xref: /dragonfly/contrib/gcc-8.0/gcc/combine.c (revision 8af44722)
1 /* Optimize by combining instructions for GNU compiler.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21    Portable Optimizer, but redone to work on our list-structured
22    representation for RTL instead of their string representation.
23 
24    The LOG_LINKS of each insn identify the most recent assignment
25    to each REG used in the insn.  It is a list of previous insns,
26    each of which contains a SET for a REG that is used in this insn
27    and not used or set in between.  LOG_LINKs never cross basic blocks.
28    They were set up by the preceding pass (lifetime analysis).
29 
30    We try to combine each pair of insns joined by a logical link.
31    We also try to combine triplets of insns A, B and C when C has
32    a link back to B and B has a link back to A.  Likewise for a
33    small number of quadruplets of insns A, B, C and D for which
34    there's high likelihood of success.
35 
36    LOG_LINKS does not have links for use of the CC0.  They don't
37    need to, because the insn that sets the CC0 is always immediately
38    before the insn that tests it.  So we always regard a branch
39    insn as having a logical link to the preceding insn.  The same is true
40    for an insn explicitly using CC0.
41 
42    We check (with modified_between_p) to avoid combining in such a way
43    as to move a computation to a place where its value would be different.
44 
45    Combination is done by mathematically substituting the previous
46    insn(s) values for the regs they set into the expressions in
47    the later insns that refer to these regs.  If the result is a valid insn
48    for our target machine, according to the machine description,
49    we install it, delete the earlier insns, and update the data flow
50    information (LOG_LINKS and REG_NOTES) for what we did.
51 
52    There are a few exceptions where the dataflow information isn't
53    completely updated (however this is only a local issue since it is
54    regenerated before the next pass that uses it):
55 
56    - reg_live_length is not updated
57    - reg_n_refs is not adjusted in the rare case when a register is
58      no longer required in a computation
59    - there are extremely rare cases (see distribute_notes) when a
60      REG_DEAD note is lost
61    - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62      removed because there is no way to know which register it was
63      linking
64 
65    To simplify substitution, we combine only when the earlier insn(s)
66    consist of only a single assignment.  To simplify updating afterward,
67    we never combine when a subroutine call appears in the middle.
68 
69    Since we do not represent assignments to CC0 explicitly except when that
70    is all an insn does, there is no LOG_LINKS entry in an insn that uses
71    the condition code for the insn that set the condition code.
72    Fortunately, these two insns must be consecutive.
73    Therefore, every JUMP_INSN is taken to have an implicit logical link
74    to the preceding insn.  This is not quite right, since non-jumps can
75    also use the condition code; but in practice such insns would not
76    combine anyway.  */
77 
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 
108 /* Number of attempts to combine instructions in this function.  */
109 
110 static int combine_attempts;
111 
112 /* Number of attempts that got as far as substitution in this function.  */
113 
114 static int combine_merges;
115 
116 /* Number of instructions combined with added SETs in this function.  */
117 
118 static int combine_extras;
119 
120 /* Number of instructions combined in this function.  */
121 
122 static int combine_successes;
123 
124 /* Totals over entire compilation.  */
125 
126 static int total_attempts, total_merges, total_extras, total_successes;
127 
128 /* combine_instructions may try to replace the right hand side of the
129    second instruction with the value of an associated REG_EQUAL note
130    before throwing it at try_combine.  That is problematic when there
131    is a REG_DEAD note for a register used in the old right hand side
132    and can cause distribute_notes to do wrong things.  This is the
133    second instruction if it has been so modified, null otherwise.  */
134 
135 static rtx_insn *i2mod;
136 
137 /* When I2MOD is nonnull, this is a copy of the old right hand side.  */
138 
139 static rtx i2mod_old_rhs;
140 
141 /* When I2MOD is nonnull, this is a copy of the new right hand side.  */
142 
143 static rtx i2mod_new_rhs;
144 
145 struct reg_stat_type {
146   /* Record last point of death of (hard or pseudo) register n.  */
147   rtx_insn			*last_death;
148 
149   /* Record last point of modification of (hard or pseudo) register n.  */
150   rtx_insn			*last_set;
151 
152   /* The next group of fields allows the recording of the last value assigned
153      to (hard or pseudo) register n.  We use this information to see if an
154      operation being processed is redundant given a prior operation performed
155      on the register.  For example, an `and' with a constant is redundant if
156      all the zero bits are already known to be turned off.
157 
158      We use an approach similar to that used by cse, but change it in the
159      following ways:
160 
161      (1) We do not want to reinitialize at each label.
162      (2) It is useful, but not critical, to know the actual value assigned
163 	 to a register.  Often just its form is helpful.
164 
165      Therefore, we maintain the following fields:
166 
167      last_set_value		the last value assigned
168      last_set_label		records the value of label_tick when the
169 				register was assigned
170      last_set_table_tick	records the value of label_tick when a
171 				value using the register is assigned
172      last_set_invalid		set to nonzero when it is not valid
173 				to use the value of this register in some
174 				register's value
175 
176      To understand the usage of these tables, it is important to understand
177      the distinction between the value in last_set_value being valid and
178      the register being validly contained in some other expression in the
179      table.
180 
181      (The next two parameters are out of date).
182 
183      reg_stat[i].last_set_value is valid if it is nonzero, and either
184      reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 
186      Register I may validly appear in any expression returned for the value
187      of another register if reg_n_sets[i] is 1.  It may also appear in the
188      value for register J if reg_stat[j].last_set_invalid is zero, or
189      reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 
191      If an expression is found in the table containing a register which may
192      not validly appear in an expression, the register is replaced by
193      something that won't match, (clobber (const_int 0)).  */
194 
195   /* Record last value assigned to (hard or pseudo) register n.  */
196 
197   rtx				last_set_value;
198 
199   /* Record the value of label_tick when an expression involving register n
200      is placed in last_set_value.  */
201 
202   int				last_set_table_tick;
203 
204   /* Record the value of label_tick when the value for register n is placed in
205      last_set_value.  */
206 
207   int				last_set_label;
208 
209   /* These fields are maintained in parallel with last_set_value and are
210      used to store the mode in which the register was last set, the bits
211      that were known to be zero when it was last set, and the number of
212      sign bits copies it was known to have when it was last set.  */
213 
214   unsigned HOST_WIDE_INT	last_set_nonzero_bits;
215   char				last_set_sign_bit_copies;
216   ENUM_BITFIELD(machine_mode)	last_set_mode : 8;
217 
218   /* Set nonzero if references to register n in expressions should not be
219      used.  last_set_invalid is set nonzero when this register is being
220      assigned to and last_set_table_tick == label_tick.  */
221 
222   char				last_set_invalid;
223 
224   /* Some registers that are set more than once and used in more than one
225      basic block are nevertheless always set in similar ways.  For example,
226      a QImode register may be loaded from memory in two places on a machine
227      where byte loads zero extend.
228 
229      We record in the following fields if a register has some leading bits
230      that are always equal to the sign bit, and what we know about the
231      nonzero bits of a register, specifically which bits are known to be
232      zero.
233 
234      If an entry is zero, it means that we don't know anything special.  */
235 
236   unsigned char			sign_bit_copies;
237 
238   unsigned HOST_WIDE_INT	nonzero_bits;
239 
240   /* Record the value of the label_tick when the last truncation
241      happened.  The field truncated_to_mode is only valid if
242      truncation_label == label_tick.  */
243 
244   int				truncation_label;
245 
246   /* Record the last truncation seen for this register.  If truncation
247      is not a nop to this mode we might be able to save an explicit
248      truncation if we know that value already contains a truncated
249      value.  */
250 
251   ENUM_BITFIELD(machine_mode)	truncated_to_mode : 8;
252 };
253 
254 
255 static vec<reg_stat_type> reg_stat;
256 
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258    regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259    but during combine_split_insns new pseudos can be created.  As we don't have
260    updated DF information in that case, it is hard to initialize the array
261    after growing.  The combiner only cares about REG_N_SETS (regno) == 1,
262    so instead of growing the arrays, just assume all newly created pseudos
263    during combine might be set multiple times.  */
264 
265 static unsigned int reg_n_sets_max;
266 
267 /* Record the luid of the last insn that invalidated memory
268    (anything that writes memory, and subroutine calls, but not pushes).  */
269 
270 static int mem_last_set;
271 
272 /* Record the luid of the last CALL_INSN
273    so we can tell whether a potential combination crosses any calls.  */
274 
275 static int last_call_luid;
276 
277 /* When `subst' is called, this is the insn that is being modified
278    (by combining in a previous insn).  The PATTERN of this insn
279    is still the old pattern partially modified and it should not be
280    looked at, but this may be used to examine the successors of the insn
281    to judge whether a simplification is valid.  */
282 
283 static rtx_insn *subst_insn;
284 
285 /* This is the lowest LUID that `subst' is currently dealing with.
286    get_last_value will not return a value if the register was set at or
287    after this LUID.  If not for this mechanism, we could get confused if
288    I2 or I1 in try_combine were an insn that used the old value of a register
289    to obtain a new value.  In that case, we might erroneously get the
290    new value of the register when we wanted the old one.  */
291 
292 static int subst_low_luid;
293 
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295    must consider all these registers to be always live.  */
296 
297 static HARD_REG_SET newpat_used_regs;
298 
299 /* This is an insn to which a LOG_LINKS entry has been added.  If this
300    insn is the earlier than I2 or I3, combine should rescan starting at
301    that location.  */
302 
303 static rtx_insn *added_links_insn;
304 
305 /* And similarly, for notes.  */
306 
307 static rtx_insn *added_notes_insn;
308 
309 /* Basic block in which we are performing combines.  */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
312 
313 
314 /* Length of the currently allocated uid_insn_cost array.  */
315 
316 static int max_uid_known;
317 
318 /* The following array records the insn_cost for every insn
319    in the instruction stream.  */
320 
321 static int *uid_insn_cost;
322 
323 /* The following array records the LOG_LINKS for every insn in the
324    instruction stream as struct insn_link pointers.  */
325 
326 struct insn_link {
327   rtx_insn *insn;
328   unsigned int regno;
329   struct insn_link *next;
330 };
331 
332 static struct insn_link **uid_log_links;
333 
334 static inline int
335 insn_uid_check (const_rtx insn)
336 {
337   int uid = INSN_UID (insn);
338   gcc_checking_assert (uid <= max_uid_known);
339   return uid;
340 }
341 
342 #define INSN_COST(INSN)		(uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN)		(uid_log_links[insn_uid_check (INSN)])
344 
345 #define FOR_EACH_LOG_LINK(L, INSN)				\
346   for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
347 
348 /* Links for LOG_LINKS are allocated from this obstack.  */
349 
350 static struct obstack insn_link_obstack;
351 
352 /* Allocate a link.  */
353 
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
356 {
357   struct insn_link *l
358     = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 					  sizeof (struct insn_link));
360   l->insn = insn;
361   l->regno = regno;
362   l->next = next;
363   return l;
364 }
365 
366 /* Incremented for each basic block.  */
367 
368 static int label_tick;
369 
370 /* Reset to label_tick for each extended basic block in scanning order.  */
371 
372 static int label_tick_ebb_start;
373 
374 /* Mode used to compute significance in reg_stat[].nonzero_bits.  It is the
375    largest integer mode that can fit in HOST_BITS_PER_WIDE_INT.  */
376 
377 static scalar_int_mode nonzero_bits_mode;
378 
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380    be safely used.  It is zero while computing them and after combine has
381    completed.  This former test prevents propagating values based on
382    previously set values, which can be incorrect if a variable is modified
383    in a loop.  */
384 
385 static int nonzero_sign_valid;
386 
387 
388 /* Record one modification to rtl structure
389    to be undone by storing old_contents into *where.  */
390 
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
392 
393 struct undo
394 {
395   struct undo *next;
396   enum undo_kind kind;
397   union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398   union { rtx *r; int *i; struct insn_link **l; } where;
399 };
400 
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402    num_undo says how many are currently recorded.
403 
404    other_insn is nonzero if we have modified some other insn in the process
405    of working on subst_insn.  It must be verified too.  */
406 
407 struct undobuf
408 {
409   struct undo *undos;
410   struct undo *frees;
411   rtx_insn *other_insn;
412 };
413 
414 static struct undobuf undobuf;
415 
416 /* Number of times the pseudo being substituted for
417    was found and replaced.  */
418 
419 static int n_occurrences;
420 
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 					 scalar_int_mode,
423 					 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 						scalar_int_mode,
426 						unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 			  rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 			      int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 			    rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 			      unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 			      scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 			  unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 				     unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 				   unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 			    HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 				 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 					     rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
486 static int reg_dead_at_p (rtx, rtx_insn *);
487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
488 static int reg_bitfield_target_p (rtx, rtx);
489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
490 static void distribute_links (struct insn_link *);
491 static void mark_used_regs_combine (rtx);
492 static void record_promoted_value (rtx_insn *, rtx);
493 static bool unmentioned_reg_p (rtx, rtx);
494 static void record_truncated_values (rtx *, void *);
495 static bool reg_truncated_to_mode (machine_mode, const_rtx);
496 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
497 
498 
499 /* It is not safe to use ordinary gen_lowpart in combine.
500    See comments in gen_lowpart_for_combine.  */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART              gen_lowpart_for_combine
503 
504 /* Our implementation of gen_lowpart never emits a new pseudo.  */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT      gen_lowpart_for_combine
507 
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS     reg_nonzero_bits_for_combine
510 
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES  reg_num_sign_bit_copies_for_combine
513 
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE    reg_truncated_to_mode
516 
517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
518 
519 
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521    Target hooks cannot use enum rtx_code.  */
522 static inline void
523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
524 				bool op0_preserve_value)
525 {
526   int code_int = (int)*code;
527   targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
528   *code = (enum rtx_code)code_int;
529 }
530 
531 /* Try to split PATTERN found in INSN.  This returns NULL_RTX if
532    PATTERN can not be split.  Otherwise, it returns an insn sequence.
533    This is a wrapper around split_insns which ensures that the
534    reg_stat vector is made larger if the splitter creates a new
535    register.  */
536 
537 static rtx_insn *
538 combine_split_insns (rtx pattern, rtx_insn *insn)
539 {
540   rtx_insn *ret;
541   unsigned int nregs;
542 
543   ret = split_insns (pattern, insn);
544   nregs = max_reg_num ();
545   if (nregs > reg_stat.length ())
546     reg_stat.safe_grow_cleared (nregs);
547   return ret;
548 }
549 
550 /* This is used by find_single_use to locate an rtx in LOC that
551    contains exactly one use of DEST, which is typically either a REG
552    or CC0.  It returns a pointer to the innermost rtx expression
553    containing DEST.  Appearances of DEST that are being used to
554    totally replace it are not counted.  */
555 
556 static rtx *
557 find_single_use_1 (rtx dest, rtx *loc)
558 {
559   rtx x = *loc;
560   enum rtx_code code = GET_CODE (x);
561   rtx *result = NULL;
562   rtx *this_result;
563   int i;
564   const char *fmt;
565 
566   switch (code)
567     {
568     case CONST:
569     case LABEL_REF:
570     case SYMBOL_REF:
571     CASE_CONST_ANY:
572     case CLOBBER:
573       return 0;
574 
575     case SET:
576       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 	 of a REG that occupies all of the REG, the insn uses DEST if
578 	 it is mentioned in the destination or the source.  Otherwise, we
579 	 need just check the source.  */
580       if (GET_CODE (SET_DEST (x)) != CC0
581 	  && GET_CODE (SET_DEST (x)) != PC
582 	  && !REG_P (SET_DEST (x))
583 	  && ! (GET_CODE (SET_DEST (x)) == SUBREG
584 		&& REG_P (SUBREG_REG (SET_DEST (x)))
585 		&& !read_modify_subreg_p (SET_DEST (x))))
586 	break;
587 
588       return find_single_use_1 (dest, &SET_SRC (x));
589 
590     case MEM:
591     case SUBREG:
592       return find_single_use_1 (dest, &XEXP (x, 0));
593 
594     default:
595       break;
596     }
597 
598   /* If it wasn't one of the common cases above, check each expression and
599      vector of this code.  Look for a unique usage of DEST.  */
600 
601   fmt = GET_RTX_FORMAT (code);
602   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603     {
604       if (fmt[i] == 'e')
605 	{
606 	  if (dest == XEXP (x, i)
607 	      || (REG_P (dest) && REG_P (XEXP (x, i))
608 		  && REGNO (dest) == REGNO (XEXP (x, i))))
609 	    this_result = loc;
610 	  else
611 	    this_result = find_single_use_1 (dest, &XEXP (x, i));
612 
613 	  if (result == NULL)
614 	    result = this_result;
615 	  else if (this_result)
616 	    /* Duplicate usage.  */
617 	    return NULL;
618 	}
619       else if (fmt[i] == 'E')
620 	{
621 	  int j;
622 
623 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 	    {
625 	      if (XVECEXP (x, i, j) == dest
626 		  || (REG_P (dest)
627 		      && REG_P (XVECEXP (x, i, j))
628 		      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 		this_result = loc;
630 	      else
631 		this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632 
633 	      if (result == NULL)
634 		result = this_result;
635 	      else if (this_result)
636 		return NULL;
637 	    }
638 	}
639     }
640 
641   return result;
642 }
643 
644 
645 /* See if DEST, produced in INSN, is used only a single time in the
646    sequel.  If so, return a pointer to the innermost rtx expression in which
647    it is used.
648 
649    If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650 
651    If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
652    care about REG_DEAD notes or LOG_LINKS.
653 
654    Otherwise, we find the single use by finding an insn that has a
655    LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
656    only referenced once in that insn, we know that it must be the first
657    and last insn referencing DEST.  */
658 
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662   basic_block bb;
663   rtx_insn *next;
664   rtx *result;
665   struct insn_link *link;
666 
667   if (dest == cc0_rtx)
668     {
669       next = NEXT_INSN (insn);
670       if (next == 0
671 	  || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 	return 0;
673 
674       result = find_single_use_1 (dest, &PATTERN (next));
675       if (result && ploc)
676 	*ploc = next;
677       return result;
678     }
679 
680   if (!REG_P (dest))
681     return 0;
682 
683   bb = BLOCK_FOR_INSN (insn);
684   for (next = NEXT_INSN (insn);
685        next && BLOCK_FOR_INSN (next) == bb;
686        next = NEXT_INSN (next))
687     if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688       {
689 	FOR_EACH_LOG_LINK (link, next)
690 	  if (link->insn == insn && link->regno == REGNO (dest))
691 	    break;
692 
693 	if (link)
694 	  {
695 	    result = find_single_use_1 (dest, &PATTERN (next));
696 	    if (ploc)
697 	      *ploc = next;
698 	    return result;
699 	  }
700       }
701 
702   return 0;
703 }
704 
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706    insn.  The substitution can be undone by undo_all.  If INTO is already
707    set to NEWVAL, do not record this change.  Because computing NEWVAL might
708    also call SUBST, we have to compute it before we put anything into
709    the undo table.  */
710 
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714   struct undo *buf;
715   rtx oldval = *into;
716 
717   if (oldval == newval)
718     return;
719 
720   /* We'd like to catch as many invalid transformations here as
721      possible.  Unfortunately, there are way too many mode changes
722      that are perfectly valid, so we'd waste too much effort for
723      little gain doing the checks here.  Focus on catching invalid
724      transformations involving integer constants.  */
725   if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726       && CONST_INT_P (newval))
727     {
728       /* Sanity check that we're replacing oldval with a CONST_INT
729 	 that is a valid sign-extension for the original mode.  */
730       gcc_assert (INTVAL (newval)
731 		  == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732 
733       /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 	 CONST_INT is not valid, because after the replacement, the
735 	 original mode would be gone.  Unfortunately, we can't tell
736 	 when do_SUBST is called to replace the operand thereof, so we
737 	 perform this test on oldval instead, checking whether an
738 	 invalid replacement took place before we got here.  */
739       gcc_assert (!(GET_CODE (oldval) == SUBREG
740 		    && CONST_INT_P (SUBREG_REG (oldval))));
741       gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 		    && CONST_INT_P (XEXP (oldval, 0))));
743     }
744 
745   if (undobuf.frees)
746     buf = undobuf.frees, undobuf.frees = buf->next;
747   else
748     buf = XNEW (struct undo);
749 
750   buf->kind = UNDO_RTX;
751   buf->where.r = into;
752   buf->old_contents.r = oldval;
753   *into = newval;
754 
755   buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757 
758 #define SUBST(INTO, NEWVAL)	do_SUBST (&(INTO), (NEWVAL))
759 
760 /* Similar to SUBST, but NEWVAL is an int expression.  Note that substitution
761    for the value of a HOST_WIDE_INT value (including CONST_INT) is
762    not safe.  */
763 
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767   struct undo *buf;
768   int oldval = *into;
769 
770   if (oldval == newval)
771     return;
772 
773   if (undobuf.frees)
774     buf = undobuf.frees, undobuf.frees = buf->next;
775   else
776     buf = XNEW (struct undo);
777 
778   buf->kind = UNDO_INT;
779   buf->where.i = into;
780   buf->old_contents.i = oldval;
781   *into = newval;
782 
783   buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785 
786 #define SUBST_INT(INTO, NEWVAL)  do_SUBST_INT (&(INTO), (NEWVAL))
787 
788 /* Similar to SUBST, but just substitute the mode.  This is used when
789    changing the mode of a pseudo-register, so that any other
790    references to the entry in the regno_reg_rtx array will change as
791    well.  */
792 
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796   struct undo *buf;
797   machine_mode oldval = GET_MODE (*into);
798 
799   if (oldval == newval)
800     return;
801 
802   if (undobuf.frees)
803     buf = undobuf.frees, undobuf.frees = buf->next;
804   else
805     buf = XNEW (struct undo);
806 
807   buf->kind = UNDO_MODE;
808   buf->where.r = into;
809   buf->old_contents.m = oldval;
810   adjust_reg_mode (*into, newval);
811 
812   buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814 
815 #define SUBST_MODE(INTO, NEWVAL)  do_SUBST_MODE (&(INTO), (NEWVAL))
816 
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression.  */
818 
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822   struct undo *buf;
823   struct insn_link * oldval = *into;
824 
825   if (oldval == newval)
826     return;
827 
828   if (undobuf.frees)
829     buf = undobuf.frees, undobuf.frees = buf->next;
830   else
831     buf = XNEW (struct undo);
832 
833   buf->kind = UNDO_LINKS;
834   buf->where.l = into;
835   buf->old_contents.l = oldval;
836   *into = newval;
837 
838   buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840 
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 
843 /* Subroutine of try_combine.  Determine whether the replacement patterns
844    NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845    than the original sequence I0, I1, I2, I3 and undobuf.other_insn.  Note
846    that I0, I1 and/or NEWI2PAT may be NULL_RTX.  Similarly, NEWOTHERPAT and
847    undobuf.other_insn may also both be NULL_RTX.  Return false if the cost
848    of all the instructions can be estimated and the replacements are more
849    expensive than the original sequence.  */
850 
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 		       rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855   int i0_cost, i1_cost, i2_cost, i3_cost;
856   int new_i2_cost, new_i3_cost;
857   int old_cost, new_cost;
858 
859   /* Lookup the original insn_costs.  */
860   i2_cost = INSN_COST (i2);
861   i3_cost = INSN_COST (i3);
862 
863   if (i1)
864     {
865       i1_cost = INSN_COST (i1);
866       if (i0)
867 	{
868 	  i0_cost = INSN_COST (i0);
869 	  old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 		      ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 	}
872       else
873 	{
874 	  old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 		      ? i1_cost + i2_cost + i3_cost : 0);
876 	  i0_cost = 0;
877 	}
878     }
879   else
880     {
881       old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882       i1_cost = i0_cost = 0;
883     }
884 
885   /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886      correct that.  */
887   if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888     old_cost -= i1_cost;
889 
890 
891   /* Calculate the replacement insn_costs.  */
892   rtx tmp = PATTERN (i3);
893   PATTERN (i3) = newpat;
894   int tmpi = INSN_CODE (i3);
895   INSN_CODE (i3) = -1;
896   new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
897   PATTERN (i3) = tmp;
898   INSN_CODE (i3) = tmpi;
899   if (newi2pat)
900     {
901       tmp = PATTERN (i2);
902       PATTERN (i2) = newi2pat;
903       tmpi = INSN_CODE (i2);
904       INSN_CODE (i2) = -1;
905       new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
906       PATTERN (i2) = tmp;
907       INSN_CODE (i2) = tmpi;
908       new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
909 		 ? new_i2_cost + new_i3_cost : 0;
910     }
911   else
912     {
913       new_cost = new_i3_cost;
914       new_i2_cost = 0;
915     }
916 
917   if (undobuf.other_insn)
918     {
919       int old_other_cost, new_other_cost;
920 
921       old_other_cost = INSN_COST (undobuf.other_insn);
922       tmp = PATTERN (undobuf.other_insn);
923       PATTERN (undobuf.other_insn) = newotherpat;
924       tmpi = INSN_CODE (undobuf.other_insn);
925       INSN_CODE (undobuf.other_insn) = -1;
926       new_other_cost = insn_cost (undobuf.other_insn,
927 				  optimize_this_for_speed_p);
928       PATTERN (undobuf.other_insn) = tmp;
929       INSN_CODE (undobuf.other_insn) = tmpi;
930       if (old_other_cost > 0 && new_other_cost > 0)
931 	{
932 	  old_cost += old_other_cost;
933 	  new_cost += new_other_cost;
934 	}
935       else
936 	old_cost = 0;
937     }
938 
939   /* Disallow this combination if both new_cost and old_cost are greater than
940      zero, and new_cost is greater than old cost.  */
941   int reject = old_cost > 0 && new_cost > old_cost;
942 
943   if (dump_file)
944     {
945       fprintf (dump_file, "%s combination of insns ",
946 	       reject ? "rejecting" : "allowing");
947       if (i0)
948 	fprintf (dump_file, "%d, ", INSN_UID (i0));
949       if (i1 && INSN_UID (i1) != INSN_UID (i2))
950 	fprintf (dump_file, "%d, ", INSN_UID (i1));
951       fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
952 
953       fprintf (dump_file, "original costs ");
954       if (i0)
955 	fprintf (dump_file, "%d + ", i0_cost);
956       if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 	fprintf (dump_file, "%d + ", i1_cost);
958       fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
959 
960       if (newi2pat)
961 	fprintf (dump_file, "replacement costs %d + %d = %d\n",
962 		 new_i2_cost, new_i3_cost, new_cost);
963       else
964 	fprintf (dump_file, "replacement cost %d\n", new_cost);
965     }
966 
967   if (reject)
968     return false;
969 
970   /* Update the uid_insn_cost array with the replacement costs.  */
971   INSN_COST (i2) = new_i2_cost;
972   INSN_COST (i3) = new_i3_cost;
973   if (i1)
974     {
975       INSN_COST (i1) = 0;
976       if (i0)
977 	INSN_COST (i0) = 0;
978     }
979 
980   return true;
981 }
982 
983 
984 /* Delete any insns that copy a register to itself.
985    Return true if the CFG was changed.  */
986 
987 static bool
988 delete_noop_moves (void)
989 {
990   rtx_insn *insn, *next;
991   basic_block bb;
992 
993   bool edges_deleted = false;
994 
995   FOR_EACH_BB_FN (bb, cfun)
996     {
997       for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
998 	{
999 	  next = NEXT_INSN (insn);
1000 	  if (INSN_P (insn) && noop_move_p (insn))
1001 	    {
1002 	      if (dump_file)
1003 		fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1004 
1005 	      edges_deleted |= delete_insn_and_edges (insn);
1006 	    }
1007 	}
1008     }
1009 
1010   return edges_deleted;
1011 }
1012 
1013 
1014 /* Return false if we do not want to (or cannot) combine DEF.  */
1015 static bool
1016 can_combine_def_p (df_ref def)
1017 {
1018   /* Do not consider if it is pre/post modification in MEM.  */
1019   if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020     return false;
1021 
1022   unsigned int regno = DF_REF_REGNO (def);
1023 
1024   /* Do not combine frame pointer adjustments.  */
1025   if ((regno == FRAME_POINTER_REGNUM
1026        && (!reload_completed || frame_pointer_needed))
1027       || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1028 	  && regno == HARD_FRAME_POINTER_REGNUM
1029 	  && (!reload_completed || frame_pointer_needed))
1030       || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1031 	  && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1032     return false;
1033 
1034   return true;
1035 }
1036 
1037 /* Return false if we do not want to (or cannot) combine USE.  */
1038 static bool
1039 can_combine_use_p (df_ref use)
1040 {
1041   /* Do not consider the usage of the stack pointer by function call.  */
1042   if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1043     return false;
1044 
1045   return true;
1046 }
1047 
1048 /* Fill in log links field for all insns.  */
1049 
1050 static void
1051 create_log_links (void)
1052 {
1053   basic_block bb;
1054   rtx_insn **next_use;
1055   rtx_insn *insn;
1056   df_ref def, use;
1057 
1058   next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1059 
1060   /* Pass through each block from the end, recording the uses of each
1061      register and establishing log links when def is encountered.
1062      Note that we do not clear next_use array in order to save time,
1063      so we have to test whether the use is in the same basic block as def.
1064 
1065      There are a few cases below when we do not consider the definition or
1066      usage -- these are taken from original flow.c did. Don't ask me why it is
1067      done this way; I don't know and if it works, I don't want to know.  */
1068 
1069   FOR_EACH_BB_FN (bb, cfun)
1070     {
1071       FOR_BB_INSNS_REVERSE (bb, insn)
1072         {
1073           if (!NONDEBUG_INSN_P (insn))
1074             continue;
1075 
1076 	  /* Log links are created only once.  */
1077 	  gcc_assert (!LOG_LINKS (insn));
1078 
1079 	  FOR_EACH_INSN_DEF (def, insn)
1080             {
1081               unsigned int regno = DF_REF_REGNO (def);
1082               rtx_insn *use_insn;
1083 
1084               if (!next_use[regno])
1085                 continue;
1086 
1087 	      if (!can_combine_def_p (def))
1088 		continue;
1089 
1090 	      use_insn = next_use[regno];
1091 	      next_use[regno] = NULL;
1092 
1093 	      if (BLOCK_FOR_INSN (use_insn) != bb)
1094 		continue;
1095 
1096 	      /* flow.c claimed:
1097 
1098 		 We don't build a LOG_LINK for hard registers contained
1099 		 in ASM_OPERANDs.  If these registers get replaced,
1100 		 we might wind up changing the semantics of the insn,
1101 		 even if reload can make what appear to be valid
1102 		 assignments later.  */
1103 	      if (regno < FIRST_PSEUDO_REGISTER
1104 		  && asm_noperands (PATTERN (use_insn)) >= 0)
1105 		continue;
1106 
1107 	      /* Don't add duplicate links between instructions.  */
1108 	      struct insn_link *links;
1109 	      FOR_EACH_LOG_LINK (links, use_insn)
1110 	        if (insn == links->insn && regno == links->regno)
1111 		  break;
1112 
1113 	      if (!links)
1114 		LOG_LINKS (use_insn)
1115 		  = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1116             }
1117 
1118 	  FOR_EACH_INSN_USE (use, insn)
1119 	    if (can_combine_use_p (use))
1120 	      next_use[DF_REF_REGNO (use)] = insn;
1121         }
1122     }
1123 
1124   free (next_use);
1125 }
1126 
1127 /* Walk the LOG_LINKS of insn B to see if we find a reference to A.  Return
1128    true if we found a LOG_LINK that proves that A feeds B.  This only works
1129    if there are no instructions between A and B which could have a link
1130    depending on A, since in that case we would not record a link for B.
1131    We also check the implicit dependency created by a cc0 setter/user
1132    pair.  */
1133 
1134 static bool
1135 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1136 {
1137   struct insn_link *links;
1138   FOR_EACH_LOG_LINK (links, b)
1139     if (links->insn == a)
1140       return true;
1141   if (HAVE_cc0 && sets_cc0_p (a))
1142     return true;
1143   return false;
1144 }
1145 
1146 /* Main entry point for combiner.  F is the first insn of the function.
1147    NREGS is the first unused pseudo-reg number.
1148 
1149    Return nonzero if the CFG was changed (e.g. if the combiner has
1150    turned an indirect jump instruction into a direct jump).  */
1151 static int
1152 combine_instructions (rtx_insn *f, unsigned int nregs)
1153 {
1154   rtx_insn *insn, *next;
1155   rtx_insn *prev;
1156   struct insn_link *links, *nextlinks;
1157   rtx_insn *first;
1158   basic_block last_bb;
1159 
1160   int new_direct_jump_p = 0;
1161 
1162   for (first = f; first && !NONDEBUG_INSN_P (first); )
1163     first = NEXT_INSN (first);
1164   if (!first)
1165     return 0;
1166 
1167   combine_attempts = 0;
1168   combine_merges = 0;
1169   combine_extras = 0;
1170   combine_successes = 0;
1171 
1172   rtl_hooks = combine_rtl_hooks;
1173 
1174   reg_stat.safe_grow_cleared (nregs);
1175 
1176   init_recog_no_volatile ();
1177 
1178   /* Allocate array for insn info.  */
1179   max_uid_known = get_max_uid ();
1180   uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1181   uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1182   gcc_obstack_init (&insn_link_obstack);
1183 
1184   nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1185 
1186   /* Don't use reg_stat[].nonzero_bits when computing it.  This can cause
1187      problems when, for example, we have j <<= 1 in a loop.  */
1188 
1189   nonzero_sign_valid = 0;
1190   label_tick = label_tick_ebb_start = 1;
1191 
1192   /* Scan all SETs and see if we can deduce anything about what
1193      bits are known to be zero for some registers and how many copies
1194      of the sign bit are known to exist for those registers.
1195 
1196      Also set any known values so that we can use it while searching
1197      for what bits are known to be set.  */
1198 
1199   setup_incoming_promotions (first);
1200   /* Allow the entry block and the first block to fall into the same EBB.
1201      Conceptually the incoming promotions are assigned to the entry block.  */
1202   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1203 
1204   create_log_links ();
1205   FOR_EACH_BB_FN (this_basic_block, cfun)
1206     {
1207       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1208       last_call_luid = 0;
1209       mem_last_set = -1;
1210 
1211       label_tick++;
1212       if (!single_pred_p (this_basic_block)
1213 	  || single_pred (this_basic_block) != last_bb)
1214 	label_tick_ebb_start = label_tick;
1215       last_bb = this_basic_block;
1216 
1217       FOR_BB_INSNS (this_basic_block, insn)
1218         if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1219 	  {
1220             rtx links;
1221 
1222             subst_low_luid = DF_INSN_LUID (insn);
1223             subst_insn = insn;
1224 
1225 	    note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1226 		         insn);
1227 	    record_dead_and_set_regs (insn);
1228 
1229 	    if (AUTO_INC_DEC)
1230 	      for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1231 		if (REG_NOTE_KIND (links) == REG_INC)
1232 		  set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1233 						    insn);
1234 
1235 	    /* Record the current insn_cost of this instruction.  */
1236 	    if (NONJUMP_INSN_P (insn))
1237 	      INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1238 	    if (dump_file)
1239 	      {
1240 		fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1241 		dump_insn_slim (dump_file, insn);
1242 	      }
1243 	  }
1244     }
1245 
1246   nonzero_sign_valid = 1;
1247 
1248   /* Now scan all the insns in forward order.  */
1249   label_tick = label_tick_ebb_start = 1;
1250   init_reg_last ();
1251   setup_incoming_promotions (first);
1252   last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1253   int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1254 
1255   FOR_EACH_BB_FN (this_basic_block, cfun)
1256     {
1257       rtx_insn *last_combined_insn = NULL;
1258 
1259       /* Ignore instruction combination in basic blocks that are going to
1260 	 be removed as unreachable anyway.  See PR82386.  */
1261       if (EDGE_COUNT (this_basic_block->preds) == 0)
1262 	continue;
1263 
1264       optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1265       last_call_luid = 0;
1266       mem_last_set = -1;
1267 
1268       label_tick++;
1269       if (!single_pred_p (this_basic_block)
1270 	  || single_pred (this_basic_block) != last_bb)
1271 	label_tick_ebb_start = label_tick;
1272       last_bb = this_basic_block;
1273 
1274       rtl_profile_for_bb (this_basic_block);
1275       for (insn = BB_HEAD (this_basic_block);
1276 	   insn != NEXT_INSN (BB_END (this_basic_block));
1277 	   insn = next ? next : NEXT_INSN (insn))
1278 	{
1279 	  next = 0;
1280 	  if (!NONDEBUG_INSN_P (insn))
1281 	    continue;
1282 
1283 	  while (last_combined_insn
1284 		 && (!NONDEBUG_INSN_P (last_combined_insn)
1285 		     || last_combined_insn->deleted ()))
1286 	    last_combined_insn = PREV_INSN (last_combined_insn);
1287 	  if (last_combined_insn == NULL_RTX
1288 	      || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1289 	      || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1290 	    last_combined_insn = insn;
1291 
1292 	  /* See if we know about function return values before this
1293 	     insn based upon SUBREG flags.  */
1294 	  check_promoted_subreg (insn, PATTERN (insn));
1295 
1296 	  /* See if we can find hardregs and subreg of pseudos in
1297 	     narrower modes.  This could help turning TRUNCATEs
1298 	     into SUBREGs.  */
1299 	  note_uses (&PATTERN (insn), record_truncated_values, NULL);
1300 
1301 	  /* Try this insn with each insn it links back to.  */
1302 
1303 	  FOR_EACH_LOG_LINK (links, insn)
1304 	    if ((next = try_combine (insn, links->insn, NULL,
1305 				     NULL, &new_direct_jump_p,
1306 				     last_combined_insn)) != 0)
1307 	      {
1308 		statistics_counter_event (cfun, "two-insn combine", 1);
1309 		goto retry;
1310 	      }
1311 
1312 	  /* Try each sequence of three linked insns ending with this one.  */
1313 
1314 	  if (max_combine >= 3)
1315 	    FOR_EACH_LOG_LINK (links, insn)
1316 	      {
1317 		rtx_insn *link = links->insn;
1318 
1319 		/* If the linked insn has been replaced by a note, then there
1320 		   is no point in pursuing this chain any further.  */
1321 		if (NOTE_P (link))
1322 		  continue;
1323 
1324 		FOR_EACH_LOG_LINK (nextlinks, link)
1325 		  if ((next = try_combine (insn, link, nextlinks->insn,
1326 					   NULL, &new_direct_jump_p,
1327 					   last_combined_insn)) != 0)
1328 		    {
1329 		      statistics_counter_event (cfun, "three-insn combine", 1);
1330 		      goto retry;
1331 		    }
1332 	      }
1333 
1334 	  /* Try to combine a jump insn that uses CC0
1335 	     with a preceding insn that sets CC0, and maybe with its
1336 	     logical predecessor as well.
1337 	     This is how we make decrement-and-branch insns.
1338 	     We need this special code because data flow connections
1339 	     via CC0 do not get entered in LOG_LINKS.  */
1340 
1341 	  if (HAVE_cc0
1342 	      && JUMP_P (insn)
1343 	      && (prev = prev_nonnote_insn (insn)) != 0
1344 	      && NONJUMP_INSN_P (prev)
1345 	      && sets_cc0_p (PATTERN (prev)))
1346 	    {
1347 	      if ((next = try_combine (insn, prev, NULL, NULL,
1348 				       &new_direct_jump_p,
1349 				       last_combined_insn)) != 0)
1350 		goto retry;
1351 
1352 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1353 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1354 					   NULL, &new_direct_jump_p,
1355 					   last_combined_insn)) != 0)
1356 		    goto retry;
1357 	    }
1358 
1359 	  /* Do the same for an insn that explicitly references CC0.  */
1360 	  if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1361 	      && (prev = prev_nonnote_insn (insn)) != 0
1362 	      && NONJUMP_INSN_P (prev)
1363 	      && sets_cc0_p (PATTERN (prev))
1364 	      && GET_CODE (PATTERN (insn)) == SET
1365 	      && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1366 	    {
1367 	      if ((next = try_combine (insn, prev, NULL, NULL,
1368 				       &new_direct_jump_p,
1369 				       last_combined_insn)) != 0)
1370 		goto retry;
1371 
1372 	      FOR_EACH_LOG_LINK (nextlinks, prev)
1373 		  if ((next = try_combine (insn, prev, nextlinks->insn,
1374 					   NULL, &new_direct_jump_p,
1375 					   last_combined_insn)) != 0)
1376 		    goto retry;
1377 	    }
1378 
1379 	  /* Finally, see if any of the insns that this insn links to
1380 	     explicitly references CC0.  If so, try this insn, that insn,
1381 	     and its predecessor if it sets CC0.  */
1382 	  if (HAVE_cc0)
1383 	    {
1384 	      FOR_EACH_LOG_LINK (links, insn)
1385 		if (NONJUMP_INSN_P (links->insn)
1386 		    && GET_CODE (PATTERN (links->insn)) == SET
1387 		    && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1388 		    && (prev = prev_nonnote_insn (links->insn)) != 0
1389 		    && NONJUMP_INSN_P (prev)
1390 		    && sets_cc0_p (PATTERN (prev))
1391 		    && (next = try_combine (insn, links->insn,
1392 					    prev, NULL, &new_direct_jump_p,
1393 					    last_combined_insn)) != 0)
1394 		  goto retry;
1395 	    }
1396 
1397 	  /* Try combining an insn with two different insns whose results it
1398 	     uses.  */
1399 	  if (max_combine >= 3)
1400 	    FOR_EACH_LOG_LINK (links, insn)
1401 	      for (nextlinks = links->next; nextlinks;
1402 		   nextlinks = nextlinks->next)
1403 		if ((next = try_combine (insn, links->insn,
1404 					 nextlinks->insn, NULL,
1405 					 &new_direct_jump_p,
1406 					 last_combined_insn)) != 0)
1407 
1408 		  {
1409 		    statistics_counter_event (cfun, "three-insn combine", 1);
1410 		    goto retry;
1411 		  }
1412 
1413 	  /* Try four-instruction combinations.  */
1414 	  if (max_combine >= 4)
1415 	    FOR_EACH_LOG_LINK (links, insn)
1416 	      {
1417 		struct insn_link *next1;
1418 		rtx_insn *link = links->insn;
1419 
1420 		/* If the linked insn has been replaced by a note, then there
1421 		   is no point in pursuing this chain any further.  */
1422 		if (NOTE_P (link))
1423 		  continue;
1424 
1425 		FOR_EACH_LOG_LINK (next1, link)
1426 		  {
1427 		    rtx_insn *link1 = next1->insn;
1428 		    if (NOTE_P (link1))
1429 		      continue;
1430 		    /* I0 -> I1 -> I2 -> I3.  */
1431 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1432 		      if ((next = try_combine (insn, link, link1,
1433 					       nextlinks->insn,
1434 					       &new_direct_jump_p,
1435 					       last_combined_insn)) != 0)
1436 			{
1437 			  statistics_counter_event (cfun, "four-insn combine", 1);
1438 			  goto retry;
1439 			}
1440 		    /* I0, I1 -> I2, I2 -> I3.  */
1441 		    for (nextlinks = next1->next; nextlinks;
1442 			 nextlinks = nextlinks->next)
1443 		      if ((next = try_combine (insn, link, link1,
1444 					       nextlinks->insn,
1445 					       &new_direct_jump_p,
1446 					       last_combined_insn)) != 0)
1447 			{
1448 			  statistics_counter_event (cfun, "four-insn combine", 1);
1449 			  goto retry;
1450 			}
1451 		  }
1452 
1453 		for (next1 = links->next; next1; next1 = next1->next)
1454 		  {
1455 		    rtx_insn *link1 = next1->insn;
1456 		    if (NOTE_P (link1))
1457 		      continue;
1458 		    /* I0 -> I2; I1, I2 -> I3.  */
1459 		    FOR_EACH_LOG_LINK (nextlinks, link)
1460 		      if ((next = try_combine (insn, link, link1,
1461 					       nextlinks->insn,
1462 					       &new_direct_jump_p,
1463 					       last_combined_insn)) != 0)
1464 			{
1465 			  statistics_counter_event (cfun, "four-insn combine", 1);
1466 			  goto retry;
1467 			}
1468 		    /* I0 -> I1; I1, I2 -> I3.  */
1469 		    FOR_EACH_LOG_LINK (nextlinks, link1)
1470 		      if ((next = try_combine (insn, link, link1,
1471 					       nextlinks->insn,
1472 					       &new_direct_jump_p,
1473 					       last_combined_insn)) != 0)
1474 			{
1475 			  statistics_counter_event (cfun, "four-insn combine", 1);
1476 			  goto retry;
1477 			}
1478 		  }
1479 	      }
1480 
1481 	  /* Try this insn with each REG_EQUAL note it links back to.  */
1482 	  FOR_EACH_LOG_LINK (links, insn)
1483 	    {
1484 	      rtx set, note;
1485 	      rtx_insn *temp = links->insn;
1486 	      if ((set = single_set (temp)) != 0
1487 		  && (note = find_reg_equal_equiv_note (temp)) != 0
1488 		  && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1489 		  /* Avoid using a register that may already been marked
1490 		     dead by an earlier instruction.  */
1491 		  && ! unmentioned_reg_p (note, SET_SRC (set))
1492 		  && (GET_MODE (note) == VOIDmode
1493 		      ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1494 		      : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1495 			 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1496 			     || (GET_MODE (XEXP (SET_DEST (set), 0))
1497 				 == GET_MODE (note))))))
1498 		{
1499 		  /* Temporarily replace the set's source with the
1500 		     contents of the REG_EQUAL note.  The insn will
1501 		     be deleted or recognized by try_combine.  */
1502 		  rtx orig_src = SET_SRC (set);
1503 		  rtx orig_dest = SET_DEST (set);
1504 		  if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1505 		    SET_DEST (set) = XEXP (SET_DEST (set), 0);
1506 		  SET_SRC (set) = note;
1507 		  i2mod = temp;
1508 		  i2mod_old_rhs = copy_rtx (orig_src);
1509 		  i2mod_new_rhs = copy_rtx (note);
1510 		  next = try_combine (insn, i2mod, NULL, NULL,
1511 				      &new_direct_jump_p,
1512 				      last_combined_insn);
1513 		  i2mod = NULL;
1514 		  if (next)
1515 		    {
1516 		      statistics_counter_event (cfun, "insn-with-note combine", 1);
1517 		      goto retry;
1518 		    }
1519 		  SET_SRC (set) = orig_src;
1520 		  SET_DEST (set) = orig_dest;
1521 		}
1522 	    }
1523 
1524 	  if (!NOTE_P (insn))
1525 	    record_dead_and_set_regs (insn);
1526 
1527 retry:
1528 	  ;
1529 	}
1530     }
1531 
1532   default_rtl_profile ();
1533   clear_bb_flags ();
1534   new_direct_jump_p |= purge_all_dead_edges ();
1535   new_direct_jump_p |= delete_noop_moves ();
1536 
1537   /* Clean up.  */
1538   obstack_free (&insn_link_obstack, NULL);
1539   free (uid_log_links);
1540   free (uid_insn_cost);
1541   reg_stat.release ();
1542 
1543   {
1544     struct undo *undo, *next;
1545     for (undo = undobuf.frees; undo; undo = next)
1546       {
1547 	next = undo->next;
1548 	free (undo);
1549       }
1550     undobuf.frees = 0;
1551   }
1552 
1553   total_attempts += combine_attempts;
1554   total_merges += combine_merges;
1555   total_extras += combine_extras;
1556   total_successes += combine_successes;
1557 
1558   nonzero_sign_valid = 0;
1559   rtl_hooks = general_rtl_hooks;
1560 
1561   /* Make recognizer allow volatile MEMs again.  */
1562   init_recog ();
1563 
1564   return new_direct_jump_p;
1565 }
1566 
1567 /* Wipe the last_xxx fields of reg_stat in preparation for another pass.  */
1568 
1569 static void
1570 init_reg_last (void)
1571 {
1572   unsigned int i;
1573   reg_stat_type *p;
1574 
1575   FOR_EACH_VEC_ELT (reg_stat, i, p)
1576     memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1577 }
1578 
1579 /* Set up any promoted values for incoming argument registers.  */
1580 
1581 static void
1582 setup_incoming_promotions (rtx_insn *first)
1583 {
1584   tree arg;
1585   bool strictly_local = false;
1586 
1587   for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1588        arg = DECL_CHAIN (arg))
1589     {
1590       rtx x, reg = DECL_INCOMING_RTL (arg);
1591       int uns1, uns3;
1592       machine_mode mode1, mode2, mode3, mode4;
1593 
1594       /* Only continue if the incoming argument is in a register.  */
1595       if (!REG_P (reg))
1596 	continue;
1597 
1598       /* Determine, if possible, whether all call sites of the current
1599          function lie within the current compilation unit.  (This does
1600 	 take into account the exporting of a function via taking its
1601 	 address, and so forth.)  */
1602       strictly_local = cgraph_node::local_info (current_function_decl)->local;
1603 
1604       /* The mode and signedness of the argument before any promotions happen
1605          (equal to the mode of the pseudo holding it at that stage).  */
1606       mode1 = TYPE_MODE (TREE_TYPE (arg));
1607       uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1608 
1609       /* The mode and signedness of the argument after any source language and
1610          TARGET_PROMOTE_PROTOTYPES-driven promotions.  */
1611       mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1612       uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1613 
1614       /* The mode and signedness of the argument as it is actually passed,
1615          see assign_parm_setup_reg in function.c.  */
1616       mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1617 				     TREE_TYPE (cfun->decl), 0);
1618 
1619       /* The mode of the register in which the argument is being passed.  */
1620       mode4 = GET_MODE (reg);
1621 
1622       /* Eliminate sign extensions in the callee when:
1623 	 (a) A mode promotion has occurred;  */
1624       if (mode1 == mode3)
1625 	continue;
1626       /* (b) The mode of the register is the same as the mode of
1627 	     the argument as it is passed; */
1628       if (mode3 != mode4)
1629 	continue;
1630       /* (c) There's no language level extension;  */
1631       if (mode1 == mode2)
1632 	;
1633       /* (c.1) All callers are from the current compilation unit.  If that's
1634 	 the case we don't have to rely on an ABI, we only have to know
1635 	 what we're generating right now, and we know that we will do the
1636 	 mode1 to mode2 promotion with the given sign.  */
1637       else if (!strictly_local)
1638 	continue;
1639       /* (c.2) The combination of the two promotions is useful.  This is
1640 	 true when the signs match, or if the first promotion is unsigned.
1641 	 In the later case, (sign_extend (zero_extend x)) is the same as
1642 	 (zero_extend (zero_extend x)), so make sure to force UNS3 true.  */
1643       else if (uns1)
1644 	uns3 = true;
1645       else if (uns3)
1646 	continue;
1647 
1648       /* Record that the value was promoted from mode1 to mode3,
1649 	 so that any sign extension at the head of the current
1650 	 function may be eliminated.  */
1651       x = gen_rtx_CLOBBER (mode1, const0_rtx);
1652       x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1653       record_value_for_reg (reg, first, x);
1654     }
1655 }
1656 
1657 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1658    that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1659    because some machines (maybe most) will actually do the sign-extension and
1660    this is the conservative approach.
1661 
1662    ??? For 2.5, try to tighten up the MD files in this regard instead of this
1663    kludge.  */
1664 
1665 static rtx
1666 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1667 {
1668   scalar_int_mode int_mode;
1669   if (CONST_INT_P (src)
1670       && is_a <scalar_int_mode> (mode, &int_mode)
1671       && GET_MODE_PRECISION (int_mode) < prec
1672       && INTVAL (src) > 0
1673       && val_signbit_known_set_p (int_mode, INTVAL (src)))
1674     src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1675 
1676   return src;
1677 }
1678 
1679 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1680    and SET.  */
1681 
1682 static void
1683 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1684 			   rtx x)
1685 {
1686   rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1687   unsigned HOST_WIDE_INT bits = 0;
1688   rtx reg_equal = NULL, src = SET_SRC (set);
1689   unsigned int num = 0;
1690 
1691   if (reg_equal_note)
1692     reg_equal = XEXP (reg_equal_note, 0);
1693 
1694   if (SHORT_IMMEDIATES_SIGN_EXTEND)
1695     {
1696       src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1697       if (reg_equal)
1698 	reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1699     }
1700 
1701   /* Don't call nonzero_bits if it cannot change anything.  */
1702   if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1703     {
1704       bits = nonzero_bits (src, nonzero_bits_mode);
1705       if (reg_equal && bits)
1706 	bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1707       rsp->nonzero_bits |= bits;
1708     }
1709 
1710   /* Don't call num_sign_bit_copies if it cannot change anything.  */
1711   if (rsp->sign_bit_copies != 1)
1712     {
1713       num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1714       if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1715 	{
1716 	  unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1717 	  if (num == 0 || numeq > num)
1718 	    num = numeq;
1719 	}
1720       if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1721 	rsp->sign_bit_copies = num;
1722     }
1723 }
1724 
1725 /* Called via note_stores.  If X is a pseudo that is narrower than
1726    HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1727 
1728    If we are setting only a portion of X and we can't figure out what
1729    portion, assume all bits will be used since we don't know what will
1730    be happening.
1731 
1732    Similarly, set how many bits of X are known to be copies of the sign bit
1733    at all locations in the function.  This is the smallest number implied
1734    by any set of X.  */
1735 
1736 static void
1737 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1738 {
1739   rtx_insn *insn = (rtx_insn *) data;
1740   scalar_int_mode mode;
1741 
1742   if (REG_P (x)
1743       && REGNO (x) >= FIRST_PSEUDO_REGISTER
1744       /* If this register is undefined at the start of the file, we can't
1745 	 say what its contents were.  */
1746       && ! REGNO_REG_SET_P
1747 	   (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1748       && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1749       && HWI_COMPUTABLE_MODE_P (mode))
1750     {
1751       reg_stat_type *rsp = &reg_stat[REGNO (x)];
1752 
1753       if (set == 0 || GET_CODE (set) == CLOBBER)
1754 	{
1755 	  rsp->nonzero_bits = GET_MODE_MASK (mode);
1756 	  rsp->sign_bit_copies = 1;
1757 	  return;
1758 	}
1759 
1760       /* If this register is being initialized using itself, and the
1761 	 register is uninitialized in this basic block, and there are
1762 	 no LOG_LINKS which set the register, then part of the
1763 	 register is uninitialized.  In that case we can't assume
1764 	 anything about the number of nonzero bits.
1765 
1766 	 ??? We could do better if we checked this in
1767 	 reg_{nonzero_bits,num_sign_bit_copies}_for_combine.  Then we
1768 	 could avoid making assumptions about the insn which initially
1769 	 sets the register, while still using the information in other
1770 	 insns.  We would have to be careful to check every insn
1771 	 involved in the combination.  */
1772 
1773       if (insn
1774 	  && reg_referenced_p (x, PATTERN (insn))
1775 	  && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1776 			       REGNO (x)))
1777 	{
1778 	  struct insn_link *link;
1779 
1780 	  FOR_EACH_LOG_LINK (link, insn)
1781 	    if (dead_or_set_p (link->insn, x))
1782 	      break;
1783 	  if (!link)
1784 	    {
1785 	      rsp->nonzero_bits = GET_MODE_MASK (mode);
1786 	      rsp->sign_bit_copies = 1;
1787 	      return;
1788 	    }
1789 	}
1790 
1791       /* If this is a complex assignment, see if we can convert it into a
1792 	 simple assignment.  */
1793       set = expand_field_assignment (set);
1794 
1795       /* If this is a simple assignment, or we have a paradoxical SUBREG,
1796 	 set what we know about X.  */
1797 
1798       if (SET_DEST (set) == x
1799 	  || (paradoxical_subreg_p (SET_DEST (set))
1800 	      && SUBREG_REG (SET_DEST (set)) == x))
1801 	update_rsp_from_reg_equal (rsp, insn, set, x);
1802       else
1803 	{
1804 	  rsp->nonzero_bits = GET_MODE_MASK (mode);
1805 	  rsp->sign_bit_copies = 1;
1806 	}
1807     }
1808 }
1809 
1810 /* See if INSN can be combined into I3.  PRED, PRED2, SUCC and SUCC2 are
1811    optionally insns that were previously combined into I3 or that will be
1812    combined into the merger of INSN and I3.  The order is PRED, PRED2,
1813    INSN, SUCC, SUCC2, I3.
1814 
1815    Return 0 if the combination is not allowed for any reason.
1816 
1817    If the combination is allowed, *PDEST will be set to the single
1818    destination of INSN and *PSRC to the single source, and this function
1819    will return 1.  */
1820 
1821 static int
1822 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1823 	       rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1824 	       rtx *pdest, rtx *psrc)
1825 {
1826   int i;
1827   const_rtx set = 0;
1828   rtx src, dest;
1829   rtx_insn *p;
1830   rtx link;
1831   bool all_adjacent = true;
1832   int (*is_volatile_p) (const_rtx);
1833 
1834   if (succ)
1835     {
1836       if (succ2)
1837 	{
1838 	  if (next_active_insn (succ2) != i3)
1839 	    all_adjacent = false;
1840 	  if (next_active_insn (succ) != succ2)
1841 	    all_adjacent = false;
1842 	}
1843       else if (next_active_insn (succ) != i3)
1844 	all_adjacent = false;
1845       if (next_active_insn (insn) != succ)
1846 	all_adjacent = false;
1847     }
1848   else if (next_active_insn (insn) != i3)
1849     all_adjacent = false;
1850 
1851   /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1852      or a PARALLEL consisting of such a SET and CLOBBERs.
1853 
1854      If INSN has CLOBBER parallel parts, ignore them for our processing.
1855      By definition, these happen during the execution of the insn.  When it
1856      is merged with another insn, all bets are off.  If they are, in fact,
1857      needed and aren't also supplied in I3, they may be added by
1858      recog_for_combine.  Otherwise, it won't match.
1859 
1860      We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1861      note.
1862 
1863      Get the source and destination of INSN.  If more than one, can't
1864      combine.  */
1865 
1866   if (GET_CODE (PATTERN (insn)) == SET)
1867     set = PATTERN (insn);
1868   else if (GET_CODE (PATTERN (insn)) == PARALLEL
1869 	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1870     {
1871       for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1872 	{
1873 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
1874 
1875 	  switch (GET_CODE (elt))
1876 	    {
1877 	    /* This is important to combine floating point insns
1878 	       for the SH4 port.  */
1879 	    case USE:
1880 	      /* Combining an isolated USE doesn't make sense.
1881 		 We depend here on combinable_i3pat to reject them.  */
1882 	      /* The code below this loop only verifies that the inputs of
1883 		 the SET in INSN do not change.  We call reg_set_between_p
1884 		 to verify that the REG in the USE does not change between
1885 		 I3 and INSN.
1886 		 If the USE in INSN was for a pseudo register, the matching
1887 		 insn pattern will likely match any register; combining this
1888 		 with any other USE would only be safe if we knew that the
1889 		 used registers have identical values, or if there was
1890 		 something to tell them apart, e.g. different modes.  For
1891 		 now, we forgo such complicated tests and simply disallow
1892 		 combining of USES of pseudo registers with any other USE.  */
1893 	      if (REG_P (XEXP (elt, 0))
1894 		  && GET_CODE (PATTERN (i3)) == PARALLEL)
1895 		{
1896 		  rtx i3pat = PATTERN (i3);
1897 		  int i = XVECLEN (i3pat, 0) - 1;
1898 		  unsigned int regno = REGNO (XEXP (elt, 0));
1899 
1900 		  do
1901 		    {
1902 		      rtx i3elt = XVECEXP (i3pat, 0, i);
1903 
1904 		      if (GET_CODE (i3elt) == USE
1905 			  && REG_P (XEXP (i3elt, 0))
1906 			  && (REGNO (XEXP (i3elt, 0)) == regno
1907 			      ? reg_set_between_p (XEXP (elt, 0),
1908 						   PREV_INSN (insn), i3)
1909 			      : regno >= FIRST_PSEUDO_REGISTER))
1910 			return 0;
1911 		    }
1912 		  while (--i >= 0);
1913 		}
1914 	      break;
1915 
1916 	      /* We can ignore CLOBBERs.  */
1917 	    case CLOBBER:
1918 	      break;
1919 
1920 	    case SET:
1921 	      /* Ignore SETs whose result isn't used but not those that
1922 		 have side-effects.  */
1923 	      if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1924 		  && insn_nothrow_p (insn)
1925 		  && !side_effects_p (elt))
1926 		break;
1927 
1928 	      /* If we have already found a SET, this is a second one and
1929 		 so we cannot combine with this insn.  */
1930 	      if (set)
1931 		return 0;
1932 
1933 	      set = elt;
1934 	      break;
1935 
1936 	    default:
1937 	      /* Anything else means we can't combine.  */
1938 	      return 0;
1939 	    }
1940 	}
1941 
1942       if (set == 0
1943 	  /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1944 	     so don't do anything with it.  */
1945 	  || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1946 	return 0;
1947     }
1948   else
1949     return 0;
1950 
1951   if (set == 0)
1952     return 0;
1953 
1954   /* The simplification in expand_field_assignment may call back to
1955      get_last_value, so set safe guard here.  */
1956   subst_low_luid = DF_INSN_LUID (insn);
1957 
1958   set = expand_field_assignment (set);
1959   src = SET_SRC (set), dest = SET_DEST (set);
1960 
1961   /* Do not eliminate user-specified register if it is in an
1962      asm input because we may break the register asm usage defined
1963      in GCC manual if allow to do so.
1964      Be aware that this may cover more cases than we expect but this
1965      should be harmless.  */
1966   if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1967       && extract_asm_operands (PATTERN (i3)))
1968     return 0;
1969 
1970   /* Don't eliminate a store in the stack pointer.  */
1971   if (dest == stack_pointer_rtx
1972       /* Don't combine with an insn that sets a register to itself if it has
1973 	 a REG_EQUAL note.  This may be part of a LIBCALL sequence.  */
1974       || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1975       /* Can't merge an ASM_OPERANDS.  */
1976       || GET_CODE (src) == ASM_OPERANDS
1977       /* Can't merge a function call.  */
1978       || GET_CODE (src) == CALL
1979       /* Don't eliminate a function call argument.  */
1980       || (CALL_P (i3)
1981 	  && (find_reg_fusage (i3, USE, dest)
1982 	      || (REG_P (dest)
1983 		  && REGNO (dest) < FIRST_PSEUDO_REGISTER
1984 		  && global_regs[REGNO (dest)])))
1985       /* Don't substitute into an incremented register.  */
1986       || FIND_REG_INC_NOTE (i3, dest)
1987       || (succ && FIND_REG_INC_NOTE (succ, dest))
1988       || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1989       /* Don't substitute into a non-local goto, this confuses CFG.  */
1990       || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1991       /* Make sure that DEST is not used after INSN but before SUCC, or
1992 	 after SUCC and before SUCC2, or after SUCC2 but before I3.  */
1993       || (!all_adjacent
1994 	  && ((succ2
1995 	       && (reg_used_between_p (dest, succ2, i3)
1996 		   || reg_used_between_p (dest, succ, succ2)))
1997 	      || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1998 	      || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1999 	      || (succ
2000 		  /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2001 		     that case SUCC is not in the insn stream, so use SUCC2
2002 		     instead for this test.  */
2003 		  && reg_used_between_p (dest, insn,
2004 					 succ2
2005 					 && INSN_UID (succ) == INSN_UID (succ2)
2006 					 ? succ2 : succ))))
2007       /* Make sure that the value that is to be substituted for the register
2008 	 does not use any registers whose values alter in between.  However,
2009 	 If the insns are adjacent, a use can't cross a set even though we
2010 	 think it might (this can happen for a sequence of insns each setting
2011 	 the same destination; last_set of that register might point to
2012 	 a NOTE).  If INSN has a REG_EQUIV note, the register is always
2013 	 equivalent to the memory so the substitution is valid even if there
2014 	 are intervening stores.  Also, don't move a volatile asm or
2015 	 UNSPEC_VOLATILE across any other insns.  */
2016       || (! all_adjacent
2017 	  && (((!MEM_P (src)
2018 		|| ! find_reg_note (insn, REG_EQUIV, src))
2019 	       && modified_between_p (src, insn, i3))
2020 	      || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2021 	      || GET_CODE (src) == UNSPEC_VOLATILE))
2022       /* Don't combine across a CALL_INSN, because that would possibly
2023 	 change whether the life span of some REGs crosses calls or not,
2024 	 and it is a pain to update that information.
2025 	 Exception: if source is a constant, moving it later can't hurt.
2026 	 Accept that as a special case.  */
2027       || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2028     return 0;
2029 
2030   /* DEST must either be a REG or CC0.  */
2031   if (REG_P (dest))
2032     {
2033       /* If register alignment is being enforced for multi-word items in all
2034 	 cases except for parameters, it is possible to have a register copy
2035 	 insn referencing a hard register that is not allowed to contain the
2036 	 mode being copied and which would not be valid as an operand of most
2037 	 insns.  Eliminate this problem by not combining with such an insn.
2038 
2039 	 Also, on some machines we don't want to extend the life of a hard
2040 	 register.  */
2041 
2042       if (REG_P (src)
2043 	  && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2044 	       && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2045 	      /* Don't extend the life of a hard register unless it is
2046 		 user variable (if we have few registers) or it can't
2047 		 fit into the desired register (meaning something special
2048 		 is going on).
2049 		 Also avoid substituting a return register into I3, because
2050 		 reload can't handle a conflict with constraints of other
2051 		 inputs.  */
2052 	      || (REGNO (src) < FIRST_PSEUDO_REGISTER
2053 		  && !targetm.hard_regno_mode_ok (REGNO (src),
2054 						  GET_MODE (src)))))
2055 	return 0;
2056     }
2057   else if (GET_CODE (dest) != CC0)
2058     return 0;
2059 
2060 
2061   if (GET_CODE (PATTERN (i3)) == PARALLEL)
2062     for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2063       if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2064 	{
2065 	  rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2066 
2067 	  /* If the clobber represents an earlyclobber operand, we must not
2068 	     substitute an expression containing the clobbered register.
2069 	     As we do not analyze the constraint strings here, we have to
2070 	     make the conservative assumption.  However, if the register is
2071 	     a fixed hard reg, the clobber cannot represent any operand;
2072 	     we leave it up to the machine description to either accept or
2073 	     reject use-and-clobber patterns.  */
2074 	  if (!REG_P (reg)
2075 	      || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2076 	      || !fixed_regs[REGNO (reg)])
2077 	    if (reg_overlap_mentioned_p (reg, src))
2078 	      return 0;
2079 	}
2080 
2081   /* If INSN contains anything volatile, or is an `asm' (whether volatile
2082      or not), reject, unless nothing volatile comes between it and I3 */
2083 
2084   if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2085     {
2086       /* Make sure neither succ nor succ2 contains a volatile reference.  */
2087       if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2088 	return 0;
2089       if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2090 	return 0;
2091       /* We'll check insns between INSN and I3 below.  */
2092     }
2093 
2094   /* If INSN is an asm, and DEST is a hard register, reject, since it has
2095      to be an explicit register variable, and was chosen for a reason.  */
2096 
2097   if (GET_CODE (src) == ASM_OPERANDS
2098       && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2099     return 0;
2100 
2101   /* If INSN contains volatile references (specifically volatile MEMs),
2102      we cannot combine across any other volatile references.
2103      Even if INSN doesn't contain volatile references, any intervening
2104      volatile insn might affect machine state.  */
2105 
2106   is_volatile_p = volatile_refs_p (PATTERN (insn))
2107     ? volatile_refs_p
2108     : volatile_insn_p;
2109 
2110   for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2111     if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2112       return 0;
2113 
2114   /* If INSN contains an autoincrement or autodecrement, make sure that
2115      register is not used between there and I3, and not already used in
2116      I3 either.  Neither must it be used in PRED or SUCC, if they exist.
2117      Also insist that I3 not be a jump; if it were one
2118      and the incremented register were spilled, we would lose.  */
2119 
2120   if (AUTO_INC_DEC)
2121     for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2122       if (REG_NOTE_KIND (link) == REG_INC
2123 	  && (JUMP_P (i3)
2124 	      || reg_used_between_p (XEXP (link, 0), insn, i3)
2125 	      || (pred != NULL_RTX
2126 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2127 	      || (pred2 != NULL_RTX
2128 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2129 	      || (succ != NULL_RTX
2130 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2131 	      || (succ2 != NULL_RTX
2132 		  && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2133 	      || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2134 	return 0;
2135 
2136   /* Don't combine an insn that follows a CC0-setting insn.
2137      An insn that uses CC0 must not be separated from the one that sets it.
2138      We do, however, allow I2 to follow a CC0-setting insn if that insn
2139      is passed as I1; in that case it will be deleted also.
2140      We also allow combining in this case if all the insns are adjacent
2141      because that would leave the two CC0 insns adjacent as well.
2142      It would be more logical to test whether CC0 occurs inside I1 or I2,
2143      but that would be much slower, and this ought to be equivalent.  */
2144 
2145   if (HAVE_cc0)
2146     {
2147       p = prev_nonnote_insn (insn);
2148       if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2149 	  && ! all_adjacent)
2150 	return 0;
2151     }
2152 
2153   /* If we get here, we have passed all the tests and the combination is
2154      to be allowed.  */
2155 
2156   *pdest = dest;
2157   *psrc = src;
2158 
2159   return 1;
2160 }
2161 
2162 /* LOC is the location within I3 that contains its pattern or the component
2163    of a PARALLEL of the pattern.  We validate that it is valid for combining.
2164 
2165    One problem is if I3 modifies its output, as opposed to replacing it
2166    entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2167    doing so would produce an insn that is not equivalent to the original insns.
2168 
2169    Consider:
2170 
2171 	 (set (reg:DI 101) (reg:DI 100))
2172 	 (set (subreg:SI (reg:DI 101) 0) <foo>)
2173 
2174    This is NOT equivalent to:
2175 
2176 	 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2177 		    (set (reg:DI 101) (reg:DI 100))])
2178 
2179    Not only does this modify 100 (in which case it might still be valid
2180    if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2181 
2182    We can also run into a problem if I2 sets a register that I1
2183    uses and I1 gets directly substituted into I3 (not via I2).  In that
2184    case, we would be getting the wrong value of I2DEST into I3, so we
2185    must reject the combination.  This case occurs when I2 and I1 both
2186    feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2187    If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2188    of a SET must prevent combination from occurring.  The same situation
2189    can occur for I0, in which case I0_NOT_IN_SRC is set.
2190 
2191    Before doing the above check, we first try to expand a field assignment
2192    into a set of logical operations.
2193 
2194    If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2195    we place a register that is both set and used within I3.  If more than one
2196    such register is detected, we fail.
2197 
2198    Return 1 if the combination is valid, zero otherwise.  */
2199 
2200 static int
2201 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2202 		  int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2203 {
2204   rtx x = *loc;
2205 
2206   if (GET_CODE (x) == SET)
2207     {
2208       rtx set = x ;
2209       rtx dest = SET_DEST (set);
2210       rtx src = SET_SRC (set);
2211       rtx inner_dest = dest;
2212       rtx subdest;
2213 
2214       while (GET_CODE (inner_dest) == STRICT_LOW_PART
2215 	     || GET_CODE (inner_dest) == SUBREG
2216 	     || GET_CODE (inner_dest) == ZERO_EXTRACT)
2217 	inner_dest = XEXP (inner_dest, 0);
2218 
2219       /* Check for the case where I3 modifies its output, as discussed
2220 	 above.  We don't want to prevent pseudos from being combined
2221 	 into the address of a MEM, so only prevent the combination if
2222 	 i1 or i2 set the same MEM.  */
2223       if ((inner_dest != dest &&
2224 	   (!MEM_P (inner_dest)
2225 	    || rtx_equal_p (i2dest, inner_dest)
2226 	    || (i1dest && rtx_equal_p (i1dest, inner_dest))
2227 	    || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2228 	   && (reg_overlap_mentioned_p (i2dest, inner_dest)
2229 	       || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2230 	       || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2231 
2232 	  /* This is the same test done in can_combine_p except we can't test
2233 	     all_adjacent; we don't have to, since this instruction will stay
2234 	     in place, thus we are not considering increasing the lifetime of
2235 	     INNER_DEST.
2236 
2237 	     Also, if this insn sets a function argument, combining it with
2238 	     something that might need a spill could clobber a previous
2239 	     function argument; the all_adjacent test in can_combine_p also
2240 	     checks this; here, we do a more specific test for this case.  */
2241 
2242 	  || (REG_P (inner_dest)
2243 	      && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2244 	      && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2245 					      GET_MODE (inner_dest)))
2246 	  || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2247 	  || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2248 	return 0;
2249 
2250       /* If DEST is used in I3, it is being killed in this insn, so
2251 	 record that for later.  We have to consider paradoxical
2252 	 subregs here, since they kill the whole register, but we
2253 	 ignore partial subregs, STRICT_LOW_PART, etc.
2254 	 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2255 	 STACK_POINTER_REGNUM, since these are always considered to be
2256 	 live.  Similarly for ARG_POINTER_REGNUM if it is fixed.  */
2257       subdest = dest;
2258       if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2259 	subdest = SUBREG_REG (subdest);
2260       if (pi3dest_killed
2261 	  && REG_P (subdest)
2262 	  && reg_referenced_p (subdest, PATTERN (i3))
2263 	  && REGNO (subdest) != FRAME_POINTER_REGNUM
2264 	  && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2265 	      || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2266 	  && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2267 	      || (REGNO (subdest) != ARG_POINTER_REGNUM
2268 		  || ! fixed_regs [REGNO (subdest)]))
2269 	  && REGNO (subdest) != STACK_POINTER_REGNUM)
2270 	{
2271 	  if (*pi3dest_killed)
2272 	    return 0;
2273 
2274 	  *pi3dest_killed = subdest;
2275 	}
2276     }
2277 
2278   else if (GET_CODE (x) == PARALLEL)
2279     {
2280       int i;
2281 
2282       for (i = 0; i < XVECLEN (x, 0); i++)
2283 	if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2284 				i1_not_in_src, i0_not_in_src, pi3dest_killed))
2285 	  return 0;
2286     }
2287 
2288   return 1;
2289 }
2290 
2291 /* Return 1 if X is an arithmetic expression that contains a multiplication
2292    and division.  We don't count multiplications by powers of two here.  */
2293 
2294 static int
2295 contains_muldiv (rtx x)
2296 {
2297   switch (GET_CODE (x))
2298     {
2299     case MOD:  case DIV:  case UMOD:  case UDIV:
2300       return 1;
2301 
2302     case MULT:
2303       return ! (CONST_INT_P (XEXP (x, 1))
2304 		&& pow2p_hwi (UINTVAL (XEXP (x, 1))));
2305     default:
2306       if (BINARY_P (x))
2307 	return contains_muldiv (XEXP (x, 0))
2308 	    || contains_muldiv (XEXP (x, 1));
2309 
2310       if (UNARY_P (x))
2311 	return contains_muldiv (XEXP (x, 0));
2312 
2313       return 0;
2314     }
2315 }
2316 
2317 /* Determine whether INSN can be used in a combination.  Return nonzero if
2318    not.  This is used in try_combine to detect early some cases where we
2319    can't perform combinations.  */
2320 
2321 static int
2322 cant_combine_insn_p (rtx_insn *insn)
2323 {
2324   rtx set;
2325   rtx src, dest;
2326 
2327   /* If this isn't really an insn, we can't do anything.
2328      This can occur when flow deletes an insn that it has merged into an
2329      auto-increment address.  */
2330   if (!NONDEBUG_INSN_P (insn))
2331     return 1;
2332 
2333   /* Never combine loads and stores involving hard regs that are likely
2334      to be spilled.  The register allocator can usually handle such
2335      reg-reg moves by tying.  If we allow the combiner to make
2336      substitutions of likely-spilled regs, reload might die.
2337      As an exception, we allow combinations involving fixed regs; these are
2338      not available to the register allocator so there's no risk involved.  */
2339 
2340   set = single_set (insn);
2341   if (! set)
2342     return 0;
2343   src = SET_SRC (set);
2344   dest = SET_DEST (set);
2345   if (GET_CODE (src) == SUBREG)
2346     src = SUBREG_REG (src);
2347   if (GET_CODE (dest) == SUBREG)
2348     dest = SUBREG_REG (dest);
2349   if (REG_P (src) && REG_P (dest)
2350       && ((HARD_REGISTER_P (src)
2351 	   && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2352 	   && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2353 	  || (HARD_REGISTER_P (dest)
2354 	      && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2355 	      && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2356     return 1;
2357 
2358   return 0;
2359 }
2360 
2361 struct likely_spilled_retval_info
2362 {
2363   unsigned regno, nregs;
2364   unsigned mask;
2365 };
2366 
2367 /* Called via note_stores by likely_spilled_retval_p.  Remove from info->mask
2368    hard registers that are known to be written to / clobbered in full.  */
2369 static void
2370 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2371 {
2372   struct likely_spilled_retval_info *const info =
2373     (struct likely_spilled_retval_info *) data;
2374   unsigned regno, nregs;
2375   unsigned new_mask;
2376 
2377   if (!REG_P (XEXP (set, 0)))
2378     return;
2379   regno = REGNO (x);
2380   if (regno >= info->regno + info->nregs)
2381     return;
2382   nregs = REG_NREGS (x);
2383   if (regno + nregs <= info->regno)
2384     return;
2385   new_mask = (2U << (nregs - 1)) - 1;
2386   if (regno < info->regno)
2387     new_mask >>= info->regno - regno;
2388   else
2389     new_mask <<= regno - info->regno;
2390   info->mask &= ~new_mask;
2391 }
2392 
2393 /* Return nonzero iff part of the return value is live during INSN, and
2394    it is likely spilled.  This can happen when more than one insn is needed
2395    to copy the return value, e.g. when we consider to combine into the
2396    second copy insn for a complex value.  */
2397 
2398 static int
2399 likely_spilled_retval_p (rtx_insn *insn)
2400 {
2401   rtx_insn *use = BB_END (this_basic_block);
2402   rtx reg;
2403   rtx_insn *p;
2404   unsigned regno, nregs;
2405   /* We assume here that no machine mode needs more than
2406      32 hard registers when the value overlaps with a register
2407      for which TARGET_FUNCTION_VALUE_REGNO_P is true.  */
2408   unsigned mask;
2409   struct likely_spilled_retval_info info;
2410 
2411   if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2412     return 0;
2413   reg = XEXP (PATTERN (use), 0);
2414   if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2415     return 0;
2416   regno = REGNO (reg);
2417   nregs = REG_NREGS (reg);
2418   if (nregs == 1)
2419     return 0;
2420   mask = (2U << (nregs - 1)) - 1;
2421 
2422   /* Disregard parts of the return value that are set later.  */
2423   info.regno = regno;
2424   info.nregs = nregs;
2425   info.mask = mask;
2426   for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2427     if (INSN_P (p))
2428       note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2429   mask = info.mask;
2430 
2431   /* Check if any of the (probably) live return value registers is
2432      likely spilled.  */
2433   nregs --;
2434   do
2435     {
2436       if ((mask & 1 << nregs)
2437 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2438 	return 1;
2439     } while (nregs--);
2440   return 0;
2441 }
2442 
2443 /* Adjust INSN after we made a change to its destination.
2444 
2445    Changing the destination can invalidate notes that say something about
2446    the results of the insn and a LOG_LINK pointing to the insn.  */
2447 
2448 static void
2449 adjust_for_new_dest (rtx_insn *insn)
2450 {
2451   /* For notes, be conservative and simply remove them.  */
2452   remove_reg_equal_equiv_notes (insn);
2453 
2454   /* The new insn will have a destination that was previously the destination
2455      of an insn just above it.  Call distribute_links to make a LOG_LINK from
2456      the next use of that destination.  */
2457 
2458   rtx set = single_set (insn);
2459   gcc_assert (set);
2460 
2461   rtx reg = SET_DEST (set);
2462 
2463   while (GET_CODE (reg) == ZERO_EXTRACT
2464 	 || GET_CODE (reg) == STRICT_LOW_PART
2465 	 || GET_CODE (reg) == SUBREG)
2466     reg = XEXP (reg, 0);
2467   gcc_assert (REG_P (reg));
2468 
2469   distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2470 
2471   df_insn_rescan (insn);
2472 }
2473 
2474 /* Return TRUE if combine can reuse reg X in mode MODE.
2475    ADDED_SETS is nonzero if the original set is still required.  */
2476 static bool
2477 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2478 {
2479   unsigned int regno;
2480 
2481   if (!REG_P (x))
2482     return false;
2483 
2484   /* Don't change between modes with different underlying register sizes,
2485      since this could lead to invalid subregs.  */
2486   if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2487 		REGMODE_NATURAL_SIZE (GET_MODE (x))))
2488     return false;
2489 
2490   regno = REGNO (x);
2491   /* Allow hard registers if the new mode is legal, and occupies no more
2492      registers than the old mode.  */
2493   if (regno < FIRST_PSEUDO_REGISTER)
2494     return (targetm.hard_regno_mode_ok (regno, mode)
2495 	    && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2496 
2497   /* Or a pseudo that is only used once.  */
2498   return (regno < reg_n_sets_max
2499 	  && REG_N_SETS (regno) == 1
2500 	  && !added_sets
2501 	  && !REG_USERVAR_P (x));
2502 }
2503 
2504 
2505 /* Check whether X, the destination of a set, refers to part of
2506    the register specified by REG.  */
2507 
2508 static bool
2509 reg_subword_p (rtx x, rtx reg)
2510 {
2511   /* Check that reg is an integer mode register.  */
2512   if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2513     return false;
2514 
2515   if (GET_CODE (x) == STRICT_LOW_PART
2516       || GET_CODE (x) == ZERO_EXTRACT)
2517     x = XEXP (x, 0);
2518 
2519   return GET_CODE (x) == SUBREG
2520 	 && SUBREG_REG (x) == reg
2521 	 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2522 }
2523 
2524 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2525    Note that the INSN should be deleted *after* removing dead edges, so
2526    that the kept edge is the fallthrough edge for a (set (pc) (pc))
2527    but not for a (set (pc) (label_ref FOO)).  */
2528 
2529 static void
2530 update_cfg_for_uncondjump (rtx_insn *insn)
2531 {
2532   basic_block bb = BLOCK_FOR_INSN (insn);
2533   gcc_assert (BB_END (bb) == insn);
2534 
2535   purge_dead_edges (bb);
2536 
2537   delete_insn (insn);
2538   if (EDGE_COUNT (bb->succs) == 1)
2539     {
2540       rtx_insn *insn;
2541 
2542       single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2543 
2544       /* Remove barriers from the footer if there are any.  */
2545       for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2546 	if (BARRIER_P (insn))
2547 	  {
2548 	    if (PREV_INSN (insn))
2549 	      SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2550 	    else
2551 	      BB_FOOTER (bb) = NEXT_INSN (insn);
2552 	    if (NEXT_INSN (insn))
2553 	      SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2554 	  }
2555 	else if (LABEL_P (insn))
2556 	  break;
2557     }
2558 }
2559 
2560 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2561    by an arbitrary number of CLOBBERs.  */
2562 static bool
2563 is_parallel_of_n_reg_sets (rtx pat, int n)
2564 {
2565   if (GET_CODE (pat) != PARALLEL)
2566     return false;
2567 
2568   int len = XVECLEN (pat, 0);
2569   if (len < n)
2570     return false;
2571 
2572   int i;
2573   for (i = 0; i < n; i++)
2574     if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2575 	|| !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2576       return false;
2577   for ( ; i < len; i++)
2578     if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2579 	|| XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2580       return false;
2581 
2582   return true;
2583 }
2584 
2585 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2586    CLOBBERs), can be split into individual SETs in that order, without
2587    changing semantics.  */
2588 static bool
2589 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2590 {
2591   if (!insn_nothrow_p (insn))
2592     return false;
2593 
2594   rtx pat = PATTERN (insn);
2595 
2596   int i, j;
2597   for (i = 0; i < n; i++)
2598     {
2599       if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2600 	return false;
2601 
2602       rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2603 
2604       for (j = i + 1; j < n; j++)
2605 	if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2606 	  return false;
2607     }
2608 
2609   return true;
2610 }
2611 
2612 /* Try to combine the insns I0, I1 and I2 into I3.
2613    Here I0, I1 and I2 appear earlier than I3.
2614    I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2615    I3.
2616 
2617    If we are combining more than two insns and the resulting insn is not
2618    recognized, try splitting it into two insns.  If that happens, I2 and I3
2619    are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2620    Otherwise, I0, I1 and I2 are pseudo-deleted.
2621 
2622    Return 0 if the combination does not work.  Then nothing is changed.
2623    If we did the combination, return the insn at which combine should
2624    resume scanning.
2625 
2626    Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2627    new direct jump instruction.
2628 
2629    LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2630    been I3 passed to an earlier try_combine within the same basic
2631    block.  */
2632 
2633 static rtx_insn *
2634 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2635 	     int *new_direct_jump_p, rtx_insn *last_combined_insn)
2636 {
2637   /* New patterns for I3 and I2, respectively.  */
2638   rtx newpat, newi2pat = 0;
2639   rtvec newpat_vec_with_clobbers = 0;
2640   int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2641   /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2642      dead.  */
2643   int added_sets_0, added_sets_1, added_sets_2;
2644   /* Total number of SETs to put into I3.  */
2645   int total_sets;
2646   /* Nonzero if I2's or I1's body now appears in I3.  */
2647   int i2_is_used = 0, i1_is_used = 0;
2648   /* INSN_CODEs for new I3, new I2, and user of condition code.  */
2649   int insn_code_number, i2_code_number = 0, other_code_number = 0;
2650   /* Contains I3 if the destination of I3 is used in its source, which means
2651      that the old life of I3 is being killed.  If that usage is placed into
2652      I2 and not in I3, a REG_DEAD note must be made.  */
2653   rtx i3dest_killed = 0;
2654   /* SET_DEST and SET_SRC of I2, I1 and I0.  */
2655   rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2656   /* Copy of SET_SRC of I1 and I0, if needed.  */
2657   rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2658   /* Set if I2DEST was reused as a scratch register.  */
2659   bool i2scratch = false;
2660   /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases.  */
2661   rtx i0pat = 0, i1pat = 0, i2pat = 0;
2662   /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC.  */
2663   int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2664   int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2665   int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2666   int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2667   /* Notes that must be added to REG_NOTES in I3 and I2.  */
2668   rtx new_i3_notes, new_i2_notes;
2669   /* Notes that we substituted I3 into I2 instead of the normal case.  */
2670   int i3_subst_into_i2 = 0;
2671   /* Notes that I1, I2 or I3 is a MULT operation.  */
2672   int have_mult = 0;
2673   int swap_i2i3 = 0;
2674   int split_i2i3 = 0;
2675   int changed_i3_dest = 0;
2676 
2677   int maxreg;
2678   rtx_insn *temp_insn;
2679   rtx temp_expr;
2680   struct insn_link *link;
2681   rtx other_pat = 0;
2682   rtx new_other_notes;
2683   int i;
2684   scalar_int_mode dest_mode, temp_mode;
2685 
2686   /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2687      never be).  */
2688   if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2689     return 0;
2690 
2691   /* Only try four-insn combinations when there's high likelihood of
2692      success.  Look for simple insns, such as loads of constants or
2693      binary operations involving a constant.  */
2694   if (i0)
2695     {
2696       int i;
2697       int ngood = 0;
2698       int nshift = 0;
2699       rtx set0, set3;
2700 
2701       if (!flag_expensive_optimizations)
2702 	return 0;
2703 
2704       for (i = 0; i < 4; i++)
2705 	{
2706 	  rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2707 	  rtx set = single_set (insn);
2708 	  rtx src;
2709 	  if (!set)
2710 	    continue;
2711 	  src = SET_SRC (set);
2712 	  if (CONSTANT_P (src))
2713 	    {
2714 	      ngood += 2;
2715 	      break;
2716 	    }
2717 	  else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2718 	    ngood++;
2719 	  else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2720 		   || GET_CODE (src) == LSHIFTRT)
2721 	    nshift++;
2722 	}
2723 
2724       /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2725 	 are likely manipulating its value.  Ideally we'll be able to combine
2726 	 all four insns into a bitfield insertion of some kind.
2727 
2728 	 Note the source in I0 might be inside a sign/zero extension and the
2729 	 memory modes in I0 and I3 might be different.  So extract the address
2730 	 from the destination of I3 and search for it in the source of I0.
2731 
2732 	 In the event that there's a match but the source/dest do not actually
2733 	 refer to the same memory, the worst that happens is we try some
2734 	 combinations that we wouldn't have otherwise.  */
2735       if ((set0 = single_set (i0))
2736 	  /* Ensure the source of SET0 is a MEM, possibly buried inside
2737 	     an extension.  */
2738 	  && (GET_CODE (SET_SRC (set0)) == MEM
2739 	      || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2740 		   || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2741 		  && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2742 	  && (set3 = single_set (i3))
2743 	  /* Ensure the destination of SET3 is a MEM.  */
2744 	  && GET_CODE (SET_DEST (set3)) == MEM
2745 	  /* Would it be better to extract the base address for the MEM
2746 	     in SET3 and look for that?  I don't have cases where it matters
2747 	     but I could envision such cases.  */
2748 	  && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2749 	ngood += 2;
2750 
2751       if (ngood < 2 && nshift < 2)
2752 	return 0;
2753     }
2754 
2755   /* Exit early if one of the insns involved can't be used for
2756      combinations.  */
2757   if (CALL_P (i2)
2758       || (i1 && CALL_P (i1))
2759       || (i0 && CALL_P (i0))
2760       || cant_combine_insn_p (i3)
2761       || cant_combine_insn_p (i2)
2762       || (i1 && cant_combine_insn_p (i1))
2763       || (i0 && cant_combine_insn_p (i0))
2764       || likely_spilled_retval_p (i3))
2765     return 0;
2766 
2767   combine_attempts++;
2768   undobuf.other_insn = 0;
2769 
2770   /* Reset the hard register usage information.  */
2771   CLEAR_HARD_REG_SET (newpat_used_regs);
2772 
2773   if (dump_file && (dump_flags & TDF_DETAILS))
2774     {
2775       if (i0)
2776 	fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2777 		 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2778       else if (i1)
2779 	fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2780 		 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2781       else
2782 	fprintf (dump_file, "\nTrying %d -> %d:\n",
2783 		 INSN_UID (i2), INSN_UID (i3));
2784 
2785       if (i0)
2786 	dump_insn_slim (dump_file, i0);
2787       if (i1)
2788 	dump_insn_slim (dump_file, i1);
2789       dump_insn_slim (dump_file, i2);
2790       dump_insn_slim (dump_file, i3);
2791     }
2792 
2793   /* If multiple insns feed into one of I2 or I3, they can be in any
2794      order.  To simplify the code below, reorder them in sequence.  */
2795   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2796     std::swap (i0, i2);
2797   if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2798     std::swap (i0, i1);
2799   if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2800     std::swap (i1, i2);
2801 
2802   added_links_insn = 0;
2803   added_notes_insn = 0;
2804 
2805   /* First check for one important special case that the code below will
2806      not handle.  Namely, the case where I1 is zero, I2 is a PARALLEL
2807      and I3 is a SET whose SET_SRC is a SET_DEST in I2.  In that case,
2808      we may be able to replace that destination with the destination of I3.
2809      This occurs in the common code where we compute both a quotient and
2810      remainder into a structure, in which case we want to do the computation
2811      directly into the structure to avoid register-register copies.
2812 
2813      Note that this case handles both multiple sets in I2 and also cases
2814      where I2 has a number of CLOBBERs inside the PARALLEL.
2815 
2816      We make very conservative checks below and only try to handle the
2817      most common cases of this.  For example, we only handle the case
2818      where I2 and I3 are adjacent to avoid making difficult register
2819      usage tests.  */
2820 
2821   if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2822       && REG_P (SET_SRC (PATTERN (i3)))
2823       && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2824       && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2825       && GET_CODE (PATTERN (i2)) == PARALLEL
2826       && ! side_effects_p (SET_DEST (PATTERN (i3)))
2827       /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2828 	 below would need to check what is inside (and reg_overlap_mentioned_p
2829 	 doesn't support those codes anyway).  Don't allow those destinations;
2830 	 the resulting insn isn't likely to be recognized anyway.  */
2831       && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2832       && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2833       && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2834 				    SET_DEST (PATTERN (i3)))
2835       && next_active_insn (i2) == i3)
2836     {
2837       rtx p2 = PATTERN (i2);
2838 
2839       /* Make sure that the destination of I3,
2840 	 which we are going to substitute into one output of I2,
2841 	 is not used within another output of I2.  We must avoid making this:
2842 	 (parallel [(set (mem (reg 69)) ...)
2843 		    (set (reg 69) ...)])
2844 	 which is not well-defined as to order of actions.
2845 	 (Besides, reload can't handle output reloads for this.)
2846 
2847 	 The problem can also happen if the dest of I3 is a memory ref,
2848 	 if another dest in I2 is an indirect memory ref.
2849 
2850 	 Neither can this PARALLEL be an asm.  We do not allow combining
2851 	 that usually (see can_combine_p), so do not here either.  */
2852       bool ok = true;
2853       for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2854 	{
2855 	  if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2856 	       || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2857 	      && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2858 					  SET_DEST (XVECEXP (p2, 0, i))))
2859 	    ok = false;
2860 	  else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2861 		   && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2862 	    ok = false;
2863 	}
2864 
2865       if (ok)
2866 	for (i = 0; i < XVECLEN (p2, 0); i++)
2867 	  if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2868 	      && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2869 	    {
2870 	      combine_merges++;
2871 
2872 	      subst_insn = i3;
2873 	      subst_low_luid = DF_INSN_LUID (i2);
2874 
2875 	      added_sets_2 = added_sets_1 = added_sets_0 = 0;
2876 	      i2src = SET_SRC (XVECEXP (p2, 0, i));
2877 	      i2dest = SET_DEST (XVECEXP (p2, 0, i));
2878 	      i2dest_killed = dead_or_set_p (i2, i2dest);
2879 
2880 	      /* Replace the dest in I2 with our dest and make the resulting
2881 		 insn the new pattern for I3.  Then skip to where we validate
2882 		 the pattern.  Everything was set up above.  */
2883 	      SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2884 	      newpat = p2;
2885 	      i3_subst_into_i2 = 1;
2886 	      goto validate_replacement;
2887 	    }
2888     }
2889 
2890   /* If I2 is setting a pseudo to a constant and I3 is setting some
2891      sub-part of it to another constant, merge them by making a new
2892      constant.  */
2893   if (i1 == 0
2894       && (temp_expr = single_set (i2)) != 0
2895       && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2896       && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2897       && GET_CODE (PATTERN (i3)) == SET
2898       && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2899       && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2900     {
2901       rtx dest = SET_DEST (PATTERN (i3));
2902       rtx temp_dest = SET_DEST (temp_expr);
2903       int offset = -1;
2904       int width = 0;
2905 
2906       if (GET_CODE (dest) == ZERO_EXTRACT)
2907 	{
2908 	  if (CONST_INT_P (XEXP (dest, 1))
2909 	      && CONST_INT_P (XEXP (dest, 2))
2910 	      && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2911 					 &dest_mode))
2912 	    {
2913 	      width = INTVAL (XEXP (dest, 1));
2914 	      offset = INTVAL (XEXP (dest, 2));
2915 	      dest = XEXP (dest, 0);
2916 	      if (BITS_BIG_ENDIAN)
2917 		offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2918 	    }
2919 	}
2920       else
2921 	{
2922 	  if (GET_CODE (dest) == STRICT_LOW_PART)
2923 	    dest = XEXP (dest, 0);
2924 	  if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2925 	    {
2926 	      width = GET_MODE_PRECISION (dest_mode);
2927 	      offset = 0;
2928 	    }
2929 	}
2930 
2931       if (offset >= 0)
2932 	{
2933 	  /* If this is the low part, we're done.  */
2934 	  if (subreg_lowpart_p (dest))
2935 	    ;
2936 	  /* Handle the case where inner is twice the size of outer.  */
2937 	  else if (GET_MODE_PRECISION (temp_mode)
2938 		   == 2 * GET_MODE_PRECISION (dest_mode))
2939 	    offset += GET_MODE_PRECISION (dest_mode);
2940 	  /* Otherwise give up for now.  */
2941 	  else
2942 	    offset = -1;
2943 	}
2944 
2945       if (offset >= 0)
2946 	{
2947 	  rtx inner = SET_SRC (PATTERN (i3));
2948 	  rtx outer = SET_SRC (temp_expr);
2949 
2950 	  wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2951 				   rtx_mode_t (inner, dest_mode),
2952 				   offset, width);
2953 
2954 	  combine_merges++;
2955 	  subst_insn = i3;
2956 	  subst_low_luid = DF_INSN_LUID (i2);
2957 	  added_sets_2 = added_sets_1 = added_sets_0 = 0;
2958 	  i2dest = temp_dest;
2959 	  i2dest_killed = dead_or_set_p (i2, i2dest);
2960 
2961 	  /* Replace the source in I2 with the new constant and make the
2962 	     resulting insn the new pattern for I3.  Then skip to where we
2963 	     validate the pattern.  Everything was set up above.  */
2964 	  SUBST (SET_SRC (temp_expr),
2965 		 immed_wide_int_const (o, temp_mode));
2966 
2967 	  newpat = PATTERN (i2);
2968 
2969           /* The dest of I3 has been replaced with the dest of I2.  */
2970           changed_i3_dest = 1;
2971 	  goto validate_replacement;
2972 	}
2973     }
2974 
2975   /* If we have no I1 and I2 looks like:
2976 	(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2977 		   (set Y OP)])
2978      make up a dummy I1 that is
2979 	(set Y OP)
2980      and change I2 to be
2981 	(set (reg:CC X) (compare:CC Y (const_int 0)))
2982 
2983      (We can ignore any trailing CLOBBERs.)
2984 
2985      This undoes a previous combination and allows us to match a branch-and-
2986      decrement insn.  */
2987 
2988   if (!HAVE_cc0 && i1 == 0
2989       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2990       && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2991 	  == MODE_CC)
2992       && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2993       && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2994       && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2995 		      SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2996       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2997       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2998     {
2999       /* We make I1 with the same INSN_UID as I2.  This gives it
3000 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
3001 	 never appear in the insn stream so giving it the same INSN_UID
3002 	 as I2 will not cause a problem.  */
3003 
3004       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3005 			 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3006 			 -1, NULL_RTX);
3007       INSN_UID (i1) = INSN_UID (i2);
3008 
3009       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3010       SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3011 	     SET_DEST (PATTERN (i1)));
3012       unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3013       SUBST_LINK (LOG_LINKS (i2),
3014 		  alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3015     }
3016 
3017   /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3018      make those two SETs separate I1 and I2 insns, and make an I0 that is
3019      the original I1.  */
3020   if (!HAVE_cc0 && i0 == 0
3021       && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3022       && can_split_parallel_of_n_reg_sets (i2, 2)
3023       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3024       && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3025       && !reg_set_between_p  (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3026       && !reg_set_between_p  (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3027     {
3028       /* If there is no I1, there is no I0 either.  */
3029       i0 = i1;
3030 
3031       /* We make I1 with the same INSN_UID as I2.  This gives it
3032 	 the same DF_INSN_LUID for value tracking.  Our fake I1 will
3033 	 never appear in the insn stream so giving it the same INSN_UID
3034 	 as I2 will not cause a problem.  */
3035 
3036       i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3037 			 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3038 			 -1, NULL_RTX);
3039       INSN_UID (i1) = INSN_UID (i2);
3040 
3041       SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3042     }
3043 
3044   /* Verify that I2 and maybe I1 and I0 can be combined into I3.  */
3045   if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3046     {
3047       if (dump_file)
3048 	fprintf (dump_file, "Can't combine i2 into i3\n");
3049       undo_all ();
3050       return 0;
3051     }
3052   if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3053     {
3054       if (dump_file)
3055 	fprintf (dump_file, "Can't combine i1 into i3\n");
3056       undo_all ();
3057       return 0;
3058     }
3059   if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3060     {
3061       if (dump_file)
3062 	fprintf (dump_file, "Can't combine i0 into i3\n");
3063       undo_all ();
3064       return 0;
3065     }
3066 
3067   /* Record whether I2DEST is used in I2SRC and similarly for the other
3068      cases.  Knowing this will help in register status updating below.  */
3069   i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3070   i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3071   i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3072   i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3073   i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3074   i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3075   i2dest_killed = dead_or_set_p (i2, i2dest);
3076   i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3077   i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3078 
3079   /* For the earlier insns, determine which of the subsequent ones they
3080      feed.  */
3081   i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3082   i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3083   i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3084 			  : (!reg_overlap_mentioned_p (i1dest, i0dest)
3085 			     && reg_overlap_mentioned_p (i0dest, i2src))));
3086 
3087   /* Ensure that I3's pattern can be the destination of combines.  */
3088   if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3089 			  i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3090 			  i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3091 				 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3092 			  &i3dest_killed))
3093     {
3094       undo_all ();
3095       return 0;
3096     }
3097 
3098   /* See if any of the insns is a MULT operation.  Unless one is, we will
3099      reject a combination that is, since it must be slower.  Be conservative
3100      here.  */
3101   if (GET_CODE (i2src) == MULT
3102       || (i1 != 0 && GET_CODE (i1src) == MULT)
3103       || (i0 != 0 && GET_CODE (i0src) == MULT)
3104       || (GET_CODE (PATTERN (i3)) == SET
3105 	  && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3106     have_mult = 1;
3107 
3108   /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3109      We used to do this EXCEPT in one case: I3 has a post-inc in an
3110      output operand.  However, that exception can give rise to insns like
3111 	mov r3,(r3)+
3112      which is a famous insn on the PDP-11 where the value of r3 used as the
3113      source was model-dependent.  Avoid this sort of thing.  */
3114 
3115 #if 0
3116   if (!(GET_CODE (PATTERN (i3)) == SET
3117 	&& REG_P (SET_SRC (PATTERN (i3)))
3118 	&& MEM_P (SET_DEST (PATTERN (i3)))
3119 	&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3120 	    || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3121     /* It's not the exception.  */
3122 #endif
3123     if (AUTO_INC_DEC)
3124       {
3125 	rtx link;
3126 	for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3127 	  if (REG_NOTE_KIND (link) == REG_INC
3128 	      && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3129 		  || (i1 != 0
3130 		      && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3131 	    {
3132 	      undo_all ();
3133 	      return 0;
3134 	    }
3135       }
3136 
3137   /* See if the SETs in I1 or I2 need to be kept around in the merged
3138      instruction: whenever the value set there is still needed past I3.
3139      For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3140 
3141      For the SET in I1, we have two cases: if I1 and I2 independently feed
3142      into I3, the set in I1 needs to be kept around unless I1DEST dies
3143      or is set in I3.  Otherwise (if I1 feeds I2 which feeds I3), the set
3144      in I1 needs to be kept around unless I1DEST dies or is set in either
3145      I2 or I3.  The same considerations apply to I0.  */
3146 
3147   added_sets_2 = !dead_or_set_p (i3, i2dest);
3148 
3149   if (i1)
3150     added_sets_1 = !(dead_or_set_p (i3, i1dest)
3151 		     || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3152   else
3153     added_sets_1 = 0;
3154 
3155   if (i0)
3156     added_sets_0 =  !(dead_or_set_p (i3, i0dest)
3157 		      || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3158 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3159 			  && dead_or_set_p (i2, i0dest)));
3160   else
3161     added_sets_0 = 0;
3162 
3163   /* We are about to copy insns for the case where they need to be kept
3164      around.  Check that they can be copied in the merged instruction.  */
3165 
3166   if (targetm.cannot_copy_insn_p
3167       && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3168 	  || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3169 	  || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3170     {
3171       undo_all ();
3172       return 0;
3173     }
3174 
3175   /* If the set in I2 needs to be kept around, we must make a copy of
3176      PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3177      PATTERN (I2), we are only substituting for the original I1DEST, not into
3178      an already-substituted copy.  This also prevents making self-referential
3179      rtx.  If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3180      I2DEST.  */
3181 
3182   if (added_sets_2)
3183     {
3184       if (GET_CODE (PATTERN (i2)) == PARALLEL)
3185 	i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3186       else
3187 	i2pat = copy_rtx (PATTERN (i2));
3188     }
3189 
3190   if (added_sets_1)
3191     {
3192       if (GET_CODE (PATTERN (i1)) == PARALLEL)
3193 	i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3194       else
3195 	i1pat = copy_rtx (PATTERN (i1));
3196     }
3197 
3198   if (added_sets_0)
3199     {
3200       if (GET_CODE (PATTERN (i0)) == PARALLEL)
3201 	i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3202       else
3203 	i0pat = copy_rtx (PATTERN (i0));
3204     }
3205 
3206   combine_merges++;
3207 
3208   /* Substitute in the latest insn for the regs set by the earlier ones.  */
3209 
3210   maxreg = max_reg_num ();
3211 
3212   subst_insn = i3;
3213 
3214   /* Many machines that don't use CC0 have insns that can both perform an
3215      arithmetic operation and set the condition code.  These operations will
3216      be represented as a PARALLEL with the first element of the vector
3217      being a COMPARE of an arithmetic operation with the constant zero.
3218      The second element of the vector will set some pseudo to the result
3219      of the same arithmetic operation.  If we simplify the COMPARE, we won't
3220      match such a pattern and so will generate an extra insn.   Here we test
3221      for this case, where both the comparison and the operation result are
3222      needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3223      I2SRC.  Later we will make the PARALLEL that contains I2.  */
3224 
3225   if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3226       && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3227       && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3228       && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3229     {
3230       rtx newpat_dest;
3231       rtx *cc_use_loc = NULL;
3232       rtx_insn *cc_use_insn = NULL;
3233       rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3234       machine_mode compare_mode, orig_compare_mode;
3235       enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3236       scalar_int_mode mode;
3237 
3238       newpat = PATTERN (i3);
3239       newpat_dest = SET_DEST (newpat);
3240       compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3241 
3242       if (undobuf.other_insn == 0
3243 	  && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3244 					    &cc_use_insn)))
3245 	{
3246 	  compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3247 	  if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3248 	    compare_code = simplify_compare_const (compare_code, mode,
3249 						   op0, &op1);
3250 	  target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3251 	}
3252 
3253       /* Do the rest only if op1 is const0_rtx, which may be the
3254 	 result of simplification.  */
3255       if (op1 == const0_rtx)
3256 	{
3257 	  /* If a single use of the CC is found, prepare to modify it
3258 	     when SELECT_CC_MODE returns a new CC-class mode, or when
3259 	     the above simplify_compare_const() returned a new comparison
3260 	     operator.  undobuf.other_insn is assigned the CC use insn
3261 	     when modifying it.  */
3262 	  if (cc_use_loc)
3263 	    {
3264 #ifdef SELECT_CC_MODE
3265 	      machine_mode new_mode
3266 		= SELECT_CC_MODE (compare_code, op0, op1);
3267 	      if (new_mode != orig_compare_mode
3268 		  && can_change_dest_mode (SET_DEST (newpat),
3269 					   added_sets_2, new_mode))
3270 		{
3271 		  unsigned int regno = REGNO (newpat_dest);
3272 		  compare_mode = new_mode;
3273 		  if (regno < FIRST_PSEUDO_REGISTER)
3274 		    newpat_dest = gen_rtx_REG (compare_mode, regno);
3275 		  else
3276 		    {
3277 		      SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3278 		      newpat_dest = regno_reg_rtx[regno];
3279 		    }
3280 		}
3281 #endif
3282 	      /* Cases for modifying the CC-using comparison.  */
3283 	      if (compare_code != orig_compare_code
3284 		  /* ??? Do we need to verify the zero rtx?  */
3285 		  && XEXP (*cc_use_loc, 1) == const0_rtx)
3286 		{
3287 		  /* Replace cc_use_loc with entire new RTX.  */
3288 		  SUBST (*cc_use_loc,
3289 			 gen_rtx_fmt_ee (compare_code, compare_mode,
3290 					 newpat_dest, const0_rtx));
3291 		  undobuf.other_insn = cc_use_insn;
3292 		}
3293 	      else if (compare_mode != orig_compare_mode)
3294 		{
3295 		  /* Just replace the CC reg with a new mode.  */
3296 		  SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3297 		  undobuf.other_insn = cc_use_insn;
3298 		}
3299 	    }
3300 
3301 	  /* Now we modify the current newpat:
3302 	     First, SET_DEST(newpat) is updated if the CC mode has been
3303 	     altered. For targets without SELECT_CC_MODE, this should be
3304 	     optimized away.  */
3305 	  if (compare_mode != orig_compare_mode)
3306 	    SUBST (SET_DEST (newpat), newpat_dest);
3307 	  /* This is always done to propagate i2src into newpat.  */
3308 	  SUBST (SET_SRC (newpat),
3309 		 gen_rtx_COMPARE (compare_mode, op0, op1));
3310 	  /* Create new version of i2pat if needed; the below PARALLEL
3311 	     creation needs this to work correctly.  */
3312 	  if (! rtx_equal_p (i2src, op0))
3313 	    i2pat = gen_rtx_SET (i2dest, op0);
3314 	  i2_is_used = 1;
3315 	}
3316     }
3317 
3318   if (i2_is_used == 0)
3319     {
3320       /* It is possible that the source of I2 or I1 may be performing
3321 	 an unneeded operation, such as a ZERO_EXTEND of something
3322 	 that is known to have the high part zero.  Handle that case
3323 	 by letting subst look at the inner insns.
3324 
3325 	 Another way to do this would be to have a function that tries
3326 	 to simplify a single insn instead of merging two or more
3327 	 insns.  We don't do this because of the potential of infinite
3328 	 loops and because of the potential extra memory required.
3329 	 However, doing it the way we are is a bit of a kludge and
3330 	 doesn't catch all cases.
3331 
3332 	 But only do this if -fexpensive-optimizations since it slows
3333 	 things down and doesn't usually win.
3334 
3335 	 This is not done in the COMPARE case above because the
3336 	 unmodified I2PAT is used in the PARALLEL and so a pattern
3337 	 with a modified I2SRC would not match.  */
3338 
3339       if (flag_expensive_optimizations)
3340 	{
3341 	  /* Pass pc_rtx so no substitutions are done, just
3342 	     simplifications.  */
3343 	  if (i1)
3344 	    {
3345 	      subst_low_luid = DF_INSN_LUID (i1);
3346 	      i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3347 	    }
3348 
3349 	  subst_low_luid = DF_INSN_LUID (i2);
3350 	  i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3351 	}
3352 
3353       n_occurrences = 0;		/* `subst' counts here */
3354       subst_low_luid = DF_INSN_LUID (i2);
3355 
3356       /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3357 	 copy of I2SRC each time we substitute it, in order to avoid creating
3358 	 self-referential RTL when we will be substituting I1SRC for I1DEST
3359 	 later.  Likewise if I0 feeds into I2, either directly or indirectly
3360 	 through I1, and I0DEST is in I0SRC.  */
3361       newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3362 		      (i1_feeds_i2_n && i1dest_in_i1src)
3363 		      || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3364 			  && i0dest_in_i0src));
3365       substed_i2 = 1;
3366 
3367       /* Record whether I2's body now appears within I3's body.  */
3368       i2_is_used = n_occurrences;
3369     }
3370 
3371   /* If we already got a failure, don't try to do more.  Otherwise, try to
3372      substitute I1 if we have it.  */
3373 
3374   if (i1 && GET_CODE (newpat) != CLOBBER)
3375     {
3376       /* Check that an autoincrement side-effect on I1 has not been lost.
3377 	 This happens if I1DEST is mentioned in I2 and dies there, and
3378 	 has disappeared from the new pattern.  */
3379       if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3380 	   && i1_feeds_i2_n
3381 	   && dead_or_set_p (i2, i1dest)
3382 	   && !reg_overlap_mentioned_p (i1dest, newpat))
3383 	   /* Before we can do this substitution, we must redo the test done
3384 	      above (see detailed comments there) that ensures I1DEST isn't
3385 	      mentioned in any SETs in NEWPAT that are field assignments.  */
3386 	  || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3387 				0, 0, 0))
3388 	{
3389 	  undo_all ();
3390 	  return 0;
3391 	}
3392 
3393       n_occurrences = 0;
3394       subst_low_luid = DF_INSN_LUID (i1);
3395 
3396       /* If the following substitution will modify I1SRC, make a copy of it
3397 	 for the case where it is substituted for I1DEST in I2PAT later.  */
3398       if (added_sets_2 && i1_feeds_i2_n)
3399 	i1src_copy = copy_rtx (i1src);
3400 
3401       /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3402 	 copy of I1SRC each time we substitute it, in order to avoid creating
3403 	 self-referential RTL when we will be substituting I0SRC for I0DEST
3404 	 later.  */
3405       newpat = subst (newpat, i1dest, i1src, 0, 0,
3406 		      i0_feeds_i1_n && i0dest_in_i0src);
3407       substed_i1 = 1;
3408 
3409       /* Record whether I1's body now appears within I3's body.  */
3410       i1_is_used = n_occurrences;
3411     }
3412 
3413   /* Likewise for I0 if we have it.  */
3414 
3415   if (i0 && GET_CODE (newpat) != CLOBBER)
3416     {
3417       if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3418 	   && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3419 	       || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3420 	   && !reg_overlap_mentioned_p (i0dest, newpat))
3421 	  || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3422 				0, 0, 0))
3423 	{
3424 	  undo_all ();
3425 	  return 0;
3426 	}
3427 
3428       /* If the following substitution will modify I0SRC, make a copy of it
3429 	 for the case where it is substituted for I0DEST in I1PAT later.  */
3430       if (added_sets_1 && i0_feeds_i1_n)
3431 	i0src_copy = copy_rtx (i0src);
3432       /* And a copy for I0DEST in I2PAT substitution.  */
3433       if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3434 			   || (i0_feeds_i2_n)))
3435 	i0src_copy2 = copy_rtx (i0src);
3436 
3437       n_occurrences = 0;
3438       subst_low_luid = DF_INSN_LUID (i0);
3439       newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3440       substed_i0 = 1;
3441     }
3442 
3443   /* Fail if an autoincrement side-effect has been duplicated.  Be careful
3444      to count all the ways that I2SRC and I1SRC can be used.  */
3445   if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3446        && i2_is_used + added_sets_2 > 1)
3447       || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3448 	  && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3449 	      > 1))
3450       || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3451 	  && (n_occurrences + added_sets_0
3452 	      + (added_sets_1 && i0_feeds_i1_n)
3453 	      + (added_sets_2 && i0_feeds_i2_n)
3454 	      > 1))
3455       /* Fail if we tried to make a new register.  */
3456       || max_reg_num () != maxreg
3457       /* Fail if we couldn't do something and have a CLOBBER.  */
3458       || GET_CODE (newpat) == CLOBBER
3459       /* Fail if this new pattern is a MULT and we didn't have one before
3460 	 at the outer level.  */
3461       || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3462 	  && ! have_mult))
3463     {
3464       undo_all ();
3465       return 0;
3466     }
3467 
3468   /* If the actions of the earlier insns must be kept
3469      in addition to substituting them into the latest one,
3470      we must make a new PARALLEL for the latest insn
3471      to hold additional the SETs.  */
3472 
3473   if (added_sets_0 || added_sets_1 || added_sets_2)
3474     {
3475       int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3476       combine_extras++;
3477 
3478       if (GET_CODE (newpat) == PARALLEL)
3479 	{
3480 	  rtvec old = XVEC (newpat, 0);
3481 	  total_sets = XVECLEN (newpat, 0) + extra_sets;
3482 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3483 	  memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3484 		  sizeof (old->elem[0]) * old->num_elem);
3485 	}
3486       else
3487 	{
3488 	  rtx old = newpat;
3489 	  total_sets = 1 + extra_sets;
3490 	  newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3491 	  XVECEXP (newpat, 0, 0) = old;
3492 	}
3493 
3494       if (added_sets_0)
3495 	XVECEXP (newpat, 0, --total_sets) = i0pat;
3496 
3497       if (added_sets_1)
3498 	{
3499 	  rtx t = i1pat;
3500 	  if (i0_feeds_i1_n)
3501 	    t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3502 
3503 	  XVECEXP (newpat, 0, --total_sets) = t;
3504 	}
3505       if (added_sets_2)
3506 	{
3507 	  rtx t = i2pat;
3508 	  if (i1_feeds_i2_n)
3509 	    t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3510 		       i0_feeds_i1_n && i0dest_in_i0src);
3511 	  if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3512 	    t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3513 
3514 	  XVECEXP (newpat, 0, --total_sets) = t;
3515 	}
3516     }
3517 
3518  validate_replacement:
3519 
3520   /* Note which hard regs this insn has as inputs.  */
3521   mark_used_regs_combine (newpat);
3522 
3523   /* If recog_for_combine fails, it strips existing clobbers.  If we'll
3524      consider splitting this pattern, we might need these clobbers.  */
3525   if (i1 && GET_CODE (newpat) == PARALLEL
3526       && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3527     {
3528       int len = XVECLEN (newpat, 0);
3529 
3530       newpat_vec_with_clobbers = rtvec_alloc (len);
3531       for (i = 0; i < len; i++)
3532 	RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3533     }
3534 
3535   /* We have recognized nothing yet.  */
3536   insn_code_number = -1;
3537 
3538   /* See if this is a PARALLEL of two SETs where one SET's destination is
3539      a register that is unused and this isn't marked as an instruction that
3540      might trap in an EH region.  In that case, we just need the other SET.
3541      We prefer this over the PARALLEL.
3542 
3543      This can occur when simplifying a divmod insn.  We *must* test for this
3544      case here because the code below that splits two independent SETs doesn't
3545      handle this case correctly when it updates the register status.
3546 
3547      It's pointless doing this if we originally had two sets, one from
3548      i3, and one from i2.  Combining then splitting the parallel results
3549      in the original i2 again plus an invalid insn (which we delete).
3550      The net effect is only to move instructions around, which makes
3551      debug info less accurate.
3552 
3553      If the remaining SET came from I2 its destination should not be used
3554      between I2 and I3.  See PR82024.  */
3555 
3556   if (!(added_sets_2 && i1 == 0)
3557       && is_parallel_of_n_reg_sets (newpat, 2)
3558       && asm_noperands (newpat) < 0)
3559     {
3560       rtx set0 = XVECEXP (newpat, 0, 0);
3561       rtx set1 = XVECEXP (newpat, 0, 1);
3562       rtx oldpat = newpat;
3563 
3564       if (((REG_P (SET_DEST (set1))
3565 	    && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3566 	   || (GET_CODE (SET_DEST (set1)) == SUBREG
3567 	       && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3568 	  && insn_nothrow_p (i3)
3569 	  && !side_effects_p (SET_SRC (set1)))
3570 	{
3571 	  newpat = set0;
3572 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3573 	}
3574 
3575       else if (((REG_P (SET_DEST (set0))
3576 		 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3577 		|| (GET_CODE (SET_DEST (set0)) == SUBREG
3578 		    && find_reg_note (i3, REG_UNUSED,
3579 				      SUBREG_REG (SET_DEST (set0)))))
3580 	       && insn_nothrow_p (i3)
3581 	       && !side_effects_p (SET_SRC (set0)))
3582 	{
3583 	  rtx dest = SET_DEST (set1);
3584 	  if (GET_CODE (dest) == SUBREG)
3585 	    dest = SUBREG_REG (dest);
3586 	  if (!reg_used_between_p (dest, i2, i3))
3587 	    {
3588 	      newpat = set1;
3589 	      insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3590 
3591 	      if (insn_code_number >= 0)
3592 		changed_i3_dest = 1;
3593 	    }
3594 	}
3595 
3596       if (insn_code_number < 0)
3597 	newpat = oldpat;
3598     }
3599 
3600   /* Is the result of combination a valid instruction?  */
3601   if (insn_code_number < 0)
3602     insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3603 
3604   /* If we were combining three insns and the result is a simple SET
3605      with no ASM_OPERANDS that wasn't recognized, try to split it into two
3606      insns.  There are two ways to do this.  It can be split using a
3607      machine-specific method (like when you have an addition of a large
3608      constant) or by combine in the function find_split_point.  */
3609 
3610   if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3611       && asm_noperands (newpat) < 0)
3612     {
3613       rtx parallel, *split;
3614       rtx_insn *m_split_insn;
3615 
3616       /* See if the MD file can split NEWPAT.  If it can't, see if letting it
3617 	 use I2DEST as a scratch register will help.  In the latter case,
3618 	 convert I2DEST to the mode of the source of NEWPAT if we can.  */
3619 
3620       m_split_insn = combine_split_insns (newpat, i3);
3621 
3622       /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3623 	 inputs of NEWPAT.  */
3624 
3625       /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3626 	 possible to try that as a scratch reg.  This would require adding
3627 	 more code to make it work though.  */
3628 
3629       if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3630 	{
3631 	  machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3632 
3633 	  /* ??? Reusing i2dest without resetting the reg_stat entry for it
3634 	     (temporarily, until we are committed to this instruction
3635 	     combination) does not work: for example, any call to nonzero_bits
3636 	     on the register (from a splitter in the MD file, for example)
3637 	     will get the old information, which is invalid.
3638 
3639 	     Since nowadays we can create registers during combine just fine,
3640 	     we should just create a new one here, not reuse i2dest.  */
3641 
3642 	  /* First try to split using the original register as a
3643 	     scratch register.  */
3644 	  parallel = gen_rtx_PARALLEL (VOIDmode,
3645 				       gen_rtvec (2, newpat,
3646 						  gen_rtx_CLOBBER (VOIDmode,
3647 								   i2dest)));
3648 	  m_split_insn = combine_split_insns (parallel, i3);
3649 
3650 	  /* If that didn't work, try changing the mode of I2DEST if
3651 	     we can.  */
3652 	  if (m_split_insn == 0
3653 	      && new_mode != GET_MODE (i2dest)
3654 	      && new_mode != VOIDmode
3655 	      && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3656 	    {
3657 	      machine_mode old_mode = GET_MODE (i2dest);
3658 	      rtx ni2dest;
3659 
3660 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3661 		ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3662 	      else
3663 		{
3664 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3665 		  ni2dest = regno_reg_rtx[REGNO (i2dest)];
3666 		}
3667 
3668 	      parallel = (gen_rtx_PARALLEL
3669 			  (VOIDmode,
3670 			   gen_rtvec (2, newpat,
3671 				      gen_rtx_CLOBBER (VOIDmode,
3672 						       ni2dest))));
3673 	      m_split_insn = combine_split_insns (parallel, i3);
3674 
3675 	      if (m_split_insn == 0
3676 		  && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3677 		{
3678 		  struct undo *buf;
3679 
3680 		  adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3681 		  buf = undobuf.undos;
3682 		  undobuf.undos = buf->next;
3683 		  buf->next = undobuf.frees;
3684 		  undobuf.frees = buf;
3685 		}
3686 	    }
3687 
3688 	  i2scratch = m_split_insn != 0;
3689 	}
3690 
3691       /* If recog_for_combine has discarded clobbers, try to use them
3692 	 again for the split.  */
3693       if (m_split_insn == 0 && newpat_vec_with_clobbers)
3694 	{
3695 	  parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3696 	  m_split_insn = combine_split_insns (parallel, i3);
3697 	}
3698 
3699       if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3700 	{
3701 	  rtx m_split_pat = PATTERN (m_split_insn);
3702 	  insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3703 	  if (insn_code_number >= 0)
3704 	    newpat = m_split_pat;
3705 	}
3706       else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3707 	       && (next_nonnote_nondebug_insn (i2) == i3
3708 		   || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3709 	{
3710 	  rtx i2set, i3set;
3711 	  rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3712 	  newi2pat = PATTERN (m_split_insn);
3713 
3714 	  i3set = single_set (NEXT_INSN (m_split_insn));
3715 	  i2set = single_set (m_split_insn);
3716 
3717 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3718 
3719 	  /* If I2 or I3 has multiple SETs, we won't know how to track
3720 	     register status, so don't use these insns.  If I2's destination
3721 	     is used between I2 and I3, we also can't use these insns.  */
3722 
3723 	  if (i2_code_number >= 0 && i2set && i3set
3724 	      && (next_nonnote_nondebug_insn (i2) == i3
3725 		  || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3726 	    insn_code_number = recog_for_combine (&newi3pat, i3,
3727 						  &new_i3_notes);
3728 	  if (insn_code_number >= 0)
3729 	    newpat = newi3pat;
3730 
3731 	  /* It is possible that both insns now set the destination of I3.
3732 	     If so, we must show an extra use of it.  */
3733 
3734 	  if (insn_code_number >= 0)
3735 	    {
3736 	      rtx new_i3_dest = SET_DEST (i3set);
3737 	      rtx new_i2_dest = SET_DEST (i2set);
3738 
3739 	      while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3740 		     || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3741 		     || GET_CODE (new_i3_dest) == SUBREG)
3742 		new_i3_dest = XEXP (new_i3_dest, 0);
3743 
3744 	      while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3745 		     || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3746 		     || GET_CODE (new_i2_dest) == SUBREG)
3747 		new_i2_dest = XEXP (new_i2_dest, 0);
3748 
3749 	      if (REG_P (new_i3_dest)
3750 		  && REG_P (new_i2_dest)
3751 		  && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3752 		  && REGNO (new_i2_dest) < reg_n_sets_max)
3753 		INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3754 	    }
3755 	}
3756 
3757       /* If we can split it and use I2DEST, go ahead and see if that
3758 	 helps things be recognized.  Verify that none of the registers
3759 	 are set between I2 and I3.  */
3760       if (insn_code_number < 0
3761           && (split = find_split_point (&newpat, i3, false)) != 0
3762 	  && (!HAVE_cc0 || REG_P (i2dest))
3763 	  /* We need I2DEST in the proper mode.  If it is a hard register
3764 	     or the only use of a pseudo, we can change its mode.
3765 	     Make sure we don't change a hard register to have a mode that
3766 	     isn't valid for it, or change the number of registers.  */
3767 	  && (GET_MODE (*split) == GET_MODE (i2dest)
3768 	      || GET_MODE (*split) == VOIDmode
3769 	      || can_change_dest_mode (i2dest, added_sets_2,
3770 				       GET_MODE (*split)))
3771 	  && (next_nonnote_nondebug_insn (i2) == i3
3772 	      || !modified_between_p (*split, i2, i3))
3773 	  /* We can't overwrite I2DEST if its value is still used by
3774 	     NEWPAT.  */
3775 	  && ! reg_referenced_p (i2dest, newpat))
3776 	{
3777 	  rtx newdest = i2dest;
3778 	  enum rtx_code split_code = GET_CODE (*split);
3779 	  machine_mode split_mode = GET_MODE (*split);
3780 	  bool subst_done = false;
3781 	  newi2pat = NULL_RTX;
3782 
3783 	  i2scratch = true;
3784 
3785 	  /* *SPLIT may be part of I2SRC, so make sure we have the
3786 	     original expression around for later debug processing.
3787 	     We should not need I2SRC any more in other cases.  */
3788 	  if (MAY_HAVE_DEBUG_BIND_INSNS)
3789 	    i2src = copy_rtx (i2src);
3790 	  else
3791 	    i2src = NULL;
3792 
3793 	  /* Get NEWDEST as a register in the proper mode.  We have already
3794 	     validated that we can do this.  */
3795 	  if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3796 	    {
3797 	      if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3798 		newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3799 	      else
3800 		{
3801 		  SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3802 		  newdest = regno_reg_rtx[REGNO (i2dest)];
3803 		}
3804 	    }
3805 
3806 	  /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3807 	     an ASHIFT.  This can occur if it was inside a PLUS and hence
3808 	     appeared to be a memory address.  This is a kludge.  */
3809 	  if (split_code == MULT
3810 	      && CONST_INT_P (XEXP (*split, 1))
3811 	      && INTVAL (XEXP (*split, 1)) > 0
3812 	      && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3813 	    {
3814 	      rtx i_rtx = gen_int_shift_amount (split_mode, i);
3815 	      SUBST (*split, gen_rtx_ASHIFT (split_mode,
3816 					     XEXP (*split, 0), i_rtx));
3817 	      /* Update split_code because we may not have a multiply
3818 		 anymore.  */
3819 	      split_code = GET_CODE (*split);
3820 	    }
3821 
3822 	  /* Similarly for (plus (mult FOO (const_int pow2))).  */
3823 	  if (split_code == PLUS
3824 	      && GET_CODE (XEXP (*split, 0)) == MULT
3825 	      && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3826 	      && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3827 	      && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3828 	    {
3829 	      rtx nsplit = XEXP (*split, 0);
3830 	      rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3831 	      SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3832 						       XEXP (nsplit, 0),
3833 						       i_rtx));
3834 	      /* Update split_code because we may not have a multiply
3835 		 anymore.  */
3836 	      split_code = GET_CODE (*split);
3837 	    }
3838 
3839 #ifdef INSN_SCHEDULING
3840 	  /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3841 	     be written as a ZERO_EXTEND.  */
3842 	  if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3843 	    {
3844 	      /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3845 		 what it really is.  */
3846 	      if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3847 		  == SIGN_EXTEND)
3848 		SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3849 						    SUBREG_REG (*split)));
3850 	      else
3851 		SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3852 						    SUBREG_REG (*split)));
3853 	    }
3854 #endif
3855 
3856 	  /* Attempt to split binary operators using arithmetic identities.  */
3857 	  if (BINARY_P (SET_SRC (newpat))
3858 	      && split_mode == GET_MODE (SET_SRC (newpat))
3859 	      && ! side_effects_p (SET_SRC (newpat)))
3860 	    {
3861 	      rtx setsrc = SET_SRC (newpat);
3862 	      machine_mode mode = GET_MODE (setsrc);
3863 	      enum rtx_code code = GET_CODE (setsrc);
3864 	      rtx src_op0 = XEXP (setsrc, 0);
3865 	      rtx src_op1 = XEXP (setsrc, 1);
3866 
3867 	      /* Split "X = Y op Y" as "Z = Y; X = Z op Z".  */
3868 	      if (rtx_equal_p (src_op0, src_op1))
3869 		{
3870 		  newi2pat = gen_rtx_SET (newdest, src_op0);
3871 		  SUBST (XEXP (setsrc, 0), newdest);
3872 		  SUBST (XEXP (setsrc, 1), newdest);
3873 		  subst_done = true;
3874 		}
3875 	      /* Split "((P op Q) op R) op S" where op is PLUS or MULT.  */
3876 	      else if ((code == PLUS || code == MULT)
3877 		       && GET_CODE (src_op0) == code
3878 		       && GET_CODE (XEXP (src_op0, 0)) == code
3879 		       && (INTEGRAL_MODE_P (mode)
3880 			   || (FLOAT_MODE_P (mode)
3881 			       && flag_unsafe_math_optimizations)))
3882 		{
3883 		  rtx p = XEXP (XEXP (src_op0, 0), 0);
3884 		  rtx q = XEXP (XEXP (src_op0, 0), 1);
3885 		  rtx r = XEXP (src_op0, 1);
3886 		  rtx s = src_op1;
3887 
3888 		  /* Split both "((X op Y) op X) op Y" and
3889 		     "((X op Y) op Y) op X" as "T op T" where T is
3890 		     "X op Y".  */
3891 		  if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3892 		       || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3893 		    {
3894 		      newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3895 		      SUBST (XEXP (setsrc, 0), newdest);
3896 		      SUBST (XEXP (setsrc, 1), newdest);
3897 		      subst_done = true;
3898 		    }
3899 		  /* Split "((X op X) op Y) op Y)" as "T op T" where
3900 		     T is "X op Y".  */
3901 		  else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3902 		    {
3903 		      rtx tmp = simplify_gen_binary (code, mode, p, r);
3904 		      newi2pat = gen_rtx_SET (newdest, tmp);
3905 		      SUBST (XEXP (setsrc, 0), newdest);
3906 		      SUBST (XEXP (setsrc, 1), newdest);
3907 		      subst_done = true;
3908 		    }
3909 		}
3910 	    }
3911 
3912 	  if (!subst_done)
3913 	    {
3914 	      newi2pat = gen_rtx_SET (newdest, *split);
3915 	      SUBST (*split, newdest);
3916 	    }
3917 
3918 	  i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3919 
3920 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
3921 	     Make sure NEWPAT does not depend on the clobbered regs.  */
3922 	  if (GET_CODE (newi2pat) == PARALLEL)
3923 	    for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3924 	      if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3925 		{
3926 		  rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3927 		  if (reg_overlap_mentioned_p (reg, newpat))
3928 		    {
3929 		      undo_all ();
3930 		      return 0;
3931 		    }
3932 		}
3933 
3934 	  /* If the split point was a MULT and we didn't have one before,
3935 	     don't use one now.  */
3936 	  if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3937 	    insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3938 	}
3939     }
3940 
3941   /* Check for a case where we loaded from memory in a narrow mode and
3942      then sign extended it, but we need both registers.  In that case,
3943      we have a PARALLEL with both loads from the same memory location.
3944      We can split this into a load from memory followed by a register-register
3945      copy.  This saves at least one insn, more if register allocation can
3946      eliminate the copy.
3947 
3948      We cannot do this if the destination of the first assignment is a
3949      condition code register or cc0.  We eliminate this case by making sure
3950      the SET_DEST and SET_SRC have the same mode.
3951 
3952      We cannot do this if the destination of the second assignment is
3953      a register that we have already assumed is zero-extended.  Similarly
3954      for a SUBREG of such a register.  */
3955 
3956   else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3957 	   && GET_CODE (newpat) == PARALLEL
3958 	   && XVECLEN (newpat, 0) == 2
3959 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3960 	   && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3961 	   && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3962 	       == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3963 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3964 	   && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3965 			   XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3966 	   && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3967 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3968 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3969 	   && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3970 		 (REG_P (temp_expr)
3971 		  && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3972 		  && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3973 			       BITS_PER_WORD)
3974 		  && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3975 			       HOST_BITS_PER_INT)
3976 		  && (reg_stat[REGNO (temp_expr)].nonzero_bits
3977 		      != GET_MODE_MASK (word_mode))))
3978 	   && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3979 		 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3980 		     (REG_P (temp_expr)
3981 		      && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3982 		      && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3983 				   BITS_PER_WORD)
3984 		      && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3985 				   HOST_BITS_PER_INT)
3986 		      && (reg_stat[REGNO (temp_expr)].nonzero_bits
3987 			  != GET_MODE_MASK (word_mode)))))
3988 	   && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3989 					 SET_SRC (XVECEXP (newpat, 0, 1)))
3990 	   && ! find_reg_note (i3, REG_UNUSED,
3991 			       SET_DEST (XVECEXP (newpat, 0, 0))))
3992     {
3993       rtx ni2dest;
3994 
3995       newi2pat = XVECEXP (newpat, 0, 0);
3996       ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3997       newpat = XVECEXP (newpat, 0, 1);
3998       SUBST (SET_SRC (newpat),
3999 	     gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4000       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4001 
4002       if (i2_code_number >= 0)
4003 	insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4004 
4005       if (insn_code_number >= 0)
4006 	swap_i2i3 = 1;
4007     }
4008 
4009   /* Similarly, check for a case where we have a PARALLEL of two independent
4010      SETs but we started with three insns.  In this case, we can do the sets
4011      as two separate insns.  This case occurs when some SET allows two
4012      other insns to combine, but the destination of that SET is still live.
4013 
4014      Also do this if we started with two insns and (at least) one of the
4015      resulting sets is a noop; this noop will be deleted later.
4016 
4017      Also do this if we started with two insns neither of which was a simple
4018      move.  */
4019 
4020   else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4021 	   && GET_CODE (newpat) == PARALLEL
4022 	   && XVECLEN (newpat, 0) == 2
4023 	   && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4024 	   && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4025 	   && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
4026 		  || set_noop_p (XVECEXP (newpat, 0, 1)))
4027 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4028 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4029 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4030 	   && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4031 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4032 				  XVECEXP (newpat, 0, 0))
4033 	   && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4034 				  XVECEXP (newpat, 0, 1))
4035 	   && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4036 		 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4037     {
4038       rtx set0 = XVECEXP (newpat, 0, 0);
4039       rtx set1 = XVECEXP (newpat, 0, 1);
4040 
4041       /* Normally, it doesn't matter which of the two is done first,
4042 	 but the one that references cc0 can't be the second, and
4043 	 one which uses any regs/memory set in between i2 and i3 can't
4044 	 be first.  The PARALLEL might also have been pre-existing in i3,
4045 	 so we need to make sure that we won't wrongly hoist a SET to i2
4046 	 that would conflict with a death note present in there, or would
4047 	 have its dest modified between i2 and i3.  */
4048       if (!modified_between_p (SET_SRC (set1), i2, i3)
4049 	  && !(REG_P (SET_DEST (set1))
4050 	       && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4051 	  && !(GET_CODE (SET_DEST (set1)) == SUBREG
4052 	       && find_reg_note (i2, REG_DEAD,
4053 				 SUBREG_REG (SET_DEST (set1))))
4054 	  && !modified_between_p (SET_DEST (set1), i2, i3)
4055 	  && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4056 	  /* If I3 is a jump, ensure that set0 is a jump so that
4057 	     we do not create invalid RTL.  */
4058 	  && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4059 	 )
4060 	{
4061 	  newi2pat = set1;
4062 	  newpat = set0;
4063 	}
4064       else if (!modified_between_p (SET_SRC (set0), i2, i3)
4065 	       && !(REG_P (SET_DEST (set0))
4066 		    && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4067 	       && !(GET_CODE (SET_DEST (set0)) == SUBREG
4068 		    && find_reg_note (i2, REG_DEAD,
4069 				      SUBREG_REG (SET_DEST (set0))))
4070 	       && !modified_between_p (SET_DEST (set0), i2, i3)
4071 	       && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4072 	       /* If I3 is a jump, ensure that set1 is a jump so that
4073 		  we do not create invalid RTL.  */
4074 	       && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4075 	      )
4076 	{
4077 	  newi2pat = set0;
4078 	  newpat = set1;
4079 	}
4080       else
4081 	{
4082 	  undo_all ();
4083 	  return 0;
4084 	}
4085 
4086       i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4087 
4088       if (i2_code_number >= 0)
4089 	{
4090 	  /* recog_for_combine might have added CLOBBERs to newi2pat.
4091 	     Make sure NEWPAT does not depend on the clobbered regs.  */
4092 	  if (GET_CODE (newi2pat) == PARALLEL)
4093 	    {
4094 	      for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4095 		if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4096 		  {
4097 		    rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4098 		    if (reg_overlap_mentioned_p (reg, newpat))
4099 		      {
4100 			undo_all ();
4101 			return 0;
4102 		      }
4103 		  }
4104 	    }
4105 
4106 	  insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4107 
4108 	  if (insn_code_number >= 0)
4109 	    split_i2i3 = 1;
4110 	}
4111     }
4112 
4113   /* If it still isn't recognized, fail and change things back the way they
4114      were.  */
4115   if ((insn_code_number < 0
4116        /* Is the result a reasonable ASM_OPERANDS?  */
4117        && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4118     {
4119       undo_all ();
4120       return 0;
4121     }
4122 
4123   /* If we had to change another insn, make sure it is valid also.  */
4124   if (undobuf.other_insn)
4125     {
4126       CLEAR_HARD_REG_SET (newpat_used_regs);
4127 
4128       other_pat = PATTERN (undobuf.other_insn);
4129       other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4130 					     &new_other_notes);
4131 
4132       if (other_code_number < 0 && ! check_asm_operands (other_pat))
4133 	{
4134 	  undo_all ();
4135 	  return 0;
4136 	}
4137     }
4138 
4139   /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4140      they are adjacent to each other or not.  */
4141   if (HAVE_cc0)
4142     {
4143       rtx_insn *p = prev_nonnote_insn (i3);
4144       if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4145 	  && sets_cc0_p (newi2pat))
4146 	{
4147 	  undo_all ();
4148 	  return 0;
4149 	}
4150     }
4151 
4152   /* Only allow this combination if insn_cost reports that the
4153      replacement instructions are cheaper than the originals.  */
4154   if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4155     {
4156       undo_all ();
4157       return 0;
4158     }
4159 
4160   if (MAY_HAVE_DEBUG_BIND_INSNS)
4161     {
4162       struct undo *undo;
4163 
4164       for (undo = undobuf.undos; undo; undo = undo->next)
4165 	if (undo->kind == UNDO_MODE)
4166 	  {
4167 	    rtx reg = *undo->where.r;
4168 	    machine_mode new_mode = GET_MODE (reg);
4169 	    machine_mode old_mode = undo->old_contents.m;
4170 
4171 	    /* Temporarily revert mode back.  */
4172 	    adjust_reg_mode (reg, old_mode);
4173 
4174 	    if (reg == i2dest && i2scratch)
4175 	      {
4176 		/* If we used i2dest as a scratch register with a
4177 		   different mode, substitute it for the original
4178 		   i2src while its original mode is temporarily
4179 		   restored, and then clear i2scratch so that we don't
4180 		   do it again later.  */
4181 		propagate_for_debug (i2, last_combined_insn, reg, i2src,
4182 				     this_basic_block);
4183 		i2scratch = false;
4184 		/* Put back the new mode.  */
4185 		adjust_reg_mode (reg, new_mode);
4186 	      }
4187 	    else
4188 	      {
4189 		rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4190 		rtx_insn *first, *last;
4191 
4192 		if (reg == i2dest)
4193 		  {
4194 		    first = i2;
4195 		    last = last_combined_insn;
4196 		  }
4197 		else
4198 		  {
4199 		    first = i3;
4200 		    last = undobuf.other_insn;
4201 		    gcc_assert (last);
4202 		    if (DF_INSN_LUID (last)
4203 			< DF_INSN_LUID (last_combined_insn))
4204 		      last = last_combined_insn;
4205 		  }
4206 
4207 		/* We're dealing with a reg that changed mode but not
4208 		   meaning, so we want to turn it into a subreg for
4209 		   the new mode.  However, because of REG sharing and
4210 		   because its mode had already changed, we have to do
4211 		   it in two steps.  First, replace any debug uses of
4212 		   reg, with its original mode temporarily restored,
4213 		   with this copy we have created; then, replace the
4214 		   copy with the SUBREG of the original shared reg,
4215 		   once again changed to the new mode.  */
4216 		propagate_for_debug (first, last, reg, tempreg,
4217 				     this_basic_block);
4218 		adjust_reg_mode (reg, new_mode);
4219 		propagate_for_debug (first, last, tempreg,
4220 				     lowpart_subreg (old_mode, reg, new_mode),
4221 				     this_basic_block);
4222 	      }
4223 	  }
4224     }
4225 
4226   /* If we will be able to accept this, we have made a
4227      change to the destination of I3.  This requires us to
4228      do a few adjustments.  */
4229 
4230   if (changed_i3_dest)
4231     {
4232       PATTERN (i3) = newpat;
4233       adjust_for_new_dest (i3);
4234     }
4235 
4236   /* We now know that we can do this combination.  Merge the insns and
4237      update the status of registers and LOG_LINKS.  */
4238 
4239   if (undobuf.other_insn)
4240     {
4241       rtx note, next;
4242 
4243       PATTERN (undobuf.other_insn) = other_pat;
4244 
4245       /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4246 	 ensure that they are still valid.  Then add any non-duplicate
4247 	 notes added by recog_for_combine.  */
4248       for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4249 	{
4250 	  next = XEXP (note, 1);
4251 
4252 	  if ((REG_NOTE_KIND (note) == REG_DEAD
4253 	       && !reg_referenced_p (XEXP (note, 0),
4254 				     PATTERN (undobuf.other_insn)))
4255 	      ||(REG_NOTE_KIND (note) == REG_UNUSED
4256 		 && !reg_set_p (XEXP (note, 0),
4257 				PATTERN (undobuf.other_insn)))
4258 	      /* Simply drop equal note since it may be no longer valid
4259 		 for other_insn.  It may be possible to record that CC
4260 		 register is changed and only discard those notes, but
4261 		 in practice it's unnecessary complication and doesn't
4262 		 give any meaningful improvement.
4263 
4264 		 See PR78559.  */
4265 	      || REG_NOTE_KIND (note) == REG_EQUAL
4266 	      || REG_NOTE_KIND (note) == REG_EQUIV)
4267 	    remove_note (undobuf.other_insn, note);
4268 	}
4269 
4270       distribute_notes  (new_other_notes, undobuf.other_insn,
4271 			undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4272 			NULL_RTX);
4273     }
4274 
4275   if (swap_i2i3)
4276     {
4277       /* I3 now uses what used to be its destination and which is now
4278 	 I2's destination.  This requires us to do a few adjustments.  */
4279       PATTERN (i3) = newpat;
4280       adjust_for_new_dest (i3);
4281     }
4282 
4283   if (swap_i2i3 || split_i2i3)
4284     {
4285       /* We might need a LOG_LINK from I3 to I2.  But then we used to
4286 	 have one, so we still will.
4287 
4288 	 However, some later insn might be using I2's dest and have
4289 	 a LOG_LINK pointing at I3.  We should change it to point at
4290 	 I2 instead.  */
4291 
4292       /* newi2pat is usually a SET here; however, recog_for_combine might
4293 	 have added some clobbers.  */
4294       rtx x = newi2pat;
4295       if (GET_CODE (x) == PARALLEL)
4296 	x = XVECEXP (newi2pat, 0, 0);
4297 
4298       /* It can only be a SET of a REG or of a SUBREG of a REG.  */
4299       unsigned int regno = reg_or_subregno (SET_DEST (x));
4300 
4301       bool done = false;
4302       for (rtx_insn *insn = NEXT_INSN (i3);
4303 	   !done
4304 	   && insn
4305 	   && NONDEBUG_INSN_P (insn)
4306 	   && BLOCK_FOR_INSN (insn) == this_basic_block;
4307 	   insn = NEXT_INSN (insn))
4308 	{
4309 	  struct insn_link *link;
4310 	  FOR_EACH_LOG_LINK (link, insn)
4311 	    if (link->insn == i3 && link->regno == regno)
4312 	      {
4313 		link->insn = i2;
4314 		done = true;
4315 		break;
4316 	      }
4317 	}
4318     }
4319 
4320   {
4321     rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4322     struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4323     rtx midnotes = 0;
4324     int from_luid;
4325     /* Compute which registers we expect to eliminate.  newi2pat may be setting
4326        either i3dest or i2dest, so we must check it.  */
4327     rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4328 		   || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4329 		   || !i2dest_killed
4330 		   ? 0 : i2dest);
4331     /* For i1, we need to compute both local elimination and global
4332        elimination information with respect to newi2pat because i1dest
4333        may be the same as i3dest, in which case newi2pat may be setting
4334        i1dest.  Global information is used when distributing REG_DEAD
4335        note for i2 and i3, in which case it does matter if newi2pat sets
4336        i1dest or not.
4337 
4338        Local information is used when distributing REG_DEAD note for i1,
4339        in which case it doesn't matter if newi2pat sets i1dest or not.
4340        See PR62151, if we have four insns combination:
4341 	   i0: r0 <- i0src
4342 	   i1: r1 <- i1src (using r0)
4343 		     REG_DEAD (r0)
4344 	   i2: r0 <- i2src (using r1)
4345 	   i3: r3 <- i3src (using r0)
4346 	   ix: using r0
4347        From i1's point of view, r0 is eliminated, no matter if it is set
4348        by newi2pat or not.  In other words, REG_DEAD info for r0 in i1
4349        should be discarded.
4350 
4351        Note local information only affects cases in forms like "I1->I2->I3",
4352        "I0->I1->I2->I3" or "I0&I1->I2, I2->I3".  For other cases like
4353        "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4354        i0dest anyway.  */
4355     rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4356 			 || !i1dest_killed
4357 			 ? 0 : i1dest);
4358     rtx elim_i1 = (local_elim_i1 == 0
4359 		   || (newi2pat && reg_set_p (i1dest, newi2pat))
4360 		   ? 0 : i1dest);
4361     /* Same case as i1.  */
4362     rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4363 			 ? 0 : i0dest);
4364     rtx elim_i0 = (local_elim_i0 == 0
4365 		   || (newi2pat && reg_set_p (i0dest, newi2pat))
4366 		   ? 0 : i0dest);
4367 
4368     /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4369        clear them.  */
4370     i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4371     i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4372     if (i1)
4373       i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4374     if (i0)
4375       i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4376 
4377     /* Ensure that we do not have something that should not be shared but
4378        occurs multiple times in the new insns.  Check this by first
4379        resetting all the `used' flags and then copying anything is shared.  */
4380 
4381     reset_used_flags (i3notes);
4382     reset_used_flags (i2notes);
4383     reset_used_flags (i1notes);
4384     reset_used_flags (i0notes);
4385     reset_used_flags (newpat);
4386     reset_used_flags (newi2pat);
4387     if (undobuf.other_insn)
4388       reset_used_flags (PATTERN (undobuf.other_insn));
4389 
4390     i3notes = copy_rtx_if_shared (i3notes);
4391     i2notes = copy_rtx_if_shared (i2notes);
4392     i1notes = copy_rtx_if_shared (i1notes);
4393     i0notes = copy_rtx_if_shared (i0notes);
4394     newpat = copy_rtx_if_shared (newpat);
4395     newi2pat = copy_rtx_if_shared (newi2pat);
4396     if (undobuf.other_insn)
4397       reset_used_flags (PATTERN (undobuf.other_insn));
4398 
4399     INSN_CODE (i3) = insn_code_number;
4400     PATTERN (i3) = newpat;
4401 
4402     if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4403       {
4404 	for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4405 	     link = XEXP (link, 1))
4406 	  {
4407 	    if (substed_i2)
4408 	      {
4409 		/* I2SRC must still be meaningful at this point.  Some
4410 		   splitting operations can invalidate I2SRC, but those
4411 		   operations do not apply to calls.  */
4412 		gcc_assert (i2src);
4413 		XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4414 						       i2dest, i2src);
4415 	      }
4416 	    if (substed_i1)
4417 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4418 						     i1dest, i1src);
4419 	    if (substed_i0)
4420 	      XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4421 						     i0dest, i0src);
4422 	  }
4423       }
4424 
4425     if (undobuf.other_insn)
4426       INSN_CODE (undobuf.other_insn) = other_code_number;
4427 
4428     /* We had one special case above where I2 had more than one set and
4429        we replaced a destination of one of those sets with the destination
4430        of I3.  In that case, we have to update LOG_LINKS of insns later
4431        in this basic block.  Note that this (expensive) case is rare.
4432 
4433        Also, in this case, we must pretend that all REG_NOTEs for I2
4434        actually came from I3, so that REG_UNUSED notes from I2 will be
4435        properly handled.  */
4436 
4437     if (i3_subst_into_i2)
4438       {
4439 	for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4440 	  if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4441 	       || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4442 	      && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4443 	      && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4444 	      && ! find_reg_note (i2, REG_UNUSED,
4445 				  SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4446 	    for (temp_insn = NEXT_INSN (i2);
4447 		 temp_insn
4448 		 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4449 		     || BB_HEAD (this_basic_block) != temp_insn);
4450 		 temp_insn = NEXT_INSN (temp_insn))
4451 	      if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4452 		FOR_EACH_LOG_LINK (link, temp_insn)
4453 		  if (link->insn == i2)
4454 		    link->insn = i3;
4455 
4456 	if (i3notes)
4457 	  {
4458 	    rtx link = i3notes;
4459 	    while (XEXP (link, 1))
4460 	      link = XEXP (link, 1);
4461 	    XEXP (link, 1) = i2notes;
4462 	  }
4463 	else
4464 	  i3notes = i2notes;
4465 	i2notes = 0;
4466       }
4467 
4468     LOG_LINKS (i3) = NULL;
4469     REG_NOTES (i3) = 0;
4470     LOG_LINKS (i2) = NULL;
4471     REG_NOTES (i2) = 0;
4472 
4473     if (newi2pat)
4474       {
4475 	if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4476 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4477 			       this_basic_block);
4478 	INSN_CODE (i2) = i2_code_number;
4479 	PATTERN (i2) = newi2pat;
4480       }
4481     else
4482       {
4483 	if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4484 	  propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4485 			       this_basic_block);
4486 	SET_INSN_DELETED (i2);
4487       }
4488 
4489     if (i1)
4490       {
4491 	LOG_LINKS (i1) = NULL;
4492 	REG_NOTES (i1) = 0;
4493 	if (MAY_HAVE_DEBUG_BIND_INSNS)
4494 	  propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4495 			       this_basic_block);
4496 	SET_INSN_DELETED (i1);
4497       }
4498 
4499     if (i0)
4500       {
4501 	LOG_LINKS (i0) = NULL;
4502 	REG_NOTES (i0) = 0;
4503 	if (MAY_HAVE_DEBUG_BIND_INSNS)
4504 	  propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4505 			       this_basic_block);
4506 	SET_INSN_DELETED (i0);
4507       }
4508 
4509     /* Get death notes for everything that is now used in either I3 or
4510        I2 and used to die in a previous insn.  If we built two new
4511        patterns, move from I1 to I2 then I2 to I3 so that we get the
4512        proper movement on registers that I2 modifies.  */
4513 
4514     if (i0)
4515       from_luid = DF_INSN_LUID (i0);
4516     else if (i1)
4517       from_luid = DF_INSN_LUID (i1);
4518     else
4519       from_luid = DF_INSN_LUID (i2);
4520     if (newi2pat)
4521       move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4522     move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4523 
4524     /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3.  */
4525     if (i3notes)
4526       distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4527 			elim_i2, elim_i1, elim_i0);
4528     if (i2notes)
4529       distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4530 			elim_i2, elim_i1, elim_i0);
4531     if (i1notes)
4532       distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4533 			elim_i2, local_elim_i1, local_elim_i0);
4534     if (i0notes)
4535       distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4536 			elim_i2, elim_i1, local_elim_i0);
4537     if (midnotes)
4538       distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4539 			elim_i2, elim_i1, elim_i0);
4540 
4541     /* Distribute any notes added to I2 or I3 by recog_for_combine.  We
4542        know these are REG_UNUSED and want them to go to the desired insn,
4543        so we always pass it as i3.  */
4544 
4545     if (newi2pat && new_i2_notes)
4546       distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4547 			NULL_RTX);
4548 
4549     if (new_i3_notes)
4550       distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4551 			NULL_RTX);
4552 
4553     /* If I3DEST was used in I3SRC, it really died in I3.  We may need to
4554        put a REG_DEAD note for it somewhere.  If NEWI2PAT exists and sets
4555        I3DEST, the death must be somewhere before I2, not I3.  If we passed I3
4556        in that case, it might delete I2.  Similarly for I2 and I1.
4557        Show an additional death due to the REG_DEAD note we make here.  If
4558        we discard it in distribute_notes, we will decrement it again.  */
4559 
4560     if (i3dest_killed)
4561       {
4562 	rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4563 	if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4564 	  distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4565 			    elim_i1, elim_i0);
4566 	else
4567 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4568 			    elim_i2, elim_i1, elim_i0);
4569       }
4570 
4571     if (i2dest_in_i2src)
4572       {
4573 	rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4574 	if (newi2pat && reg_set_p (i2dest, newi2pat))
4575 	  distribute_notes (new_note,  NULL, i2, NULL, NULL_RTX,
4576 			    NULL_RTX, NULL_RTX);
4577 	else
4578 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4579 			    NULL_RTX, NULL_RTX, NULL_RTX);
4580       }
4581 
4582     if (i1dest_in_i1src)
4583       {
4584 	rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4585 	if (newi2pat && reg_set_p (i1dest, newi2pat))
4586 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4587 			    NULL_RTX, NULL_RTX);
4588 	else
4589 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4590 			    NULL_RTX, NULL_RTX, NULL_RTX);
4591       }
4592 
4593     if (i0dest_in_i0src)
4594       {
4595 	rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4596 	if (newi2pat && reg_set_p (i0dest, newi2pat))
4597 	  distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4598 			    NULL_RTX, NULL_RTX);
4599 	else
4600 	  distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4601 			    NULL_RTX, NULL_RTX, NULL_RTX);
4602       }
4603 
4604     distribute_links (i3links);
4605     distribute_links (i2links);
4606     distribute_links (i1links);
4607     distribute_links (i0links);
4608 
4609     if (REG_P (i2dest))
4610       {
4611 	struct insn_link *link;
4612 	rtx_insn *i2_insn = 0;
4613 	rtx i2_val = 0, set;
4614 
4615 	/* The insn that used to set this register doesn't exist, and
4616 	   this life of the register may not exist either.  See if one of
4617 	   I3's links points to an insn that sets I2DEST.  If it does,
4618 	   that is now the last known value for I2DEST. If we don't update
4619 	   this and I2 set the register to a value that depended on its old
4620 	   contents, we will get confused.  If this insn is used, thing
4621 	   will be set correctly in combine_instructions.  */
4622 	FOR_EACH_LOG_LINK (link, i3)
4623 	  if ((set = single_set (link->insn)) != 0
4624 	      && rtx_equal_p (i2dest, SET_DEST (set)))
4625 	    i2_insn = link->insn, i2_val = SET_SRC (set);
4626 
4627 	record_value_for_reg (i2dest, i2_insn, i2_val);
4628 
4629 	/* If the reg formerly set in I2 died only once and that was in I3,
4630 	   zero its use count so it won't make `reload' do any work.  */
4631 	if (! added_sets_2
4632 	    && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4633 	    && ! i2dest_in_i2src
4634 	    && REGNO (i2dest) < reg_n_sets_max)
4635 	  INC_REG_N_SETS (REGNO (i2dest), -1);
4636       }
4637 
4638     if (i1 && REG_P (i1dest))
4639       {
4640 	struct insn_link *link;
4641 	rtx_insn *i1_insn = 0;
4642 	rtx i1_val = 0, set;
4643 
4644 	FOR_EACH_LOG_LINK (link, i3)
4645 	  if ((set = single_set (link->insn)) != 0
4646 	      && rtx_equal_p (i1dest, SET_DEST (set)))
4647 	    i1_insn = link->insn, i1_val = SET_SRC (set);
4648 
4649 	record_value_for_reg (i1dest, i1_insn, i1_val);
4650 
4651 	if (! added_sets_1
4652 	    && ! i1dest_in_i1src
4653 	    && REGNO (i1dest) < reg_n_sets_max)
4654 	  INC_REG_N_SETS (REGNO (i1dest), -1);
4655       }
4656 
4657     if (i0 && REG_P (i0dest))
4658       {
4659 	struct insn_link *link;
4660 	rtx_insn *i0_insn = 0;
4661 	rtx i0_val = 0, set;
4662 
4663 	FOR_EACH_LOG_LINK (link, i3)
4664 	  if ((set = single_set (link->insn)) != 0
4665 	      && rtx_equal_p (i0dest, SET_DEST (set)))
4666 	    i0_insn = link->insn, i0_val = SET_SRC (set);
4667 
4668 	record_value_for_reg (i0dest, i0_insn, i0_val);
4669 
4670 	if (! added_sets_0
4671 	    && ! i0dest_in_i0src
4672 	    && REGNO (i0dest) < reg_n_sets_max)
4673 	  INC_REG_N_SETS (REGNO (i0dest), -1);
4674       }
4675 
4676     /* Update reg_stat[].nonzero_bits et al for any changes that may have
4677        been made to this insn.  The order is important, because newi2pat
4678        can affect nonzero_bits of newpat.  */
4679     if (newi2pat)
4680       note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4681     note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4682   }
4683 
4684   if (undobuf.other_insn != NULL_RTX)
4685     {
4686       if (dump_file)
4687 	{
4688 	  fprintf (dump_file, "modifying other_insn ");
4689 	  dump_insn_slim (dump_file, undobuf.other_insn);
4690 	}
4691       df_insn_rescan (undobuf.other_insn);
4692     }
4693 
4694   if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4695     {
4696       if (dump_file)
4697 	{
4698 	  fprintf (dump_file, "modifying insn i0 ");
4699 	  dump_insn_slim (dump_file, i0);
4700 	}
4701       df_insn_rescan (i0);
4702     }
4703 
4704   if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4705     {
4706       if (dump_file)
4707 	{
4708 	  fprintf (dump_file, "modifying insn i1 ");
4709 	  dump_insn_slim (dump_file, i1);
4710 	}
4711       df_insn_rescan (i1);
4712     }
4713 
4714   if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4715     {
4716       if (dump_file)
4717 	{
4718 	  fprintf (dump_file, "modifying insn i2 ");
4719 	  dump_insn_slim (dump_file, i2);
4720 	}
4721       df_insn_rescan (i2);
4722     }
4723 
4724   if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4725     {
4726       if (dump_file)
4727 	{
4728 	  fprintf (dump_file, "modifying insn i3 ");
4729 	  dump_insn_slim (dump_file, i3);
4730 	}
4731       df_insn_rescan (i3);
4732     }
4733 
4734   /* Set new_direct_jump_p if a new return or simple jump instruction
4735      has been created.  Adjust the CFG accordingly.  */
4736   if (returnjump_p (i3) || any_uncondjump_p (i3))
4737     {
4738       *new_direct_jump_p = 1;
4739       mark_jump_label (PATTERN (i3), i3, 0);
4740       update_cfg_for_uncondjump (i3);
4741     }
4742 
4743   if (undobuf.other_insn != NULL_RTX
4744       && (returnjump_p (undobuf.other_insn)
4745 	  || any_uncondjump_p (undobuf.other_insn)))
4746     {
4747       *new_direct_jump_p = 1;
4748       update_cfg_for_uncondjump (undobuf.other_insn);
4749     }
4750 
4751   if (GET_CODE (PATTERN (i3)) == TRAP_IF
4752       && XEXP (PATTERN (i3), 0) == const1_rtx)
4753     {
4754       basic_block bb = BLOCK_FOR_INSN (i3);
4755       gcc_assert (bb);
4756       remove_edge (split_block (bb, i3));
4757       emit_barrier_after_bb (bb);
4758       *new_direct_jump_p = 1;
4759     }
4760 
4761   if (undobuf.other_insn
4762       && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4763       && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4764     {
4765       basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4766       gcc_assert (bb);
4767       remove_edge (split_block (bb, undobuf.other_insn));
4768       emit_barrier_after_bb (bb);
4769       *new_direct_jump_p = 1;
4770     }
4771 
4772   /* A noop might also need cleaning up of CFG, if it comes from the
4773      simplification of a jump.  */
4774   if (JUMP_P (i3)
4775       && GET_CODE (newpat) == SET
4776       && SET_SRC (newpat) == pc_rtx
4777       && SET_DEST (newpat) == pc_rtx)
4778     {
4779       *new_direct_jump_p = 1;
4780       update_cfg_for_uncondjump (i3);
4781     }
4782 
4783   if (undobuf.other_insn != NULL_RTX
4784       && JUMP_P (undobuf.other_insn)
4785       && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4786       && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4787       && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4788     {
4789       *new_direct_jump_p = 1;
4790       update_cfg_for_uncondjump (undobuf.other_insn);
4791     }
4792 
4793   combine_successes++;
4794   undo_commit ();
4795 
4796   rtx_insn *ret = newi2pat ? i2 : i3;
4797   if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4798     ret = added_links_insn;
4799   if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4800     ret = added_notes_insn;
4801 
4802   return ret;
4803 }
4804 
4805 /* Get a marker for undoing to the current state.  */
4806 
4807 static void *
4808 get_undo_marker (void)
4809 {
4810   return undobuf.undos;
4811 }
4812 
4813 /* Undo the modifications up to the marker.  */
4814 
4815 static void
4816 undo_to_marker (void *marker)
4817 {
4818   struct undo *undo, *next;
4819 
4820   for (undo = undobuf.undos; undo != marker; undo = next)
4821     {
4822       gcc_assert (undo);
4823 
4824       next = undo->next;
4825       switch (undo->kind)
4826 	{
4827 	case UNDO_RTX:
4828 	  *undo->where.r = undo->old_contents.r;
4829 	  break;
4830 	case UNDO_INT:
4831 	  *undo->where.i = undo->old_contents.i;
4832 	  break;
4833 	case UNDO_MODE:
4834 	  adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4835 	  break;
4836 	case UNDO_LINKS:
4837 	  *undo->where.l = undo->old_contents.l;
4838 	  break;
4839 	default:
4840 	  gcc_unreachable ();
4841 	}
4842 
4843       undo->next = undobuf.frees;
4844       undobuf.frees = undo;
4845     }
4846 
4847   undobuf.undos = (struct undo *) marker;
4848 }
4849 
4850 /* Undo all the modifications recorded in undobuf.  */
4851 
4852 static void
4853 undo_all (void)
4854 {
4855   undo_to_marker (0);
4856 }
4857 
4858 /* We've committed to accepting the changes we made.  Move all
4859    of the undos to the free list.  */
4860 
4861 static void
4862 undo_commit (void)
4863 {
4864   struct undo *undo, *next;
4865 
4866   for (undo = undobuf.undos; undo; undo = next)
4867     {
4868       next = undo->next;
4869       undo->next = undobuf.frees;
4870       undobuf.frees = undo;
4871     }
4872   undobuf.undos = 0;
4873 }
4874 
4875 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4876    where we have an arithmetic expression and return that point.  LOC will
4877    be inside INSN.
4878 
4879    try_combine will call this function to see if an insn can be split into
4880    two insns.  */
4881 
4882 static rtx *
4883 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4884 {
4885   rtx x = *loc;
4886   enum rtx_code code = GET_CODE (x);
4887   rtx *split;
4888   unsigned HOST_WIDE_INT len = 0;
4889   HOST_WIDE_INT pos = 0;
4890   int unsignedp = 0;
4891   rtx inner = NULL_RTX;
4892   scalar_int_mode mode, inner_mode;
4893 
4894   /* First special-case some codes.  */
4895   switch (code)
4896     {
4897     case SUBREG:
4898 #ifdef INSN_SCHEDULING
4899       /* If we are making a paradoxical SUBREG invalid, it becomes a split
4900 	 point.  */
4901       if (MEM_P (SUBREG_REG (x)))
4902 	return loc;
4903 #endif
4904       return find_split_point (&SUBREG_REG (x), insn, false);
4905 
4906     case MEM:
4907       /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4908 	 using LO_SUM and HIGH.  */
4909       if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4910 			  || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4911 	{
4912 	  machine_mode address_mode = get_address_mode (x);
4913 
4914 	  SUBST (XEXP (x, 0),
4915 		 gen_rtx_LO_SUM (address_mode,
4916 				 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4917 				 XEXP (x, 0)));
4918 	  return &XEXP (XEXP (x, 0), 0);
4919 	}
4920 
4921       /* If we have a PLUS whose second operand is a constant and the
4922 	 address is not valid, perhaps will can split it up using
4923 	 the machine-specific way to split large constants.  We use
4924 	 the first pseudo-reg (one of the virtual regs) as a placeholder;
4925 	 it will not remain in the result.  */
4926       if (GET_CODE (XEXP (x, 0)) == PLUS
4927 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4928 	  && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4929 					    MEM_ADDR_SPACE (x)))
4930 	{
4931 	  rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4932 	  rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4933 					       subst_insn);
4934 
4935 	  /* This should have produced two insns, each of which sets our
4936 	     placeholder.  If the source of the second is a valid address,
4937 	     we can make put both sources together and make a split point
4938 	     in the middle.  */
4939 
4940 	  if (seq
4941 	      && NEXT_INSN (seq) != NULL_RTX
4942 	      && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4943 	      && NONJUMP_INSN_P (seq)
4944 	      && GET_CODE (PATTERN (seq)) == SET
4945 	      && SET_DEST (PATTERN (seq)) == reg
4946 	      && ! reg_mentioned_p (reg,
4947 				    SET_SRC (PATTERN (seq)))
4948 	      && NONJUMP_INSN_P (NEXT_INSN (seq))
4949 	      && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4950 	      && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4951 	      && memory_address_addr_space_p
4952 		   (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4953 		    MEM_ADDR_SPACE (x)))
4954 	    {
4955 	      rtx src1 = SET_SRC (PATTERN (seq));
4956 	      rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4957 
4958 	      /* Replace the placeholder in SRC2 with SRC1.  If we can
4959 		 find where in SRC2 it was placed, that can become our
4960 		 split point and we can replace this address with SRC2.
4961 		 Just try two obvious places.  */
4962 
4963 	      src2 = replace_rtx (src2, reg, src1);
4964 	      split = 0;
4965 	      if (XEXP (src2, 0) == src1)
4966 		split = &XEXP (src2, 0);
4967 	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4968 		       && XEXP (XEXP (src2, 0), 0) == src1)
4969 		split = &XEXP (XEXP (src2, 0), 0);
4970 
4971 	      if (split)
4972 		{
4973 		  SUBST (XEXP (x, 0), src2);
4974 		  return split;
4975 		}
4976 	    }
4977 
4978 	  /* If that didn't work, perhaps the first operand is complex and
4979 	     needs to be computed separately, so make a split point there.
4980 	     This will occur on machines that just support REG + CONST
4981 	     and have a constant moved through some previous computation.  */
4982 
4983 	  else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4984 		   && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4985 			 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4986 	    return &XEXP (XEXP (x, 0), 0);
4987 	}
4988 
4989       /* If we have a PLUS whose first operand is complex, try computing it
4990          separately by making a split there.  */
4991       if (GET_CODE (XEXP (x, 0)) == PLUS
4992           && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4993 					    MEM_ADDR_SPACE (x))
4994           && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4995           && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4996                 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4997         return &XEXP (XEXP (x, 0), 0);
4998       break;
4999 
5000     case SET:
5001       /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5002 	 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5003 	 we need to put the operand into a register.  So split at that
5004 	 point.  */
5005 
5006       if (SET_DEST (x) == cc0_rtx
5007 	  && GET_CODE (SET_SRC (x)) != COMPARE
5008 	  && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5009 	  && !OBJECT_P (SET_SRC (x))
5010 	  && ! (GET_CODE (SET_SRC (x)) == SUBREG
5011 		&& OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5012 	return &SET_SRC (x);
5013 
5014       /* See if we can split SET_SRC as it stands.  */
5015       split = find_split_point (&SET_SRC (x), insn, true);
5016       if (split && split != &SET_SRC (x))
5017 	return split;
5018 
5019       /* See if we can split SET_DEST as it stands.  */
5020       split = find_split_point (&SET_DEST (x), insn, false);
5021       if (split && split != &SET_DEST (x))
5022 	return split;
5023 
5024       /* See if this is a bitfield assignment with everything constant.  If
5025 	 so, this is an IOR of an AND, so split it into that.  */
5026       if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5027 	  && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5028 				     &inner_mode)
5029 	  && HWI_COMPUTABLE_MODE_P (inner_mode)
5030 	  && CONST_INT_P (XEXP (SET_DEST (x), 1))
5031 	  && CONST_INT_P (XEXP (SET_DEST (x), 2))
5032 	  && CONST_INT_P (SET_SRC (x))
5033 	  && ((INTVAL (XEXP (SET_DEST (x), 1))
5034 	       + INTVAL (XEXP (SET_DEST (x), 2)))
5035 	      <= GET_MODE_PRECISION (inner_mode))
5036 	  && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5037 	{
5038 	  HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5039 	  unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5040 	  unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5041 	  rtx dest = XEXP (SET_DEST (x), 0);
5042 	  unsigned HOST_WIDE_INT mask
5043 	    = (HOST_WIDE_INT_1U << len) - 1;
5044 	  rtx or_mask;
5045 
5046 	  if (BITS_BIG_ENDIAN)
5047 	    pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5048 
5049 	  or_mask = gen_int_mode (src << pos, inner_mode);
5050 	  if (src == mask)
5051 	    SUBST (SET_SRC (x),
5052 		   simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5053 	  else
5054 	    {
5055 	      rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5056 	      SUBST (SET_SRC (x),
5057 		     simplify_gen_binary (IOR, inner_mode,
5058 					  simplify_gen_binary (AND, inner_mode,
5059 							       dest, negmask),
5060 					  or_mask));
5061 	    }
5062 
5063 	  SUBST (SET_DEST (x), dest);
5064 
5065 	  split = find_split_point (&SET_SRC (x), insn, true);
5066 	  if (split && split != &SET_SRC (x))
5067 	    return split;
5068 	}
5069 
5070       /* Otherwise, see if this is an operation that we can split into two.
5071 	 If so, try to split that.  */
5072       code = GET_CODE (SET_SRC (x));
5073 
5074       switch (code)
5075 	{
5076 	case AND:
5077 	  /* If we are AND'ing with a large constant that is only a single
5078 	     bit and the result is only being used in a context where we
5079 	     need to know if it is zero or nonzero, replace it with a bit
5080 	     extraction.  This will avoid the large constant, which might
5081 	     have taken more than one insn to make.  If the constant were
5082 	     not a valid argument to the AND but took only one insn to make,
5083 	     this is no worse, but if it took more than one insn, it will
5084 	     be better.  */
5085 
5086 	  if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5087 	      && REG_P (XEXP (SET_SRC (x), 0))
5088 	      && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5089 	      && REG_P (SET_DEST (x))
5090 	      && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5091 	      && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5092 	      && XEXP (*split, 0) == SET_DEST (x)
5093 	      && XEXP (*split, 1) == const0_rtx)
5094 	    {
5095 	      rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5096 						XEXP (SET_SRC (x), 0),
5097 						pos, NULL_RTX, 1, 1, 0, 0);
5098 	      if (extraction != 0)
5099 		{
5100 		  SUBST (SET_SRC (x), extraction);
5101 		  return find_split_point (loc, insn, false);
5102 		}
5103 	    }
5104 	  break;
5105 
5106 	case NE:
5107 	  /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5108 	     is known to be on, this can be converted into a NEG of a shift.  */
5109 	  if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5110 	      && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5111 	      && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5112 						   GET_MODE (XEXP (SET_SRC (x),
5113 							     0))))) >= 1))
5114 	    {
5115 	      machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5116 	      rtx pos_rtx = gen_int_shift_amount (mode, pos);
5117 	      SUBST (SET_SRC (x),
5118 		     gen_rtx_NEG (mode,
5119 				  gen_rtx_LSHIFTRT (mode,
5120 						    XEXP (SET_SRC (x), 0),
5121 						    pos_rtx)));
5122 
5123 	      split = find_split_point (&SET_SRC (x), insn, true);
5124 	      if (split && split != &SET_SRC (x))
5125 		return split;
5126 	    }
5127 	  break;
5128 
5129 	case SIGN_EXTEND:
5130 	  inner = XEXP (SET_SRC (x), 0);
5131 
5132 	  /* We can't optimize if either mode is a partial integer
5133 	     mode as we don't know how many bits are significant
5134 	     in those modes.  */
5135 	  if (!is_int_mode (GET_MODE (inner), &inner_mode)
5136 	      || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5137 	    break;
5138 
5139 	  pos = 0;
5140 	  len = GET_MODE_PRECISION (inner_mode);
5141 	  unsignedp = 0;
5142 	  break;
5143 
5144 	case SIGN_EXTRACT:
5145 	case ZERO_EXTRACT:
5146 	  if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5147 				      &inner_mode)
5148 	      && CONST_INT_P (XEXP (SET_SRC (x), 1))
5149 	      && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5150 	    {
5151 	      inner = XEXP (SET_SRC (x), 0);
5152 	      len = INTVAL (XEXP (SET_SRC (x), 1));
5153 	      pos = INTVAL (XEXP (SET_SRC (x), 2));
5154 
5155 	      if (BITS_BIG_ENDIAN)
5156 		pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5157 	      unsignedp = (code == ZERO_EXTRACT);
5158 	    }
5159 	  break;
5160 
5161 	default:
5162 	  break;
5163 	}
5164 
5165       if (len
5166 	  && known_subrange_p (pos, len,
5167 			       0, GET_MODE_PRECISION (GET_MODE (inner)))
5168 	  && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5169 	{
5170 	  /* For unsigned, we have a choice of a shift followed by an
5171 	     AND or two shifts.  Use two shifts for field sizes where the
5172 	     constant might be too large.  We assume here that we can
5173 	     always at least get 8-bit constants in an AND insn, which is
5174 	     true for every current RISC.  */
5175 
5176 	  if (unsignedp && len <= 8)
5177 	    {
5178 	      unsigned HOST_WIDE_INT mask
5179 		= (HOST_WIDE_INT_1U << len) - 1;
5180 	      rtx pos_rtx = gen_int_shift_amount (mode, pos);
5181 	      SUBST (SET_SRC (x),
5182 		     gen_rtx_AND (mode,
5183 				  gen_rtx_LSHIFTRT
5184 				  (mode, gen_lowpart (mode, inner), pos_rtx),
5185 				  gen_int_mode (mask, mode)));
5186 
5187 	      split = find_split_point (&SET_SRC (x), insn, true);
5188 	      if (split && split != &SET_SRC (x))
5189 		return split;
5190 	    }
5191 	  else
5192 	    {
5193 	      int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5194 	      int right_bits = GET_MODE_PRECISION (mode) - len;
5195 	      SUBST (SET_SRC (x),
5196 		     gen_rtx_fmt_ee
5197 		     (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5198 		      gen_rtx_ASHIFT (mode,
5199 				      gen_lowpart (mode, inner),
5200 				      gen_int_shift_amount (mode, left_bits)),
5201 		      gen_int_shift_amount (mode, right_bits)));
5202 
5203 	      split = find_split_point (&SET_SRC (x), insn, true);
5204 	      if (split && split != &SET_SRC (x))
5205 		return split;
5206 	    }
5207 	}
5208 
5209       /* See if this is a simple operation with a constant as the second
5210 	 operand.  It might be that this constant is out of range and hence
5211 	 could be used as a split point.  */
5212       if (BINARY_P (SET_SRC (x))
5213 	  && CONSTANT_P (XEXP (SET_SRC (x), 1))
5214 	  && (OBJECT_P (XEXP (SET_SRC (x), 0))
5215 	      || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5216 		  && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5217 	return &XEXP (SET_SRC (x), 1);
5218 
5219       /* Finally, see if this is a simple operation with its first operand
5220 	 not in a register.  The operation might require this operand in a
5221 	 register, so return it as a split point.  We can always do this
5222 	 because if the first operand were another operation, we would have
5223 	 already found it as a split point.  */
5224       if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5225 	  && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5226 	return &XEXP (SET_SRC (x), 0);
5227 
5228       return 0;
5229 
5230     case AND:
5231     case IOR:
5232       /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5233 	 it is better to write this as (not (ior A B)) so we can split it.
5234 	 Similarly for IOR.  */
5235       if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5236 	{
5237 	  SUBST (*loc,
5238 		 gen_rtx_NOT (GET_MODE (x),
5239 			      gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5240 					      GET_MODE (x),
5241 					      XEXP (XEXP (x, 0), 0),
5242 					      XEXP (XEXP (x, 1), 0))));
5243 	  return find_split_point (loc, insn, set_src);
5244 	}
5245 
5246       /* Many RISC machines have a large set of logical insns.  If the
5247 	 second operand is a NOT, put it first so we will try to split the
5248 	 other operand first.  */
5249       if (GET_CODE (XEXP (x, 1)) == NOT)
5250 	{
5251 	  rtx tem = XEXP (x, 0);
5252 	  SUBST (XEXP (x, 0), XEXP (x, 1));
5253 	  SUBST (XEXP (x, 1), tem);
5254 	}
5255       break;
5256 
5257     case PLUS:
5258     case MINUS:
5259       /* Canonicalization can produce (minus A (mult B C)), where C is a
5260 	 constant.  It may be better to try splitting (plus (mult B -C) A)
5261 	 instead if this isn't a multiply by a power of two.  */
5262       if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5263 	  && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5264 	  && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5265 	{
5266 	  machine_mode mode = GET_MODE (x);
5267 	  unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5268 	  HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5269 	  SUBST (*loc, gen_rtx_PLUS (mode,
5270 				     gen_rtx_MULT (mode,
5271 						   XEXP (XEXP (x, 1), 0),
5272 						   gen_int_mode (other_int,
5273 								 mode)),
5274 				     XEXP (x, 0)));
5275 	  return find_split_point (loc, insn, set_src);
5276 	}
5277 
5278       /* Split at a multiply-accumulate instruction.  However if this is
5279          the SET_SRC, we likely do not have such an instruction and it's
5280          worthless to try this split.  */
5281       if (!set_src
5282 	  && (GET_CODE (XEXP (x, 0)) == MULT
5283 	      || (GET_CODE (XEXP (x, 0)) == ASHIFT
5284 		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5285         return loc;
5286 
5287     default:
5288       break;
5289     }
5290 
5291   /* Otherwise, select our actions depending on our rtx class.  */
5292   switch (GET_RTX_CLASS (code))
5293     {
5294     case RTX_BITFIELD_OPS:		/* This is ZERO_EXTRACT and SIGN_EXTRACT.  */
5295     case RTX_TERNARY:
5296       split = find_split_point (&XEXP (x, 2), insn, false);
5297       if (split)
5298 	return split;
5299       /* fall through */
5300     case RTX_BIN_ARITH:
5301     case RTX_COMM_ARITH:
5302     case RTX_COMPARE:
5303     case RTX_COMM_COMPARE:
5304       split = find_split_point (&XEXP (x, 1), insn, false);
5305       if (split)
5306 	return split;
5307       /* fall through */
5308     case RTX_UNARY:
5309       /* Some machines have (and (shift ...) ...) insns.  If X is not
5310 	 an AND, but XEXP (X, 0) is, use it as our split point.  */
5311       if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5312 	return &XEXP (x, 0);
5313 
5314       split = find_split_point (&XEXP (x, 0), insn, false);
5315       if (split)
5316 	return split;
5317       return loc;
5318 
5319     default:
5320       /* Otherwise, we don't have a split point.  */
5321       return 0;
5322     }
5323 }
5324 
5325 /* Throughout X, replace FROM with TO, and return the result.
5326    The result is TO if X is FROM;
5327    otherwise the result is X, but its contents may have been modified.
5328    If they were modified, a record was made in undobuf so that
5329    undo_all will (among other things) return X to its original state.
5330 
5331    If the number of changes necessary is too much to record to undo,
5332    the excess changes are not made, so the result is invalid.
5333    The changes already made can still be undone.
5334    undobuf.num_undo is incremented for such changes, so by testing that
5335    the caller can tell whether the result is valid.
5336 
5337    `n_occurrences' is incremented each time FROM is replaced.
5338 
5339    IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5340 
5341    IN_COND is nonzero if we are at the top level of a condition.
5342 
5343    UNIQUE_COPY is nonzero if each substitution must be unique.  We do this
5344    by copying if `n_occurrences' is nonzero.  */
5345 
5346 static rtx
5347 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5348 {
5349   enum rtx_code code = GET_CODE (x);
5350   machine_mode op0_mode = VOIDmode;
5351   const char *fmt;
5352   int len, i;
5353   rtx new_rtx;
5354 
5355 /* Two expressions are equal if they are identical copies of a shared
5356    RTX or if they are both registers with the same register number
5357    and mode.  */
5358 
5359 #define COMBINE_RTX_EQUAL_P(X,Y)			\
5360   ((X) == (Y)						\
5361    || (REG_P (X) && REG_P (Y)	\
5362        && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5363 
5364   /* Do not substitute into clobbers of regs -- this will never result in
5365      valid RTL.  */
5366   if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5367     return x;
5368 
5369   if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5370     {
5371       n_occurrences++;
5372       return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5373     }
5374 
5375   /* If X and FROM are the same register but different modes, they
5376      will not have been seen as equal above.  However, the log links code
5377      will make a LOG_LINKS entry for that case.  If we do nothing, we
5378      will try to rerecognize our original insn and, when it succeeds,
5379      we will delete the feeding insn, which is incorrect.
5380 
5381      So force this insn not to match in this (rare) case.  */
5382   if (! in_dest && code == REG && REG_P (from)
5383       && reg_overlap_mentioned_p (x, from))
5384     return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5385 
5386   /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5387      of which may contain things that can be combined.  */
5388   if (code != MEM && code != LO_SUM && OBJECT_P (x))
5389     return x;
5390 
5391   /* It is possible to have a subexpression appear twice in the insn.
5392      Suppose that FROM is a register that appears within TO.
5393      Then, after that subexpression has been scanned once by `subst',
5394      the second time it is scanned, TO may be found.  If we were
5395      to scan TO here, we would find FROM within it and create a
5396      self-referent rtl structure which is completely wrong.  */
5397   if (COMBINE_RTX_EQUAL_P (x, to))
5398     return to;
5399 
5400   /* Parallel asm_operands need special attention because all of the
5401      inputs are shared across the arms.  Furthermore, unsharing the
5402      rtl results in recognition failures.  Failure to handle this case
5403      specially can result in circular rtl.
5404 
5405      Solve this by doing a normal pass across the first entry of the
5406      parallel, and only processing the SET_DESTs of the subsequent
5407      entries.  Ug.  */
5408 
5409   if (code == PARALLEL
5410       && GET_CODE (XVECEXP (x, 0, 0)) == SET
5411       && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5412     {
5413       new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5414 
5415       /* If this substitution failed, this whole thing fails.  */
5416       if (GET_CODE (new_rtx) == CLOBBER
5417 	  && XEXP (new_rtx, 0) == const0_rtx)
5418 	return new_rtx;
5419 
5420       SUBST (XVECEXP (x, 0, 0), new_rtx);
5421 
5422       for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5423 	{
5424 	  rtx dest = SET_DEST (XVECEXP (x, 0, i));
5425 
5426 	  if (!REG_P (dest)
5427 	      && GET_CODE (dest) != CC0
5428 	      && GET_CODE (dest) != PC)
5429 	    {
5430 	      new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5431 
5432 	      /* If this substitution failed, this whole thing fails.  */
5433 	      if (GET_CODE (new_rtx) == CLOBBER
5434 		  && XEXP (new_rtx, 0) == const0_rtx)
5435 		return new_rtx;
5436 
5437 	      SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5438 	    }
5439 	}
5440     }
5441   else
5442     {
5443       len = GET_RTX_LENGTH (code);
5444       fmt = GET_RTX_FORMAT (code);
5445 
5446       /* We don't need to process a SET_DEST that is a register, CC0,
5447 	 or PC, so set up to skip this common case.  All other cases
5448 	 where we want to suppress replacing something inside a
5449 	 SET_SRC are handled via the IN_DEST operand.  */
5450       if (code == SET
5451 	  && (REG_P (SET_DEST (x))
5452 	      || GET_CODE (SET_DEST (x)) == CC0
5453 	      || GET_CODE (SET_DEST (x)) == PC))
5454 	fmt = "ie";
5455 
5456       /* Trying to simplify the operands of a widening MULT is not likely
5457 	 to create RTL matching a machine insn.  */
5458       if (code == MULT
5459 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5460 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5461 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5462 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5463 	  && REG_P (XEXP (XEXP (x, 0), 0))
5464 	  && REG_P (XEXP (XEXP (x, 1), 0))
5465 	  && from == to)
5466 	return x;
5467 
5468 
5469       /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5470 	 constant.  */
5471       if (fmt[0] == 'e')
5472 	op0_mode = GET_MODE (XEXP (x, 0));
5473 
5474       for (i = 0; i < len; i++)
5475 	{
5476 	  if (fmt[i] == 'E')
5477 	    {
5478 	      int j;
5479 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5480 		{
5481 		  if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5482 		    {
5483 		      new_rtx = (unique_copy && n_occurrences
5484 			     ? copy_rtx (to) : to);
5485 		      n_occurrences++;
5486 		    }
5487 		  else
5488 		    {
5489 		      new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5490 				       unique_copy);
5491 
5492 		      /* If this substitution failed, this whole thing
5493 			 fails.  */
5494 		      if (GET_CODE (new_rtx) == CLOBBER
5495 			  && XEXP (new_rtx, 0) == const0_rtx)
5496 			return new_rtx;
5497 		    }
5498 
5499 		  SUBST (XVECEXP (x, i, j), new_rtx);
5500 		}
5501 	    }
5502 	  else if (fmt[i] == 'e')
5503 	    {
5504 	      /* If this is a register being set, ignore it.  */
5505 	      new_rtx = XEXP (x, i);
5506 	      if (in_dest
5507 		  && i == 0
5508 		  && (((code == SUBREG || code == ZERO_EXTRACT)
5509 		       && REG_P (new_rtx))
5510 		      || code == STRICT_LOW_PART))
5511 		;
5512 
5513 	      else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5514 		{
5515 		  /* In general, don't install a subreg involving two
5516 		     modes not tieable.  It can worsen register
5517 		     allocation, and can even make invalid reload
5518 		     insns, since the reg inside may need to be copied
5519 		     from in the outside mode, and that may be invalid
5520 		     if it is an fp reg copied in integer mode.
5521 
5522 		     We allow two exceptions to this: It is valid if
5523 		     it is inside another SUBREG and the mode of that
5524 		     SUBREG and the mode of the inside of TO is
5525 		     tieable and it is valid if X is a SET that copies
5526 		     FROM to CC0.  */
5527 
5528 		  if (GET_CODE (to) == SUBREG
5529 		      && !targetm.modes_tieable_p (GET_MODE (to),
5530 						   GET_MODE (SUBREG_REG (to)))
5531 		      && ! (code == SUBREG
5532 			    && (targetm.modes_tieable_p
5533 				(GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5534 		      && (!HAVE_cc0
5535 			  || (! (code == SET
5536 				 && i == 1
5537 				 && XEXP (x, 0) == cc0_rtx))))
5538 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5539 
5540 		  if (code == SUBREG
5541 		      && REG_P (to)
5542 		      && REGNO (to) < FIRST_PSEUDO_REGISTER
5543 		      && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5544 						SUBREG_BYTE (x),
5545 						GET_MODE (x)) < 0)
5546 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5547 
5548 		  new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5549 		  n_occurrences++;
5550 		}
5551 	      else
5552 		/* If we are in a SET_DEST, suppress most cases unless we
5553 		   have gone inside a MEM, in which case we want to
5554 		   simplify the address.  We assume here that things that
5555 		   are actually part of the destination have their inner
5556 		   parts in the first expression.  This is true for SUBREG,
5557 		   STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5558 		   things aside from REG and MEM that should appear in a
5559 		   SET_DEST.  */
5560 		new_rtx = subst (XEXP (x, i), from, to,
5561 			     (((in_dest
5562 				&& (code == SUBREG || code == STRICT_LOW_PART
5563 				    || code == ZERO_EXTRACT))
5564 			       || code == SET)
5565 			      && i == 0),
5566 				 code == IF_THEN_ELSE && i == 0,
5567 				 unique_copy);
5568 
5569 	      /* If we found that we will have to reject this combination,
5570 		 indicate that by returning the CLOBBER ourselves, rather than
5571 		 an expression containing it.  This will speed things up as
5572 		 well as prevent accidents where two CLOBBERs are considered
5573 		 to be equal, thus producing an incorrect simplification.  */
5574 
5575 	      if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5576 		return new_rtx;
5577 
5578 	      if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5579 		{
5580 		  machine_mode mode = GET_MODE (x);
5581 
5582 		  x = simplify_subreg (GET_MODE (x), new_rtx,
5583 				       GET_MODE (SUBREG_REG (x)),
5584 				       SUBREG_BYTE (x));
5585 		  if (! x)
5586 		    x = gen_rtx_CLOBBER (mode, const0_rtx);
5587 		}
5588 	      else if (CONST_SCALAR_INT_P (new_rtx)
5589 		       && (GET_CODE (x) == ZERO_EXTEND
5590 			   || GET_CODE (x) == FLOAT
5591 			   || GET_CODE (x) == UNSIGNED_FLOAT))
5592 		{
5593 		  x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5594 						new_rtx,
5595 						GET_MODE (XEXP (x, 0)));
5596 		  if (!x)
5597 		    return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5598 		}
5599 	      else
5600 		SUBST (XEXP (x, i), new_rtx);
5601 	    }
5602 	}
5603     }
5604 
5605   /* Check if we are loading something from the constant pool via float
5606      extension; in this case we would undo compress_float_constant
5607      optimization and degenerate constant load to an immediate value.  */
5608   if (GET_CODE (x) == FLOAT_EXTEND
5609       && MEM_P (XEXP (x, 0))
5610       && MEM_READONLY_P (XEXP (x, 0)))
5611     {
5612       rtx tmp = avoid_constant_pool_reference (x);
5613       if (x != tmp)
5614         return x;
5615     }
5616 
5617   /* Try to simplify X.  If the simplification changed the code, it is likely
5618      that further simplification will help, so loop, but limit the number
5619      of repetitions that will be performed.  */
5620 
5621   for (i = 0; i < 4; i++)
5622     {
5623       /* If X is sufficiently simple, don't bother trying to do anything
5624 	 with it.  */
5625       if (code != CONST_INT && code != REG && code != CLOBBER)
5626 	x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5627 
5628       if (GET_CODE (x) == code)
5629 	break;
5630 
5631       code = GET_CODE (x);
5632 
5633       /* We no longer know the original mode of operand 0 since we
5634 	 have changed the form of X)  */
5635       op0_mode = VOIDmode;
5636     }
5637 
5638   return x;
5639 }
5640 
5641 /* If X is a commutative operation whose operands are not in the canonical
5642    order, use substitutions to swap them.  */
5643 
5644 static void
5645 maybe_swap_commutative_operands (rtx x)
5646 {
5647   if (COMMUTATIVE_ARITH_P (x)
5648       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5649     {
5650       rtx temp = XEXP (x, 0);
5651       SUBST (XEXP (x, 0), XEXP (x, 1));
5652       SUBST (XEXP (x, 1), temp);
5653     }
5654 }
5655 
5656 /* Simplify X, a piece of RTL.  We just operate on the expression at the
5657    outer level; call `subst' to simplify recursively.  Return the new
5658    expression.
5659 
5660    OP0_MODE is the original mode of XEXP (x, 0).  IN_DEST is nonzero
5661    if we are inside a SET_DEST.  IN_COND is nonzero if we are at the top level
5662    of a condition.  */
5663 
5664 static rtx
5665 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5666 		      int in_cond)
5667 {
5668   enum rtx_code code = GET_CODE (x);
5669   machine_mode mode = GET_MODE (x);
5670   scalar_int_mode int_mode;
5671   rtx temp;
5672   int i;
5673 
5674   /* If this is a commutative operation, put a constant last and a complex
5675      expression first.  We don't need to do this for comparisons here.  */
5676   maybe_swap_commutative_operands (x);
5677 
5678   /* Try to fold this expression in case we have constants that weren't
5679      present before.  */
5680   temp = 0;
5681   switch (GET_RTX_CLASS (code))
5682     {
5683     case RTX_UNARY:
5684       if (op0_mode == VOIDmode)
5685 	op0_mode = GET_MODE (XEXP (x, 0));
5686       temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5687       break;
5688     case RTX_COMPARE:
5689     case RTX_COMM_COMPARE:
5690       {
5691 	machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5692 	if (cmp_mode == VOIDmode)
5693 	  {
5694 	    cmp_mode = GET_MODE (XEXP (x, 1));
5695 	    if (cmp_mode == VOIDmode)
5696 	      cmp_mode = op0_mode;
5697 	  }
5698 	temp = simplify_relational_operation (code, mode, cmp_mode,
5699 					      XEXP (x, 0), XEXP (x, 1));
5700       }
5701       break;
5702     case RTX_COMM_ARITH:
5703     case RTX_BIN_ARITH:
5704       temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5705       break;
5706     case RTX_BITFIELD_OPS:
5707     case RTX_TERNARY:
5708       temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5709 					 XEXP (x, 1), XEXP (x, 2));
5710       break;
5711     default:
5712       break;
5713     }
5714 
5715   if (temp)
5716     {
5717       x = temp;
5718       code = GET_CODE (temp);
5719       op0_mode = VOIDmode;
5720       mode = GET_MODE (temp);
5721     }
5722 
5723   /* If this is a simple operation applied to an IF_THEN_ELSE, try
5724      applying it to the arms of the IF_THEN_ELSE.  This often simplifies
5725      things.  Check for cases where both arms are testing the same
5726      condition.
5727 
5728      Don't do anything if all operands are very simple.  */
5729 
5730   if ((BINARY_P (x)
5731        && ((!OBJECT_P (XEXP (x, 0))
5732 	    && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5733 		  && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5734 	   || (!OBJECT_P (XEXP (x, 1))
5735 	       && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5736 		     && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5737       || (UNARY_P (x)
5738 	  && (!OBJECT_P (XEXP (x, 0))
5739 	       && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5740 		     && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5741     {
5742       rtx cond, true_rtx, false_rtx;
5743 
5744       cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5745       if (cond != 0
5746 	  /* If everything is a comparison, what we have is highly unlikely
5747 	     to be simpler, so don't use it.  */
5748 	  && ! (COMPARISON_P (x)
5749 		&& (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5750 	  /* Similarly, if we end up with one of the expressions the same
5751 	     as the original, it is certainly not simpler.  */
5752 	  && ! rtx_equal_p (x, true_rtx)
5753 	  && ! rtx_equal_p (x, false_rtx))
5754 	{
5755 	  rtx cop1 = const0_rtx;
5756 	  enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5757 
5758 	  if (cond_code == NE && COMPARISON_P (cond))
5759 	    return x;
5760 
5761 	  /* Simplify the alternative arms; this may collapse the true and
5762 	     false arms to store-flag values.  Be careful to use copy_rtx
5763 	     here since true_rtx or false_rtx might share RTL with x as a
5764 	     result of the if_then_else_cond call above.  */
5765 	  true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5766 	  false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5767 
5768 	  /* If true_rtx and false_rtx are not general_operands, an if_then_else
5769 	     is unlikely to be simpler.  */
5770 	  if (general_operand (true_rtx, VOIDmode)
5771 	      && general_operand (false_rtx, VOIDmode))
5772 	    {
5773 	      enum rtx_code reversed;
5774 
5775 	      /* Restarting if we generate a store-flag expression will cause
5776 		 us to loop.  Just drop through in this case.  */
5777 
5778 	      /* If the result values are STORE_FLAG_VALUE and zero, we can
5779 		 just make the comparison operation.  */
5780 	      if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5781 		x = simplify_gen_relational (cond_code, mode, VOIDmode,
5782 					     cond, cop1);
5783 	      else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5784 		       && ((reversed = reversed_comparison_code_parts
5785 					(cond_code, cond, cop1, NULL))
5786 			   != UNKNOWN))
5787 		x = simplify_gen_relational (reversed, mode, VOIDmode,
5788 					     cond, cop1);
5789 
5790 	      /* Likewise, we can make the negate of a comparison operation
5791 		 if the result values are - STORE_FLAG_VALUE and zero.  */
5792 	      else if (CONST_INT_P (true_rtx)
5793 		       && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5794 		       && false_rtx == const0_rtx)
5795 		x = simplify_gen_unary (NEG, mode,
5796 					simplify_gen_relational (cond_code,
5797 								 mode, VOIDmode,
5798 								 cond, cop1),
5799 					mode);
5800 	      else if (CONST_INT_P (false_rtx)
5801 		       && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5802 		       && true_rtx == const0_rtx
5803 		       && ((reversed = reversed_comparison_code_parts
5804 					(cond_code, cond, cop1, NULL))
5805 			   != UNKNOWN))
5806 		x = simplify_gen_unary (NEG, mode,
5807 					simplify_gen_relational (reversed,
5808 								 mode, VOIDmode,
5809 								 cond, cop1),
5810 					mode);
5811 	      else
5812 		return gen_rtx_IF_THEN_ELSE (mode,
5813 					     simplify_gen_relational (cond_code,
5814 								      mode,
5815 								      VOIDmode,
5816 								      cond,
5817 								      cop1),
5818 					     true_rtx, false_rtx);
5819 
5820 	      code = GET_CODE (x);
5821 	      op0_mode = VOIDmode;
5822 	    }
5823 	}
5824     }
5825 
5826   /* First see if we can apply the inverse distributive law.  */
5827   if (code == PLUS || code == MINUS
5828       || code == AND || code == IOR || code == XOR)
5829     {
5830       x = apply_distributive_law (x);
5831       code = GET_CODE (x);
5832       op0_mode = VOIDmode;
5833     }
5834 
5835   /* If CODE is an associative operation not otherwise handled, see if we
5836      can associate some operands.  This can win if they are constants or
5837      if they are logically related (i.e. (a & b) & a).  */
5838   if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5839        || code == AND || code == IOR || code == XOR
5840        || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5841       && ((INTEGRAL_MODE_P (mode) && code != DIV)
5842 	  || (flag_associative_math && FLOAT_MODE_P (mode))))
5843     {
5844       if (GET_CODE (XEXP (x, 0)) == code)
5845 	{
5846 	  rtx other = XEXP (XEXP (x, 0), 0);
5847 	  rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5848 	  rtx inner_op1 = XEXP (x, 1);
5849 	  rtx inner;
5850 
5851 	  /* Make sure we pass the constant operand if any as the second
5852 	     one if this is a commutative operation.  */
5853 	  if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5854 	    std::swap (inner_op0, inner_op1);
5855 	  inner = simplify_binary_operation (code == MINUS ? PLUS
5856 					     : code == DIV ? MULT
5857 					     : code,
5858 					     mode, inner_op0, inner_op1);
5859 
5860 	  /* For commutative operations, try the other pair if that one
5861 	     didn't simplify.  */
5862 	  if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5863 	    {
5864 	      other = XEXP (XEXP (x, 0), 1);
5865 	      inner = simplify_binary_operation (code, mode,
5866 						 XEXP (XEXP (x, 0), 0),
5867 						 XEXP (x, 1));
5868 	    }
5869 
5870 	  if (inner)
5871 	    return simplify_gen_binary (code, mode, other, inner);
5872 	}
5873     }
5874 
5875   /* A little bit of algebraic simplification here.  */
5876   switch (code)
5877     {
5878     case MEM:
5879       /* Ensure that our address has any ASHIFTs converted to MULT in case
5880 	 address-recognizing predicates are called later.  */
5881       temp = make_compound_operation (XEXP (x, 0), MEM);
5882       SUBST (XEXP (x, 0), temp);
5883       break;
5884 
5885     case SUBREG:
5886       if (op0_mode == VOIDmode)
5887 	op0_mode = GET_MODE (SUBREG_REG (x));
5888 
5889       /* See if this can be moved to simplify_subreg.  */
5890       if (CONSTANT_P (SUBREG_REG (x))
5891 	  && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5892 	     /* Don't call gen_lowpart if the inner mode
5893 		is VOIDmode and we cannot simplify it, as SUBREG without
5894 		inner mode is invalid.  */
5895 	  && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5896 	      || gen_lowpart_common (mode, SUBREG_REG (x))))
5897 	return gen_lowpart (mode, SUBREG_REG (x));
5898 
5899       if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5900 	break;
5901       {
5902 	rtx temp;
5903 	temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5904 				SUBREG_BYTE (x));
5905 	if (temp)
5906 	  return temp;
5907 
5908 	/* If op is known to have all lower bits zero, the result is zero.  */
5909 	scalar_int_mode int_mode, int_op0_mode;
5910 	if (!in_dest
5911 	    && is_a <scalar_int_mode> (mode, &int_mode)
5912 	    && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5913 	    && (GET_MODE_PRECISION (int_mode)
5914 		< GET_MODE_PRECISION (int_op0_mode))
5915 	    && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5916 			 SUBREG_BYTE (x))
5917 	    && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5918 	    && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5919 		 & GET_MODE_MASK (int_mode)) == 0)
5920 	    && !side_effects_p (SUBREG_REG (x)))
5921 	  return CONST0_RTX (int_mode);
5922       }
5923 
5924       /* Don't change the mode of the MEM if that would change the meaning
5925 	 of the address.  */
5926       if (MEM_P (SUBREG_REG (x))
5927 	  && (MEM_VOLATILE_P (SUBREG_REG (x))
5928 	      || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5929 					   MEM_ADDR_SPACE (SUBREG_REG (x)))))
5930 	return gen_rtx_CLOBBER (mode, const0_rtx);
5931 
5932       /* Note that we cannot do any narrowing for non-constants since
5933 	 we might have been counting on using the fact that some bits were
5934 	 zero.  We now do this in the SET.  */
5935 
5936       break;
5937 
5938     case NEG:
5939       temp = expand_compound_operation (XEXP (x, 0));
5940 
5941       /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5942 	 replaced by (lshiftrt X C).  This will convert
5943 	 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y).  */
5944 
5945       if (GET_CODE (temp) == ASHIFTRT
5946 	  && CONST_INT_P (XEXP (temp, 1))
5947 	  && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5948 	return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5949 				     INTVAL (XEXP (temp, 1)));
5950 
5951       /* If X has only a single bit that might be nonzero, say, bit I, convert
5952 	 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5953 	 MODE minus 1.  This will convert (neg (zero_extract X 1 Y)) to
5954 	 (sign_extract X 1 Y).  But only do this if TEMP isn't a register
5955 	 or a SUBREG of one since we'd be making the expression more
5956 	 complex if it was just a register.  */
5957 
5958       if (!REG_P (temp)
5959 	  && ! (GET_CODE (temp) == SUBREG
5960 		&& REG_P (SUBREG_REG (temp)))
5961 	  && is_a <scalar_int_mode> (mode, &int_mode)
5962 	  && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5963 	{
5964 	  rtx temp1 = simplify_shift_const
5965 	    (NULL_RTX, ASHIFTRT, int_mode,
5966 	     simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5967 				   GET_MODE_PRECISION (int_mode) - 1 - i),
5968 	     GET_MODE_PRECISION (int_mode) - 1 - i);
5969 
5970 	  /* If all we did was surround TEMP with the two shifts, we
5971 	     haven't improved anything, so don't use it.  Otherwise,
5972 	     we are better off with TEMP1.  */
5973 	  if (GET_CODE (temp1) != ASHIFTRT
5974 	      || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5975 	      || XEXP (XEXP (temp1, 0), 0) != temp)
5976 	    return temp1;
5977 	}
5978       break;
5979 
5980     case TRUNCATE:
5981       /* We can't handle truncation to a partial integer mode here
5982 	 because we don't know the real bitsize of the partial
5983 	 integer mode.  */
5984       if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5985 	break;
5986 
5987       if (HWI_COMPUTABLE_MODE_P (mode))
5988 	SUBST (XEXP (x, 0),
5989 	       force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5990 			      GET_MODE_MASK (mode), 0));
5991 
5992       /* We can truncate a constant value and return it.  */
5993       if (CONST_INT_P (XEXP (x, 0)))
5994 	return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5995 
5996       /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5997 	 whose value is a comparison can be replaced with a subreg if
5998 	 STORE_FLAG_VALUE permits.  */
5999       if (HWI_COMPUTABLE_MODE_P (mode)
6000 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6001 	  && (temp = get_last_value (XEXP (x, 0)))
6002 	  && COMPARISON_P (temp))
6003 	return gen_lowpart (mode, XEXP (x, 0));
6004       break;
6005 
6006     case CONST:
6007       /* (const (const X)) can become (const X).  Do it this way rather than
6008 	 returning the inner CONST since CONST can be shared with a
6009 	 REG_EQUAL note.  */
6010       if (GET_CODE (XEXP (x, 0)) == CONST)
6011 	SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6012       break;
6013 
6014     case LO_SUM:
6015       /* Convert (lo_sum (high FOO) FOO) to FOO.  This is necessary so we
6016 	 can add in an offset.  find_split_point will split this address up
6017 	 again if it doesn't match.  */
6018       if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6019 	  && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6020 	return XEXP (x, 1);
6021       break;
6022 
6023     case PLUS:
6024       /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6025 	 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6026 	 bit-field and can be replaced by either a sign_extend or a
6027 	 sign_extract.  The `and' may be a zero_extend and the two
6028 	 <c>, -<c> constants may be reversed.  */
6029       if (GET_CODE (XEXP (x, 0)) == XOR
6030 	  && is_a <scalar_int_mode> (mode, &int_mode)
6031 	  && CONST_INT_P (XEXP (x, 1))
6032 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6033 	  && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6034 	  && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6035 	      || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6036 	  && HWI_COMPUTABLE_MODE_P (int_mode)
6037 	  && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6038 	       && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6039 	       && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6040 		   == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6041 	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6042 		  && known_eq ((GET_MODE_PRECISION
6043 				(GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6044 			       (unsigned int) i + 1))))
6045 	return simplify_shift_const
6046 	  (NULL_RTX, ASHIFTRT, int_mode,
6047 	   simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6048 				 XEXP (XEXP (XEXP (x, 0), 0), 0),
6049 				 GET_MODE_PRECISION (int_mode) - (i + 1)),
6050 	   GET_MODE_PRECISION (int_mode) - (i + 1));
6051 
6052       /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6053 	 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6054 	 the bitsize of the mode - 1.  This allows simplification of
6055 	 "a = (b & 8) == 0;"  */
6056       if (XEXP (x, 1) == constm1_rtx
6057 	  && !REG_P (XEXP (x, 0))
6058 	  && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6059 		&& REG_P (SUBREG_REG (XEXP (x, 0))))
6060 	  && is_a <scalar_int_mode> (mode, &int_mode)
6061 	  && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6062 	return simplify_shift_const
6063 	  (NULL_RTX, ASHIFTRT, int_mode,
6064 	   simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6065 				 gen_rtx_XOR (int_mode, XEXP (x, 0),
6066 					      const1_rtx),
6067 				 GET_MODE_PRECISION (int_mode) - 1),
6068 	   GET_MODE_PRECISION (int_mode) - 1);
6069 
6070       /* If we are adding two things that have no bits in common, convert
6071 	 the addition into an IOR.  This will often be further simplified,
6072 	 for example in cases like ((a & 1) + (a & 2)), which can
6073 	 become a & 3.  */
6074 
6075       if (HWI_COMPUTABLE_MODE_P (mode)
6076 	  && (nonzero_bits (XEXP (x, 0), mode)
6077 	      & nonzero_bits (XEXP (x, 1), mode)) == 0)
6078 	{
6079 	  /* Try to simplify the expression further.  */
6080 	  rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6081 	  temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6082 
6083 	  /* If we could, great.  If not, do not go ahead with the IOR
6084 	     replacement, since PLUS appears in many special purpose
6085 	     address arithmetic instructions.  */
6086 	  if (GET_CODE (temp) != CLOBBER
6087 	      && (GET_CODE (temp) != IOR
6088 		  || ((XEXP (temp, 0) != XEXP (x, 0)
6089 		       || XEXP (temp, 1) != XEXP (x, 1))
6090 		      && (XEXP (temp, 0) != XEXP (x, 1)
6091 			  || XEXP (temp, 1) != XEXP (x, 0)))))
6092 	    return temp;
6093 	}
6094 
6095       /* Canonicalize x + x into x << 1.  */
6096       if (GET_MODE_CLASS (mode) == MODE_INT
6097 	  && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6098 	  && !side_effects_p (XEXP (x, 0)))
6099 	return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6100 
6101       break;
6102 
6103     case MINUS:
6104       /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6105 	 (and <foo> (const_int pow2-1))  */
6106       if (is_a <scalar_int_mode> (mode, &int_mode)
6107 	  && GET_CODE (XEXP (x, 1)) == AND
6108 	  && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6109 	  && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6110 	  && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6111 	return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6112 				       -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6113       break;
6114 
6115     case MULT:
6116       /* If we have (mult (plus A B) C), apply the distributive law and then
6117 	 the inverse distributive law to see if things simplify.  This
6118 	 occurs mostly in addresses, often when unrolling loops.  */
6119 
6120       if (GET_CODE (XEXP (x, 0)) == PLUS)
6121 	{
6122 	  rtx result = distribute_and_simplify_rtx (x, 0);
6123 	  if (result)
6124 	    return result;
6125 	}
6126 
6127       /* Try simplify a*(b/c) as (a*b)/c.  */
6128       if (FLOAT_MODE_P (mode) && flag_associative_math
6129 	  && GET_CODE (XEXP (x, 0)) == DIV)
6130 	{
6131 	  rtx tem = simplify_binary_operation (MULT, mode,
6132 					       XEXP (XEXP (x, 0), 0),
6133 					       XEXP (x, 1));
6134 	  if (tem)
6135 	    return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6136 	}
6137       break;
6138 
6139     case UDIV:
6140       /* If this is a divide by a power of two, treat it as a shift if
6141 	 its first operand is a shift.  */
6142       if (is_a <scalar_int_mode> (mode, &int_mode)
6143 	  && CONST_INT_P (XEXP (x, 1))
6144 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6145 	  && (GET_CODE (XEXP (x, 0)) == ASHIFT
6146 	      || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6147 	      || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6148 	      || GET_CODE (XEXP (x, 0)) == ROTATE
6149 	      || GET_CODE (XEXP (x, 0)) == ROTATERT))
6150 	return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6151 				     XEXP (x, 0), i);
6152       break;
6153 
6154     case EQ:  case NE:
6155     case GT:  case GTU:  case GE:  case GEU:
6156     case LT:  case LTU:  case LE:  case LEU:
6157     case UNEQ:  case LTGT:
6158     case UNGT:  case UNGE:
6159     case UNLT:  case UNLE:
6160     case UNORDERED: case ORDERED:
6161       /* If the first operand is a condition code, we can't do anything
6162 	 with it.  */
6163       if (GET_CODE (XEXP (x, 0)) == COMPARE
6164 	  || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6165 	      && ! CC0_P (XEXP (x, 0))))
6166 	{
6167 	  rtx op0 = XEXP (x, 0);
6168 	  rtx op1 = XEXP (x, 1);
6169 	  enum rtx_code new_code;
6170 
6171 	  if (GET_CODE (op0) == COMPARE)
6172 	    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6173 
6174 	  /* Simplify our comparison, if possible.  */
6175 	  new_code = simplify_comparison (code, &op0, &op1);
6176 
6177 	  /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6178 	     if only the low-order bit is possibly nonzero in X (such as when
6179 	     X is a ZERO_EXTRACT of one bit).  Similarly, we can convert EQ to
6180 	     (xor X 1) or (minus 1 X); we use the former.  Finally, if X is
6181 	     known to be either 0 or -1, NE becomes a NEG and EQ becomes
6182 	     (plus X 1).
6183 
6184 	     Remove any ZERO_EXTRACT we made when thinking this was a
6185 	     comparison.  It may now be simpler to use, e.g., an AND.  If a
6186 	     ZERO_EXTRACT is indeed appropriate, it will be placed back by
6187 	     the call to make_compound_operation in the SET case.
6188 
6189 	     Don't apply these optimizations if the caller would
6190 	     prefer a comparison rather than a value.
6191 	     E.g., for the condition in an IF_THEN_ELSE most targets need
6192 	     an explicit comparison.  */
6193 
6194 	  if (in_cond)
6195 	    ;
6196 
6197 	  else if (STORE_FLAG_VALUE == 1
6198 		   && new_code == NE
6199 		   && is_int_mode (mode, &int_mode)
6200 		   && op1 == const0_rtx
6201 		   && int_mode == GET_MODE (op0)
6202 		   && nonzero_bits (op0, int_mode) == 1)
6203 	    return gen_lowpart (int_mode,
6204 				expand_compound_operation (op0));
6205 
6206 	  else if (STORE_FLAG_VALUE == 1
6207 		   && new_code == NE
6208 		   && is_int_mode (mode, &int_mode)
6209 		   && op1 == const0_rtx
6210 		   && int_mode == GET_MODE (op0)
6211 		   && (num_sign_bit_copies (op0, int_mode)
6212 		       == GET_MODE_PRECISION (int_mode)))
6213 	    {
6214 	      op0 = expand_compound_operation (op0);
6215 	      return simplify_gen_unary (NEG, int_mode,
6216 					 gen_lowpart (int_mode, op0),
6217 					 int_mode);
6218 	    }
6219 
6220 	  else if (STORE_FLAG_VALUE == 1
6221 		   && new_code == EQ
6222 		   && is_int_mode (mode, &int_mode)
6223 		   && op1 == const0_rtx
6224 		   && int_mode == GET_MODE (op0)
6225 		   && nonzero_bits (op0, int_mode) == 1)
6226 	    {
6227 	      op0 = expand_compound_operation (op0);
6228 	      return simplify_gen_binary (XOR, int_mode,
6229 					  gen_lowpart (int_mode, op0),
6230 					  const1_rtx);
6231 	    }
6232 
6233 	  else if (STORE_FLAG_VALUE == 1
6234 		   && new_code == EQ
6235 		   && is_int_mode (mode, &int_mode)
6236 		   && op1 == const0_rtx
6237 		   && int_mode == GET_MODE (op0)
6238 		   && (num_sign_bit_copies (op0, int_mode)
6239 		       == GET_MODE_PRECISION (int_mode)))
6240 	    {
6241 	      op0 = expand_compound_operation (op0);
6242 	      return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6243 	    }
6244 
6245 	  /* If STORE_FLAG_VALUE is -1, we have cases similar to
6246 	     those above.  */
6247 	  if (in_cond)
6248 	    ;
6249 
6250 	  else if (STORE_FLAG_VALUE == -1
6251 		   && new_code == NE
6252 		   && is_int_mode (mode, &int_mode)
6253 		   && op1 == const0_rtx
6254 		   && int_mode == GET_MODE (op0)
6255 		   && (num_sign_bit_copies (op0, int_mode)
6256 		       == GET_MODE_PRECISION (int_mode)))
6257 	    return gen_lowpart (int_mode, expand_compound_operation (op0));
6258 
6259 	  else if (STORE_FLAG_VALUE == -1
6260 		   && new_code == NE
6261 		   && is_int_mode (mode, &int_mode)
6262 		   && op1 == const0_rtx
6263 		   && int_mode == GET_MODE (op0)
6264 		   && nonzero_bits (op0, int_mode) == 1)
6265 	    {
6266 	      op0 = expand_compound_operation (op0);
6267 	      return simplify_gen_unary (NEG, int_mode,
6268 					 gen_lowpart (int_mode, op0),
6269 					 int_mode);
6270 	    }
6271 
6272 	  else if (STORE_FLAG_VALUE == -1
6273 		   && new_code == EQ
6274 		   && is_int_mode (mode, &int_mode)
6275 		   && op1 == const0_rtx
6276 		   && int_mode == GET_MODE (op0)
6277 		   && (num_sign_bit_copies (op0, int_mode)
6278 		       == GET_MODE_PRECISION (int_mode)))
6279 	    {
6280 	      op0 = expand_compound_operation (op0);
6281 	      return simplify_gen_unary (NOT, int_mode,
6282 					 gen_lowpart (int_mode, op0),
6283 					 int_mode);
6284 	    }
6285 
6286 	  /* If X is 0/1, (eq X 0) is X-1.  */
6287 	  else if (STORE_FLAG_VALUE == -1
6288 		   && new_code == EQ
6289 		   && is_int_mode (mode, &int_mode)
6290 		   && op1 == const0_rtx
6291 		   && int_mode == GET_MODE (op0)
6292 		   && nonzero_bits (op0, int_mode) == 1)
6293 	    {
6294 	      op0 = expand_compound_operation (op0);
6295 	      return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6296 	    }
6297 
6298 	  /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6299 	     one bit that might be nonzero, we can convert (ne x 0) to
6300 	     (ashift x c) where C puts the bit in the sign bit.  Remove any
6301 	     AND with STORE_FLAG_VALUE when we are done, since we are only
6302 	     going to test the sign bit.  */
6303 	  if (new_code == NE
6304 	      && is_int_mode (mode, &int_mode)
6305 	      && HWI_COMPUTABLE_MODE_P (int_mode)
6306 	      && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6307 	      && op1 == const0_rtx
6308 	      && int_mode == GET_MODE (op0)
6309 	      && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6310 	    {
6311 	      x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6312 					expand_compound_operation (op0),
6313 					GET_MODE_PRECISION (int_mode) - 1 - i);
6314 	      if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6315 		return XEXP (x, 0);
6316 	      else
6317 		return x;
6318 	    }
6319 
6320 	  /* If the code changed, return a whole new comparison.
6321 	     We also need to avoid using SUBST in cases where
6322 	     simplify_comparison has widened a comparison with a CONST_INT,
6323 	     since in that case the wider CONST_INT may fail the sanity
6324 	     checks in do_SUBST.  */
6325 	  if (new_code != code
6326 	      || (CONST_INT_P (op1)
6327 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6328 		  && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6329 	    return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6330 
6331 	  /* Otherwise, keep this operation, but maybe change its operands.
6332 	     This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR).  */
6333 	  SUBST (XEXP (x, 0), op0);
6334 	  SUBST (XEXP (x, 1), op1);
6335 	}
6336       break;
6337 
6338     case IF_THEN_ELSE:
6339       return simplify_if_then_else (x);
6340 
6341     case ZERO_EXTRACT:
6342     case SIGN_EXTRACT:
6343     case ZERO_EXTEND:
6344     case SIGN_EXTEND:
6345       /* If we are processing SET_DEST, we are done.  */
6346       if (in_dest)
6347 	return x;
6348 
6349       return expand_compound_operation (x);
6350 
6351     case SET:
6352       return simplify_set (x);
6353 
6354     case AND:
6355     case IOR:
6356       return simplify_logical (x);
6357 
6358     case ASHIFT:
6359     case LSHIFTRT:
6360     case ASHIFTRT:
6361     case ROTATE:
6362     case ROTATERT:
6363       /* If this is a shift by a constant amount, simplify it.  */
6364       if (CONST_INT_P (XEXP (x, 1)))
6365 	return simplify_shift_const (x, code, mode, XEXP (x, 0),
6366 				     INTVAL (XEXP (x, 1)));
6367 
6368       else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6369 	SUBST (XEXP (x, 1),
6370 	       force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6371 			      (HOST_WIDE_INT_1U
6372 			       << exact_log2 (GET_MODE_UNIT_BITSIZE
6373 					      (GET_MODE (x))))
6374 			      - 1,
6375 			      0));
6376       break;
6377 
6378     default:
6379       break;
6380     }
6381 
6382   return x;
6383 }
6384 
6385 /* Simplify X, an IF_THEN_ELSE expression.  Return the new expression.  */
6386 
6387 static rtx
6388 simplify_if_then_else (rtx x)
6389 {
6390   machine_mode mode = GET_MODE (x);
6391   rtx cond = XEXP (x, 0);
6392   rtx true_rtx = XEXP (x, 1);
6393   rtx false_rtx = XEXP (x, 2);
6394   enum rtx_code true_code = GET_CODE (cond);
6395   int comparison_p = COMPARISON_P (cond);
6396   rtx temp;
6397   int i;
6398   enum rtx_code false_code;
6399   rtx reversed;
6400   scalar_int_mode int_mode, inner_mode;
6401 
6402   /* Simplify storing of the truth value.  */
6403   if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6404     return simplify_gen_relational (true_code, mode, VOIDmode,
6405 				    XEXP (cond, 0), XEXP (cond, 1));
6406 
6407   /* Also when the truth value has to be reversed.  */
6408   if (comparison_p
6409       && true_rtx == const0_rtx && false_rtx == const_true_rtx
6410       && (reversed = reversed_comparison (cond, mode)))
6411     return reversed;
6412 
6413   /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6414      in it is being compared against certain values.  Get the true and false
6415      comparisons and see if that says anything about the value of each arm.  */
6416 
6417   if (comparison_p
6418       && ((false_code = reversed_comparison_code (cond, NULL))
6419 	  != UNKNOWN)
6420       && REG_P (XEXP (cond, 0)))
6421     {
6422       HOST_WIDE_INT nzb;
6423       rtx from = XEXP (cond, 0);
6424       rtx true_val = XEXP (cond, 1);
6425       rtx false_val = true_val;
6426       int swapped = 0;
6427 
6428       /* If FALSE_CODE is EQ, swap the codes and arms.  */
6429 
6430       if (false_code == EQ)
6431 	{
6432 	  swapped = 1, true_code = EQ, false_code = NE;
6433 	  std::swap (true_rtx, false_rtx);
6434 	}
6435 
6436       scalar_int_mode from_mode;
6437       if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6438 	{
6439 	  /* If we are comparing against zero and the expression being
6440 	     tested has only a single bit that might be nonzero, that is
6441 	     its value when it is not equal to zero.  Similarly if it is
6442 	     known to be -1 or 0.  */
6443 	  if (true_code == EQ
6444 	      && true_val == const0_rtx
6445 	      && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6446 	    {
6447 	      false_code = EQ;
6448 	      false_val = gen_int_mode (nzb, from_mode);
6449 	    }
6450 	  else if (true_code == EQ
6451 		   && true_val == const0_rtx
6452 		   && (num_sign_bit_copies (from, from_mode)
6453 		       == GET_MODE_PRECISION (from_mode)))
6454 	    {
6455 	      false_code = EQ;
6456 	      false_val = constm1_rtx;
6457 	    }
6458 	}
6459 
6460       /* Now simplify an arm if we know the value of the register in the
6461 	 branch and it is used in the arm.  Be careful due to the potential
6462 	 of locally-shared RTL.  */
6463 
6464       if (reg_mentioned_p (from, true_rtx))
6465 	true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6466 				      from, true_val),
6467 			  pc_rtx, pc_rtx, 0, 0, 0);
6468       if (reg_mentioned_p (from, false_rtx))
6469 	false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6470 				       from, false_val),
6471 			   pc_rtx, pc_rtx, 0, 0, 0);
6472 
6473       SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6474       SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6475 
6476       true_rtx = XEXP (x, 1);
6477       false_rtx = XEXP (x, 2);
6478       true_code = GET_CODE (cond);
6479     }
6480 
6481   /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6482      reversed, do so to avoid needing two sets of patterns for
6483      subtract-and-branch insns.  Similarly if we have a constant in the true
6484      arm, the false arm is the same as the first operand of the comparison, or
6485      the false arm is more complicated than the true arm.  */
6486 
6487   if (comparison_p
6488       && reversed_comparison_code (cond, NULL) != UNKNOWN
6489       && (true_rtx == pc_rtx
6490 	  || (CONSTANT_P (true_rtx)
6491 	      && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6492 	  || true_rtx == const0_rtx
6493 	  || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6494 	  || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6495 	      && !OBJECT_P (false_rtx))
6496 	  || reg_mentioned_p (true_rtx, false_rtx)
6497 	  || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6498     {
6499       true_code = reversed_comparison_code (cond, NULL);
6500       SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6501       SUBST (XEXP (x, 1), false_rtx);
6502       SUBST (XEXP (x, 2), true_rtx);
6503 
6504       std::swap (true_rtx, false_rtx);
6505       cond = XEXP (x, 0);
6506 
6507       /* It is possible that the conditional has been simplified out.  */
6508       true_code = GET_CODE (cond);
6509       comparison_p = COMPARISON_P (cond);
6510     }
6511 
6512   /* If the two arms are identical, we don't need the comparison.  */
6513 
6514   if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6515     return true_rtx;
6516 
6517   /* Convert a == b ? b : a to "a".  */
6518   if (true_code == EQ && ! side_effects_p (cond)
6519       && !HONOR_NANS (mode)
6520       && rtx_equal_p (XEXP (cond, 0), false_rtx)
6521       && rtx_equal_p (XEXP (cond, 1), true_rtx))
6522     return false_rtx;
6523   else if (true_code == NE && ! side_effects_p (cond)
6524 	   && !HONOR_NANS (mode)
6525 	   && rtx_equal_p (XEXP (cond, 0), true_rtx)
6526 	   && rtx_equal_p (XEXP (cond, 1), false_rtx))
6527     return true_rtx;
6528 
6529   /* Look for cases where we have (abs x) or (neg (abs X)).  */
6530 
6531   if (GET_MODE_CLASS (mode) == MODE_INT
6532       && comparison_p
6533       && XEXP (cond, 1) == const0_rtx
6534       && GET_CODE (false_rtx) == NEG
6535       && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6536       && rtx_equal_p (true_rtx, XEXP (cond, 0))
6537       && ! side_effects_p (true_rtx))
6538     switch (true_code)
6539       {
6540       case GT:
6541       case GE:
6542 	return simplify_gen_unary (ABS, mode, true_rtx, mode);
6543       case LT:
6544       case LE:
6545 	return
6546 	  simplify_gen_unary (NEG, mode,
6547 			      simplify_gen_unary (ABS, mode, true_rtx, mode),
6548 			      mode);
6549       default:
6550 	break;
6551       }
6552 
6553   /* Look for MIN or MAX.  */
6554 
6555   if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6556       && comparison_p
6557       && rtx_equal_p (XEXP (cond, 0), true_rtx)
6558       && rtx_equal_p (XEXP (cond, 1), false_rtx)
6559       && ! side_effects_p (cond))
6560     switch (true_code)
6561       {
6562       case GE:
6563       case GT:
6564 	return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6565       case LE:
6566       case LT:
6567 	return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6568       case GEU:
6569       case GTU:
6570 	return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6571       case LEU:
6572       case LTU:
6573 	return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6574       default:
6575 	break;
6576       }
6577 
6578   /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6579      second operand is zero, this can be done as (OP Z (mult COND C2)) where
6580      C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6581      SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6582      We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6583      neither 1 or -1, but it isn't worth checking for.  */
6584 
6585   if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6586       && comparison_p
6587       && is_int_mode (mode, &int_mode)
6588       && ! side_effects_p (x))
6589     {
6590       rtx t = make_compound_operation (true_rtx, SET);
6591       rtx f = make_compound_operation (false_rtx, SET);
6592       rtx cond_op0 = XEXP (cond, 0);
6593       rtx cond_op1 = XEXP (cond, 1);
6594       enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6595       scalar_int_mode m = int_mode;
6596       rtx z = 0, c1 = NULL_RTX;
6597 
6598       if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6599 	   || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6600 	   || GET_CODE (t) == ASHIFT
6601 	   || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6602 	  && rtx_equal_p (XEXP (t, 0), f))
6603 	c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6604 
6605       /* If an identity-zero op is commutative, check whether there
6606 	 would be a match if we swapped the operands.  */
6607       else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6608 		|| GET_CODE (t) == XOR)
6609 	       && rtx_equal_p (XEXP (t, 1), f))
6610 	c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6611       else if (GET_CODE (t) == SIGN_EXTEND
6612 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6613 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6614 		   || GET_CODE (XEXP (t, 0)) == MINUS
6615 		   || GET_CODE (XEXP (t, 0)) == IOR
6616 		   || GET_CODE (XEXP (t, 0)) == XOR
6617 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6618 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6619 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6620 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6621 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6622 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6623 	       && (num_sign_bit_copies (f, GET_MODE (f))
6624 		   > (unsigned int)
6625 		     (GET_MODE_PRECISION (int_mode)
6626 		      - GET_MODE_PRECISION (inner_mode))))
6627 	{
6628 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6629 	  extend_op = SIGN_EXTEND;
6630 	  m = inner_mode;
6631 	}
6632       else if (GET_CODE (t) == SIGN_EXTEND
6633 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6634 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6635 		   || GET_CODE (XEXP (t, 0)) == IOR
6636 		   || GET_CODE (XEXP (t, 0)) == XOR)
6637 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6638 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6639 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6640 	       && (num_sign_bit_copies (f, GET_MODE (f))
6641 		   > (unsigned int)
6642 		     (GET_MODE_PRECISION (int_mode)
6643 		      - GET_MODE_PRECISION (inner_mode))))
6644 	{
6645 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6646 	  extend_op = SIGN_EXTEND;
6647 	  m = inner_mode;
6648 	}
6649       else if (GET_CODE (t) == ZERO_EXTEND
6650 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6651 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6652 		   || GET_CODE (XEXP (t, 0)) == MINUS
6653 		   || GET_CODE (XEXP (t, 0)) == IOR
6654 		   || GET_CODE (XEXP (t, 0)) == XOR
6655 		   || GET_CODE (XEXP (t, 0)) == ASHIFT
6656 		   || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6657 		   || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6658 	       && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6659 	       && HWI_COMPUTABLE_MODE_P (int_mode)
6660 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6661 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6662 	       && ((nonzero_bits (f, GET_MODE (f))
6663 		    & ~GET_MODE_MASK (inner_mode))
6664 		   == 0))
6665 	{
6666 	  c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6667 	  extend_op = ZERO_EXTEND;
6668 	  m = inner_mode;
6669 	}
6670       else if (GET_CODE (t) == ZERO_EXTEND
6671 	       && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6672 	       && (GET_CODE (XEXP (t, 0)) == PLUS
6673 		   || GET_CODE (XEXP (t, 0)) == IOR
6674 		   || GET_CODE (XEXP (t, 0)) == XOR)
6675 	       && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6676 	       && HWI_COMPUTABLE_MODE_P (int_mode)
6677 	       && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6678 	       && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6679 	       && ((nonzero_bits (f, GET_MODE (f))
6680 		    & ~GET_MODE_MASK (inner_mode))
6681 		   == 0))
6682 	{
6683 	  c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6684 	  extend_op = ZERO_EXTEND;
6685 	  m = inner_mode;
6686 	}
6687 
6688       if (z)
6689 	{
6690 	  machine_mode cm = m;
6691 	  if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6692 	      && GET_MODE (c1) != VOIDmode)
6693 	    cm = GET_MODE (c1);
6694 	  temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6695 						 cond_op0, cond_op1),
6696 			pc_rtx, pc_rtx, 0, 0, 0);
6697 	  temp = simplify_gen_binary (MULT, cm, temp,
6698 				      simplify_gen_binary (MULT, cm, c1,
6699 							   const_true_rtx));
6700 	  temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6701 	  temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6702 
6703 	  if (extend_op != UNKNOWN)
6704 	    temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6705 
6706 	  return temp;
6707 	}
6708     }
6709 
6710   /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6711      1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6712      negation of a single bit, we can convert this operation to a shift.  We
6713      can actually do this more generally, but it doesn't seem worth it.  */
6714 
6715   if (true_code == NE
6716       && is_a <scalar_int_mode> (mode, &int_mode)
6717       && XEXP (cond, 1) == const0_rtx
6718       && false_rtx == const0_rtx
6719       && CONST_INT_P (true_rtx)
6720       && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6721 	   && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6722 	  || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6723 	       == GET_MODE_PRECISION (int_mode))
6724 	      && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6725     return
6726       simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6727 			    gen_lowpart (int_mode, XEXP (cond, 0)), i);
6728 
6729   /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6730      non-zero bit in A is C1.  */
6731   if (true_code == NE && XEXP (cond, 1) == const0_rtx
6732       && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6733       && is_a <scalar_int_mode> (mode, &int_mode)
6734       && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6735       && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6736 	  == nonzero_bits (XEXP (cond, 0), inner_mode)
6737       && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6738     {
6739       rtx val = XEXP (cond, 0);
6740       if (inner_mode == int_mode)
6741         return val;
6742       else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6743         return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6744     }
6745 
6746   return x;
6747 }
6748 
6749 /* Simplify X, a SET expression.  Return the new expression.  */
6750 
6751 static rtx
6752 simplify_set (rtx x)
6753 {
6754   rtx src = SET_SRC (x);
6755   rtx dest = SET_DEST (x);
6756   machine_mode mode
6757     = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6758   rtx_insn *other_insn;
6759   rtx *cc_use;
6760   scalar_int_mode int_mode;
6761 
6762   /* (set (pc) (return)) gets written as (return).  */
6763   if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6764     return src;
6765 
6766   /* Now that we know for sure which bits of SRC we are using, see if we can
6767      simplify the expression for the object knowing that we only need the
6768      low-order bits.  */
6769 
6770   if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6771     {
6772       src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6773       SUBST (SET_SRC (x), src);
6774     }
6775 
6776   /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6777      the comparison result and try to simplify it unless we already have used
6778      undobuf.other_insn.  */
6779   if ((GET_MODE_CLASS (mode) == MODE_CC
6780        || GET_CODE (src) == COMPARE
6781        || CC0_P (dest))
6782       && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6783       && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6784       && COMPARISON_P (*cc_use)
6785       && rtx_equal_p (XEXP (*cc_use, 0), dest))
6786     {
6787       enum rtx_code old_code = GET_CODE (*cc_use);
6788       enum rtx_code new_code;
6789       rtx op0, op1, tmp;
6790       int other_changed = 0;
6791       rtx inner_compare = NULL_RTX;
6792       machine_mode compare_mode = GET_MODE (dest);
6793 
6794       if (GET_CODE (src) == COMPARE)
6795 	{
6796 	  op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6797 	  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6798 	    {
6799 	      inner_compare = op0;
6800 	      op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6801 	    }
6802 	}
6803       else
6804 	op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6805 
6806       tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6807 					   op0, op1);
6808       if (!tmp)
6809 	new_code = old_code;
6810       else if (!CONSTANT_P (tmp))
6811 	{
6812 	  new_code = GET_CODE (tmp);
6813 	  op0 = XEXP (tmp, 0);
6814 	  op1 = XEXP (tmp, 1);
6815 	}
6816       else
6817 	{
6818 	  rtx pat = PATTERN (other_insn);
6819 	  undobuf.other_insn = other_insn;
6820 	  SUBST (*cc_use, tmp);
6821 
6822 	  /* Attempt to simplify CC user.  */
6823 	  if (GET_CODE (pat) == SET)
6824 	    {
6825 	      rtx new_rtx = simplify_rtx (SET_SRC (pat));
6826 	      if (new_rtx != NULL_RTX)
6827 		SUBST (SET_SRC (pat), new_rtx);
6828 	    }
6829 
6830 	  /* Convert X into a no-op move.  */
6831 	  SUBST (SET_DEST (x), pc_rtx);
6832 	  SUBST (SET_SRC (x), pc_rtx);
6833 	  return x;
6834 	}
6835 
6836       /* Simplify our comparison, if possible.  */
6837       new_code = simplify_comparison (new_code, &op0, &op1);
6838 
6839 #ifdef SELECT_CC_MODE
6840       /* If this machine has CC modes other than CCmode, check to see if we
6841 	 need to use a different CC mode here.  */
6842       if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6843 	compare_mode = GET_MODE (op0);
6844       else if (inner_compare
6845 	       && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6846 	       && new_code == old_code
6847 	       && op0 == XEXP (inner_compare, 0)
6848 	       && op1 == XEXP (inner_compare, 1))
6849 	compare_mode = GET_MODE (inner_compare);
6850       else
6851 	compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6852 
6853       /* If the mode changed, we have to change SET_DEST, the mode in the
6854 	 compare, and the mode in the place SET_DEST is used.  If SET_DEST is
6855 	 a hard register, just build new versions with the proper mode.  If it
6856 	 is a pseudo, we lose unless it is only time we set the pseudo, in
6857 	 which case we can safely change its mode.  */
6858       if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6859 	{
6860 	  if (can_change_dest_mode (dest, 0, compare_mode))
6861 	    {
6862 	      unsigned int regno = REGNO (dest);
6863 	      rtx new_dest;
6864 
6865 	      if (regno < FIRST_PSEUDO_REGISTER)
6866 		new_dest = gen_rtx_REG (compare_mode, regno);
6867 	      else
6868 		{
6869 		  SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6870 		  new_dest = regno_reg_rtx[regno];
6871 		}
6872 
6873 	      SUBST (SET_DEST (x), new_dest);
6874 	      SUBST (XEXP (*cc_use, 0), new_dest);
6875 	      other_changed = 1;
6876 
6877 	      dest = new_dest;
6878 	    }
6879 	}
6880 #endif  /* SELECT_CC_MODE */
6881 
6882       /* If the code changed, we have to build a new comparison in
6883 	 undobuf.other_insn.  */
6884       if (new_code != old_code)
6885 	{
6886 	  int other_changed_previously = other_changed;
6887 	  unsigned HOST_WIDE_INT mask;
6888 	  rtx old_cc_use = *cc_use;
6889 
6890 	  SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6891 					  dest, const0_rtx));
6892 	  other_changed = 1;
6893 
6894 	  /* If the only change we made was to change an EQ into an NE or
6895 	     vice versa, OP0 has only one bit that might be nonzero, and OP1
6896 	     is zero, check if changing the user of the condition code will
6897 	     produce a valid insn.  If it won't, we can keep the original code
6898 	     in that insn by surrounding our operation with an XOR.  */
6899 
6900 	  if (((old_code == NE && new_code == EQ)
6901 	       || (old_code == EQ && new_code == NE))
6902 	      && ! other_changed_previously && op1 == const0_rtx
6903 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6904 	      && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6905 	    {
6906 	      rtx pat = PATTERN (other_insn), note = 0;
6907 
6908 	      if ((recog_for_combine (&pat, other_insn, &note) < 0
6909 		   && ! check_asm_operands (pat)))
6910 		{
6911 		  *cc_use = old_cc_use;
6912 		  other_changed = 0;
6913 
6914 		  op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6915 					     gen_int_mode (mask,
6916 							   GET_MODE (op0)));
6917 		}
6918 	    }
6919 	}
6920 
6921       if (other_changed)
6922 	undobuf.other_insn = other_insn;
6923 
6924       /* Don't generate a compare of a CC with 0, just use that CC.  */
6925       if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6926 	{
6927 	  SUBST (SET_SRC (x), op0);
6928 	  src = SET_SRC (x);
6929 	}
6930       /* Otherwise, if we didn't previously have the same COMPARE we
6931 	 want, create it from scratch.  */
6932       else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6933 	       || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6934 	{
6935 	  SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6936 	  src = SET_SRC (x);
6937 	}
6938     }
6939   else
6940     {
6941       /* Get SET_SRC in a form where we have placed back any
6942 	 compound expressions.  Then do the checks below.  */
6943       src = make_compound_operation (src, SET);
6944       SUBST (SET_SRC (x), src);
6945     }
6946 
6947   /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6948      and X being a REG or (subreg (reg)), we may be able to convert this to
6949      (set (subreg:m2 x) (op)).
6950 
6951      We can always do this if M1 is narrower than M2 because that means that
6952      we only care about the low bits of the result.
6953 
6954      However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6955      perform a narrower operation than requested since the high-order bits will
6956      be undefined.  On machine where it is defined, this transformation is safe
6957      as long as M1 and M2 have the same number of words.  */
6958 
6959   if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6960       && !OBJECT_P (SUBREG_REG (src))
6961       && (known_equal_after_align_up
6962 	  (GET_MODE_SIZE (GET_MODE (src)),
6963 	   GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6964 	   UNITS_PER_WORD))
6965       && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6966       && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6967 	    && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6968 				       GET_MODE (SUBREG_REG (src)),
6969 				       GET_MODE (src)))
6970       && (REG_P (dest)
6971 	  || (GET_CODE (dest) == SUBREG
6972 	      && REG_P (SUBREG_REG (dest)))))
6973     {
6974       SUBST (SET_DEST (x),
6975 	     gen_lowpart (GET_MODE (SUBREG_REG (src)),
6976 				      dest));
6977       SUBST (SET_SRC (x), SUBREG_REG (src));
6978 
6979       src = SET_SRC (x), dest = SET_DEST (x);
6980     }
6981 
6982   /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6983      in SRC.  */
6984   if (dest == cc0_rtx
6985       && partial_subreg_p (src)
6986       && subreg_lowpart_p (src))
6987     {
6988       rtx inner = SUBREG_REG (src);
6989       machine_mode inner_mode = GET_MODE (inner);
6990 
6991       /* Here we make sure that we don't have a sign bit on.  */
6992       if (val_signbit_known_clear_p (GET_MODE (src),
6993 				     nonzero_bits (inner, inner_mode)))
6994 	{
6995 	  SUBST (SET_SRC (x), inner);
6996 	  src = SET_SRC (x);
6997 	}
6998     }
6999 
7000   /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7001      would require a paradoxical subreg.  Replace the subreg with a
7002      zero_extend to avoid the reload that would otherwise be required.
7003      Don't do this unless we have a scalar integer mode, otherwise the
7004      transformation is incorrect.  */
7005 
7006   enum rtx_code extend_op;
7007   if (paradoxical_subreg_p (src)
7008       && MEM_P (SUBREG_REG (src))
7009       && SCALAR_INT_MODE_P (GET_MODE (src))
7010       && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7011     {
7012       SUBST (SET_SRC (x),
7013 	     gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7014 
7015       src = SET_SRC (x);
7016     }
7017 
7018   /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7019      are comparing an item known to be 0 or -1 against 0, use a logical
7020      operation instead. Check for one of the arms being an IOR of the other
7021      arm with some value.  We compute three terms to be IOR'ed together.  In
7022      practice, at most two will be nonzero.  Then we do the IOR's.  */
7023 
7024   if (GET_CODE (dest) != PC
7025       && GET_CODE (src) == IF_THEN_ELSE
7026       && is_int_mode (GET_MODE (src), &int_mode)
7027       && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7028       && XEXP (XEXP (src, 0), 1) == const0_rtx
7029       && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7030       && (!HAVE_conditional_move
7031 	  || ! can_conditionally_move_p (int_mode))
7032       && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7033 	  == GET_MODE_PRECISION (int_mode))
7034       && ! side_effects_p (src))
7035     {
7036       rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7037 		      ? XEXP (src, 1) : XEXP (src, 2));
7038       rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7039 		   ? XEXP (src, 2) : XEXP (src, 1));
7040       rtx term1 = const0_rtx, term2, term3;
7041 
7042       if (GET_CODE (true_rtx) == IOR
7043 	  && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7044 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7045       else if (GET_CODE (true_rtx) == IOR
7046 	       && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7047 	term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7048       else if (GET_CODE (false_rtx) == IOR
7049 	       && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7050 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7051       else if (GET_CODE (false_rtx) == IOR
7052 	       && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7053 	term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7054 
7055       term2 = simplify_gen_binary (AND, int_mode,
7056 				   XEXP (XEXP (src, 0), 0), true_rtx);
7057       term3 = simplify_gen_binary (AND, int_mode,
7058 				   simplify_gen_unary (NOT, int_mode,
7059 						       XEXP (XEXP (src, 0), 0),
7060 						       int_mode),
7061 				   false_rtx);
7062 
7063       SUBST (SET_SRC (x),
7064 	     simplify_gen_binary (IOR, int_mode,
7065 				  simplify_gen_binary (IOR, int_mode,
7066 						       term1, term2),
7067 				  term3));
7068 
7069       src = SET_SRC (x);
7070     }
7071 
7072   /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7073      whole thing fail.  */
7074   if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7075     return src;
7076   else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7077     return dest;
7078   else
7079     /* Convert this into a field assignment operation, if possible.  */
7080     return make_field_assignment (x);
7081 }
7082 
7083 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7084    result.  */
7085 
7086 static rtx
7087 simplify_logical (rtx x)
7088 {
7089   rtx op0 = XEXP (x, 0);
7090   rtx op1 = XEXP (x, 1);
7091   scalar_int_mode mode;
7092 
7093   switch (GET_CODE (x))
7094     {
7095     case AND:
7096       /* We can call simplify_and_const_int only if we don't lose
7097 	 any (sign) bits when converting INTVAL (op1) to
7098 	 "unsigned HOST_WIDE_INT".  */
7099       if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7100 	  && CONST_INT_P (op1)
7101 	  && (HWI_COMPUTABLE_MODE_P (mode)
7102 	      || INTVAL (op1) > 0))
7103 	{
7104 	  x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7105 	  if (GET_CODE (x) != AND)
7106 	    return x;
7107 
7108 	  op0 = XEXP (x, 0);
7109 	  op1 = XEXP (x, 1);
7110 	}
7111 
7112       /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7113 	 apply the distributive law and then the inverse distributive
7114 	 law to see if things simplify.  */
7115       if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7116 	{
7117 	  rtx result = distribute_and_simplify_rtx (x, 0);
7118 	  if (result)
7119 	    return result;
7120 	}
7121       if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7122 	{
7123 	  rtx result = distribute_and_simplify_rtx (x, 1);
7124 	  if (result)
7125 	    return result;
7126 	}
7127       break;
7128 
7129     case IOR:
7130       /* If we have (ior (and A B) C), apply the distributive law and then
7131 	 the inverse distributive law to see if things simplify.  */
7132 
7133       if (GET_CODE (op0) == AND)
7134 	{
7135 	  rtx result = distribute_and_simplify_rtx (x, 0);
7136 	  if (result)
7137 	    return result;
7138 	}
7139 
7140       if (GET_CODE (op1) == AND)
7141 	{
7142 	  rtx result = distribute_and_simplify_rtx (x, 1);
7143 	  if (result)
7144 	    return result;
7145 	}
7146       break;
7147 
7148     default:
7149       gcc_unreachable ();
7150     }
7151 
7152   return x;
7153 }
7154 
7155 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7156    operations" because they can be replaced with two more basic operations.
7157    ZERO_EXTEND is also considered "compound" because it can be replaced with
7158    an AND operation, which is simpler, though only one operation.
7159 
7160    The function expand_compound_operation is called with an rtx expression
7161    and will convert it to the appropriate shifts and AND operations,
7162    simplifying at each stage.
7163 
7164    The function make_compound_operation is called to convert an expression
7165    consisting of shifts and ANDs into the equivalent compound expression.
7166    It is the inverse of this function, loosely speaking.  */
7167 
7168 static rtx
7169 expand_compound_operation (rtx x)
7170 {
7171   unsigned HOST_WIDE_INT pos = 0, len;
7172   int unsignedp = 0;
7173   unsigned int modewidth;
7174   rtx tem;
7175   scalar_int_mode inner_mode;
7176 
7177   switch (GET_CODE (x))
7178     {
7179     case ZERO_EXTEND:
7180       unsignedp = 1;
7181       /* FALLTHRU */
7182     case SIGN_EXTEND:
7183       /* We can't necessarily use a const_int for a multiword mode;
7184 	 it depends on implicitly extending the value.
7185 	 Since we don't know the right way to extend it,
7186 	 we can't tell whether the implicit way is right.
7187 
7188 	 Even for a mode that is no wider than a const_int,
7189 	 we can't win, because we need to sign extend one of its bits through
7190 	 the rest of it, and we don't know which bit.  */
7191       if (CONST_INT_P (XEXP (x, 0)))
7192 	return x;
7193 
7194       /* Reject modes that aren't scalar integers because turning vector
7195 	 or complex modes into shifts causes problems.  */
7196       if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7197 	return x;
7198 
7199       /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7200 	 (zero_extend:MODE FROM) or (sign_extend:MODE FROM).  It is for any MEM
7201 	 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7202 	 reloaded. If not for that, MEM's would very rarely be safe.
7203 
7204 	 Reject modes bigger than a word, because we might not be able
7205 	 to reference a two-register group starting with an arbitrary register
7206 	 (and currently gen_lowpart might crash for a SUBREG).  */
7207 
7208       if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7209 	return x;
7210 
7211       len = GET_MODE_PRECISION (inner_mode);
7212       /* If the inner object has VOIDmode (the only way this can happen
7213 	 is if it is an ASM_OPERANDS), we can't do anything since we don't
7214 	 know how much masking to do.  */
7215       if (len == 0)
7216 	return x;
7217 
7218       break;
7219 
7220     case ZERO_EXTRACT:
7221       unsignedp = 1;
7222 
7223       /* fall through */
7224 
7225     case SIGN_EXTRACT:
7226       /* If the operand is a CLOBBER, just return it.  */
7227       if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7228 	return XEXP (x, 0);
7229 
7230       if (!CONST_INT_P (XEXP (x, 1))
7231 	  || !CONST_INT_P (XEXP (x, 2)))
7232 	return x;
7233 
7234       /* Reject modes that aren't scalar integers because turning vector
7235 	 or complex modes into shifts causes problems.  */
7236       if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7237 	return x;
7238 
7239       len = INTVAL (XEXP (x, 1));
7240       pos = INTVAL (XEXP (x, 2));
7241 
7242       /* This should stay within the object being extracted, fail otherwise.  */
7243       if (len + pos > GET_MODE_PRECISION (inner_mode))
7244 	return x;
7245 
7246       if (BITS_BIG_ENDIAN)
7247 	pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7248 
7249       break;
7250 
7251     default:
7252       return x;
7253     }
7254 
7255   /* We've rejected non-scalar operations by now.  */
7256   scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7257 
7258   /* Convert sign extension to zero extension, if we know that the high
7259      bit is not set, as this is easier to optimize.  It will be converted
7260      back to cheaper alternative in make_extraction.  */
7261   if (GET_CODE (x) == SIGN_EXTEND
7262       && HWI_COMPUTABLE_MODE_P (mode)
7263       && ((nonzero_bits (XEXP (x, 0), inner_mode)
7264 	   & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7265 	  == 0))
7266     {
7267       rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7268       rtx temp2 = expand_compound_operation (temp);
7269 
7270       /* Make sure this is a profitable operation.  */
7271       if (set_src_cost (x, mode, optimize_this_for_speed_p)
7272           > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7273        return temp2;
7274       else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7275                > set_src_cost (temp, mode, optimize_this_for_speed_p))
7276        return temp;
7277       else
7278        return x;
7279     }
7280 
7281   /* We can optimize some special cases of ZERO_EXTEND.  */
7282   if (GET_CODE (x) == ZERO_EXTEND)
7283     {
7284       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7285 	 know that the last value didn't have any inappropriate bits
7286 	 set.  */
7287       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7288 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7289 	  && HWI_COMPUTABLE_MODE_P (mode)
7290 	  && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7291 	      & ~GET_MODE_MASK (inner_mode)) == 0)
7292 	return XEXP (XEXP (x, 0), 0);
7293 
7294       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7295       if (GET_CODE (XEXP (x, 0)) == SUBREG
7296 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7297 	  && subreg_lowpart_p (XEXP (x, 0))
7298 	  && HWI_COMPUTABLE_MODE_P (mode)
7299 	  && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7300 	      & ~GET_MODE_MASK (inner_mode)) == 0)
7301 	return SUBREG_REG (XEXP (x, 0));
7302 
7303       /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7304 	 is a comparison and STORE_FLAG_VALUE permits.  This is like
7305 	 the first case, but it works even when MODE is larger
7306 	 than HOST_WIDE_INT.  */
7307       if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7308 	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7309 	  && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7310 	  && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7311 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7312 	return XEXP (XEXP (x, 0), 0);
7313 
7314       /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)).  */
7315       if (GET_CODE (XEXP (x, 0)) == SUBREG
7316 	  && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7317 	  && subreg_lowpart_p (XEXP (x, 0))
7318 	  && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7319 	  && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7320 	  && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7321 	return SUBREG_REG (XEXP (x, 0));
7322 
7323     }
7324 
7325   /* If we reach here, we want to return a pair of shifts.  The inner
7326      shift is a left shift of BITSIZE - POS - LEN bits.  The outer
7327      shift is a right shift of BITSIZE - LEN bits.  It is arithmetic or
7328      logical depending on the value of UNSIGNEDP.
7329 
7330      If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7331      converted into an AND of a shift.
7332 
7333      We must check for the case where the left shift would have a negative
7334      count.  This can happen in a case like (x >> 31) & 255 on machines
7335      that can't shift by a constant.  On those machines, we would first
7336      combine the shift with the AND to produce a variable-position
7337      extraction.  Then the constant of 31 would be substituted in
7338      to produce such a position.  */
7339 
7340   modewidth = GET_MODE_PRECISION (mode);
7341   if (modewidth >= pos + len)
7342     {
7343       tem = gen_lowpart (mode, XEXP (x, 0));
7344       if (!tem || GET_CODE (tem) == CLOBBER)
7345 	return x;
7346       tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7347 				  tem, modewidth - pos - len);
7348       tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7349 				  mode, tem, modewidth - len);
7350     }
7351   else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7352     tem = simplify_and_const_int (NULL_RTX, mode,
7353 				  simplify_shift_const (NULL_RTX, LSHIFTRT,
7354 							mode, XEXP (x, 0),
7355 							pos),
7356 				  (HOST_WIDE_INT_1U << len) - 1);
7357   else
7358     /* Any other cases we can't handle.  */
7359     return x;
7360 
7361   /* If we couldn't do this for some reason, return the original
7362      expression.  */
7363   if (GET_CODE (tem) == CLOBBER)
7364     return x;
7365 
7366   return tem;
7367 }
7368 
7369 /* X is a SET which contains an assignment of one object into
7370    a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7371    or certain SUBREGS). If possible, convert it into a series of
7372    logical operations.
7373 
7374    We half-heartedly support variable positions, but do not at all
7375    support variable lengths.  */
7376 
7377 static const_rtx
7378 expand_field_assignment (const_rtx x)
7379 {
7380   rtx inner;
7381   rtx pos;			/* Always counts from low bit.  */
7382   int len, inner_len;
7383   rtx mask, cleared, masked;
7384   scalar_int_mode compute_mode;
7385 
7386   /* Loop until we find something we can't simplify.  */
7387   while (1)
7388     {
7389       if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7390 	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7391 	{
7392 	  rtx x0 = XEXP (SET_DEST (x), 0);
7393 	  if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7394 	    break;
7395 	  inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7396 	  pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7397 			      MAX_MODE_INT);
7398 	}
7399       else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7400 	       && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7401 	{
7402 	  inner = XEXP (SET_DEST (x), 0);
7403 	  if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7404 	    break;
7405 
7406 	  len = INTVAL (XEXP (SET_DEST (x), 1));
7407 	  pos = XEXP (SET_DEST (x), 2);
7408 
7409 	  /* A constant position should stay within the width of INNER.  */
7410 	  if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7411 	    break;
7412 
7413 	  if (BITS_BIG_ENDIAN)
7414 	    {
7415 	      if (CONST_INT_P (pos))
7416 		pos = GEN_INT (inner_len - len - INTVAL (pos));
7417 	      else if (GET_CODE (pos) == MINUS
7418 		       && CONST_INT_P (XEXP (pos, 1))
7419 		       && INTVAL (XEXP (pos, 1)) == inner_len - len)
7420 		/* If position is ADJUST - X, new position is X.  */
7421 		pos = XEXP (pos, 0);
7422 	      else
7423 		pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7424 					   gen_int_mode (inner_len - len,
7425 							 GET_MODE (pos)),
7426 					   pos);
7427 	    }
7428 	}
7429 
7430       /* If the destination is a subreg that overwrites the whole of the inner
7431 	 register, we can move the subreg to the source.  */
7432       else if (GET_CODE (SET_DEST (x)) == SUBREG
7433 	       /* We need SUBREGs to compute nonzero_bits properly.  */
7434 	       && nonzero_sign_valid
7435 	       && !read_modify_subreg_p (SET_DEST (x)))
7436 	{
7437 	  x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7438 			   gen_lowpart
7439 			   (GET_MODE (SUBREG_REG (SET_DEST (x))),
7440 			    SET_SRC (x)));
7441 	  continue;
7442 	}
7443       else
7444 	break;
7445 
7446       while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7447 	inner = SUBREG_REG (inner);
7448 
7449       /* Don't attempt bitwise arithmetic on non scalar integer modes.  */
7450       if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7451 	{
7452 	  /* Don't do anything for vector or complex integral types.  */
7453 	  if (! FLOAT_MODE_P (GET_MODE (inner)))
7454 	    break;
7455 
7456 	  /* Try to find an integral mode to pun with.  */
7457 	  if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7458 	      .exists (&compute_mode))
7459 	    break;
7460 
7461 	  inner = gen_lowpart (compute_mode, inner);
7462 	}
7463 
7464       /* Compute a mask of LEN bits, if we can do this on the host machine.  */
7465       if (len >= HOST_BITS_PER_WIDE_INT)
7466 	break;
7467 
7468       /* Don't try to compute in too wide unsupported modes.  */
7469       if (!targetm.scalar_mode_supported_p (compute_mode))
7470 	break;
7471 
7472       /* Now compute the equivalent expression.  Make a copy of INNER
7473 	 for the SET_DEST in case it is a MEM into which we will substitute;
7474 	 we don't want shared RTL in that case.  */
7475       mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7476 			   compute_mode);
7477       cleared = simplify_gen_binary (AND, compute_mode,
7478 				     simplify_gen_unary (NOT, compute_mode,
7479 				       simplify_gen_binary (ASHIFT,
7480 							    compute_mode,
7481 							    mask, pos),
7482 				       compute_mode),
7483 				     inner);
7484       masked = simplify_gen_binary (ASHIFT, compute_mode,
7485 				    simplify_gen_binary (
7486 				      AND, compute_mode,
7487 				      gen_lowpart (compute_mode, SET_SRC (x)),
7488 				      mask),
7489 				    pos);
7490 
7491       x = gen_rtx_SET (copy_rtx (inner),
7492 		       simplify_gen_binary (IOR, compute_mode,
7493 					    cleared, masked));
7494     }
7495 
7496   return x;
7497 }
7498 
7499 /* Return an RTX for a reference to LEN bits of INNER.  If POS_RTX is nonzero,
7500    it is an RTX that represents the (variable) starting position; otherwise,
7501    POS is the (constant) starting bit position.  Both are counted from the LSB.
7502 
7503    UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7504 
7505    IN_DEST is nonzero if this is a reference in the destination of a SET.
7506    This is used when a ZERO_ or SIGN_EXTRACT isn't needed.  If nonzero,
7507    a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7508    be used.
7509 
7510    IN_COMPARE is nonzero if we are in a COMPARE.  This means that a
7511    ZERO_EXTRACT should be built even for bits starting at bit 0.
7512 
7513    MODE is the desired mode of the result (if IN_DEST == 0).
7514 
7515    The result is an RTX for the extraction or NULL_RTX if the target
7516    can't handle it.  */
7517 
7518 static rtx
7519 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7520 		 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7521 		 int in_dest, int in_compare)
7522 {
7523   /* This mode describes the size of the storage area
7524      to fetch the overall value from.  Within that, we
7525      ignore the POS lowest bits, etc.  */
7526   machine_mode is_mode = GET_MODE (inner);
7527   machine_mode inner_mode;
7528   scalar_int_mode wanted_inner_mode;
7529   scalar_int_mode wanted_inner_reg_mode = word_mode;
7530   scalar_int_mode pos_mode = word_mode;
7531   machine_mode extraction_mode = word_mode;
7532   rtx new_rtx = 0;
7533   rtx orig_pos_rtx = pos_rtx;
7534   HOST_WIDE_INT orig_pos;
7535 
7536   if (pos_rtx && CONST_INT_P (pos_rtx))
7537     pos = INTVAL (pos_rtx), pos_rtx = 0;
7538 
7539   if (GET_CODE (inner) == SUBREG
7540       && subreg_lowpart_p (inner)
7541       && (paradoxical_subreg_p (inner)
7542 	  /* If trying or potentionally trying to extract
7543 	     bits outside of is_mode, don't look through
7544 	     non-paradoxical SUBREGs.  See PR82192.  */
7545 	  || (pos_rtx == NULL_RTX
7546 	      && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7547     {
7548       /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7549 	 consider just the QI as the memory to extract from.
7550 	 The subreg adds or removes high bits; its mode is
7551 	 irrelevant to the meaning of this extraction,
7552 	 since POS and LEN count from the lsb.  */
7553       if (MEM_P (SUBREG_REG (inner)))
7554 	is_mode = GET_MODE (SUBREG_REG (inner));
7555       inner = SUBREG_REG (inner);
7556     }
7557   else if (GET_CODE (inner) == ASHIFT
7558 	   && CONST_INT_P (XEXP (inner, 1))
7559 	   && pos_rtx == 0 && pos == 0
7560 	   && len > UINTVAL (XEXP (inner, 1)))
7561     {
7562       /* We're extracting the least significant bits of an rtx
7563 	 (ashift X (const_int C)), where LEN > C.  Extract the
7564 	 least significant (LEN - C) bits of X, giving an rtx
7565 	 whose mode is MODE, then shift it left C times.  */
7566       new_rtx = make_extraction (mode, XEXP (inner, 0),
7567 			     0, 0, len - INTVAL (XEXP (inner, 1)),
7568 			     unsignedp, in_dest, in_compare);
7569       if (new_rtx != 0)
7570 	return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7571     }
7572   else if (GET_CODE (inner) == TRUNCATE
7573 	   /* If trying or potentionally trying to extract
7574 	      bits outside of is_mode, don't look through
7575 	      TRUNCATE.  See PR82192.  */
7576 	   && pos_rtx == NULL_RTX
7577 	   && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7578     inner = XEXP (inner, 0);
7579 
7580   inner_mode = GET_MODE (inner);
7581 
7582   /* See if this can be done without an extraction.  We never can if the
7583      width of the field is not the same as that of some integer mode. For
7584      registers, we can only avoid the extraction if the position is at the
7585      low-order bit and this is either not in the destination or we have the
7586      appropriate STRICT_LOW_PART operation available.
7587 
7588      For MEM, we can avoid an extract if the field starts on an appropriate
7589      boundary and we can change the mode of the memory reference.  */
7590 
7591   scalar_int_mode tmode;
7592   if (int_mode_for_size (len, 1).exists (&tmode)
7593       && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7594 	   && !MEM_P (inner)
7595 	   && (pos == 0 || REG_P (inner))
7596 	   && (inner_mode == tmode
7597 	       || !REG_P (inner)
7598 	       || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7599 	       || reg_truncated_to_mode (tmode, inner))
7600 	   && (! in_dest
7601 	       || (REG_P (inner)
7602 		   && have_insn_for (STRICT_LOW_PART, tmode))))
7603 	  || (MEM_P (inner) && pos_rtx == 0
7604 	      && (pos
7605 		  % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7606 		     : BITS_PER_UNIT)) == 0
7607 	      /* We can't do this if we are widening INNER_MODE (it
7608 		 may not be aligned, for one thing).  */
7609 	      && !paradoxical_subreg_p (tmode, inner_mode)
7610 	      && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7611 	      && (inner_mode == tmode
7612 		  || (! mode_dependent_address_p (XEXP (inner, 0),
7613 						  MEM_ADDR_SPACE (inner))
7614 		      && ! MEM_VOLATILE_P (inner))))))
7615     {
7616       /* If INNER is a MEM, make a new MEM that encompasses just the desired
7617 	 field.  If the original and current mode are the same, we need not
7618 	 adjust the offset.  Otherwise, we do if bytes big endian.
7619 
7620 	 If INNER is not a MEM, get a piece consisting of just the field
7621 	 of interest (in this case POS % BITS_PER_WORD must be 0).  */
7622 
7623       if (MEM_P (inner))
7624 	{
7625 	  poly_int64 offset;
7626 
7627 	  /* POS counts from lsb, but make OFFSET count in memory order.  */
7628 	  if (BYTES_BIG_ENDIAN)
7629 	    offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7630 					       - len - pos);
7631 	  else
7632 	    offset = pos / BITS_PER_UNIT;
7633 
7634 	  new_rtx = adjust_address_nv (inner, tmode, offset);
7635 	}
7636       else if (REG_P (inner))
7637 	{
7638 	  if (tmode != inner_mode)
7639 	    {
7640 	      /* We can't call gen_lowpart in a DEST since we
7641 		 always want a SUBREG (see below) and it would sometimes
7642 		 return a new hard register.  */
7643 	      if (pos || in_dest)
7644 		{
7645 		  poly_uint64 offset
7646 		    = subreg_offset_from_lsb (tmode, inner_mode, pos);
7647 
7648 		  /* Avoid creating invalid subregs, for example when
7649 		     simplifying (x>>32)&255.  */
7650 		  if (!validate_subreg (tmode, inner_mode, inner, offset))
7651 		    return NULL_RTX;
7652 
7653 		  new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7654 		}
7655 	      else
7656 		new_rtx = gen_lowpart (tmode, inner);
7657 	    }
7658 	  else
7659 	    new_rtx = inner;
7660 	}
7661       else
7662 	new_rtx = force_to_mode (inner, tmode,
7663 				 len >= HOST_BITS_PER_WIDE_INT
7664 				 ? HOST_WIDE_INT_M1U
7665 				 : (HOST_WIDE_INT_1U << len) - 1, 0);
7666 
7667       /* If this extraction is going into the destination of a SET,
7668 	 make a STRICT_LOW_PART unless we made a MEM.  */
7669 
7670       if (in_dest)
7671 	return (MEM_P (new_rtx) ? new_rtx
7672 		: (GET_CODE (new_rtx) != SUBREG
7673 		   ? gen_rtx_CLOBBER (tmode, const0_rtx)
7674 		   : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7675 
7676       if (mode == tmode)
7677 	return new_rtx;
7678 
7679       if (CONST_SCALAR_INT_P (new_rtx))
7680 	return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7681 					 mode, new_rtx, tmode);
7682 
7683       /* If we know that no extraneous bits are set, and that the high
7684 	 bit is not set, convert the extraction to the cheaper of
7685 	 sign and zero extension, that are equivalent in these cases.  */
7686       if (flag_expensive_optimizations
7687 	  && (HWI_COMPUTABLE_MODE_P (tmode)
7688 	      && ((nonzero_bits (new_rtx, tmode)
7689 		   & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7690 		  == 0)))
7691 	{
7692 	  rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7693 	  rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7694 
7695 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7696 	     backends.  */
7697 	  if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7698 	      <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7699 	    return temp;
7700 	  return temp1;
7701 	}
7702 
7703       /* Otherwise, sign- or zero-extend unless we already are in the
7704 	 proper mode.  */
7705 
7706       return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7707 			     mode, new_rtx));
7708     }
7709 
7710   /* Unless this is a COMPARE or we have a funny memory reference,
7711      don't do anything with zero-extending field extracts starting at
7712      the low-order bit since they are simple AND operations.  */
7713   if (pos_rtx == 0 && pos == 0 && ! in_dest
7714       && ! in_compare && unsignedp)
7715     return 0;
7716 
7717   /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7718      if the position is not a constant and the length is not 1.  In all
7719      other cases, we would only be going outside our object in cases when
7720      an original shift would have been undefined.  */
7721   if (MEM_P (inner)
7722       && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7723 	  || (pos_rtx != 0 && len != 1)))
7724     return 0;
7725 
7726   enum extraction_pattern pattern = (in_dest ? EP_insv
7727 				     : unsignedp ? EP_extzv : EP_extv);
7728 
7729   /* If INNER is not from memory, we want it to have the mode of a register
7730      extraction pattern's structure operand, or word_mode if there is no
7731      such pattern.  The same applies to extraction_mode and pos_mode
7732      and their respective operands.
7733 
7734      For memory, assume that the desired extraction_mode and pos_mode
7735      are the same as for a register operation, since at present we don't
7736      have named patterns for aligned memory structures.  */
7737   struct extraction_insn insn;
7738   unsigned int inner_size;
7739   if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7740       && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7741     {
7742       wanted_inner_reg_mode = insn.struct_mode.require ();
7743       pos_mode = insn.pos_mode;
7744       extraction_mode = insn.field_mode;
7745     }
7746 
7747   /* Never narrow an object, since that might not be safe.  */
7748 
7749   if (mode != VOIDmode
7750       && partial_subreg_p (extraction_mode, mode))
7751     extraction_mode = mode;
7752 
7753   /* Punt if len is too large for extraction_mode.  */
7754   if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7755     return NULL_RTX;
7756 
7757   if (!MEM_P (inner))
7758     wanted_inner_mode = wanted_inner_reg_mode;
7759   else
7760     {
7761       /* Be careful not to go beyond the extracted object and maintain the
7762 	 natural alignment of the memory.  */
7763       wanted_inner_mode = smallest_int_mode_for_size (len);
7764       while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7765 	     > GET_MODE_BITSIZE (wanted_inner_mode))
7766 	wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7767     }
7768 
7769   orig_pos = pos;
7770 
7771   if (BITS_BIG_ENDIAN)
7772     {
7773       /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7774 	 BITS_BIG_ENDIAN style.  If position is constant, compute new
7775 	 position.  Otherwise, build subtraction.
7776 	 Note that POS is relative to the mode of the original argument.
7777 	 If it's a MEM we need to recompute POS relative to that.
7778 	 However, if we're extracting from (or inserting into) a register,
7779 	 we want to recompute POS relative to wanted_inner_mode.  */
7780       int width;
7781       if (!MEM_P (inner))
7782 	width = GET_MODE_BITSIZE (wanted_inner_mode);
7783       else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7784 	return NULL_RTX;
7785 
7786       if (pos_rtx == 0)
7787 	pos = width - len - pos;
7788       else
7789 	pos_rtx
7790 	  = gen_rtx_MINUS (GET_MODE (pos_rtx),
7791 			   gen_int_mode (width - len, GET_MODE (pos_rtx)),
7792 			   pos_rtx);
7793       /* POS may be less than 0 now, but we check for that below.
7794 	 Note that it can only be less than 0 if !MEM_P (inner).  */
7795     }
7796 
7797   /* If INNER has a wider mode, and this is a constant extraction, try to
7798      make it smaller and adjust the byte to point to the byte containing
7799      the value.  */
7800   if (wanted_inner_mode != VOIDmode
7801       && inner_mode != wanted_inner_mode
7802       && ! pos_rtx
7803       && partial_subreg_p (wanted_inner_mode, is_mode)
7804       && MEM_P (inner)
7805       && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7806       && ! MEM_VOLATILE_P (inner))
7807     {
7808       poly_int64 offset = 0;
7809 
7810       /* The computations below will be correct if the machine is big
7811 	 endian in both bits and bytes or little endian in bits and bytes.
7812 	 If it is mixed, we must adjust.  */
7813 
7814       /* If bytes are big endian and we had a paradoxical SUBREG, we must
7815 	 adjust OFFSET to compensate.  */
7816       if (BYTES_BIG_ENDIAN
7817 	  && paradoxical_subreg_p (is_mode, inner_mode))
7818 	offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7819 
7820       /* We can now move to the desired byte.  */
7821       offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7822 		* GET_MODE_SIZE (wanted_inner_mode);
7823       pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7824 
7825       if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7826 	  && is_mode != wanted_inner_mode)
7827 	offset = (GET_MODE_SIZE (is_mode)
7828 		  - GET_MODE_SIZE (wanted_inner_mode) - offset);
7829 
7830       inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7831     }
7832 
7833   /* If INNER is not memory, get it into the proper mode.  If we are changing
7834      its mode, POS must be a constant and smaller than the size of the new
7835      mode.  */
7836   else if (!MEM_P (inner))
7837     {
7838       /* On the LHS, don't create paradoxical subregs implicitely truncating
7839 	 the register unless TARGET_TRULY_NOOP_TRUNCATION.  */
7840       if (in_dest
7841 	  && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7842 					     wanted_inner_mode))
7843 	return NULL_RTX;
7844 
7845       if (GET_MODE (inner) != wanted_inner_mode
7846 	  && (pos_rtx != 0
7847 	      || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7848 	return NULL_RTX;
7849 
7850       if (orig_pos < 0)
7851 	return NULL_RTX;
7852 
7853       inner = force_to_mode (inner, wanted_inner_mode,
7854 			     pos_rtx
7855 			     || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7856 			     ? HOST_WIDE_INT_M1U
7857 			     : (((HOST_WIDE_INT_1U << len) - 1)
7858 				<< orig_pos),
7859 			     0);
7860     }
7861 
7862   /* Adjust mode of POS_RTX, if needed.  If we want a wider mode, we
7863      have to zero extend.  Otherwise, we can just use a SUBREG.
7864 
7865      We dealt with constant rtxes earlier, so pos_rtx cannot
7866      have VOIDmode at this point.  */
7867   if (pos_rtx != 0
7868       && (GET_MODE_SIZE (pos_mode)
7869 	  > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7870     {
7871       rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7872 				     GET_MODE (pos_rtx));
7873 
7874       /* If we know that no extraneous bits are set, and that the high
7875 	 bit is not set, convert extraction to cheaper one - either
7876 	 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7877 	 cases.  */
7878       if (flag_expensive_optimizations
7879 	  && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7880 	      && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7881 		   & ~(((unsigned HOST_WIDE_INT)
7882 			GET_MODE_MASK (GET_MODE (pos_rtx)))
7883 		       >> 1))
7884 		  == 0)))
7885 	{
7886 	  rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7887 					  GET_MODE (pos_rtx));
7888 
7889 	  /* Prefer ZERO_EXTENSION, since it gives more information to
7890 	     backends.  */
7891 	  if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7892 	      < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7893 	    temp = temp1;
7894 	}
7895       pos_rtx = temp;
7896     }
7897 
7898   /* Make POS_RTX unless we already have it and it is correct.  If we don't
7899      have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7900      be a CONST_INT.  */
7901   if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7902     pos_rtx = orig_pos_rtx;
7903 
7904   else if (pos_rtx == 0)
7905     pos_rtx = GEN_INT (pos);
7906 
7907   /* Make the required operation.  See if we can use existing rtx.  */
7908   new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7909 			 extraction_mode, inner, GEN_INT (len), pos_rtx);
7910   if (! in_dest)
7911     new_rtx = gen_lowpart (mode, new_rtx);
7912 
7913   return new_rtx;
7914 }
7915 
7916 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7917    can be commuted with any other operations in X.  Return X without
7918    that shift if so.  */
7919 
7920 static rtx
7921 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7922 {
7923   enum rtx_code code = GET_CODE (x);
7924   rtx tem;
7925 
7926   switch (code)
7927     {
7928     case ASHIFT:
7929       /* This is the shift itself.  If it is wide enough, we will return
7930 	 either the value being shifted if the shift count is equal to
7931 	 COUNT or a shift for the difference.  */
7932       if (CONST_INT_P (XEXP (x, 1))
7933 	  && INTVAL (XEXP (x, 1)) >= count)
7934 	return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7935 				     INTVAL (XEXP (x, 1)) - count);
7936       break;
7937 
7938     case NEG:  case NOT:
7939       if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7940 	return simplify_gen_unary (code, mode, tem, mode);
7941 
7942       break;
7943 
7944     case PLUS:  case IOR:  case XOR:  case AND:
7945       /* If we can safely shift this constant and we find the inner shift,
7946 	 make a new operation.  */
7947       if (CONST_INT_P (XEXP (x, 1))
7948 	  && (UINTVAL (XEXP (x, 1))
7949 	      & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7950 	  && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7951 	{
7952 	  HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7953 	  return simplify_gen_binary (code, mode, tem,
7954 				      gen_int_mode (val, mode));
7955 	}
7956       break;
7957 
7958     default:
7959       break;
7960     }
7961 
7962   return 0;
7963 }
7964 
7965 /* Subroutine of make_compound_operation.  *X_PTR is the rtx at the current
7966    level of the expression and MODE is its mode.  IN_CODE is as for
7967    make_compound_operation.  *NEXT_CODE_PTR is the value of IN_CODE
7968    that should be used when recursing on operands of *X_PTR.
7969 
7970    There are two possible actions:
7971 
7972    - Return null.  This tells the caller to recurse on *X_PTR with IN_CODE
7973      equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7974 
7975    - Return a new rtx, which the caller returns directly.  */
7976 
7977 static rtx
7978 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7979 			     enum rtx_code in_code,
7980 			     enum rtx_code *next_code_ptr)
7981 {
7982   rtx x = *x_ptr;
7983   enum rtx_code next_code = *next_code_ptr;
7984   enum rtx_code code = GET_CODE (x);
7985   int mode_width = GET_MODE_PRECISION (mode);
7986   rtx rhs, lhs;
7987   rtx new_rtx = 0;
7988   int i;
7989   rtx tem;
7990   scalar_int_mode inner_mode;
7991   bool equality_comparison = false;
7992 
7993   if (in_code == EQ)
7994     {
7995       equality_comparison = true;
7996       in_code = COMPARE;
7997     }
7998 
7999   /* Process depending on the code of this operation.  If NEW is set
8000      nonzero, it will be returned.  */
8001 
8002   switch (code)
8003     {
8004     case ASHIFT:
8005       /* Convert shifts by constants into multiplications if inside
8006 	 an address.  */
8007       if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8008 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8009 	  && INTVAL (XEXP (x, 1)) >= 0)
8010 	{
8011 	  HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8012 	  HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8013 
8014 	  new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8015 	  if (GET_CODE (new_rtx) == NEG)
8016 	    {
8017 	      new_rtx = XEXP (new_rtx, 0);
8018 	      multval = -multval;
8019 	    }
8020 	  multval = trunc_int_for_mode (multval, mode);
8021 	  new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8022 	}
8023       break;
8024 
8025     case PLUS:
8026       lhs = XEXP (x, 0);
8027       rhs = XEXP (x, 1);
8028       lhs = make_compound_operation (lhs, next_code);
8029       rhs = make_compound_operation (rhs, next_code);
8030       if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8031 	{
8032 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8033 				     XEXP (lhs, 1));
8034 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8035 	}
8036       else if (GET_CODE (lhs) == MULT
8037 	       && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8038 	{
8039 	  tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8040 				     simplify_gen_unary (NEG, mode,
8041 							 XEXP (lhs, 1),
8042 							 mode));
8043 	  new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8044 	}
8045       else
8046 	{
8047 	  SUBST (XEXP (x, 0), lhs);
8048 	  SUBST (XEXP (x, 1), rhs);
8049 	}
8050       maybe_swap_commutative_operands (x);
8051       return x;
8052 
8053     case MINUS:
8054       lhs = XEXP (x, 0);
8055       rhs = XEXP (x, 1);
8056       lhs = make_compound_operation (lhs, next_code);
8057       rhs = make_compound_operation (rhs, next_code);
8058       if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8059 	{
8060 	  tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8061 				     XEXP (rhs, 1));
8062 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
8063 	}
8064       else if (GET_CODE (rhs) == MULT
8065 	       && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8066 	{
8067 	  tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8068 				     simplify_gen_unary (NEG, mode,
8069 							 XEXP (rhs, 1),
8070 							 mode));
8071 	  return simplify_gen_binary (PLUS, mode, tem, lhs);
8072 	}
8073       else
8074 	{
8075 	  SUBST (XEXP (x, 0), lhs);
8076 	  SUBST (XEXP (x, 1), rhs);
8077 	  return x;
8078 	}
8079 
8080     case AND:
8081       /* If the second operand is not a constant, we can't do anything
8082 	 with it.  */
8083       if (!CONST_INT_P (XEXP (x, 1)))
8084 	break;
8085 
8086       /* If the constant is a power of two minus one and the first operand
8087 	 is a logical right shift, make an extraction.  */
8088       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8089 	  && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8090 	{
8091 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8092 	  new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8093 				     i, 1, 0, in_code == COMPARE);
8094 	}
8095 
8096       /* Same as previous, but for (subreg (lshiftrt ...)) in first op.  */
8097       else if (GET_CODE (XEXP (x, 0)) == SUBREG
8098 	       && subreg_lowpart_p (XEXP (x, 0))
8099 	       && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8100 					  &inner_mode)
8101 	       && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8102 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8103 	{
8104 	  rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8105 	  new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8106 	  new_rtx = make_extraction (inner_mode, new_rtx, 0,
8107 				     XEXP (inner_x0, 1),
8108 				     i, 1, 0, in_code == COMPARE);
8109 
8110 	  /* If we narrowed the mode when dropping the subreg, then we lose.  */
8111 	  if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8112 	    new_rtx = NULL;
8113 
8114 	  /* If that didn't give anything, see if the AND simplifies on
8115 	     its own.  */
8116 	  if (!new_rtx && i >= 0)
8117 	    {
8118 	      new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8119 	      new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8120 					 0, in_code == COMPARE);
8121 	    }
8122 	}
8123       /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)).  */
8124       else if ((GET_CODE (XEXP (x, 0)) == XOR
8125 		|| GET_CODE (XEXP (x, 0)) == IOR)
8126 	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8127 	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8128 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8129 	{
8130 	  /* Apply the distributive law, and then try to make extractions.  */
8131 	  new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8132 				    gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8133 						 XEXP (x, 1)),
8134 				    gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8135 						 XEXP (x, 1)));
8136 	  new_rtx = make_compound_operation (new_rtx, in_code);
8137 	}
8138 
8139       /* If we are have (and (rotate X C) M) and C is larger than the number
8140 	 of bits in M, this is an extraction.  */
8141 
8142       else if (GET_CODE (XEXP (x, 0)) == ROTATE
8143 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8144 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8145 	       && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8146 	{
8147 	  new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8148 	  new_rtx = make_extraction (mode, new_rtx,
8149 				     (GET_MODE_PRECISION (mode)
8150 				      - INTVAL (XEXP (XEXP (x, 0), 1))),
8151 				     NULL_RTX, i, 1, 0, in_code == COMPARE);
8152 	}
8153 
8154       /* On machines without logical shifts, if the operand of the AND is
8155 	 a logical shift and our mask turns off all the propagated sign
8156 	 bits, we can replace the logical shift with an arithmetic shift.  */
8157       else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8158 	       && !have_insn_for (LSHIFTRT, mode)
8159 	       && have_insn_for (ASHIFTRT, mode)
8160 	       && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8161 	       && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8162 	       && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8163 	       && mode_width <= HOST_BITS_PER_WIDE_INT)
8164 	{
8165 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8166 
8167 	  mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8168 	  if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8169 	    SUBST (XEXP (x, 0),
8170 		   gen_rtx_ASHIFTRT (mode,
8171 				     make_compound_operation (XEXP (XEXP (x,
8172 									  0),
8173 								    0),
8174 							      next_code),
8175 				     XEXP (XEXP (x, 0), 1)));
8176 	}
8177 
8178       /* If the constant is one less than a power of two, this might be
8179 	 representable by an extraction even if no shift is present.
8180 	 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8181 	 we are in a COMPARE.  */
8182       else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8183 	new_rtx = make_extraction (mode,
8184 				   make_compound_operation (XEXP (x, 0),
8185 							    next_code),
8186 				   0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8187 
8188       /* If we are in a comparison and this is an AND with a power of two,
8189 	 convert this into the appropriate bit extract.  */
8190       else if (in_code == COMPARE
8191 	       && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8192 	       && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8193 	new_rtx = make_extraction (mode,
8194 				   make_compound_operation (XEXP (x, 0),
8195 							    next_code),
8196 				   i, NULL_RTX, 1, 1, 0, 1);
8197 
8198       /* If the one operand is a paradoxical subreg of a register or memory and
8199 	 the constant (limited to the smaller mode) has only zero bits where
8200 	 the sub expression has known zero bits, this can be expressed as
8201 	 a zero_extend.  */
8202       else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8203 	{
8204 	  rtx sub;
8205 
8206 	  sub = XEXP (XEXP (x, 0), 0);
8207 	  machine_mode sub_mode = GET_MODE (sub);
8208 	  int sub_width;
8209 	  if ((REG_P (sub) || MEM_P (sub))
8210 	      && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8211 	      && sub_width < mode_width)
8212 	    {
8213 	      unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8214 	      unsigned HOST_WIDE_INT mask;
8215 
8216 	      /* original AND constant with all the known zero bits set */
8217 	      mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8218 	      if ((mask & mode_mask) == mode_mask)
8219 		{
8220 		  new_rtx = make_compound_operation (sub, next_code);
8221 		  new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8222 					     1, 0, in_code == COMPARE);
8223 		}
8224 	    }
8225 	}
8226 
8227       break;
8228 
8229     case LSHIFTRT:
8230       /* If the sign bit is known to be zero, replace this with an
8231 	 arithmetic shift.  */
8232       if (have_insn_for (ASHIFTRT, mode)
8233 	  && ! have_insn_for (LSHIFTRT, mode)
8234 	  && mode_width <= HOST_BITS_PER_WIDE_INT
8235 	  && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8236 	{
8237 	  new_rtx = gen_rtx_ASHIFTRT (mode,
8238 				      make_compound_operation (XEXP (x, 0),
8239 							       next_code),
8240 				      XEXP (x, 1));
8241 	  break;
8242 	}
8243 
8244       /* fall through */
8245 
8246     case ASHIFTRT:
8247       lhs = XEXP (x, 0);
8248       rhs = XEXP (x, 1);
8249 
8250       /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8251 	 this is a SIGN_EXTRACT.  */
8252       if (CONST_INT_P (rhs)
8253 	  && GET_CODE (lhs) == ASHIFT
8254 	  && CONST_INT_P (XEXP (lhs, 1))
8255 	  && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8256 	  && INTVAL (XEXP (lhs, 1)) >= 0
8257 	  && INTVAL (rhs) < mode_width)
8258 	{
8259 	  new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8260 	  new_rtx = make_extraction (mode, new_rtx,
8261 				     INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8262 				     NULL_RTX, mode_width - INTVAL (rhs),
8263 				     code == LSHIFTRT, 0, in_code == COMPARE);
8264 	  break;
8265 	}
8266 
8267       /* See if we have operations between an ASHIFTRT and an ASHIFT.
8268 	 If so, try to merge the shifts into a SIGN_EXTEND.  We could
8269 	 also do this for some cases of SIGN_EXTRACT, but it doesn't
8270 	 seem worth the effort; the case checked for occurs on Alpha.  */
8271 
8272       if (!OBJECT_P (lhs)
8273 	  && ! (GET_CODE (lhs) == SUBREG
8274 		&& (OBJECT_P (SUBREG_REG (lhs))))
8275 	  && CONST_INT_P (rhs)
8276 	  && INTVAL (rhs) >= 0
8277 	  && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8278 	  && INTVAL (rhs) < mode_width
8279 	  && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8280 	new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8281 								  next_code),
8282 				   0, NULL_RTX, mode_width - INTVAL (rhs),
8283 				   code == LSHIFTRT, 0, in_code == COMPARE);
8284 
8285       break;
8286 
8287     case SUBREG:
8288       /* Call ourselves recursively on the inner expression.  If we are
8289 	 narrowing the object and it has a different RTL code from
8290 	 what it originally did, do this SUBREG as a force_to_mode.  */
8291       {
8292 	rtx inner = SUBREG_REG (x), simplified;
8293 	enum rtx_code subreg_code = in_code;
8294 
8295 	/* If the SUBREG is masking of a logical right shift,
8296 	   make an extraction.  */
8297 	if (GET_CODE (inner) == LSHIFTRT
8298 	    && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8299 	    && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8300 	    && CONST_INT_P (XEXP (inner, 1))
8301 	    && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8302 	    && subreg_lowpart_p (x))
8303 	  {
8304 	    new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8305 	    int width = GET_MODE_PRECISION (inner_mode)
8306 			- INTVAL (XEXP (inner, 1));
8307 	    if (width > mode_width)
8308 	      width = mode_width;
8309 	    new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8310 				       width, 1, 0, in_code == COMPARE);
8311 	    break;
8312 	  }
8313 
8314 	/* If in_code is COMPARE, it isn't always safe to pass it through
8315 	   to the recursive make_compound_operation call.  */
8316 	if (subreg_code == COMPARE
8317 	    && (!subreg_lowpart_p (x)
8318 		|| GET_CODE (inner) == SUBREG
8319 		/* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8320 		   is (const_int 0), rather than
8321 		   (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8322 		   Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8323 		   for non-equality comparisons against 0 is not equivalent
8324 		   to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0).  */
8325 		|| (GET_CODE (inner) == AND
8326 		    && CONST_INT_P (XEXP (inner, 1))
8327 		    && partial_subreg_p (x)
8328 		    && exact_log2 (UINTVAL (XEXP (inner, 1)))
8329 		       >= GET_MODE_BITSIZE (mode) - 1)))
8330 	  subreg_code = SET;
8331 
8332 	tem = make_compound_operation (inner, subreg_code);
8333 
8334 	simplified
8335 	  = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8336 	if (simplified)
8337 	  tem = simplified;
8338 
8339 	if (GET_CODE (tem) != GET_CODE (inner)
8340 	    && partial_subreg_p (x)
8341 	    && subreg_lowpart_p (x))
8342 	  {
8343 	    rtx newer
8344 	      = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8345 
8346 	    /* If we have something other than a SUBREG, we might have
8347 	       done an expansion, so rerun ourselves.  */
8348 	    if (GET_CODE (newer) != SUBREG)
8349 	      newer = make_compound_operation (newer, in_code);
8350 
8351 	    /* force_to_mode can expand compounds.  If it just re-expanded
8352 	       the compound, use gen_lowpart to convert to the desired
8353 	       mode.  */
8354 	    if (rtx_equal_p (newer, x)
8355 		/* Likewise if it re-expanded the compound only partially.
8356 		   This happens for SUBREG of ZERO_EXTRACT if they extract
8357 		   the same number of bits.  */
8358 		|| (GET_CODE (newer) == SUBREG
8359 		    && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8360 			|| GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8361 		    && GET_CODE (inner) == AND
8362 		    && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8363 	      return gen_lowpart (GET_MODE (x), tem);
8364 
8365 	    return newer;
8366 	  }
8367 
8368 	if (simplified)
8369 	  return tem;
8370       }
8371       break;
8372 
8373     default:
8374       break;
8375     }
8376 
8377   if (new_rtx)
8378     *x_ptr = gen_lowpart (mode, new_rtx);
8379   *next_code_ptr = next_code;
8380   return NULL_RTX;
8381 }
8382 
8383 /* Look at the expression rooted at X.  Look for expressions
8384    equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8385    Form these expressions.
8386 
8387    Return the new rtx, usually just X.
8388 
8389    Also, for machines like the VAX that don't have logical shift insns,
8390    try to convert logical to arithmetic shift operations in cases where
8391    they are equivalent.  This undoes the canonicalizations to logical
8392    shifts done elsewhere.
8393 
8394    We try, as much as possible, to re-use rtl expressions to save memory.
8395 
8396    IN_CODE says what kind of expression we are processing.  Normally, it is
8397    SET.  In a memory address it is MEM.  When processing the arguments of
8398    a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8399    precisely it is an equality comparison against zero.  */
8400 
8401 rtx
8402 make_compound_operation (rtx x, enum rtx_code in_code)
8403 {
8404   enum rtx_code code = GET_CODE (x);
8405   const char *fmt;
8406   int i, j;
8407   enum rtx_code next_code;
8408   rtx new_rtx, tem;
8409 
8410   /* Select the code to be used in recursive calls.  Once we are inside an
8411      address, we stay there.  If we have a comparison, set to COMPARE,
8412      but once inside, go back to our default of SET.  */
8413 
8414   next_code = (code == MEM ? MEM
8415 	       : ((code == COMPARE || COMPARISON_P (x))
8416 		  && XEXP (x, 1) == const0_rtx) ? COMPARE
8417 	       : in_code == COMPARE || in_code == EQ ? SET : in_code);
8418 
8419   scalar_int_mode mode;
8420   if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8421     {
8422       rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8423 						 &next_code);
8424       if (new_rtx)
8425 	return new_rtx;
8426       code = GET_CODE (x);
8427     }
8428 
8429   /* Now recursively process each operand of this operation.  We need to
8430      handle ZERO_EXTEND specially so that we don't lose track of the
8431      inner mode.  */
8432   if (code == ZERO_EXTEND)
8433     {
8434       new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8435       tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8436 					    new_rtx, GET_MODE (XEXP (x, 0)));
8437       if (tem)
8438 	return tem;
8439       SUBST (XEXP (x, 0), new_rtx);
8440       return x;
8441     }
8442 
8443   fmt = GET_RTX_FORMAT (code);
8444   for (i = 0; i < GET_RTX_LENGTH (code); i++)
8445     if (fmt[i] == 'e')
8446       {
8447 	new_rtx = make_compound_operation (XEXP (x, i), next_code);
8448 	SUBST (XEXP (x, i), new_rtx);
8449       }
8450     else if (fmt[i] == 'E')
8451       for (j = 0; j < XVECLEN (x, i); j++)
8452 	{
8453 	  new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8454 	  SUBST (XVECEXP (x, i, j), new_rtx);
8455 	}
8456 
8457   maybe_swap_commutative_operands (x);
8458   return x;
8459 }
8460 
8461 /* Given M see if it is a value that would select a field of bits
8462    within an item, but not the entire word.  Return -1 if not.
8463    Otherwise, return the starting position of the field, where 0 is the
8464    low-order bit.
8465 
8466    *PLEN is set to the length of the field.  */
8467 
8468 static int
8469 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8470 {
8471   /* Get the bit number of the first 1 bit from the right, -1 if none.  */
8472   int pos = m ? ctz_hwi (m) : -1;
8473   int len = 0;
8474 
8475   if (pos >= 0)
8476     /* Now shift off the low-order zero bits and see if we have a
8477        power of two minus 1.  */
8478     len = exact_log2 ((m >> pos) + 1);
8479 
8480   if (len <= 0)
8481     pos = -1;
8482 
8483   *plen = len;
8484   return pos;
8485 }
8486 
8487 /* If X refers to a register that equals REG in value, replace these
8488    references with REG.  */
8489 static rtx
8490 canon_reg_for_combine (rtx x, rtx reg)
8491 {
8492   rtx op0, op1, op2;
8493   const char *fmt;
8494   int i;
8495   bool copied;
8496 
8497   enum rtx_code code = GET_CODE (x);
8498   switch (GET_RTX_CLASS (code))
8499     {
8500     case RTX_UNARY:
8501       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8502       if (op0 != XEXP (x, 0))
8503 	return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8504 				   GET_MODE (reg));
8505       break;
8506 
8507     case RTX_BIN_ARITH:
8508     case RTX_COMM_ARITH:
8509       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8510       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8511       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8512 	return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8513       break;
8514 
8515     case RTX_COMPARE:
8516     case RTX_COMM_COMPARE:
8517       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8518       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8519       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8520 	return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8521 					GET_MODE (op0), op0, op1);
8522       break;
8523 
8524     case RTX_TERNARY:
8525     case RTX_BITFIELD_OPS:
8526       op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8527       op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8528       op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8529       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8530 	return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8531 				     GET_MODE (op0), op0, op1, op2);
8532       /* FALLTHRU */
8533 
8534     case RTX_OBJ:
8535       if (REG_P (x))
8536 	{
8537 	  if (rtx_equal_p (get_last_value (reg), x)
8538 	      || rtx_equal_p (reg, get_last_value (x)))
8539 	    return reg;
8540 	  else
8541 	    break;
8542 	}
8543 
8544       /* fall through */
8545 
8546     default:
8547       fmt = GET_RTX_FORMAT (code);
8548       copied = false;
8549       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8550 	if (fmt[i] == 'e')
8551 	  {
8552 	    rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8553 	    if (op != XEXP (x, i))
8554 	      {
8555 		if (!copied)
8556 		  {
8557 		    copied = true;
8558 		    x = copy_rtx (x);
8559 		  }
8560 		XEXP (x, i) = op;
8561 	      }
8562 	  }
8563 	else if (fmt[i] == 'E')
8564 	  {
8565 	    int j;
8566 	    for (j = 0; j < XVECLEN (x, i); j++)
8567 	      {
8568 		rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8569 		if (op != XVECEXP (x, i, j))
8570 		  {
8571 		    if (!copied)
8572 		      {
8573 			copied = true;
8574 			x = copy_rtx (x);
8575 		      }
8576 		    XVECEXP (x, i, j) = op;
8577 		  }
8578 	      }
8579 	  }
8580 
8581       break;
8582     }
8583 
8584   return x;
8585 }
8586 
8587 /* Return X converted to MODE.  If the value is already truncated to
8588    MODE we can just return a subreg even though in the general case we
8589    would need an explicit truncation.  */
8590 
8591 static rtx
8592 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8593 {
8594   if (!CONST_INT_P (x)
8595       && partial_subreg_p (mode, GET_MODE (x))
8596       && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8597       && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8598     {
8599       /* Bit-cast X into an integer mode.  */
8600       if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8601 	x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8602       x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8603 			      x, GET_MODE (x));
8604     }
8605 
8606   return gen_lowpart (mode, x);
8607 }
8608 
8609 /* See if X can be simplified knowing that we will only refer to it in
8610    MODE and will only refer to those bits that are nonzero in MASK.
8611    If other bits are being computed or if masking operations are done
8612    that select a superset of the bits in MASK, they can sometimes be
8613    ignored.
8614 
8615    Return a possibly simplified expression, but always convert X to
8616    MODE.  If X is a CONST_INT, AND the CONST_INT with MASK.
8617 
8618    If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8619    are all off in X.  This is used when X will be complemented, by either
8620    NOT, NEG, or XOR.  */
8621 
8622 static rtx
8623 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8624 	       int just_select)
8625 {
8626   enum rtx_code code = GET_CODE (x);
8627   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8628   machine_mode op_mode;
8629   unsigned HOST_WIDE_INT nonzero;
8630 
8631   /* If this is a CALL or ASM_OPERANDS, don't do anything.  Some of the
8632      code below will do the wrong thing since the mode of such an
8633      expression is VOIDmode.
8634 
8635      Also do nothing if X is a CLOBBER; this can happen if X was
8636      the return value from a call to gen_lowpart.  */
8637   if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8638     return x;
8639 
8640   /* We want to perform the operation in its present mode unless we know
8641      that the operation is valid in MODE, in which case we do the operation
8642      in MODE.  */
8643   op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8644 	      && have_insn_for (code, mode))
8645 	     ? mode : GET_MODE (x));
8646 
8647   /* It is not valid to do a right-shift in a narrower mode
8648      than the one it came in with.  */
8649   if ((code == LSHIFTRT || code == ASHIFTRT)
8650       && partial_subreg_p (mode, GET_MODE (x)))
8651     op_mode = GET_MODE (x);
8652 
8653   /* Truncate MASK to fit OP_MODE.  */
8654   if (op_mode)
8655     mask &= GET_MODE_MASK (op_mode);
8656 
8657   /* Determine what bits of X are guaranteed to be (non)zero.  */
8658   nonzero = nonzero_bits (x, mode);
8659 
8660   /* If none of the bits in X are needed, return a zero.  */
8661   if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8662     x = const0_rtx;
8663 
8664   /* If X is a CONST_INT, return a new one.  Do this here since the
8665      test below will fail.  */
8666   if (CONST_INT_P (x))
8667     {
8668       if (SCALAR_INT_MODE_P (mode))
8669 	return gen_int_mode (INTVAL (x) & mask, mode);
8670       else
8671 	{
8672 	  x = GEN_INT (INTVAL (x) & mask);
8673 	  return gen_lowpart_common (mode, x);
8674 	}
8675     }
8676 
8677   /* If X is narrower than MODE and we want all the bits in X's mode, just
8678      get X in the proper mode.  */
8679   if (paradoxical_subreg_p (mode, GET_MODE (x))
8680       && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8681     return gen_lowpart (mode, x);
8682 
8683   /* We can ignore the effect of a SUBREG if it narrows the mode or
8684      if the constant masks to zero all the bits the mode doesn't have.  */
8685   if (GET_CODE (x) == SUBREG
8686       && subreg_lowpart_p (x)
8687       && (partial_subreg_p (x)
8688 	  || (mask
8689 	      & GET_MODE_MASK (GET_MODE (x))
8690 	      & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8691     return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8692 
8693   scalar_int_mode int_mode, xmode;
8694   if (is_a <scalar_int_mode> (mode, &int_mode)
8695       && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8696     /* OP_MODE is either MODE or XMODE, so it must be a scalar
8697        integer too.  */
8698     return force_int_to_mode (x, int_mode, xmode,
8699 			      as_a <scalar_int_mode> (op_mode),
8700 			      mask, just_select);
8701 
8702   return gen_lowpart_or_truncate (mode, x);
8703 }
8704 
8705 /* Subroutine of force_to_mode that handles cases in which both X and
8706    the result are scalar integers.  MODE is the mode of the result,
8707    XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8708    is preferred for simplified versions of X.  The other arguments
8709    are as for force_to_mode.  */
8710 
8711 static rtx
8712 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8713 		   scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8714 		   int just_select)
8715 {
8716   enum rtx_code code = GET_CODE (x);
8717   int next_select = just_select || code == XOR || code == NOT || code == NEG;
8718   unsigned HOST_WIDE_INT fuller_mask;
8719   rtx op0, op1, temp;
8720 
8721   /* When we have an arithmetic operation, or a shift whose count we
8722      do not know, we need to assume that all bits up to the highest-order
8723      bit in MASK will be needed.  This is how we form such a mask.  */
8724   if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8725     fuller_mask = HOST_WIDE_INT_M1U;
8726   else
8727     fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8728 		   - 1);
8729 
8730   switch (code)
8731     {
8732     case CLOBBER:
8733       /* If X is a (clobber (const_int)), return it since we know we are
8734 	 generating something that won't match.  */
8735       return x;
8736 
8737     case SIGN_EXTEND:
8738     case ZERO_EXTEND:
8739     case ZERO_EXTRACT:
8740     case SIGN_EXTRACT:
8741       x = expand_compound_operation (x);
8742       if (GET_CODE (x) != code)
8743 	return force_to_mode (x, mode, mask, next_select);
8744       break;
8745 
8746     case TRUNCATE:
8747       /* Similarly for a truncate.  */
8748       return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8749 
8750     case AND:
8751       /* If this is an AND with a constant, convert it into an AND
8752 	 whose constant is the AND of that constant with MASK.  If it
8753 	 remains an AND of MASK, delete it since it is redundant.  */
8754 
8755       if (CONST_INT_P (XEXP (x, 1)))
8756 	{
8757 	  x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8758 				      mask & INTVAL (XEXP (x, 1)));
8759 	  xmode = op_mode;
8760 
8761 	  /* If X is still an AND, see if it is an AND with a mask that
8762 	     is just some low-order bits.  If so, and it is MASK, we don't
8763 	     need it.  */
8764 
8765 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8766 	      && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8767 	    x = XEXP (x, 0);
8768 
8769 	  /* If it remains an AND, try making another AND with the bits
8770 	     in the mode mask that aren't in MASK turned on.  If the
8771 	     constant in the AND is wide enough, this might make a
8772 	     cheaper constant.  */
8773 
8774 	  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8775 	      && GET_MODE_MASK (xmode) != mask
8776 	      && HWI_COMPUTABLE_MODE_P (xmode))
8777 	    {
8778 	      unsigned HOST_WIDE_INT cval
8779 		= UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8780 	      rtx y;
8781 
8782 	      y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8783 				       gen_int_mode (cval, xmode));
8784 	      if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8785 		  < set_src_cost (x, xmode, optimize_this_for_speed_p))
8786 		x = y;
8787 	    }
8788 
8789 	  break;
8790 	}
8791 
8792       goto binop;
8793 
8794     case PLUS:
8795       /* In (and (plus FOO C1) M), if M is a mask that just turns off
8796 	 low-order bits (as in an alignment operation) and FOO is already
8797 	 aligned to that boundary, mask C1 to that boundary as well.
8798 	 This may eliminate that PLUS and, later, the AND.  */
8799 
8800       {
8801 	unsigned int width = GET_MODE_PRECISION (mode);
8802 	unsigned HOST_WIDE_INT smask = mask;
8803 
8804 	/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8805 	   number, sign extend it.  */
8806 
8807 	if (width < HOST_BITS_PER_WIDE_INT
8808 	    && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8809 	  smask |= HOST_WIDE_INT_M1U << width;
8810 
8811 	if (CONST_INT_P (XEXP (x, 1))
8812 	    && pow2p_hwi (- smask)
8813 	    && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8814 	    && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8815 	  return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8816 					       (INTVAL (XEXP (x, 1)) & smask)),
8817 				mode, smask, next_select);
8818       }
8819 
8820       /* fall through */
8821 
8822     case MULT:
8823       /* Substituting into the operands of a widening MULT is not likely to
8824 	 create RTL matching a machine insn.  */
8825       if (code == MULT
8826 	  && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8827 	      || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8828 	  && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8829 	      || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8830 	  && REG_P (XEXP (XEXP (x, 0), 0))
8831 	  && REG_P (XEXP (XEXP (x, 1), 0)))
8832 	return gen_lowpart_or_truncate (mode, x);
8833 
8834       /* For PLUS, MINUS and MULT, we need any bits less significant than the
8835 	 most significant bit in MASK since carries from those bits will
8836 	 affect the bits we are interested in.  */
8837       mask = fuller_mask;
8838       goto binop;
8839 
8840     case MINUS:
8841       /* If X is (minus C Y) where C's least set bit is larger than any bit
8842 	 in the mask, then we may replace with (neg Y).  */
8843       if (CONST_INT_P (XEXP (x, 0))
8844 	  && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8845 	{
8846 	  x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8847 	  return force_to_mode (x, mode, mask, next_select);
8848 	}
8849 
8850       /* Similarly, if C contains every bit in the fuller_mask, then we may
8851 	 replace with (not Y).  */
8852       if (CONST_INT_P (XEXP (x, 0))
8853 	  && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8854 	{
8855 	  x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8856 	  return force_to_mode (x, mode, mask, next_select);
8857 	}
8858 
8859       mask = fuller_mask;
8860       goto binop;
8861 
8862     case IOR:
8863     case XOR:
8864       /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8865 	 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8866 	 operation which may be a bitfield extraction.  Ensure that the
8867 	 constant we form is not wider than the mode of X.  */
8868 
8869       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8870 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8871 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8872 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8873 	  && CONST_INT_P (XEXP (x, 1))
8874 	  && ((INTVAL (XEXP (XEXP (x, 0), 1))
8875 	       + floor_log2 (INTVAL (XEXP (x, 1))))
8876 	      < GET_MODE_PRECISION (xmode))
8877 	  && (UINTVAL (XEXP (x, 1))
8878 	      & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8879 	{
8880 	  temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8881 			       << INTVAL (XEXP (XEXP (x, 0), 1)),
8882 			       xmode);
8883 	  temp = simplify_gen_binary (GET_CODE (x), xmode,
8884 				      XEXP (XEXP (x, 0), 0), temp);
8885 	  x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8886 				   XEXP (XEXP (x, 0), 1));
8887 	  return force_to_mode (x, mode, mask, next_select);
8888 	}
8889 
8890     binop:
8891       /* For most binary operations, just propagate into the operation and
8892 	 change the mode if we have an operation of that mode.  */
8893 
8894       op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8895       op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8896 
8897       /* If we ended up truncating both operands, truncate the result of the
8898 	 operation instead.  */
8899       if (GET_CODE (op0) == TRUNCATE
8900 	  && GET_CODE (op1) == TRUNCATE)
8901 	{
8902 	  op0 = XEXP (op0, 0);
8903 	  op1 = XEXP (op1, 0);
8904 	}
8905 
8906       op0 = gen_lowpart_or_truncate (op_mode, op0);
8907       op1 = gen_lowpart_or_truncate (op_mode, op1);
8908 
8909       if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8910 	{
8911 	  x = simplify_gen_binary (code, op_mode, op0, op1);
8912 	  xmode = op_mode;
8913 	}
8914       break;
8915 
8916     case ASHIFT:
8917       /* For left shifts, do the same, but just for the first operand.
8918 	 However, we cannot do anything with shifts where we cannot
8919 	 guarantee that the counts are smaller than the size of the mode
8920 	 because such a count will have a different meaning in a
8921 	 wider mode.  */
8922 
8923       if (! (CONST_INT_P (XEXP (x, 1))
8924 	     && INTVAL (XEXP (x, 1)) >= 0
8925 	     && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8926 	  && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8927 		&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8928 		    < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8929 	break;
8930 
8931       /* If the shift count is a constant and we can do arithmetic in
8932 	 the mode of the shift, refine which bits we need.  Otherwise, use the
8933 	 conservative form of the mask.  */
8934       if (CONST_INT_P (XEXP (x, 1))
8935 	  && INTVAL (XEXP (x, 1)) >= 0
8936 	  && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8937 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8938 	mask >>= INTVAL (XEXP (x, 1));
8939       else
8940 	mask = fuller_mask;
8941 
8942       op0 = gen_lowpart_or_truncate (op_mode,
8943 				     force_to_mode (XEXP (x, 0), mode,
8944 						    mask, next_select));
8945 
8946       if (op_mode != xmode || op0 != XEXP (x, 0))
8947 	{
8948 	  x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8949 	  xmode = op_mode;
8950 	}
8951       break;
8952 
8953     case LSHIFTRT:
8954       /* Here we can only do something if the shift count is a constant,
8955 	 this shift constant is valid for the host, and we can do arithmetic
8956 	 in OP_MODE.  */
8957 
8958       if (CONST_INT_P (XEXP (x, 1))
8959 	  && INTVAL (XEXP (x, 1)) >= 0
8960 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8961 	  && HWI_COMPUTABLE_MODE_P (op_mode))
8962 	{
8963 	  rtx inner = XEXP (x, 0);
8964 	  unsigned HOST_WIDE_INT inner_mask;
8965 
8966 	  /* Select the mask of the bits we need for the shift operand.  */
8967 	  inner_mask = mask << INTVAL (XEXP (x, 1));
8968 
8969 	  /* We can only change the mode of the shift if we can do arithmetic
8970 	     in the mode of the shift and INNER_MASK is no wider than the
8971 	     width of X's mode.  */
8972 	  if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8973 	    op_mode = xmode;
8974 
8975 	  inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8976 
8977 	  if (xmode != op_mode || inner != XEXP (x, 0))
8978 	    {
8979 	      x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8980 	      xmode = op_mode;
8981 	    }
8982 	}
8983 
8984       /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8985 	 shift and AND produces only copies of the sign bit (C2 is one less
8986 	 than a power of two), we can do this with just a shift.  */
8987 
8988       if (GET_CODE (x) == LSHIFTRT
8989 	  && CONST_INT_P (XEXP (x, 1))
8990 	  /* The shift puts one of the sign bit copies in the least significant
8991 	     bit.  */
8992 	  && ((INTVAL (XEXP (x, 1))
8993 	       + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8994 	      >= GET_MODE_PRECISION (xmode))
8995 	  && pow2p_hwi (mask + 1)
8996 	  /* Number of bits left after the shift must be more than the mask
8997 	     needs.  */
8998 	  && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8999 	      <= GET_MODE_PRECISION (xmode))
9000 	  /* Must be more sign bit copies than the mask needs.  */
9001 	  && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9002 	      >= exact_log2 (mask + 1)))
9003 	{
9004 	  int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9005 	  x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9006 				   gen_int_shift_amount (xmode, nbits));
9007 	}
9008       goto shiftrt;
9009 
9010     case ASHIFTRT:
9011       /* If we are just looking for the sign bit, we don't need this shift at
9012 	 all, even if it has a variable count.  */
9013       if (val_signbit_p (xmode, mask))
9014 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9015 
9016       /* If this is a shift by a constant, get a mask that contains those bits
9017 	 that are not copies of the sign bit.  We then have two cases:  If
9018 	 MASK only includes those bits, this can be a logical shift, which may
9019 	 allow simplifications.  If MASK is a single-bit field not within
9020 	 those bits, we are requesting a copy of the sign bit and hence can
9021 	 shift the sign bit to the appropriate location.  */
9022 
9023       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9024 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9025 	{
9026 	  unsigned HOST_WIDE_INT nonzero;
9027 	  int i;
9028 
9029 	  /* If the considered data is wider than HOST_WIDE_INT, we can't
9030 	     represent a mask for all its bits in a single scalar.
9031 	     But we only care about the lower bits, so calculate these.  */
9032 
9033 	  if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9034 	    {
9035 	      nonzero = HOST_WIDE_INT_M1U;
9036 
9037 	      /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9038 		 is the number of bits a full-width mask would have set.
9039 		 We need only shift if these are fewer than nonzero can
9040 		 hold.  If not, we must keep all bits set in nonzero.  */
9041 
9042 	      if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9043 		  < HOST_BITS_PER_WIDE_INT)
9044 		nonzero >>= INTVAL (XEXP (x, 1))
9045 			    + HOST_BITS_PER_WIDE_INT
9046 			    - GET_MODE_PRECISION (xmode);
9047 	    }
9048 	  else
9049 	    {
9050 	      nonzero = GET_MODE_MASK (xmode);
9051 	      nonzero >>= INTVAL (XEXP (x, 1));
9052 	    }
9053 
9054 	  if ((mask & ~nonzero) == 0)
9055 	    {
9056 	      x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9057 					XEXP (x, 0), INTVAL (XEXP (x, 1)));
9058 	      if (GET_CODE (x) != ASHIFTRT)
9059 		return force_to_mode (x, mode, mask, next_select);
9060 	    }
9061 
9062 	  else if ((i = exact_log2 (mask)) >= 0)
9063 	    {
9064 	      x = simplify_shift_const
9065 		  (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9066 		   GET_MODE_PRECISION (xmode) - 1 - i);
9067 
9068 	      if (GET_CODE (x) != ASHIFTRT)
9069 		return force_to_mode (x, mode, mask, next_select);
9070 	    }
9071 	}
9072 
9073       /* If MASK is 1, convert this to an LSHIFTRT.  This can be done
9074 	 even if the shift count isn't a constant.  */
9075       if (mask == 1)
9076 	x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9077 
9078     shiftrt:
9079 
9080       /* If this is a zero- or sign-extension operation that just affects bits
9081 	 we don't care about, remove it.  Be sure the call above returned
9082 	 something that is still a shift.  */
9083 
9084       if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9085 	  && CONST_INT_P (XEXP (x, 1))
9086 	  && INTVAL (XEXP (x, 1)) >= 0
9087 	  && (INTVAL (XEXP (x, 1))
9088 	      <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9089 	  && GET_CODE (XEXP (x, 0)) == ASHIFT
9090 	  && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9091 	return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9092 			      next_select);
9093 
9094       break;
9095 
9096     case ROTATE:
9097     case ROTATERT:
9098       /* If the shift count is constant and we can do computations
9099 	 in the mode of X, compute where the bits we care about are.
9100 	 Otherwise, we can't do anything.  Don't change the mode of
9101 	 the shift or propagate MODE into the shift, though.  */
9102       if (CONST_INT_P (XEXP (x, 1))
9103 	  && INTVAL (XEXP (x, 1)) >= 0)
9104 	{
9105 	  temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9106 					    xmode, gen_int_mode (mask, xmode),
9107 					    XEXP (x, 1));
9108 	  if (temp && CONST_INT_P (temp))
9109 	    x = simplify_gen_binary (code, xmode,
9110 				     force_to_mode (XEXP (x, 0), xmode,
9111 						    INTVAL (temp), next_select),
9112 				     XEXP (x, 1));
9113 	}
9114       break;
9115 
9116     case NEG:
9117       /* If we just want the low-order bit, the NEG isn't needed since it
9118 	 won't change the low-order bit.  */
9119       if (mask == 1)
9120 	return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9121 
9122       /* We need any bits less significant than the most significant bit in
9123 	 MASK since carries from those bits will affect the bits we are
9124 	 interested in.  */
9125       mask = fuller_mask;
9126       goto unop;
9127 
9128     case NOT:
9129       /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9130 	 same as the XOR case above.  Ensure that the constant we form is not
9131 	 wider than the mode of X.  */
9132 
9133       if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9134 	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9135 	  && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9136 	  && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9137 	      < GET_MODE_PRECISION (xmode))
9138 	  && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9139 	{
9140 	  temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9141 	  temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9142 	  x = simplify_gen_binary (LSHIFTRT, xmode,
9143 				   temp, XEXP (XEXP (x, 0), 1));
9144 
9145 	  return force_to_mode (x, mode, mask, next_select);
9146 	}
9147 
9148       /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9149 	 use the full mask inside the NOT.  */
9150       mask = fuller_mask;
9151 
9152     unop:
9153       op0 = gen_lowpart_or_truncate (op_mode,
9154 				     force_to_mode (XEXP (x, 0), mode, mask,
9155 						    next_select));
9156       if (op_mode != xmode || op0 != XEXP (x, 0))
9157 	{
9158 	  x = simplify_gen_unary (code, op_mode, op0, op_mode);
9159 	  xmode = op_mode;
9160 	}
9161       break;
9162 
9163     case NE:
9164       /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9165 	 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9166 	 which is equal to STORE_FLAG_VALUE.  */
9167       if ((mask & ~STORE_FLAG_VALUE) == 0
9168 	  && XEXP (x, 1) == const0_rtx
9169 	  && GET_MODE (XEXP (x, 0)) == mode
9170 	  && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9171 	  && (nonzero_bits (XEXP (x, 0), mode)
9172 	      == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9173 	return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9174 
9175       break;
9176 
9177     case IF_THEN_ELSE:
9178       /* We have no way of knowing if the IF_THEN_ELSE can itself be
9179 	 written in a narrower mode.  We play it safe and do not do so.  */
9180 
9181       op0 = gen_lowpart_or_truncate (xmode,
9182 				     force_to_mode (XEXP (x, 1), mode,
9183 						    mask, next_select));
9184       op1 = gen_lowpart_or_truncate (xmode,
9185 				     force_to_mode (XEXP (x, 2), mode,
9186 						    mask, next_select));
9187       if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9188 	x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9189 				  GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9190 				  op0, op1);
9191       break;
9192 
9193     default:
9194       break;
9195     }
9196 
9197   /* Ensure we return a value of the proper mode.  */
9198   return gen_lowpart_or_truncate (mode, x);
9199 }
9200 
9201 /* Return nonzero if X is an expression that has one of two values depending on
9202    whether some other value is zero or nonzero.  In that case, we return the
9203    value that is being tested, *PTRUE is set to the value if the rtx being
9204    returned has a nonzero value, and *PFALSE is set to the other alternative.
9205 
9206    If we return zero, we set *PTRUE and *PFALSE to X.  */
9207 
9208 static rtx
9209 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9210 {
9211   machine_mode mode = GET_MODE (x);
9212   enum rtx_code code = GET_CODE (x);
9213   rtx cond0, cond1, true0, true1, false0, false1;
9214   unsigned HOST_WIDE_INT nz;
9215   scalar_int_mode int_mode;
9216 
9217   /* If we are comparing a value against zero, we are done.  */
9218   if ((code == NE || code == EQ)
9219       && XEXP (x, 1) == const0_rtx)
9220     {
9221       *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9222       *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9223       return XEXP (x, 0);
9224     }
9225 
9226   /* If this is a unary operation whose operand has one of two values, apply
9227      our opcode to compute those values.  */
9228   else if (UNARY_P (x)
9229 	   && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9230     {
9231       *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9232       *pfalse = simplify_gen_unary (code, mode, false0,
9233 				    GET_MODE (XEXP (x, 0)));
9234       return cond0;
9235     }
9236 
9237   /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9238      make can't possibly match and would suppress other optimizations.  */
9239   else if (code == COMPARE)
9240     ;
9241 
9242   /* If this is a binary operation, see if either side has only one of two
9243      values.  If either one does or if both do and they are conditional on
9244      the same value, compute the new true and false values.  */
9245   else if (BINARY_P (x))
9246     {
9247       rtx op0 = XEXP (x, 0);
9248       rtx op1 = XEXP (x, 1);
9249       cond0 = if_then_else_cond (op0, &true0, &false0);
9250       cond1 = if_then_else_cond (op1, &true1, &false1);
9251 
9252       if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9253 	  && (REG_P (op0) || REG_P (op1)))
9254 	{
9255 	  /* Try to enable a simplification by undoing work done by
9256 	     if_then_else_cond if it converted a REG into something more
9257 	     complex.  */
9258 	  if (REG_P (op0))
9259 	    {
9260 	      cond0 = 0;
9261 	      true0 = false0 = op0;
9262 	    }
9263 	  else
9264 	    {
9265 	      cond1 = 0;
9266 	      true1 = false1 = op1;
9267 	    }
9268 	}
9269 
9270       if ((cond0 != 0 || cond1 != 0)
9271 	  && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9272 	{
9273 	  /* If if_then_else_cond returned zero, then true/false are the
9274 	     same rtl.  We must copy one of them to prevent invalid rtl
9275 	     sharing.  */
9276 	  if (cond0 == 0)
9277 	    true0 = copy_rtx (true0);
9278 	  else if (cond1 == 0)
9279 	    true1 = copy_rtx (true1);
9280 
9281 	  if (COMPARISON_P (x))
9282 	    {
9283 	      *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9284 						true0, true1);
9285 	      *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9286 						 false0, false1);
9287 	     }
9288 	  else
9289 	    {
9290 	      *ptrue = simplify_gen_binary (code, mode, true0, true1);
9291 	      *pfalse = simplify_gen_binary (code, mode, false0, false1);
9292 	    }
9293 
9294 	  return cond0 ? cond0 : cond1;
9295 	}
9296 
9297       /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9298 	 operands is zero when the other is nonzero, and vice-versa,
9299 	 and STORE_FLAG_VALUE is 1 or -1.  */
9300 
9301       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9302 	  && (code == PLUS || code == IOR || code == XOR || code == MINUS
9303 	      || code == UMAX)
9304 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9305 	{
9306 	  rtx op0 = XEXP (XEXP (x, 0), 1);
9307 	  rtx op1 = XEXP (XEXP (x, 1), 1);
9308 
9309 	  cond0 = XEXP (XEXP (x, 0), 0);
9310 	  cond1 = XEXP (XEXP (x, 1), 0);
9311 
9312 	  if (COMPARISON_P (cond0)
9313 	      && COMPARISON_P (cond1)
9314 	      && SCALAR_INT_MODE_P (mode)
9315 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9316 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9317 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9318 		  || ((swap_condition (GET_CODE (cond0))
9319 		       == reversed_comparison_code (cond1, NULL))
9320 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9321 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9322 	      && ! side_effects_p (x))
9323 	    {
9324 	      *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9325 	      *pfalse = simplify_gen_binary (MULT, mode,
9326 					     (code == MINUS
9327 					      ? simplify_gen_unary (NEG, mode,
9328 								    op1, mode)
9329 					      : op1),
9330 					      const_true_rtx);
9331 	      return cond0;
9332 	    }
9333 	}
9334 
9335       /* Similarly for MULT, AND and UMIN, except that for these the result
9336 	 is always zero.  */
9337       if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9338 	  && (code == MULT || code == AND || code == UMIN)
9339 	  && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9340 	{
9341 	  cond0 = XEXP (XEXP (x, 0), 0);
9342 	  cond1 = XEXP (XEXP (x, 1), 0);
9343 
9344 	  if (COMPARISON_P (cond0)
9345 	      && COMPARISON_P (cond1)
9346 	      && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9347 		   && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9348 		   && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9349 		  || ((swap_condition (GET_CODE (cond0))
9350 		       == reversed_comparison_code (cond1, NULL))
9351 		      && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9352 		      && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9353 	      && ! side_effects_p (x))
9354 	    {
9355 	      *ptrue = *pfalse = const0_rtx;
9356 	      return cond0;
9357 	    }
9358 	}
9359     }
9360 
9361   else if (code == IF_THEN_ELSE)
9362     {
9363       /* If we have IF_THEN_ELSE already, extract the condition and
9364 	 canonicalize it if it is NE or EQ.  */
9365       cond0 = XEXP (x, 0);
9366       *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9367       if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9368 	return XEXP (cond0, 0);
9369       else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9370 	{
9371 	  *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9372 	  return XEXP (cond0, 0);
9373 	}
9374       else
9375 	return cond0;
9376     }
9377 
9378   /* If X is a SUBREG, we can narrow both the true and false values
9379      if the inner expression, if there is a condition.  */
9380   else if (code == SUBREG
9381 	   && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9382 					  &false0)) != 0)
9383     {
9384       true0 = simplify_gen_subreg (mode, true0,
9385 				   GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9386       false0 = simplify_gen_subreg (mode, false0,
9387 				    GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9388       if (true0 && false0)
9389 	{
9390 	  *ptrue = true0;
9391 	  *pfalse = false0;
9392 	  return cond0;
9393 	}
9394     }
9395 
9396   /* If X is a constant, this isn't special and will cause confusions
9397      if we treat it as such.  Likewise if it is equivalent to a constant.  */
9398   else if (CONSTANT_P (x)
9399 	   || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9400     ;
9401 
9402   /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9403      will be least confusing to the rest of the compiler.  */
9404   else if (mode == BImode)
9405     {
9406       *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9407       return x;
9408     }
9409 
9410   /* If X is known to be either 0 or -1, those are the true and
9411      false values when testing X.  */
9412   else if (x == constm1_rtx || x == const0_rtx
9413 	   || (is_a <scalar_int_mode> (mode, &int_mode)
9414 	       && (num_sign_bit_copies (x, int_mode)
9415 		   == GET_MODE_PRECISION (int_mode))))
9416     {
9417       *ptrue = constm1_rtx, *pfalse = const0_rtx;
9418       return x;
9419     }
9420 
9421   /* Likewise for 0 or a single bit.  */
9422   else if (HWI_COMPUTABLE_MODE_P (mode)
9423 	   && pow2p_hwi (nz = nonzero_bits (x, mode)))
9424     {
9425       *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9426       return x;
9427     }
9428 
9429   /* Otherwise fail; show no condition with true and false values the same.  */
9430   *ptrue = *pfalse = x;
9431   return 0;
9432 }
9433 
9434 /* Return the value of expression X given the fact that condition COND
9435    is known to be true when applied to REG as its first operand and VAL
9436    as its second.  X is known to not be shared and so can be modified in
9437    place.
9438 
9439    We only handle the simplest cases, and specifically those cases that
9440    arise with IF_THEN_ELSE expressions.  */
9441 
9442 static rtx
9443 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9444 {
9445   enum rtx_code code = GET_CODE (x);
9446   const char *fmt;
9447   int i, j;
9448 
9449   if (side_effects_p (x))
9450     return x;
9451 
9452   /* If either operand of the condition is a floating point value,
9453      then we have to avoid collapsing an EQ comparison.  */
9454   if (cond == EQ
9455       && rtx_equal_p (x, reg)
9456       && ! FLOAT_MODE_P (GET_MODE (x))
9457       && ! FLOAT_MODE_P (GET_MODE (val)))
9458     return val;
9459 
9460   if (cond == UNEQ && rtx_equal_p (x, reg))
9461     return val;
9462 
9463   /* If X is (abs REG) and we know something about REG's relationship
9464      with zero, we may be able to simplify this.  */
9465 
9466   if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9467     switch (cond)
9468       {
9469       case GE:  case GT:  case EQ:
9470 	return XEXP (x, 0);
9471       case LT:  case LE:
9472 	return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9473 				   XEXP (x, 0),
9474 				   GET_MODE (XEXP (x, 0)));
9475       default:
9476 	break;
9477       }
9478 
9479   /* The only other cases we handle are MIN, MAX, and comparisons if the
9480      operands are the same as REG and VAL.  */
9481 
9482   else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9483     {
9484       if (rtx_equal_p (XEXP (x, 0), val))
9485         {
9486 	  std::swap (val, reg);
9487 	  cond = swap_condition (cond);
9488         }
9489 
9490       if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9491 	{
9492 	  if (COMPARISON_P (x))
9493 	    {
9494 	      if (comparison_dominates_p (cond, code))
9495 		return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9496 
9497 	      code = reversed_comparison_code (x, NULL);
9498 	      if (code != UNKNOWN
9499 		  && comparison_dominates_p (cond, code))
9500 		return CONST0_RTX (GET_MODE (x));
9501 	      else
9502 		return x;
9503 	    }
9504 	  else if (code == SMAX || code == SMIN
9505 		   || code == UMIN || code == UMAX)
9506 	    {
9507 	      int unsignedp = (code == UMIN || code == UMAX);
9508 
9509 	      /* Do not reverse the condition when it is NE or EQ.
9510 		 This is because we cannot conclude anything about
9511 		 the value of 'SMAX (x, y)' when x is not equal to y,
9512 		 but we can when x equals y.  */
9513 	      if ((code == SMAX || code == UMAX)
9514 		  && ! (cond == EQ || cond == NE))
9515 		cond = reverse_condition (cond);
9516 
9517 	      switch (cond)
9518 		{
9519 		case GE:   case GT:
9520 		  return unsignedp ? x : XEXP (x, 1);
9521 		case LE:   case LT:
9522 		  return unsignedp ? x : XEXP (x, 0);
9523 		case GEU:  case GTU:
9524 		  return unsignedp ? XEXP (x, 1) : x;
9525 		case LEU:  case LTU:
9526 		  return unsignedp ? XEXP (x, 0) : x;
9527 		default:
9528 		  break;
9529 		}
9530 	    }
9531 	}
9532     }
9533   else if (code == SUBREG)
9534     {
9535       machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9536       rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9537 
9538       if (SUBREG_REG (x) != r)
9539 	{
9540 	  /* We must simplify subreg here, before we lose track of the
9541 	     original inner_mode.  */
9542 	  new_rtx = simplify_subreg (GET_MODE (x), r,
9543 				     inner_mode, SUBREG_BYTE (x));
9544 	  if (new_rtx)
9545 	    return new_rtx;
9546 	  else
9547 	    SUBST (SUBREG_REG (x), r);
9548 	}
9549 
9550       return x;
9551     }
9552   /* We don't have to handle SIGN_EXTEND here, because even in the
9553      case of replacing something with a modeless CONST_INT, a
9554      CONST_INT is already (supposed to be) a valid sign extension for
9555      its narrower mode, which implies it's already properly
9556      sign-extended for the wider mode.  Now, for ZERO_EXTEND, the
9557      story is different.  */
9558   else if (code == ZERO_EXTEND)
9559     {
9560       machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9561       rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9562 
9563       if (XEXP (x, 0) != r)
9564 	{
9565 	  /* We must simplify the zero_extend here, before we lose
9566 	     track of the original inner_mode.  */
9567 	  new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9568 					      r, inner_mode);
9569 	  if (new_rtx)
9570 	    return new_rtx;
9571 	  else
9572 	    SUBST (XEXP (x, 0), r);
9573 	}
9574 
9575       return x;
9576     }
9577 
9578   fmt = GET_RTX_FORMAT (code);
9579   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9580     {
9581       if (fmt[i] == 'e')
9582 	SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9583       else if (fmt[i] == 'E')
9584 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9585 	  SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9586 						cond, reg, val));
9587     }
9588 
9589   return x;
9590 }
9591 
9592 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9593    assignment as a field assignment.  */
9594 
9595 static int
9596 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9597 {
9598   if (widen_x && GET_MODE (x) != GET_MODE (y))
9599     {
9600       if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9601 	return 0;
9602       if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9603 	return 0;
9604       x = adjust_address_nv (x, GET_MODE (y),
9605 			     byte_lowpart_offset (GET_MODE (y),
9606 						  GET_MODE (x)));
9607     }
9608 
9609   if (x == y || rtx_equal_p (x, y))
9610     return 1;
9611 
9612   if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9613     return 0;
9614 
9615   /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9616      Note that all SUBREGs of MEM are paradoxical; otherwise they
9617      would have been rewritten.  */
9618   if (MEM_P (x) && GET_CODE (y) == SUBREG
9619       && MEM_P (SUBREG_REG (y))
9620       && rtx_equal_p (SUBREG_REG (y),
9621 		      gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9622     return 1;
9623 
9624   if (MEM_P (y) && GET_CODE (x) == SUBREG
9625       && MEM_P (SUBREG_REG (x))
9626       && rtx_equal_p (SUBREG_REG (x),
9627 		      gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9628     return 1;
9629 
9630   /* We used to see if get_last_value of X and Y were the same but that's
9631      not correct.  In one direction, we'll cause the assignment to have
9632      the wrong destination and in the case, we'll import a register into this
9633      insn that might have already have been dead.   So fail if none of the
9634      above cases are true.  */
9635   return 0;
9636 }
9637 
9638 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9639    Return that assignment if so.
9640 
9641    We only handle the most common cases.  */
9642 
9643 static rtx
9644 make_field_assignment (rtx x)
9645 {
9646   rtx dest = SET_DEST (x);
9647   rtx src = SET_SRC (x);
9648   rtx assign;
9649   rtx rhs, lhs;
9650   HOST_WIDE_INT c1;
9651   HOST_WIDE_INT pos;
9652   unsigned HOST_WIDE_INT len;
9653   rtx other;
9654 
9655   /* All the rules in this function are specific to scalar integers.  */
9656   scalar_int_mode mode;
9657   if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9658     return x;
9659 
9660   /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9661      a clear of a one-bit field.  We will have changed it to
9662      (and (rotate (const_int -2) POS) DEST), so check for that.  Also check
9663      for a SUBREG.  */
9664 
9665   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9666       && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9667       && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9668       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9669     {
9670       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9671 				1, 1, 1, 0);
9672       if (assign != 0)
9673 	return gen_rtx_SET (assign, const0_rtx);
9674       return x;
9675     }
9676 
9677   if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9678       && subreg_lowpart_p (XEXP (src, 0))
9679       && partial_subreg_p (XEXP (src, 0))
9680       && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9681       && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9682       && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9683       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9684     {
9685       assign = make_extraction (VOIDmode, dest, 0,
9686 				XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9687 				1, 1, 1, 0);
9688       if (assign != 0)
9689 	return gen_rtx_SET (assign, const0_rtx);
9690       return x;
9691     }
9692 
9693   /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9694      one-bit field.  */
9695   if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9696       && XEXP (XEXP (src, 0), 0) == const1_rtx
9697       && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9698     {
9699       assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9700 				1, 1, 1, 0);
9701       if (assign != 0)
9702 	return gen_rtx_SET (assign, const1_rtx);
9703       return x;
9704     }
9705 
9706   /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9707      SRC is an AND with all bits of that field set, then we can discard
9708      the AND.  */
9709   if (GET_CODE (dest) == ZERO_EXTRACT
9710       && CONST_INT_P (XEXP (dest, 1))
9711       && GET_CODE (src) == AND
9712       && CONST_INT_P (XEXP (src, 1)))
9713     {
9714       HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9715       unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9716       unsigned HOST_WIDE_INT ze_mask;
9717 
9718       if (width >= HOST_BITS_PER_WIDE_INT)
9719 	ze_mask = -1;
9720       else
9721 	ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9722 
9723       /* Complete overlap.  We can remove the source AND.  */
9724       if ((and_mask & ze_mask) == ze_mask)
9725 	return gen_rtx_SET (dest, XEXP (src, 0));
9726 
9727       /* Partial overlap.  We can reduce the source AND.  */
9728       if ((and_mask & ze_mask) != and_mask)
9729 	{
9730 	  src = gen_rtx_AND (mode, XEXP (src, 0),
9731 			     gen_int_mode (and_mask & ze_mask, mode));
9732 	  return gen_rtx_SET (dest, src);
9733 	}
9734     }
9735 
9736   /* The other case we handle is assignments into a constant-position
9737      field.  They look like (ior/xor (and DEST C1) OTHER).  If C1 represents
9738      a mask that has all one bits except for a group of zero bits and
9739      OTHER is known to have zeros where C1 has ones, this is such an
9740      assignment.  Compute the position and length from C1.  Shift OTHER
9741      to the appropriate position, force it to the required mode, and
9742      make the extraction.  Check for the AND in both operands.  */
9743 
9744   /* One or more SUBREGs might obscure the constant-position field
9745      assignment.  The first one we are likely to encounter is an outer
9746      narrowing SUBREG, which we can just strip for the purposes of
9747      identifying the constant-field assignment.  */
9748   scalar_int_mode src_mode = mode;
9749   if (GET_CODE (src) == SUBREG
9750       && subreg_lowpart_p (src)
9751       && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9752     src = SUBREG_REG (src);
9753 
9754   if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9755     return x;
9756 
9757   rhs = expand_compound_operation (XEXP (src, 0));
9758   lhs = expand_compound_operation (XEXP (src, 1));
9759 
9760   if (GET_CODE (rhs) == AND
9761       && CONST_INT_P (XEXP (rhs, 1))
9762       && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9763     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9764   /* The second SUBREG that might get in the way is a paradoxical
9765      SUBREG around the first operand of the AND.  We want to
9766      pretend the operand is as wide as the destination here.   We
9767      do this by adjusting the MEM to wider mode for the sole
9768      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9769      note this trick only works for MEMs.  */
9770   else if (GET_CODE (rhs) == AND
9771 	   && paradoxical_subreg_p (XEXP (rhs, 0))
9772 	   && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9773 	   && CONST_INT_P (XEXP (rhs, 1))
9774 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9775 						dest, true))
9776     c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9777   else if (GET_CODE (lhs) == AND
9778 	   && CONST_INT_P (XEXP (lhs, 1))
9779 	   && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9780     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9781   /* The second SUBREG that might get in the way is a paradoxical
9782      SUBREG around the first operand of the AND.  We want to
9783      pretend the operand is as wide as the destination here.   We
9784      do this by adjusting the MEM to wider mode for the sole
9785      purpose of the call to rtx_equal_for_field_assignment_p.   Also
9786      note this trick only works for MEMs.  */
9787   else if (GET_CODE (lhs) == AND
9788 	   && paradoxical_subreg_p (XEXP (lhs, 0))
9789 	   && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9790 	   && CONST_INT_P (XEXP (lhs, 1))
9791 	   && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9792 						dest, true))
9793     c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9794   else
9795     return x;
9796 
9797   pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9798   if (pos < 0
9799       || pos + len > GET_MODE_PRECISION (mode)
9800       || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9801       || (c1 & nonzero_bits (other, mode)) != 0)
9802     return x;
9803 
9804   assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9805   if (assign == 0)
9806     return x;
9807 
9808   /* The mode to use for the source is the mode of the assignment, or of
9809      what is inside a possible STRICT_LOW_PART.  */
9810   machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9811 			   ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9812 
9813   /* Shift OTHER right POS places and make it the source, restricting it
9814      to the proper length and mode.  */
9815 
9816   src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9817 						     src_mode, other, pos),
9818 			       dest);
9819   src = force_to_mode (src, new_mode,
9820 		       len >= HOST_BITS_PER_WIDE_INT
9821 		       ? HOST_WIDE_INT_M1U
9822 		       : (HOST_WIDE_INT_1U << len) - 1,
9823 		       0);
9824 
9825   /* If SRC is masked by an AND that does not make a difference in
9826      the value being stored, strip it.  */
9827   if (GET_CODE (assign) == ZERO_EXTRACT
9828       && CONST_INT_P (XEXP (assign, 1))
9829       && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9830       && GET_CODE (src) == AND
9831       && CONST_INT_P (XEXP (src, 1))
9832       && UINTVAL (XEXP (src, 1))
9833 	 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9834     src = XEXP (src, 0);
9835 
9836   return gen_rtx_SET (assign, src);
9837 }
9838 
9839 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9840    if so.  */
9841 
9842 static rtx
9843 apply_distributive_law (rtx x)
9844 {
9845   enum rtx_code code = GET_CODE (x);
9846   enum rtx_code inner_code;
9847   rtx lhs, rhs, other;
9848   rtx tem;
9849 
9850   /* Distributivity is not true for floating point as it can change the
9851      value.  So we don't do it unless -funsafe-math-optimizations.  */
9852   if (FLOAT_MODE_P (GET_MODE (x))
9853       && ! flag_unsafe_math_optimizations)
9854     return x;
9855 
9856   /* The outer operation can only be one of the following:  */
9857   if (code != IOR && code != AND && code != XOR
9858       && code != PLUS && code != MINUS)
9859     return x;
9860 
9861   lhs = XEXP (x, 0);
9862   rhs = XEXP (x, 1);
9863 
9864   /* If either operand is a primitive we can't do anything, so get out
9865      fast.  */
9866   if (OBJECT_P (lhs) || OBJECT_P (rhs))
9867     return x;
9868 
9869   lhs = expand_compound_operation (lhs);
9870   rhs = expand_compound_operation (rhs);
9871   inner_code = GET_CODE (lhs);
9872   if (inner_code != GET_CODE (rhs))
9873     return x;
9874 
9875   /* See if the inner and outer operations distribute.  */
9876   switch (inner_code)
9877     {
9878     case LSHIFTRT:
9879     case ASHIFTRT:
9880     case AND:
9881     case IOR:
9882       /* These all distribute except over PLUS.  */
9883       if (code == PLUS || code == MINUS)
9884 	return x;
9885       break;
9886 
9887     case MULT:
9888       if (code != PLUS && code != MINUS)
9889 	return x;
9890       break;
9891 
9892     case ASHIFT:
9893       /* This is also a multiply, so it distributes over everything.  */
9894       break;
9895 
9896     /* This used to handle SUBREG, but this turned out to be counter-
9897        productive, since (subreg (op ...)) usually is not handled by
9898        insn patterns, and this "optimization" therefore transformed
9899        recognizable patterns into unrecognizable ones.  Therefore the
9900        SUBREG case was removed from here.
9901 
9902        It is possible that distributing SUBREG over arithmetic operations
9903        leads to an intermediate result than can then be optimized further,
9904        e.g. by moving the outer SUBREG to the other side of a SET as done
9905        in simplify_set.  This seems to have been the original intent of
9906        handling SUBREGs here.
9907 
9908        However, with current GCC this does not appear to actually happen,
9909        at least on major platforms.  If some case is found where removing
9910        the SUBREG case here prevents follow-on optimizations, distributing
9911        SUBREGs ought to be re-added at that place, e.g. in simplify_set.  */
9912 
9913     default:
9914       return x;
9915     }
9916 
9917   /* Set LHS and RHS to the inner operands (A and B in the example
9918      above) and set OTHER to the common operand (C in the example).
9919      There is only one way to do this unless the inner operation is
9920      commutative.  */
9921   if (COMMUTATIVE_ARITH_P (lhs)
9922       && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9923     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9924   else if (COMMUTATIVE_ARITH_P (lhs)
9925 	   && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9926     other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9927   else if (COMMUTATIVE_ARITH_P (lhs)
9928 	   && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9929     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9930   else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9931     other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9932   else
9933     return x;
9934 
9935   /* Form the new inner operation, seeing if it simplifies first.  */
9936   tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9937 
9938   /* There is one exception to the general way of distributing:
9939      (a | c) ^ (b | c) -> (a ^ b) & ~c  */
9940   if (code == XOR && inner_code == IOR)
9941     {
9942       inner_code = AND;
9943       other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9944     }
9945 
9946   /* We may be able to continuing distributing the result, so call
9947      ourselves recursively on the inner operation before forming the
9948      outer operation, which we return.  */
9949   return simplify_gen_binary (inner_code, GET_MODE (x),
9950 			      apply_distributive_law (tem), other);
9951 }
9952 
9953 /* See if X is of the form (* (+ A B) C), and if so convert to
9954    (+ (* A C) (* B C)) and try to simplify.
9955 
9956    Most of the time, this results in no change.  However, if some of
9957    the operands are the same or inverses of each other, simplifications
9958    will result.
9959 
9960    For example, (and (ior A B) (not B)) can occur as the result of
9961    expanding a bit field assignment.  When we apply the distributive
9962    law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9963    which then simplifies to (and (A (not B))).
9964 
9965    Note that no checks happen on the validity of applying the inverse
9966    distributive law.  This is pointless since we can do it in the
9967    few places where this routine is called.
9968 
9969    N is the index of the term that is decomposed (the arithmetic operation,
9970    i.e. (+ A B) in the first example above).  !N is the index of the term that
9971    is distributed, i.e. of C in the first example above.  */
9972 static rtx
9973 distribute_and_simplify_rtx (rtx x, int n)
9974 {
9975   machine_mode mode;
9976   enum rtx_code outer_code, inner_code;
9977   rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9978 
9979   /* Distributivity is not true for floating point as it can change the
9980      value.  So we don't do it unless -funsafe-math-optimizations.  */
9981   if (FLOAT_MODE_P (GET_MODE (x))
9982       && ! flag_unsafe_math_optimizations)
9983     return NULL_RTX;
9984 
9985   decomposed = XEXP (x, n);
9986   if (!ARITHMETIC_P (decomposed))
9987     return NULL_RTX;
9988 
9989   mode = GET_MODE (x);
9990   outer_code = GET_CODE (x);
9991   distributed = XEXP (x, !n);
9992 
9993   inner_code = GET_CODE (decomposed);
9994   inner_op0 = XEXP (decomposed, 0);
9995   inner_op1 = XEXP (decomposed, 1);
9996 
9997   /* Special case (and (xor B C) (not A)), which is equivalent to
9998      (xor (ior A B) (ior A C))  */
9999   if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10000     {
10001       distributed = XEXP (distributed, 0);
10002       outer_code = IOR;
10003     }
10004 
10005   if (n == 0)
10006     {
10007       /* Distribute the second term.  */
10008       new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10009       new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10010     }
10011   else
10012     {
10013       /* Distribute the first term.  */
10014       new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10015       new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10016     }
10017 
10018   tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10019 						     new_op0, new_op1));
10020   if (GET_CODE (tmp) != outer_code
10021       && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10022 	  < set_src_cost (x, mode, optimize_this_for_speed_p)))
10023     return tmp;
10024 
10025   return NULL_RTX;
10026 }
10027 
10028 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10029    in MODE.  Return an equivalent form, if different from (and VAROP
10030    (const_int CONSTOP)).  Otherwise, return NULL_RTX.  */
10031 
10032 static rtx
10033 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10034 			  unsigned HOST_WIDE_INT constop)
10035 {
10036   unsigned HOST_WIDE_INT nonzero;
10037   unsigned HOST_WIDE_INT orig_constop;
10038   rtx orig_varop;
10039   int i;
10040 
10041   orig_varop = varop;
10042   orig_constop = constop;
10043   if (GET_CODE (varop) == CLOBBER)
10044     return NULL_RTX;
10045 
10046   /* Simplify VAROP knowing that we will be only looking at some of the
10047      bits in it.
10048 
10049      Note by passing in CONSTOP, we guarantee that the bits not set in
10050      CONSTOP are not significant and will never be examined.  We must
10051      ensure that is the case by explicitly masking out those bits
10052      before returning.  */
10053   varop = force_to_mode (varop, mode, constop, 0);
10054 
10055   /* If VAROP is a CLOBBER, we will fail so return it.  */
10056   if (GET_CODE (varop) == CLOBBER)
10057     return varop;
10058 
10059   /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10060      to VAROP and return the new constant.  */
10061   if (CONST_INT_P (varop))
10062     return gen_int_mode (INTVAL (varop) & constop, mode);
10063 
10064   /* See what bits may be nonzero in VAROP.  Unlike the general case of
10065      a call to nonzero_bits, here we don't care about bits outside
10066      MODE.  */
10067 
10068   nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10069 
10070   /* Turn off all bits in the constant that are known to already be zero.
10071      Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10072      which is tested below.  */
10073 
10074   constop &= nonzero;
10075 
10076   /* If we don't have any bits left, return zero.  */
10077   if (constop == 0)
10078     return const0_rtx;
10079 
10080   /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10081      a power of two, we can replace this with an ASHIFT.  */
10082   if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10083       && (i = exact_log2 (constop)) >= 0)
10084     return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10085 
10086   /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10087      or XOR, then try to apply the distributive law.  This may eliminate
10088      operations if either branch can be simplified because of the AND.
10089      It may also make some cases more complex, but those cases probably
10090      won't match a pattern either with or without this.  */
10091 
10092   if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10093     {
10094       scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10095       return
10096 	gen_lowpart
10097 	  (mode,
10098 	   apply_distributive_law
10099 	   (simplify_gen_binary (GET_CODE (varop), varop_mode,
10100 				 simplify_and_const_int (NULL_RTX, varop_mode,
10101 							 XEXP (varop, 0),
10102 							 constop),
10103 				 simplify_and_const_int (NULL_RTX, varop_mode,
10104 							 XEXP (varop, 1),
10105 							 constop))));
10106     }
10107 
10108   /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10109      the AND and see if one of the operands simplifies to zero.  If so, we
10110      may eliminate it.  */
10111 
10112   if (GET_CODE (varop) == PLUS
10113       && pow2p_hwi (constop + 1))
10114     {
10115       rtx o0, o1;
10116 
10117       o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10118       o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10119       if (o0 == const0_rtx)
10120 	return o1;
10121       if (o1 == const0_rtx)
10122 	return o0;
10123     }
10124 
10125   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
10126   varop = gen_lowpart (mode, varop);
10127   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10128     return NULL_RTX;
10129 
10130   /* If we are only masking insignificant bits, return VAROP.  */
10131   if (constop == nonzero)
10132     return varop;
10133 
10134   if (varop == orig_varop && constop == orig_constop)
10135     return NULL_RTX;
10136 
10137   /* Otherwise, return an AND.  */
10138   return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10139 }
10140 
10141 
10142 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10143    in MODE.
10144 
10145    Return an equivalent form, if different from X.  Otherwise, return X.  If
10146    X is zero, we are to always construct the equivalent form.  */
10147 
10148 static rtx
10149 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10150 			unsigned HOST_WIDE_INT constop)
10151 {
10152   rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10153   if (tem)
10154     return tem;
10155 
10156   if (!x)
10157     x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10158 			     gen_int_mode (constop, mode));
10159   if (GET_MODE (x) != mode)
10160     x = gen_lowpart (mode, x);
10161   return x;
10162 }
10163 
10164 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10165    We don't care about bits outside of those defined in MODE.
10166 
10167    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10168    a shift, AND, or zero_extract, we can do better.  */
10169 
10170 static rtx
10171 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10172 			      scalar_int_mode mode,
10173 			      unsigned HOST_WIDE_INT *nonzero)
10174 {
10175   rtx tem;
10176   reg_stat_type *rsp;
10177 
10178   /* If X is a register whose nonzero bits value is current, use it.
10179      Otherwise, if X is a register whose value we can find, use that
10180      value.  Otherwise, use the previously-computed global nonzero bits
10181      for this register.  */
10182 
10183   rsp = &reg_stat[REGNO (x)];
10184   if (rsp->last_set_value != 0
10185       && (rsp->last_set_mode == mode
10186 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10187 	      && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10188 	      && GET_MODE_CLASS (mode) == MODE_INT))
10189       && ((rsp->last_set_label >= label_tick_ebb_start
10190 	   && rsp->last_set_label < label_tick)
10191 	  || (rsp->last_set_label == label_tick
10192               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10193 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10194 	      && REGNO (x) < reg_n_sets_max
10195 	      && REG_N_SETS (REGNO (x)) == 1
10196 	      && !REGNO_REG_SET_P
10197 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10198 		   REGNO (x)))))
10199     {
10200       /* Note that, even if the precision of last_set_mode is lower than that
10201 	 of mode, record_value_for_reg invoked nonzero_bits on the register
10202 	 with nonzero_bits_mode (because last_set_mode is necessarily integral
10203 	 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10204 	 are all valid, hence in mode too since nonzero_bits_mode is defined
10205 	 to the largest HWI_COMPUTABLE_MODE_P mode.  */
10206       *nonzero &= rsp->last_set_nonzero_bits;
10207       return NULL;
10208     }
10209 
10210   tem = get_last_value (x);
10211   if (tem)
10212     {
10213       if (SHORT_IMMEDIATES_SIGN_EXTEND)
10214 	tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10215 
10216       return tem;
10217     }
10218 
10219   if (nonzero_sign_valid && rsp->nonzero_bits)
10220     {
10221       unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10222 
10223       if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10224 	/* We don't know anything about the upper bits.  */
10225 	mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10226 
10227       *nonzero &= mask;
10228     }
10229 
10230   return NULL;
10231 }
10232 
10233 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10234    end of X that are known to be equal to the sign bit.  X will be used
10235    in mode MODE; the returned value will always be between 1 and the
10236    number of bits in MODE.  */
10237 
10238 static rtx
10239 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10240 				     scalar_int_mode mode,
10241 				     unsigned int *result)
10242 {
10243   rtx tem;
10244   reg_stat_type *rsp;
10245 
10246   rsp = &reg_stat[REGNO (x)];
10247   if (rsp->last_set_value != 0
10248       && rsp->last_set_mode == mode
10249       && ((rsp->last_set_label >= label_tick_ebb_start
10250 	   && rsp->last_set_label < label_tick)
10251 	  || (rsp->last_set_label == label_tick
10252               && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10253 	  || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10254 	      && REGNO (x) < reg_n_sets_max
10255 	      && REG_N_SETS (REGNO (x)) == 1
10256 	      && !REGNO_REG_SET_P
10257 		  (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10258 		   REGNO (x)))))
10259     {
10260       *result = rsp->last_set_sign_bit_copies;
10261       return NULL;
10262     }
10263 
10264   tem = get_last_value (x);
10265   if (tem != 0)
10266     return tem;
10267 
10268   if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10269       && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10270     *result = rsp->sign_bit_copies;
10271 
10272   return NULL;
10273 }
10274 
10275 /* Return the number of "extended" bits there are in X, when interpreted
10276    as a quantity in MODE whose signedness is indicated by UNSIGNEDP.  For
10277    unsigned quantities, this is the number of high-order zero bits.
10278    For signed quantities, this is the number of copies of the sign bit
10279    minus 1.  In both case, this function returns the number of "spare"
10280    bits.  For example, if two quantities for which this function returns
10281    at least 1 are added, the addition is known not to overflow.
10282 
10283    This function will always return 0 unless called during combine, which
10284    implies that it must be called from a define_split.  */
10285 
10286 unsigned int
10287 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10288 {
10289   if (nonzero_sign_valid == 0)
10290     return 0;
10291 
10292   scalar_int_mode int_mode;
10293   return (unsignedp
10294 	  ? (is_a <scalar_int_mode> (mode, &int_mode)
10295 	     && HWI_COMPUTABLE_MODE_P (int_mode)
10296 	     ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10297 			       - floor_log2 (nonzero_bits (x, int_mode)))
10298 	     : 0)
10299 	  : num_sign_bit_copies (x, mode) - 1);
10300 }
10301 
10302 /* This function is called from `simplify_shift_const' to merge two
10303    outer operations.  Specifically, we have already found that we need
10304    to perform operation *POP0 with constant *PCONST0 at the outermost
10305    position.  We would now like to also perform OP1 with constant CONST1
10306    (with *POP0 being done last).
10307 
10308    Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10309    the resulting operation.  *PCOMP_P is set to 1 if we would need to
10310    complement the innermost operand, otherwise it is unchanged.
10311 
10312    MODE is the mode in which the operation will be done.  No bits outside
10313    the width of this mode matter.  It is assumed that the width of this mode
10314    is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10315 
10316    If *POP0 or OP1 are UNKNOWN, it means no operation is required.  Only NEG, PLUS,
10317    IOR, XOR, and AND are supported.  We may set *POP0 to SET if the proper
10318    result is simply *PCONST0.
10319 
10320    If the resulting operation cannot be expressed as one operation, we
10321    return 0 and do not change *POP0, *PCONST0, and *PCOMP_P.  */
10322 
10323 static int
10324 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10325 {
10326   enum rtx_code op0 = *pop0;
10327   HOST_WIDE_INT const0 = *pconst0;
10328 
10329   const0 &= GET_MODE_MASK (mode);
10330   const1 &= GET_MODE_MASK (mode);
10331 
10332   /* If OP0 is an AND, clear unimportant bits in CONST1.  */
10333   if (op0 == AND)
10334     const1 &= const0;
10335 
10336   /* If OP0 or OP1 is UNKNOWN, this is easy.  Similarly if they are the same or
10337      if OP0 is SET.  */
10338 
10339   if (op1 == UNKNOWN || op0 == SET)
10340     return 1;
10341 
10342   else if (op0 == UNKNOWN)
10343     op0 = op1, const0 = const1;
10344 
10345   else if (op0 == op1)
10346     {
10347       switch (op0)
10348 	{
10349 	case AND:
10350 	  const0 &= const1;
10351 	  break;
10352 	case IOR:
10353 	  const0 |= const1;
10354 	  break;
10355 	case XOR:
10356 	  const0 ^= const1;
10357 	  break;
10358 	case PLUS:
10359 	  const0 += const1;
10360 	  break;
10361 	case NEG:
10362 	  op0 = UNKNOWN;
10363 	  break;
10364 	default:
10365 	  break;
10366 	}
10367     }
10368 
10369   /* Otherwise, if either is a PLUS or NEG, we can't do anything.  */
10370   else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10371     return 0;
10372 
10373   /* If the two constants aren't the same, we can't do anything.  The
10374      remaining six cases can all be done.  */
10375   else if (const0 != const1)
10376     return 0;
10377 
10378   else
10379     switch (op0)
10380       {
10381       case IOR:
10382 	if (op1 == AND)
10383 	  /* (a & b) | b == b */
10384 	  op0 = SET;
10385 	else /* op1 == XOR */
10386 	  /* (a ^ b) | b == a | b */
10387 	  {;}
10388 	break;
10389 
10390       case XOR:
10391 	if (op1 == AND)
10392 	  /* (a & b) ^ b == (~a) & b */
10393 	  op0 = AND, *pcomp_p = 1;
10394 	else /* op1 == IOR */
10395 	  /* (a | b) ^ b == a & ~b */
10396 	  op0 = AND, const0 = ~const0;
10397 	break;
10398 
10399       case AND:
10400 	if (op1 == IOR)
10401 	  /* (a | b) & b == b */
10402 	op0 = SET;
10403 	else /* op1 == XOR */
10404 	  /* (a ^ b) & b) == (~a) & b */
10405 	  *pcomp_p = 1;
10406 	break;
10407       default:
10408 	break;
10409       }
10410 
10411   /* Check for NO-OP cases.  */
10412   const0 &= GET_MODE_MASK (mode);
10413   if (const0 == 0
10414       && (op0 == IOR || op0 == XOR || op0 == PLUS))
10415     op0 = UNKNOWN;
10416   else if (const0 == 0 && op0 == AND)
10417     op0 = SET;
10418   else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10419 	   && op0 == AND)
10420     op0 = UNKNOWN;
10421 
10422   *pop0 = op0;
10423 
10424   /* ??? Slightly redundant with the above mask, but not entirely.
10425      Moving this above means we'd have to sign-extend the mode mask
10426      for the final test.  */
10427   if (op0 != UNKNOWN && op0 != NEG)
10428     *pconst0 = trunc_int_for_mode (const0, mode);
10429 
10430   return 1;
10431 }
10432 
10433 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10434    the shift in.  The original shift operation CODE is performed on OP in
10435    ORIG_MODE.  Return the wider mode MODE if we can perform the operation
10436    in that mode.  Return ORIG_MODE otherwise.  We can also assume that the
10437    result of the shift is subject to operation OUTER_CODE with operand
10438    OUTER_CONST.  */
10439 
10440 static scalar_int_mode
10441 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10442 		      scalar_int_mode orig_mode, scalar_int_mode mode,
10443 		      enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10444 {
10445   gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10446 
10447   /* In general we can't perform in wider mode for right shift and rotate.  */
10448   switch (code)
10449     {
10450     case ASHIFTRT:
10451       /* We can still widen if the bits brought in from the left are identical
10452 	 to the sign bit of ORIG_MODE.  */
10453       if (num_sign_bit_copies (op, mode)
10454 	  > (unsigned) (GET_MODE_PRECISION (mode)
10455 			- GET_MODE_PRECISION (orig_mode)))
10456 	return mode;
10457       return orig_mode;
10458 
10459     case LSHIFTRT:
10460       /* Similarly here but with zero bits.  */
10461       if (HWI_COMPUTABLE_MODE_P (mode)
10462 	  && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10463 	return mode;
10464 
10465       /* We can also widen if the bits brought in will be masked off.  This
10466 	 operation is performed in ORIG_MODE.  */
10467       if (outer_code == AND)
10468 	{
10469 	  int care_bits = low_bitmask_len (orig_mode, outer_const);
10470 
10471 	  if (care_bits >= 0
10472 	      && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10473 	    return mode;
10474 	}
10475       /* fall through */
10476 
10477     case ROTATE:
10478       return orig_mode;
10479 
10480     case ROTATERT:
10481       gcc_unreachable ();
10482 
10483     default:
10484       return mode;
10485     }
10486 }
10487 
10488 /* Simplify a shift of VAROP by ORIG_COUNT bits.  CODE says what kind
10489    of shift.  The result of the shift is RESULT_MODE.  Return NULL_RTX
10490    if we cannot simplify it.  Otherwise, return a simplified value.
10491 
10492    The shift is normally computed in the widest mode we find in VAROP, as
10493    long as it isn't a different number of words than RESULT_MODE.  Exceptions
10494    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
10495 
10496 static rtx
10497 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10498 			rtx varop, int orig_count)
10499 {
10500   enum rtx_code orig_code = code;
10501   rtx orig_varop = varop;
10502   int count, log2;
10503   machine_mode mode = result_mode;
10504   machine_mode shift_mode;
10505   scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10506   /* We form (outer_op (code varop count) (outer_const)).  */
10507   enum rtx_code outer_op = UNKNOWN;
10508   HOST_WIDE_INT outer_const = 0;
10509   int complement_p = 0;
10510   rtx new_rtx, x;
10511 
10512   /* Make sure and truncate the "natural" shift on the way in.  We don't
10513      want to do this inside the loop as it makes it more difficult to
10514      combine shifts.  */
10515   if (SHIFT_COUNT_TRUNCATED)
10516     orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10517 
10518   /* If we were given an invalid count, don't do anything except exactly
10519      what was requested.  */
10520 
10521   if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10522     return NULL_RTX;
10523 
10524   count = orig_count;
10525 
10526   /* Unless one of the branches of the `if' in this loop does a `continue',
10527      we will `break' the loop after the `if'.  */
10528 
10529   while (count != 0)
10530     {
10531       /* If we have an operand of (clobber (const_int 0)), fail.  */
10532       if (GET_CODE (varop) == CLOBBER)
10533 	return NULL_RTX;
10534 
10535       /* Convert ROTATERT to ROTATE.  */
10536       if (code == ROTATERT)
10537 	{
10538 	  unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10539 	  code = ROTATE;
10540 	  count = bitsize - count;
10541 	}
10542 
10543       shift_mode = result_mode;
10544       if (shift_mode != mode)
10545 	{
10546 	  /* We only change the modes of scalar shifts.  */
10547 	  int_mode = as_a <scalar_int_mode> (mode);
10548 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10549 	  shift_mode = try_widen_shift_mode (code, varop, count,
10550 					     int_result_mode, int_mode,
10551 					     outer_op, outer_const);
10552 	}
10553 
10554       scalar_int_mode shift_unit_mode
10555 	= as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10556 
10557       /* Handle cases where the count is greater than the size of the mode
10558 	 minus 1.  For ASHIFT, use the size minus one as the count (this can
10559 	 occur when simplifying (lshiftrt (ashiftrt ..))).  For rotates,
10560 	 take the count modulo the size.  For other shifts, the result is
10561 	 zero.
10562 
10563 	 Since these shifts are being produced by the compiler by combining
10564 	 multiple operations, each of which are defined, we know what the
10565 	 result is supposed to be.  */
10566 
10567       if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10568 	{
10569 	  if (code == ASHIFTRT)
10570 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10571 	  else if (code == ROTATE || code == ROTATERT)
10572 	    count %= GET_MODE_PRECISION (shift_unit_mode);
10573 	  else
10574 	    {
10575 	      /* We can't simply return zero because there may be an
10576 		 outer op.  */
10577 	      varop = const0_rtx;
10578 	      count = 0;
10579 	      break;
10580 	    }
10581 	}
10582 
10583       /* If we discovered we had to complement VAROP, leave.  Making a NOT
10584 	 here would cause an infinite loop.  */
10585       if (complement_p)
10586 	break;
10587 
10588       if (shift_mode == shift_unit_mode)
10589 	{
10590 	  /* An arithmetic right shift of a quantity known to be -1 or 0
10591 	     is a no-op.  */
10592 	  if (code == ASHIFTRT
10593 	      && (num_sign_bit_copies (varop, shift_unit_mode)
10594 		  == GET_MODE_PRECISION (shift_unit_mode)))
10595 	    {
10596 	      count = 0;
10597 	      break;
10598 	    }
10599 
10600 	  /* If we are doing an arithmetic right shift and discarding all but
10601 	     the sign bit copies, this is equivalent to doing a shift by the
10602 	     bitsize minus one.  Convert it into that shift because it will
10603 	     often allow other simplifications.  */
10604 
10605 	  if (code == ASHIFTRT
10606 	      && (count + num_sign_bit_copies (varop, shift_unit_mode)
10607 		  >= GET_MODE_PRECISION (shift_unit_mode)))
10608 	    count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10609 
10610 	  /* We simplify the tests below and elsewhere by converting
10611 	     ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10612 	     `make_compound_operation' will convert it to an ASHIFTRT for
10613 	     those machines (such as VAX) that don't have an LSHIFTRT.  */
10614 	  if (code == ASHIFTRT
10615 	      && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10616 	      && val_signbit_known_clear_p (shift_unit_mode,
10617 					    nonzero_bits (varop,
10618 							  shift_unit_mode)))
10619 	    code = LSHIFTRT;
10620 
10621 	  if (((code == LSHIFTRT
10622 		&& HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10623 		&& !(nonzero_bits (varop, shift_unit_mode) >> count))
10624 	       || (code == ASHIFT
10625 		   && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10626 		   && !((nonzero_bits (varop, shift_unit_mode) << count)
10627 			& GET_MODE_MASK (shift_unit_mode))))
10628 	      && !side_effects_p (varop))
10629 	    varop = const0_rtx;
10630 	}
10631 
10632       switch (GET_CODE (varop))
10633 	{
10634 	case SIGN_EXTEND:
10635 	case ZERO_EXTEND:
10636 	case SIGN_EXTRACT:
10637 	case ZERO_EXTRACT:
10638 	  new_rtx = expand_compound_operation (varop);
10639 	  if (new_rtx != varop)
10640 	    {
10641 	      varop = new_rtx;
10642 	      continue;
10643 	    }
10644 	  break;
10645 
10646 	case MEM:
10647 	  /* The following rules apply only to scalars.  */
10648 	  if (shift_mode != shift_unit_mode)
10649 	    break;
10650 	  int_mode = as_a <scalar_int_mode> (mode);
10651 
10652 	  /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10653 	     minus the width of a smaller mode, we can do this with a
10654 	     SIGN_EXTEND or ZERO_EXTEND from the narrower memory location.  */
10655 	  if ((code == ASHIFTRT || code == LSHIFTRT)
10656 	      && ! mode_dependent_address_p (XEXP (varop, 0),
10657 					     MEM_ADDR_SPACE (varop))
10658 	      && ! MEM_VOLATILE_P (varop)
10659 	      && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10660 		  .exists (&tmode)))
10661 	    {
10662 	      new_rtx = adjust_address_nv (varop, tmode,
10663 					   BYTES_BIG_ENDIAN ? 0
10664 					   : count / BITS_PER_UNIT);
10665 
10666 	      varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10667 				     : ZERO_EXTEND, int_mode, new_rtx);
10668 	      count = 0;
10669 	      continue;
10670 	    }
10671 	  break;
10672 
10673 	case SUBREG:
10674 	  /* The following rules apply only to scalars.  */
10675 	  if (shift_mode != shift_unit_mode)
10676 	    break;
10677 	  int_mode = as_a <scalar_int_mode> (mode);
10678 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10679 
10680 	  /* If VAROP is a SUBREG, strip it as long as the inner operand has
10681 	     the same number of words as what we've seen so far.  Then store
10682 	     the widest mode in MODE.  */
10683 	  if (subreg_lowpart_p (varop)
10684 	      && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10685 	      && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10686 	      && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10687 		  == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10688 	      && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10689 	    {
10690 	      varop = SUBREG_REG (varop);
10691 	      if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10692 		mode = inner_mode;
10693 	      continue;
10694 	    }
10695 	  break;
10696 
10697 	case MULT:
10698 	  /* Some machines use MULT instead of ASHIFT because MULT
10699 	     is cheaper.  But it is still better on those machines to
10700 	     merge two shifts into one.  */
10701 	  if (CONST_INT_P (XEXP (varop, 1))
10702 	      && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10703 	    {
10704 	      rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10705 	      varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10706 					   XEXP (varop, 0), log2_rtx);
10707 	      continue;
10708 	    }
10709 	  break;
10710 
10711 	case UDIV:
10712 	  /* Similar, for when divides are cheaper.  */
10713 	  if (CONST_INT_P (XEXP (varop, 1))
10714 	      && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10715 	    {
10716 	      rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10717 	      varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10718 					   XEXP (varop, 0), log2_rtx);
10719 	      continue;
10720 	    }
10721 	  break;
10722 
10723 	case ASHIFTRT:
10724 	  /* If we are extracting just the sign bit of an arithmetic
10725 	     right shift, that shift is not needed.  However, the sign
10726 	     bit of a wider mode may be different from what would be
10727 	     interpreted as the sign bit in a narrower mode, so, if
10728 	     the result is narrower, don't discard the shift.  */
10729 	  if (code == LSHIFTRT
10730 	      && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10731 	      && (GET_MODE_UNIT_BITSIZE (result_mode)
10732 		  >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10733 	    {
10734 	      varop = XEXP (varop, 0);
10735 	      continue;
10736 	    }
10737 
10738 	  /* fall through */
10739 
10740 	case LSHIFTRT:
10741 	case ASHIFT:
10742 	case ROTATE:
10743 	  /* The following rules apply only to scalars.  */
10744 	  if (shift_mode != shift_unit_mode)
10745 	    break;
10746 	  int_mode = as_a <scalar_int_mode> (mode);
10747 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10748 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10749 
10750 	  /* Here we have two nested shifts.  The result is usually the
10751 	     AND of a new shift with a mask.  We compute the result below.  */
10752 	  if (CONST_INT_P (XEXP (varop, 1))
10753 	      && INTVAL (XEXP (varop, 1)) >= 0
10754 	      && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10755 	      && HWI_COMPUTABLE_MODE_P (int_result_mode)
10756 	      && HWI_COMPUTABLE_MODE_P (int_mode))
10757 	    {
10758 	      enum rtx_code first_code = GET_CODE (varop);
10759 	      unsigned int first_count = INTVAL (XEXP (varop, 1));
10760 	      unsigned HOST_WIDE_INT mask;
10761 	      rtx mask_rtx;
10762 
10763 	      /* We have one common special case.  We can't do any merging if
10764 		 the inner code is an ASHIFTRT of a smaller mode.  However, if
10765 		 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10766 		 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10767 		 we can convert it to
10768 		 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10769 		 This simplifies certain SIGN_EXTEND operations.  */
10770 	      if (code == ASHIFT && first_code == ASHIFTRT
10771 		  && count == (GET_MODE_PRECISION (int_result_mode)
10772 			       - GET_MODE_PRECISION (int_varop_mode)))
10773 		{
10774 		  /* C3 has the low-order C1 bits zero.  */
10775 
10776 		  mask = GET_MODE_MASK (int_mode)
10777 			 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10778 
10779 		  varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10780 						  XEXP (varop, 0), mask);
10781 		  varop = simplify_shift_const (NULL_RTX, ASHIFT,
10782 						int_result_mode, varop, count);
10783 		  count = first_count;
10784 		  code = ASHIFTRT;
10785 		  continue;
10786 		}
10787 
10788 	      /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10789 		 than C1 high-order bits equal to the sign bit, we can convert
10790 		 this to either an ASHIFT or an ASHIFTRT depending on the
10791 		 two counts.
10792 
10793 		 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE.  */
10794 
10795 	      if (code == ASHIFTRT && first_code == ASHIFT
10796 		  && int_varop_mode == shift_unit_mode
10797 		  && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10798 		      > first_count))
10799 		{
10800 		  varop = XEXP (varop, 0);
10801 		  count -= first_count;
10802 		  if (count < 0)
10803 		    {
10804 		      count = -count;
10805 		      code = ASHIFT;
10806 		    }
10807 
10808 		  continue;
10809 		}
10810 
10811 	      /* There are some cases we can't do.  If CODE is ASHIFTRT,
10812 		 we can only do this if FIRST_CODE is also ASHIFTRT.
10813 
10814 		 We can't do the case when CODE is ROTATE and FIRST_CODE is
10815 		 ASHIFTRT.
10816 
10817 		 If the mode of this shift is not the mode of the outer shift,
10818 		 we can't do this if either shift is a right shift or ROTATE.
10819 
10820 		 Finally, we can't do any of these if the mode is too wide
10821 		 unless the codes are the same.
10822 
10823 		 Handle the case where the shift codes are the same
10824 		 first.  */
10825 
10826 	      if (code == first_code)
10827 		{
10828 		  if (int_varop_mode != int_result_mode
10829 		      && (code == ASHIFTRT || code == LSHIFTRT
10830 			  || code == ROTATE))
10831 		    break;
10832 
10833 		  count += first_count;
10834 		  varop = XEXP (varop, 0);
10835 		  continue;
10836 		}
10837 
10838 	      if (code == ASHIFTRT
10839 		  || (code == ROTATE && first_code == ASHIFTRT)
10840 		  || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10841 		  || (int_varop_mode != int_result_mode
10842 		      && (first_code == ASHIFTRT || first_code == LSHIFTRT
10843 			  || first_code == ROTATE
10844 			  || code == ROTATE)))
10845 		break;
10846 
10847 	      /* To compute the mask to apply after the shift, shift the
10848 		 nonzero bits of the inner shift the same way the
10849 		 outer shift will.  */
10850 
10851 	      mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10852 				       int_result_mode);
10853 	      rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10854 	      mask_rtx
10855 		= simplify_const_binary_operation (code, int_result_mode,
10856 						   mask_rtx, count_rtx);
10857 
10858 	      /* Give up if we can't compute an outer operation to use.  */
10859 	      if (mask_rtx == 0
10860 		  || !CONST_INT_P (mask_rtx)
10861 		  || ! merge_outer_ops (&outer_op, &outer_const, AND,
10862 					INTVAL (mask_rtx),
10863 					int_result_mode, &complement_p))
10864 		break;
10865 
10866 	      /* If the shifts are in the same direction, we add the
10867 		 counts.  Otherwise, we subtract them.  */
10868 	      if ((code == ASHIFTRT || code == LSHIFTRT)
10869 		  == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10870 		count += first_count;
10871 	      else
10872 		count -= first_count;
10873 
10874 	      /* If COUNT is positive, the new shift is usually CODE,
10875 		 except for the two exceptions below, in which case it is
10876 		 FIRST_CODE.  If the count is negative, FIRST_CODE should
10877 		 always be used  */
10878 	      if (count > 0
10879 		  && ((first_code == ROTATE && code == ASHIFT)
10880 		      || (first_code == ASHIFTRT && code == LSHIFTRT)))
10881 		code = first_code;
10882 	      else if (count < 0)
10883 		code = first_code, count = -count;
10884 
10885 	      varop = XEXP (varop, 0);
10886 	      continue;
10887 	    }
10888 
10889 	  /* If we have (A << B << C) for any shift, we can convert this to
10890 	     (A << C << B).  This wins if A is a constant.  Only try this if
10891 	     B is not a constant.  */
10892 
10893 	  else if (GET_CODE (varop) == code
10894 		   && CONST_INT_P (XEXP (varop, 0))
10895 		   && !CONST_INT_P (XEXP (varop, 1)))
10896 	    {
10897 	      /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10898 		 sure the result will be masked.  See PR70222.  */
10899 	      if (code == LSHIFTRT
10900 		  && int_mode != int_result_mode
10901 		  && !merge_outer_ops (&outer_op, &outer_const, AND,
10902 				       GET_MODE_MASK (int_result_mode)
10903 				       >> orig_count, int_result_mode,
10904 				       &complement_p))
10905 		break;
10906 	      /* For ((int) (cstLL >> count)) >> cst2 just give up.  Queuing
10907 		 up outer sign extension (often left and right shift) is
10908 		 hardly more efficient than the original.  See PR70429.  */
10909 	      if (code == ASHIFTRT && int_mode != int_result_mode)
10910 		break;
10911 
10912 	      rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10913 	      rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10914 							     XEXP (varop, 0),
10915 							     count_rtx);
10916 	      varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10917 	      count = 0;
10918 	      continue;
10919 	    }
10920 	  break;
10921 
10922 	case NOT:
10923 	  /* The following rules apply only to scalars.  */
10924 	  if (shift_mode != shift_unit_mode)
10925 	    break;
10926 
10927 	  /* Make this fit the case below.  */
10928 	  varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10929 	  continue;
10930 
10931 	case IOR:
10932 	case AND:
10933 	case XOR:
10934 	  /* The following rules apply only to scalars.  */
10935 	  if (shift_mode != shift_unit_mode)
10936 	    break;
10937 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10938 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
10939 
10940 	  /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10941 	     with C the size of VAROP - 1 and the shift is logical if
10942 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10943 	     we have an (le X 0) operation.   If we have an arithmetic shift
10944 	     and STORE_FLAG_VALUE is 1 or we have a logical shift with
10945 	     STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation.  */
10946 
10947 	  if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10948 	      && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10949 	      && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10950 	      && (code == LSHIFTRT || code == ASHIFTRT)
10951 	      && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10952 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10953 	    {
10954 	      count = 0;
10955 	      varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10956 				  const0_rtx);
10957 
10958 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10959 		varop = gen_rtx_NEG (int_varop_mode, varop);
10960 
10961 	      continue;
10962 	    }
10963 
10964 	  /* If we have (shift (logical)), move the logical to the outside
10965 	     to allow it to possibly combine with another logical and the
10966 	     shift to combine with another shift.  This also canonicalizes to
10967 	     what a ZERO_EXTRACT looks like.  Also, some machines have
10968 	     (and (shift)) insns.  */
10969 
10970 	  if (CONST_INT_P (XEXP (varop, 1))
10971 	      /* We can't do this if we have (ashiftrt (xor))  and the
10972 		 constant has its sign bit set in shift_unit_mode with
10973 		 shift_unit_mode wider than result_mode.  */
10974 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10975 		   && int_result_mode != shift_unit_mode
10976 		   && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10977 					  shift_unit_mode) < 0)
10978 	      && (new_rtx = simplify_const_binary_operation
10979 		  (code, int_result_mode,
10980 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10981 		   gen_int_shift_amount (int_result_mode, count))) != 0
10982 	      && CONST_INT_P (new_rtx)
10983 	      && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10984 				  INTVAL (new_rtx), int_result_mode,
10985 				  &complement_p))
10986 	    {
10987 	      varop = XEXP (varop, 0);
10988 	      continue;
10989 	    }
10990 
10991 	  /* If we can't do that, try to simplify the shift in each arm of the
10992 	     logical expression, make a new logical expression, and apply
10993 	     the inverse distributive law.  This also can't be done for
10994 	     (ashiftrt (xor)) where we've widened the shift and the constant
10995 	     changes the sign bit.  */
10996 	  if (CONST_INT_P (XEXP (varop, 1))
10997 	      && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10998 		   && int_result_mode != shift_unit_mode
10999 		   && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11000 					  shift_unit_mode) < 0))
11001 	    {
11002 	      rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11003 					      XEXP (varop, 0), count);
11004 	      rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11005 					      XEXP (varop, 1), count);
11006 
11007 	      varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11008 					   lhs, rhs);
11009 	      varop = apply_distributive_law (varop);
11010 
11011 	      count = 0;
11012 	      continue;
11013 	    }
11014 	  break;
11015 
11016 	case EQ:
11017 	  /* The following rules apply only to scalars.  */
11018 	  if (shift_mode != shift_unit_mode)
11019 	    break;
11020 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11021 
11022 	  /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11023 	     says that the sign bit can be tested, FOO has mode MODE, C is
11024 	     GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11025 	     that may be nonzero.  */
11026 	  if (code == LSHIFTRT
11027 	      && XEXP (varop, 1) == const0_rtx
11028 	      && GET_MODE (XEXP (varop, 0)) == int_result_mode
11029 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11030 	      && HWI_COMPUTABLE_MODE_P (int_result_mode)
11031 	      && STORE_FLAG_VALUE == -1
11032 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11033 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11034 				  int_result_mode, &complement_p))
11035 	    {
11036 	      varop = XEXP (varop, 0);
11037 	      count = 0;
11038 	      continue;
11039 	    }
11040 	  break;
11041 
11042 	case NEG:
11043 	  /* The following rules apply only to scalars.  */
11044 	  if (shift_mode != shift_unit_mode)
11045 	    break;
11046 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11047 
11048 	  /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11049 	     than the number of bits in the mode is equivalent to A.  */
11050 	  if (code == LSHIFTRT
11051 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11052 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11053 	    {
11054 	      varop = XEXP (varop, 0);
11055 	      count = 0;
11056 	      continue;
11057 	    }
11058 
11059 	  /* NEG commutes with ASHIFT since it is multiplication.  Move the
11060 	     NEG outside to allow shifts to combine.  */
11061 	  if (code == ASHIFT
11062 	      && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11063 				  int_result_mode, &complement_p))
11064 	    {
11065 	      varop = XEXP (varop, 0);
11066 	      continue;
11067 	    }
11068 	  break;
11069 
11070 	case PLUS:
11071 	  /* The following rules apply only to scalars.  */
11072 	  if (shift_mode != shift_unit_mode)
11073 	    break;
11074 	  int_result_mode = as_a <scalar_int_mode> (result_mode);
11075 
11076 	  /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11077 	     is one less than the number of bits in the mode is
11078 	     equivalent to (xor A 1).  */
11079 	  if (code == LSHIFTRT
11080 	      && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11081 	      && XEXP (varop, 1) == constm1_rtx
11082 	      && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11083 	      && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11084 				  int_result_mode, &complement_p))
11085 	    {
11086 	      count = 0;
11087 	      varop = XEXP (varop, 0);
11088 	      continue;
11089 	    }
11090 
11091 	  /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11092 	     that might be nonzero in BAR are those being shifted out and those
11093 	     bits are known zero in FOO, we can replace the PLUS with FOO.
11094 	     Similarly in the other operand order.  This code occurs when
11095 	     we are computing the size of a variable-size array.  */
11096 
11097 	  if ((code == ASHIFTRT || code == LSHIFTRT)
11098 	      && count < HOST_BITS_PER_WIDE_INT
11099 	      && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11100 	      && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11101 		  & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11102 	    {
11103 	      varop = XEXP (varop, 0);
11104 	      continue;
11105 	    }
11106 	  else if ((code == ASHIFTRT || code == LSHIFTRT)
11107 		   && count < HOST_BITS_PER_WIDE_INT
11108 		   && HWI_COMPUTABLE_MODE_P (int_result_mode)
11109 		   && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11110 		       >> count) == 0
11111 		   && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11112 		       & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11113 	    {
11114 	      varop = XEXP (varop, 1);
11115 	      continue;
11116 	    }
11117 
11118 	  /* (ashift (plus foo C) N) is (plus (ashift foo N) C').  */
11119 	  if (code == ASHIFT
11120 	      && CONST_INT_P (XEXP (varop, 1))
11121 	      && (new_rtx = simplify_const_binary_operation
11122 		  (ASHIFT, int_result_mode,
11123 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11124 		   gen_int_shift_amount (int_result_mode, count))) != 0
11125 	      && CONST_INT_P (new_rtx)
11126 	      && merge_outer_ops (&outer_op, &outer_const, PLUS,
11127 				  INTVAL (new_rtx), int_result_mode,
11128 				  &complement_p))
11129 	    {
11130 	      varop = XEXP (varop, 0);
11131 	      continue;
11132 	    }
11133 
11134 	  /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11135 	     signbit', and attempt to change the PLUS to an XOR and move it to
11136 	     the outer operation as is done above in the AND/IOR/XOR case
11137 	     leg for shift(logical). See details in logical handling above
11138 	     for reasoning in doing so.  */
11139 	  if (code == LSHIFTRT
11140 	      && CONST_INT_P (XEXP (varop, 1))
11141 	      && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11142 	      && (new_rtx = simplify_const_binary_operation
11143 		  (code, int_result_mode,
11144 		   gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11145 		   gen_int_shift_amount (int_result_mode, count))) != 0
11146 	      && CONST_INT_P (new_rtx)
11147 	      && merge_outer_ops (&outer_op, &outer_const, XOR,
11148 				  INTVAL (new_rtx), int_result_mode,
11149 				  &complement_p))
11150 	    {
11151 	      varop = XEXP (varop, 0);
11152 	      continue;
11153 	    }
11154 
11155 	  break;
11156 
11157 	case MINUS:
11158 	  /* The following rules apply only to scalars.  */
11159 	  if (shift_mode != shift_unit_mode)
11160 	    break;
11161 	  int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11162 
11163 	  /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11164 	     with C the size of VAROP - 1 and the shift is logical if
11165 	     STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11166 	     we have a (gt X 0) operation.  If the shift is arithmetic with
11167 	     STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11168 	     we have a (neg (gt X 0)) operation.  */
11169 
11170 	  if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11171 	      && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11172 	      && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11173 	      && (code == LSHIFTRT || code == ASHIFTRT)
11174 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11175 	      && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11176 	      && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11177 	    {
11178 	      count = 0;
11179 	      varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11180 				  const0_rtx);
11181 
11182 	      if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11183 		varop = gen_rtx_NEG (int_varop_mode, varop);
11184 
11185 	      continue;
11186 	    }
11187 	  break;
11188 
11189 	case TRUNCATE:
11190 	  /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11191 	     if the truncate does not affect the value.  */
11192 	  if (code == LSHIFTRT
11193 	      && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11194 	      && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11195 	      && (INTVAL (XEXP (XEXP (varop, 0), 1))
11196 		  >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11197 		      - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11198 	    {
11199 	      rtx varop_inner = XEXP (varop, 0);
11200 	      int new_count = count + INTVAL (XEXP (varop_inner, 1));
11201 	      rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11202 							new_count);
11203 	      varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11204 					      XEXP (varop_inner, 0),
11205 					      new_count_rtx);
11206 	      varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11207 	      count = 0;
11208 	      continue;
11209 	    }
11210 	  break;
11211 
11212 	default:
11213 	  break;
11214 	}
11215 
11216       break;
11217     }
11218 
11219   shift_mode = result_mode;
11220   if (shift_mode != mode)
11221     {
11222       /* We only change the modes of scalar shifts.  */
11223       int_mode = as_a <scalar_int_mode> (mode);
11224       int_result_mode = as_a <scalar_int_mode> (result_mode);
11225       shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11226 					 int_mode, outer_op, outer_const);
11227     }
11228 
11229   /* We have now finished analyzing the shift.  The result should be
11230      a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places.  If
11231      OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11232      to the result of the shift.  OUTER_CONST is the relevant constant,
11233      but we must turn off all bits turned off in the shift.  */
11234 
11235   if (outer_op == UNKNOWN
11236       && orig_code == code && orig_count == count
11237       && varop == orig_varop
11238       && shift_mode == GET_MODE (varop))
11239     return NULL_RTX;
11240 
11241   /* Make a SUBREG if necessary.  If we can't make it, fail.  */
11242   varop = gen_lowpart (shift_mode, varop);
11243   if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11244     return NULL_RTX;
11245 
11246   /* If we have an outer operation and we just made a shift, it is
11247      possible that we could have simplified the shift were it not
11248      for the outer operation.  So try to do the simplification
11249      recursively.  */
11250 
11251   if (outer_op != UNKNOWN)
11252     x = simplify_shift_const_1 (code, shift_mode, varop, count);
11253   else
11254     x = NULL_RTX;
11255 
11256   if (x == NULL_RTX)
11257     x = simplify_gen_binary (code, shift_mode, varop,
11258 			     gen_int_shift_amount (shift_mode, count));
11259 
11260   /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11261      turn off all the bits that the shift would have turned off.  */
11262   if (orig_code == LSHIFTRT && result_mode != shift_mode)
11263     /* We only change the modes of scalar shifts.  */
11264     x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11265 				x, GET_MODE_MASK (result_mode) >> orig_count);
11266 
11267   /* Do the remainder of the processing in RESULT_MODE.  */
11268   x = gen_lowpart_or_truncate (result_mode, x);
11269 
11270   /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11271      operation.  */
11272   if (complement_p)
11273     x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11274 
11275   if (outer_op != UNKNOWN)
11276     {
11277       int_result_mode = as_a <scalar_int_mode> (result_mode);
11278 
11279       if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11280 	  && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11281 	outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11282 
11283       if (outer_op == AND)
11284 	x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11285       else if (outer_op == SET)
11286 	{
11287 	  /* This means that we have determined that the result is
11288 	     equivalent to a constant.  This should be rare.  */
11289 	  if (!side_effects_p (x))
11290 	    x = GEN_INT (outer_const);
11291 	}
11292       else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11293 	x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11294       else
11295 	x = simplify_gen_binary (outer_op, int_result_mode, x,
11296 				 GEN_INT (outer_const));
11297     }
11298 
11299   return x;
11300 }
11301 
11302 /* Simplify a shift of VAROP by COUNT bits.  CODE says what kind of shift.
11303    The result of the shift is RESULT_MODE.  If we cannot simplify it,
11304    return X or, if it is NULL, synthesize the expression with
11305    simplify_gen_binary.  Otherwise, return a simplified value.
11306 
11307    The shift is normally computed in the widest mode we find in VAROP, as
11308    long as it isn't a different number of words than RESULT_MODE.  Exceptions
11309    are ASHIFTRT and ROTATE, which are always done in their original mode.  */
11310 
11311 static rtx
11312 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11313 		      rtx varop, int count)
11314 {
11315   rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11316   if (tem)
11317     return tem;
11318 
11319   if (!x)
11320     x = simplify_gen_binary (code, GET_MODE (varop), varop,
11321 			     gen_int_shift_amount (GET_MODE (varop), count));
11322   if (GET_MODE (x) != result_mode)
11323     x = gen_lowpart (result_mode, x);
11324   return x;
11325 }
11326 
11327 
11328 /* A subroutine of recog_for_combine.  See there for arguments and
11329    return value.  */
11330 
11331 static int
11332 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11333 {
11334   rtx pat = *pnewpat;
11335   rtx pat_without_clobbers;
11336   int insn_code_number;
11337   int num_clobbers_to_add = 0;
11338   int i;
11339   rtx notes = NULL_RTX;
11340   rtx old_notes, old_pat;
11341   int old_icode;
11342 
11343   /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11344      we use to indicate that something didn't match.  If we find such a
11345      thing, force rejection.  */
11346   if (GET_CODE (pat) == PARALLEL)
11347     for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11348       if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11349 	  && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11350 	return -1;
11351 
11352   old_pat = PATTERN (insn);
11353   old_notes = REG_NOTES (insn);
11354   PATTERN (insn) = pat;
11355   REG_NOTES (insn) = NULL_RTX;
11356 
11357   insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11358   if (dump_file && (dump_flags & TDF_DETAILS))
11359     {
11360       if (insn_code_number < 0)
11361 	fputs ("Failed to match this instruction:\n", dump_file);
11362       else
11363 	fputs ("Successfully matched this instruction:\n", dump_file);
11364       print_rtl_single (dump_file, pat);
11365     }
11366 
11367   /* If it isn't, there is the possibility that we previously had an insn
11368      that clobbered some register as a side effect, but the combined
11369      insn doesn't need to do that.  So try once more without the clobbers
11370      unless this represents an ASM insn.  */
11371 
11372   if (insn_code_number < 0 && ! check_asm_operands (pat)
11373       && GET_CODE (pat) == PARALLEL)
11374     {
11375       int pos;
11376 
11377       for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11378 	if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11379 	  {
11380 	    if (i != pos)
11381 	      SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11382 	    pos++;
11383 	  }
11384 
11385       SUBST_INT (XVECLEN (pat, 0), pos);
11386 
11387       if (pos == 1)
11388 	pat = XVECEXP (pat, 0, 0);
11389 
11390       PATTERN (insn) = pat;
11391       insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11392       if (dump_file && (dump_flags & TDF_DETAILS))
11393 	{
11394 	  if (insn_code_number < 0)
11395 	    fputs ("Failed to match this instruction:\n", dump_file);
11396 	  else
11397 	    fputs ("Successfully matched this instruction:\n", dump_file);
11398 	  print_rtl_single (dump_file, pat);
11399 	}
11400     }
11401 
11402   pat_without_clobbers = pat;
11403 
11404   PATTERN (insn) = old_pat;
11405   REG_NOTES (insn) = old_notes;
11406 
11407   /* Recognize all noop sets, these will be killed by followup pass.  */
11408   if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11409     insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11410 
11411   /* If we had any clobbers to add, make a new pattern than contains
11412      them.  Then check to make sure that all of them are dead.  */
11413   if (num_clobbers_to_add)
11414     {
11415       rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11416 				     rtvec_alloc (GET_CODE (pat) == PARALLEL
11417 						  ? (XVECLEN (pat, 0)
11418 						     + num_clobbers_to_add)
11419 						  : num_clobbers_to_add + 1));
11420 
11421       if (GET_CODE (pat) == PARALLEL)
11422 	for (i = 0; i < XVECLEN (pat, 0); i++)
11423 	  XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11424       else
11425 	XVECEXP (newpat, 0, 0) = pat;
11426 
11427       add_clobbers (newpat, insn_code_number);
11428 
11429       for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11430 	   i < XVECLEN (newpat, 0); i++)
11431 	{
11432 	  if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11433 	      && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11434 	    return -1;
11435 	  if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11436 	    {
11437 	      gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11438 	      notes = alloc_reg_note (REG_UNUSED,
11439 				      XEXP (XVECEXP (newpat, 0, i), 0), notes);
11440 	    }
11441 	}
11442       pat = newpat;
11443     }
11444 
11445   if (insn_code_number >= 0
11446       && insn_code_number != NOOP_MOVE_INSN_CODE)
11447     {
11448       old_pat = PATTERN (insn);
11449       old_notes = REG_NOTES (insn);
11450       old_icode = INSN_CODE (insn);
11451       PATTERN (insn) = pat;
11452       REG_NOTES (insn) = notes;
11453       INSN_CODE (insn) = insn_code_number;
11454 
11455       /* Allow targets to reject combined insn.  */
11456       if (!targetm.legitimate_combined_insn (insn))
11457 	{
11458 	  if (dump_file && (dump_flags & TDF_DETAILS))
11459 	    fputs ("Instruction not appropriate for target.",
11460 		   dump_file);
11461 
11462 	  /* Callers expect recog_for_combine to strip
11463 	     clobbers from the pattern on failure.  */
11464 	  pat = pat_without_clobbers;
11465 	  notes = NULL_RTX;
11466 
11467 	  insn_code_number = -1;
11468 	}
11469 
11470       PATTERN (insn) = old_pat;
11471       REG_NOTES (insn) = old_notes;
11472       INSN_CODE (insn) = old_icode;
11473     }
11474 
11475   *pnewpat = pat;
11476   *pnotes = notes;
11477 
11478   return insn_code_number;
11479 }
11480 
11481 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11482    expressed as an AND and maybe an LSHIFTRT, to that formulation.
11483    Return whether anything was so changed.  */
11484 
11485 static bool
11486 change_zero_ext (rtx pat)
11487 {
11488   bool changed = false;
11489   rtx *src = &SET_SRC (pat);
11490 
11491   subrtx_ptr_iterator::array_type array;
11492   FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11493     {
11494       rtx x = **iter;
11495       scalar_int_mode mode, inner_mode;
11496       if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11497 	continue;
11498       int size;
11499 
11500       if (GET_CODE (x) == ZERO_EXTRACT
11501 	  && CONST_INT_P (XEXP (x, 1))
11502 	  && CONST_INT_P (XEXP (x, 2))
11503 	  && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11504 	  && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11505 	{
11506 	  size = INTVAL (XEXP (x, 1));
11507 
11508 	  int start = INTVAL (XEXP (x, 2));
11509 	  if (BITS_BIG_ENDIAN)
11510 	    start = GET_MODE_PRECISION (inner_mode) - size - start;
11511 
11512 	  if (start != 0)
11513 	    x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11514 				  gen_int_shift_amount (inner_mode, start));
11515 	  else
11516 	    x = XEXP (x, 0);
11517 
11518 	  if (mode != inner_mode)
11519 	    {
11520 	      if (REG_P (x) && HARD_REGISTER_P (x)
11521 		  && !can_change_dest_mode (x, 0, mode))
11522 		continue;
11523 
11524 	      x = gen_lowpart_SUBREG (mode, x);
11525 	    }
11526 	}
11527       else if (GET_CODE (x) == ZERO_EXTEND
11528 	       && GET_CODE (XEXP (x, 0)) == SUBREG
11529 	       && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11530 	       && !paradoxical_subreg_p (XEXP (x, 0))
11531 	       && subreg_lowpart_p (XEXP (x, 0)))
11532 	{
11533 	  inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11534 	  size = GET_MODE_PRECISION (inner_mode);
11535 	  x = SUBREG_REG (XEXP (x, 0));
11536 	  if (GET_MODE (x) != mode)
11537 	    {
11538 	      if (REG_P (x) && HARD_REGISTER_P (x)
11539 		  && !can_change_dest_mode (x, 0, mode))
11540 		continue;
11541 
11542 	      x = gen_lowpart_SUBREG (mode, x);
11543 	    }
11544 	}
11545       else if (GET_CODE (x) == ZERO_EXTEND
11546 	       && REG_P (XEXP (x, 0))
11547 	       && HARD_REGISTER_P (XEXP (x, 0))
11548 	       && can_change_dest_mode (XEXP (x, 0), 0, mode))
11549 	{
11550 	  inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11551 	  size = GET_MODE_PRECISION (inner_mode);
11552 	  x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11553 	}
11554       else
11555 	continue;
11556 
11557       if (!(GET_CODE (x) == LSHIFTRT
11558 	    && CONST_INT_P (XEXP (x, 1))
11559 	    && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11560 	{
11561 	  wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11562 	  x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11563 	}
11564 
11565       SUBST (**iter, x);
11566       changed = true;
11567     }
11568 
11569   if (changed)
11570     FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11571       maybe_swap_commutative_operands (**iter);
11572 
11573   rtx *dst = &SET_DEST (pat);
11574   scalar_int_mode mode;
11575   if (GET_CODE (*dst) == ZERO_EXTRACT
11576       && REG_P (XEXP (*dst, 0))
11577       && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11578       && CONST_INT_P (XEXP (*dst, 1))
11579       && CONST_INT_P (XEXP (*dst, 2)))
11580     {
11581       rtx reg = XEXP (*dst, 0);
11582       int width = INTVAL (XEXP (*dst, 1));
11583       int offset = INTVAL (XEXP (*dst, 2));
11584       int reg_width = GET_MODE_PRECISION (mode);
11585       if (BITS_BIG_ENDIAN)
11586 	offset = reg_width - width - offset;
11587 
11588       rtx x, y, z, w;
11589       wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11590       wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11591       x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11592       if (offset)
11593 	y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11594       else
11595 	y = SET_SRC (pat);
11596       z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11597       w = gen_rtx_IOR (mode, x, z);
11598       SUBST (SET_DEST (pat), reg);
11599       SUBST (SET_SRC (pat), w);
11600 
11601       changed = true;
11602     }
11603 
11604   return changed;
11605 }
11606 
11607 /* Like recog, but we receive the address of a pointer to a new pattern.
11608    We try to match the rtx that the pointer points to.
11609    If that fails, we may try to modify or replace the pattern,
11610    storing the replacement into the same pointer object.
11611 
11612    Modifications include deletion or addition of CLOBBERs.  If the
11613    instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11614    to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11615    (and undo if that fails).
11616 
11617    PNOTES is a pointer to a location where any REG_UNUSED notes added for
11618    the CLOBBERs are placed.
11619 
11620    The value is the final insn code from the pattern ultimately matched,
11621    or -1.  */
11622 
11623 static int
11624 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11625 {
11626   rtx pat = *pnewpat;
11627   int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11628   if (insn_code_number >= 0 || check_asm_operands (pat))
11629     return insn_code_number;
11630 
11631   void *marker = get_undo_marker ();
11632   bool changed = false;
11633 
11634   if (GET_CODE (pat) == SET)
11635     changed = change_zero_ext (pat);
11636   else if (GET_CODE (pat) == PARALLEL)
11637     {
11638       int i;
11639       for (i = 0; i < XVECLEN (pat, 0); i++)
11640 	{
11641 	  rtx set = XVECEXP (pat, 0, i);
11642 	  if (GET_CODE (set) == SET)
11643 	    changed |= change_zero_ext (set);
11644 	}
11645     }
11646 
11647   if (changed)
11648     {
11649       insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11650 
11651       if (insn_code_number < 0)
11652 	undo_to_marker (marker);
11653     }
11654 
11655   return insn_code_number;
11656 }
11657 
11658 /* Like gen_lowpart_general but for use by combine.  In combine it
11659    is not possible to create any new pseudoregs.  However, it is
11660    safe to create invalid memory addresses, because combine will
11661    try to recognize them and all they will do is make the combine
11662    attempt fail.
11663 
11664    If for some reason this cannot do its job, an rtx
11665    (clobber (const_int 0)) is returned.
11666    An insn containing that will not be recognized.  */
11667 
11668 static rtx
11669 gen_lowpart_for_combine (machine_mode omode, rtx x)
11670 {
11671   machine_mode imode = GET_MODE (x);
11672   rtx result;
11673 
11674   if (omode == imode)
11675     return x;
11676 
11677   /* We can only support MODE being wider than a word if X is a
11678      constant integer or has a mode the same size.  */
11679   if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11680       && ! (CONST_SCALAR_INT_P (x)
11681 	    || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11682     goto fail;
11683 
11684   /* X might be a paradoxical (subreg (mem)).  In that case, gen_lowpart
11685      won't know what to do.  So we will strip off the SUBREG here and
11686      process normally.  */
11687   if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11688     {
11689       x = SUBREG_REG (x);
11690 
11691       /* For use in case we fall down into the address adjustments
11692 	 further below, we need to adjust the known mode and size of
11693 	 x; imode and isize, since we just adjusted x.  */
11694       imode = GET_MODE (x);
11695 
11696       if (imode == omode)
11697 	return x;
11698     }
11699 
11700   result = gen_lowpart_common (omode, x);
11701 
11702   if (result)
11703     return result;
11704 
11705   if (MEM_P (x))
11706     {
11707       /* Refuse to work on a volatile memory ref or one with a mode-dependent
11708 	 address.  */
11709       if (MEM_VOLATILE_P (x)
11710 	  || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11711 	goto fail;
11712 
11713       /* If we want to refer to something bigger than the original memref,
11714 	 generate a paradoxical subreg instead.  That will force a reload
11715 	 of the original memref X.  */
11716       if (paradoxical_subreg_p (omode, imode))
11717 	return gen_rtx_SUBREG (omode, x, 0);
11718 
11719       poly_int64 offset = byte_lowpart_offset (omode, imode);
11720       return adjust_address_nv (x, omode, offset);
11721     }
11722 
11723   /* If X is a comparison operator, rewrite it in a new mode.  This
11724      probably won't match, but may allow further simplifications.  */
11725   else if (COMPARISON_P (x))
11726     return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11727 
11728   /* If we couldn't simplify X any other way, just enclose it in a
11729      SUBREG.  Normally, this SUBREG won't match, but some patterns may
11730      include an explicit SUBREG or we may simplify it further in combine.  */
11731   else
11732     {
11733       rtx res;
11734 
11735       if (imode == VOIDmode)
11736 	{
11737 	  imode = int_mode_for_mode (omode).require ();
11738 	  x = gen_lowpart_common (imode, x);
11739 	  if (x == NULL)
11740 	    goto fail;
11741 	}
11742       res = lowpart_subreg (omode, x, imode);
11743       if (res)
11744 	return res;
11745     }
11746 
11747  fail:
11748   return gen_rtx_CLOBBER (omode, const0_rtx);
11749 }
11750 
11751 /* Try to simplify a comparison between OP0 and a constant OP1,
11752    where CODE is the comparison code that will be tested, into a
11753    (CODE OP0 const0_rtx) form.
11754 
11755    The result is a possibly different comparison code to use.
11756    *POP1 may be updated.  */
11757 
11758 static enum rtx_code
11759 simplify_compare_const (enum rtx_code code, machine_mode mode,
11760 			rtx op0, rtx *pop1)
11761 {
11762   scalar_int_mode int_mode;
11763   HOST_WIDE_INT const_op = INTVAL (*pop1);
11764 
11765   /* Get the constant we are comparing against and turn off all bits
11766      not on in our mode.  */
11767   if (mode != VOIDmode)
11768     const_op = trunc_int_for_mode (const_op, mode);
11769 
11770   /* If we are comparing against a constant power of two and the value
11771      being compared can only have that single bit nonzero (e.g., it was
11772      `and'ed with that bit), we can replace this with a comparison
11773      with zero.  */
11774   if (const_op
11775       && (code == EQ || code == NE || code == GE || code == GEU
11776 	  || code == LT || code == LTU)
11777       && is_a <scalar_int_mode> (mode, &int_mode)
11778       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11779       && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11780       && (nonzero_bits (op0, int_mode)
11781 	  == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11782     {
11783       code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11784       const_op = 0;
11785     }
11786 
11787   /* Similarly, if we are comparing a value known to be either -1 or
11788      0 with -1, change it to the opposite comparison against zero.  */
11789   if (const_op == -1
11790       && (code == EQ || code == NE || code == GT || code == LE
11791 	  || code == GEU || code == LTU)
11792       && is_a <scalar_int_mode> (mode, &int_mode)
11793       && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11794     {
11795       code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11796       const_op = 0;
11797     }
11798 
11799   /* Do some canonicalizations based on the comparison code.  We prefer
11800      comparisons against zero and then prefer equality comparisons.
11801      If we can reduce the size of a constant, we will do that too.  */
11802   switch (code)
11803     {
11804     case LT:
11805       /* < C is equivalent to <= (C - 1) */
11806       if (const_op > 0)
11807 	{
11808 	  const_op -= 1;
11809 	  code = LE;
11810 	  /* ... fall through to LE case below.  */
11811 	  gcc_fallthrough ();
11812 	}
11813       else
11814 	break;
11815 
11816     case LE:
11817       /* <= C is equivalent to < (C + 1); we do this for C < 0  */
11818       if (const_op < 0)
11819 	{
11820 	  const_op += 1;
11821 	  code = LT;
11822 	}
11823 
11824       /* If we are doing a <= 0 comparison on a value known to have
11825 	 a zero sign bit, we can replace this with == 0.  */
11826       else if (const_op == 0
11827 	       && is_a <scalar_int_mode> (mode, &int_mode)
11828 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11829 	       && (nonzero_bits (op0, int_mode)
11830 		   & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11831 	       == 0)
11832 	code = EQ;
11833       break;
11834 
11835     case GE:
11836       /* >= C is equivalent to > (C - 1).  */
11837       if (const_op > 0)
11838 	{
11839 	  const_op -= 1;
11840 	  code = GT;
11841 	  /* ... fall through to GT below.  */
11842 	  gcc_fallthrough ();
11843 	}
11844       else
11845 	break;
11846 
11847     case GT:
11848       /* > C is equivalent to >= (C + 1); we do this for C < 0.  */
11849       if (const_op < 0)
11850 	{
11851 	  const_op += 1;
11852 	  code = GE;
11853 	}
11854 
11855       /* If we are doing a > 0 comparison on a value known to have
11856 	 a zero sign bit, we can replace this with != 0.  */
11857       else if (const_op == 0
11858 	       && is_a <scalar_int_mode> (mode, &int_mode)
11859 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11860 	       && (nonzero_bits (op0, int_mode)
11861 		   & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11862 	       == 0)
11863 	code = NE;
11864       break;
11865 
11866     case LTU:
11867       /* < C is equivalent to <= (C - 1).  */
11868       if (const_op > 0)
11869 	{
11870 	  const_op -= 1;
11871 	  code = LEU;
11872 	  /* ... fall through ...  */
11873 	  gcc_fallthrough ();
11874 	}
11875       /* (unsigned) < 0x80000000 is equivalent to >= 0.  */
11876       else if (is_a <scalar_int_mode> (mode, &int_mode)
11877 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11878 	       && ((unsigned HOST_WIDE_INT) const_op
11879 		   == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11880 	{
11881 	  const_op = 0;
11882 	  code = GE;
11883 	  break;
11884 	}
11885       else
11886 	break;
11887 
11888     case LEU:
11889       /* unsigned <= 0 is equivalent to == 0 */
11890       if (const_op == 0)
11891 	code = EQ;
11892       /* (unsigned) <= 0x7fffffff is equivalent to >= 0.  */
11893       else if (is_a <scalar_int_mode> (mode, &int_mode)
11894 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11895 	       && ((unsigned HOST_WIDE_INT) const_op
11896 		   == ((HOST_WIDE_INT_1U
11897 			<< (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11898 	{
11899 	  const_op = 0;
11900 	  code = GE;
11901 	}
11902       break;
11903 
11904     case GEU:
11905       /* >= C is equivalent to > (C - 1).  */
11906       if (const_op > 1)
11907 	{
11908 	  const_op -= 1;
11909 	  code = GTU;
11910 	  /* ... fall through ...  */
11911 	  gcc_fallthrough ();
11912 	}
11913 
11914       /* (unsigned) >= 0x80000000 is equivalent to < 0.  */
11915       else if (is_a <scalar_int_mode> (mode, &int_mode)
11916 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11917 	       && ((unsigned HOST_WIDE_INT) const_op
11918 		   == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11919 	{
11920 	  const_op = 0;
11921 	  code = LT;
11922 	  break;
11923 	}
11924       else
11925 	break;
11926 
11927     case GTU:
11928       /* unsigned > 0 is equivalent to != 0 */
11929       if (const_op == 0)
11930 	code = NE;
11931       /* (unsigned) > 0x7fffffff is equivalent to < 0.  */
11932       else if (is_a <scalar_int_mode> (mode, &int_mode)
11933 	       && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11934 	       && ((unsigned HOST_WIDE_INT) const_op
11935 		   == (HOST_WIDE_INT_1U
11936 		       << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11937 	{
11938 	  const_op = 0;
11939 	  code = LT;
11940 	}
11941       break;
11942 
11943     default:
11944       break;
11945     }
11946 
11947   *pop1 = GEN_INT (const_op);
11948   return code;
11949 }
11950 
11951 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11952    comparison code that will be tested.
11953 
11954    The result is a possibly different comparison code to use.  *POP0 and
11955    *POP1 may be updated.
11956 
11957    It is possible that we might detect that a comparison is either always
11958    true or always false.  However, we do not perform general constant
11959    folding in combine, so this knowledge isn't useful.  Such tautologies
11960    should have been detected earlier.  Hence we ignore all such cases.  */
11961 
11962 static enum rtx_code
11963 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11964 {
11965   rtx op0 = *pop0;
11966   rtx op1 = *pop1;
11967   rtx tem, tem1;
11968   int i;
11969   scalar_int_mode mode, inner_mode, tmode;
11970   opt_scalar_int_mode tmode_iter;
11971 
11972   /* Try a few ways of applying the same transformation to both operands.  */
11973   while (1)
11974     {
11975       /* The test below this one won't handle SIGN_EXTENDs on these machines,
11976 	 so check specially.  */
11977       if (!WORD_REGISTER_OPERATIONS
11978 	  && code != GTU && code != GEU && code != LTU && code != LEU
11979 	  && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11980 	  && GET_CODE (XEXP (op0, 0)) == ASHIFT
11981 	  && GET_CODE (XEXP (op1, 0)) == ASHIFT
11982 	  && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11983 	  && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11984 	  && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11985 	  && (is_a <scalar_int_mode>
11986 	      (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11987 	  && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11988 	  && CONST_INT_P (XEXP (op0, 1))
11989 	  && XEXP (op0, 1) == XEXP (op1, 1)
11990 	  && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11991 	  && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11992 	  && (INTVAL (XEXP (op0, 1))
11993 	      == (GET_MODE_PRECISION (mode)
11994 		  - GET_MODE_PRECISION (inner_mode))))
11995 	{
11996 	  op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11997 	  op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11998 	}
11999 
12000       /* If both operands are the same constant shift, see if we can ignore the
12001 	 shift.  We can if the shift is a rotate or if the bits shifted out of
12002 	 this shift are known to be zero for both inputs and if the type of
12003 	 comparison is compatible with the shift.  */
12004       if (GET_CODE (op0) == GET_CODE (op1)
12005 	  && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12006 	  && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12007 	      || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12008 		  && (code != GT && code != LT && code != GE && code != LE))
12009 	      || (GET_CODE (op0) == ASHIFTRT
12010 		  && (code != GTU && code != LTU
12011 		      && code != GEU && code != LEU)))
12012 	  && CONST_INT_P (XEXP (op0, 1))
12013 	  && INTVAL (XEXP (op0, 1)) >= 0
12014 	  && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12015 	  && XEXP (op0, 1) == XEXP (op1, 1))
12016 	{
12017 	  machine_mode mode = GET_MODE (op0);
12018 	  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12019 	  int shift_count = INTVAL (XEXP (op0, 1));
12020 
12021 	  if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12022 	    mask &= (mask >> shift_count) << shift_count;
12023 	  else if (GET_CODE (op0) == ASHIFT)
12024 	    mask = (mask & (mask << shift_count)) >> shift_count;
12025 
12026 	  if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12027 	      && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12028 	    op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12029 	  else
12030 	    break;
12031 	}
12032 
12033       /* If both operands are AND's of a paradoxical SUBREG by constant, the
12034 	 SUBREGs are of the same mode, and, in both cases, the AND would
12035 	 be redundant if the comparison was done in the narrower mode,
12036 	 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12037 	 and the operand's possibly nonzero bits are 0xffffff01; in that case
12038 	 if we only care about QImode, we don't need the AND).  This case
12039 	 occurs if the output mode of an scc insn is not SImode and
12040 	 STORE_FLAG_VALUE == 1 (e.g., the 386).
12041 
12042 	 Similarly, check for a case where the AND's are ZERO_EXTEND
12043 	 operations from some narrower mode even though a SUBREG is not
12044 	 present.  */
12045 
12046       else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12047 	       && CONST_INT_P (XEXP (op0, 1))
12048 	       && CONST_INT_P (XEXP (op1, 1)))
12049 	{
12050 	  rtx inner_op0 = XEXP (op0, 0);
12051 	  rtx inner_op1 = XEXP (op1, 0);
12052 	  HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12053 	  HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12054 	  int changed = 0;
12055 
12056 	  if (paradoxical_subreg_p (inner_op0)
12057 	      && GET_CODE (inner_op1) == SUBREG
12058 	      && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12059 	      && (GET_MODE (SUBREG_REG (inner_op0))
12060 		  == GET_MODE (SUBREG_REG (inner_op1)))
12061 	      && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12062 					GET_MODE (SUBREG_REG (inner_op0)))) == 0
12063 	      && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12064 					GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12065 	    {
12066 	      op0 = SUBREG_REG (inner_op0);
12067 	      op1 = SUBREG_REG (inner_op1);
12068 
12069 	      /* The resulting comparison is always unsigned since we masked
12070 		 off the original sign bit.  */
12071 	      code = unsigned_condition (code);
12072 
12073 	      changed = 1;
12074 	    }
12075 
12076 	  else if (c0 == c1)
12077 	    FOR_EACH_MODE_UNTIL (tmode,
12078 				 as_a <scalar_int_mode> (GET_MODE (op0)))
12079 	      if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12080 		{
12081 		  op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12082 		  op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12083 		  code = unsigned_condition (code);
12084 		  changed = 1;
12085 		  break;
12086 		}
12087 
12088 	  if (! changed)
12089 	    break;
12090 	}
12091 
12092       /* If both operands are NOT, we can strip off the outer operation
12093 	 and adjust the comparison code for swapped operands; similarly for
12094 	 NEG, except that this must be an equality comparison.  */
12095       else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12096 	       || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12097 		   && (code == EQ || code == NE)))
12098 	op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12099 
12100       else
12101 	break;
12102     }
12103 
12104   /* If the first operand is a constant, swap the operands and adjust the
12105      comparison code appropriately, but don't do this if the second operand
12106      is already a constant integer.  */
12107   if (swap_commutative_operands_p (op0, op1))
12108     {
12109       std::swap (op0, op1);
12110       code = swap_condition (code);
12111     }
12112 
12113   /* We now enter a loop during which we will try to simplify the comparison.
12114      For the most part, we only are concerned with comparisons with zero,
12115      but some things may really be comparisons with zero but not start
12116      out looking that way.  */
12117 
12118   while (CONST_INT_P (op1))
12119     {
12120       machine_mode raw_mode = GET_MODE (op0);
12121       scalar_int_mode int_mode;
12122       int equality_comparison_p;
12123       int sign_bit_comparison_p;
12124       int unsigned_comparison_p;
12125       HOST_WIDE_INT const_op;
12126 
12127       /* We only want to handle integral modes.  This catches VOIDmode,
12128 	 CCmode, and the floating-point modes.  An exception is that we
12129 	 can handle VOIDmode if OP0 is a COMPARE or a comparison
12130 	 operation.  */
12131 
12132       if (GET_MODE_CLASS (raw_mode) != MODE_INT
12133 	  && ! (raw_mode == VOIDmode
12134 		&& (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12135 	break;
12136 
12137       /* Try to simplify the compare to constant, possibly changing the
12138 	 comparison op, and/or changing op1 to zero.  */
12139       code = simplify_compare_const (code, raw_mode, op0, &op1);
12140       const_op = INTVAL (op1);
12141 
12142       /* Compute some predicates to simplify code below.  */
12143 
12144       equality_comparison_p = (code == EQ || code == NE);
12145       sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12146       unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12147 			       || code == GEU);
12148 
12149       /* If this is a sign bit comparison and we can do arithmetic in
12150 	 MODE, say that we will only be needing the sign bit of OP0.  */
12151       if (sign_bit_comparison_p
12152 	  && is_a <scalar_int_mode> (raw_mode, &int_mode)
12153 	  && HWI_COMPUTABLE_MODE_P (int_mode))
12154 	op0 = force_to_mode (op0, int_mode,
12155 			     HOST_WIDE_INT_1U
12156 			     << (GET_MODE_PRECISION (int_mode) - 1),
12157 			     0);
12158 
12159       if (COMPARISON_P (op0))
12160 	{
12161 	  /* We can't do anything if OP0 is a condition code value, rather
12162 	     than an actual data value.  */
12163 	  if (const_op != 0
12164 	      || CC0_P (XEXP (op0, 0))
12165 	      || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12166 	    break;
12167 
12168 	  /* Get the two operands being compared.  */
12169 	  if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12170 	    tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12171 	  else
12172 	    tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12173 
12174 	  /* Check for the cases where we simply want the result of the
12175 	     earlier test or the opposite of that result.  */
12176 	  if (code == NE || code == EQ
12177 	      || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12178 		  && (code == LT || code == GE)))
12179 	    {
12180 	      enum rtx_code new_code;
12181 	      if (code == LT || code == NE)
12182 		new_code = GET_CODE (op0);
12183 	      else
12184 		new_code = reversed_comparison_code (op0, NULL);
12185 
12186 	      if (new_code != UNKNOWN)
12187 		{
12188 		  code = new_code;
12189 		  op0 = tem;
12190 		  op1 = tem1;
12191 		  continue;
12192 		}
12193 	    }
12194 	  break;
12195 	}
12196 
12197       if (raw_mode == VOIDmode)
12198 	break;
12199       scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12200 
12201       /* Now try cases based on the opcode of OP0.  If none of the cases
12202 	 does a "continue", we exit this loop immediately after the
12203 	 switch.  */
12204 
12205       unsigned int mode_width = GET_MODE_PRECISION (mode);
12206       unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12207       switch (GET_CODE (op0))
12208 	{
12209 	case ZERO_EXTRACT:
12210 	  /* If we are extracting a single bit from a variable position in
12211 	     a constant that has only a single bit set and are comparing it
12212 	     with zero, we can convert this into an equality comparison
12213 	     between the position and the location of the single bit.  */
12214 	  /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12215 	     have already reduced the shift count modulo the word size.  */
12216 	  if (!SHIFT_COUNT_TRUNCATED
12217 	      && CONST_INT_P (XEXP (op0, 0))
12218 	      && XEXP (op0, 1) == const1_rtx
12219 	      && equality_comparison_p && const_op == 0
12220 	      && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12221 	    {
12222 	      if (BITS_BIG_ENDIAN)
12223 		i = BITS_PER_WORD - 1 - i;
12224 
12225 	      op0 = XEXP (op0, 2);
12226 	      op1 = GEN_INT (i);
12227 	      const_op = i;
12228 
12229 	      /* Result is nonzero iff shift count is equal to I.  */
12230 	      code = reverse_condition (code);
12231 	      continue;
12232 	    }
12233 
12234 	  /* fall through */
12235 
12236 	case SIGN_EXTRACT:
12237 	  tem = expand_compound_operation (op0);
12238 	  if (tem != op0)
12239 	    {
12240 	      op0 = tem;
12241 	      continue;
12242 	    }
12243 	  break;
12244 
12245 	case NOT:
12246 	  /* If testing for equality, we can take the NOT of the constant.  */
12247 	  if (equality_comparison_p
12248 	      && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12249 	    {
12250 	      op0 = XEXP (op0, 0);
12251 	      op1 = tem;
12252 	      continue;
12253 	    }
12254 
12255 	  /* If just looking at the sign bit, reverse the sense of the
12256 	     comparison.  */
12257 	  if (sign_bit_comparison_p)
12258 	    {
12259 	      op0 = XEXP (op0, 0);
12260 	      code = (code == GE ? LT : GE);
12261 	      continue;
12262 	    }
12263 	  break;
12264 
12265 	case NEG:
12266 	  /* If testing for equality, we can take the NEG of the constant.  */
12267 	  if (equality_comparison_p
12268 	      && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12269 	    {
12270 	      op0 = XEXP (op0, 0);
12271 	      op1 = tem;
12272 	      continue;
12273 	    }
12274 
12275 	  /* The remaining cases only apply to comparisons with zero.  */
12276 	  if (const_op != 0)
12277 	    break;
12278 
12279 	  /* When X is ABS or is known positive,
12280 	     (neg X) is < 0 if and only if X != 0.  */
12281 
12282 	  if (sign_bit_comparison_p
12283 	      && (GET_CODE (XEXP (op0, 0)) == ABS
12284 		  || (mode_width <= HOST_BITS_PER_WIDE_INT
12285 		      && (nonzero_bits (XEXP (op0, 0), mode)
12286 			  & (HOST_WIDE_INT_1U << (mode_width - 1)))
12287 			 == 0)))
12288 	    {
12289 	      op0 = XEXP (op0, 0);
12290 	      code = (code == LT ? NE : EQ);
12291 	      continue;
12292 	    }
12293 
12294 	  /* If we have NEG of something whose two high-order bits are the
12295 	     same, we know that "(-a) < 0" is equivalent to "a > 0".  */
12296 	  if (num_sign_bit_copies (op0, mode) >= 2)
12297 	    {
12298 	      op0 = XEXP (op0, 0);
12299 	      code = swap_condition (code);
12300 	      continue;
12301 	    }
12302 	  break;
12303 
12304 	case ROTATE:
12305 	  /* If we are testing equality and our count is a constant, we
12306 	     can perform the inverse operation on our RHS.  */
12307 	  if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12308 	      && (tem = simplify_binary_operation (ROTATERT, mode,
12309 						   op1, XEXP (op0, 1))) != 0)
12310 	    {
12311 	      op0 = XEXP (op0, 0);
12312 	      op1 = tem;
12313 	      continue;
12314 	    }
12315 
12316 	  /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12317 	     a particular bit.  Convert it to an AND of a constant of that
12318 	     bit.  This will be converted into a ZERO_EXTRACT.  */
12319 	  if (const_op == 0 && sign_bit_comparison_p
12320 	      && CONST_INT_P (XEXP (op0, 1))
12321 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
12322 	    {
12323 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12324 					    (HOST_WIDE_INT_1U
12325 					     << (mode_width - 1
12326 						 - INTVAL (XEXP (op0, 1)))));
12327 	      code = (code == LT ? NE : EQ);
12328 	      continue;
12329 	    }
12330 
12331 	  /* Fall through.  */
12332 
12333 	case ABS:
12334 	  /* ABS is ignorable inside an equality comparison with zero.  */
12335 	  if (const_op == 0 && equality_comparison_p)
12336 	    {
12337 	      op0 = XEXP (op0, 0);
12338 	      continue;
12339 	    }
12340 	  break;
12341 
12342 	case SIGN_EXTEND:
12343 	  /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12344 	     (compare FOO CONST) if CONST fits in FOO's mode and we
12345 	     are either testing inequality or have an unsigned
12346 	     comparison with ZERO_EXTEND or a signed comparison with
12347 	     SIGN_EXTEND.  But don't do it if we don't have a compare
12348 	     insn of the given mode, since we'd have to revert it
12349 	     later on, and then we wouldn't know whether to sign- or
12350 	     zero-extend.  */
12351 	  if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12352 	      && ! unsigned_comparison_p
12353 	      && HWI_COMPUTABLE_MODE_P (mode)
12354 	      && trunc_int_for_mode (const_op, mode) == const_op
12355 	      && have_insn_for (COMPARE, mode))
12356 	    {
12357 	      op0 = XEXP (op0, 0);
12358 	      continue;
12359 	    }
12360 	  break;
12361 
12362 	case SUBREG:
12363 	  /* Check for the case where we are comparing A - C1 with C2, that is
12364 
12365 	       (subreg:MODE (plus (A) (-C1))) op (C2)
12366 
12367 	     with C1 a constant, and try to lift the SUBREG, i.e. to do the
12368 	     comparison in the wider mode.  One of the following two conditions
12369 	     must be true in order for this to be valid:
12370 
12371 	       1. The mode extension results in the same bit pattern being added
12372 		  on both sides and the comparison is equality or unsigned.  As
12373 		  C2 has been truncated to fit in MODE, the pattern can only be
12374 		  all 0s or all 1s.
12375 
12376 	       2. The mode extension results in the sign bit being copied on
12377 		  each side.
12378 
12379 	     The difficulty here is that we have predicates for A but not for
12380 	     (A - C1) so we need to check that C1 is within proper bounds so
12381 	     as to perturbate A as little as possible.  */
12382 
12383 	  if (mode_width <= HOST_BITS_PER_WIDE_INT
12384 	      && subreg_lowpart_p (op0)
12385 	      && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12386 					 &inner_mode)
12387 	      && GET_MODE_PRECISION (inner_mode) > mode_width
12388 	      && GET_CODE (SUBREG_REG (op0)) == PLUS
12389 	      && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12390 	    {
12391 	      rtx a = XEXP (SUBREG_REG (op0), 0);
12392 	      HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12393 
12394 	      if ((c1 > 0
12395 		   && (unsigned HOST_WIDE_INT) c1
12396 		       < HOST_WIDE_INT_1U << (mode_width - 1)
12397 		   && (equality_comparison_p || unsigned_comparison_p)
12398 		   /* (A - C1) zero-extends if it is positive and sign-extends
12399 		      if it is negative, C2 both zero- and sign-extends.  */
12400 		   && (((nonzero_bits (a, inner_mode)
12401 			 & ~GET_MODE_MASK (mode)) == 0
12402 			&& const_op >= 0)
12403 		       /* (A - C1) sign-extends if it is positive and 1-extends
12404 			  if it is negative, C2 both sign- and 1-extends.  */
12405 		       || (num_sign_bit_copies (a, inner_mode)
12406 			   > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12407 					     - mode_width)
12408 			   && const_op < 0)))
12409 		  || ((unsigned HOST_WIDE_INT) c1
12410 		       < HOST_WIDE_INT_1U << (mode_width - 2)
12411 		      /* (A - C1) always sign-extends, like C2.  */
12412 		      && num_sign_bit_copies (a, inner_mode)
12413 			 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12414 					   - (mode_width - 1))))
12415 		{
12416 		  op0 = SUBREG_REG (op0);
12417 		  continue;
12418 		}
12419 	    }
12420 
12421 	  /* If the inner mode is narrower and we are extracting the low part,
12422 	     we can treat the SUBREG as if it were a ZERO_EXTEND.  */
12423 	  if (paradoxical_subreg_p (op0))
12424 	    ;
12425 	  else if (subreg_lowpart_p (op0)
12426 		   && GET_MODE_CLASS (mode) == MODE_INT
12427 		   && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12428 		   && (code == NE || code == EQ)
12429 		   && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12430 		   && !paradoxical_subreg_p (op0)
12431 		   && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12432 		       & ~GET_MODE_MASK (mode)) == 0)
12433 	    {
12434 	      /* Remove outer subregs that don't do anything.  */
12435 	      tem = gen_lowpart (inner_mode, op1);
12436 
12437 	      if ((nonzero_bits (tem, inner_mode)
12438 		   & ~GET_MODE_MASK (mode)) == 0)
12439 		{
12440 		  op0 = SUBREG_REG (op0);
12441 		  op1 = tem;
12442 		  continue;
12443 		}
12444 	      break;
12445 	    }
12446 	  else
12447 	    break;
12448 
12449 	  /* FALLTHROUGH */
12450 
12451 	case ZERO_EXTEND:
12452 	  if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12453 	      && (unsigned_comparison_p || equality_comparison_p)
12454 	      && HWI_COMPUTABLE_MODE_P (mode)
12455 	      && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12456 	      && const_op >= 0
12457 	      && have_insn_for (COMPARE, mode))
12458 	    {
12459 	      op0 = XEXP (op0, 0);
12460 	      continue;
12461 	    }
12462 	  break;
12463 
12464 	case PLUS:
12465 	  /* (eq (plus X A) B) -> (eq X (minus B A)).  We can only do
12466 	     this for equality comparisons due to pathological cases involving
12467 	     overflows.  */
12468 	  if (equality_comparison_p
12469 	      && (tem = simplify_binary_operation (MINUS, mode,
12470 						   op1, XEXP (op0, 1))) != 0)
12471 	    {
12472 	      op0 = XEXP (op0, 0);
12473 	      op1 = tem;
12474 	      continue;
12475 	    }
12476 
12477 	  /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0.  */
12478 	  if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12479 	      && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12480 	    {
12481 	      op0 = XEXP (XEXP (op0, 0), 0);
12482 	      code = (code == LT ? EQ : NE);
12483 	      continue;
12484 	    }
12485 	  break;
12486 
12487 	case MINUS:
12488 	  /* We used to optimize signed comparisons against zero, but that
12489 	     was incorrect.  Unsigned comparisons against zero (GTU, LEU)
12490 	     arrive here as equality comparisons, or (GEU, LTU) are
12491 	     optimized away.  No need to special-case them.  */
12492 
12493 	  /* (eq (minus A B) C) -> (eq A (plus B C)) or
12494 	     (eq B (minus A C)), whichever simplifies.  We can only do
12495 	     this for equality comparisons due to pathological cases involving
12496 	     overflows.  */
12497 	  if (equality_comparison_p
12498 	      && (tem = simplify_binary_operation (PLUS, mode,
12499 						   XEXP (op0, 1), op1)) != 0)
12500 	    {
12501 	      op0 = XEXP (op0, 0);
12502 	      op1 = tem;
12503 	      continue;
12504 	    }
12505 
12506 	  if (equality_comparison_p
12507 	      && (tem = simplify_binary_operation (MINUS, mode,
12508 						   XEXP (op0, 0), op1)) != 0)
12509 	    {
12510 	      op0 = XEXP (op0, 1);
12511 	      op1 = tem;
12512 	      continue;
12513 	    }
12514 
12515 	  /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12516 	     of bits in X minus 1, is one iff X > 0.  */
12517 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12518 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12519 	      && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12520 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12521 	    {
12522 	      op0 = XEXP (op0, 1);
12523 	      code = (code == GE ? LE : GT);
12524 	      continue;
12525 	    }
12526 	  break;
12527 
12528 	case XOR:
12529 	  /* (eq (xor A B) C) -> (eq A (xor B C)).  This is a simplification
12530 	     if C is zero or B is a constant.  */
12531 	  if (equality_comparison_p
12532 	      && (tem = simplify_binary_operation (XOR, mode,
12533 						   XEXP (op0, 1), op1)) != 0)
12534 	    {
12535 	      op0 = XEXP (op0, 0);
12536 	      op1 = tem;
12537 	      continue;
12538 	    }
12539 	  break;
12540 
12541 
12542 	case IOR:
12543 	  /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12544 	     iff X <= 0.  */
12545 	  if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12546 	      && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12547 	      && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12548 	    {
12549 	      op0 = XEXP (op0, 1);
12550 	      code = (code == GE ? GT : LE);
12551 	      continue;
12552 	    }
12553 	  break;
12554 
12555 	case AND:
12556 	  /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1).  This
12557 	     will be converted to a ZERO_EXTRACT later.  */
12558 	  if (const_op == 0 && equality_comparison_p
12559 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12560 	      && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12561 	    {
12562 	      op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12563 				      XEXP (XEXP (op0, 0), 1));
12564 	      op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12565 	      continue;
12566 	    }
12567 
12568 	  /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12569 	     zero and X is a comparison and C1 and C2 describe only bits set
12570 	     in STORE_FLAG_VALUE, we can compare with X.  */
12571 	  if (const_op == 0 && equality_comparison_p
12572 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12573 	      && CONST_INT_P (XEXP (op0, 1))
12574 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12575 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12576 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12577 	      && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12578 	    {
12579 	      mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12580 		      << INTVAL (XEXP (XEXP (op0, 0), 1)));
12581 	      if ((~STORE_FLAG_VALUE & mask) == 0
12582 		  && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12583 		      || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12584 			  && COMPARISON_P (tem))))
12585 		{
12586 		  op0 = XEXP (XEXP (op0, 0), 0);
12587 		  continue;
12588 		}
12589 	    }
12590 
12591 	  /* If we are doing an equality comparison of an AND of a bit equal
12592 	     to the sign bit, replace this with a LT or GE comparison of
12593 	     the underlying value.  */
12594 	  if (equality_comparison_p
12595 	      && const_op == 0
12596 	      && CONST_INT_P (XEXP (op0, 1))
12597 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12598 	      && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12599 		  == HOST_WIDE_INT_1U << (mode_width - 1)))
12600 	    {
12601 	      op0 = XEXP (op0, 0);
12602 	      code = (code == EQ ? GE : LT);
12603 	      continue;
12604 	    }
12605 
12606 	  /* If this AND operation is really a ZERO_EXTEND from a narrower
12607 	     mode, the constant fits within that mode, and this is either an
12608 	     equality or unsigned comparison, try to do this comparison in
12609 	     the narrower mode.
12610 
12611 	     Note that in:
12612 
12613 	     (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12614 	     -> (ne:DI (reg:SI 4) (const_int 0))
12615 
12616 	     unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12617 	     known to hold a value of the required mode the
12618 	     transformation is invalid.  */
12619 	  if ((equality_comparison_p || unsigned_comparison_p)
12620 	      && CONST_INT_P (XEXP (op0, 1))
12621 	      && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12622 				   & GET_MODE_MASK (mode))
12623 				  + 1)) >= 0
12624 	      && const_op >> i == 0
12625 	      && int_mode_for_size (i, 1).exists (&tmode))
12626 	    {
12627 	      op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12628 	      continue;
12629 	    }
12630 
12631 	  /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12632 	     fits in both M1 and M2 and the SUBREG is either paradoxical
12633 	     or represents the low part, permute the SUBREG and the AND
12634 	     and try again.  */
12635 	  if (GET_CODE (XEXP (op0, 0)) == SUBREG
12636 	      && CONST_INT_P (XEXP (op0, 1)))
12637 	    {
12638 	      unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12639 	      /* Require an integral mode, to avoid creating something like
12640 		 (AND:SF ...).  */
12641 	      if ((is_a <scalar_int_mode>
12642 		   (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12643 		  /* It is unsafe to commute the AND into the SUBREG if the
12644 		     SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12645 		     not defined.  As originally written the upper bits
12646 		     have a defined value due to the AND operation.
12647 		     However, if we commute the AND inside the SUBREG then
12648 		     they no longer have defined values and the meaning of
12649 		     the code has been changed.
12650 		     Also C1 should not change value in the smaller mode,
12651 		     see PR67028 (a positive C1 can become negative in the
12652 		     smaller mode, so that the AND does no longer mask the
12653 		     upper bits).  */
12654 		  && ((WORD_REGISTER_OPERATIONS
12655 		       && mode_width > GET_MODE_PRECISION (tmode)
12656 		       && mode_width <= BITS_PER_WORD
12657 		       && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12658 		      || (mode_width <= GET_MODE_PRECISION (tmode)
12659 			  && subreg_lowpart_p (XEXP (op0, 0))))
12660 		  && mode_width <= HOST_BITS_PER_WIDE_INT
12661 		  && HWI_COMPUTABLE_MODE_P (tmode)
12662 		  && (c1 & ~mask) == 0
12663 		  && (c1 & ~GET_MODE_MASK (tmode)) == 0
12664 		  && c1 != mask
12665 		  && c1 != GET_MODE_MASK (tmode))
12666 		{
12667 		  op0 = simplify_gen_binary (AND, tmode,
12668 					     SUBREG_REG (XEXP (op0, 0)),
12669 					     gen_int_mode (c1, tmode));
12670 		  op0 = gen_lowpart (mode, op0);
12671 		  continue;
12672 		}
12673 	    }
12674 
12675 	  /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0).  */
12676 	  if (const_op == 0 && equality_comparison_p
12677 	      && XEXP (op0, 1) == const1_rtx
12678 	      && GET_CODE (XEXP (op0, 0)) == NOT)
12679 	    {
12680 	      op0 = simplify_and_const_int (NULL_RTX, mode,
12681 					    XEXP (XEXP (op0, 0), 0), 1);
12682 	      code = (code == NE ? EQ : NE);
12683 	      continue;
12684 	    }
12685 
12686 	  /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12687 	     (eq (and (lshiftrt X) 1) 0).
12688 	     Also handle the case where (not X) is expressed using xor.  */
12689 	  if (const_op == 0 && equality_comparison_p
12690 	      && XEXP (op0, 1) == const1_rtx
12691 	      && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12692 	    {
12693 	      rtx shift_op = XEXP (XEXP (op0, 0), 0);
12694 	      rtx shift_count = XEXP (XEXP (op0, 0), 1);
12695 
12696 	      if (GET_CODE (shift_op) == NOT
12697 		  || (GET_CODE (shift_op) == XOR
12698 		      && CONST_INT_P (XEXP (shift_op, 1))
12699 		      && CONST_INT_P (shift_count)
12700 		      && HWI_COMPUTABLE_MODE_P (mode)
12701 		      && (UINTVAL (XEXP (shift_op, 1))
12702 			  == HOST_WIDE_INT_1U
12703 			       << INTVAL (shift_count))))
12704 		{
12705 		  op0
12706 		    = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12707 		  op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12708 		  code = (code == NE ? EQ : NE);
12709 		  continue;
12710 		}
12711 	    }
12712 	  break;
12713 
12714 	case ASHIFT:
12715 	  /* If we have (compare (ashift FOO N) (const_int C)) and
12716 	     the high order N bits of FOO (N+1 if an inequality comparison)
12717 	     are known to be zero, we can do this by comparing FOO with C
12718 	     shifted right N bits so long as the low-order N bits of C are
12719 	     zero.  */
12720 	  if (CONST_INT_P (XEXP (op0, 1))
12721 	      && INTVAL (XEXP (op0, 1)) >= 0
12722 	      && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12723 		  < HOST_BITS_PER_WIDE_INT)
12724 	      && (((unsigned HOST_WIDE_INT) const_op
12725 		   & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12726 		      - 1)) == 0)
12727 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12728 	      && (nonzero_bits (XEXP (op0, 0), mode)
12729 		  & ~(mask >> (INTVAL (XEXP (op0, 1))
12730 			       + ! equality_comparison_p))) == 0)
12731 	    {
12732 	      /* We must perform a logical shift, not an arithmetic one,
12733 		 as we want the top N bits of C to be zero.  */
12734 	      unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12735 
12736 	      temp >>= INTVAL (XEXP (op0, 1));
12737 	      op1 = gen_int_mode (temp, mode);
12738 	      op0 = XEXP (op0, 0);
12739 	      continue;
12740 	    }
12741 
12742 	  /* If we are doing a sign bit comparison, it means we are testing
12743 	     a particular bit.  Convert it to the appropriate AND.  */
12744 	  if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12745 	      && mode_width <= HOST_BITS_PER_WIDE_INT)
12746 	    {
12747 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12748 					    (HOST_WIDE_INT_1U
12749 					     << (mode_width - 1
12750 						 - INTVAL (XEXP (op0, 1)))));
12751 	      code = (code == LT ? NE : EQ);
12752 	      continue;
12753 	    }
12754 
12755 	  /* If this an equality comparison with zero and we are shifting
12756 	     the low bit to the sign bit, we can convert this to an AND of the
12757 	     low-order bit.  */
12758 	  if (const_op == 0 && equality_comparison_p
12759 	      && CONST_INT_P (XEXP (op0, 1))
12760 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12761 	    {
12762 	      op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12763 	      continue;
12764 	    }
12765 	  break;
12766 
12767 	case ASHIFTRT:
12768 	  /* If this is an equality comparison with zero, we can do this
12769 	     as a logical shift, which might be much simpler.  */
12770 	  if (equality_comparison_p && const_op == 0
12771 	      && CONST_INT_P (XEXP (op0, 1)))
12772 	    {
12773 	      op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12774 					  XEXP (op0, 0),
12775 					  INTVAL (XEXP (op0, 1)));
12776 	      continue;
12777 	    }
12778 
12779 	  /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12780 	     do the comparison in a narrower mode.  */
12781 	  if (! unsigned_comparison_p
12782 	      && CONST_INT_P (XEXP (op0, 1))
12783 	      && GET_CODE (XEXP (op0, 0)) == ASHIFT
12784 	      && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12785 	      && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12786 		  .exists (&tmode))
12787 	      && (((unsigned HOST_WIDE_INT) const_op
12788 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12789 		  <= GET_MODE_MASK (tmode)))
12790 	    {
12791 	      op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12792 	      continue;
12793 	    }
12794 
12795 	  /* Likewise if OP0 is a PLUS of a sign extension with a
12796 	     constant, which is usually represented with the PLUS
12797 	     between the shifts.  */
12798 	  if (! unsigned_comparison_p
12799 	      && CONST_INT_P (XEXP (op0, 1))
12800 	      && GET_CODE (XEXP (op0, 0)) == PLUS
12801 	      && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12802 	      && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12803 	      && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12804 	      && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12805 		  .exists (&tmode))
12806 	      && (((unsigned HOST_WIDE_INT) const_op
12807 		   + (GET_MODE_MASK (tmode) >> 1) + 1)
12808 		  <= GET_MODE_MASK (tmode)))
12809 	    {
12810 	      rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12811 	      rtx add_const = XEXP (XEXP (op0, 0), 1);
12812 	      rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12813 						   add_const, XEXP (op0, 1));
12814 
12815 	      op0 = simplify_gen_binary (PLUS, tmode,
12816 					 gen_lowpart (tmode, inner),
12817 					 new_const);
12818 	      continue;
12819 	    }
12820 
12821 	  /* FALLTHROUGH */
12822 	case LSHIFTRT:
12823 	  /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12824 	     the low order N bits of FOO are known to be zero, we can do this
12825 	     by comparing FOO with C shifted left N bits so long as no
12826 	     overflow occurs.  Even if the low order N bits of FOO aren't known
12827 	     to be zero, if the comparison is >= or < we can use the same
12828 	     optimization and for > or <= by setting all the low
12829 	     order N bits in the comparison constant.  */
12830 	  if (CONST_INT_P (XEXP (op0, 1))
12831 	      && INTVAL (XEXP (op0, 1)) > 0
12832 	      && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12833 	      && mode_width <= HOST_BITS_PER_WIDE_INT
12834 	      && (((unsigned HOST_WIDE_INT) const_op
12835 		   + (GET_CODE (op0) != LSHIFTRT
12836 		      ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12837 			 + 1)
12838 		      : 0))
12839 		  <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12840 	    {
12841 	      unsigned HOST_WIDE_INT low_bits
12842 		= (nonzero_bits (XEXP (op0, 0), mode)
12843 		   & ((HOST_WIDE_INT_1U
12844 		       << INTVAL (XEXP (op0, 1))) - 1));
12845 	      if (low_bits == 0 || !equality_comparison_p)
12846 		{
12847 		  /* If the shift was logical, then we must make the condition
12848 		     unsigned.  */
12849 		  if (GET_CODE (op0) == LSHIFTRT)
12850 		    code = unsigned_condition (code);
12851 
12852 		  const_op = (unsigned HOST_WIDE_INT) const_op
12853 			      << INTVAL (XEXP (op0, 1));
12854 		  if (low_bits != 0
12855 		      && (code == GT || code == GTU
12856 			  || code == LE || code == LEU))
12857 		    const_op
12858 		      |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12859 		  op1 = GEN_INT (const_op);
12860 		  op0 = XEXP (op0, 0);
12861 		  continue;
12862 		}
12863 	    }
12864 
12865 	  /* If we are using this shift to extract just the sign bit, we
12866 	     can replace this with an LT or GE comparison.  */
12867 	  if (const_op == 0
12868 	      && (equality_comparison_p || sign_bit_comparison_p)
12869 	      && CONST_INT_P (XEXP (op0, 1))
12870 	      && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12871 	    {
12872 	      op0 = XEXP (op0, 0);
12873 	      code = (code == NE || code == GT ? LT : GE);
12874 	      continue;
12875 	    }
12876 	  break;
12877 
12878 	default:
12879 	  break;
12880 	}
12881 
12882       break;
12883     }
12884 
12885   /* Now make any compound operations involved in this comparison.  Then,
12886      check for an outmost SUBREG on OP0 that is not doing anything or is
12887      paradoxical.  The latter transformation must only be performed when
12888      it is known that the "extra" bits will be the same in op0 and op1 or
12889      that they don't matter.  There are three cases to consider:
12890 
12891      1. SUBREG_REG (op0) is a register.  In this case the bits are don't
12892      care bits and we can assume they have any convenient value.  So
12893      making the transformation is safe.
12894 
12895      2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12896      In this case the upper bits of op0 are undefined.  We should not make
12897      the simplification in that case as we do not know the contents of
12898      those bits.
12899 
12900      3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12901      In that case we know those bits are zeros or ones.  We must also be
12902      sure that they are the same as the upper bits of op1.
12903 
12904      We can never remove a SUBREG for a non-equality comparison because
12905      the sign bit is in a different place in the underlying object.  */
12906 
12907   rtx_code op0_mco_code = SET;
12908   if (op1 == const0_rtx)
12909     op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12910 
12911   op0 = make_compound_operation (op0, op0_mco_code);
12912   op1 = make_compound_operation (op1, SET);
12913 
12914   if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12915       && is_int_mode (GET_MODE (op0), &mode)
12916       && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12917       && (code == NE || code == EQ))
12918     {
12919       if (paradoxical_subreg_p (op0))
12920 	{
12921 	  /* For paradoxical subregs, allow case 1 as above.  Case 3 isn't
12922 	     implemented.  */
12923 	  if (REG_P (SUBREG_REG (op0)))
12924 	    {
12925 	      op0 = SUBREG_REG (op0);
12926 	      op1 = gen_lowpart (inner_mode, op1);
12927 	    }
12928 	}
12929       else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12930 	       && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12931 		   & ~GET_MODE_MASK (mode)) == 0)
12932 	{
12933 	  tem = gen_lowpart (inner_mode, op1);
12934 
12935 	  if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12936 	    op0 = SUBREG_REG (op0), op1 = tem;
12937 	}
12938     }
12939 
12940   /* We now do the opposite procedure: Some machines don't have compare
12941      insns in all modes.  If OP0's mode is an integer mode smaller than a
12942      word and we can't do a compare in that mode, see if there is a larger
12943      mode for which we can do the compare.  There are a number of cases in
12944      which we can use the wider mode.  */
12945 
12946   if (is_int_mode (GET_MODE (op0), &mode)
12947       && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12948       && ! have_insn_for (COMPARE, mode))
12949     FOR_EACH_WIDER_MODE (tmode_iter, mode)
12950       {
12951 	tmode = tmode_iter.require ();
12952 	if (!HWI_COMPUTABLE_MODE_P (tmode))
12953 	  break;
12954 	if (have_insn_for (COMPARE, tmode))
12955 	  {
12956 	    int zero_extended;
12957 
12958 	    /* If this is a test for negative, we can make an explicit
12959 	       test of the sign bit.  Test this first so we can use
12960 	       a paradoxical subreg to extend OP0.  */
12961 
12962 	    if (op1 == const0_rtx && (code == LT || code == GE)
12963 		&& HWI_COMPUTABLE_MODE_P (mode))
12964 	      {
12965 		unsigned HOST_WIDE_INT sign
12966 		  = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12967 		op0 = simplify_gen_binary (AND, tmode,
12968 					   gen_lowpart (tmode, op0),
12969 					   gen_int_mode (sign, tmode));
12970 		code = (code == LT) ? NE : EQ;
12971 		break;
12972 	      }
12973 
12974 	    /* If the only nonzero bits in OP0 and OP1 are those in the
12975 	       narrower mode and this is an equality or unsigned comparison,
12976 	       we can use the wider mode.  Similarly for sign-extended
12977 	       values, in which case it is true for all comparisons.  */
12978 	    zero_extended = ((code == EQ || code == NE
12979 			      || code == GEU || code == GTU
12980 			      || code == LEU || code == LTU)
12981 			     && (nonzero_bits (op0, tmode)
12982 				 & ~GET_MODE_MASK (mode)) == 0
12983 			     && ((CONST_INT_P (op1)
12984 				  || (nonzero_bits (op1, tmode)
12985 				      & ~GET_MODE_MASK (mode)) == 0)));
12986 
12987 	    if (zero_extended
12988 		|| ((num_sign_bit_copies (op0, tmode)
12989 		     > (unsigned int) (GET_MODE_PRECISION (tmode)
12990 				       - GET_MODE_PRECISION (mode)))
12991 		    && (num_sign_bit_copies (op1, tmode)
12992 			> (unsigned int) (GET_MODE_PRECISION (tmode)
12993 					  - GET_MODE_PRECISION (mode)))))
12994 	      {
12995 		/* If OP0 is an AND and we don't have an AND in MODE either,
12996 		   make a new AND in the proper mode.  */
12997 		if (GET_CODE (op0) == AND
12998 		    && !have_insn_for (AND, mode))
12999 		  op0 = simplify_gen_binary (AND, tmode,
13000 					     gen_lowpart (tmode,
13001 							  XEXP (op0, 0)),
13002 					     gen_lowpart (tmode,
13003 							  XEXP (op0, 1)));
13004 		else
13005 		  {
13006 		    if (zero_extended)
13007 		      {
13008 			op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13009 						  op0, mode);
13010 			op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13011 						  op1, mode);
13012 		      }
13013 		    else
13014 		      {
13015 			op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13016 						  op0, mode);
13017 			op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13018 						  op1, mode);
13019 		      }
13020 		    break;
13021 		  }
13022 	      }
13023 	  }
13024       }
13025 
13026   /* We may have changed the comparison operands.  Re-canonicalize.  */
13027   if (swap_commutative_operands_p (op0, op1))
13028     {
13029       std::swap (op0, op1);
13030       code = swap_condition (code);
13031     }
13032 
13033   /* If this machine only supports a subset of valid comparisons, see if we
13034      can convert an unsupported one into a supported one.  */
13035   target_canonicalize_comparison (&code, &op0, &op1, 0);
13036 
13037   *pop0 = op0;
13038   *pop1 = op1;
13039 
13040   return code;
13041 }
13042 
13043 /* Utility function for record_value_for_reg.  Count number of
13044    rtxs in X.  */
13045 static int
13046 count_rtxs (rtx x)
13047 {
13048   enum rtx_code code = GET_CODE (x);
13049   const char *fmt;
13050   int i, j, ret = 1;
13051 
13052   if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13053       || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13054     {
13055       rtx x0 = XEXP (x, 0);
13056       rtx x1 = XEXP (x, 1);
13057 
13058       if (x0 == x1)
13059 	return 1 + 2 * count_rtxs (x0);
13060 
13061       if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13062 	   || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13063 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13064 	return 2 + 2 * count_rtxs (x0)
13065 	       + count_rtxs (x == XEXP (x1, 0)
13066 			     ? XEXP (x1, 1) : XEXP (x1, 0));
13067 
13068       if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13069 	   || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13070 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13071 	return 2 + 2 * count_rtxs (x1)
13072 	       + count_rtxs (x == XEXP (x0, 0)
13073 			     ? XEXP (x0, 1) : XEXP (x0, 0));
13074     }
13075 
13076   fmt = GET_RTX_FORMAT (code);
13077   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13078     if (fmt[i] == 'e')
13079       ret += count_rtxs (XEXP (x, i));
13080     else if (fmt[i] == 'E')
13081       for (j = 0; j < XVECLEN (x, i); j++)
13082 	ret += count_rtxs (XVECEXP (x, i, j));
13083 
13084   return ret;
13085 }
13086 
13087 /* Utility function for following routine.  Called when X is part of a value
13088    being stored into last_set_value.  Sets last_set_table_tick
13089    for each register mentioned.  Similar to mention_regs in cse.c  */
13090 
13091 static void
13092 update_table_tick (rtx x)
13093 {
13094   enum rtx_code code = GET_CODE (x);
13095   const char *fmt = GET_RTX_FORMAT (code);
13096   int i, j;
13097 
13098   if (code == REG)
13099     {
13100       unsigned int regno = REGNO (x);
13101       unsigned int endregno = END_REGNO (x);
13102       unsigned int r;
13103 
13104       for (r = regno; r < endregno; r++)
13105 	{
13106 	  reg_stat_type *rsp = &reg_stat[r];
13107 	  rsp->last_set_table_tick = label_tick;
13108 	}
13109 
13110       return;
13111     }
13112 
13113   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13114     if (fmt[i] == 'e')
13115       {
13116 	/* Check for identical subexpressions.  If x contains
13117 	   identical subexpression we only have to traverse one of
13118 	   them.  */
13119 	if (i == 0 && ARITHMETIC_P (x))
13120 	  {
13121 	    /* Note that at this point x1 has already been
13122 	       processed.  */
13123 	    rtx x0 = XEXP (x, 0);
13124 	    rtx x1 = XEXP (x, 1);
13125 
13126 	    /* If x0 and x1 are identical then there is no need to
13127 	       process x0.  */
13128 	    if (x0 == x1)
13129 	      break;
13130 
13131 	    /* If x0 is identical to a subexpression of x1 then while
13132 	       processing x1, x0 has already been processed.  Thus we
13133 	       are done with x.  */
13134 	    if (ARITHMETIC_P (x1)
13135 		&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13136 	      break;
13137 
13138 	    /* If x1 is identical to a subexpression of x0 then we
13139 	       still have to process the rest of x0.  */
13140 	    if (ARITHMETIC_P (x0)
13141 		&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13142 	      {
13143 		update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13144 		break;
13145 	      }
13146 	  }
13147 
13148 	update_table_tick (XEXP (x, i));
13149       }
13150     else if (fmt[i] == 'E')
13151       for (j = 0; j < XVECLEN (x, i); j++)
13152 	update_table_tick (XVECEXP (x, i, j));
13153 }
13154 
13155 /* Record that REG is set to VALUE in insn INSN.  If VALUE is zero, we
13156    are saying that the register is clobbered and we no longer know its
13157    value.  If INSN is zero, don't update reg_stat[].last_set; this is
13158    only permitted with VALUE also zero and is used to invalidate the
13159    register.  */
13160 
13161 static void
13162 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13163 {
13164   unsigned int regno = REGNO (reg);
13165   unsigned int endregno = END_REGNO (reg);
13166   unsigned int i;
13167   reg_stat_type *rsp;
13168 
13169   /* If VALUE contains REG and we have a previous value for REG, substitute
13170      the previous value.  */
13171   if (value && insn && reg_overlap_mentioned_p (reg, value))
13172     {
13173       rtx tem;
13174 
13175       /* Set things up so get_last_value is allowed to see anything set up to
13176 	 our insn.  */
13177       subst_low_luid = DF_INSN_LUID (insn);
13178       tem = get_last_value (reg);
13179 
13180       /* If TEM is simply a binary operation with two CLOBBERs as operands,
13181 	 it isn't going to be useful and will take a lot of time to process,
13182 	 so just use the CLOBBER.  */
13183 
13184       if (tem)
13185 	{
13186 	  if (ARITHMETIC_P (tem)
13187 	      && GET_CODE (XEXP (tem, 0)) == CLOBBER
13188 	      && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13189 	    tem = XEXP (tem, 0);
13190 	  else if (count_occurrences (value, reg, 1) >= 2)
13191 	    {
13192 	      /* If there are two or more occurrences of REG in VALUE,
13193 		 prevent the value from growing too much.  */
13194 	      if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13195 		tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13196 	    }
13197 
13198 	  value = replace_rtx (copy_rtx (value), reg, tem);
13199 	}
13200     }
13201 
13202   /* For each register modified, show we don't know its value, that
13203      we don't know about its bitwise content, that its value has been
13204      updated, and that we don't know the location of the death of the
13205      register.  */
13206   for (i = regno; i < endregno; i++)
13207     {
13208       rsp = &reg_stat[i];
13209 
13210       if (insn)
13211 	rsp->last_set = insn;
13212 
13213       rsp->last_set_value = 0;
13214       rsp->last_set_mode = VOIDmode;
13215       rsp->last_set_nonzero_bits = 0;
13216       rsp->last_set_sign_bit_copies = 0;
13217       rsp->last_death = 0;
13218       rsp->truncated_to_mode = VOIDmode;
13219     }
13220 
13221   /* Mark registers that are being referenced in this value.  */
13222   if (value)
13223     update_table_tick (value);
13224 
13225   /* Now update the status of each register being set.
13226      If someone is using this register in this block, set this register
13227      to invalid since we will get confused between the two lives in this
13228      basic block.  This makes using this register always invalid.  In cse, we
13229      scan the table to invalidate all entries using this register, but this
13230      is too much work for us.  */
13231 
13232   for (i = regno; i < endregno; i++)
13233     {
13234       rsp = &reg_stat[i];
13235       rsp->last_set_label = label_tick;
13236       if (!insn
13237 	  || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13238 	rsp->last_set_invalid = 1;
13239       else
13240 	rsp->last_set_invalid = 0;
13241     }
13242 
13243   /* The value being assigned might refer to X (like in "x++;").  In that
13244      case, we must replace it with (clobber (const_int 0)) to prevent
13245      infinite loops.  */
13246   rsp = &reg_stat[regno];
13247   if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13248     {
13249       value = copy_rtx (value);
13250       if (!get_last_value_validate (&value, insn, label_tick, 1))
13251 	value = 0;
13252     }
13253 
13254   /* For the main register being modified, update the value, the mode, the
13255      nonzero bits, and the number of sign bit copies.  */
13256 
13257   rsp->last_set_value = value;
13258 
13259   if (value)
13260     {
13261       machine_mode mode = GET_MODE (reg);
13262       subst_low_luid = DF_INSN_LUID (insn);
13263       rsp->last_set_mode = mode;
13264       if (GET_MODE_CLASS (mode) == MODE_INT
13265 	  && HWI_COMPUTABLE_MODE_P (mode))
13266 	mode = nonzero_bits_mode;
13267       rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13268       rsp->last_set_sign_bit_copies
13269 	= num_sign_bit_copies (value, GET_MODE (reg));
13270     }
13271 }
13272 
13273 /* Called via note_stores from record_dead_and_set_regs to handle one
13274    SET or CLOBBER in an insn.  DATA is the instruction in which the
13275    set is occurring.  */
13276 
13277 static void
13278 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13279 {
13280   rtx_insn *record_dead_insn = (rtx_insn *) data;
13281 
13282   if (GET_CODE (dest) == SUBREG)
13283     dest = SUBREG_REG (dest);
13284 
13285   if (!record_dead_insn)
13286     {
13287       if (REG_P (dest))
13288 	record_value_for_reg (dest, NULL, NULL_RTX);
13289       return;
13290     }
13291 
13292   if (REG_P (dest))
13293     {
13294       /* If we are setting the whole register, we know its value.  Otherwise
13295 	 show that we don't know the value.  We can handle a SUBREG if it's
13296 	 the low part, but we must be careful with paradoxical SUBREGs on
13297 	 RISC architectures because we cannot strip e.g. an extension around
13298 	 a load and record the naked load since the RTL middle-end considers
13299 	 that the upper bits are defined according to LOAD_EXTEND_OP.  */
13300       if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13301 	record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13302       else if (GET_CODE (setter) == SET
13303 	       && GET_CODE (SET_DEST (setter)) == SUBREG
13304 	       && SUBREG_REG (SET_DEST (setter)) == dest
13305 	       && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13306 			    BITS_PER_WORD)
13307 	       && subreg_lowpart_p (SET_DEST (setter)))
13308 	record_value_for_reg (dest, record_dead_insn,
13309 			      WORD_REGISTER_OPERATIONS
13310 			      && word_register_operation_p (SET_SRC (setter))
13311 			      && paradoxical_subreg_p (SET_DEST (setter))
13312 			      ? SET_SRC (setter)
13313 			      : gen_lowpart (GET_MODE (dest),
13314 					     SET_SRC (setter)));
13315       else
13316 	record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13317     }
13318   else if (MEM_P (dest)
13319 	   /* Ignore pushes, they clobber nothing.  */
13320 	   && ! push_operand (dest, GET_MODE (dest)))
13321     mem_last_set = DF_INSN_LUID (record_dead_insn);
13322 }
13323 
13324 /* Update the records of when each REG was most recently set or killed
13325    for the things done by INSN.  This is the last thing done in processing
13326    INSN in the combiner loop.
13327 
13328    We update reg_stat[], in particular fields last_set, last_set_value,
13329    last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13330    last_death, and also the similar information mem_last_set (which insn
13331    most recently modified memory) and last_call_luid (which insn was the
13332    most recent subroutine call).  */
13333 
13334 static void
13335 record_dead_and_set_regs (rtx_insn *insn)
13336 {
13337   rtx link;
13338   unsigned int i;
13339 
13340   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13341     {
13342       if (REG_NOTE_KIND (link) == REG_DEAD
13343 	  && REG_P (XEXP (link, 0)))
13344 	{
13345 	  unsigned int regno = REGNO (XEXP (link, 0));
13346 	  unsigned int endregno = END_REGNO (XEXP (link, 0));
13347 
13348 	  for (i = regno; i < endregno; i++)
13349 	    {
13350 	      reg_stat_type *rsp;
13351 
13352 	      rsp = &reg_stat[i];
13353 	      rsp->last_death = insn;
13354 	    }
13355 	}
13356       else if (REG_NOTE_KIND (link) == REG_INC)
13357 	record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13358     }
13359 
13360   if (CALL_P (insn))
13361     {
13362       hard_reg_set_iterator hrsi;
13363       EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13364 	{
13365 	  reg_stat_type *rsp;
13366 
13367 	  rsp = &reg_stat[i];
13368 	  rsp->last_set_invalid = 1;
13369 	  rsp->last_set = insn;
13370 	  rsp->last_set_value = 0;
13371 	  rsp->last_set_mode = VOIDmode;
13372 	  rsp->last_set_nonzero_bits = 0;
13373 	  rsp->last_set_sign_bit_copies = 0;
13374 	  rsp->last_death = 0;
13375 	  rsp->truncated_to_mode = VOIDmode;
13376 	}
13377 
13378       last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13379 
13380       /* We can't combine into a call pattern.  Remember, though, that
13381 	 the return value register is set at this LUID.  We could
13382 	 still replace a register with the return value from the
13383 	 wrong subroutine call!  */
13384       note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13385     }
13386   else
13387     note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13388 }
13389 
13390 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13391    register present in the SUBREG, so for each such SUBREG go back and
13392    adjust nonzero and sign bit information of the registers that are
13393    known to have some zero/sign bits set.
13394 
13395    This is needed because when combine blows the SUBREGs away, the
13396    information on zero/sign bits is lost and further combines can be
13397    missed because of that.  */
13398 
13399 static void
13400 record_promoted_value (rtx_insn *insn, rtx subreg)
13401 {
13402   struct insn_link *links;
13403   rtx set;
13404   unsigned int regno = REGNO (SUBREG_REG (subreg));
13405   machine_mode mode = GET_MODE (subreg);
13406 
13407   if (!HWI_COMPUTABLE_MODE_P (mode))
13408     return;
13409 
13410   for (links = LOG_LINKS (insn); links;)
13411     {
13412       reg_stat_type *rsp;
13413 
13414       insn = links->insn;
13415       set = single_set (insn);
13416 
13417       if (! set || !REG_P (SET_DEST (set))
13418 	  || REGNO (SET_DEST (set)) != regno
13419 	  || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13420 	{
13421 	  links = links->next;
13422 	  continue;
13423 	}
13424 
13425       rsp = &reg_stat[regno];
13426       if (rsp->last_set == insn)
13427 	{
13428 	  if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13429 	    rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13430 	}
13431 
13432       if (REG_P (SET_SRC (set)))
13433 	{
13434 	  regno = REGNO (SET_SRC (set));
13435 	  links = LOG_LINKS (insn);
13436 	}
13437       else
13438 	break;
13439     }
13440 }
13441 
13442 /* Check if X, a register, is known to contain a value already
13443    truncated to MODE.  In this case we can use a subreg to refer to
13444    the truncated value even though in the generic case we would need
13445    an explicit truncation.  */
13446 
13447 static bool
13448 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13449 {
13450   reg_stat_type *rsp = &reg_stat[REGNO (x)];
13451   machine_mode truncated = rsp->truncated_to_mode;
13452 
13453   if (truncated == 0
13454       || rsp->truncation_label < label_tick_ebb_start)
13455     return false;
13456   if (!partial_subreg_p (mode, truncated))
13457     return true;
13458   if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13459     return true;
13460   return false;
13461 }
13462 
13463 /* If X is a hard reg or a subreg record the mode that the register is
13464    accessed in.  For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13465    able to turn a truncate into a subreg using this information.  Return true
13466    if traversing X is complete.  */
13467 
13468 static bool
13469 record_truncated_value (rtx x)
13470 {
13471   machine_mode truncated_mode;
13472   reg_stat_type *rsp;
13473 
13474   if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13475     {
13476       machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13477       truncated_mode = GET_MODE (x);
13478 
13479       if (!partial_subreg_p (truncated_mode, original_mode))
13480 	return true;
13481 
13482       truncated_mode = GET_MODE (x);
13483       if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13484 	return true;
13485 
13486       x = SUBREG_REG (x);
13487     }
13488   /* ??? For hard-regs we now record everything.  We might be able to
13489      optimize this using last_set_mode.  */
13490   else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13491     truncated_mode = GET_MODE (x);
13492   else
13493     return false;
13494 
13495   rsp = &reg_stat[REGNO (x)];
13496   if (rsp->truncated_to_mode == 0
13497       || rsp->truncation_label < label_tick_ebb_start
13498       || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13499     {
13500       rsp->truncated_to_mode = truncated_mode;
13501       rsp->truncation_label = label_tick;
13502     }
13503 
13504   return true;
13505 }
13506 
13507 /* Callback for note_uses.  Find hardregs and subregs of pseudos and
13508    the modes they are used in.  This can help truning TRUNCATEs into
13509    SUBREGs.  */
13510 
13511 static void
13512 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13513 {
13514   subrtx_var_iterator::array_type array;
13515   FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13516     if (record_truncated_value (*iter))
13517       iter.skip_subrtxes ();
13518 }
13519 
13520 /* Scan X for promoted SUBREGs.  For each one found,
13521    note what it implies to the registers used in it.  */
13522 
13523 static void
13524 check_promoted_subreg (rtx_insn *insn, rtx x)
13525 {
13526   if (GET_CODE (x) == SUBREG
13527       && SUBREG_PROMOTED_VAR_P (x)
13528       && REG_P (SUBREG_REG (x)))
13529     record_promoted_value (insn, x);
13530   else
13531     {
13532       const char *format = GET_RTX_FORMAT (GET_CODE (x));
13533       int i, j;
13534 
13535       for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13536 	switch (format[i])
13537 	  {
13538 	  case 'e':
13539 	    check_promoted_subreg (insn, XEXP (x, i));
13540 	    break;
13541 	  case 'V':
13542 	  case 'E':
13543 	    if (XVEC (x, i) != 0)
13544 	      for (j = 0; j < XVECLEN (x, i); j++)
13545 		check_promoted_subreg (insn, XVECEXP (x, i, j));
13546 	    break;
13547 	  }
13548     }
13549 }
13550 
13551 /* Verify that all the registers and memory references mentioned in *LOC are
13552    still valid.  *LOC was part of a value set in INSN when label_tick was
13553    equal to TICK.  Return 0 if some are not.  If REPLACE is nonzero, replace
13554    the invalid references with (clobber (const_int 0)) and return 1.  This
13555    replacement is useful because we often can get useful information about
13556    the form of a value (e.g., if it was produced by a shift that always
13557    produces -1 or 0) even though we don't know exactly what registers it
13558    was produced from.  */
13559 
13560 static int
13561 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13562 {
13563   rtx x = *loc;
13564   const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13565   int len = GET_RTX_LENGTH (GET_CODE (x));
13566   int i, j;
13567 
13568   if (REG_P (x))
13569     {
13570       unsigned int regno = REGNO (x);
13571       unsigned int endregno = END_REGNO (x);
13572       unsigned int j;
13573 
13574       for (j = regno; j < endregno; j++)
13575 	{
13576 	  reg_stat_type *rsp = &reg_stat[j];
13577 	  if (rsp->last_set_invalid
13578 	      /* If this is a pseudo-register that was only set once and not
13579 		 live at the beginning of the function, it is always valid.  */
13580 	      || (! (regno >= FIRST_PSEUDO_REGISTER
13581 		     && regno < reg_n_sets_max
13582 		     && REG_N_SETS (regno) == 1
13583 		     && (!REGNO_REG_SET_P
13584 			 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13585 			  regno)))
13586 		  && rsp->last_set_label > tick))
13587 	  {
13588 	    if (replace)
13589 	      *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13590 	    return replace;
13591 	  }
13592 	}
13593 
13594       return 1;
13595     }
13596   /* If this is a memory reference, make sure that there were no stores after
13597      it that might have clobbered the value.  We don't have alias info, so we
13598      assume any store invalidates it.  Moreover, we only have local UIDs, so
13599      we also assume that there were stores in the intervening basic blocks.  */
13600   else if (MEM_P (x) && !MEM_READONLY_P (x)
13601 	   && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13602     {
13603       if (replace)
13604 	*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13605       return replace;
13606     }
13607 
13608   for (i = 0; i < len; i++)
13609     {
13610       if (fmt[i] == 'e')
13611 	{
13612 	  /* Check for identical subexpressions.  If x contains
13613 	     identical subexpression we only have to traverse one of
13614 	     them.  */
13615 	  if (i == 1 && ARITHMETIC_P (x))
13616 	    {
13617 	      /* Note that at this point x0 has already been checked
13618 		 and found valid.  */
13619 	      rtx x0 = XEXP (x, 0);
13620 	      rtx x1 = XEXP (x, 1);
13621 
13622 	      /* If x0 and x1 are identical then x is also valid.  */
13623 	      if (x0 == x1)
13624 		return 1;
13625 
13626 	      /* If x1 is identical to a subexpression of x0 then
13627 		 while checking x0, x1 has already been checked.  Thus
13628 		 it is valid and so as x.  */
13629 	      if (ARITHMETIC_P (x0)
13630 		  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13631 		return 1;
13632 
13633 	      /* If x0 is identical to a subexpression of x1 then x is
13634 		 valid iff the rest of x1 is valid.  */
13635 	      if (ARITHMETIC_P (x1)
13636 		  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13637 		return
13638 		  get_last_value_validate (&XEXP (x1,
13639 						  x0 == XEXP (x1, 0) ? 1 : 0),
13640 					   insn, tick, replace);
13641 	    }
13642 
13643 	  if (get_last_value_validate (&XEXP (x, i), insn, tick,
13644 				       replace) == 0)
13645 	    return 0;
13646 	}
13647       else if (fmt[i] == 'E')
13648 	for (j = 0; j < XVECLEN (x, i); j++)
13649 	  if (get_last_value_validate (&XVECEXP (x, i, j),
13650 				       insn, tick, replace) == 0)
13651 	    return 0;
13652     }
13653 
13654   /* If we haven't found a reason for it to be invalid, it is valid.  */
13655   return 1;
13656 }
13657 
13658 /* Get the last value assigned to X, if known.  Some registers
13659    in the value may be replaced with (clobber (const_int 0)) if their value
13660    is known longer known reliably.  */
13661 
13662 static rtx
13663 get_last_value (const_rtx x)
13664 {
13665   unsigned int regno;
13666   rtx value;
13667   reg_stat_type *rsp;
13668 
13669   /* If this is a non-paradoxical SUBREG, get the value of its operand and
13670      then convert it to the desired mode.  If this is a paradoxical SUBREG,
13671      we cannot predict what values the "extra" bits might have.  */
13672   if (GET_CODE (x) == SUBREG
13673       && subreg_lowpart_p (x)
13674       && !paradoxical_subreg_p (x)
13675       && (value = get_last_value (SUBREG_REG (x))) != 0)
13676     return gen_lowpart (GET_MODE (x), value);
13677 
13678   if (!REG_P (x))
13679     return 0;
13680 
13681   regno = REGNO (x);
13682   rsp = &reg_stat[regno];
13683   value = rsp->last_set_value;
13684 
13685   /* If we don't have a value, or if it isn't for this basic block and
13686      it's either a hard register, set more than once, or it's a live
13687      at the beginning of the function, return 0.
13688 
13689      Because if it's not live at the beginning of the function then the reg
13690      is always set before being used (is never used without being set).
13691      And, if it's set only once, and it's always set before use, then all
13692      uses must have the same last value, even if it's not from this basic
13693      block.  */
13694 
13695   if (value == 0
13696       || (rsp->last_set_label < label_tick_ebb_start
13697 	  && (regno < FIRST_PSEUDO_REGISTER
13698 	      || regno >= reg_n_sets_max
13699 	      || REG_N_SETS (regno) != 1
13700 	      || REGNO_REG_SET_P
13701 		 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13702     return 0;
13703 
13704   /* If the value was set in a later insn than the ones we are processing,
13705      we can't use it even if the register was only set once.  */
13706   if (rsp->last_set_label == label_tick
13707       && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13708     return 0;
13709 
13710   /* If fewer bits were set than what we are asked for now, we cannot use
13711      the value.  */
13712   if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13713 		GET_MODE_PRECISION (GET_MODE (x))))
13714     return 0;
13715 
13716   /* If the value has all its registers valid, return it.  */
13717   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13718     return value;
13719 
13720   /* Otherwise, make a copy and replace any invalid register with
13721      (clobber (const_int 0)).  If that fails for some reason, return 0.  */
13722 
13723   value = copy_rtx (value);
13724   if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13725     return value;
13726 
13727   return 0;
13728 }
13729 
13730 /* Define three variables used for communication between the following
13731    routines.  */
13732 
13733 static unsigned int reg_dead_regno, reg_dead_endregno;
13734 static int reg_dead_flag;
13735 
13736 /* Function called via note_stores from reg_dead_at_p.
13737 
13738    If DEST is within [reg_dead_regno, reg_dead_endregno), set
13739    reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET.  */
13740 
13741 static void
13742 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13743 {
13744   unsigned int regno, endregno;
13745 
13746   if (!REG_P (dest))
13747     return;
13748 
13749   regno = REGNO (dest);
13750   endregno = END_REGNO (dest);
13751   if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13752     reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13753 }
13754 
13755 /* Return nonzero if REG is known to be dead at INSN.
13756 
13757    We scan backwards from INSN.  If we hit a REG_DEAD note or a CLOBBER
13758    referencing REG, it is dead.  If we hit a SET referencing REG, it is
13759    live.  Otherwise, see if it is live or dead at the start of the basic
13760    block we are in.  Hard regs marked as being live in NEWPAT_USED_REGS
13761    must be assumed to be always live.  */
13762 
13763 static int
13764 reg_dead_at_p (rtx reg, rtx_insn *insn)
13765 {
13766   basic_block block;
13767   unsigned int i;
13768 
13769   /* Set variables for reg_dead_at_p_1.  */
13770   reg_dead_regno = REGNO (reg);
13771   reg_dead_endregno = END_REGNO (reg);
13772 
13773   reg_dead_flag = 0;
13774 
13775   /* Check that reg isn't mentioned in NEWPAT_USED_REGS.  For fixed registers
13776      we allow the machine description to decide whether use-and-clobber
13777      patterns are OK.  */
13778   if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13779     {
13780       for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13781 	if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13782 	  return 0;
13783     }
13784 
13785   /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13786      beginning of basic block.  */
13787   block = BLOCK_FOR_INSN (insn);
13788   for (;;)
13789     {
13790       if (INSN_P (insn))
13791         {
13792 	  if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13793 	    return 1;
13794 
13795 	  note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13796 	  if (reg_dead_flag)
13797 	    return reg_dead_flag == 1 ? 1 : 0;
13798 
13799 	  if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13800 	    return 1;
13801         }
13802 
13803       if (insn == BB_HEAD (block))
13804 	break;
13805 
13806       insn = PREV_INSN (insn);
13807     }
13808 
13809   /* Look at live-in sets for the basic block that we were in.  */
13810   for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13811     if (REGNO_REG_SET_P (df_get_live_in (block), i))
13812       return 0;
13813 
13814   return 1;
13815 }
13816 
13817 /* Note hard registers in X that are used.  */
13818 
13819 static void
13820 mark_used_regs_combine (rtx x)
13821 {
13822   RTX_CODE code = GET_CODE (x);
13823   unsigned int regno;
13824   int i;
13825 
13826   switch (code)
13827     {
13828     case LABEL_REF:
13829     case SYMBOL_REF:
13830     case CONST:
13831     CASE_CONST_ANY:
13832     case PC:
13833     case ADDR_VEC:
13834     case ADDR_DIFF_VEC:
13835     case ASM_INPUT:
13836     /* CC0 must die in the insn after it is set, so we don't need to take
13837        special note of it here.  */
13838     case CC0:
13839       return;
13840 
13841     case CLOBBER:
13842       /* If we are clobbering a MEM, mark any hard registers inside the
13843 	 address as used.  */
13844       if (MEM_P (XEXP (x, 0)))
13845 	mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13846       return;
13847 
13848     case REG:
13849       regno = REGNO (x);
13850       /* A hard reg in a wide mode may really be multiple registers.
13851 	 If so, mark all of them just like the first.  */
13852       if (regno < FIRST_PSEUDO_REGISTER)
13853 	{
13854 	  /* None of this applies to the stack, frame or arg pointers.  */
13855 	  if (regno == STACK_POINTER_REGNUM
13856 	      || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13857 		  && regno == HARD_FRAME_POINTER_REGNUM)
13858 	      || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13859 		  && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13860 	      || regno == FRAME_POINTER_REGNUM)
13861 	    return;
13862 
13863 	  add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13864 	}
13865       return;
13866 
13867     case SET:
13868       {
13869 	/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13870 	   the address.  */
13871 	rtx testreg = SET_DEST (x);
13872 
13873 	while (GET_CODE (testreg) == SUBREG
13874 	       || GET_CODE (testreg) == ZERO_EXTRACT
13875 	       || GET_CODE (testreg) == STRICT_LOW_PART)
13876 	  testreg = XEXP (testreg, 0);
13877 
13878 	if (MEM_P (testreg))
13879 	  mark_used_regs_combine (XEXP (testreg, 0));
13880 
13881 	mark_used_regs_combine (SET_SRC (x));
13882       }
13883       return;
13884 
13885     default:
13886       break;
13887     }
13888 
13889   /* Recursively scan the operands of this expression.  */
13890 
13891   {
13892     const char *fmt = GET_RTX_FORMAT (code);
13893 
13894     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13895       {
13896 	if (fmt[i] == 'e')
13897 	  mark_used_regs_combine (XEXP (x, i));
13898 	else if (fmt[i] == 'E')
13899 	  {
13900 	    int j;
13901 
13902 	    for (j = 0; j < XVECLEN (x, i); j++)
13903 	      mark_used_regs_combine (XVECEXP (x, i, j));
13904 	  }
13905       }
13906   }
13907 }
13908 
13909 /* Remove register number REGNO from the dead registers list of INSN.
13910 
13911    Return the note used to record the death, if there was one.  */
13912 
13913 rtx
13914 remove_death (unsigned int regno, rtx_insn *insn)
13915 {
13916   rtx note = find_regno_note (insn, REG_DEAD, regno);
13917 
13918   if (note)
13919     remove_note (insn, note);
13920 
13921   return note;
13922 }
13923 
13924 /* For each register (hardware or pseudo) used within expression X, if its
13925    death is in an instruction with luid between FROM_LUID (inclusive) and
13926    TO_INSN (exclusive), put a REG_DEAD note for that register in the
13927    list headed by PNOTES.
13928 
13929    That said, don't move registers killed by maybe_kill_insn.
13930 
13931    This is done when X is being merged by combination into TO_INSN.  These
13932    notes will then be distributed as needed.  */
13933 
13934 static void
13935 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13936 	     rtx *pnotes)
13937 {
13938   const char *fmt;
13939   int len, i;
13940   enum rtx_code code = GET_CODE (x);
13941 
13942   if (code == REG)
13943     {
13944       unsigned int regno = REGNO (x);
13945       rtx_insn *where_dead = reg_stat[regno].last_death;
13946 
13947       /* If we do not know where the register died, it may still die between
13948 	 FROM_LUID and TO_INSN.  If so, find it.  This is PR83304.  */
13949       if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
13950 	{
13951 	  rtx_insn *insn = prev_real_nondebug_insn (to_insn);
13952 	  while (insn
13953 		 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13954 		 && DF_INSN_LUID (insn) >= from_luid)
13955 	    {
13956 	      if (dead_or_set_regno_p (insn, regno))
13957 		{
13958 		  if (find_regno_note (insn, REG_DEAD, regno))
13959 		    where_dead = insn;
13960 		  break;
13961 		}
13962 
13963 	      insn = prev_real_nondebug_insn (insn);
13964 	    }
13965 	}
13966 
13967       /* Don't move the register if it gets killed in between from and to.  */
13968       if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13969 	  && ! reg_referenced_p (x, maybe_kill_insn))
13970 	return;
13971 
13972       if (where_dead
13973 	  && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13974 	  && DF_INSN_LUID (where_dead) >= from_luid
13975 	  && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13976 	{
13977 	  rtx note = remove_death (regno, where_dead);
13978 
13979 	  /* It is possible for the call above to return 0.  This can occur
13980 	     when last_death points to I2 or I1 that we combined with.
13981 	     In that case make a new note.
13982 
13983 	     We must also check for the case where X is a hard register
13984 	     and NOTE is a death note for a range of hard registers
13985 	     including X.  In that case, we must put REG_DEAD notes for
13986 	     the remaining registers in place of NOTE.  */
13987 
13988 	  if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13989 	      && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13990 	    {
13991 	      unsigned int deadregno = REGNO (XEXP (note, 0));
13992 	      unsigned int deadend = END_REGNO (XEXP (note, 0));
13993 	      unsigned int ourend = END_REGNO (x);
13994 	      unsigned int i;
13995 
13996 	      for (i = deadregno; i < deadend; i++)
13997 		if (i < regno || i >= ourend)
13998 		  add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13999 	    }
14000 
14001 	  /* If we didn't find any note, or if we found a REG_DEAD note that
14002 	     covers only part of the given reg, and we have a multi-reg hard
14003 	     register, then to be safe we must check for REG_DEAD notes
14004 	     for each register other than the first.  They could have
14005 	     their own REG_DEAD notes lying around.  */
14006 	  else if ((note == 0
14007 		    || (note != 0
14008 			&& partial_subreg_p (GET_MODE (XEXP (note, 0)),
14009 					     GET_MODE (x))))
14010 		   && regno < FIRST_PSEUDO_REGISTER
14011 		   && REG_NREGS (x) > 1)
14012 	    {
14013 	      unsigned int ourend = END_REGNO (x);
14014 	      unsigned int i, offset;
14015 	      rtx oldnotes = 0;
14016 
14017 	      if (note)
14018 		offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14019 	      else
14020 		offset = 1;
14021 
14022 	      for (i = regno + offset; i < ourend; i++)
14023 		move_deaths (regno_reg_rtx[i],
14024 			     maybe_kill_insn, from_luid, to_insn, &oldnotes);
14025 	    }
14026 
14027 	  if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14028 	    {
14029 	      XEXP (note, 1) = *pnotes;
14030 	      *pnotes = note;
14031 	    }
14032 	  else
14033 	    *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14034 	}
14035 
14036       return;
14037     }
14038 
14039   else if (GET_CODE (x) == SET)
14040     {
14041       rtx dest = SET_DEST (x);
14042 
14043       move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14044 
14045       /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14046 	 that accesses one word of a multi-word item, some
14047 	 piece of everything register in the expression is used by
14048 	 this insn, so remove any old death.  */
14049       /* ??? So why do we test for equality of the sizes?  */
14050 
14051       if (GET_CODE (dest) == ZERO_EXTRACT
14052 	  || GET_CODE (dest) == STRICT_LOW_PART
14053 	  || (GET_CODE (dest) == SUBREG
14054 	      && !read_modify_subreg_p (dest)))
14055 	{
14056 	  move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14057 	  return;
14058 	}
14059 
14060       /* If this is some other SUBREG, we know it replaces the entire
14061 	 value, so use that as the destination.  */
14062       if (GET_CODE (dest) == SUBREG)
14063 	dest = SUBREG_REG (dest);
14064 
14065       /* If this is a MEM, adjust deaths of anything used in the address.
14066 	 For a REG (the only other possibility), the entire value is
14067 	 being replaced so the old value is not used in this insn.  */
14068 
14069       if (MEM_P (dest))
14070 	move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14071 		     to_insn, pnotes);
14072       return;
14073     }
14074 
14075   else if (GET_CODE (x) == CLOBBER)
14076     return;
14077 
14078   len = GET_RTX_LENGTH (code);
14079   fmt = GET_RTX_FORMAT (code);
14080 
14081   for (i = 0; i < len; i++)
14082     {
14083       if (fmt[i] == 'E')
14084 	{
14085 	  int j;
14086 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14087 	    move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14088 			 to_insn, pnotes);
14089 	}
14090       else if (fmt[i] == 'e')
14091 	move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14092     }
14093 }
14094 
14095 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14096    pattern of an insn.  X must be a REG.  */
14097 
14098 static int
14099 reg_bitfield_target_p (rtx x, rtx body)
14100 {
14101   int i;
14102 
14103   if (GET_CODE (body) == SET)
14104     {
14105       rtx dest = SET_DEST (body);
14106       rtx target;
14107       unsigned int regno, tregno, endregno, endtregno;
14108 
14109       if (GET_CODE (dest) == ZERO_EXTRACT)
14110 	target = XEXP (dest, 0);
14111       else if (GET_CODE (dest) == STRICT_LOW_PART)
14112 	target = SUBREG_REG (XEXP (dest, 0));
14113       else
14114 	return 0;
14115 
14116       if (GET_CODE (target) == SUBREG)
14117 	target = SUBREG_REG (target);
14118 
14119       if (!REG_P (target))
14120 	return 0;
14121 
14122       tregno = REGNO (target), regno = REGNO (x);
14123       if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14124 	return target == x;
14125 
14126       endtregno = end_hard_regno (GET_MODE (target), tregno);
14127       endregno = end_hard_regno (GET_MODE (x), regno);
14128 
14129       return endregno > tregno && regno < endtregno;
14130     }
14131 
14132   else if (GET_CODE (body) == PARALLEL)
14133     for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14134       if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14135 	return 1;
14136 
14137   return 0;
14138 }
14139 
14140 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14141    as appropriate.  I3 and I2 are the insns resulting from the combination
14142    insns including FROM (I2 may be zero).
14143 
14144    ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14145    not need REG_DEAD notes because they are being substituted for.  This
14146    saves searching in the most common cases.
14147 
14148    Each note in the list is either ignored or placed on some insns, depending
14149    on the type of note.  */
14150 
14151 static void
14152 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14153 		  rtx elim_i2, rtx elim_i1, rtx elim_i0)
14154 {
14155   rtx note, next_note;
14156   rtx tem_note;
14157   rtx_insn *tem_insn;
14158 
14159   for (note = notes; note; note = next_note)
14160     {
14161       rtx_insn *place = 0, *place2 = 0;
14162 
14163       next_note = XEXP (note, 1);
14164       switch (REG_NOTE_KIND (note))
14165 	{
14166 	case REG_BR_PROB:
14167 	case REG_BR_PRED:
14168 	  /* Doesn't matter much where we put this, as long as it's somewhere.
14169 	     It is preferable to keep these notes on branches, which is most
14170 	     likely to be i3.  */
14171 	  place = i3;
14172 	  break;
14173 
14174 	case REG_NON_LOCAL_GOTO:
14175 	  if (JUMP_P (i3))
14176 	    place = i3;
14177 	  else
14178 	    {
14179 	      gcc_assert (i2 && JUMP_P (i2));
14180 	      place = i2;
14181 	    }
14182 	  break;
14183 
14184 	case REG_EH_REGION:
14185 	  /* These notes must remain with the call or trapping instruction.  */
14186 	  if (CALL_P (i3))
14187 	    place = i3;
14188 	  else if (i2 && CALL_P (i2))
14189 	    place = i2;
14190 	  else
14191 	    {
14192 	      gcc_assert (cfun->can_throw_non_call_exceptions);
14193 	      if (may_trap_p (i3))
14194 		place = i3;
14195 	      else if (i2 && may_trap_p (i2))
14196 		place = i2;
14197 	      /* ??? Otherwise assume we've combined things such that we
14198 		 can now prove that the instructions can't trap.  Drop the
14199 		 note in this case.  */
14200 	    }
14201 	  break;
14202 
14203 	case REG_ARGS_SIZE:
14204 	  /* ??? How to distribute between i3-i1.  Assume i3 contains the
14205 	     entire adjustment.  Assert i3 contains at least some adjust.  */
14206 	  if (!noop_move_p (i3))
14207 	    {
14208 	      poly_int64 old_size, args_size = get_args_size (note);
14209 	      /* fixup_args_size_notes looks at REG_NORETURN note,
14210 		 so ensure the note is placed there first.  */
14211 	      if (CALL_P (i3))
14212 		{
14213 		  rtx *np;
14214 		  for (np = &next_note; *np; np = &XEXP (*np, 1))
14215 		    if (REG_NOTE_KIND (*np) == REG_NORETURN)
14216 		      {
14217 			rtx n = *np;
14218 			*np = XEXP (n, 1);
14219 			XEXP (n, 1) = REG_NOTES (i3);
14220 			REG_NOTES (i3) = n;
14221 			break;
14222 		      }
14223 		}
14224 	      old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14225 	      /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14226 		 REG_ARGS_SIZE note to all noreturn calls, allow that here.  */
14227 	      gcc_assert (maybe_ne (old_size, args_size)
14228 			  || (CALL_P (i3)
14229 			      && !ACCUMULATE_OUTGOING_ARGS
14230 			      && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14231 	    }
14232 	  break;
14233 
14234 	case REG_NORETURN:
14235 	case REG_SETJMP:
14236 	case REG_TM:
14237 	case REG_CALL_DECL:
14238 	case REG_CALL_NOCF_CHECK:
14239 	  /* These notes must remain with the call.  It should not be
14240 	     possible for both I2 and I3 to be a call.  */
14241 	  if (CALL_P (i3))
14242 	    place = i3;
14243 	  else
14244 	    {
14245 	      gcc_assert (i2 && CALL_P (i2));
14246 	      place = i2;
14247 	    }
14248 	  break;
14249 
14250 	case REG_UNUSED:
14251 	  /* Any clobbers for i3 may still exist, and so we must process
14252 	     REG_UNUSED notes from that insn.
14253 
14254 	     Any clobbers from i2 or i1 can only exist if they were added by
14255 	     recog_for_combine.  In that case, recog_for_combine created the
14256 	     necessary REG_UNUSED notes.  Trying to keep any original
14257 	     REG_UNUSED notes from these insns can cause incorrect output
14258 	     if it is for the same register as the original i3 dest.
14259 	     In that case, we will notice that the register is set in i3,
14260 	     and then add a REG_UNUSED note for the destination of i3, which
14261 	     is wrong.  However, it is possible to have REG_UNUSED notes from
14262 	     i2 or i1 for register which were both used and clobbered, so
14263 	     we keep notes from i2 or i1 if they will turn into REG_DEAD
14264 	     notes.  */
14265 
14266 	  /* If this register is set or clobbered in I3, put the note there
14267 	     unless there is one already.  */
14268 	  if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14269 	    {
14270 	      if (from_insn != i3)
14271 		break;
14272 
14273 	      if (! (REG_P (XEXP (note, 0))
14274 		     ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14275 		     : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14276 		place = i3;
14277 	    }
14278 	  /* Otherwise, if this register is used by I3, then this register
14279 	     now dies here, so we must put a REG_DEAD note here unless there
14280 	     is one already.  */
14281 	  else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14282 		   && ! (REG_P (XEXP (note, 0))
14283 			 ? find_regno_note (i3, REG_DEAD,
14284 					    REGNO (XEXP (note, 0)))
14285 			 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14286 	    {
14287 	      PUT_REG_NOTE_KIND (note, REG_DEAD);
14288 	      place = i3;
14289 	    }
14290 
14291 	  /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14292 	     but we can't tell which at this point.  We must reset any
14293 	     expectations we had about the value that was previously
14294 	     stored in the reg.  ??? Ideally, we'd adjust REG_N_SETS
14295 	     and, if appropriate, restore its previous value, but we
14296 	     don't have enough information for that at this point.  */
14297 	  else
14298 	    {
14299 	      record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14300 
14301 	      /* Otherwise, if this register is now referenced in i2
14302 		 then the register used to be modified in one of the
14303 		 original insns.  If it was i3 (say, in an unused
14304 		 parallel), it's now completely gone, so the note can
14305 		 be discarded.  But if it was modified in i2, i1 or i0
14306 		 and we still reference it in i2, then we're
14307 		 referencing the previous value, and since the
14308 		 register was modified and REG_UNUSED, we know that
14309 		 the previous value is now dead.  So, if we only
14310 		 reference the register in i2, we change the note to
14311 		 REG_DEAD, to reflect the previous value.  However, if
14312 		 we're also setting or clobbering the register as
14313 		 scratch, we know (because the register was not
14314 		 referenced in i3) that it's unused, just as it was
14315 		 unused before, and we place the note in i2.  */
14316 	      if (from_insn != i3 && i2 && INSN_P (i2)
14317 		  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14318 		{
14319 		  if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14320 		    PUT_REG_NOTE_KIND (note, REG_DEAD);
14321 		  if (! (REG_P (XEXP (note, 0))
14322 			 ? find_regno_note (i2, REG_NOTE_KIND (note),
14323 					    REGNO (XEXP (note, 0)))
14324 			 : find_reg_note (i2, REG_NOTE_KIND (note),
14325 					  XEXP (note, 0))))
14326 		    place = i2;
14327 		}
14328 	    }
14329 
14330 	  break;
14331 
14332 	case REG_EQUAL:
14333 	case REG_EQUIV:
14334 	case REG_NOALIAS:
14335 	  /* These notes say something about results of an insn.  We can
14336 	     only support them if they used to be on I3 in which case they
14337 	     remain on I3.  Otherwise they are ignored.
14338 
14339 	     If the note refers to an expression that is not a constant, we
14340 	     must also ignore the note since we cannot tell whether the
14341 	     equivalence is still true.  It might be possible to do
14342 	     slightly better than this (we only have a problem if I2DEST
14343 	     or I1DEST is present in the expression), but it doesn't
14344 	     seem worth the trouble.  */
14345 
14346 	  if (from_insn == i3
14347 	      && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14348 	    place = i3;
14349 	  break;
14350 
14351 	case REG_INC:
14352 	  /* These notes say something about how a register is used.  They must
14353 	     be present on any use of the register in I2 or I3.  */
14354 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14355 	    place = i3;
14356 
14357 	  if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14358 	    {
14359 	      if (place)
14360 		place2 = i2;
14361 	      else
14362 		place = i2;
14363 	    }
14364 	  break;
14365 
14366 	case REG_LABEL_TARGET:
14367 	case REG_LABEL_OPERAND:
14368 	  /* This can show up in several ways -- either directly in the
14369 	     pattern, or hidden off in the constant pool with (or without?)
14370 	     a REG_EQUAL note.  */
14371 	  /* ??? Ignore the without-reg_equal-note problem for now.  */
14372 	  if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14373 	      || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14374 		  && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14375 		  && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14376 	    place = i3;
14377 
14378 	  if (i2
14379 	      && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14380 		  || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14381 		      && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14382 		      && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14383 	    {
14384 	      if (place)
14385 		place2 = i2;
14386 	      else
14387 		place = i2;
14388 	    }
14389 
14390 	  /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14391 	     as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14392 	     there.  */
14393 	  if (place && JUMP_P (place)
14394 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14395 	      && (JUMP_LABEL (place) == NULL
14396 		  || JUMP_LABEL (place) == XEXP (note, 0)))
14397 	    {
14398 	      rtx label = JUMP_LABEL (place);
14399 
14400 	      if (!label)
14401 		JUMP_LABEL (place) = XEXP (note, 0);
14402 	      else if (LABEL_P (label))
14403 		LABEL_NUSES (label)--;
14404 	    }
14405 
14406 	  if (place2 && JUMP_P (place2)
14407 	      && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14408 	      && (JUMP_LABEL (place2) == NULL
14409 		  || JUMP_LABEL (place2) == XEXP (note, 0)))
14410 	    {
14411 	      rtx label = JUMP_LABEL (place2);
14412 
14413 	      if (!label)
14414 		JUMP_LABEL (place2) = XEXP (note, 0);
14415 	      else if (LABEL_P (label))
14416 		LABEL_NUSES (label)--;
14417 	      place2 = 0;
14418 	    }
14419 	  break;
14420 
14421 	case REG_NONNEG:
14422 	  /* This note says something about the value of a register prior
14423 	     to the execution of an insn.  It is too much trouble to see
14424 	     if the note is still correct in all situations.  It is better
14425 	     to simply delete it.  */
14426 	  break;
14427 
14428 	case REG_DEAD:
14429 	  /* If we replaced the right hand side of FROM_INSN with a
14430 	     REG_EQUAL note, the original use of the dying register
14431 	     will not have been combined into I3 and I2.  In such cases,
14432 	     FROM_INSN is guaranteed to be the first of the combined
14433 	     instructions, so we simply need to search back before
14434 	     FROM_INSN for the previous use or set of this register,
14435 	     then alter the notes there appropriately.
14436 
14437 	     If the register is used as an input in I3, it dies there.
14438 	     Similarly for I2, if it is nonzero and adjacent to I3.
14439 
14440 	     If the register is not used as an input in either I3 or I2
14441 	     and it is not one of the registers we were supposed to eliminate,
14442 	     there are two possibilities.  We might have a non-adjacent I2
14443 	     or we might have somehow eliminated an additional register
14444 	     from a computation.  For example, we might have had A & B where
14445 	     we discover that B will always be zero.  In this case we will
14446 	     eliminate the reference to A.
14447 
14448 	     In both cases, we must search to see if we can find a previous
14449 	     use of A and put the death note there.  */
14450 
14451 	  if (from_insn
14452 	      && from_insn == i2mod
14453 	      && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14454 	    tem_insn = from_insn;
14455 	  else
14456 	    {
14457 	      if (from_insn
14458 		  && CALL_P (from_insn)
14459 		  && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14460 		place = from_insn;
14461 	      else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14462 		{
14463 		  /* If the new I2 sets the same register that is marked
14464 		     dead in the note, we do not in general know where to
14465 		     put the note.  One important case we _can_ handle is
14466 		     when the note comes from I3.  */
14467 		  if (from_insn == i3)
14468 		    place = i3;
14469 		  else
14470 		    break;
14471 		}
14472 	      else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14473 		place = i3;
14474 	      else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14475 		       && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14476 		place = i2;
14477 	      else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14478 			&& !(i2mod
14479 			     && reg_overlap_mentioned_p (XEXP (note, 0),
14480 							 i2mod_old_rhs)))
14481 		       || rtx_equal_p (XEXP (note, 0), elim_i1)
14482 		       || rtx_equal_p (XEXP (note, 0), elim_i0))
14483 		break;
14484 	      tem_insn = i3;
14485 	    }
14486 
14487 	  if (place == 0)
14488 	    {
14489 	      basic_block bb = this_basic_block;
14490 
14491 	      for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14492 		{
14493 		  if (!NONDEBUG_INSN_P (tem_insn))
14494 		    {
14495 		      if (tem_insn == BB_HEAD (bb))
14496 			break;
14497 		      continue;
14498 		    }
14499 
14500 		  /* If the register is being set at TEM_INSN, see if that is all
14501 		     TEM_INSN is doing.  If so, delete TEM_INSN.  Otherwise, make this
14502 		     into a REG_UNUSED note instead. Don't delete sets to
14503 		     global register vars.  */
14504 		  if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14505 		       || !global_regs[REGNO (XEXP (note, 0))])
14506 		      && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14507 		    {
14508 		      rtx set = single_set (tem_insn);
14509 		      rtx inner_dest = 0;
14510 		      rtx_insn *cc0_setter = NULL;
14511 
14512 		      if (set != 0)
14513 			for (inner_dest = SET_DEST (set);
14514 			     (GET_CODE (inner_dest) == STRICT_LOW_PART
14515 			      || GET_CODE (inner_dest) == SUBREG
14516 			      || GET_CODE (inner_dest) == ZERO_EXTRACT);
14517 			     inner_dest = XEXP (inner_dest, 0))
14518 			  ;
14519 
14520 		      /* Verify that it was the set, and not a clobber that
14521 			 modified the register.
14522 
14523 			 CC0 targets must be careful to maintain setter/user
14524 			 pairs.  If we cannot delete the setter due to side
14525 			 effects, mark the user with an UNUSED note instead
14526 			 of deleting it.  */
14527 
14528 		      if (set != 0 && ! side_effects_p (SET_SRC (set))
14529 			  && rtx_equal_p (XEXP (note, 0), inner_dest)
14530 			  && (!HAVE_cc0
14531 			      || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14532 				  || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14533 				      && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14534 			{
14535 			  /* Move the notes and links of TEM_INSN elsewhere.
14536 			     This might delete other dead insns recursively.
14537 			     First set the pattern to something that won't use
14538 			     any register.  */
14539 			  rtx old_notes = REG_NOTES (tem_insn);
14540 
14541 			  PATTERN (tem_insn) = pc_rtx;
14542 			  REG_NOTES (tem_insn) = NULL;
14543 
14544 			  distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14545 					    NULL_RTX, NULL_RTX, NULL_RTX);
14546 			  distribute_links (LOG_LINKS (tem_insn));
14547 
14548 			  unsigned int regno = REGNO (XEXP (note, 0));
14549 			  reg_stat_type *rsp = &reg_stat[regno];
14550 			  if (rsp->last_set == tem_insn)
14551 			    record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14552 
14553 			  SET_INSN_DELETED (tem_insn);
14554 			  if (tem_insn == i2)
14555 			    i2 = NULL;
14556 
14557 			  /* Delete the setter too.  */
14558 			  if (cc0_setter)
14559 			    {
14560 			      PATTERN (cc0_setter) = pc_rtx;
14561 			      old_notes = REG_NOTES (cc0_setter);
14562 			      REG_NOTES (cc0_setter) = NULL;
14563 
14564 			      distribute_notes (old_notes, cc0_setter,
14565 						cc0_setter, NULL,
14566 						NULL_RTX, NULL_RTX, NULL_RTX);
14567 			      distribute_links (LOG_LINKS (cc0_setter));
14568 
14569 			      SET_INSN_DELETED (cc0_setter);
14570 			      if (cc0_setter == i2)
14571 				i2 = NULL;
14572 			    }
14573 			}
14574 		      else
14575 			{
14576 			  PUT_REG_NOTE_KIND (note, REG_UNUSED);
14577 
14578 			  /*  If there isn't already a REG_UNUSED note, put one
14579 			      here.  Do not place a REG_DEAD note, even if
14580 			      the register is also used here; that would not
14581 			      match the algorithm used in lifetime analysis
14582 			      and can cause the consistency check in the
14583 			      scheduler to fail.  */
14584 			  if (! find_regno_note (tem_insn, REG_UNUSED,
14585 						 REGNO (XEXP (note, 0))))
14586 			    place = tem_insn;
14587 			  break;
14588 			}
14589 		    }
14590 		  else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14591 			   || (CALL_P (tem_insn)
14592 			       && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14593 		    {
14594 		      place = tem_insn;
14595 
14596 		      /* If we are doing a 3->2 combination, and we have a
14597 			 register which formerly died in i3 and was not used
14598 			 by i2, which now no longer dies in i3 and is used in
14599 			 i2 but does not die in i2, and place is between i2
14600 			 and i3, then we may need to move a link from place to
14601 			 i2.  */
14602 		      if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14603 			  && from_insn
14604 			  && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14605 			  && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14606 			{
14607 			  struct insn_link *links = LOG_LINKS (place);
14608 			  LOG_LINKS (place) = NULL;
14609 			  distribute_links (links);
14610 			}
14611 		      break;
14612 		    }
14613 
14614 		  if (tem_insn == BB_HEAD (bb))
14615 		    break;
14616 		}
14617 
14618 	    }
14619 
14620 	  /* If the register is set or already dead at PLACE, we needn't do
14621 	     anything with this note if it is still a REG_DEAD note.
14622 	     We check here if it is set at all, not if is it totally replaced,
14623 	     which is what `dead_or_set_p' checks, so also check for it being
14624 	     set partially.  */
14625 
14626 	  if (place && REG_NOTE_KIND (note) == REG_DEAD)
14627 	    {
14628 	      unsigned int regno = REGNO (XEXP (note, 0));
14629 	      reg_stat_type *rsp = &reg_stat[regno];
14630 
14631 	      if (dead_or_set_p (place, XEXP (note, 0))
14632 		  || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14633 		{
14634 		  /* Unless the register previously died in PLACE, clear
14635 		     last_death.  [I no longer understand why this is
14636 		     being done.] */
14637 		  if (rsp->last_death != place)
14638 		    rsp->last_death = 0;
14639 		  place = 0;
14640 		}
14641 	      else
14642 		rsp->last_death = place;
14643 
14644 	      /* If this is a death note for a hard reg that is occupying
14645 		 multiple registers, ensure that we are still using all
14646 		 parts of the object.  If we find a piece of the object
14647 		 that is unused, we must arrange for an appropriate REG_DEAD
14648 		 note to be added for it.  However, we can't just emit a USE
14649 		 and tag the note to it, since the register might actually
14650 		 be dead; so we recourse, and the recursive call then finds
14651 		 the previous insn that used this register.  */
14652 
14653 	      if (place && REG_NREGS (XEXP (note, 0)) > 1)
14654 		{
14655 		  unsigned int endregno = END_REGNO (XEXP (note, 0));
14656 		  bool all_used = true;
14657 		  unsigned int i;
14658 
14659 		  for (i = regno; i < endregno; i++)
14660 		    if ((! refers_to_regno_p (i, PATTERN (place))
14661 			 && ! find_regno_fusage (place, USE, i))
14662 			|| dead_or_set_regno_p (place, i))
14663 		      {
14664 			all_used = false;
14665 			break;
14666 		      }
14667 
14668 		  if (! all_used)
14669 		    {
14670 		      /* Put only REG_DEAD notes for pieces that are
14671 			 not already dead or set.  */
14672 
14673 		      for (i = regno; i < endregno;
14674 			   i += hard_regno_nregs (i, reg_raw_mode[i]))
14675 			{
14676 			  rtx piece = regno_reg_rtx[i];
14677 			  basic_block bb = this_basic_block;
14678 
14679 			  if (! dead_or_set_p (place, piece)
14680 			      && ! reg_bitfield_target_p (piece,
14681 							  PATTERN (place)))
14682 			    {
14683 			      rtx new_note = alloc_reg_note (REG_DEAD, piece,
14684 							     NULL_RTX);
14685 
14686 			      distribute_notes (new_note, place, place,
14687 						NULL, NULL_RTX, NULL_RTX,
14688 						NULL_RTX);
14689 			    }
14690 			  else if (! refers_to_regno_p (i, PATTERN (place))
14691 				   && ! find_regno_fusage (place, USE, i))
14692 			    for (tem_insn = PREV_INSN (place); ;
14693 				 tem_insn = PREV_INSN (tem_insn))
14694 			      {
14695 				if (!NONDEBUG_INSN_P (tem_insn))
14696 				  {
14697 				    if (tem_insn == BB_HEAD (bb))
14698 			 	      break;
14699 				    continue;
14700 				  }
14701 				if (dead_or_set_p (tem_insn, piece)
14702 				    || reg_bitfield_target_p (piece,
14703 							      PATTERN (tem_insn)))
14704 				  {
14705 				    add_reg_note (tem_insn, REG_UNUSED, piece);
14706 				    break;
14707 				  }
14708 			      }
14709 			}
14710 
14711 		      place = 0;
14712 		    }
14713 		}
14714 	    }
14715 	  break;
14716 
14717 	default:
14718 	  /* Any other notes should not be present at this point in the
14719 	     compilation.  */
14720 	  gcc_unreachable ();
14721 	}
14722 
14723       if (place)
14724 	{
14725 	  XEXP (note, 1) = REG_NOTES (place);
14726 	  REG_NOTES (place) = note;
14727 
14728 	  /* Set added_notes_insn to the earliest insn we added a note to.  */
14729 	  if (added_notes_insn == 0
14730 	      || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14731 	    added_notes_insn = place;
14732 	}
14733 
14734       if (place2)
14735 	{
14736 	  add_shallow_copy_of_reg_note (place2, note);
14737 
14738 	  /* Set added_notes_insn to the earliest insn we added a note to.  */
14739 	  if (added_notes_insn == 0
14740 	      || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14741 	    added_notes_insn = place2;
14742 	}
14743     }
14744 }
14745 
14746 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14747    I3, I2, and I1 to new locations.  This is also called to add a link
14748    pointing at I3 when I3's destination is changed.  */
14749 
14750 static void
14751 distribute_links (struct insn_link *links)
14752 {
14753   struct insn_link *link, *next_link;
14754 
14755   for (link = links; link; link = next_link)
14756     {
14757       rtx_insn *place = 0;
14758       rtx_insn *insn;
14759       rtx set, reg;
14760 
14761       next_link = link->next;
14762 
14763       /* If the insn that this link points to is a NOTE, ignore it.  */
14764       if (NOTE_P (link->insn))
14765 	continue;
14766 
14767       set = 0;
14768       rtx pat = PATTERN (link->insn);
14769       if (GET_CODE (pat) == SET)
14770 	set = pat;
14771       else if (GET_CODE (pat) == PARALLEL)
14772 	{
14773 	  int i;
14774 	  for (i = 0; i < XVECLEN (pat, 0); i++)
14775 	    {
14776 	      set = XVECEXP (pat, 0, i);
14777 	      if (GET_CODE (set) != SET)
14778 		continue;
14779 
14780 	      reg = SET_DEST (set);
14781 	      while (GET_CODE (reg) == ZERO_EXTRACT
14782 		     || GET_CODE (reg) == STRICT_LOW_PART
14783 		     || GET_CODE (reg) == SUBREG)
14784 		reg = XEXP (reg, 0);
14785 
14786 	      if (!REG_P (reg))
14787 		continue;
14788 
14789 	      if (REGNO (reg) == link->regno)
14790 		break;
14791 	    }
14792 	  if (i == XVECLEN (pat, 0))
14793 	    continue;
14794 	}
14795       else
14796 	continue;
14797 
14798       reg = SET_DEST (set);
14799 
14800       while (GET_CODE (reg) == ZERO_EXTRACT
14801 	     || GET_CODE (reg) == STRICT_LOW_PART
14802 	     || GET_CODE (reg) == SUBREG)
14803 	reg = XEXP (reg, 0);
14804 
14805       if (reg == pc_rtx)
14806 	continue;
14807 
14808       /* A LOG_LINK is defined as being placed on the first insn that uses
14809 	 a register and points to the insn that sets the register.  Start
14810 	 searching at the next insn after the target of the link and stop
14811 	 when we reach a set of the register or the end of the basic block.
14812 
14813 	 Note that this correctly handles the link that used to point from
14814 	 I3 to I2.  Also note that not much searching is typically done here
14815 	 since most links don't point very far away.  */
14816 
14817       for (insn = NEXT_INSN (link->insn);
14818 	   (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14819 		     || BB_HEAD (this_basic_block->next_bb) != insn));
14820 	   insn = NEXT_INSN (insn))
14821 	if (DEBUG_INSN_P (insn))
14822 	  continue;
14823 	else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14824 	  {
14825 	    if (reg_referenced_p (reg, PATTERN (insn)))
14826 	      place = insn;
14827 	    break;
14828 	  }
14829 	else if (CALL_P (insn)
14830 		 && find_reg_fusage (insn, USE, reg))
14831 	  {
14832 	    place = insn;
14833 	    break;
14834 	  }
14835 	else if (INSN_P (insn) && reg_set_p (reg, insn))
14836 	  break;
14837 
14838       /* If we found a place to put the link, place it there unless there
14839 	 is already a link to the same insn as LINK at that point.  */
14840 
14841       if (place)
14842 	{
14843 	  struct insn_link *link2;
14844 
14845 	  FOR_EACH_LOG_LINK (link2, place)
14846 	    if (link2->insn == link->insn && link2->regno == link->regno)
14847 	      break;
14848 
14849 	  if (link2 == NULL)
14850 	    {
14851 	      link->next = LOG_LINKS (place);
14852 	      LOG_LINKS (place) = link;
14853 
14854 	      /* Set added_links_insn to the earliest insn we added a
14855 		 link to.  */
14856 	      if (added_links_insn == 0
14857 		  || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14858 		added_links_insn = place;
14859 	    }
14860 	}
14861     }
14862 }
14863 
14864 /* Check for any register or memory mentioned in EQUIV that is not
14865    mentioned in EXPR.  This is used to restrict EQUIV to "specializations"
14866    of EXPR where some registers may have been replaced by constants.  */
14867 
14868 static bool
14869 unmentioned_reg_p (rtx equiv, rtx expr)
14870 {
14871   subrtx_iterator::array_type array;
14872   FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14873     {
14874       const_rtx x = *iter;
14875       if ((REG_P (x) || MEM_P (x))
14876 	  && !reg_mentioned_p (x, expr))
14877 	return true;
14878     }
14879   return false;
14880 }
14881 
14882 DEBUG_FUNCTION void
14883 dump_combine_stats (FILE *file)
14884 {
14885   fprintf
14886     (file,
14887      ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14888      combine_attempts, combine_merges, combine_extras, combine_successes);
14889 }
14890 
14891 void
14892 dump_combine_total_stats (FILE *file)
14893 {
14894   fprintf
14895     (file,
14896      "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14897      total_attempts, total_merges, total_extras, total_successes);
14898 }
14899 
14900 /* Try combining insns through substitution.  */
14901 static unsigned int
14902 rest_of_handle_combine (void)
14903 {
14904   int rebuild_jump_labels_after_combine;
14905 
14906   df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14907   df_note_add_problem ();
14908   df_analyze ();
14909 
14910   regstat_init_n_sets_and_refs ();
14911   reg_n_sets_max = max_reg_num ();
14912 
14913   rebuild_jump_labels_after_combine
14914     = combine_instructions (get_insns (), max_reg_num ());
14915 
14916   /* Combining insns may have turned an indirect jump into a
14917      direct jump.  Rebuild the JUMP_LABEL fields of jumping
14918      instructions.  */
14919   if (rebuild_jump_labels_after_combine)
14920     {
14921       if (dom_info_available_p (CDI_DOMINATORS))
14922 	free_dominance_info (CDI_DOMINATORS);
14923       timevar_push (TV_JUMP);
14924       rebuild_jump_labels (get_insns ());
14925       cleanup_cfg (0);
14926       timevar_pop (TV_JUMP);
14927     }
14928 
14929   regstat_free_n_sets_and_refs ();
14930   return 0;
14931 }
14932 
14933 namespace {
14934 
14935 const pass_data pass_data_combine =
14936 {
14937   RTL_PASS, /* type */
14938   "combine", /* name */
14939   OPTGROUP_NONE, /* optinfo_flags */
14940   TV_COMBINE, /* tv_id */
14941   PROP_cfglayout, /* properties_required */
14942   0, /* properties_provided */
14943   0, /* properties_destroyed */
14944   0, /* todo_flags_start */
14945   TODO_df_finish, /* todo_flags_finish */
14946 };
14947 
14948 class pass_combine : public rtl_opt_pass
14949 {
14950 public:
14951   pass_combine (gcc::context *ctxt)
14952     : rtl_opt_pass (pass_data_combine, ctxt)
14953   {}
14954 
14955   /* opt_pass methods: */
14956   virtual bool gate (function *) { return (optimize > 0); }
14957   virtual unsigned int execute (function *)
14958     {
14959       return rest_of_handle_combine ();
14960     }
14961 
14962 }; // class pass_combine
14963 
14964 } // anon namespace
14965 
14966 rtl_opt_pass *
14967 make_pass_combine (gcc::context *ctxt)
14968 {
14969   return new pass_combine (ctxt);
14970 }
14971