xref: /dragonfly/contrib/gcc-8.0/gcc/config/i386/i386.h (revision df49ec1e)
1 /* Definitions of target machine for GCC for IA-32.
2    Copyright (C) 1988-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19 
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 <http://www.gnu.org/licenses/>.  */
24 
25 /* The purpose of this file is to define the characteristics of the i386,
26    independent of assembler syntax or operating system.
27 
28    Three other files build on this one to describe a specific assembler syntax:
29    bsd386.h, att386.h, and sun386.h.
30 
31    The actual tm.h file for a particular system should include
32    this file, and then the file for the appropriate assembler syntax.
33 
34    Many macros that specify assembler syntax are omitted entirely from
35    this file because they really belong in the files for particular
36    assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37    ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38    that start with ASM_ or end in ASM_OP.  */
39 
40 /* Redefines for option macros.  */
41 
42 #define TARGET_64BIT	TARGET_ISA_64BIT
43 #define TARGET_64BIT_P(x)	TARGET_ISA_64BIT_P(x)
44 #define TARGET_MMX	TARGET_ISA_MMX
45 #define TARGET_MMX_P(x)	TARGET_ISA_MMX_P(x)
46 #define TARGET_3DNOW	TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_P(x)	TARGET_ISA_3DNOW_P(x)
48 #define TARGET_3DNOW_A	TARGET_ISA_3DNOW_A
49 #define TARGET_3DNOW_A_P(x)	TARGET_ISA_3DNOW_A_P(x)
50 #define TARGET_SSE	TARGET_ISA_SSE
51 #define TARGET_SSE_P(x)	TARGET_ISA_SSE_P(x)
52 #define TARGET_SSE2	TARGET_ISA_SSE2
53 #define TARGET_SSE2_P(x)	TARGET_ISA_SSE2_P(x)
54 #define TARGET_SSE3	TARGET_ISA_SSE3
55 #define TARGET_SSE3_P(x)	TARGET_ISA_SSE3_P(x)
56 #define TARGET_SSSE3	TARGET_ISA_SSSE3
57 #define TARGET_SSSE3_P(x)	TARGET_ISA_SSSE3_P(x)
58 #define TARGET_SSE4_1	TARGET_ISA_SSE4_1
59 #define TARGET_SSE4_1_P(x)	TARGET_ISA_SSE4_1_P(x)
60 #define TARGET_SSE4_2	TARGET_ISA_SSE4_2
61 #define TARGET_SSE4_2_P(x)	TARGET_ISA_SSE4_2_P(x)
62 #define TARGET_AVX	TARGET_ISA_AVX
63 #define TARGET_AVX_P(x)	TARGET_ISA_AVX_P(x)
64 #define TARGET_AVX2	TARGET_ISA_AVX2
65 #define TARGET_AVX2_P(x)	TARGET_ISA_AVX2_P(x)
66 #define TARGET_AVX512F	TARGET_ISA_AVX512F
67 #define TARGET_AVX512F_P(x)	TARGET_ISA_AVX512F_P(x)
68 #define TARGET_AVX512PF	TARGET_ISA_AVX512PF
69 #define TARGET_AVX512PF_P(x)	TARGET_ISA_AVX512PF_P(x)
70 #define TARGET_AVX512ER	TARGET_ISA_AVX512ER
71 #define TARGET_AVX512ER_P(x)	TARGET_ISA_AVX512ER_P(x)
72 #define TARGET_AVX512CD	TARGET_ISA_AVX512CD
73 #define TARGET_AVX512CD_P(x)	TARGET_ISA_AVX512CD_P(x)
74 #define TARGET_AVX512DQ	TARGET_ISA_AVX512DQ
75 #define TARGET_AVX512DQ_P(x)	TARGET_ISA_AVX512DQ_P(x)
76 #define TARGET_AVX512BW	TARGET_ISA_AVX512BW
77 #define TARGET_AVX512BW_P(x)	TARGET_ISA_AVX512BW_P(x)
78 #define TARGET_AVX512VL	TARGET_ISA_AVX512VL
79 #define TARGET_AVX512VL_P(x)	TARGET_ISA_AVX512VL_P(x)
80 #define TARGET_AVX512VBMI	TARGET_ISA_AVX512VBMI
81 #define TARGET_AVX512VBMI_P(x)	TARGET_ISA_AVX512VBMI_P(x)
82 #define TARGET_AVX512IFMA	TARGET_ISA_AVX512IFMA
83 #define TARGET_AVX512IFMA_P(x)	TARGET_ISA_AVX512IFMA_P(x)
84 #define TARGET_AVX5124FMAPS	TARGET_ISA_AVX5124FMAPS
85 #define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86 #define TARGET_AVX5124VNNIW	TARGET_ISA_AVX5124VNNIW
87 #define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
88 #define TARGET_AVX512VBMI2	TARGET_ISA_AVX512VBMI2
89 #define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
90 #define TARGET_AVX512VPOPCNTDQ	TARGET_ISA_AVX512VPOPCNTDQ
91 #define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
92 #define TARGET_AVX512VNNI	TARGET_ISA_AVX512VNNI
93 #define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
94 #define TARGET_AVX512BITALG	TARGET_ISA_AVX512BITALG
95 #define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
96 #define TARGET_FMA	TARGET_ISA_FMA
97 #define TARGET_FMA_P(x)	TARGET_ISA_FMA_P(x)
98 #define TARGET_SSE4A	TARGET_ISA_SSE4A
99 #define TARGET_SSE4A_P(x)	TARGET_ISA_SSE4A_P(x)
100 #define TARGET_FMA4	TARGET_ISA_FMA4
101 #define TARGET_FMA4_P(x)	TARGET_ISA_FMA4_P(x)
102 #define TARGET_XOP	TARGET_ISA_XOP
103 #define TARGET_XOP_P(x)	TARGET_ISA_XOP_P(x)
104 #define TARGET_LWP	TARGET_ISA_LWP
105 #define TARGET_LWP_P(x)	TARGET_ISA_LWP_P(x)
106 #define TARGET_ABM	TARGET_ISA_ABM
107 #define TARGET_ABM_P(x)	TARGET_ISA_ABM_P(x)
108 #define TARGET_PCONFIG	TARGET_ISA_PCONFIG
109 #define TARGET_PCONFIG_P(x)	TARGET_ISA_PCONFIG_P(x)
110 #define TARGET_WBNOINVD	TARGET_ISA_WBNOINVD
111 #define TARGET_WBNOINVD_P(x)	TARGET_ISA_WBNOINVD_P(x)
112 #define TARGET_SGX	TARGET_ISA_SGX
113 #define TARGET_SGX_P(x)	TARGET_ISA_SGX_P(x)
114 #define TARGET_RDPID	TARGET_ISA_RDPID
115 #define TARGET_RDPID_P(x)	TARGET_ISA_RDPID_P(x)
116 #define TARGET_GFNI	TARGET_ISA_GFNI
117 #define TARGET_GFNI_P(x)	TARGET_ISA_GFNI_P(x)
118 #define TARGET_VAES	TARGET_ISA_VAES
119 #define TARGET_VAES_P(x)	TARGET_ISA_VAES_P(x)
120 #define TARGET_VPCLMULQDQ	TARGET_ISA_VPCLMULQDQ
121 #define TARGET_VPCLMULQDQ_P(x)	TARGET_ISA_VPCLMULQDQ_P(x)
122 #define TARGET_BMI	TARGET_ISA_BMI
123 #define TARGET_BMI_P(x)	TARGET_ISA_BMI_P(x)
124 #define TARGET_BMI2	TARGET_ISA_BMI2
125 #define TARGET_BMI2_P(x)	TARGET_ISA_BMI2_P(x)
126 #define TARGET_LZCNT	TARGET_ISA_LZCNT
127 #define TARGET_LZCNT_P(x)	TARGET_ISA_LZCNT_P(x)
128 #define TARGET_TBM	TARGET_ISA_TBM
129 #define TARGET_TBM_P(x)	TARGET_ISA_TBM_P(x)
130 #define TARGET_POPCNT	TARGET_ISA_POPCNT
131 #define TARGET_POPCNT_P(x)	TARGET_ISA_POPCNT_P(x)
132 #define TARGET_SAHF	TARGET_ISA_SAHF
133 #define TARGET_SAHF_P(x)	TARGET_ISA_SAHF_P(x)
134 #define TARGET_MOVBE	TARGET_ISA_MOVBE
135 #define TARGET_MOVBE_P(x)	TARGET_ISA_MOVBE_P(x)
136 #define TARGET_CRC32	TARGET_ISA_CRC32
137 #define TARGET_CRC32_P(x)	TARGET_ISA_CRC32_P(x)
138 #define TARGET_AES	TARGET_ISA_AES
139 #define TARGET_AES_P(x)	TARGET_ISA_AES_P(x)
140 #define TARGET_SHA	TARGET_ISA_SHA
141 #define TARGET_SHA_P(x)	TARGET_ISA_SHA_P(x)
142 #define TARGET_CLFLUSHOPT	TARGET_ISA_CLFLUSHOPT
143 #define TARGET_CLFLUSHOPT_P(x)	TARGET_ISA_CLFLUSHOPT_P(x)
144 #define TARGET_CLZERO	TARGET_ISA_CLZERO
145 #define TARGET_CLZERO_P(x)	TARGET_ISA_CLZERO_P(x)
146 #define TARGET_XSAVEC	TARGET_ISA_XSAVEC
147 #define TARGET_XSAVEC_P(x)	TARGET_ISA_XSAVEC_P(x)
148 #define TARGET_XSAVES	TARGET_ISA_XSAVES
149 #define TARGET_XSAVES_P(x)	TARGET_ISA_XSAVES_P(x)
150 #define TARGET_PCLMUL	TARGET_ISA_PCLMUL
151 #define TARGET_PCLMUL_P(x)	TARGET_ISA_PCLMUL_P(x)
152 #define TARGET_CMPXCHG16B	TARGET_ISA_CX16
153 #define TARGET_CMPXCHG16B_P(x)	TARGET_ISA_CX16_P(x)
154 #define TARGET_FSGSBASE	TARGET_ISA_FSGSBASE
155 #define TARGET_FSGSBASE_P(x)	TARGET_ISA_FSGSBASE_P(x)
156 #define TARGET_RDRND	TARGET_ISA_RDRND
157 #define TARGET_RDRND_P(x)	TARGET_ISA_RDRND_P(x)
158 #define TARGET_F16C	TARGET_ISA_F16C
159 #define TARGET_F16C_P(x)	TARGET_ISA_F16C_P(x)
160 #define TARGET_RTM	TARGET_ISA_RTM
161 #define TARGET_RTM_P(x)	TARGET_ISA_RTM_P(x)
162 #define TARGET_HLE	TARGET_ISA_HLE
163 #define TARGET_HLE_P(x)	TARGET_ISA_HLE_P(x)
164 #define TARGET_RDSEED	TARGET_ISA_RDSEED
165 #define TARGET_RDSEED_P(x)	TARGET_ISA_RDSEED_P(x)
166 #define TARGET_PRFCHW	TARGET_ISA_PRFCHW
167 #define TARGET_PRFCHW_P(x)	TARGET_ISA_PRFCHW_P(x)
168 #define TARGET_ADX	TARGET_ISA_ADX
169 #define TARGET_ADX_P(x)	TARGET_ISA_ADX_P(x)
170 #define TARGET_FXSR	TARGET_ISA_FXSR
171 #define TARGET_FXSR_P(x)	TARGET_ISA_FXSR_P(x)
172 #define TARGET_XSAVE	TARGET_ISA_XSAVE
173 #define TARGET_XSAVE_P(x)	TARGET_ISA_XSAVE_P(x)
174 #define TARGET_XSAVEOPT	TARGET_ISA_XSAVEOPT
175 #define TARGET_XSAVEOPT_P(x)	TARGET_ISA_XSAVEOPT_P(x)
176 #define TARGET_PREFETCHWT1	TARGET_ISA_PREFETCHWT1
177 #define TARGET_PREFETCHWT1_P(x)	TARGET_ISA_PREFETCHWT1_P(x)
178 #define TARGET_MPX	TARGET_ISA_MPX
179 #define TARGET_MPX_P(x)	TARGET_ISA_MPX_P(x)
180 #define TARGET_CLWB	TARGET_ISA_CLWB
181 #define TARGET_CLWB_P(x)	TARGET_ISA_CLWB_P(x)
182 #define TARGET_MWAITX	TARGET_ISA_MWAITX
183 #define TARGET_MWAITX_P(x)	TARGET_ISA_MWAITX_P(x)
184 #define TARGET_PKU	TARGET_ISA_PKU
185 #define TARGET_PKU_P(x)	TARGET_ISA_PKU_P(x)
186 #define TARGET_SHSTK	TARGET_ISA_SHSTK
187 #define TARGET_SHSTK_P(x)	TARGET_ISA_SHSTK_P(x)
188 #define TARGET_MOVDIRI	TARGET_ISA_MOVDIRI
189 #define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
190 #define TARGET_MOVDIR64B	TARGET_ISA_MOVDIR64B
191 #define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
192 
193 #define TARGET_LP64	TARGET_ABI_64
194 #define TARGET_LP64_P(x)	TARGET_ABI_64_P(x)
195 #define TARGET_X32	TARGET_ABI_X32
196 #define TARGET_X32_P(x)	TARGET_ABI_X32_P(x)
197 #define TARGET_16BIT	TARGET_CODE16
198 #define TARGET_16BIT_P(x)	TARGET_CODE16_P(x)
199 
200 #include "config/vxworks-dummy.h"
201 
202 #include "config/i386/i386-opts.h"
203 
204 #define MAX_STRINGOP_ALGS 4
205 
206 /* Specify what algorithm to use for stringops on known size.
207    When size is unknown, the UNKNOWN_SIZE alg is used.  When size is
208    known at compile time or estimated via feedback, the SIZE array
209    is walked in order until MAX is greater then the estimate (or -1
210    means infinity).  Corresponding ALG is used then.
211    When NOALIGN is true the code guaranting the alignment of the memory
212    block is skipped.
213 
214    For example initializer:
215     {{256, loop}, {-1, rep_prefix_4_byte}}
216    will use loop for blocks smaller or equal to 256 bytes, rep prefix will
217    be used otherwise.  */
218 struct stringop_algs
219 {
220   const enum stringop_alg unknown_size;
221   const struct stringop_strategy {
222     const int max;
223     const enum stringop_alg alg;
224     int noalign;
225   } size [MAX_STRINGOP_ALGS];
226 };
227 
228 /* Define the specific costs for a given cpu */
229 
230 struct processor_costs {
231   const int add;		/* cost of an add instruction */
232   const int lea;		/* cost of a lea instruction */
233   const int shift_var;		/* variable shift costs */
234   const int shift_const;	/* constant shift costs */
235   const int mult_init[5];	/* cost of starting a multiply
236 				   in QImode, HImode, SImode, DImode, TImode*/
237   const int mult_bit;		/* cost of multiply per each bit set */
238   const int divide[5];		/* cost of a divide/mod
239 				   in QImode, HImode, SImode, DImode, TImode*/
240   int movsx;			/* The cost of movsx operation.  */
241   int movzx;			/* The cost of movzx operation.  */
242   const int large_insn;		/* insns larger than this cost more */
243   const int move_ratio;		/* The threshold of number of scalar
244 				   memory-to-memory move insns.  */
245   const int movzbl_load;	/* cost of loading using movzbl */
246   const int int_load[3];	/* cost of loading integer registers
247 				   in QImode, HImode and SImode relative
248 				   to reg-reg move (2).  */
249   const int int_store[3];	/* cost of storing integer register
250 				   in QImode, HImode and SImode */
251   const int fp_move;		/* cost of reg,reg fld/fst */
252   const int fp_load[3];		/* cost of loading FP register
253 				   in SFmode, DFmode and XFmode */
254   const int fp_store[3];	/* cost of storing FP register
255 				   in SFmode, DFmode and XFmode */
256   const int mmx_move;		/* cost of moving MMX register.  */
257   const int mmx_load[2];	/* cost of loading MMX register
258 				   in SImode and DImode */
259   const int mmx_store[2];	/* cost of storing MMX register
260 				   in SImode and DImode */
261   const int xmm_move, ymm_move, /* cost of moving XMM and YMM register.  */
262 	    zmm_move;
263   const int sse_load[5];	/* cost of loading SSE register
264 				   in 32bit, 64bit, 128bit, 256bit and 512bit */
265   const int sse_unaligned_load[5];/* cost of unaligned load.  */
266   const int sse_store[5];	/* cost of storing SSE register
267 				   in SImode, DImode and TImode.  */
268   const int sse_unaligned_store[5];/* cost of unaligned store.  */
269   const int mmxsse_to_integer;	/* cost of moving mmxsse register to
270 				   integer.  */
271   const int ssemmx_to_integer;  /* cost of moving integer to mmxsse register. */
272   const int gather_static, gather_per_elt; /* Cost of gather load is computed
273 				   as static + per_item * nelts. */
274   const int scatter_static, scatter_per_elt; /* Cost of gather store is
275 				   computed as static + per_item * nelts.  */
276   const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
277   const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
278   const int prefetch_block;	/* bytes moved to cache for prefetch.  */
279   const int simultaneous_prefetches; /* number of parallel prefetch
280 				   operations.  */
281   const int branch_cost;	/* Default value for BRANCH_COST.  */
282   const int fadd;		/* cost of FADD and FSUB instructions.  */
283   const int fmul;		/* cost of FMUL instruction.  */
284   const int fdiv;		/* cost of FDIV instruction.  */
285   const int fabs;		/* cost of FABS instruction.  */
286   const int fchs;		/* cost of FCHS instruction.  */
287   const int fsqrt;		/* cost of FSQRT instruction.  */
288 				/* Specify what algorithm
289 				   to use for stringops on unknown size.  */
290   const int sse_op;		/* cost of cheap SSE instruction.  */
291   const int addss;		/* cost of ADDSS/SD SUBSS/SD instructions.  */
292   const int mulss;		/* cost of MULSS instructions.  */
293   const int mulsd;		/* cost of MULSD instructions.  */
294   const int fmass;		/* cost of FMASS instructions.  */
295   const int fmasd;		/* cost of FMASD instructions.  */
296   const int divss;		/* cost of DIVSS instructions.  */
297   const int divsd;		/* cost of DIVSD instructions.  */
298   const int sqrtss;		/* cost of SQRTSS instructions.  */
299   const int sqrtsd;		/* cost of SQRTSD instructions.  */
300   const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
301 				/* Specify reassociation width for integer,
302 				   fp, vector integer and vector fp
303 				   operations.  Generally should correspond
304 				   to number of instructions executed in
305 				   parallel.  See also
306 				   ix86_reassociation_width.  */
307   struct stringop_algs *memcpy, *memset;
308   const int cond_taken_branch_cost;    /* Cost of taken branch for vectorizer
309 					  cost model.  */
310   const int cond_not_taken_branch_cost;/* Cost of not taken branch for
311 					  vectorizer cost model.  */
312 };
313 
314 extern const struct processor_costs *ix86_cost;
315 extern const struct processor_costs ix86_size_cost;
316 
317 #define ix86_cur_cost() \
318   (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
319 
320 /* Macros used in the machine description to test the flags.  */
321 
322 /* configure can arrange to change it.  */
323 
324 #ifndef TARGET_CPU_DEFAULT
325 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
326 #endif
327 
328 #ifndef TARGET_FPMATH_DEFAULT
329 #define TARGET_FPMATH_DEFAULT \
330   (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
331 #endif
332 
333 #ifndef TARGET_FPMATH_DEFAULT_P
334 #define TARGET_FPMATH_DEFAULT_P(x) \
335   (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
336 #endif
337 
338 /* If the i387 is disabled or -miamcu is used , then do not return
339    values in it. */
340 #define TARGET_FLOAT_RETURNS_IN_80387 \
341   (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
342 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
343   (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
344 
345 /* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
346    compile-time constant.  */
347 #ifdef IN_LIBGCC2
348 #undef TARGET_64BIT
349 #ifdef __x86_64__
350 #define TARGET_64BIT 1
351 #else
352 #define TARGET_64BIT 0
353 #endif
354 #else
355 #ifndef TARGET_BI_ARCH
356 #undef TARGET_64BIT
357 #undef TARGET_64BIT_P
358 #if TARGET_64BIT_DEFAULT
359 #define TARGET_64BIT 1
360 #define TARGET_64BIT_P(x) 1
361 #else
362 #define TARGET_64BIT 0
363 #define TARGET_64BIT_P(x) 0
364 #endif
365 #endif
366 #endif
367 
368 #define HAS_LONG_COND_BRANCH 1
369 #define HAS_LONG_UNCOND_BRANCH 1
370 
371 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
372 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
373 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
374 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
375 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
376 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
377 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
378 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
379 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
380 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
381 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
382 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
383 #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
384 #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
385 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
386 #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
387 #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
388 #define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
389 #define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
390 #define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
391 #define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
392 #define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
393 #define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
394 #define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
395 #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
396 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
397 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
398 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
399 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
400 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
401 #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
402 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
403 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
404 #define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
405 
406 /* Feature tests against the various tunings.  */
407 enum ix86_tune_indices {
408 #undef DEF_TUNE
409 #define DEF_TUNE(tune, name, selector) tune,
410 #include "x86-tune.def"
411 #undef DEF_TUNE
412 X86_TUNE_LAST
413 };
414 
415 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
416 
417 #define TARGET_USE_LEAVE	ix86_tune_features[X86_TUNE_USE_LEAVE]
418 #define TARGET_PUSH_MEMORY	ix86_tune_features[X86_TUNE_PUSH_MEMORY]
419 #define TARGET_ZERO_EXTEND_WITH_AND \
420 	ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
421 #define TARGET_UNROLL_STRLEN	ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
422 #define TARGET_BRANCH_PREDICTION_HINTS \
423 	ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
424 #define TARGET_DOUBLE_WITH_ADD	ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
425 #define TARGET_USE_SAHF		ix86_tune_features[X86_TUNE_USE_SAHF]
426 #define TARGET_MOVX		ix86_tune_features[X86_TUNE_MOVX]
427 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
428 #define TARGET_PARTIAL_FLAG_REG_STALL \
429 	ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
430 #define TARGET_LCP_STALL \
431 	ix86_tune_features[X86_TUNE_LCP_STALL]
432 #define TARGET_USE_HIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
433 #define TARGET_USE_SIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
434 #define TARGET_USE_MOV0		ix86_tune_features[X86_TUNE_USE_MOV0]
435 #define TARGET_USE_CLTD		ix86_tune_features[X86_TUNE_USE_CLTD]
436 #define TARGET_USE_XCHGB	ix86_tune_features[X86_TUNE_USE_XCHGB]
437 #define TARGET_SPLIT_LONG_MOVES	ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
438 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
439 #define TARGET_READ_MODIFY	ix86_tune_features[X86_TUNE_READ_MODIFY]
440 #define TARGET_PROMOTE_QImode	ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
441 #define TARGET_FAST_PREFIX	ix86_tune_features[X86_TUNE_FAST_PREFIX]
442 #define TARGET_SINGLE_STRINGOP	ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
443 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
444 	ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
445 #define TARGET_QIMODE_MATH	ix86_tune_features[X86_TUNE_QIMODE_MATH]
446 #define TARGET_HIMODE_MATH	ix86_tune_features[X86_TUNE_HIMODE_MATH]
447 #define TARGET_PROMOTE_QI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
448 #define TARGET_PROMOTE_HI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
449 #define TARGET_SINGLE_POP	ix86_tune_features[X86_TUNE_SINGLE_POP]
450 #define TARGET_DOUBLE_POP	ix86_tune_features[X86_TUNE_DOUBLE_POP]
451 #define TARGET_SINGLE_PUSH	ix86_tune_features[X86_TUNE_SINGLE_PUSH]
452 #define TARGET_DOUBLE_PUSH	ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
453 #define TARGET_INTEGER_DFMODE_MOVES \
454 	ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
455 #define TARGET_PARTIAL_REG_DEPENDENCY \
456 	ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
457 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
458 	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
459 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
460 	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
461 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
462 	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
463 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
464 	ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
465 #define TARGET_SSE_SPLIT_REGS	ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
466 #define TARGET_SSE_TYPELESS_STORES \
467 	ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
468 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
469 #define TARGET_MEMORY_MISMATCH_STALL \
470 	ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
471 #define TARGET_PROLOGUE_USING_MOVE \
472 	ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
473 #define TARGET_EPILOGUE_USING_MOVE \
474 	ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
475 #define TARGET_SHIFT1		ix86_tune_features[X86_TUNE_SHIFT1]
476 #define TARGET_USE_FFREEP	ix86_tune_features[X86_TUNE_USE_FFREEP]
477 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
478 	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
479 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
480 	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
481 #define TARGET_INTER_UNIT_CONVERSIONS \
482 	ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
483 #define TARGET_FOUR_JUMP_LIMIT	ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
484 #define TARGET_SCHEDULE		ix86_tune_features[X86_TUNE_SCHEDULE]
485 #define TARGET_USE_BT		ix86_tune_features[X86_TUNE_USE_BT]
486 #define TARGET_USE_INCDEC	ix86_tune_features[X86_TUNE_USE_INCDEC]
487 #define TARGET_PAD_RETURNS	ix86_tune_features[X86_TUNE_PAD_RETURNS]
488 #define TARGET_PAD_SHORT_FUNCTION \
489 	ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
490 #define TARGET_EXT_80387_CONSTANTS \
491 	ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
492 #define TARGET_AVOID_VECTOR_DECODE \
493 	ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
494 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
495 	ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
496 #define TARGET_SLOW_IMUL_IMM32_MEM \
497 	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
498 #define TARGET_SLOW_IMUL_IMM8	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
499 #define	TARGET_MOVE_M1_VIA_OR	ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
500 #define TARGET_NOT_UNPAIRABLE	ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
501 #define TARGET_NOT_VECTORMODE	ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
502 #define TARGET_USE_VECTOR_FP_CONVERTS \
503 	ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
504 #define TARGET_USE_VECTOR_CONVERTS \
505 	ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
506 #define TARGET_SLOW_PSHUFB \
507 	ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
508 #define TARGET_AVOID_4BYTE_PREFIXES \
509 	ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
510 #define TARGET_USE_GATHER \
511 	ix86_tune_features[X86_TUNE_USE_GATHER]
512 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
513 	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
514 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
515 	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
516 #define TARGET_FUSE_CMP_AND_BRANCH \
517 	(TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
518 	 : TARGET_FUSE_CMP_AND_BRANCH_32)
519 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
520 	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
521 #define TARGET_FUSE_ALU_AND_BRANCH \
522 	ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
523 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
524 #define TARGET_AVOID_LEA_FOR_ADDR \
525 	ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
526 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
527 	ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
528 #define TARGET_AVX128_OPTIMAL \
529 	ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
530 #define TARGET_GENERAL_REGS_SSE_SPILL \
531 	ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
532 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
533 	ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
534 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
535 	ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
536 #define TARGET_ADJUST_UNROLL \
537     ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
538 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
539 	ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
540 #define TARGET_ONE_IF_CONV_INSN \
541 	ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
542 #define TARGET_EMIT_VZEROUPPER \
543 	ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
544 
545 /* Feature tests against the various architecture variations.  */
546 enum ix86_arch_indices {
547   X86_ARCH_CMOV,
548   X86_ARCH_CMPXCHG,
549   X86_ARCH_CMPXCHG8B,
550   X86_ARCH_XADD,
551   X86_ARCH_BSWAP,
552 
553   X86_ARCH_LAST
554 };
555 
556 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
557 
558 #define TARGET_CMOV		ix86_arch_features[X86_ARCH_CMOV]
559 #define TARGET_CMPXCHG		ix86_arch_features[X86_ARCH_CMPXCHG]
560 #define TARGET_CMPXCHG8B	ix86_arch_features[X86_ARCH_CMPXCHG8B]
561 #define TARGET_XADD		ix86_arch_features[X86_ARCH_XADD]
562 #define TARGET_BSWAP		ix86_arch_features[X86_ARCH_BSWAP]
563 
564 /* For sane SSE instruction set generation we need fcomi instruction.
565    It is safe to enable all CMOVE instructions.  Also, RDRAND intrinsic
566    expands to a sequence that includes conditional move. */
567 #define TARGET_CMOVE		(TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
568 
569 #define TARGET_FISTTP		(TARGET_SSE3 && TARGET_80387)
570 
571 extern unsigned char x86_prefetch_sse;
572 #define TARGET_PREFETCH_SSE	x86_prefetch_sse
573 
574 #define ASSEMBLER_DIALECT	(ix86_asm_dialect)
575 
576 #define TARGET_SSE_MATH		((ix86_fpmath & FPMATH_SSE) != 0)
577 #define TARGET_MIX_SSE_I387 \
578  ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
579 
580 #define TARGET_HARD_SF_REGS	(TARGET_80387 || TARGET_MMX || TARGET_SSE)
581 #define TARGET_HARD_DF_REGS	(TARGET_80387 || TARGET_SSE)
582 #define TARGET_HARD_XF_REGS	(TARGET_80387)
583 
584 #define TARGET_GNU_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU)
585 #define TARGET_GNU2_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU2)
586 #define TARGET_ANY_GNU_TLS	(TARGET_GNU_TLS || TARGET_GNU2_TLS)
587 #define TARGET_SUN_TLS		0
588 
589 #ifndef TARGET_64BIT_DEFAULT
590 #define TARGET_64BIT_DEFAULT 0
591 #endif
592 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
593 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
594 #endif
595 
596 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
597 #define TARGET_SSP_TLS_GUARD    (ix86_stack_protector_guard == SSP_TLS)
598 
599 /* Fence to use after loop using storent.  */
600 
601 extern tree x86_mfence;
602 #define FENCE_FOLLOWING_MOVNT x86_mfence
603 
604 /* Once GDB has been enhanced to deal with functions without frame
605    pointers, we can change this to allow for elimination of
606    the frame pointer in leaf functions.  */
607 #define TARGET_DEFAULT 0
608 
609 /* Extra bits to force.  */
610 #define TARGET_SUBTARGET_DEFAULT 0
611 #define TARGET_SUBTARGET_ISA_DEFAULT 0
612 
613 /* Extra bits to force on w/ 32-bit mode.  */
614 #define TARGET_SUBTARGET32_DEFAULT 0
615 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
616 
617 /* Extra bits to force on w/ 64-bit mode.  */
618 #define TARGET_SUBTARGET64_DEFAULT 0
619 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
620 
621 /* Replace MACH-O, ifdefs by in-line tests, where possible.
622    (a) Macros defined in config/i386/darwin.h  */
623 #define TARGET_MACHO 0
624 #define TARGET_MACHO_BRANCH_ISLANDS 0
625 #define MACHOPIC_ATT_STUB 0
626 /* (b) Macros defined in config/darwin.h  */
627 #define MACHO_DYNAMIC_NO_PIC_P 0
628 #define MACHOPIC_INDIRECT 0
629 #define MACHOPIC_PURE 0
630 
631 /* For the RDOS  */
632 #define TARGET_RDOS 0
633 
634 /* For the Windows 64-bit ABI.  */
635 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
636 
637 /* For the Windows 32-bit ABI.  */
638 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
639 
640 /* This is re-defined by cygming.h.  */
641 #define TARGET_SEH 0
642 
643 /* The default abi used by target.  */
644 #define DEFAULT_ABI SYSV_ABI
645 
646 /* The default TLS segment register used by target.  */
647 #define DEFAULT_TLS_SEG_REG \
648   (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
649 
650 /* Subtargets may reset this to 1 in order to enable 96-bit long double
651    with the rounding mode forced to 53 bits.  */
652 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
653 
654 /* -march=native handling only makes sense with compiler running on
655    an x86 or x86_64 chip.  If changing this condition, also change
656    the condition in driver-i386.c.  */
657 #if defined(__i386__) || defined(__x86_64__)
658 /* In driver-i386.c.  */
659 extern const char *host_detect_local_cpu (int argc, const char **argv);
660 #define EXTRA_SPEC_FUNCTIONS \
661   { "local_cpu_detect", host_detect_local_cpu },
662 #define HAVE_LOCAL_CPU_DETECT
663 #endif
664 
665 #if TARGET_64BIT_DEFAULT
666 #define OPT_ARCH64 "!m32"
667 #define OPT_ARCH32 "m32"
668 #else
669 #define OPT_ARCH64 "m64|mx32"
670 #define OPT_ARCH32 "m64|mx32:;"
671 #endif
672 
673 /* Support for configure-time defaults of some command line options.
674    The order here is important so that -march doesn't squash the
675    tune or cpu values.  */
676 #define OPTION_DEFAULT_SPECS					   \
677   {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
678   {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
679   {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
680   {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" },  \
681   {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
682   {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
683   {"arch", "%{!march=*:-march=%(VALUE)}"},			   \
684   {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"},	   \
685   {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
686 
687 /* Specs for the compiler proper */
688 
689 #ifndef CC1_CPU_SPEC
690 #define CC1_CPU_SPEC_1 ""
691 
692 #ifndef HAVE_LOCAL_CPU_DETECT
693 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
694 #else
695 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
696 "%{march=native:%>march=native %:local_cpu_detect(arch) \
697   %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
698 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
699 #endif
700 #endif
701 
702 /* Target CPU builtins.  */
703 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
704 
705 /* Target Pragmas.  */
706 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
707 
708 #ifndef CC1_SPEC
709 #define CC1_SPEC "%(cc1_cpu) "
710 #endif
711 
712 /* This macro defines names of additional specifications to put in the
713    specs that can be used in various specifications like CC1_SPEC.  Its
714    definition is an initializer with a subgrouping for each command option.
715 
716    Each subgrouping contains a string constant, that defines the
717    specification name, and a string constant that used by the GCC driver
718    program.
719 
720    Do not define this macro if it does not need to do anything.  */
721 
722 #ifndef SUBTARGET_EXTRA_SPECS
723 #define SUBTARGET_EXTRA_SPECS
724 #endif
725 
726 #define EXTRA_SPECS							\
727   { "cc1_cpu",  CC1_CPU_SPEC },						\
728   SUBTARGET_EXTRA_SPECS
729 
730 
731 /* Whether to allow x87 floating-point arithmetic on MODE (one of
732    SFmode, DFmode and XFmode) in the current excess precision
733    configuration.  */
734 #define X87_ENABLE_ARITH(MODE)				\
735   (flag_unsafe_math_optimizations			\
736    || flag_excess_precision == EXCESS_PRECISION_FAST	\
737    || (MODE) == XFmode)
738 
739 /* Likewise, whether to allow direct conversions from integer mode
740    IMODE (HImode, SImode or DImode) to MODE.  */
741 #define X87_ENABLE_FLOAT(MODE, IMODE)			\
742   (flag_unsafe_math_optimizations			\
743    || flag_excess_precision == EXCESS_PRECISION_FAST	\
744    || (MODE) == XFmode					\
745    || ((MODE) == DFmode && (IMODE) == SImode)		\
746    || (IMODE) == HImode)
747 
748 /* target machine storage layout */
749 
750 #define SHORT_TYPE_SIZE 16
751 #define INT_TYPE_SIZE 32
752 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
753 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
754 #define LONG_LONG_TYPE_SIZE 64
755 #define FLOAT_TYPE_SIZE 32
756 #define DOUBLE_TYPE_SIZE 64
757 #define LONG_DOUBLE_TYPE_SIZE \
758   (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
759 
760 #define WIDEST_HARDWARE_FP_SIZE 80
761 
762 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
763 #define MAX_BITS_PER_WORD 64
764 #else
765 #define MAX_BITS_PER_WORD 32
766 #endif
767 
768 /* Define this if most significant byte of a word is the lowest numbered.  */
769 /* That is true on the 80386.  */
770 
771 #define BITS_BIG_ENDIAN 0
772 
773 /* Define this if most significant byte of a word is the lowest numbered.  */
774 /* That is not true on the 80386.  */
775 #define BYTES_BIG_ENDIAN 0
776 
777 /* Define this if most significant word of a multiword number is the lowest
778    numbered.  */
779 /* Not true for 80386 */
780 #define WORDS_BIG_ENDIAN 0
781 
782 /* Width of a word, in units (bytes).  */
783 #define UNITS_PER_WORD		(TARGET_64BIT ? 8 : 4)
784 
785 #ifndef IN_LIBGCC2
786 #define MIN_UNITS_PER_WORD	4
787 #endif
788 
789 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
790 #define PARM_BOUNDARY BITS_PER_WORD
791 
792 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
793 #define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
794 
795 /* Stack boundary of the main function guaranteed by OS.  */
796 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
797 
798 /* Minimum stack boundary.  */
799 #define MIN_STACK_BOUNDARY BITS_PER_WORD
800 
801 /* Boundary (in *bits*) on which the stack pointer prefers to be
802    aligned; the compiler cannot rely on having this alignment.  */
803 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
804 
805 /* It should be MIN_STACK_BOUNDARY.  But we set it to 128 bits for
806    both 32bit and 64bit, to support codes that need 128 bit stack
807    alignment for SSE instructions, but can't realign the stack.  */
808 #define PREFERRED_STACK_BOUNDARY_DEFAULT \
809   (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
810 
811 /* 1 if -mstackrealign should be turned on by default.  It will
812    generate an alternate prologue and epilogue that realigns the
813    runtime stack if nessary.  This supports mixing codes that keep a
814    4-byte aligned stack, as specified by i386 psABI, with codes that
815    need a 16-byte aligned stack, as required by SSE instructions.  */
816 #define STACK_REALIGN_DEFAULT 0
817 
818 /* Boundary (in *bits*) on which the incoming stack is aligned.  */
819 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
820 
821 /* According to Windows x64 software convention, the maximum stack allocatable
822    in the prologue is 4G - 8 bytes.  Furthermore, there is a limited set of
823    instructions allowed to adjust the stack pointer in the epilog, forcing the
824    use of frame pointer for frames larger than 2 GB.  This theorical limit
825    is reduced by 256, an over-estimated upper bound for the stack use by the
826    prologue.
827    We define only one threshold for both the prolog and the epilog.  When the
828    frame size is larger than this threshold, we allocate the area to save SSE
829    regs, then save them, and then allocate the remaining.  There is no SEH
830    unwind info for this later allocation.  */
831 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
832 
833 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack.  This is
834    mandatory for the 64-bit ABI, and may or may not be true for other
835    operating systems.  */
836 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
837 
838 /* Minimum allocation boundary for the code of a function.  */
839 #define FUNCTION_BOUNDARY 8
840 
841 /* C++ stores the virtual bit in the lowest bit of function pointers.  */
842 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
843 
844 /* Minimum size in bits of the largest boundary to which any
845    and all fundamental data types supported by the hardware
846    might need to be aligned. No data type wants to be aligned
847    rounder than this.
848 
849    Pentium+ prefers DFmode values to be aligned to 64 bit boundary
850    and Pentium Pro XFmode values at 128 bit boundaries.
851 
852    When increasing the maximum, also update
853    TARGET_ABSOLUTE_BIGGEST_ALIGNMENT.  */
854 
855 #define BIGGEST_ALIGNMENT \
856   (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
857 
858 /* Maximum stack alignment.  */
859 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
860 
861 /* Alignment value for attribute ((aligned)).  It is a constant since
862    it is the part of the ABI.  We shouldn't change it with -mavx.  */
863 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
864 
865 /* Decide whether a variable of mode MODE should be 128 bit aligned.  */
866 #define ALIGN_MODE_128(MODE) \
867  ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
868 
869 /* The published ABIs say that doubles should be aligned on word
870    boundaries, so lower the alignment for structure fields unless
871    -malign-double is set.  */
872 
873 /* ??? Blah -- this macro is used directly by libobjc.  Since it
874    supports no vector modes, cut out the complexity and fall back
875    on BIGGEST_FIELD_ALIGNMENT.  */
876 #ifdef IN_TARGET_LIBS
877 #ifdef __x86_64__
878 #define BIGGEST_FIELD_ALIGNMENT 128
879 #else
880 #define BIGGEST_FIELD_ALIGNMENT 32
881 #endif
882 #else
883 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
884   x86_field_alignment ((TYPE), (COMPUTED))
885 #endif
886 
887 /* If defined, a C expression to compute the alignment for a static
888    variable.  TYPE is the data type, and ALIGN is the alignment that
889    the object would ordinarily have.  The value of this macro is used
890    instead of that alignment to align the object.
891 
892    If this macro is not defined, then ALIGN is used.
893 
894    One use of this macro is to increase alignment of medium-size
895    data to make it all fit in fewer cache lines.  Another is to
896    cause character arrays to be word-aligned so that `strcpy' calls
897    that copy constants to character arrays can be done inline.  */
898 
899 #define DATA_ALIGNMENT(TYPE, ALIGN) \
900   ix86_data_alignment ((TYPE), (ALIGN), true)
901 
902 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
903    some alignment increase, instead of optimization only purposes.  E.g.
904    AMD x86-64 psABI says that variables with array type larger than 15 bytes
905    must be aligned to 16 byte boundaries.
906 
907    If this macro is not defined, then ALIGN is used.  */
908 
909 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
910   ix86_data_alignment ((TYPE), (ALIGN), false)
911 
912 /* If defined, a C expression to compute the alignment for a local
913    variable.  TYPE is the data type, and ALIGN is the alignment that
914    the object would ordinarily have.  The value of this macro is used
915    instead of that alignment to align the object.
916 
917    If this macro is not defined, then ALIGN is used.
918 
919    One use of this macro is to increase alignment of medium-size
920    data to make it all fit in fewer cache lines.  */
921 
922 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
923   ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
924 
925 /* If defined, a C expression to compute the alignment for stack slot.
926    TYPE is the data type, MODE is the widest mode available, and ALIGN
927    is the alignment that the slot would ordinarily have.  The value of
928    this macro is used instead of that alignment to align the slot.
929 
930    If this macro is not defined, then ALIGN is used when TYPE is NULL,
931    Otherwise, LOCAL_ALIGNMENT will be used.
932 
933    One use of this macro is to set alignment of stack slot to the
934    maximum alignment of all possible modes which the slot may have.  */
935 
936 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
937   ix86_local_alignment ((TYPE), (MODE), (ALIGN))
938 
939 /* If defined, a C expression to compute the alignment for a local
940    variable DECL.
941 
942    If this macro is not defined, then
943    LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
944 
945    One use of this macro is to increase alignment of medium-size
946    data to make it all fit in fewer cache lines.  */
947 
948 #define LOCAL_DECL_ALIGNMENT(DECL) \
949   ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
950 
951 /* If defined, a C expression to compute the minimum required alignment
952    for dynamic stack realignment purposes for EXP (a TYPE or DECL),
953    MODE, assuming normal alignment ALIGN.
954 
955    If this macro is not defined, then (ALIGN) will be used.  */
956 
957 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
958   ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
959 
960 
961 /* Set this nonzero if move instructions will actually fail to work
962    when given unaligned data.  */
963 #define STRICT_ALIGNMENT 0
964 
965 /* If bit field type is int, don't let it cross an int,
966    and give entire struct the alignment of an int.  */
967 /* Required on the 386 since it doesn't have bit-field insns.  */
968 #define PCC_BITFIELD_TYPE_MATTERS 1
969 
970 /* Standard register usage.  */
971 
972 /* This processor has special stack-like registers.  See reg-stack.c
973    for details.  */
974 
975 #define STACK_REGS
976 
977 #define IS_STACK_MODE(MODE)				\
978   (X87_FLOAT_MODE_P (MODE)				\
979    && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH)	\
980        || TARGET_MIX_SSE_I387))
981 
982 /* Number of actual hardware registers.
983    The hardware registers are assigned numbers for the compiler
984    from 0 to just below FIRST_PSEUDO_REGISTER.
985    All registers that the compiler knows about must be given numbers,
986    even those that are not normally considered general registers.
987 
988    In the 80386 we give the 8 general purpose registers the numbers 0-7.
989    We number the floating point registers 8-15.
990    Note that registers 0-7 can be accessed as a  short or int,
991    while only 0-3 may be used with byte `mov' instructions.
992 
993    Reg 16 does not correspond to any hardware register, but instead
994    appears in the RTL as an argument pointer prior to reload, and is
995    eliminated during reloading in favor of either the stack or frame
996    pointer.  */
997 
998 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
999 
1000 /* Number of hardware registers that go into the DWARF-2 unwind info.
1001    If not defined, equals FIRST_PSEUDO_REGISTER.  */
1002 
1003 #define DWARF_FRAME_REGISTERS 17
1004 
1005 /* 1 for registers that have pervasive standard uses
1006    and are not available for the register allocator.
1007    On the 80386, the stack pointer is such, as is the arg pointer.
1008 
1009    REX registers are disabled for 32bit targets in
1010    TARGET_CONDITIONAL_REGISTER_USAGE.  */
1011 
1012 #define FIXED_REGISTERS						\
1013 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
1014 {  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
1015 /*arg,flags,fpsr,fpcr,frame*/					\
1016     1,    1,   1,   1,    1,					\
1017 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
1018      0,   0,   0,   0,   0,   0,   0,   0,			\
1019 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
1020      0,   0,   0,   0,   0,   0,   0,   0,			\
1021 /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
1022      0,   0,   0,   0,   0,   0,   0,   0,			\
1023 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
1024      0,   0,    0,    0,    0,    0,    0,    0,		\
1025 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
1026      0,   0,    0,    0,    0,    0,    0,    0,		\
1027 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
1028      0,   0,    0,    0,    0,    0,    0,    0,		\
1029 /*  k0,  k1, k2, k3, k4, k5, k6, k7*/				\
1030      0,  0,   0,  0,  0,  0,  0,  0,				\
1031 /*   b0, b1, b2, b3*/						\
1032      0,  0,  0,  0 }
1033 
1034 /* 1 for registers not available across function calls.
1035    These must include the FIXED_REGISTERS and also any
1036    registers that can be used without being saved.
1037    The latter must include the registers where values are returned
1038    and the register where structure-value addresses are passed.
1039    Aside from that, you can include as many other registers as you like.
1040 
1041    Value is set to 1 if the register is call used unconditionally.
1042    Bit one is set if the register is call used on TARGET_32BIT ABI.
1043    Bit two is set if the register is call used on TARGET_64BIT ABI.
1044    Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1045 
1046    Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
1047 
1048 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1049   ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1050 
1051 #define CALL_USED_REGISTERS					\
1052 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
1053 {  1, 1, 1, 0, 4, 4, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
1054 /*arg,flags,fpsr,fpcr,frame*/					\
1055     1,   1,    1,   1,    1,					\
1056 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
1057      1,   1,   1,   1,   1,   1,   6,   6,			\
1058 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
1059      1,   1,   1,   1,   1,   1,   1,   1,			\
1060 /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
1061      1,   1,   1,   1,   2,   2,   2,   2,			\
1062 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
1063      6,   6,    6,    6,    6,    6,    6,    6,		\
1064 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
1065      6,    6,     6,    6,    6,    6,    6,    6,		\
1066 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
1067      6,    6,     6,    6,    6,    6,    6,    6,		\
1068  /* k0,  k1,  k2,  k3,  k4,  k5,  k6,  k7*/			\
1069      1,   1,   1,   1,   1,   1,   1,   1,			\
1070 /*   b0, b1, b2, b3*/						\
1071      1,  1,  1,  1 }
1072 
1073 /* Order in which to allocate registers.  Each register must be
1074    listed once, even those in FIXED_REGISTERS.  List frame pointer
1075    late and fixed registers last.  Note that, in general, we prefer
1076    registers listed in CALL_USED_REGISTERS, keeping the others
1077    available for storage of persistent values.
1078 
1079    The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1080    so this is just empty initializer for array.  */
1081 
1082 #define REG_ALLOC_ORDER 					\
1083 {  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1084    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
1085    33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
1086    48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,	\
1087    63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,  \
1088    78, 79, 80 }
1089 
1090 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1091    to be rearranged based on a particular function.  When using sse math,
1092    we want to allocate SSE before x87 registers and vice versa.  */
1093 
1094 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1095 
1096 
1097 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1098 
1099 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
1100   (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT				\
1101    && GENERAL_REGNO_P (REGNO)						\
1102    && ((MODE) == XFmode || (MODE) == XCmode))
1103 
1104 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1105 
1106 #define VALID_AVX256_REG_MODE(MODE)					\
1107   ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1108    || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode	\
1109    || (MODE) == V4DFmode)
1110 
1111 #define VALID_AVX256_REG_OR_OI_MODE(MODE)		\
1112   (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1113 
1114 #define VALID_AVX512F_SCALAR_MODE(MODE)					\
1115   ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode		\
1116    || (MODE) == SFmode)
1117 
1118 #define VALID_AVX512F_REG_MODE(MODE)					\
1119   ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode	\
1120    || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1121    || (MODE) == V4TImode)
1122 
1123 #define VALID_AVX512F_REG_OR_XI_MODE(MODE)				\
1124   (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1125 
1126 #define VALID_AVX512VL_128_REG_MODE(MODE)				\
1127   ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode	\
1128    || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode	\
1129    || (MODE) == TFmode || (MODE) == V1TImode)
1130 
1131 #define VALID_SSE2_REG_MODE(MODE)					\
1132   ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1133    || (MODE) == V2DImode || (MODE) == DFmode)
1134 
1135 #define VALID_SSE_REG_MODE(MODE)					\
1136   ((MODE) == V1TImode || (MODE) == TImode				\
1137    || (MODE) == V4SFmode || (MODE) == V4SImode				\
1138    || (MODE) == SFmode || (MODE) == TFmode)
1139 
1140 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1141   ((MODE) == V2SFmode || (MODE) == SFmode)
1142 
1143 #define VALID_MMX_REG_MODE(MODE)					\
1144   ((MODE == V1DImode) || (MODE) == DImode				\
1145    || (MODE) == V2SImode || (MODE) == SImode				\
1146    || (MODE) == V4HImode || (MODE) == V8QImode)
1147 
1148 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1149 
1150 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1151 
1152 #define VALID_BND_REG_MODE(MODE) \
1153   (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1154 
1155 #define VALID_DFP_MODE_P(MODE) \
1156   ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1157 
1158 #define VALID_FP_MODE_P(MODE)						\
1159   ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
1160    || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)		\
1161 
1162 #define VALID_INT_MODE_P(MODE)						\
1163   ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1164    || (MODE) == DImode							\
1165    || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1166    || (MODE) == CDImode							\
1167    || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
1168 			|| (MODE) == TFmode || (MODE) == TCmode)))
1169 
1170 /* Return true for modes passed in SSE registers.  */
1171 #define SSE_REG_MODE_P(MODE)						\
1172   ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode	\
1173    || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1174    || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1175    || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1176    || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode	\
1177    || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode	\
1178    || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode	\
1179    || (MODE) == V16SFmode)
1180 
1181 #define X87_FLOAT_MODE_P(MODE)	\
1182   (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1183 
1184 #define SSE_FLOAT_MODE_P(MODE) \
1185   ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1186 
1187 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1188   (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1189 		  || (MODE) == V8SFmode || (MODE) == V4DFmode))
1190 
1191 /* It is possible to write patterns to move flags; but until someone
1192    does it,  */
1193 #define AVOID_CCMODE_COPIES
1194 
1195 /* Specify the modes required to caller save a given hard regno.
1196    We do this on i386 to prevent flags from being saved at all.
1197 
1198    Kill any attempts to combine saving of modes.  */
1199 
1200 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1201   (CC_REGNO_P (REGNO) ? VOIDmode					\
1202    : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1203    : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1204    : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO)			\
1205 			    && TARGET_PARTIAL_REG_STALL)		\
1206 			   || MASK_REGNO_P (REGNO)) ? SImode		\
1207    : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO)			\
1208 			   || MASK_REGNO_P (REGNO)) ? SImode		\
1209    : (MODE))
1210 
1211 /* Specify the registers used for certain standard purposes.
1212    The values of these macros are register numbers.  */
1213 
1214 /* on the 386 the pc register is %eip, and is not usable as a general
1215    register.  The ordinary mov instructions won't work */
1216 /* #define PC_REGNUM  */
1217 
1218 /* Base register for access to arguments of the function.  */
1219 #define ARG_POINTER_REGNUM ARGP_REG
1220 
1221 /* Register to use for pushing function arguments.  */
1222 #define STACK_POINTER_REGNUM SP_REG
1223 
1224 /* Base register for access to local variables of the function.  */
1225 #define FRAME_POINTER_REGNUM FRAME_REG
1226 #define HARD_FRAME_POINTER_REGNUM BP_REG
1227 
1228 #define FIRST_INT_REG AX_REG
1229 #define LAST_INT_REG  SP_REG
1230 
1231 #define FIRST_QI_REG AX_REG
1232 #define LAST_QI_REG  BX_REG
1233 
1234 /* First & last stack-like regs */
1235 #define FIRST_STACK_REG ST0_REG
1236 #define LAST_STACK_REG  ST7_REG
1237 
1238 #define FIRST_SSE_REG XMM0_REG
1239 #define LAST_SSE_REG  XMM7_REG
1240 
1241 #define FIRST_MMX_REG  MM0_REG
1242 #define LAST_MMX_REG   MM7_REG
1243 
1244 #define FIRST_REX_INT_REG  R8_REG
1245 #define LAST_REX_INT_REG   R15_REG
1246 
1247 #define FIRST_REX_SSE_REG  XMM8_REG
1248 #define LAST_REX_SSE_REG   XMM15_REG
1249 
1250 #define FIRST_EXT_REX_SSE_REG  XMM16_REG
1251 #define LAST_EXT_REX_SSE_REG   XMM31_REG
1252 
1253 #define FIRST_MASK_REG  MASK0_REG
1254 #define LAST_MASK_REG   MASK7_REG
1255 
1256 #define FIRST_BND_REG  BND0_REG
1257 #define LAST_BND_REG   BND3_REG
1258 
1259 /* Override this in other tm.h files to cope with various OS lossage
1260    requiring a frame pointer.  */
1261 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1262 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1263 #endif
1264 
1265 /* Make sure we can access arbitrary call frames.  */
1266 #define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1267 
1268 /* Register to hold the addressing base for position independent
1269    code access to data items.  We don't use PIC pointer for 64bit
1270    mode.  Define the regnum to dummy value to prevent gcc from
1271    pessimizing code dealing with EBX.
1272 
1273    To avoid clobbering a call-saved register unnecessarily, we renumber
1274    the pic register when possible.  The change is visible after the
1275    prologue has been emitted.  */
1276 
1277 #define REAL_PIC_OFFSET_TABLE_REGNUM  (TARGET_64BIT ? R15_REG : BX_REG)
1278 
1279 #define PIC_OFFSET_TABLE_REGNUM						\
1280   (ix86_use_pseudo_pic_reg ()						\
1281    ? (pic_offset_table_rtx						\
1282       ? INVALID_REGNUM							\
1283       : REAL_PIC_OFFSET_TABLE_REGNUM)					\
1284    : INVALID_REGNUM)
1285 
1286 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1287 
1288 /* This is overridden by <cygwin.h>.  */
1289 #define MS_AGGREGATE_RETURN 0
1290 
1291 #define KEEP_AGGREGATE_RETURN_POINTER 0
1292 
1293 /* Define the classes of registers for register constraints in the
1294    machine description.  Also define ranges of constants.
1295 
1296    One of the classes must always be named ALL_REGS and include all hard regs.
1297    If there is more than one class, another class must be named NO_REGS
1298    and contain no registers.
1299 
1300    The name GENERAL_REGS must be the name of a class (or an alias for
1301    another name such as ALL_REGS).  This is the class of registers
1302    that is allowed by "g" or "r" in a register constraint.
1303    Also, registers outside this class are allocated only when
1304    instructions express preferences for them.
1305 
1306    The classes must be numbered in nondecreasing order; that is,
1307    a larger-numbered class must never be contained completely
1308    in a smaller-numbered class.  This is why CLOBBERED_REGS class
1309    is listed early, even though in 64-bit mode it contains more
1310    registers than just %eax, %ecx, %edx.
1311 
1312    For any two classes, it is very desirable that there be another
1313    class that represents their union.
1314 
1315    It might seem that class BREG is unnecessary, since no useful 386
1316    opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1317    and the "b" register constraint is useful in asms for syscalls.
1318 
1319    The flags, fpsr and fpcr registers are in no class.  */
1320 
1321 enum reg_class
1322 {
1323   NO_REGS,
1324   AREG, DREG, CREG, BREG, SIREG, DIREG,
1325   AD_REGS,			/* %eax/%edx for DImode */
1326   CLOBBERED_REGS,		/* call-clobbered integer registers */
1327   Q_REGS,			/* %eax %ebx %ecx %edx */
1328   NON_Q_REGS,			/* %esi %edi %ebp %esp */
1329   TLS_GOTBASE_REGS,		/* %ebx %ecx %edx %esi %edi %ebp */
1330   INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1331   LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1332   GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1333 				   %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1334   FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1335   FLOAT_REGS,
1336   SSE_FIRST_REG,
1337   NO_REX_SSE_REGS,
1338   SSE_REGS,
1339   EVEX_SSE_REGS,
1340   BND_REGS,
1341   ALL_SSE_REGS,
1342   MMX_REGS,
1343   FP_TOP_SSE_REGS,
1344   FP_SECOND_SSE_REGS,
1345   FLOAT_SSE_REGS,
1346   FLOAT_INT_REGS,
1347   INT_SSE_REGS,
1348   FLOAT_INT_SSE_REGS,
1349   MASK_EVEX_REGS,
1350   MASK_REGS,
1351   MOD4_SSE_REGS,
1352   ALL_REGS, LIM_REG_CLASSES
1353 };
1354 
1355 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1356 
1357 #define INTEGER_CLASS_P(CLASS) \
1358   reg_class_subset_p ((CLASS), GENERAL_REGS)
1359 #define FLOAT_CLASS_P(CLASS) \
1360   reg_class_subset_p ((CLASS), FLOAT_REGS)
1361 #define SSE_CLASS_P(CLASS) \
1362   reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1363 #define MMX_CLASS_P(CLASS) \
1364   ((CLASS) == MMX_REGS)
1365 #define MASK_CLASS_P(CLASS) \
1366   reg_class_subset_p ((CLASS), MASK_REGS)
1367 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1368   reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1369 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1370   reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1371 #define MAYBE_SSE_CLASS_P(CLASS) \
1372   reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1373 #define MAYBE_MMX_CLASS_P(CLASS) \
1374   reg_classes_intersect_p ((CLASS), MMX_REGS)
1375 #define MAYBE_MASK_CLASS_P(CLASS) \
1376   reg_classes_intersect_p ((CLASS), MASK_REGS)
1377 
1378 #define Q_CLASS_P(CLASS) \
1379   reg_class_subset_p ((CLASS), Q_REGS)
1380 
1381 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1382   reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1383 
1384 /* Give names of register classes as strings for dump file.  */
1385 
1386 #define REG_CLASS_NAMES \
1387 {  "NO_REGS",				\
1388    "AREG", "DREG", "CREG", "BREG",	\
1389    "SIREG", "DIREG",			\
1390    "AD_REGS",				\
1391    "CLOBBERED_REGS",			\
1392    "Q_REGS", "NON_Q_REGS",		\
1393    "TLS_GOTBASE_REGS",			\
1394    "INDEX_REGS",			\
1395    "LEGACY_REGS",			\
1396    "GENERAL_REGS",			\
1397    "FP_TOP_REG", "FP_SECOND_REG",	\
1398    "FLOAT_REGS",			\
1399    "SSE_FIRST_REG",			\
1400    "NO_REX_SSE_REGS",			\
1401    "SSE_REGS",				\
1402    "EVEX_SSE_REGS",			\
1403    "BND_REGS",				\
1404    "ALL_SSE_REGS",			\
1405    "MMX_REGS",				\
1406    "FP_TOP_SSE_REGS",			\
1407    "FP_SECOND_SSE_REGS",		\
1408    "FLOAT_SSE_REGS",			\
1409    "FLOAT_INT_REGS",			\
1410    "INT_SSE_REGS",			\
1411    "FLOAT_INT_SSE_REGS",		\
1412    "MASK_EVEX_REGS",			\
1413    "MASK_REGS",				\
1414    "MOD4_SSE_REGS",			\
1415    "ALL_REGS" }
1416 
1417 /* Define which registers fit in which classes.  This is an initializer
1418    for a vector of HARD_REG_SET of length N_REG_CLASSES.
1419 
1420    Note that CLOBBERED_REGS are calculated by
1421    TARGET_CONDITIONAL_REGISTER_USAGE.  */
1422 
1423 #define REG_CLASS_CONTENTS                                              \
1424 {     { 0x00,       0x0,    0x0 },                                       \
1425       { 0x01,       0x0,    0x0 },       /* AREG */                      \
1426       { 0x02,       0x0,    0x0 },       /* DREG */                      \
1427       { 0x04,       0x0,    0x0 },       /* CREG */                      \
1428       { 0x08,       0x0,    0x0 },       /* BREG */                      \
1429       { 0x10,       0x0,    0x0 },       /* SIREG */                     \
1430       { 0x20,       0x0,    0x0 },       /* DIREG */                     \
1431       { 0x03,       0x0,    0x0 },       /* AD_REGS */                   \
1432       { 0x07,       0x0,    0x0 },       /* CLOBBERED_REGS */            \
1433       { 0x0f,       0x0,    0x0 },       /* Q_REGS */                    \
1434   { 0x1100f0,    0x1fe0,    0x0 },       /* NON_Q_REGS */                \
1435       { 0x7e,    0x1fe0,    0x0 },       /* TLS_GOTBASE_REGS */		 \
1436       { 0x7f,    0x1fe0,    0x0 },       /* INDEX_REGS */                \
1437   { 0x1100ff,       0x0,    0x0 },       /* LEGACY_REGS */               \
1438   { 0x1100ff,    0x1fe0,    0x0 },       /* GENERAL_REGS */              \
1439      { 0x100,       0x0,    0x0 },       /* FP_TOP_REG */                \
1440     { 0x0200,       0x0,    0x0 },       /* FP_SECOND_REG */             \
1441     { 0xff00,       0x0,    0x0 },       /* FLOAT_REGS */                \
1442   { 0x200000,       0x0,    0x0 },       /* SSE_FIRST_REG */             \
1443 { 0x1fe00000,  0x000000,    0x0 },       /* NO_REX_SSE_REGS */           \
1444 { 0x1fe00000,  0x1fe000,    0x0 },       /* SSE_REGS */                  \
1445        { 0x0,0xffe00000,   0x1f },       /* EVEX_SSE_REGS */             \
1446        { 0x0,       0x0,0x1e000 },       /* BND_REGS */			 \
1447 { 0x1fe00000,0xffffe000,   0x1f },       /* ALL_SSE_REGS */              \
1448 { 0xe0000000,      0x1f,    0x0 },       /* MMX_REGS */                  \
1449 { 0x1fe00100,0xffffe000,   0x1f },       /* FP_TOP_SSE_REG */            \
1450 { 0x1fe00200,0xffffe000,   0x1f },       /* FP_SECOND_SSE_REG */         \
1451 { 0x1fe0ff00,0xffffe000,   0x1f },       /* FLOAT_SSE_REGS */            \
1452 {   0x11ffff,    0x1fe0,    0x0 },       /* FLOAT_INT_REGS */            \
1453 { 0x1ff100ff,0xffffffe0,   0x1f },       /* INT_SSE_REGS */              \
1454 { 0x1ff1ffff,0xffffffe0,   0x1f },       /* FLOAT_INT_SSE_REGS */        \
1455        { 0x0,       0x0, 0x1fc0 },       /* MASK_EVEX_REGS */            \
1456        { 0x0,       0x0, 0x1fe0 },       /* MASK_REGS */                 \
1457 { 0x1fe00000,0xffffe000,   0x1f },       /* MOD4_SSE_REGS */		 \
1458 { 0xffffffff,0xffffffff,0x1ffff }		\
1459 }
1460 
1461 /* The same information, inverted:
1462    Return the class number of the smallest class containing
1463    reg number REGNO.  This could be a conditional expression
1464    or could index an array.  */
1465 
1466 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1467 
1468 /* When this hook returns true for MODE, the compiler allows
1469    registers explicitly used in the rtl to be used as spill registers
1470    but prevents the compiler from extending the lifetime of these
1471    registers.  */
1472 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1473 
1474 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1475 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1476 
1477 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1478 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1479 
1480 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1481 #define REX_INT_REGNO_P(N) \
1482   IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1483 
1484 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1485 #define GENERAL_REGNO_P(N) \
1486   (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1487 
1488 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1489 #define ANY_QI_REGNO_P(N) \
1490   (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1491 
1492 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1493 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1494 
1495 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1496 #define SSE_REGNO_P(N)						\
1497   (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)			\
1498    || REX_SSE_REGNO_P (N)					\
1499    || EXT_REX_SSE_REGNO_P (N))
1500 
1501 #define REX_SSE_REGNO_P(N) \
1502   IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1503 
1504 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1505 
1506 #define EXT_REX_SSE_REGNO_P(N) \
1507   IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1508 
1509 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1510 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1511 
1512 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1513 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1514 
1515 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1516 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1517 
1518 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1519 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1520 
1521 #define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1522 #define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1523 
1524 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1525 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG  \
1526 			     || (N) == XMM4_REG  \
1527 			     || (N) == XMM8_REG  \
1528 			     || (N) == XMM12_REG \
1529 			     || (N) == XMM16_REG \
1530 			     || (N) == XMM20_REG \
1531 			     || (N) == XMM24_REG \
1532 			     || (N) == XMM28_REG)
1533 
1534 /* First floating point reg */
1535 #define FIRST_FLOAT_REG FIRST_STACK_REG
1536 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1537 
1538 #define GET_SSE_REGNO(N)			\
1539   ((N) < 8 ? FIRST_SSE_REG + (N)		\
1540    : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8	\
1541    : FIRST_EXT_REX_SSE_REG + (N) - 16)
1542 
1543 /* The class value for index registers, and the one for base regs.  */
1544 
1545 #define INDEX_REG_CLASS INDEX_REGS
1546 #define BASE_REG_CLASS GENERAL_REGS
1547 
1548 /* Stack layout; function entry, exit and calling.  */
1549 
1550 /* Define this if pushing a word on the stack
1551    makes the stack pointer a smaller address.  */
1552 #define STACK_GROWS_DOWNWARD 1
1553 
1554 /* Define this to nonzero if the nominal address of the stack frame
1555    is at the high-address end of the local variables;
1556    that is, each additional local variable allocated
1557    goes at a more negative offset in the frame.  */
1558 #define FRAME_GROWS_DOWNWARD 1
1559 
1560 #define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
1561 
1562 /* If defined, the maximum amount of space required for outgoing arguments
1563    will be computed and placed into the variable `crtl->outgoing_args_size'.
1564    No space will be pushed onto the stack for each call; instead, the
1565    function prologue should increase the stack frame size by this amount.
1566 
1567    In 32bit mode enabling argument accumulation results in about 5% code size
1568    growth because move instructions are less compact than push.  In 64bit
1569    mode the difference is less drastic but visible.
1570 
1571    FIXME: Unlike earlier implementations, the size of unwind info seems to
1572    actually grow with accumulation.  Is that because accumulated args
1573    unwind info became unnecesarily bloated?
1574 
1575    With the 64-bit MS ABI, we can generate correct code with or without
1576    accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1577    generated without accumulated args is terrible.
1578 
1579    If stack probes are required, the space used for large function
1580    arguments on the stack must also be probed, so enable
1581    -maccumulate-outgoing-args so this happens in the prologue.
1582 
1583    We must use argument accumulation in interrupt function if stack
1584    may be realigned to avoid DRAP.  */
1585 
1586 #define ACCUMULATE_OUTGOING_ARGS \
1587   ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1588     && optimize_function_for_speed_p (cfun)) \
1589    || (cfun->machine->func_type != TYPE_NORMAL \
1590        && crtl->stack_realign_needed) \
1591    || TARGET_STACK_PROBE \
1592    || TARGET_64BIT_MS_ABI \
1593    || (TARGET_MACHO && crtl->profile))
1594 
1595 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1596    instructions to pass outgoing arguments.  */
1597 
1598 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1599 
1600 /* We want the stack and args grow in opposite directions, even if
1601    PUSH_ARGS is 0.  */
1602 #define PUSH_ARGS_REVERSED 1
1603 
1604 /* Offset of first parameter from the argument pointer register value.  */
1605 #define FIRST_PARM_OFFSET(FNDECL) 0
1606 
1607 /* Define this macro if functions should assume that stack space has been
1608    allocated for arguments even when their values are passed in registers.
1609 
1610    The value of this macro is the size, in bytes, of the area reserved for
1611    arguments passed in registers for the function represented by FNDECL.
1612 
1613    This space can be allocated by the caller, or be a part of the
1614    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1615    which.  */
1616 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1617 
1618 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1619   (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1620 
1621 /* Define how to find the value returned by a library function
1622    assuming the value has mode MODE.  */
1623 
1624 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1625 
1626 /* Define the size of the result block used for communication between
1627    untyped_call and untyped_return.  The block contains a DImode value
1628    followed by the block used by fnsave and frstor.  */
1629 
1630 #define APPLY_RESULT_SIZE (8+108)
1631 
1632 /* 1 if N is a possible register number for function argument passing.  */
1633 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1634 
1635 /* Define a data type for recording info about an argument list
1636    during the scan of that argument list.  This data type should
1637    hold all necessary information about the function itself
1638    and about the args processed so far, enough to enable macros
1639    such as FUNCTION_ARG to determine where the next arg should go.  */
1640 
1641 typedef struct ix86_args {
1642   int words;			/* # words passed so far */
1643   int nregs;			/* # registers available for passing */
1644   int regno;			/* next available register number */
1645   int fastcall;			/* fastcall or thiscall calling convention
1646 				   is used */
1647   int sse_words;		/* # sse words passed so far */
1648   int sse_nregs;		/* # sse registers available for passing */
1649   int warn_avx512f;		/* True when we want to warn
1650 				   about AVX512F ABI.  */
1651   int warn_avx;			/* True when we want to warn about AVX ABI.  */
1652   int warn_sse;			/* True when we want to warn about SSE ABI.  */
1653   int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1654   int warn_empty;		/* True when we want to warn about empty classes
1655 				   passing ABI change.  */
1656   int sse_regno;		/* next available sse register number */
1657   int mmx_words;		/* # mmx words passed so far */
1658   int mmx_nregs;		/* # mmx registers available for passing */
1659   int mmx_regno;		/* next available mmx register number */
1660   int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1661   int caller;			/* true if it is caller.  */
1662   int float_in_sse;		/* Set to 1 or 2 for 32bit targets if
1663 				   SFmode/DFmode arguments should be passed
1664 				   in SSE registers.  Otherwise 0.  */
1665   int bnd_regno;                /* next available bnd register number */
1666   int bnds_in_bt;               /* number of bounds expected in BT.  */
1667   int force_bnd_pass;           /* number of bounds expected for stdarg arg.  */
1668   int stdarg;                   /* Set to 1 if function is stdarg.  */
1669   enum calling_abi call_abi;	/* Set to SYSV_ABI for sysv abi. Otherwise
1670  				   MS_ABI for ms abi.  */
1671   tree decl;			/* Callee decl.  */
1672 } CUMULATIVE_ARGS;
1673 
1674 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1675    for a call to a function whose data type is FNTYPE.
1676    For a library call, FNTYPE is 0.  */
1677 
1678 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1679   init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1680 			(N_NAMED_ARGS) != -1)
1681 
1682 /* Output assembler code to FILE to increment profiler label # LABELNO
1683    for profiling a function entry.  */
1684 
1685 #define FUNCTION_PROFILER(FILE, LABELNO) \
1686   x86_function_profiler ((FILE), (LABELNO))
1687 
1688 #define MCOUNT_NAME "_mcount"
1689 
1690 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1691 
1692 #define PROFILE_COUNT_REGISTER "edx"
1693 
1694 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1695    the stack pointer does not matter.  The value is tested only in
1696    functions that have frame pointers.
1697    No definition is equivalent to always zero.  */
1698 /* Note on the 386 it might be more efficient not to define this since
1699    we have to restore it ourselves from the frame pointer, in order to
1700    use pop */
1701 
1702 #define EXIT_IGNORE_STACK 1
1703 
1704 /* Define this macro as a C expression that is nonzero for registers
1705    used by the epilogue or the `return' pattern.  */
1706 
1707 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1708 
1709 /* Output assembler code for a block containing the constant parts
1710    of a trampoline, leaving space for the variable parts.  */
1711 
1712 /* On the 386, the trampoline contains two instructions:
1713      mov #STATIC,ecx
1714      jmp FUNCTION
1715    The trampoline is generated entirely at runtime.  The operand of JMP
1716    is the address of FUNCTION relative to the instruction following the
1717    JMP (which is 5 bytes long).  */
1718 
1719 /* Length in units of the trampoline for entering a nested function.  */
1720 
1721 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
1722 
1723 /* Definitions for register eliminations.
1724 
1725    This is an array of structures.  Each structure initializes one pair
1726    of eliminable registers.  The "from" register number is given first,
1727    followed by "to".  Eliminations of the same "from" register are listed
1728    in order of preference.
1729 
1730    There are two registers that can always be eliminated on the i386.
1731    The frame pointer and the arg pointer can be replaced by either the
1732    hard frame pointer or to the stack pointer, depending upon the
1733    circumstances.  The hard frame pointer is not used before reload and
1734    so it is not eligible for elimination.  */
1735 
1736 #define ELIMINABLE_REGS					\
1737 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1738  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1739  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1740  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1741 
1742 /* Define the offset between two registers, one to be eliminated, and the other
1743    its replacement, at the start of a routine.  */
1744 
1745 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1746   ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1747 
1748 /* Addressing modes, and classification of registers for them.  */
1749 
1750 /* Macros to check register numbers against specific register classes.  */
1751 
1752 /* These assume that REGNO is a hard or pseudo reg number.
1753    They give nonzero only if REGNO is a hard reg of the suitable class
1754    or a pseudo reg currently allocated to a suitable hard reg.
1755    Since they use reg_renumber, they are safe only once reg_renumber
1756    has been allocated, which happens in reginfo.c during register
1757    allocation.  */
1758 
1759 #define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1760   ((REGNO) < STACK_POINTER_REGNUM 					\
1761    || REX_INT_REGNO_P (REGNO)						\
1762    || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM		\
1763    || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1764 
1765 #define REGNO_OK_FOR_BASE_P(REGNO) 					\
1766   (GENERAL_REGNO_P (REGNO)						\
1767    || (REGNO) == ARG_POINTER_REGNUM 					\
1768    || (REGNO) == FRAME_POINTER_REGNUM 					\
1769    || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1770 
1771 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1772    and check its validity for a certain class.
1773    We have two alternate definitions for each of them.
1774    The usual definition accepts all pseudo regs; the other rejects
1775    them unless they have been allocated suitable hard regs.
1776    The symbol REG_OK_STRICT causes the latter definition to be used.
1777 
1778    Most source files want to accept pseudo regs in the hope that
1779    they will get allocated to the class that the insn wants them to be in.
1780    Source files for reload pass need to be strict.
1781    After reload, it makes no difference, since pseudo regs have
1782    been eliminated by then.  */
1783 
1784 
1785 /* Non strict versions, pseudos are ok.  */
1786 #define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1787   (REGNO (X) < STACK_POINTER_REGNUM					\
1788    || REX_INT_REGNO_P (REGNO (X))					\
1789    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1790 
1791 #define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1792   (GENERAL_REGNO_P (REGNO (X))						\
1793    || REGNO (X) == ARG_POINTER_REGNUM					\
1794    || REGNO (X) == FRAME_POINTER_REGNUM 				\
1795    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1796 
1797 /* Strict versions, hard registers only */
1798 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1799 #define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1800 
1801 #ifndef REG_OK_STRICT
1802 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1803 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1804 
1805 #else
1806 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1807 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1808 #endif
1809 
1810 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1811    that is a valid memory address for an instruction.
1812    The MODE argument is the machine mode for the MEM expression
1813    that wants to use this address.
1814 
1815    The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1816    except for CONSTANT_ADDRESS_P which is usually machine-independent.
1817 
1818    See legitimize_pic_address in i386.c for details as to what
1819    constitutes a legitimate address when -fpic is used.  */
1820 
1821 #define MAX_REGS_PER_ADDRESS 2
1822 
1823 #define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1824 
1825 /* If defined, a C expression to determine the base term of address X.
1826    This macro is used in only one place: `find_base_term' in alias.c.
1827 
1828    It is always safe for this macro to not be defined.  It exists so
1829    that alias analysis can understand machine-dependent addresses.
1830 
1831    The typical use of this macro is to handle addresses containing
1832    a label_ref or symbol_ref within an UNSPEC.  */
1833 
1834 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1835 
1836 /* Nonzero if the constant value X is a legitimate general operand
1837    when generating PIC code.  It is given that flag_pic is on and
1838    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1839 
1840 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1841 
1842 #define SYMBOLIC_CONST(X)	\
1843   (GET_CODE (X) == SYMBOL_REF						\
1844    || GET_CODE (X) == LABEL_REF						\
1845    || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1846 
1847 /* Max number of args passed in registers.  If this is more than 3, we will
1848    have problems with ebx (register #4), since it is a caller save register and
1849    is also used as the pic register in ELF.  So for now, don't allow more than
1850    3 registers to be passed in registers.  */
1851 
1852 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1853 #define X86_64_REGPARM_MAX 6
1854 #define X86_64_MS_REGPARM_MAX 4
1855 
1856 #define X86_32_REGPARM_MAX 3
1857 
1858 #define REGPARM_MAX							\
1859   (TARGET_64BIT								\
1860    ? (TARGET_64BIT_MS_ABI						\
1861       ? X86_64_MS_REGPARM_MAX						\
1862       : X86_64_REGPARM_MAX)						\
1863    : X86_32_REGPARM_MAX)
1864 
1865 #define X86_64_SSE_REGPARM_MAX 8
1866 #define X86_64_MS_SSE_REGPARM_MAX 4
1867 
1868 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1869 
1870 #define SSE_REGPARM_MAX							\
1871   (TARGET_64BIT								\
1872    ? (TARGET_64BIT_MS_ABI						\
1873       ? X86_64_MS_SSE_REGPARM_MAX					\
1874       : X86_64_SSE_REGPARM_MAX)						\
1875    : X86_32_SSE_REGPARM_MAX)
1876 
1877 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1878 
1879 /* Specify the machine mode that this machine uses
1880    for the index in the tablejump instruction.  */
1881 #define CASE_VECTOR_MODE \
1882  (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1883 
1884 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1885 #define DEFAULT_SIGNED_CHAR 1
1886 
1887 /* Max number of bytes we can move from memory to memory
1888    in one reasonably fast instruction.  */
1889 #define MOVE_MAX 16
1890 
1891 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1892    move efficiently, as opposed to  MOVE_MAX which is the maximum
1893    number of bytes we can move with a single instruction.
1894 
1895    ??? We should use TImode in 32-bit mode and use OImode or XImode
1896    if they are available.  But since by_pieces_ninsns determines the
1897    widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1898    64-bit mode.  */
1899 #define MOVE_MAX_PIECES \
1900   ((TARGET_64BIT \
1901     && TARGET_SSE2 \
1902     && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1903     && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1904    ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
1905 
1906 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1907    move-instruction pairs, we will do a movmem or libcall instead.
1908    Increasing the value will always make code faster, but eventually
1909    incurs high cost in increased code size.
1910 
1911    If you don't define this, a reasonable default is used.  */
1912 
1913 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1914 
1915 /* If a clear memory operation would take CLEAR_RATIO or more simple
1916    move-instruction sequences, we will do a clrmem or libcall instead.  */
1917 
1918 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1919 
1920 /* Define if shifts truncate the shift count which implies one can
1921    omit a sign-extension or zero-extension of a shift count.
1922 
1923    On i386, shifts do truncate the count.  But bit test instructions
1924    take the modulo of the bit offset operand.  */
1925 
1926 /* #define SHIFT_COUNT_TRUNCATED */
1927 
1928 /* A macro to update M and UNSIGNEDP when an object whose type is
1929    TYPE and which has the specified mode and signedness is to be
1930    stored in a register.  This macro is only called when TYPE is a
1931    scalar type.
1932 
1933    On i386 it is sometimes useful to promote HImode and QImode
1934    quantities to SImode.  The choice depends on target type.  */
1935 
1936 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1937 do {							\
1938   if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1939       || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1940     (MODE) = SImode;					\
1941 } while (0)
1942 
1943 /* Specify the machine mode that pointers have.
1944    After generation of rtl, the compiler makes no further distinction
1945    between pointers and any other objects of this machine mode.  */
1946 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1947 
1948 /* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1949    NONLOCAL needs space to save both shadow stack and stack pointers.
1950 
1951    FIXME: We only need to save and restore stack pointer in ptr_mode.
1952    But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1953    to save and restore stack pointer.  See
1954    https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1955  */
1956 #define STACK_SAVEAREA_MODE(LEVEL)			\
1957   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1958 
1959 /* Specify the machine mode that bounds have.  */
1960 #define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1961 
1962 /* A C expression whose value is zero if pointers that need to be extended
1963    from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1964    greater then zero if they are zero-extended and less then zero if the
1965    ptr_extend instruction should be used.  */
1966 
1967 #define POINTERS_EXTEND_UNSIGNED 1
1968 
1969 /* A function address in a call instruction
1970    is a byte address (for indexing purposes)
1971    so give the MEM rtx a byte's mode.  */
1972 #define FUNCTION_MODE QImode
1973 
1974 
1975 /* A C expression for the cost of a branch instruction.  A value of 1
1976    is the default; other values are interpreted relative to that.  */
1977 
1978 #define BRANCH_COST(speed_p, predictable_p) \
1979   (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1980 
1981 /* An integer expression for the size in bits of the largest integer machine
1982    mode that should actually be used.  We allow pairs of registers.  */
1983 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1984 
1985 /* Define this macro as a C expression which is nonzero if accessing
1986    less than a word of memory (i.e. a `char' or a `short') is no
1987    faster than accessing a word of memory, i.e., if such access
1988    require more than one instruction or if there is no difference in
1989    cost between byte and (aligned) word loads.
1990 
1991    When this macro is not defined, the compiler will access a field by
1992    finding the smallest containing object; when it is defined, a
1993    fullword load will be used if alignment permits.  Unless bytes
1994    accesses are faster than word accesses, using word accesses is
1995    preferable since it may eliminate subsequent memory access if
1996    subsequent accesses occur to other fields in the same word of the
1997    structure, but to different bytes.  */
1998 
1999 #define SLOW_BYTE_ACCESS 0
2000 
2001 /* Nonzero if access to memory by shorts is slow and undesirable.  */
2002 #define SLOW_SHORT_ACCESS 0
2003 
2004 /* Define this macro if it is as good or better to call a constant
2005    function address than to call an address kept in a register.
2006 
2007    Desirable on the 386 because a CALL with a constant address is
2008    faster than one with a register address.  */
2009 
2010 #define NO_FUNCTION_CSE 1
2011 
2012 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2013    return the mode to be used for the comparison.
2014 
2015    For floating-point equality comparisons, CCFPEQmode should be used.
2016    VOIDmode should be used in all other cases.
2017 
2018    For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2019    possible, to allow for more combinations.  */
2020 
2021 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2022 
2023 /* Return nonzero if MODE implies a floating point inequality can be
2024    reversed.  */
2025 
2026 #define REVERSIBLE_CC_MODE(MODE) 1
2027 
2028 /* A C expression whose value is reversed condition code of the CODE for
2029    comparison done in CC_MODE mode.  */
2030 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2031 
2032 
2033 /* Control the assembler format that we output, to the extent
2034    this does not vary between assemblers.  */
2035 
2036 /* How to refer to registers in assembler output.
2037    This sequence is indexed by compiler's hard-register-number (see above).  */
2038 
2039 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2040    For non floating point regs, the following are the HImode names.
2041 
2042    For float regs, the stack top is sometimes referred to as "%st(0)"
2043    instead of just "%st".  TARGET_PRINT_OPERAND handles this with the
2044    "y" code.  */
2045 
2046 #define HI_REGISTER_NAMES						\
2047 {"ax","dx","cx","bx","si","di","bp","sp",				\
2048  "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
2049  "argp", "flags", "fpsr", "fpcr", "frame",				\
2050  "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2051  "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",		\
2052  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2053  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",	\
2054  "xmm16", "xmm17", "xmm18", "xmm19",					\
2055  "xmm20", "xmm21", "xmm22", "xmm23",					\
2056  "xmm24", "xmm25", "xmm26", "xmm27",					\
2057  "xmm28", "xmm29", "xmm30", "xmm31",					\
2058  "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7",			\
2059  "bnd0", "bnd1", "bnd2", "bnd3" }
2060 
2061 #define REGISTER_NAMES HI_REGISTER_NAMES
2062 
2063 /* Table of additional register names to use in user input.  */
2064 
2065 #define ADDITIONAL_REGISTER_NAMES \
2066 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },		\
2067   { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },		\
2068   { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },		\
2069   { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },		\
2070   { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },			\
2071   { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },			\
2072   { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24},		\
2073   { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28},		\
2074   { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48},		\
2075   { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52},	\
2076   { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56},	\
2077   { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60},	\
2078   { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64},	\
2079   { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68},	\
2080   { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24},		\
2081   { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28},		\
2082   { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48},		\
2083   { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52},	\
2084   { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56},	\
2085   { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60},	\
2086   { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64},	\
2087   { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2088 
2089 /* Note we are omitting these since currently I don't know how
2090 to get gcc to use these, since they want the same but different
2091 number as al, and ax.
2092 */
2093 
2094 #define QI_REGISTER_NAMES \
2095 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2096 
2097 /* These parallel the array above, and can be used to access bits 8:15
2098    of regs 0 through 3.  */
2099 
2100 #define QI_HIGH_REGISTER_NAMES \
2101 {"ah", "dh", "ch", "bh", }
2102 
2103 /* How to renumber registers for dbx and gdb.  */
2104 
2105 #define DBX_REGISTER_NUMBER(N) \
2106   (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2107 
2108 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2109 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2110 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2111 
2112 /* Before the prologue, RA is at 0(%esp).  */
2113 #define INCOMING_RETURN_ADDR_RTX \
2114   gen_rtx_MEM (Pmode, stack_pointer_rtx)
2115 
2116 /* After the prologue, RA is at -4(AP) in the current frame.  */
2117 #define RETURN_ADDR_RTX(COUNT, FRAME)					\
2118   ((COUNT) == 0								\
2119    ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx,		\
2120 					-UNITS_PER_WORD))		\
2121    : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
2122 
2123 /* PC is dbx register 8; let's use that column for RA.  */
2124 #define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2125 
2126 /* Before the prologue, there are return address and error code for
2127    exception handler on the top of the frame.  */
2128 #define INCOMING_FRAME_SP_OFFSET \
2129   (cfun->machine->func_type == TYPE_EXCEPTION \
2130    ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
2131 
2132 /* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2133    .cfi_startproc.  */
2134 #define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2135 
2136 /* Describe how we implement __builtin_eh_return.  */
2137 #define EH_RETURN_DATA_REGNO(N)	((N) <= DX_REG ? (N) : INVALID_REGNUM)
2138 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, CX_REG)
2139 
2140 
2141 /* Select a format to encode pointers in exception handling data.  CODE
2142    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2143    true if the symbol may be affected by dynamic relocations.
2144 
2145    ??? All x86 object file formats are capable of representing this.
2146    After all, the relocation needed is the same as for the call insn.
2147    Whether or not a particular assembler allows us to enter such, I
2148    guess we'll have to see.  */
2149 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2150   asm_preferred_eh_data_format ((CODE), (GLOBAL))
2151 
2152 /* These are a couple of extensions to the formats accepted
2153    by asm_fprintf:
2154      %z prints out opcode suffix for word-mode instruction
2155      %r prints out word-mode name for reg_names[arg]  */
2156 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
2157   case 'z':						\
2158     fputc (TARGET_64BIT ? 'q' : 'l', (FILE));		\
2159     break;						\
2160 							\
2161   case 'r':						\
2162     {							\
2163       unsigned int regno = va_arg ((ARGS), int);	\
2164       if (LEGACY_INT_REGNO_P (regno))			\
2165 	fputc (TARGET_64BIT ? 'r' : 'e', (FILE));	\
2166       fputs (reg_names[regno], (FILE));			\
2167       break;						\
2168     }
2169 
2170 /* This is how to output an insn to push a register on the stack.  */
2171 
2172 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO)		\
2173   asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2174 
2175 /* This is how to output an insn to pop a register from the stack.  */
2176 
2177 #define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2178   asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
2179 
2180 /* This is how to output an element of a case-vector that is absolute.  */
2181 
2182 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2183   ix86_output_addr_vec_elt ((FILE), (VALUE))
2184 
2185 /* This is how to output an element of a case-vector that is relative.  */
2186 
2187 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2188   ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2189 
2190 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true.  */
2191 
2192 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR)	\
2193 {						\
2194   if ((PTR)[0] == '%' && (PTR)[1] == 'v')	\
2195     (PTR) += TARGET_AVX ? 1 : 2;		\
2196 }
2197 
2198 /* A C statement or statements which output an assembler instruction
2199    opcode to the stdio stream STREAM.  The macro-operand PTR is a
2200    variable of type `char *' which points to the opcode name in
2201    its "internal" form--the form that is written in the machine
2202    description.  */
2203 
2204 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2205   ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2206 
2207 /* A C statement to output to the stdio stream FILE an assembler
2208    command to pad the location counter to a multiple of 1<<LOG
2209    bytes if it is within MAX_SKIP bytes.  */
2210 
2211 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2212 #undef  ASM_OUTPUT_MAX_SKIP_PAD
2213 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP)			\
2214   if ((LOG) != 0)							\
2215     {									\
2216       if ((MAX_SKIP) == 0)						\
2217         fprintf ((FILE), "\t.p2align %d\n", (LOG));			\
2218       else								\
2219         fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));	\
2220     }
2221 #endif
2222 
2223 /* Write the extra assembler code needed to declare a function
2224    properly.  */
2225 
2226 #undef ASM_OUTPUT_FUNCTION_LABEL
2227 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2228   ix86_asm_output_function_label ((FILE), (NAME), (DECL))
2229 
2230 /* Under some conditions we need jump tables in the text section,
2231    because the assembler cannot handle label differences between
2232    sections.  This is the case for x86_64 on Mach-O for example.  */
2233 
2234 #define JUMP_TABLES_IN_TEXT_SECTION \
2235   (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2236    || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2237 
2238 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2239    and switch back.  For x86 we do this only to save a few bytes that
2240    would otherwise be unused in the text section.  */
2241 #define CRT_MKSTR2(VAL) #VAL
2242 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2243 
2244 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
2245    asm (SECTION_OP "\n\t"					\
2246 	"call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n"	\
2247 	TEXT_SECTION_ASM_OP);
2248 
2249 /* Default threshold for putting data in large sections
2250    with x86-64 medium memory model */
2251 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2252 
2253 /* Adjust the length of the insn with the length of BND prefix.  */
2254 
2255 #define ADJUST_INSN_LENGTH(INSN, LENGTH)		\
2256 do {							\
2257   if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0	\
2258       && get_attr_maybe_prefix_bnd (INSN))		\
2259     LENGTH += ix86_bnd_prefixed_insn_p (INSN);		\
2260 } while (0)
2261 
2262 /* Which processor to tune code generation for.  These must be in sync
2263    with processor_target_table in i386.c.  */
2264 
2265 enum processor_type
2266 {
2267   PROCESSOR_GENERIC = 0,
2268   PROCESSOR_I386,			/* 80386 */
2269   PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2270   PROCESSOR_PENTIUM,
2271   PROCESSOR_LAKEMONT,
2272   PROCESSOR_PENTIUMPRO,
2273   PROCESSOR_PENTIUM4,
2274   PROCESSOR_NOCONA,
2275   PROCESSOR_CORE2,
2276   PROCESSOR_NEHALEM,
2277   PROCESSOR_SANDYBRIDGE,
2278   PROCESSOR_HASWELL,
2279   PROCESSOR_BONNELL,
2280   PROCESSOR_SILVERMONT,
2281   PROCESSOR_KNL,
2282   PROCESSOR_KNM,
2283   PROCESSOR_SKYLAKE,
2284   PROCESSOR_SKYLAKE_AVX512,
2285   PROCESSOR_CANNONLAKE,
2286   PROCESSOR_ICELAKE_CLIENT,
2287   PROCESSOR_ICELAKE_SERVER,
2288   PROCESSOR_INTEL,
2289   PROCESSOR_GEODE,
2290   PROCESSOR_K6,
2291   PROCESSOR_ATHLON,
2292   PROCESSOR_K8,
2293   PROCESSOR_AMDFAM10,
2294   PROCESSOR_BDVER1,
2295   PROCESSOR_BDVER2,
2296   PROCESSOR_BDVER3,
2297   PROCESSOR_BDVER4,
2298   PROCESSOR_BTVER1,
2299   PROCESSOR_BTVER2,
2300   PROCESSOR_ZNVER1,
2301   PROCESSOR_max
2302 };
2303 
2304 extern enum processor_type ix86_tune;
2305 extern enum processor_type ix86_arch;
2306 
2307 /* Size of the RED_ZONE area.  */
2308 #define RED_ZONE_SIZE 128
2309 /* Reserved area of the red zone for temporaries.  */
2310 #define RED_ZONE_RESERVE 8
2311 
2312 extern unsigned int ix86_preferred_stack_boundary;
2313 extern unsigned int ix86_incoming_stack_boundary;
2314 
2315 /* Smallest class containing REGNO.  */
2316 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2317 
2318 enum ix86_fpcmp_strategy {
2319   IX86_FPCMP_SAHF,
2320   IX86_FPCMP_COMI,
2321   IX86_FPCMP_ARITH
2322 };
2323 
2324 /* To properly truncate FP values into integers, we need to set i387 control
2325    word.  We can't emit proper mode switching code before reload, as spills
2326    generated by reload may truncate values incorrectly, but we still can avoid
2327    redundant computation of new control word by the mode switching pass.
2328    The fldcw instructions are still emitted redundantly, but this is probably
2329    not going to be noticeable problem, as most CPUs do have fast path for
2330    the sequence.
2331 
2332    The machinery is to emit simple truncation instructions and split them
2333    before reload to instructions having USEs of two memory locations that
2334    are filled by this code to old and new control word.
2335 
2336    Post-reload pass may be later used to eliminate the redundant fildcw if
2337    needed.  */
2338 
2339 enum ix86_stack_slot
2340 {
2341   SLOT_TEMP = 0,
2342   SLOT_CW_STORED,
2343   SLOT_CW_TRUNC,
2344   SLOT_CW_FLOOR,
2345   SLOT_CW_CEIL,
2346   SLOT_CW_MASK_PM,
2347   SLOT_STV_TEMP,
2348   MAX_386_STACK_LOCALS
2349 };
2350 
2351 enum ix86_entity
2352 {
2353   X86_DIRFLAG = 0,
2354   AVX_U128,
2355   I387_TRUNC,
2356   I387_FLOOR,
2357   I387_CEIL,
2358   I387_MASK_PM,
2359   MAX_386_ENTITIES
2360 };
2361 
2362 enum x86_dirflag_state
2363 {
2364   X86_DIRFLAG_RESET,
2365   X86_DIRFLAG_ANY
2366 };
2367 
2368 enum avx_u128_state
2369 {
2370   AVX_U128_CLEAN,
2371   AVX_U128_DIRTY,
2372   AVX_U128_ANY
2373 };
2374 
2375 /* Define this macro if the port needs extra instructions inserted
2376    for mode switching in an optimizing compilation.  */
2377 
2378 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2379    ix86_optimize_mode_switching[(ENTITY)]
2380 
2381 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2382    initializer for an array of integers.  Each initializer element N
2383    refers to an entity that needs mode switching, and specifies the
2384    number of different modes that might need to be set for this
2385    entity.  The position of the initializer in the initializer -
2386    starting counting at zero - determines the integer that is used to
2387    refer to the mode-switched entity in question.  */
2388 
2389 #define NUM_MODES_FOR_MODE_SWITCHING			\
2390   { X86_DIRFLAG_ANY, AVX_U128_ANY,			\
2391     I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2392 
2393 
2394 /* Avoid renaming of stack registers, as doing so in combination with
2395    scheduling just increases amount of live registers at time and in
2396    the turn amount of fxch instructions needed.
2397 
2398    ??? Maybe Pentium chips benefits from renaming, someone can try....
2399 
2400    Don't rename evex to non-evex sse registers.  */
2401 
2402 #define HARD_REGNO_RENAME_OK(SRC, TARGET)				\
2403   (!STACK_REGNO_P (SRC)							\
2404    && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2405 
2406 
2407 #define FASTCALL_PREFIX '@'
2408 
2409 #ifndef USED_FOR_TARGET
2410 /* Structure describing stack frame layout.
2411    Stack grows downward:
2412 
2413    [arguments]
2414 					<- ARG_POINTER
2415    saved pc
2416 
2417    saved static chain			if ix86_static_chain_on_stack
2418 
2419    saved frame pointer			if frame_pointer_needed
2420 					<- HARD_FRAME_POINTER
2421    [saved regs]
2422 					<- reg_save_offset
2423    [padding0]
2424 					<- stack_realign_offset
2425    [saved SSE regs]
2426 	OR
2427    [stub-saved registers for ms x64 --> sysv clobbers
2428 			<- Start of out-of-line, stub-saved/restored regs
2429 			   (see libgcc/config/i386/(sav|res)ms64*.S)
2430      [XMM6-15]
2431      [RSI]
2432      [RDI]
2433      [?RBX]		only if RBX is clobbered
2434      [?RBP]		only if RBP and RBX are clobbered
2435      [?R12]		only if R12 and all previous regs are clobbered
2436      [?R13]		only if R13 and all previous regs are clobbered
2437      [?R14]		only if R14 and all previous regs are clobbered
2438      [?R15]		only if R15 and all previous regs are clobbered
2439 			<- end of stub-saved/restored regs
2440      [padding1]
2441    ]
2442 					<- sse_reg_save_offset
2443    [padding2]
2444 		       |		<- FRAME_POINTER
2445    [va_arg registers]  |
2446 		       |
2447    [frame]	       |
2448 		       |
2449    [padding2]	       | = to_allocate
2450 					<- STACK_POINTER
2451   */
2452 struct GTY(()) ix86_frame
2453 {
2454   int nsseregs;
2455   int nregs;
2456   int va_arg_size;
2457   int red_zone_size;
2458   int outgoing_arguments_size;
2459 
2460   /* The offsets relative to ARG_POINTER.  */
2461   HOST_WIDE_INT frame_pointer_offset;
2462   HOST_WIDE_INT hard_frame_pointer_offset;
2463   HOST_WIDE_INT stack_pointer_offset;
2464   HOST_WIDE_INT hfp_save_offset;
2465   HOST_WIDE_INT reg_save_offset;
2466   HOST_WIDE_INT stack_realign_allocate;
2467   HOST_WIDE_INT stack_realign_offset;
2468   HOST_WIDE_INT sse_reg_save_offset;
2469 
2470   /* When save_regs_using_mov is set, emit prologue using
2471      move instead of push instructions.  */
2472   bool save_regs_using_mov;
2473 };
2474 
2475 /* Machine specific frame tracking during prologue/epilogue generation.  All
2476    values are positive, but since the x86 stack grows downward, are subtratced
2477    from the CFA to produce a valid address.  */
2478 
2479 struct GTY(()) machine_frame_state
2480 {
2481   /* This pair tracks the currently active CFA as reg+offset.  When reg
2482      is drap_reg, we don't bother trying to record here the real CFA when
2483      it might really be a DW_CFA_def_cfa_expression.  */
2484   rtx cfa_reg;
2485   HOST_WIDE_INT cfa_offset;
2486 
2487   /* The current offset (canonically from the CFA) of ESP and EBP.
2488      When stack frame re-alignment is active, these may not be relative
2489      to the CFA.  However, in all cases they are relative to the offsets
2490      of the saved registers stored in ix86_frame.  */
2491   HOST_WIDE_INT sp_offset;
2492   HOST_WIDE_INT fp_offset;
2493 
2494   /* The size of the red-zone that may be assumed for the purposes of
2495      eliding register restore notes in the epilogue.  This may be zero
2496      if no red-zone is in effect, or may be reduced from the real
2497      red-zone value by a maximum runtime stack re-alignment value.  */
2498   int red_zone_offset;
2499 
2500   /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2501      value within the frame.  If false then the offset above should be
2502      ignored.  Note that DRAP, if valid, *always* points to the CFA and
2503      thus has an offset of zero.  */
2504   BOOL_BITFIELD sp_valid : 1;
2505   BOOL_BITFIELD fp_valid : 1;
2506   BOOL_BITFIELD drap_valid : 1;
2507 
2508   /* Indicate whether the local stack frame has been re-aligned.  When
2509      set, the SP/FP offsets above are relative to the aligned frame
2510      and not the CFA.  */
2511   BOOL_BITFIELD realigned : 1;
2512 
2513   /* Indicates whether the stack pointer has been re-aligned.  When set,
2514      SP/FP continue to be relative to the CFA, but the stack pointer
2515      should only be used for offsets > sp_realigned_offset, while
2516      the frame pointer should be used for offsets <= sp_realigned_fp_last.
2517      The flags realigned and sp_realigned are mutually exclusive.  */
2518   BOOL_BITFIELD sp_realigned : 1;
2519 
2520   /* If sp_realigned is set, this is the last valid offset from the CFA
2521      that can be used for access with the frame pointer.  */
2522   HOST_WIDE_INT sp_realigned_fp_last;
2523 
2524   /* If sp_realigned is set, this is the offset from the CFA that the stack
2525      pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2526      Access via the stack pointer is only valid for offsets that are greater than
2527      this value.  */
2528   HOST_WIDE_INT sp_realigned_offset;
2529 };
2530 
2531 /* Private to winnt.c.  */
2532 struct seh_frame_state;
2533 
2534 enum function_type
2535 {
2536   TYPE_UNKNOWN = 0,
2537   TYPE_NORMAL,
2538   /* The current function is an interrupt service routine with a
2539      pointer argument as specified by the "interrupt" attribute.  */
2540   TYPE_INTERRUPT,
2541   /* The current function is an interrupt service routine with a
2542      pointer argument and an integer argument as specified by the
2543      "interrupt" attribute.  */
2544   TYPE_EXCEPTION
2545 };
2546 
2547 struct GTY(()) machine_function {
2548   struct stack_local_entry *stack_locals;
2549   int varargs_gpr_size;
2550   int varargs_fpr_size;
2551   int optimize_mode_switching[MAX_386_ENTITIES];
2552 
2553   /* Cached initial frame layout for the current function.  */
2554   struct ix86_frame frame;
2555 
2556   /* For -fsplit-stack support: A stack local which holds a pointer to
2557      the stack arguments for a function with a variable number of
2558      arguments.  This is set at the start of the function and is used
2559      to initialize the overflow_arg_area field of the va_list
2560      structure.  */
2561   rtx split_stack_varargs_pointer;
2562 
2563   /* This value is used for amd64 targets and specifies the current abi
2564      to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi.  */
2565   ENUM_BITFIELD(calling_abi) call_abi : 8;
2566 
2567   /* Nonzero if the function accesses a previous frame.  */
2568   BOOL_BITFIELD accesses_prev_frame : 1;
2569 
2570   /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2571      expander to determine the style used.  */
2572   BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2573 
2574   /* Nonzero if the current function calls pc thunk and
2575      must not use the red zone.  */
2576   BOOL_BITFIELD pc_thunk_call_expanded : 1;
2577 
2578   /* If true, the current function needs the default PIC register, not
2579      an alternate register (on x86) and must not use the red zone (on
2580      x86_64), even if it's a leaf function.  We don't want the
2581      function to be regarded as non-leaf because TLS calls need not
2582      affect register allocation.  This flag is set when a TLS call
2583      instruction is expanded within a function, and never reset, even
2584      if all such instructions are optimized away.  Use the
2585      ix86_current_function_calls_tls_descriptor macro for a better
2586      approximation.  */
2587   BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2588 
2589   /* If true, the current function has a STATIC_CHAIN is placed on the
2590      stack below the return address.  */
2591   BOOL_BITFIELD static_chain_on_stack : 1;
2592 
2593   /* If true, it is safe to not save/restore DRAP register.  */
2594   BOOL_BITFIELD no_drap_save_restore : 1;
2595 
2596   /* Function type.  */
2597   ENUM_BITFIELD(function_type) func_type : 2;
2598 
2599   /* How to generate indirec branch.  */
2600   ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2601 
2602   /* If true, the current function has local indirect jumps, like
2603      "indirect_jump" or "tablejump".  */
2604   BOOL_BITFIELD has_local_indirect_jump : 1;
2605 
2606   /* How to generate function return.  */
2607   ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2608 
2609   /* If true, the current function is a function specified with
2610      the "interrupt" or "no_caller_saved_registers" attribute.  */
2611   BOOL_BITFIELD no_caller_saved_registers : 1;
2612 
2613   /* If true, there is register available for argument passing.  This
2614      is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2615      if there is scratch register available for indirect sibcall.  In
2616      64-bit, rax, r10 and r11 are scratch registers which aren't used to
2617      pass arguments and can be used for indirect sibcall.  */
2618   BOOL_BITFIELD arg_reg_available : 1;
2619 
2620   /* If true, we're out-of-lining reg save/restore for regs clobbered
2621      by 64-bit ms_abi functions calling a sysv_abi function.  */
2622   BOOL_BITFIELD call_ms2sysv : 1;
2623 
2624   /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2625      needs padding prior to out-of-line stub save/restore area.  */
2626   BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2627 
2628   /* This is the number of extra registers saved by stub (valid range is
2629      0-6). Each additional register is only saved/restored by the stubs
2630      if all successive ones are. (Will always be zero when using a hard
2631      frame pointer.) */
2632   unsigned int call_ms2sysv_extra_regs:3;
2633 
2634   /* Nonzero if the function places outgoing arguments on stack.  */
2635   BOOL_BITFIELD outgoing_args_on_stack : 1;
2636 
2637   /* If true, ENDBR is queued at function entrance.  */
2638   BOOL_BITFIELD endbr_queued_at_entrance : 1;
2639 
2640   /* The largest alignment, in bytes, of stack slot actually used.  */
2641   unsigned int max_used_stack_alignment;
2642 
2643   /* During prologue/epilogue generation, the current frame state.
2644      Otherwise, the frame state at the end of the prologue.  */
2645   struct machine_frame_state fs;
2646 
2647   /* During SEH output, this is non-null.  */
2648   struct seh_frame_state * GTY((skip(""))) seh;
2649 };
2650 #endif
2651 
2652 #define ix86_stack_locals (cfun->machine->stack_locals)
2653 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2654 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2655 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2656 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2657 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2658   (cfun->machine->tls_descriptor_call_expanded_p)
2659 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2660    calls are optimized away, we try to detect cases in which it was
2661    optimized away.  Since such instructions (use (reg REG_SP)), we can
2662    verify whether there's any such instruction live by testing that
2663    REG_SP is live.  */
2664 #define ix86_current_function_calls_tls_descriptor \
2665   (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2666 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2667 #define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
2668 
2669 /* Control behavior of x86_file_start.  */
2670 #define X86_FILE_START_VERSION_DIRECTIVE false
2671 #define X86_FILE_START_FLTUSED false
2672 
2673 /* Flag to mark data that is in the large address area.  */
2674 #define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2675 #define SYMBOL_REF_FAR_ADDR_P(X)	\
2676 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2677 
2678 /* Flags to mark dllimport/dllexport.  Used by PE ports, but handy to
2679    have defined always, to avoid ifdefing.  */
2680 #define SYMBOL_FLAG_DLLIMPORT		(SYMBOL_FLAG_MACH_DEP << 1)
2681 #define SYMBOL_REF_DLLIMPORT_P(X) \
2682 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2683 
2684 #define SYMBOL_FLAG_DLLEXPORT		(SYMBOL_FLAG_MACH_DEP << 2)
2685 #define SYMBOL_REF_DLLEXPORT_P(X) \
2686 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2687 
2688 #define SYMBOL_FLAG_STUBVAR	(SYMBOL_FLAG_MACH_DEP << 4)
2689 #define SYMBOL_REF_STUBVAR_P(X) \
2690 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2691 
2692 extern void debug_ready_dispatch (void);
2693 extern void debug_dispatch_window (int);
2694 
2695 /* The value at zero is only defined for the BMI instructions
2696    LZCNT and TZCNT, not the BSR/BSF insns in the original isa.  */
2697 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2698 	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2699 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2700 	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2701 
2702 
2703 /* Flags returned by ix86_get_callcvt ().  */
2704 #define IX86_CALLCVT_CDECL	0x1
2705 #define IX86_CALLCVT_STDCALL	0x2
2706 #define IX86_CALLCVT_FASTCALL	0x4
2707 #define IX86_CALLCVT_THISCALL	0x8
2708 #define IX86_CALLCVT_REGPARM	0x10
2709 #define IX86_CALLCVT_SSEREGPARM	0x20
2710 
2711 #define IX86_BASE_CALLCVT(FLAGS) \
2712 	((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2713 		    | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2714 
2715 #define RECIP_MASK_NONE		0x00
2716 #define RECIP_MASK_DIV		0x01
2717 #define RECIP_MASK_SQRT		0x02
2718 #define RECIP_MASK_VEC_DIV	0x04
2719 #define RECIP_MASK_VEC_SQRT	0x08
2720 #define RECIP_MASK_ALL	(RECIP_MASK_DIV | RECIP_MASK_SQRT \
2721 			 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2722 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2723 
2724 #define TARGET_RECIP_DIV	((recip_mask & RECIP_MASK_DIV) != 0)
2725 #define TARGET_RECIP_SQRT	((recip_mask & RECIP_MASK_SQRT) != 0)
2726 #define TARGET_RECIP_VEC_DIV	((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2727 #define TARGET_RECIP_VEC_SQRT	((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2728 
2729 /* Use 128-bit AVX instructions in the auto-vectorizer.  */
2730 #define TARGET_PREFER_AVX128	(prefer_vector_width_type == PVW_AVX128)
2731 /* Use 256-bit AVX instructions in the auto-vectorizer.  */
2732 #define TARGET_PREFER_AVX256	(TARGET_PREFER_AVX128 \
2733 				 || prefer_vector_width_type == PVW_AVX256)
2734 
2735 #define TARGET_INDIRECT_BRANCH_REGISTER \
2736   (ix86_indirect_branch_register \
2737    || cfun->machine->indirect_branch_type != indirect_branch_keep)
2738 
2739 #define IX86_HLE_ACQUIRE (1 << 16)
2740 #define IX86_HLE_RELEASE (1 << 17)
2741 
2742 /* For switching between functions with different target attributes.  */
2743 #define SWITCHABLE_TARGET 1
2744 
2745 #define TARGET_SUPPORTS_WIDE_INT 1
2746 
2747 /*
2748 Local variables:
2749 version-control: t
2750 End:
2751 */
2752