[reg][mode]);
158   return cached_reg_save_code[reg][mode];
159 }
160 
161 /* Return the INSN_CODE used to restore register REG in mode MODE.  */
162 static int
163 reg_restore_code (int reg, machine_mode mode)
164 {
165   if (cached_reg_restore_code[reg][mode])
166      return cached_reg_restore_code[reg][mode];
167   /* Populate our cache.  */
168   reg_save_code (reg, mode);
169   return cached_reg_restore_code[reg][mode];
170 }
171 
172 /* Initialize for caller-save.
173 
174    Look at all the hard registers that are used by a call and for which
175    reginfo.c has not already excluded from being used across a call.
176 
177    Ensure that we can find a mode to save the register and that there is a
178    simple insn to save and restore the register.  This latter check avoids
179    problems that would occur if we tried to save the MQ register of some
180    machines directly into memory.  */
181 
182 void
183 init_caller_save (void)
184 {
185   rtx addr_reg;
186   int offset;
187   rtx address;
188   int i, j;
189 
190   if (caller_save_initialized_p)
191     return;
192 
193   caller_save_initialized_p = true;
194 
195   CLEAR_HARD_REG_SET (no_caller_save_reg_set);
196   /* First find all the registers that we need to deal with and all
197      the modes that they can have.  If we can't find a mode to use,
198      we can't have the register live over calls.  */
199 
200   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
201     {
202       if (call_used_regs[i]
203           && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
204 	{
205 	  for (j = 1; j <= MOVE_MAX_WORDS; j++)
206 	    {
207 	      regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
208 								   VOIDmode);
209 	      if (regno_save_mode[i][j] == VOIDmode && j == 1)
210 		{
211 		  SET_HARD_REG_BIT (call_fixed_reg_set, i);
212 		}
213 	    }
214 	}
215       else
216 	regno_save_mode[i][1] = VOIDmode;
217     }
218 
219   /* The following code tries to approximate the conditions under which
220      we can easily save and restore a register without scratch registers or
221      other complexities.  It will usually work, except under conditions where
222      the validity of an insn operand is dependent on the address offset.
223      No such cases are currently known.
224 
225      We first find a typical offset from some BASE_REG_CLASS register.
226      This address is chosen by finding the first register in the class
227      and by finding the smallest power of two that is a valid offset from
228      that register in every mode we will use to save registers.  */
229 
230   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
231     if (TEST_HARD_REG_BIT
232 	(reg_class_contents
233 	 [(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
234 				PLUS, CONST_INT)], i))
235       break;
236 
237   gcc_assert (i < FIRST_PSEUDO_REGISTER);
238 
239   addr_reg = gen_rtx_REG (Pmode, i);
240 
241   for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
242     {
243       address = gen_rtx_PLUS (Pmode, addr_reg, gen_int_mode (offset, Pmode));
244 
245       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
246 	if (regno_save_mode[i][1] != VOIDmode
247 	  && ! strict_memory_address_p (regno_save_mode[i][1], address))
248 	  break;
249 
250       if (i == FIRST_PSEUDO_REGISTER)
251 	break;
252     }
253 
254   /* If we didn't find a valid address, we must use register indirect.  */
255   if (offset == 0)
256     address = addr_reg;
257 
258   /* Next we try to form an insn to save and restore the register.  We
259      see if such an insn is recognized and meets its constraints.
260 
261      To avoid lots of unnecessary RTL allocation, we construct all the RTL
262      once, then modify the memory and register operands in-place.  */
263 
264   test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
265   test_mem = gen_rtx_MEM (word_mode, address);
266   savepat = gen_rtx_SET (test_mem, test_reg);
267   restpat = gen_rtx_SET (test_reg, test_mem);
268 
269   saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, savepat, 0, -1, 0);
270   restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, restpat, 0, -1, 0);
271 
272   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
273     for (j = 1; j <= MOVE_MAX_WORDS; j++)
274       if (reg_save_code (i,regno_save_mode[i][j]) == -1)
275 	{
276 	  regno_save_mode[i][j] = VOIDmode;
277 	  if (j == 1)
278 	    {
279 	      SET_HARD_REG_BIT (call_fixed_reg_set, i);
280 	      if (call_used_regs[i])
281 		SET_HARD_REG_BIT (no_caller_save_reg_set, i);
282 	    }
283 	}
284 }
285 
286 
287 
288 /* Initialize save areas by showing that we haven't allocated any yet.  */
289 
290 void
291 init_save_areas (void)
292 {
293   int i, j;
294 
295   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
296     for (j = 1; j <= MOVE_MAX_WORDS; j++)
297       regno_save_mem[i][j] = 0;
298   save_slots_num = 0;
299 
300 }
301 
302 /* The structure represents a hard register which should be saved
303    through the call.  It is used when the integrated register
304    allocator (IRA) is used and sharing save slots is on.  */
305 struct saved_hard_reg
306 {
307   /* Order number starting with 0.  */
308   int num;
309   /* The hard regno.  */
310   int hard_regno;
311   /* Execution frequency of all calls through which given hard
312      register should be saved.  */
313   int call_freq;
314   /* Stack slot reserved to save the hard register through calls.  */
315   rtx slot;
316   /* True if it is first hard register in the chain of hard registers
317      sharing the same stack slot.  */
318   int first_p;
319   /* Order number of the next hard register structure with the same
320      slot in the chain.  -1 represents end of the chain.  */
321   int next;
322 };
323 
324 /* Map: hard register number to the corresponding structure.  */
325 static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
326 
327 /* The number of all structures representing hard registers should be
328    saved, in order words, the number of used elements in the following
329    array.  */
330 static int saved_regs_num;
331 
332 /* Pointers to all the structures.  Index is the order number of the
333    corresponding structure.  */
334 static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
335 
336 /* First called function for work with saved hard registers.  */
337 static void
338 initiate_saved_hard_regs (void)
339 {
340   int i;
341 
342   saved_regs_num = 0;
343   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
344     hard_reg_map[i] = NULL;
345 }
346 
347 /* Allocate and return new saved hard register with given REGNO and
348    CALL_FREQ.  */
349 static void
350 new_saved_hard_reg (int regno, int call_freq)
351 {
352   struct saved_hard_reg *saved_reg;
353 
354   saved_reg
355     = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
356   hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
357   saved_reg->num = saved_regs_num++;
358   saved_reg->hard_regno = regno;
359   saved_reg->call_freq = call_freq;
360   saved_reg->first_p = FALSE;
361   saved_reg->next = -1;
362 }
363 
364 /* Free memory allocated for the saved hard registers.  */
365 static void
366 finish_saved_hard_regs (void)
367 {
368   int i;
369 
370   for (i = 0; i < saved_regs_num; i++)
371     free (all_saved_regs[i]);
372 }
373 
374 /* The function is used to sort the saved hard register structures
375    according their frequency.  */
376 static int
377 saved_hard_reg_compare_func (const void *v1p, const void *v2p)
378 {
379   const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
380   const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
381 
382   if (flag_omit_frame_pointer)
383     {
384       if (p1->call_freq - p2->call_freq != 0)
385 	return p1->call_freq - p2->call_freq;
386     }
387   else if (p2->call_freq - p1->call_freq != 0)
388     return p2->call_freq - p1->call_freq;
389 
390   return p1->num - p2->num;
391 }
392 
393 /* Allocate save areas for any hard registers that might need saving.
394    We take a conservative approach here and look for call-clobbered hard
395    registers that are assigned to pseudos that cross calls.  This may
396    overestimate slightly (especially if some of these registers are later
397    used as spill registers), but it should not be significant.
398 
399    For IRA we use priority coloring to decrease stack slots needed for
400    saving hard registers through calls.  We build conflicts for them
401    to do coloring.
402 
403    Future work:
404 
405      In the fallback case we should iterate backwards across all possible
406      modes for the save, choosing the largest available one instead of
407      falling back to the smallest mode immediately.  (eg TF -> DF -> SF).
408 
409      We do not try to use "move multiple" instructions that exist
410      on some machines (such as the 68k moveml).  It could be a win to try
411      and use them when possible.  The hard part is doing it in a way that is
412      machine independent since they might be saving non-consecutive
413      registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
414 
415 void
416 setup_save_areas (void)
417 {
418   int i, j, k, freq;
419   HARD_REG_SET hard_regs_used;
420   struct saved_hard_reg *saved_reg;
421   rtx_insn *insn;
422   struct insn_chain *chain, *next;
423   unsigned int regno;
424   HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
425   reg_set_iterator rsi;
426 
427   CLEAR_HARD_REG_SET (hard_regs_used);
428 
429   /* Find every CALL_INSN and record which hard regs are live across the
430      call into HARD_REG_MAP and HARD_REGS_USED.  */
431   initiate_saved_hard_regs ();
432   /* Create hard reg saved regs.  */
433   for (chain = reload_insn_chain; chain != 0; chain = next)
434     {
435       rtx cheap;
436 
437       insn = chain->insn;
438       next = chain->next;
439       if (!CALL_P (insn)
440 	  || find_reg_note (insn, REG_NORETURN, NULL))
441 	continue;
442       freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
443       REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
444 			       &chain->live_throughout);
445       get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
446 
447       /* Record all registers set in this call insn.  These don't
448 	 need to be saved.  N.B. the call insn might set a subreg
449 	 of a multi-hard-reg pseudo; then the pseudo is considered
450 	 live during the call, but the subreg that is set
451 	 isn't.  */
452       CLEAR_HARD_REG_SET (this_insn_sets);
453       note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
454       /* Sibcalls are considered to set the return value.  */
455       if (SIBLING_CALL_P (insn) && crtl->return_rtx)
456 	mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
457 
458       AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
459       AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
460       AND_HARD_REG_SET (hard_regs_to_save, used_regs);
461       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
462 	if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
463 	  {
464 	    if (hard_reg_map[regno] != NULL)
465 	      hard_reg_map[regno]->call_freq += freq;
466 	    else
467 	      new_saved_hard_reg (regno, freq);
468 	    SET_HARD_REG_BIT (hard_regs_used, regno);
469 	  }
470       cheap = find_reg_note (insn, REG_RETURNED, NULL);
471       if (cheap)
472 	cheap = XEXP (cheap, 0);
473       /* Look through all live pseudos, mark their hard registers.  */
474       EXECUTE_IF_SET_IN_REG_SET
475 	(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
476 	{
477 	  int r = reg_renumber[regno];
478 	  int bound;
479 
480 	  if (r < 0 || regno_reg_rtx[regno] == cheap)
481 	    continue;
482 
483 	  bound = r + hard_regno_nregs (r, PSEUDO_REGNO_MODE (regno));
484 	  for (; r < bound; r++)
485 	    if (TEST_HARD_REG_BIT (used_regs, r))
486 	      {
487 		if (hard_reg_map[r] != NULL)
488 		  hard_reg_map[r]->call_freq += freq;
489 		else
490 		  new_saved_hard_reg (r, freq);
491 		 SET_HARD_REG_BIT (hard_regs_to_save, r);
492 		 SET_HARD_REG_BIT (hard_regs_used, r);
493 	      }
494 	}
495     }
496 
497   /* If requested, figure out which hard regs can share save slots.  */
498   if (optimize && flag_ira_share_save_slots)
499     {
500       rtx slot;
501       char *saved_reg_conflicts;
502       int next_k;
503       struct saved_hard_reg *saved_reg2, *saved_reg3;
504       int call_saved_regs_num;
505       struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
506       int best_slot_num;
507       int prev_save_slots_num;
508       rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
509 
510       /* Find saved hard register conflicts.  */
511       saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
512       memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
513       for (chain = reload_insn_chain; chain != 0; chain = next)
514 	{
515 	  rtx cheap;
516 	  call_saved_regs_num = 0;
517 	  insn = chain->insn;
518 	  next = chain->next;
519 	  if (!CALL_P (insn)
520 	      || find_reg_note (insn, REG_NORETURN, NULL))
521 	    continue;
522 
523 	  cheap = find_reg_note (insn, REG_RETURNED, NULL);
524 	  if (cheap)
525 	    cheap = XEXP (cheap, 0);
526 
527 	  REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
528 				   &chain->live_throughout);
529 	  get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
530 
531 	  /* Record all registers set in this call insn.  These don't
532 	     need to be saved.  N.B. the call insn might set a subreg
533 	     of a multi-hard-reg pseudo; then the pseudo is considered
534 	     live during the call, but the subreg that is set
535 	     isn't.  */
536 	  CLEAR_HARD_REG_SET (this_insn_sets);
537 	  note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
538 	  /* Sibcalls are considered to set the return value,
539 	     compare df-scan.c:df_get_call_refs.  */
540 	  if (SIBLING_CALL_P (insn) && crtl->return_rtx)
541 	    mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
542 
543 	  AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
544 	  AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
545 	  AND_HARD_REG_SET (hard_regs_to_save, used_regs);
546 	  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
547 	    if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
548 	      {
549 		gcc_assert (hard_reg_map[regno] != NULL);
550 		call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
551 	      }
552 	  /* Look through all live pseudos, mark their hard registers.  */
553 	  EXECUTE_IF_SET_IN_REG_SET
554 	    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
555 	    {
556 	      int r = reg_renumber[regno];
557 	      int bound;
558 
559 	      if (r < 0 || regno_reg_rtx[regno] == cheap)
560 		continue;
561 
562 	      bound = r + hard_regno_nregs (r, PSEUDO_REGNO_MODE (regno));
563 	      for (; r < bound; r++)
564 		if (TEST_HARD_REG_BIT (used_regs, r))
565 		  call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
566 	    }
567 	  for (i = 0; i < call_saved_regs_num; i++)
568 	    {
569 	      saved_reg = call_saved_regs[i];
570 	      for (j = 0; j < call_saved_regs_num; j++)
571 		if (i != j)
572 		  {
573 		    saved_reg2 = call_saved_regs[j];
574 		    saved_reg_conflicts[saved_reg->num * saved_regs_num
575 					+ saved_reg2->num]
576 		      = saved_reg_conflicts[saved_reg2->num * saved_regs_num
577 					    + saved_reg->num]
578 		      = TRUE;
579 		  }
580 	    }
581 	}
582       /* Sort saved hard regs.  */
583       qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
584 	     saved_hard_reg_compare_func);
585       /* Initiate slots available from the previous reload
586 	 iteration.  */
587       prev_save_slots_num = save_slots_num;
588       memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
589       save_slots_num = 0;
590       /* Allocate stack slots for the saved hard registers.  */
591       for (i = 0; i < saved_regs_num; i++)
592 	{
593 	  saved_reg = all_saved_regs[i];
594 	  regno = saved_reg->hard_regno;
595 	  for (j = 0; j < i; j++)
596 	    {
597 	      saved_reg2 = all_saved_regs[j];
598 	      if (! saved_reg2->first_p)
599 		continue;
600 	      slot = saved_reg2->slot;
601 	      for (k = j; k >= 0; k = next_k)
602 		{
603 		  saved_reg3 = all_saved_regs[k];
604 		  next_k = saved_reg3->next;
605 		  if (saved_reg_conflicts[saved_reg->num * saved_regs_num
606 					  + saved_reg3->num])
607 		    break;
608 		}
609 	      if (k < 0
610 		  && known_le (GET_MODE_SIZE (regno_save_mode[regno][1]),
611 			       GET_MODE_SIZE (regno_save_mode
612 					      [saved_reg2->hard_regno][1])))
613 		{
614 		  saved_reg->slot
615 		    = adjust_address_nv
616 		      (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
617 		  regno_save_mem[regno][1] = saved_reg->slot;
618 		  saved_reg->next = saved_reg2->next;
619 		  saved_reg2->next = i;
620 		  if (dump_file != NULL)
621 		    fprintf (dump_file, "%d uses slot of %d\n",
622 			     regno, saved_reg2->hard_regno);
623 		  break;
624 		}
625 	    }
626 	  if (j == i)
627 	    {
628 	      saved_reg->first_p = TRUE;
629 	      for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
630 		{
631 		  slot = prev_save_slots[j];
632 		  if (slot == NULL_RTX)
633 		    continue;
634 		  if (known_le (GET_MODE_SIZE (regno_save_mode[regno][1]),
635 				GET_MODE_SIZE (GET_MODE (slot)))
636 		      && best_slot_num < 0)
637 		    best_slot_num = j;
638 		  if (GET_MODE (slot) == regno_save_mode[regno][1])
639 		    break;
640 		}
641 	      if (best_slot_num >= 0)
642 		{
643 		  saved_reg->slot = prev_save_slots[best_slot_num];
644 		  saved_reg->slot
645 		    = adjust_address_nv
646 		      (saved_reg->slot,
647 		       regno_save_mode[saved_reg->hard_regno][1], 0);
648 		  if (dump_file != NULL)
649 		    fprintf (dump_file,
650 			     "%d uses a slot from prev iteration\n", regno);
651 		  prev_save_slots[best_slot_num] = NULL_RTX;
652 		  if (best_slot_num + 1 == prev_save_slots_num)
653 		    prev_save_slots_num--;
654 		}
655 	      else
656 		{
657 		  saved_reg->slot
658 		    = assign_stack_local_1
659 		      (regno_save_mode[regno][1],
660 		       GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
661 		       ASLK_REDUCE_ALIGN);
662 		  if (dump_file != NULL)
663 		    fprintf (dump_file, "%d uses a new slot\n", regno);
664 		}
665 	      regno_save_mem[regno][1] = saved_reg->slot;
666 	      save_slots[save_slots_num++] = saved_reg->slot;
667 	    }
668 	}
669       free (saved_reg_conflicts);
670       finish_saved_hard_regs ();
671     }
672   else
673     {
674       /* We are not sharing slots.
675 
676 	 Run through all the call-used hard-registers and allocate
677 	 space for each in the caller-save area.  Try to allocate space
678 	 in a manner which allows multi-register saves/restores to be done.  */
679 
680       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
681 	for (j = MOVE_MAX_WORDS; j > 0; j--)
682 	  {
683 	    int do_save = 1;
684 
685 	    /* If no mode exists for this size, try another.  Also break out
686 	       if we have already saved this hard register.  */
687 	    if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
688 	      continue;
689 
690 	    /* See if any register in this group has been saved.  */
691 	    for (k = 0; k < j; k++)
692 	      if (regno_save_mem[i + k][1])
693 		{
694 		  do_save = 0;
695 		  break;
696 		}
697 	    if (! do_save)
698 	      continue;
699 
700 	    for (k = 0; k < j; k++)
701 	      if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
702 		{
703 		  do_save = 0;
704 		  break;
705 		}
706 	    if (! do_save)
707 	      continue;
708 
709 	    /* We have found an acceptable mode to store in.  Since
710 	       hard register is always saved in the widest mode
711 	       available, the mode may be wider than necessary, it is
712 	       OK to reduce the alignment of spill space.  We will
713 	       verify that it is equal to or greater than required
714 	       when we restore and save the hard register in
715 	       insert_restore and insert_save.  */
716 	    regno_save_mem[i][j]
717 	      = assign_stack_local_1 (regno_save_mode[i][j],
718 				      GET_MODE_SIZE (regno_save_mode[i][j]),
719 				      0, ASLK_REDUCE_ALIGN);
720 
721 	    /* Setup single word save area just in case...  */
722 	    for (k = 0; k < j; k++)
723 	      /* This should not depend on WORDS_BIG_ENDIAN.
724 		 The order of words in regs is the same as in memory.  */
725 	      regno_save_mem[i + k][1]
726 		= adjust_address_nv (regno_save_mem[i][j],
727 				     regno_save_mode[i + k][1],
728 				     k * UNITS_PER_WORD);
729 	  }
730     }
731 
732   /* Now loop again and set the alias set of any save areas we made to
733      the alias set used to represent frame objects.  */
734   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
735     for (j = MOVE_MAX_WORDS; j > 0; j--)
736       if (regno_save_mem[i][j] != 0)
737 	set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
738 }
739 
740 
741 
742 /* Find the places where hard regs are live across calls and save them.  */
743 
744 void
745 save_call_clobbered_regs (void)
746 {
747   struct insn_chain *chain, *next, *last = NULL;
748   machine_mode save_mode [FIRST_PSEUDO_REGISTER];
749 
750   /* Computed in mark_set_regs, holds all registers set by the current
751      instruction.  */
752   HARD_REG_SET this_insn_sets;
753 
754   CLEAR_HARD_REG_SET (hard_regs_saved);
755   n_regs_saved = 0;
756 
757   for (chain = reload_insn_chain; chain != 0; chain = next)
758     {
759       rtx_insn *insn = chain->insn;
760       enum rtx_code code = GET_CODE (insn);
761 
762       next = chain->next;
763 
764       gcc_assert (!chain->is_caller_save_insn);
765 
766       if (NONDEBUG_INSN_P (insn))
767 	{
768 	  /* If some registers have been saved, see if INSN references
769 	     any of them.  We must restore them before the insn if so.  */
770 
771 	  if (n_regs_saved)
772 	    {
773 	      int regno;
774 	      HARD_REG_SET this_insn_sets;
775 
776 	      if (code == JUMP_INSN)
777 		/* Restore all registers if this is a JUMP_INSN.  */
778 		COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
779 	      else
780 		{
781 		  CLEAR_HARD_REG_SET (referenced_regs);
782 		  mark_referenced_regs (&PATTERN (insn),
783 					mark_reg_as_referenced, NULL);
784 		  AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
785 		}
786 
787 	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
788 		if (TEST_HARD_REG_BIT (referenced_regs, regno))
789 		  regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
790 					   save_mode);
791 	      /* If a saved register is set after the call, this means we no
792 		 longer should restore it.  This can happen when parts of a
793 		 multi-word pseudo do not conflict with other pseudos, so
794 		 IRA may allocate the same hard register for both.  One may
795 		 be live across the call, while the other is set
796 		 afterwards.  */
797 	      CLEAR_HARD_REG_SET (this_insn_sets);
798 	      note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
799 	      AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
800 	    }
801 
802 	  if (code == CALL_INSN
803 	      && ! SIBLING_CALL_P (insn)
804 	      && ! find_reg_note (insn, REG_NORETURN, NULL))
805 	    {
806 	      unsigned regno;
807 	      HARD_REG_SET hard_regs_to_save;
808 	      HARD_REG_SET call_def_reg_set;
809 	      reg_set_iterator rsi;
810 	      rtx cheap;
811 
812 	      cheap = find_reg_note (insn, REG_RETURNED, NULL);
813 	      if (cheap)
814 		cheap = XEXP (cheap, 0);
815 
816 	      /* Use the register life information in CHAIN to compute which
817 		 regs are live during the call.  */
818 	      REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
819 				       &chain->live_throughout);
820 	      /* Save hard registers always in the widest mode available.  */
821 	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
822 		if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
823 		  save_mode [regno] = regno_save_mode [regno][1];
824 		else
825 		  save_mode [regno] = VOIDmode;
826 
827 	      /* Look through all live pseudos, mark their hard registers
828 		 and choose proper mode for saving.  */
829 	      EXECUTE_IF_SET_IN_REG_SET
830 		(&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
831 		{
832 		  int r = reg_renumber[regno];
833 		  int nregs;
834 		  machine_mode mode;
835 
836 		  if (r < 0 || regno_reg_rtx[regno] == cheap)
837 		    continue;
838 		  nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (regno));
839 		  mode = HARD_REGNO_CALLER_SAVE_MODE
840 		    (r, nregs, PSEUDO_REGNO_MODE (regno));
841 		  if (partial_subreg_p (save_mode[r], mode))
842 		    save_mode[r] = mode;
843 		  while (nregs-- > 0)
844 		    SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
845 		}
846 
847 	      /* Record all registers set in this call insn.  These don't need
848 		 to be saved.  N.B. the call insn might set a subreg of a
849 		 multi-hard-reg pseudo; then the pseudo is considered live
850 		 during the call, but the subreg that is set isn't.  */
851 	      CLEAR_HARD_REG_SET (this_insn_sets);
852 	      note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
853 
854 	      /* Compute which hard regs must be saved before this call.  */
855 	      AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
856 	      AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
857 	      AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
858 	      get_call_reg_set_usage (insn, &call_def_reg_set,
859 				      call_used_reg_set);
860 	      AND_HARD_REG_SET (hard_regs_to_save, call_def_reg_set);
861 
862 	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
863 		if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
864 		  regno += insert_save (chain, regno,
865 					&hard_regs_to_save, save_mode);
866 
867 	      /* Must recompute n_regs_saved.  */
868 	      n_regs_saved = 0;
869 	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
870 		if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
871 		  n_regs_saved++;
872 
873 	      if (cheap
874 		  && HARD_REGISTER_P (cheap)
875 		  && TEST_HARD_REG_BIT (call_used_reg_set, REGNO (cheap)))
876 		{
877 		  rtx dest, newpat;
878 		  rtx pat = PATTERN (insn);
879 		  if (GET_CODE (pat) == PARALLEL)
880 		    pat = XVECEXP (pat, 0, 0);
881 		  dest = SET_DEST (pat);
882 		  /* For multiple return values dest is PARALLEL.
883 		     Currently we handle only single return value case.  */
884 		  if (REG_P (dest))
885 		    {
886 		      newpat = gen_rtx_SET (cheap, copy_rtx (dest));
887 		      chain = insert_one_insn (chain, 0, -1, newpat);
888 		    }
889 		}
890 	    }
891           last = chain;
892 	}
893       else if (DEBUG_INSN_P (insn) && n_regs_saved)
894 	mark_referenced_regs (&PATTERN (insn),
895 			      replace_reg_with_saved_mem,
896 			      save_mode);
897 
898       if (chain->next == 0 || chain->next->block != chain->block)
899 	{
900 	  int regno;
901 	  /* At the end of the basic block, we must restore any registers that
902 	     remain saved.  If the last insn in the block is a JUMP_INSN, put
903 	     the restore before the insn, otherwise, put it after the insn.  */
904 
905 	  if (n_regs_saved
906 	      && DEBUG_INSN_P (insn)
907 	      && last
908 	      && last->block == chain->block)
909 	    {
910 	      rtx_insn *ins, *prev;
911 	      basic_block bb = BLOCK_FOR_INSN (insn);
912 
913 	      /* When adding hard reg restores after a DEBUG_INSN, move
914 		 all notes between last real insn and this DEBUG_INSN after
915 		 the DEBUG_INSN, otherwise we could get code
916 		 -g/-g0 differences.  */
917 	      for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
918 		{
919 		  prev = PREV_INSN (ins);
920 		  if (NOTE_P (ins))
921 		    {
922 		      SET_NEXT_INSN (prev) = NEXT_INSN (ins);
923 		      SET_PREV_INSN (NEXT_INSN (ins)) = prev;
924 		      SET_PREV_INSN (ins) = insn;
925 		      SET_NEXT_INSN (ins) = NEXT_INSN (insn);
926 		      SET_NEXT_INSN (insn) = ins;
927 		      if (NEXT_INSN (ins))
928 			SET_PREV_INSN (NEXT_INSN (ins)) = ins;
929                       if (BB_END (bb) == insn)
930 			BB_END (bb) = ins;
931 		    }
932 		  else
933 		    gcc_assert (DEBUG_INSN_P (ins));
934 		}
935 	    }
936 	  last = NULL;
937 
938 	  if (n_regs_saved)
939 	    for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
940 	      if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
941 		regno += insert_restore (chain, JUMP_P (insn),
942 					 regno, MOVE_MAX_WORDS, save_mode);
943 	}
944     }
945 }
946 
947 /* Here from note_stores, or directly from save_call_clobbered_regs, when
948    an insn stores a value in a register.
949    Set the proper bit or bits in this_insn_sets.  All pseudos that have
950    been assigned hard regs have had their register number changed already,
951    so we can ignore pseudos.  */
952 static void
953 mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
954 {
955   int regno, endregno, i;
956   HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
957 
958   if (GET_CODE (reg) == SUBREG)
959     {
960       rtx inner = SUBREG_REG (reg);
961       if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
962 	return;
963       regno = subreg_regno (reg);
964       endregno = regno + subreg_nregs (reg);
965     }
966   else if (REG_P (reg)
967 	   && REGNO (reg) < FIRST_PSEUDO_REGISTER)
968     {
969       regno = REGNO (reg);
970       endregno = END_REGNO (reg);
971     }
972   else
973     return;
974 
975   for (i = regno; i < endregno; i++)
976     SET_HARD_REG_BIT (*this_insn_sets, i);
977 }
978 
979 /* Here from note_stores when an insn stores a value in a register.
980    Set the proper bit or bits in the passed regset.  All pseudos that have
981    been assigned hard regs have had their register number changed already,
982    so we can ignore pseudos.  */
983 static void
984 add_stored_regs (rtx reg, const_rtx setter, void *data)
985 {
986   int regno, endregno, i;
987   machine_mode mode = GET_MODE (reg);
988   int offset = 0;
989 
990   if (GET_CODE (setter) == CLOBBER)
991     return;
992 
993   if (GET_CODE (reg) == SUBREG
994       && REG_P (SUBREG_REG (reg))
995       && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
996     {
997       offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
998 				    GET_MODE (SUBREG_REG (reg)),
999 				    SUBREG_BYTE (reg),
1000 				    GET_MODE (reg));
1001       regno = REGNO (SUBREG_REG (reg)) + offset;
1002       endregno = regno + subreg_nregs (reg);
1003     }
1004   else
1005     {
1006       if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
1007 	return;
1008 
1009       regno = REGNO (reg) + offset;
1010       endregno = end_hard_regno (mode, regno);
1011     }
1012 
1013   for (i = regno; i < endregno; i++)
1014     SET_REGNO_REG_SET ((regset) data, i);
1015 }
1016 
1017 /* Walk X and record all referenced registers in REFERENCED_REGS.  */
1018 static void
1019 mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
1020 {
1021   enum rtx_code code = GET_CODE (*loc);
1022   const char *fmt;
1023   int i, j;
1024 
1025   if (code == SET)
1026     mark_referenced_regs (&SET_SRC (*loc), mark, arg);
1027   if (code == SET || code == CLOBBER)
1028     {
1029       loc = &SET_DEST (*loc);
1030       code = GET_CODE (*loc);
1031       if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
1032 	  || code == PC || code == CC0
1033 	  || (code == SUBREG && REG_P (SUBREG_REG (*loc))
1034 	      && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
1035 	      /* If we're setting only part of a multi-word register,
1036 		 we shall mark it as referenced, because the words
1037 		 that are not being set should be restored.  */
1038 	      && !read_modify_subreg_p (*loc)))
1039 	return;
1040     }
1041   if (code == MEM || code == SUBREG)
1042     {
1043       loc = &XEXP (*loc, 0);
1044       code = GET_CODE (*loc);
1045     }
1046 
1047   if (code == REG)
1048     {
1049       int regno = REGNO (*loc);
1050       int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1051 		       : reg_renumber[regno]);
1052 
1053       if (hardregno >= 0)
1054 	mark (loc, GET_MODE (*loc), hardregno, arg);
1055       else if (arg)
1056 	/* ??? Will we ever end up with an equiv expression in a debug
1057 	   insn, that would have required restoring a reg, or will
1058 	   reload take care of it for us?  */
1059 	return;
1060       /* If this is a pseudo that did not get a hard register, scan its
1061 	 memory location, since it might involve the use of another
1062 	 register, which might be saved.  */
1063       else if (reg_equiv_mem (regno) != 0)
1064 	mark_referenced_regs (&XEXP (reg_equiv_mem (regno), 0), mark, arg);
1065       else if (reg_equiv_address (regno) != 0)
1066 	mark_referenced_regs (&reg_equiv_address (regno), mark, arg);
1067       return;
1068     }
1069 
1070   fmt = GET_RTX_FORMAT (code);
1071   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1072     {
1073       if (fmt[i] == 'e')
1074 	mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1075       else if (fmt[i] == 'E')
1076 	for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1077 	  mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1078     }
1079 }
1080 
1081 /* Parameter function for mark_referenced_regs() that adds registers
1082    present in the insn and in equivalent mems and addresses to
1083    referenced_regs.  */
1084 
1085 static void
1086 mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1087 			machine_mode mode,
1088 			int hardregno,
1089 			void *arg ATTRIBUTE_UNUSED)
1090 {
1091   add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1092 }
1093 
1094 /* Parameter function for mark_referenced_regs() that replaces
1095    registers referenced in a debug_insn that would have been restored,
1096    should it be a non-debug_insn, with their save locations.  */
1097 
1098 static void
1099 replace_reg_with_saved_mem (rtx *loc,
1100 			    machine_mode mode,
1101 			    int regno,
1102 			    void *arg)
1103 {
1104   unsigned int i, nregs = hard_regno_nregs (regno, mode);
1105   rtx mem;
1106   machine_mode *save_mode = (machine_mode *)arg;
1107 
1108   for (i = 0; i < nregs; i++)
1109     if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1110       break;
1111 
1112   /* If none of the registers in the range would need restoring, we're
1113      all set.  */
1114   if (i == nregs)
1115     return;
1116 
1117   while (++i < nregs)
1118     if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1119       break;
1120 
1121   if (i == nregs
1122       && regno_save_mem[regno][nregs])
1123     {
1124       mem = copy_rtx (regno_save_mem[regno][nregs]);
1125 
1126       if (nregs == hard_regno_nregs (regno, save_mode[regno]))
1127 	mem = adjust_address_nv (mem, save_mode[regno], 0);
1128 
1129       if (GET_MODE (mem) != mode)
1130 	{
1131 	  /* This is gen_lowpart_if_possible(), but without validating
1132 	     the newly-formed address.  */
1133 	  poly_int64 offset = byte_lowpart_offset (mode, GET_MODE (mem));
1134 	  mem = adjust_address_nv (mem, mode, offset);
1135 	}
1136     }
1137   else
1138     {
1139       mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1140       for (i = 0; i < nregs; i++)
1141 	if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1142 	  {
1143 	    gcc_assert (regno_save_mem[regno + i][1]);
1144 	    XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1145 	  }
1146 	else
1147 	  {
1148 	    machine_mode smode = save_mode[regno];
1149 	    gcc_assert (smode != VOIDmode);
1150 	    if (hard_regno_nregs (regno, smode) > 1)
1151 	      smode = mode_for_size (exact_div (GET_MODE_BITSIZE (mode),
1152 						nregs),
1153 				     GET_MODE_CLASS (mode), 0).require ();
1154 	    XVECEXP (mem, 0, i) = gen_rtx_REG (smode, regno + i);
1155 	  }
1156     }
1157 
1158   gcc_assert (GET_MODE (mem) == mode);
1159   *loc = mem;
1160 }
1161 
1162 
1163 /* Insert a sequence of insns to restore.  Place these insns in front of
1164    CHAIN if BEFORE_P is nonzero, behind the insn otherwise.  MAXRESTORE is
1165    the maximum number of registers which should be restored during this call.
1166    It should never be less than 1 since we only work with entire registers.
1167 
1168    Note that we have verified in init_caller_save that we can do this
1169    with a simple SET, so use it.  Set INSN_CODE to what we save there
1170    since the address might not be valid so the insn might not be recognized.
1171    These insns will be reloaded and have register elimination done by
1172    find_reload, so we need not worry about that here.
1173 
1174    Return the extra number of registers saved.  */
1175 
1176 static int
1177 insert_restore (struct insn_chain *chain, int before_p, int regno,
1178 		int maxrestore, machine_mode *save_mode)
1179 {
1180   int i, k;
1181   rtx pat = NULL_RTX;
1182   int code;
1183   unsigned int numregs = 0;
1184   struct insn_chain *new_chain;
1185   rtx mem;
1186 
1187   /* A common failure mode if register status is not correct in the
1188      RTL is for this routine to be called with a REGNO we didn't
1189      expect to save.  That will cause us to write an insn with a (nil)
1190      SET_DEST or SET_SRC.  Instead of doing so and causing a crash
1191      later, check for this common case here instead.  This will remove
1192      one step in debugging such problems.  */
1193   gcc_assert (regno_save_mem[regno][1]);
1194 
1195   /* Get the pattern to emit and update our status.
1196 
1197      See if we can restore `maxrestore' registers at once.  Work
1198      backwards to the single register case.  */
1199   for (i = maxrestore; i > 0; i--)
1200     {
1201       int j;
1202       int ok = 1;
1203 
1204       if (regno_save_mem[regno][i] == 0)
1205 	continue;
1206 
1207       for (j = 0; j < i; j++)
1208 	if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1209 	  {
1210 	    ok = 0;
1211 	    break;
1212 	  }
1213       /* Must do this one restore at a time.  */
1214       if (! ok)
1215 	continue;
1216 
1217       numregs = i;
1218       break;
1219     }
1220 
1221   mem = regno_save_mem [regno][numregs];
1222   if (save_mode [regno] != VOIDmode
1223       && save_mode [regno] != GET_MODE (mem)
1224       && numregs == hard_regno_nregs (regno, save_mode [regno])
1225       /* Check that insn to restore REGNO in save_mode[regno] is
1226 	 correct.  */
1227       && reg_save_code (regno, save_mode[regno]) >= 0)
1228     mem = adjust_address_nv (mem, save_mode[regno], 0);
1229   else
1230     mem = copy_rtx (mem);
1231 
1232   /* Verify that the alignment of spill space is equal to or greater
1233      than required.  */
1234   gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1235 		   GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1236 
1237   pat = gen_rtx_SET (gen_rtx_REG (GET_MODE (mem), regno), mem);
1238   code = reg_restore_code (regno, GET_MODE (mem));
1239   new_chain = insert_one_insn (chain, before_p, code, pat);
1240 
1241   /* Clear status for all registers we restored.  */
1242   for (k = 0; k < i; k++)
1243     {
1244       CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1245       SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1246       n_regs_saved--;
1247     }
1248 
1249   /* Tell our callers how many extra registers we saved/restored.  */
1250   return numregs - 1;
1251 }
1252 
1253 /* Like insert_restore above, but save registers instead.  */
1254 
1255 static int
1256 insert_save (struct insn_chain *chain, int regno,
1257 	     HARD_REG_SET *to_save, machine_mode *save_mode)
1258 {
1259   int i;
1260   unsigned int k;
1261   rtx pat = NULL_RTX;
1262   int code;
1263   unsigned int numregs = 0;
1264   struct insn_chain *new_chain;
1265   rtx mem;
1266 
1267   /* A common failure mode if register status is not correct in the
1268      RTL is for this routine to be called with a REGNO we didn't
1269      expect to save.  That will cause us to write an insn with a (nil)
1270      SET_DEST or SET_SRC.  Instead of doing so and causing a crash
1271      later, check for this common case here.  This will remove one
1272      step in debugging such problems.  */
1273   gcc_assert (regno_save_mem[regno][1]);
1274 
1275   /* Get the pattern to emit and update our status.
1276 
1277      See if we can save several registers with a single instruction.
1278      Work backwards to the single register case.  */
1279   for (i = MOVE_MAX_WORDS; i > 0; i--)
1280     {
1281       int j;
1282       int ok = 1;
1283       if (regno_save_mem[regno][i] == 0)
1284 	continue;
1285 
1286       for (j = 0; j < i; j++)
1287 	if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1288 	  {
1289 	    ok = 0;
1290 	    break;
1291 	  }
1292       /* Must do this one save at a time.  */
1293       if (! ok)
1294 	continue;
1295 
1296       numregs = i;
1297       break;
1298     }
1299 
1300   mem = regno_save_mem [regno][numregs];
1301   if (save_mode [regno] != VOIDmode
1302       && save_mode [regno] != GET_MODE (mem)
1303       && numregs == hard_regno_nregs (regno, save_mode [regno])
1304       /* Check that insn to save REGNO in save_mode[regno] is
1305 	 correct.  */
1306       && reg_save_code (regno, save_mode[regno]) >= 0)
1307     mem = adjust_address_nv (mem, save_mode[regno], 0);
1308   else
1309     mem = copy_rtx (mem);
1310 
1311   /* Verify that the alignment of spill space is equal to or greater
1312      than required.  */
1313   gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1314 		   GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1315 
1316   pat = gen_rtx_SET (mem, gen_rtx_REG (GET_MODE (mem), regno));
1317   code = reg_save_code (regno, GET_MODE (mem));
1318   new_chain = insert_one_insn (chain, 1, code, pat);
1319 
1320   /* Set hard_regs_saved and dead_or_set for all the registers we saved.  */
1321   for (k = 0; k < numregs; k++)
1322     {
1323       SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1324       SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1325       n_regs_saved++;
1326     }
1327 
1328   /* Tell our callers how many extra registers we saved/restored.  */
1329   return numregs - 1;
1330 }
1331 
1332 /* A note_uses callback used by insert_one_insn.  Add the hard-register
1333    equivalent of each REG to regset DATA.  */
1334 
1335 static void
1336 add_used_regs (rtx *loc, void *data)
1337 {
1338   subrtx_iterator::array_type array;
1339   FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
1340     {
1341       const_rtx x = *iter;
1342       if (REG_P (x))
1343 	{
1344 	  unsigned int regno = REGNO (x);
1345 	  if (HARD_REGISTER_NUM_P (regno))
1346 	    bitmap_set_range ((regset) data, regno, REG_NREGS (x));
1347 	  else
1348 	    gcc_checking_assert (reg_renumber[regno] < 0);
1349 	}
1350     }
1351 }
1352 
1353 /* Emit a new caller-save insn and set the code.  */
1354 static struct insn_chain *
1355 insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
1356 {
1357   rtx_insn *insn = chain->insn;
1358   struct insn_chain *new_chain;
1359 
1360   /* If INSN references CC0, put our insns in front of the insn that sets
1361      CC0.  This is always safe, since the only way we could be passed an
1362      insn that references CC0 is for a restore, and doing a restore earlier
1363      isn't a problem.  We do, however, assume here that CALL_INSNs don't
1364      reference CC0.  Guard against non-INSN's like CODE_LABEL.  */
1365 
1366   if (HAVE_cc0 && (NONJUMP_INSN_P (insn) || JUMP_P (insn))
1367       && before_p
1368       && reg_referenced_p (cc0_rtx, PATTERN (insn)))
1369     chain = chain->prev, insn = chain->insn;
1370 
1371   new_chain = new_insn_chain ();
1372   if (before_p)
1373     {
1374       rtx link;
1375 
1376       new_chain->prev = chain->prev;
1377       if (new_chain->prev != 0)
1378 	new_chain->prev->next = new_chain;
1379       else
1380 	reload_insn_chain = new_chain;
1381 
1382       chain->prev = new_chain;
1383       new_chain->next = chain;
1384       new_chain->insn = emit_insn_before (pat, insn);
1385       /* ??? It would be nice if we could exclude the already / still saved
1386 	 registers from the live sets.  */
1387       COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1388       note_uses (&PATTERN (chain->insn), add_used_regs,
1389 		 &new_chain->live_throughout);
1390       /* If CHAIN->INSN is a call, then the registers which contain
1391 	 the arguments to the function are live in the new insn.  */
1392       if (CALL_P (chain->insn))
1393 	for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1394 	     link != NULL_RTX;
1395 	     link = XEXP (link, 1))
1396 	  note_uses (&XEXP (link, 0), add_used_regs,
1397 		     &new_chain->live_throughout);
1398 
1399       CLEAR_REG_SET (&new_chain->dead_or_set);
1400       if (chain->insn == BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1401 	BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1402     }
1403   else
1404     {
1405       new_chain->next = chain->next;
1406       if (new_chain->next != 0)
1407 	new_chain->next->prev = new_chain;
1408       chain->next = new_chain;
1409       new_chain->prev = chain;
1410       new_chain->insn = emit_insn_after (pat, insn);
1411       /* ??? It would be nice if we could exclude the already / still saved
1412 	 registers from the live sets, and observe REG_UNUSED notes.  */
1413       COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1414       /* Registers that are set in CHAIN->INSN live in the new insn.
1415 	 (Unless there is a REG_UNUSED note for them, but we don't
1416 	  look for them here.) */
1417       note_stores (PATTERN (chain->insn), add_stored_regs,
1418 		   &new_chain->live_throughout);
1419       CLEAR_REG_SET (&new_chain->dead_or_set);
1420       if (chain->insn == BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1421 	BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1422     }
1423   new_chain->block = chain->block;
1424   new_chain->is_caller_save_insn = 1;
1425 
1426   INSN_CODE (new_chain->insn) = code;
1427   return new_chain;
1428 }
1429 #include "gt-caller-save.h"
1430