xref: /dragonfly/contrib/gcc-8.0/gcc/dominance.c (revision ef2b2b9d)
1 /* Calculate (post)dominators in slightly super-linear time.
2    Copyright (C) 2000-2018 Free Software Foundation, Inc.
3    Contributed by Michael Matz (matz@ifh.de).
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3, or (at your option)
10    any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22    to compute the dominators in a control flow graph.  A basic block D is said
23    to dominate another block X, when all paths from the entry node of the CFG
24    to X go also over D.  The dominance relation is a transitive reflexive
25    relation and its minimal transitive reduction is a tree, called the
26    dominator tree.  So for each block X besides the entry block exists a
27    block I(X), called the immediate dominator of X, which is the parent of X
28    in the dominator tree.
29 
30    The algorithm computes this dominator tree implicitly by computing for
31    each block its immediate dominator.  We use tree balancing and path
32    compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33    slowly growing functional inverse of the Ackerman function.  */
34 
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "backend.h"
39 #include "timevar.h"
40 #include "diagnostic-core.h"
41 #include "cfganal.h"
42 #include "et-forest.h"
43 #include "graphds.h"
44 
45 /* We name our nodes with integers, beginning with 1.  Zero is reserved for
46    'undefined' or 'end of list'.  The name of each node is given by the dfs
47    number of the corresponding basic block.  Please note, that we include the
48    artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
49    support multiple entry points.  Its dfs number is of course 1.  */
50 
51 /* Type of Basic Block aka. TBB */
52 typedef unsigned int TBB;
53 
54 namespace {
55 
56 /* This class holds various arrays reflecting the (sub)structure of the
57    flowgraph.  Most of them are of type TBB and are also indexed by TBB.  */
58 
59 class dom_info
60 {
61 public:
62   dom_info (function *, cdi_direction);
63   dom_info (vec <basic_block>, cdi_direction);
64   ~dom_info ();
65   void calc_dfs_tree ();
66   void calc_idoms ();
67 
68   inline basic_block get_idom (basic_block);
69 private:
70   void calc_dfs_tree_nonrec (basic_block);
71   void compress (TBB);
72   void dom_init (void);
73   TBB eval (TBB);
74   void link_roots (TBB, TBB);
75 
76   /* The parent of a node in the DFS tree.  */
77   TBB *m_dfs_parent;
78   /* For a node x m_key[x] is roughly the node nearest to the root from which
79      exists a way to x only over nodes behind x.  Such a node is also called
80      semidominator.  */
81   TBB *m_key;
82   /* The value in m_path_min[x] is the node y on the path from x to the root of
83      the tree x is in with the smallest m_key[y].  */
84   TBB *m_path_min;
85   /* m_bucket[x] points to the first node of the set of nodes having x as
86      key.  */
87   TBB *m_bucket;
88   /* And m_next_bucket[x] points to the next node.  */
89   TBB *m_next_bucket;
90   /* After the algorithm is done, m_dom[x] contains the immediate dominator
91      of x.  */
92   TBB *m_dom;
93 
94   /* The following few fields implement the structures needed for disjoint
95      sets.  */
96   /* m_set_chain[x] is the next node on the path from x to the representative
97      of the set containing x.  If m_set_chain[x]==0 then x is a root.  */
98   TBB *m_set_chain;
99   /* m_set_size[x] is the number of elements in the set named by x.  */
100   unsigned int *m_set_size;
101   /* m_set_child[x] is used for balancing the tree representing a set.  It can
102      be understood as the next sibling of x.  */
103   TBB *m_set_child;
104 
105   /* If b is the number of a basic block (BB->index), m_dfs_order[b] is the
106      number of that node in DFS order counted from 1.  This is an index
107      into most of the other arrays in this structure.  */
108   TBB *m_dfs_order;
109   /* Points to last element in m_dfs_order array.  */
110   TBB *m_dfs_last;
111   /* If x is the DFS-index of a node which corresponds with a basic block,
112      m_dfs_to_bb[x] is that basic block.  Note, that in our structure there are
113      more nodes that basic blocks, so only
114      m_dfs_to_bb[m_dfs_order[bb->index]]==bb is true for every basic block bb,
115      but not the opposite.  */
116   basic_block *m_dfs_to_bb;
117 
118   /* This is the next free DFS number when creating the DFS tree.  */
119   unsigned int m_dfsnum;
120   /* The number of nodes in the DFS tree (==m_dfsnum-1).  */
121   unsigned int m_nodes;
122 
123   /* Blocks with bits set here have a fake edge to EXIT.  These are used
124      to turn a DFS forest into a proper tree.  */
125   bitmap m_fake_exit_edge;
126 
127   /* Number of basic blocks in the function being compiled.  */
128   unsigned m_n_basic_blocks;
129 
130   /* True, if we are computing postdominators (rather than dominators).  */
131   bool m_reverse;
132 
133   /* Start block (the entry block for forward problem, exit block for backward
134      problem).  */
135   basic_block m_start_block;
136   /* Ending block.  */
137   basic_block m_end_block;
138 };
139 
140 } // anonymous namespace
141 
142 void debug_dominance_info (cdi_direction);
143 void debug_dominance_tree (cdi_direction, basic_block);
144 
145 /* Allocate and zero-initialize NUM elements of type T (T must be a
146    POD-type).  Note: after transition to C++11 or later,
147    `x = new_zero_array <T> (num);' can be replaced with
148    `x = new T[num] {};'.  */
149 
150 template<typename T>
151 inline T *new_zero_array (unsigned num)
152 {
153   T *result = new T[num];
154   memset (result, 0, sizeof (T) * num);
155   return result;
156 }
157 
158 /* Helper function for constructors to initialize a part of class members.  */
159 
160 void
161 dom_info::dom_init (void)
162 {
163   unsigned num = m_n_basic_blocks;
164 
165   m_dfs_parent = new_zero_array <TBB> (num);
166   m_dom = new_zero_array <TBB> (num);
167 
168   m_path_min = new TBB[num];
169   m_key = new TBB[num];
170   m_set_size = new unsigned int[num];
171   for (unsigned i = 0; i < num; i++)
172     {
173       m_path_min[i] = m_key[i] = i;
174       m_set_size[i] = 1;
175     }
176 
177   m_bucket = new_zero_array <TBB> (num);
178   m_next_bucket = new_zero_array <TBB> (num);
179 
180   m_set_chain = new_zero_array <TBB> (num);
181   m_set_child = new_zero_array <TBB> (num);
182 
183   m_dfs_to_bb = new_zero_array <basic_block> (num);
184 
185   m_dfsnum = 1;
186   m_nodes = 0;
187 }
188 
189 /* Allocate all needed memory in a pessimistic fashion (so we round up).  */
190 
191 dom_info::dom_info (function *fn, cdi_direction dir)
192 {
193   m_n_basic_blocks = n_basic_blocks_for_fn (fn);
194 
195   dom_init ();
196 
197   unsigned last_bb_index = last_basic_block_for_fn (fn);
198   m_dfs_order = new_zero_array <TBB> (last_bb_index + 1);
199   m_dfs_last = &m_dfs_order[last_bb_index];
200 
201   switch (dir)
202     {
203       case CDI_DOMINATORS:
204 	m_reverse = false;
205 	m_fake_exit_edge = NULL;
206 	m_start_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
207 	m_end_block = EXIT_BLOCK_PTR_FOR_FN (fn);
208 	break;
209       case CDI_POST_DOMINATORS:
210 	m_reverse = true;
211 	m_fake_exit_edge = BITMAP_ALLOC (NULL);
212 	m_start_block = EXIT_BLOCK_PTR_FOR_FN (fn);
213 	m_end_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
214 	break;
215       default:
216 	gcc_unreachable ();
217     }
218 }
219 
220 /* Constructor for reducible region REGION.  */
221 
222 dom_info::dom_info (vec<basic_block> region, cdi_direction dir)
223 {
224   m_n_basic_blocks = region.length ();
225   unsigned nm1 = m_n_basic_blocks - 1;
226 
227   dom_init ();
228 
229   /* Determine max basic block index in region.  */
230   int max_index = region[0]->index;
231   for (unsigned i = 1; i <= nm1; i++)
232     if (region[i]->index > max_index)
233       max_index = region[i]->index;
234   max_index += 1;  /* set index on the first bb out of region.  */
235 
236   m_dfs_order = new_zero_array <TBB> (max_index + 1);
237   m_dfs_last = &m_dfs_order[max_index];
238 
239   m_fake_exit_edge = NULL; /* Assume that region is reducible.  */
240 
241   switch (dir)
242     {
243       case CDI_DOMINATORS:
244 	m_reverse = false;
245 	m_start_block = region[0];
246 	m_end_block = region[nm1];
247 	break;
248       case CDI_POST_DOMINATORS:
249 	m_reverse = true;
250 	m_start_block = region[nm1];
251 	m_end_block = region[0];
252 	break;
253       default:
254 	gcc_unreachable ();
255     }
256 }
257 
258 inline basic_block
259 dom_info::get_idom (basic_block bb)
260 {
261   TBB d = m_dom[m_dfs_order[bb->index]];
262   return m_dfs_to_bb[d];
263 }
264 
265 /* Map dominance calculation type to array index used for various
266    dominance information arrays.  This version is simple -- it will need
267    to be modified, obviously, if additional values are added to
268    cdi_direction.  */
269 
270 static inline unsigned int
271 dom_convert_dir_to_idx (cdi_direction dir)
272 {
273   gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
274   return dir - 1;
275 }
276 
277 /* Free all allocated memory in dom_info.  */
278 
279 dom_info::~dom_info ()
280 {
281   delete[] m_dfs_parent;
282   delete[] m_path_min;
283   delete[] m_key;
284   delete[] m_dom;
285   delete[] m_bucket;
286   delete[] m_next_bucket;
287   delete[] m_set_chain;
288   delete[] m_set_size;
289   delete[] m_set_child;
290   delete[] m_dfs_order;
291   delete[] m_dfs_to_bb;
292   BITMAP_FREE (m_fake_exit_edge);
293 }
294 
295 /* The nonrecursive variant of creating a DFS tree.  BB is the starting basic
296    block for this tree and m_reverse is true, if predecessors should be visited
297    instead of successors of a node.  After this is done all nodes reachable
298    from BB were visited, have assigned their dfs number and are linked together
299    to form a tree.  */
300 
301 void
302 dom_info::calc_dfs_tree_nonrec (basic_block bb)
303 {
304   edge_iterator *stack = new edge_iterator[m_n_basic_blocks + 1];
305   int sp = 0;
306   unsigned d_i = dom_convert_dir_to_idx (m_reverse ? CDI_POST_DOMINATORS
307 					 : CDI_DOMINATORS);
308 
309   /* Initialize the first edge.  */
310   edge_iterator ei = m_reverse ? ei_start (bb->preds)
311 			       : ei_start (bb->succs);
312 
313   /* When the stack is empty we break out of this loop.  */
314   while (1)
315     {
316       basic_block bn;
317       edge_iterator einext;
318 
319       /* This loop traverses edges e in depth first manner, and fills the
320          stack.  */
321       while (!ei_end_p (ei))
322 	{
323 	  edge e = ei_edge (ei);
324 
325 	  /* Deduce from E the current and the next block (BB and BN), and the
326 	     next edge.  */
327 	  if (m_reverse)
328 	    {
329 	      bn = e->src;
330 
331 	      /* If the next node BN is either already visited or a border
332 		 block or out of region the current edge is useless, and simply
333 		 overwritten with the next edge out of the current node.  */
334 	      if (bn == m_end_block || bn->dom[d_i] == NULL
335 		  || m_dfs_order[bn->index])
336 		{
337 		  ei_next (&ei);
338 		  continue;
339 		}
340 	      bb = e->dest;
341 	      einext = ei_start (bn->preds);
342 	    }
343 	  else
344 	    {
345 	      bn = e->dest;
346 	      if (bn == m_end_block || bn->dom[d_i] == NULL
347 		  || m_dfs_order[bn->index])
348 		{
349 		  ei_next (&ei);
350 		  continue;
351 		}
352 	      bb = e->src;
353 	      einext = ei_start (bn->succs);
354 	    }
355 
356 	  gcc_assert (bn != m_start_block);
357 
358 	  /* Fill the DFS tree info calculatable _before_ recursing.  */
359 	  TBB my_i;
360 	  if (bb != m_start_block)
361 	    my_i = m_dfs_order[bb->index];
362 	  else
363 	    my_i = *m_dfs_last;
364 	  TBB child_i = m_dfs_order[bn->index] = m_dfsnum++;
365 	  m_dfs_to_bb[child_i] = bn;
366 	  m_dfs_parent[child_i] = my_i;
367 
368 	  /* Save the current point in the CFG on the stack, and recurse.  */
369 	  stack[sp++] = ei;
370 	  ei = einext;
371 	}
372 
373       if (!sp)
374 	break;
375       ei = stack[--sp];
376 
377       /* OK.  The edge-list was exhausted, meaning normally we would
378          end the recursion.  After returning from the recursive call,
379          there were (may be) other statements which were run after a
380          child node was completely considered by DFS.  Here is the
381          point to do it in the non-recursive variant.
382          E.g. The block just completed is in e->dest for forward DFS,
383          the block not yet completed (the parent of the one above)
384          in e->src.  This could be used e.g. for computing the number of
385          descendants or the tree depth.  */
386       ei_next (&ei);
387     }
388   delete[] stack;
389 }
390 
391 /* The main entry for calculating the DFS tree or forest.  m_reverse is true,
392    if we are interested in the reverse flow graph.  In that case the result is
393    not necessarily a tree but a forest, because there may be nodes from which
394    the EXIT_BLOCK is unreachable.  */
395 
396 void
397 dom_info::calc_dfs_tree ()
398 {
399   *m_dfs_last = m_dfsnum;
400   m_dfs_to_bb[m_dfsnum] = m_start_block;
401   m_dfsnum++;
402 
403   calc_dfs_tree_nonrec (m_start_block);
404 
405   if (m_fake_exit_edge)
406     {
407       /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
408          They are reverse-unreachable.  In the dom-case we disallow such
409          nodes, but in post-dom we have to deal with them.
410 
411 	 There are two situations in which this occurs.  First, noreturn
412 	 functions.  Second, infinite loops.  In the first case we need to
413 	 pretend that there is an edge to the exit block.  In the second
414 	 case, we wind up with a forest.  We need to process all noreturn
415 	 blocks before we know if we've got any infinite loops.  */
416 
417       basic_block b;
418       bool saw_unconnected = false;
419 
420       FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
421 	{
422 	  if (EDGE_COUNT (b->succs) > 0)
423 	    {
424 	      if (m_dfs_order[b->index] == 0)
425 		saw_unconnected = true;
426 	      continue;
427 	    }
428 	  bitmap_set_bit (m_fake_exit_edge, b->index);
429 	  m_dfs_order[b->index] = m_dfsnum;
430 	  m_dfs_to_bb[m_dfsnum] = b;
431 	  m_dfs_parent[m_dfsnum] = *m_dfs_last;
432 	  m_dfsnum++;
433 	  calc_dfs_tree_nonrec (b);
434 	}
435 
436       if (saw_unconnected)
437 	{
438 	  FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
439 	    {
440 	      if (m_dfs_order[b->index])
441 		continue;
442 	      basic_block b2 = dfs_find_deadend (b);
443 	      gcc_checking_assert (m_dfs_order[b2->index] == 0);
444 	      bitmap_set_bit (m_fake_exit_edge, b2->index);
445 	      m_dfs_order[b2->index] = m_dfsnum;
446 	      m_dfs_to_bb[m_dfsnum] = b2;
447 	      m_dfs_parent[m_dfsnum] = *m_dfs_last;
448 	      m_dfsnum++;
449 	      calc_dfs_tree_nonrec (b2);
450 	      gcc_checking_assert (m_dfs_order[b->index]);
451 	    }
452 	}
453     }
454 
455   m_nodes = m_dfsnum - 1;
456 
457   /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all.  */
458   gcc_assert (m_nodes == (unsigned int) m_n_basic_blocks - 1);
459 }
460 
461 /* Compress the path from V to the root of its set and update path_min at the
462    same time.  After compress(di, V) set_chain[V] is the root of the set V is
463    in and path_min[V] is the node with the smallest key[] value on the path
464    from V to that root.  */
465 
466 void
467 dom_info::compress (TBB v)
468 {
469   /* Btw. It's not worth to unrecurse compress() as the depth is usually not
470      greater than 5 even for huge graphs (I've not seen call depth > 4).
471      Also performance wise compress() ranges _far_ behind eval().  */
472   TBB parent = m_set_chain[v];
473   if (m_set_chain[parent])
474     {
475       compress (parent);
476       if (m_key[m_path_min[parent]] < m_key[m_path_min[v]])
477 	m_path_min[v] = m_path_min[parent];
478       m_set_chain[v] = m_set_chain[parent];
479     }
480 }
481 
482 /* Compress the path from V to the set root of V if needed (when the root has
483    changed since the last call).  Returns the node with the smallest key[]
484    value on the path from V to the root.  */
485 
486 inline TBB
487 dom_info::eval (TBB v)
488 {
489   /* The representative of the set V is in, also called root (as the set
490      representation is a tree).  */
491   TBB rep = m_set_chain[v];
492 
493   /* V itself is the root.  */
494   if (!rep)
495     return m_path_min[v];
496 
497   /* Compress only if necessary.  */
498   if (m_set_chain[rep])
499     {
500       compress (v);
501       rep = m_set_chain[v];
502     }
503 
504   if (m_key[m_path_min[rep]] >= m_key[m_path_min[v]])
505     return m_path_min[v];
506   else
507     return m_path_min[rep];
508 }
509 
510 /* This essentially merges the two sets of V and W, giving a single set with
511    the new root V.  The internal representation of these disjoint sets is a
512    balanced tree.  Currently link(V,W) is only used with V being the parent
513    of W.  */
514 
515 void
516 dom_info::link_roots (TBB v, TBB w)
517 {
518   TBB s = w;
519 
520   /* Rebalance the tree.  */
521   while (m_key[m_path_min[w]] < m_key[m_path_min[m_set_child[s]]])
522     {
523       if (m_set_size[s] + m_set_size[m_set_child[m_set_child[s]]]
524 	  >= 2 * m_set_size[m_set_child[s]])
525 	{
526 	  m_set_chain[m_set_child[s]] = s;
527 	  m_set_child[s] = m_set_child[m_set_child[s]];
528 	}
529       else
530 	{
531 	  m_set_size[m_set_child[s]] = m_set_size[s];
532 	  s = m_set_chain[s] = m_set_child[s];
533 	}
534     }
535 
536   m_path_min[s] = m_path_min[w];
537   m_set_size[v] += m_set_size[w];
538   if (m_set_size[v] < 2 * m_set_size[w])
539     std::swap (m_set_child[v], s);
540 
541   /* Merge all subtrees.  */
542   while (s)
543     {
544       m_set_chain[s] = v;
545       s = m_set_child[s];
546     }
547 }
548 
549 /* This calculates the immediate dominators (or post-dominators). THIS is our
550    working structure and should hold the DFS forest.
551    On return the immediate dominator to node V is in m_dom[V].  */
552 
553 void
554 dom_info::calc_idoms ()
555 {
556   /* Go backwards in DFS order, to first look at the leafs.  */
557   for (TBB v = m_nodes; v > 1; v--)
558     {
559       basic_block bb = m_dfs_to_bb[v];
560       edge e;
561 
562       TBB par = m_dfs_parent[v];
563       TBB k = v;
564 
565       edge_iterator ei = m_reverse ? ei_start (bb->succs)
566 				   : ei_start (bb->preds);
567       edge_iterator einext;
568 
569       if (m_fake_exit_edge)
570 	{
571 	  /* If this block has a fake edge to exit, process that first.  */
572 	  if (bitmap_bit_p (m_fake_exit_edge, bb->index))
573 	    {
574 	      einext = ei;
575 	      einext.index = 0;
576 	      goto do_fake_exit_edge;
577 	    }
578 	}
579 
580       /* Search all direct predecessors for the smallest node with a path
581          to them.  That way we have the smallest node with also a path to
582          us only over nodes behind us.  In effect we search for our
583          semidominator.  */
584       while (!ei_end_p (ei))
585 	{
586 	  basic_block b;
587 	  TBB k1;
588 
589 	  e = ei_edge (ei);
590 	  b = m_reverse ? e->dest : e->src;
591 	  einext = ei;
592 	  ei_next (&einext);
593 
594 	  if (b == m_start_block)
595 	    {
596 	    do_fake_exit_edge:
597 	      k1 = *m_dfs_last;
598 	    }
599 	  else
600 	    k1 = m_dfs_order[b->index];
601 
602 	  /* Call eval() only if really needed.  If k1 is above V in DFS tree,
603 	     then we know, that eval(k1) == k1 and key[k1] == k1.  */
604 	  if (k1 > v)
605 	    k1 = m_key[eval (k1)];
606 	  if (k1 < k)
607 	    k = k1;
608 
609 	  ei = einext;
610 	}
611 
612       m_key[v] = k;
613       link_roots (par, v);
614       m_next_bucket[v] = m_bucket[k];
615       m_bucket[k] = v;
616 
617       /* Transform semidominators into dominators.  */
618       for (TBB w = m_bucket[par]; w; w = m_next_bucket[w])
619 	{
620 	  k = eval (w);
621 	  if (m_key[k] < m_key[w])
622 	    m_dom[w] = k;
623 	  else
624 	    m_dom[w] = par;
625 	}
626       /* We don't need to cleanup next_bucket[].  */
627       m_bucket[par] = 0;
628     }
629 
630   /* Explicitly define the dominators.  */
631   m_dom[1] = 0;
632   for (TBB v = 2; v <= m_nodes; v++)
633     if (m_dom[v] != m_key[v])
634       m_dom[v] = m_dom[m_dom[v]];
635 }
636 
637 /* Assign dfs numbers starting from NUM to NODE and its sons.  */
638 
639 static void
640 assign_dfs_numbers (struct et_node *node, int *num)
641 {
642   struct et_node *son;
643 
644   node->dfs_num_in = (*num)++;
645 
646   if (node->son)
647     {
648       assign_dfs_numbers (node->son, num);
649       for (son = node->son->right; son != node->son; son = son->right)
650 	assign_dfs_numbers (son, num);
651     }
652 
653   node->dfs_num_out = (*num)++;
654 }
655 
656 /* Compute the data necessary for fast resolving of dominator queries in a
657    static dominator tree.  */
658 
659 static void
660 compute_dom_fast_query (enum cdi_direction dir)
661 {
662   int num = 0;
663   basic_block bb;
664   unsigned int dir_index = dom_convert_dir_to_idx (dir);
665 
666   gcc_checking_assert (dom_info_available_p (dir));
667 
668   if (dom_computed[dir_index] == DOM_OK)
669     return;
670 
671   FOR_ALL_BB_FN (bb, cfun)
672     {
673       if (!bb->dom[dir_index]->father)
674 	assign_dfs_numbers (bb->dom[dir_index], &num);
675     }
676 
677   dom_computed[dir_index] = DOM_OK;
678 }
679 
680 /* Analogous to the previous function but compute the data for reducible
681    region REGION.  */
682 
683 static void
684 compute_dom_fast_query_in_region (enum cdi_direction dir,
685 				  vec<basic_block> region)
686 {
687   int num = 0;
688   basic_block bb;
689   unsigned int dir_index = dom_convert_dir_to_idx (dir);
690 
691   gcc_checking_assert (dom_info_available_p (dir));
692 
693   if (dom_computed[dir_index] == DOM_OK)
694     return;
695 
696   /* Assign dfs numbers for region nodes except for entry and exit nodes.  */
697   for (unsigned int i = 1; i < region.length () - 1; i++)
698     {
699       bb = region[i];
700       if (!bb->dom[dir_index]->father)
701 	assign_dfs_numbers (bb->dom[dir_index], &num);
702     }
703 
704   dom_computed[dir_index] = DOM_OK;
705 }
706 
707 /* The main entry point into this module.  DIR is set depending on whether
708    we want to compute dominators or postdominators.  */
709 
710 void
711 calculate_dominance_info (cdi_direction dir)
712 {
713   unsigned int dir_index = dom_convert_dir_to_idx (dir);
714 
715   if (dom_computed[dir_index] == DOM_OK)
716     {
717       checking_verify_dominators (dir);
718       return;
719     }
720 
721   timevar_push (TV_DOMINANCE);
722   if (!dom_info_available_p (dir))
723     {
724       gcc_assert (!n_bbs_in_dom_tree[dir_index]);
725 
726       basic_block b;
727       FOR_ALL_BB_FN (b, cfun)
728 	{
729 	  b->dom[dir_index] = et_new_tree (b);
730 	}
731       n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
732 
733       dom_info di (cfun, dir);
734       di.calc_dfs_tree ();
735       di.calc_idoms ();
736 
737       FOR_EACH_BB_FN (b, cfun)
738 	{
739 	  if (basic_block d = di.get_idom (b))
740 	    et_set_father (b->dom[dir_index], d->dom[dir_index]);
741 	}
742 
743       dom_computed[dir_index] = DOM_NO_FAST_QUERY;
744     }
745   else
746     checking_verify_dominators (dir);
747 
748   compute_dom_fast_query (dir);
749 
750   timevar_pop (TV_DOMINANCE);
751 }
752 
753 /* Analogous to the previous function but compute dominance info for regions
754    which are single entry, multiple exit regions for CDI_DOMINATORs and
755    multiple entry, single exit regions for CDI_POST_DOMINATORs.  */
756 
757 void
758 calculate_dominance_info_for_region (cdi_direction dir,
759 				     vec<basic_block> region)
760 {
761   unsigned int dir_index = dom_convert_dir_to_idx (dir);
762   basic_block bb;
763   unsigned int i;
764 
765   if (dom_computed[dir_index] == DOM_OK)
766     return;
767 
768   timevar_push (TV_DOMINANCE);
769   /* Assume that dom info is not partially computed.  */
770   gcc_assert (!dom_info_available_p (dir));
771 
772   FOR_EACH_VEC_ELT (region, i, bb)
773     {
774       bb->dom[dir_index] = et_new_tree (bb);
775     }
776   dom_info di (region, dir);
777   di.calc_dfs_tree ();
778   di.calc_idoms ();
779 
780   FOR_EACH_VEC_ELT (region, i, bb)
781     if (basic_block d = di.get_idom (bb))
782       et_set_father (bb->dom[dir_index], d->dom[dir_index]);
783 
784   dom_computed[dir_index] = DOM_NO_FAST_QUERY;
785   compute_dom_fast_query_in_region (dir, region);
786 
787   timevar_pop (TV_DOMINANCE);
788 }
789 
790 /* Free dominance information for direction DIR.  */
791 void
792 free_dominance_info (function *fn, enum cdi_direction dir)
793 {
794   basic_block bb;
795   unsigned int dir_index = dom_convert_dir_to_idx (dir);
796 
797   if (!dom_info_available_p (fn, dir))
798     return;
799 
800   FOR_ALL_BB_FN (bb, fn)
801     {
802       et_free_tree_force (bb->dom[dir_index]);
803       bb->dom[dir_index] = NULL;
804     }
805   et_free_pools ();
806 
807   fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
808 
809   fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
810 }
811 
812 void
813 free_dominance_info (enum cdi_direction dir)
814 {
815   free_dominance_info (cfun, dir);
816 }
817 
818 /* Free dominance information for direction DIR in region REGION.  */
819 
820 void
821 free_dominance_info_for_region (function *fn,
822 				enum cdi_direction dir,
823 				vec<basic_block> region)
824 {
825   basic_block bb;
826   unsigned int i;
827   unsigned int dir_index = dom_convert_dir_to_idx (dir);
828 
829   if (!dom_info_available_p (dir))
830     return;
831 
832   FOR_EACH_VEC_ELT (region, i, bb)
833     {
834       et_free_tree_force (bb->dom[dir_index]);
835       bb->dom[dir_index] = NULL;
836     }
837   et_free_pools ();
838 
839   fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
840 
841   fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
842 }
843 
844 /* Return the immediate dominator of basic block BB.  */
845 basic_block
846 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
847 {
848   unsigned int dir_index = dom_convert_dir_to_idx (dir);
849   struct et_node *node = bb->dom[dir_index];
850 
851   gcc_checking_assert (dom_computed[dir_index]);
852 
853   if (!node->father)
854     return NULL;
855 
856   return (basic_block) node->father->data;
857 }
858 
859 /* Set the immediate dominator of the block possibly removing
860    existing edge.  NULL can be used to remove any edge.  */
861 void
862 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
863 			 basic_block dominated_by)
864 {
865   unsigned int dir_index = dom_convert_dir_to_idx (dir);
866   struct et_node *node = bb->dom[dir_index];
867 
868   gcc_checking_assert (dom_computed[dir_index]);
869 
870   if (node->father)
871     {
872       if (node->father->data == dominated_by)
873 	return;
874       et_split (node);
875     }
876 
877   if (dominated_by)
878     et_set_father (node, dominated_by->dom[dir_index]);
879 
880   if (dom_computed[dir_index] == DOM_OK)
881     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
882 }
883 
884 /* Returns the list of basic blocks immediately dominated by BB, in the
885    direction DIR.  */
886 vec<basic_block>
887 get_dominated_by (enum cdi_direction dir, basic_block bb)
888 {
889   unsigned int dir_index = dom_convert_dir_to_idx (dir);
890   struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
891   vec<basic_block> bbs = vNULL;
892 
893   gcc_checking_assert (dom_computed[dir_index]);
894 
895   if (!son)
896     return vNULL;
897 
898   bbs.safe_push ((basic_block) son->data);
899   for (ason = son->right; ason != son; ason = ason->right)
900     bbs.safe_push ((basic_block) ason->data);
901 
902   return bbs;
903 }
904 
905 /* Returns the list of basic blocks that are immediately dominated (in
906    direction DIR) by some block between N_REGION ones stored in REGION,
907    except for blocks in the REGION itself.  */
908 
909 vec<basic_block>
910 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
911 			 unsigned n_region)
912 {
913   unsigned i;
914   basic_block dom;
915   vec<basic_block> doms = vNULL;
916 
917   for (i = 0; i < n_region; i++)
918     region[i]->flags |= BB_DUPLICATED;
919   for (i = 0; i < n_region; i++)
920     for (dom = first_dom_son (dir, region[i]);
921 	 dom;
922 	 dom = next_dom_son (dir, dom))
923       if (!(dom->flags & BB_DUPLICATED))
924 	doms.safe_push (dom);
925   for (i = 0; i < n_region; i++)
926     region[i]->flags &= ~BB_DUPLICATED;
927 
928   return doms;
929 }
930 
931 /* Returns the list of basic blocks including BB dominated by BB, in the
932    direction DIR up to DEPTH in the dominator tree.  The DEPTH of zero will
933    produce a vector containing all dominated blocks.  The vector will be sorted
934    in preorder.  */
935 
936 vec<basic_block>
937 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
938 {
939   vec<basic_block> bbs = vNULL;
940   unsigned i;
941   unsigned next_level_start;
942 
943   i = 0;
944   bbs.safe_push (bb);
945   next_level_start = 1; /* = bbs.length (); */
946 
947   do
948     {
949       basic_block son;
950 
951       bb = bbs[i++];
952       for (son = first_dom_son (dir, bb);
953 	   son;
954 	   son = next_dom_son (dir, son))
955 	bbs.safe_push (son);
956 
957       if (i == next_level_start && --depth)
958 	next_level_start = bbs.length ();
959     }
960   while (i < next_level_start);
961 
962   return bbs;
963 }
964 
965 /* Returns the list of basic blocks including BB dominated by BB, in the
966    direction DIR.  The vector will be sorted in preorder.  */
967 
968 vec<basic_block>
969 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
970 {
971   return get_dominated_to_depth (dir, bb, 0);
972 }
973 
974 /* Redirect all edges pointing to BB to TO.  */
975 void
976 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
977 			       basic_block to)
978 {
979   unsigned int dir_index = dom_convert_dir_to_idx (dir);
980   struct et_node *bb_node, *to_node, *son;
981 
982   bb_node = bb->dom[dir_index];
983   to_node = to->dom[dir_index];
984 
985   gcc_checking_assert (dom_computed[dir_index]);
986 
987   if (!bb_node->son)
988     return;
989 
990   while (bb_node->son)
991     {
992       son = bb_node->son;
993 
994       et_split (son);
995       et_set_father (son, to_node);
996     }
997 
998   if (dom_computed[dir_index] == DOM_OK)
999     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1000 }
1001 
1002 /* Find first basic block in the tree dominating both BB1 and BB2.  */
1003 basic_block
1004 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
1005 {
1006   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1007 
1008   gcc_checking_assert (dom_computed[dir_index]);
1009 
1010   if (!bb1)
1011     return bb2;
1012   if (!bb2)
1013     return bb1;
1014 
1015   return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
1016 }
1017 
1018 
1019 /* Find the nearest common dominator for the basic blocks in BLOCKS,
1020    using dominance direction DIR.  */
1021 
1022 basic_block
1023 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
1024 {
1025   unsigned i, first;
1026   bitmap_iterator bi;
1027   basic_block dom;
1028 
1029   first = bitmap_first_set_bit (blocks);
1030   dom = BASIC_BLOCK_FOR_FN (cfun, first);
1031   EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
1032     if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
1033       dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
1034 
1035   return dom;
1036 }
1037 
1038 /*  Given a dominator tree, we can determine whether one thing
1039     dominates another in constant time by using two DFS numbers:
1040 
1041     1. The number for when we visit a node on the way down the tree
1042     2. The number for when we visit a node on the way back up the tree
1043 
1044     You can view these as bounds for the range of dfs numbers the
1045     nodes in the subtree of the dominator tree rooted at that node
1046     will contain.
1047 
1048     The dominator tree is always a simple acyclic tree, so there are
1049     only three possible relations two nodes in the dominator tree have
1050     to each other:
1051 
1052     1. Node A is above Node B (and thus, Node A dominates node B)
1053 
1054      A
1055      |
1056      C
1057     / \
1058    B   D
1059 
1060 
1061    In the above case, DFS_Number_In of A will be <= DFS_Number_In of
1062    B, and DFS_Number_Out of A will be >= DFS_Number_Out of B.  This is
1063    because we must hit A in the dominator tree *before* B on the walk
1064    down, and we will hit A *after* B on the walk back up
1065 
1066    2. Node A is below node B (and thus, node B dominates node A)
1067 
1068 
1069      B
1070      |
1071      A
1072     / \
1073    C   D
1074 
1075    In the above case, DFS_Number_In of A will be >= DFS_Number_In of
1076    B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
1077 
1078    This is because we must hit A in the dominator tree *after* B on
1079    the walk down, and we will hit A *before* B on the walk back up
1080 
1081    3. Node A and B are siblings (and thus, neither dominates the other)
1082 
1083      C
1084      |
1085      D
1086     / \
1087    A   B
1088 
1089    In the above case, DFS_Number_In of A will *always* be <=
1090    DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
1091    DFS_Number_Out of B.  This is because we will always finish the dfs
1092    walk of one of the subtrees before the other, and thus, the dfs
1093    numbers for one subtree can't intersect with the range of dfs
1094    numbers for the other subtree.  If you swap A and B's position in
1095    the dominator tree, the comparison changes direction, but the point
1096    is that both comparisons will always go the same way if there is no
1097    dominance relationship.
1098 
1099    Thus, it is sufficient to write
1100 
1101    A_Dominates_B (node A, node B)
1102    {
1103      return DFS_Number_In(A) <= DFS_Number_In(B)
1104             && DFS_Number_Out (A) >= DFS_Number_Out(B);
1105    }
1106 
1107    A_Dominated_by_B (node A, node B)
1108    {
1109      return DFS_Number_In(A) >= DFS_Number_In(B)
1110             && DFS_Number_Out (A) <= DFS_Number_Out(B);
1111    }  */
1112 
1113 /* Return TRUE in case BB1 is dominated by BB2.  */
1114 bool
1115 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
1116 {
1117   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1118   struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
1119 
1120   gcc_checking_assert (dom_computed[dir_index]);
1121 
1122   if (dom_computed[dir_index] == DOM_OK)
1123     return (n1->dfs_num_in >= n2->dfs_num_in
1124   	    && n1->dfs_num_out <= n2->dfs_num_out);
1125 
1126   return et_below (n1, n2);
1127 }
1128 
1129 /* Returns the entry dfs number for basic block BB, in the direction DIR.  */
1130 
1131 unsigned
1132 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
1133 {
1134   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1135   struct et_node *n = bb->dom[dir_index];
1136 
1137   gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1138   return n->dfs_num_in;
1139 }
1140 
1141 /* Returns the exit dfs number for basic block BB, in the direction DIR.  */
1142 
1143 unsigned
1144 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1145 {
1146   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1147   struct et_node *n = bb->dom[dir_index];
1148 
1149   gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1150   return n->dfs_num_out;
1151 }
1152 
1153 /* Verify invariants of dominator structure.  */
1154 DEBUG_FUNCTION void
1155 verify_dominators (cdi_direction dir)
1156 {
1157   gcc_assert (dom_info_available_p (dir));
1158 
1159   dom_info di (cfun, dir);
1160   di.calc_dfs_tree ();
1161   di.calc_idoms ();
1162 
1163   bool err = false;
1164   basic_block bb;
1165   FOR_EACH_BB_FN (bb, cfun)
1166     {
1167       basic_block imm_bb = get_immediate_dominator (dir, bb);
1168       if (!imm_bb)
1169 	{
1170 	  error ("dominator of %d status unknown", bb->index);
1171 	  err = true;
1172 	  continue;
1173 	}
1174 
1175       basic_block imm_bb_correct = di.get_idom (bb);
1176       if (imm_bb != imm_bb_correct)
1177 	{
1178 	  error ("dominator of %d should be %d, not %d",
1179 		 bb->index, imm_bb_correct->index, imm_bb->index);
1180 	  err = true;
1181 	}
1182     }
1183 
1184   gcc_assert (!err);
1185 }
1186 
1187 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1188    assuming that dominators of other blocks are correct.  We also use it to
1189    recompute the dominators in a restricted area, by iterating it until it
1190    reaches a fixed point.  */
1191 
1192 basic_block
1193 recompute_dominator (enum cdi_direction dir, basic_block bb)
1194 {
1195   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1196   basic_block dom_bb = NULL;
1197   edge e;
1198   edge_iterator ei;
1199 
1200   gcc_checking_assert (dom_computed[dir_index]);
1201 
1202   if (dir == CDI_DOMINATORS)
1203     {
1204       FOR_EACH_EDGE (e, ei, bb->preds)
1205 	{
1206 	  if (!dominated_by_p (dir, e->src, bb))
1207 	    dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1208 	}
1209     }
1210   else
1211     {
1212       FOR_EACH_EDGE (e, ei, bb->succs)
1213 	{
1214 	  if (!dominated_by_p (dir, e->dest, bb))
1215 	    dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1216 	}
1217     }
1218 
1219   return dom_bb;
1220 }
1221 
1222 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1223    of BBS.  We assume that all the immediate dominators except for those of the
1224    blocks in BBS are correct.  If CONSERVATIVE is true, we also assume that the
1225    currently recorded immediate dominators of blocks in BBS really dominate the
1226    blocks.  The basic blocks for that we determine the dominator are removed
1227    from BBS.  */
1228 
1229 static void
1230 prune_bbs_to_update_dominators (vec<basic_block> bbs,
1231 				bool conservative)
1232 {
1233   unsigned i;
1234   bool single;
1235   basic_block bb, dom = NULL;
1236   edge_iterator ei;
1237   edge e;
1238 
1239   for (i = 0; bbs.iterate (i, &bb);)
1240     {
1241       if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1242 	goto succeed;
1243 
1244       if (single_pred_p (bb))
1245 	{
1246 	  set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1247 	  goto succeed;
1248 	}
1249 
1250       if (!conservative)
1251 	goto fail;
1252 
1253       single = true;
1254       dom = NULL;
1255       FOR_EACH_EDGE (e, ei, bb->preds)
1256 	{
1257 	  if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1258 	    continue;
1259 
1260 	  if (!dom)
1261 	    dom = e->src;
1262 	  else
1263 	    {
1264 	      single = false;
1265 	      dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1266 	    }
1267 	}
1268 
1269       gcc_assert (dom != NULL);
1270       if (single
1271 	  || find_edge (dom, bb))
1272 	{
1273 	  set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1274 	  goto succeed;
1275 	}
1276 
1277 fail:
1278       i++;
1279       continue;
1280 
1281 succeed:
1282       bbs.unordered_remove (i);
1283     }
1284 }
1285 
1286 /* Returns root of the dominance tree in the direction DIR that contains
1287    BB.  */
1288 
1289 static basic_block
1290 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1291 {
1292   return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1293 }
1294 
1295 /* See the comment in iterate_fix_dominators.  Finds the immediate dominators
1296    for the sons of Y, found using the SON and BROTHER arrays representing
1297    the dominance tree of graph G.  BBS maps the vertices of G to the basic
1298    blocks.  */
1299 
1300 static void
1301 determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
1302 			       int y, int *son, int *brother)
1303 {
1304   bitmap gprime;
1305   int i, a, nc;
1306   vec<int> *sccs;
1307   basic_block bb, dom, ybb;
1308   unsigned si;
1309   edge e;
1310   edge_iterator ei;
1311 
1312   if (son[y] == -1)
1313     return;
1314   if (y == (int) bbs.length ())
1315     ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1316   else
1317     ybb = bbs[y];
1318 
1319   if (brother[son[y]] == -1)
1320     {
1321       /* Handle the common case Y has just one son specially.  */
1322       bb = bbs[son[y]];
1323       set_immediate_dominator (CDI_DOMINATORS, bb,
1324 			       recompute_dominator (CDI_DOMINATORS, bb));
1325       identify_vertices (g, y, son[y]);
1326       return;
1327     }
1328 
1329   gprime = BITMAP_ALLOC (NULL);
1330   for (a = son[y]; a != -1; a = brother[a])
1331     bitmap_set_bit (gprime, a);
1332 
1333   nc = graphds_scc (g, gprime);
1334   BITMAP_FREE (gprime);
1335 
1336   /* ???  Needed to work around the pre-processor confusion with
1337      using a multi-argument template type as macro argument.  */
1338   typedef vec<int> vec_int_heap;
1339   sccs = XCNEWVEC (vec_int_heap, nc);
1340   for (a = son[y]; a != -1; a = brother[a])
1341     sccs[g->vertices[a].component].safe_push (a);
1342 
1343   for (i = nc - 1; i >= 0; i--)
1344     {
1345       dom = NULL;
1346       FOR_EACH_VEC_ELT (sccs[i], si, a)
1347 	{
1348 	  bb = bbs[a];
1349 	  FOR_EACH_EDGE (e, ei, bb->preds)
1350 	    {
1351 	      if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1352 		continue;
1353 
1354 	      dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1355 	    }
1356 	}
1357 
1358       gcc_assert (dom != NULL);
1359       FOR_EACH_VEC_ELT (sccs[i], si, a)
1360 	{
1361 	  bb = bbs[a];
1362 	  set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1363 	}
1364     }
1365 
1366   for (i = 0; i < nc; i++)
1367     sccs[i].release ();
1368   free (sccs);
1369 
1370   for (a = son[y]; a != -1; a = brother[a])
1371     identify_vertices (g, y, a);
1372 }
1373 
1374 /* Recompute dominance information for basic blocks in the set BBS.  The
1375    function assumes that the immediate dominators of all the other blocks
1376    in CFG are correct, and that there are no unreachable blocks.
1377 
1378    If CONSERVATIVE is true, we additionally assume that all the ancestors of
1379    a block of BBS in the current dominance tree dominate it.  */
1380 
1381 void
1382 iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
1383 			bool conservative)
1384 {
1385   unsigned i;
1386   basic_block bb, dom;
1387   struct graph *g;
1388   int n, y;
1389   size_t dom_i;
1390   edge e;
1391   edge_iterator ei;
1392   int *parent, *son, *brother;
1393   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1394 
1395   /* We only support updating dominators.  There are some problems with
1396      updating postdominators (need to add fake edges from infinite loops
1397      and noreturn functions), and since we do not currently use
1398      iterate_fix_dominators for postdominators, any attempt to handle these
1399      problems would be unused, untested, and almost surely buggy.  We keep
1400      the DIR argument for consistency with the rest of the dominator analysis
1401      interface.  */
1402   gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
1403 
1404   /* The algorithm we use takes inspiration from the following papers, although
1405      the details are quite different from any of them:
1406 
1407      [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1408 	 Dominator Tree of a Reducible Flowgraph
1409      [2]  V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1410 	  dominator trees
1411      [3]  K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1412 	  Algorithm
1413 
1414      First, we use the following heuristics to decrease the size of the BBS
1415      set:
1416        a) if BB has a single predecessor, then its immediate dominator is this
1417 	  predecessor
1418        additionally, if CONSERVATIVE is true:
1419        b) if all the predecessors of BB except for one (X) are dominated by BB,
1420 	  then X is the immediate dominator of BB
1421        c) if the nearest common ancestor of the predecessors of BB is X and
1422 	  X -> BB is an edge in CFG, then X is the immediate dominator of BB
1423 
1424      Then, we need to establish the dominance relation among the basic blocks
1425      in BBS.  We split the dominance tree by removing the immediate dominator
1426      edges from BBS, creating a forest F.  We form a graph G whose vertices
1427      are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1428      X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1429      whose root is X.  We then determine dominance tree of G.  Note that
1430      for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1431      In this step, we can use arbitrary algorithm to determine dominators.
1432      We decided to prefer the algorithm [3] to the algorithm of
1433      Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1434      10 during gcc bootstrap), and [3] should perform better in this case.
1435 
1436      Finally, we need to determine the immediate dominators for the basic
1437      blocks of BBS.  If the immediate dominator of X in G is Y, then
1438      the immediate dominator of X in CFG belongs to the tree of F rooted in
1439      Y.  We process the dominator tree T of G recursively, starting from leaves.
1440      Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1441      subtrees of the dominance tree of CFG rooted in X_i are already correct.
1442      Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}.  We make
1443      the following observations:
1444        (i) the immediate dominator of all blocks in a strongly connected
1445 	   component of G' is the same
1446        (ii) if X has no predecessors in G', then the immediate dominator of X
1447 	    is the nearest common ancestor of the predecessors of X in the
1448 	    subtree of F rooted in Y
1449      Therefore, it suffices to find the topological ordering of G', and
1450      process the nodes X_i in this order using the rules (i) and (ii).
1451      Then, we contract all the nodes X_i with Y in G, so that the further
1452      steps work correctly.  */
1453 
1454   if (!conservative)
1455     {
1456       /* Split the tree now.  If the idoms of blocks in BBS are not
1457 	 conservatively correct, setting the dominators using the
1458 	 heuristics in prune_bbs_to_update_dominators could
1459 	 create cycles in the dominance "tree", and cause ICE.  */
1460       FOR_EACH_VEC_ELT (bbs, i, bb)
1461 	set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1462     }
1463 
1464   prune_bbs_to_update_dominators (bbs, conservative);
1465   n = bbs.length ();
1466 
1467   if (n == 0)
1468     return;
1469 
1470   if (n == 1)
1471     {
1472       bb = bbs[0];
1473       set_immediate_dominator (CDI_DOMINATORS, bb,
1474 			       recompute_dominator (CDI_DOMINATORS, bb));
1475       return;
1476     }
1477 
1478   /* Construct the graph G.  */
1479   hash_map<basic_block, int> map (251);
1480   FOR_EACH_VEC_ELT (bbs, i, bb)
1481     {
1482       /* If the dominance tree is conservatively correct, split it now.  */
1483       if (conservative)
1484 	set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1485       map.put (bb, i);
1486     }
1487   map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
1488 
1489   g = new_graph (n + 1);
1490   for (y = 0; y < g->n_vertices; y++)
1491     g->vertices[y].data = BITMAP_ALLOC (NULL);
1492   FOR_EACH_VEC_ELT (bbs, i, bb)
1493     {
1494       FOR_EACH_EDGE (e, ei, bb->preds)
1495 	{
1496 	  dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1497 	  if (dom == bb)
1498 	    continue;
1499 
1500 	  dom_i = *map.get (dom);
1501 
1502 	  /* Do not include parallel edges to G.  */
1503 	  if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1504 	    continue;
1505 
1506 	  add_edge (g, dom_i, i);
1507 	}
1508     }
1509   for (y = 0; y < g->n_vertices; y++)
1510     BITMAP_FREE (g->vertices[y].data);
1511 
1512   /* Find the dominator tree of G.  */
1513   son = XNEWVEC (int, n + 1);
1514   brother = XNEWVEC (int, n + 1);
1515   parent = XNEWVEC (int, n + 1);
1516   graphds_domtree (g, n, parent, son, brother);
1517 
1518   /* Finally, traverse the tree and find the immediate dominators.  */
1519   for (y = n; son[y] != -1; y = son[y])
1520     continue;
1521   while (y != -1)
1522     {
1523       determine_dominators_for_sons (g, bbs, y, son, brother);
1524 
1525       if (brother[y] != -1)
1526 	{
1527 	  y = brother[y];
1528 	  while (son[y] != -1)
1529 	    y = son[y];
1530 	}
1531       else
1532 	y = parent[y];
1533     }
1534 
1535   free (son);
1536   free (brother);
1537   free (parent);
1538 
1539   free_graph (g);
1540 }
1541 
1542 void
1543 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1544 {
1545   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1546 
1547   gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
1548 
1549   n_bbs_in_dom_tree[dir_index]++;
1550 
1551   bb->dom[dir_index] = et_new_tree (bb);
1552 
1553   if (dom_computed[dir_index] == DOM_OK)
1554     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1555 }
1556 
1557 void
1558 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1559 {
1560   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1561 
1562   gcc_checking_assert (dom_computed[dir_index]);
1563 
1564   et_free_tree (bb->dom[dir_index]);
1565   bb->dom[dir_index] = NULL;
1566   n_bbs_in_dom_tree[dir_index]--;
1567 
1568   if (dom_computed[dir_index] == DOM_OK)
1569     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1570 }
1571 
1572 /* Returns the first son of BB in the dominator or postdominator tree
1573    as determined by DIR.  */
1574 
1575 basic_block
1576 first_dom_son (enum cdi_direction dir, basic_block bb)
1577 {
1578   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1579   struct et_node *son = bb->dom[dir_index]->son;
1580 
1581   return (basic_block) (son ? son->data : NULL);
1582 }
1583 
1584 /* Returns the next dominance son after BB in the dominator or postdominator
1585    tree as determined by DIR, or NULL if it was the last one.  */
1586 
1587 basic_block
1588 next_dom_son (enum cdi_direction dir, basic_block bb)
1589 {
1590   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1591   struct et_node *next = bb->dom[dir_index]->right;
1592 
1593   return (basic_block) (next->father->son == next ? NULL : next->data);
1594 }
1595 
1596 /* Return dominance availability for dominance info DIR.  */
1597 
1598 enum dom_state
1599 dom_info_state (function *fn, enum cdi_direction dir)
1600 {
1601   if (!fn->cfg)
1602     return DOM_NONE;
1603 
1604   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1605   return fn->cfg->x_dom_computed[dir_index];
1606 }
1607 
1608 enum dom_state
1609 dom_info_state (enum cdi_direction dir)
1610 {
1611   return dom_info_state (cfun, dir);
1612 }
1613 
1614 /* Set the dominance availability for dominance info DIR to NEW_STATE.  */
1615 
1616 void
1617 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1618 {
1619   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1620 
1621   dom_computed[dir_index] = new_state;
1622 }
1623 
1624 /* Returns true if dominance information for direction DIR is available.  */
1625 
1626 bool
1627 dom_info_available_p (function *fn, enum cdi_direction dir)
1628 {
1629   return dom_info_state (fn, dir) != DOM_NONE;
1630 }
1631 
1632 bool
1633 dom_info_available_p (enum cdi_direction dir)
1634 {
1635   return dom_info_available_p (cfun, dir);
1636 }
1637 
1638 DEBUG_FUNCTION void
1639 debug_dominance_info (enum cdi_direction dir)
1640 {
1641   basic_block bb, bb2;
1642   FOR_EACH_BB_FN (bb, cfun)
1643     if ((bb2 = get_immediate_dominator (dir, bb)))
1644       fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1645 }
1646 
1647 /* Prints to stderr representation of the dominance tree (for direction DIR)
1648    rooted in ROOT, indented by INDENT tabulators.  If INDENT_FIRST is false,
1649    the first line of the output is not indented.  */
1650 
1651 static void
1652 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1653 			unsigned indent, bool indent_first)
1654 {
1655   basic_block son;
1656   unsigned i;
1657   bool first = true;
1658 
1659   if (indent_first)
1660     for (i = 0; i < indent; i++)
1661       fprintf (stderr, "\t");
1662   fprintf (stderr, "%d\t", root->index);
1663 
1664   for (son = first_dom_son (dir, root);
1665        son;
1666        son = next_dom_son (dir, son))
1667     {
1668       debug_dominance_tree_1 (dir, son, indent + 1, !first);
1669       first = false;
1670     }
1671 
1672   if (first)
1673     fprintf (stderr, "\n");
1674 }
1675 
1676 /* Prints to stderr representation of the dominance tree (for direction DIR)
1677    rooted in ROOT.  */
1678 
1679 DEBUG_FUNCTION void
1680 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1681 {
1682   debug_dominance_tree_1 (dir, root, 0, false);
1683 }
1684