xref: /dragonfly/contrib/gcc-8.0/gcc/explow.c (revision 73b5ca6b)
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "profile-count.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
37 #include "except.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "expr.h"
41 #include "common/common-target.h"
42 #include "output.h"
43 #include "params.h"
44 
45 static rtx break_out_memory_refs (rtx);
46 static void anti_adjust_stack_and_probe_stack_clash (rtx);
47 
48 
49 /* Truncate and perhaps sign-extend C as appropriate for MODE.  */
50 
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
53 {
54   /* Not scalar_int_mode because we also allow pointer bound modes.  */
55   scalar_mode smode = as_a <scalar_mode> (mode);
56   int width = GET_MODE_PRECISION (smode);
57 
58   /* You want to truncate to a _what_?  */
59   gcc_assert (SCALAR_INT_MODE_P (mode)
60 	      || POINTER_BOUNDS_MODE_P (mode));
61 
62   /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
63   if (smode == BImode)
64     return c & 1 ? STORE_FLAG_VALUE : 0;
65 
66   /* Sign-extend for the requested mode.  */
67 
68   if (width < HOST_BITS_PER_WIDE_INT)
69     {
70       HOST_WIDE_INT sign = 1;
71       sign <<= width - 1;
72       c &= (sign << 1) - 1;
73       c ^= sign;
74       c -= sign;
75     }
76 
77   return c;
78 }
79 
80 /* Likewise for polynomial values, using the sign-extended representation
81    for each individual coefficient.  */
82 
83 poly_int64
84 trunc_int_for_mode (poly_int64 x, machine_mode mode)
85 {
86   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
87     x.coeffs[i] = trunc_int_for_mode (x.coeffs[i], mode);
88   return x;
89 }
90 
91 /* Return an rtx for the sum of X and the integer C, given that X has
92    mode MODE.  INPLACE is true if X can be modified inplace or false
93    if it must be treated as immutable.  */
94 
95 rtx
96 plus_constant (machine_mode mode, rtx x, poly_int64 c, bool inplace)
97 {
98   RTX_CODE code;
99   rtx y;
100   rtx tem;
101   int all_constant = 0;
102 
103   gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
104 
105   if (known_eq (c, 0))
106     return x;
107 
108  restart:
109 
110   code = GET_CODE (x);
111   y = x;
112 
113   switch (code)
114     {
115     CASE_CONST_SCALAR_INT:
116       return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
117     case MEM:
118       /* If this is a reference to the constant pool, try replacing it with
119 	 a reference to a new constant.  If the resulting address isn't
120 	 valid, don't return it because we have no way to validize it.  */
121       if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
122 	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 	{
124 	  rtx cst = get_pool_constant (XEXP (x, 0));
125 
126 	  if (GET_CODE (cst) == CONST_VECTOR
127 	      && GET_MODE_INNER (GET_MODE (cst)) == mode)
128 	    {
129 	      cst = gen_lowpart (mode, cst);
130 	      gcc_assert (cst);
131 	    }
132 	  if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
133 	    {
134 	      tem = plus_constant (mode, cst, c);
135 	      tem = force_const_mem (GET_MODE (x), tem);
136 	      /* Targets may disallow some constants in the constant pool, thus
137 		 force_const_mem may return NULL_RTX.  */
138 	      if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
139 		return tem;
140 	    }
141 	}
142       break;
143 
144     case CONST:
145       /* If adding to something entirely constant, set a flag
146 	 so that we can add a CONST around the result.  */
147       if (inplace && shared_const_p (x))
148 	inplace = false;
149       x = XEXP (x, 0);
150       all_constant = 1;
151       goto restart;
152 
153     case SYMBOL_REF:
154     case LABEL_REF:
155       all_constant = 1;
156       break;
157 
158     case PLUS:
159       /* The interesting case is adding the integer to a sum.  Look
160 	 for constant term in the sum and combine with C.  For an
161 	 integer constant term or a constant term that is not an
162 	 explicit integer, we combine or group them together anyway.
163 
164 	 We may not immediately return from the recursive call here, lest
165 	 all_constant gets lost.  */
166 
167       if (CONSTANT_P (XEXP (x, 1)))
168 	{
169 	  rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
170 	  if (term == const0_rtx)
171 	    x = XEXP (x, 0);
172 	  else if (inplace)
173 	    XEXP (x, 1) = term;
174 	  else
175 	    x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
176 	  c = 0;
177 	}
178       else if (rtx *const_loc = find_constant_term_loc (&y))
179 	{
180 	  if (!inplace)
181 	    {
182 	      /* We need to be careful since X may be shared and we can't
183 		 modify it in place.  */
184 	      x = copy_rtx (x);
185 	      const_loc = find_constant_term_loc (&x);
186 	    }
187 	  *const_loc = plus_constant (mode, *const_loc, c, true);
188 	  c = 0;
189 	}
190       break;
191 
192     default:
193       if (CONST_POLY_INT_P (x))
194 	return immed_wide_int_const (const_poly_int_value (x) + c, mode);
195       break;
196     }
197 
198   if (maybe_ne (c, 0))
199     x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
200 
201   if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
202     return x;
203   else if (all_constant)
204     return gen_rtx_CONST (mode, x);
205   else
206     return x;
207 }
208 
209 /* If X is a sum, return a new sum like X but lacking any constant terms.
210    Add all the removed constant terms into *CONSTPTR.
211    X itself is not altered.  The result != X if and only if
212    it is not isomorphic to X.  */
213 
214 rtx
215 eliminate_constant_term (rtx x, rtx *constptr)
216 {
217   rtx x0, x1;
218   rtx tem;
219 
220   if (GET_CODE (x) != PLUS)
221     return x;
222 
223   /* First handle constants appearing at this level explicitly.  */
224   if (CONST_INT_P (XEXP (x, 1))
225       && (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
226 					   XEXP (x, 1))) != 0
227       && CONST_INT_P (tem))
228     {
229       *constptr = tem;
230       return eliminate_constant_term (XEXP (x, 0), constptr);
231     }
232 
233   tem = const0_rtx;
234   x0 = eliminate_constant_term (XEXP (x, 0), &tem);
235   x1 = eliminate_constant_term (XEXP (x, 1), &tem);
236   if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
237       && (tem = simplify_binary_operation (PLUS, GET_MODE (x),
238 					   *constptr, tem)) != 0
239       && CONST_INT_P (tem))
240     {
241       *constptr = tem;
242       return gen_rtx_PLUS (GET_MODE (x), x0, x1);
243     }
244 
245   return x;
246 }
247 
248 
249 /* Return a copy of X in which all memory references
250    and all constants that involve symbol refs
251    have been replaced with new temporary registers.
252    Also emit code to load the memory locations and constants
253    into those registers.
254 
255    If X contains no such constants or memory references,
256    X itself (not a copy) is returned.
257 
258    If a constant is found in the address that is not a legitimate constant
259    in an insn, it is left alone in the hope that it might be valid in the
260    address.
261 
262    X may contain no arithmetic except addition, subtraction and multiplication.
263    Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
264 
265 static rtx
266 break_out_memory_refs (rtx x)
267 {
268   if (MEM_P (x)
269       || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
270 	  && GET_MODE (x) != VOIDmode))
271     x = force_reg (GET_MODE (x), x);
272   else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
273 	   || GET_CODE (x) == MULT)
274     {
275       rtx op0 = break_out_memory_refs (XEXP (x, 0));
276       rtx op1 = break_out_memory_refs (XEXP (x, 1));
277 
278       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
279 	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
280     }
281 
282   return x;
283 }
284 
285 /* Given X, a memory address in address space AS' pointer mode, convert it to
286    an address in the address space's address mode, or vice versa (TO_MODE says
287    which way).  We take advantage of the fact that pointers are not allowed to
288    overflow by commuting arithmetic operations over conversions so that address
289    arithmetic insns can be used. IN_CONST is true if this conversion is inside
290    a CONST. NO_EMIT is true if no insns should be emitted, and instead
291    it should return NULL if it can't be simplified without emitting insns.  */
292 
293 rtx
294 convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED,
295 				     rtx x, addr_space_t as ATTRIBUTE_UNUSED,
296 				     bool in_const ATTRIBUTE_UNUSED,
297 				     bool no_emit ATTRIBUTE_UNUSED)
298 {
299 #ifndef POINTERS_EXTEND_UNSIGNED
300   gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
301   return x;
302 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
303   scalar_int_mode pointer_mode, address_mode, from_mode;
304   rtx temp;
305   enum rtx_code code;
306 
307   /* If X already has the right mode, just return it.  */
308   if (GET_MODE (x) == to_mode)
309     return x;
310 
311   pointer_mode = targetm.addr_space.pointer_mode (as);
312   address_mode = targetm.addr_space.address_mode (as);
313   from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
314 
315   /* Here we handle some special cases.  If none of them apply, fall through
316      to the default case.  */
317   switch (GET_CODE (x))
318     {
319     CASE_CONST_SCALAR_INT:
320       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
321 	code = TRUNCATE;
322       else if (POINTERS_EXTEND_UNSIGNED < 0)
323 	break;
324       else if (POINTERS_EXTEND_UNSIGNED > 0)
325 	code = ZERO_EXTEND;
326       else
327 	code = SIGN_EXTEND;
328       temp = simplify_unary_operation (code, to_mode, x, from_mode);
329       if (temp)
330 	return temp;
331       break;
332 
333     case SUBREG:
334       if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
335 	  && GET_MODE (SUBREG_REG (x)) == to_mode)
336 	return SUBREG_REG (x);
337       break;
338 
339     case LABEL_REF:
340       temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
341       LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
342       return temp;
343 
344     case SYMBOL_REF:
345       temp = shallow_copy_rtx (x);
346       PUT_MODE (temp, to_mode);
347       return temp;
348 
349     case CONST:
350       temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
351 						  true, no_emit);
352       return temp ? gen_rtx_CONST (to_mode, temp) : temp;
353 
354     case PLUS:
355     case MULT:
356       /* For addition we can safely permute the conversion and addition
357 	 operation if one operand is a constant and converting the constant
358 	 does not change it or if one operand is a constant and we are
359 	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
360 	 We can always safely permute them if we are making the address
361 	 narrower. Inside a CONST RTL, this is safe for both pointers
362 	 zero or sign extended as pointers cannot wrap. */
363       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
364 	  || (GET_CODE (x) == PLUS
365 	      && CONST_INT_P (XEXP (x, 1))
366 	      && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
367 		  || XEXP (x, 1) == convert_memory_address_addr_space_1
368 				     (to_mode, XEXP (x, 1), as, in_const,
369 				      no_emit)
370                   || POINTERS_EXTEND_UNSIGNED < 0)))
371 	{
372 	  temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
373 						      as, in_const, no_emit);
374 	  return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
375 					 temp, XEXP (x, 1))
376 		       : temp);
377 	}
378       break;
379 
380     default:
381       break;
382     }
383 
384   if (no_emit)
385     return NULL_RTX;
386 
387   return convert_modes (to_mode, from_mode,
388 			x, POINTERS_EXTEND_UNSIGNED);
389 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
390 }
391 
392 /* Given X, a memory address in address space AS' pointer mode, convert it to
393    an address in the address space's address mode, or vice versa (TO_MODE says
394    which way).  We take advantage of the fact that pointers are not allowed to
395    overflow by commuting arithmetic operations over conversions so that address
396    arithmetic insns can be used.  */
397 
398 rtx
399 convert_memory_address_addr_space (scalar_int_mode to_mode, rtx x,
400 				   addr_space_t as)
401 {
402   return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
403 }
404 
405 
406 /* Return something equivalent to X but valid as a memory address for something
407    of mode MODE in the named address space AS.  When X is not itself valid,
408    this works by copying X or subexpressions of it into registers.  */
409 
410 rtx
411 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
412 {
413   rtx oldx = x;
414   scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
415 
416   x = convert_memory_address_addr_space (address_mode, x, as);
417 
418   /* By passing constant addresses through registers
419      we get a chance to cse them.  */
420   if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
421     x = force_reg (address_mode, x);
422 
423   /* We get better cse by rejecting indirect addressing at this stage.
424      Let the combiner create indirect addresses where appropriate.
425      For now, generate the code so that the subexpressions useful to share
426      are visible.  But not if cse won't be done!  */
427   else
428     {
429       if (! cse_not_expected && !REG_P (x))
430 	x = break_out_memory_refs (x);
431 
432       /* At this point, any valid address is accepted.  */
433       if (memory_address_addr_space_p (mode, x, as))
434 	goto done;
435 
436       /* If it was valid before but breaking out memory refs invalidated it,
437 	 use it the old way.  */
438       if (memory_address_addr_space_p (mode, oldx, as))
439 	{
440 	  x = oldx;
441 	  goto done;
442 	}
443 
444       /* Perform machine-dependent transformations on X
445 	 in certain cases.  This is not necessary since the code
446 	 below can handle all possible cases, but machine-dependent
447 	 transformations can make better code.  */
448       {
449 	rtx orig_x = x;
450 	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
451 	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
452 	  goto done;
453       }
454 
455       /* PLUS and MULT can appear in special ways
456 	 as the result of attempts to make an address usable for indexing.
457 	 Usually they are dealt with by calling force_operand, below.
458 	 But a sum containing constant terms is special
459 	 if removing them makes the sum a valid address:
460 	 then we generate that address in a register
461 	 and index off of it.  We do this because it often makes
462 	 shorter code, and because the addresses thus generated
463 	 in registers often become common subexpressions.  */
464       if (GET_CODE (x) == PLUS)
465 	{
466 	  rtx constant_term = const0_rtx;
467 	  rtx y = eliminate_constant_term (x, &constant_term);
468 	  if (constant_term == const0_rtx
469 	      || ! memory_address_addr_space_p (mode, y, as))
470 	    x = force_operand (x, NULL_RTX);
471 	  else
472 	    {
473 	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
474 	      if (! memory_address_addr_space_p (mode, y, as))
475 		x = force_operand (x, NULL_RTX);
476 	      else
477 		x = y;
478 	    }
479 	}
480 
481       else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
482 	x = force_operand (x, NULL_RTX);
483 
484       /* If we have a register that's an invalid address,
485 	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
486       else if (REG_P (x))
487 	x = copy_to_reg (x);
488 
489       /* Last resort: copy the value to a register, since
490 	 the register is a valid address.  */
491       else
492 	x = force_reg (address_mode, x);
493     }
494 
495  done:
496 
497   gcc_assert (memory_address_addr_space_p (mode, x, as));
498   /* If we didn't change the address, we are done.  Otherwise, mark
499      a reg as a pointer if we have REG or REG + CONST_INT.  */
500   if (oldx == x)
501     return x;
502   else if (REG_P (x))
503     mark_reg_pointer (x, BITS_PER_UNIT);
504   else if (GET_CODE (x) == PLUS
505 	   && REG_P (XEXP (x, 0))
506 	   && CONST_INT_P (XEXP (x, 1)))
507     mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
508 
509   /* OLDX may have been the address on a temporary.  Update the address
510      to indicate that X is now used.  */
511   update_temp_slot_address (oldx, x);
512 
513   return x;
514 }
515 
516 /* Convert a mem ref into one with a valid memory address.
517    Pass through anything else unchanged.  */
518 
519 rtx
520 validize_mem (rtx ref)
521 {
522   if (!MEM_P (ref))
523     return ref;
524   ref = use_anchored_address (ref);
525   if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
526 				   MEM_ADDR_SPACE (ref)))
527     return ref;
528 
529   /* Don't alter REF itself, since that is probably a stack slot.  */
530   return replace_equiv_address (ref, XEXP (ref, 0));
531 }
532 
533 /* If X is a memory reference to a member of an object block, try rewriting
534    it to use an anchor instead.  Return the new memory reference on success
535    and the old one on failure.  */
536 
537 rtx
538 use_anchored_address (rtx x)
539 {
540   rtx base;
541   HOST_WIDE_INT offset;
542   machine_mode mode;
543 
544   if (!flag_section_anchors)
545     return x;
546 
547   if (!MEM_P (x))
548     return x;
549 
550   /* Split the address into a base and offset.  */
551   base = XEXP (x, 0);
552   offset = 0;
553   if (GET_CODE (base) == CONST
554       && GET_CODE (XEXP (base, 0)) == PLUS
555       && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
556     {
557       offset += INTVAL (XEXP (XEXP (base, 0), 1));
558       base = XEXP (XEXP (base, 0), 0);
559     }
560 
561   /* Check whether BASE is suitable for anchors.  */
562   if (GET_CODE (base) != SYMBOL_REF
563       || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
564       || SYMBOL_REF_ANCHOR_P (base)
565       || SYMBOL_REF_BLOCK (base) == NULL
566       || !targetm.use_anchors_for_symbol_p (base))
567     return x;
568 
569   /* Decide where BASE is going to be.  */
570   place_block_symbol (base);
571 
572   /* Get the anchor we need to use.  */
573   offset += SYMBOL_REF_BLOCK_OFFSET (base);
574   base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
575 			     SYMBOL_REF_TLS_MODEL (base));
576 
577   /* Work out the offset from the anchor.  */
578   offset -= SYMBOL_REF_BLOCK_OFFSET (base);
579 
580   /* If we're going to run a CSE pass, force the anchor into a register.
581      We will then be able to reuse registers for several accesses, if the
582      target costs say that that's worthwhile.  */
583   mode = GET_MODE (base);
584   if (!cse_not_expected)
585     base = force_reg (mode, base);
586 
587   return replace_equiv_address (x, plus_constant (mode, base, offset));
588 }
589 
590 /* Copy the value or contents of X to a new temp reg and return that reg.  */
591 
592 rtx
593 copy_to_reg (rtx x)
594 {
595   rtx temp = gen_reg_rtx (GET_MODE (x));
596 
597   /* If not an operand, must be an address with PLUS and MULT so
598      do the computation.  */
599   if (! general_operand (x, VOIDmode))
600     x = force_operand (x, temp);
601 
602   if (x != temp)
603     emit_move_insn (temp, x);
604 
605   return temp;
606 }
607 
608 /* Like copy_to_reg but always give the new register mode Pmode
609    in case X is a constant.  */
610 
611 rtx
612 copy_addr_to_reg (rtx x)
613 {
614   return copy_to_mode_reg (Pmode, x);
615 }
616 
617 /* Like copy_to_reg but always give the new register mode MODE
618    in case X is a constant.  */
619 
620 rtx
621 copy_to_mode_reg (machine_mode mode, rtx x)
622 {
623   rtx temp = gen_reg_rtx (mode);
624 
625   /* If not an operand, must be an address with PLUS and MULT so
626      do the computation.  */
627   if (! general_operand (x, VOIDmode))
628     x = force_operand (x, temp);
629 
630   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
631   if (x != temp)
632     emit_move_insn (temp, x);
633   return temp;
634 }
635 
636 /* Load X into a register if it is not already one.
637    Use mode MODE for the register.
638    X should be valid for mode MODE, but it may be a constant which
639    is valid for all integer modes; that's why caller must specify MODE.
640 
641    The caller must not alter the value in the register we return,
642    since we mark it as a "constant" register.  */
643 
644 rtx
645 force_reg (machine_mode mode, rtx x)
646 {
647   rtx temp, set;
648   rtx_insn *insn;
649 
650   if (REG_P (x))
651     return x;
652 
653   if (general_operand (x, mode))
654     {
655       temp = gen_reg_rtx (mode);
656       insn = emit_move_insn (temp, x);
657     }
658   else
659     {
660       temp = force_operand (x, NULL_RTX);
661       if (REG_P (temp))
662 	insn = get_last_insn ();
663       else
664 	{
665 	  rtx temp2 = gen_reg_rtx (mode);
666 	  insn = emit_move_insn (temp2, temp);
667 	  temp = temp2;
668 	}
669     }
670 
671   /* Let optimizers know that TEMP's value never changes
672      and that X can be substituted for it.  Don't get confused
673      if INSN set something else (such as a SUBREG of TEMP).  */
674   if (CONSTANT_P (x)
675       && (set = single_set (insn)) != 0
676       && SET_DEST (set) == temp
677       && ! rtx_equal_p (x, SET_SRC (set)))
678     set_unique_reg_note (insn, REG_EQUAL, x);
679 
680   /* Let optimizers know that TEMP is a pointer, and if so, the
681      known alignment of that pointer.  */
682   {
683     unsigned align = 0;
684     if (GET_CODE (x) == SYMBOL_REF)
685       {
686         align = BITS_PER_UNIT;
687 	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
688 	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
689       }
690     else if (GET_CODE (x) == LABEL_REF)
691       align = BITS_PER_UNIT;
692     else if (GET_CODE (x) == CONST
693 	     && GET_CODE (XEXP (x, 0)) == PLUS
694 	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
695 	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
696       {
697 	rtx s = XEXP (XEXP (x, 0), 0);
698 	rtx c = XEXP (XEXP (x, 0), 1);
699 	unsigned sa, ca;
700 
701 	sa = BITS_PER_UNIT;
702 	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
703 	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
704 
705 	if (INTVAL (c) == 0)
706 	  align = sa;
707 	else
708 	  {
709 	    ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
710 	    align = MIN (sa, ca);
711 	  }
712       }
713 
714     if (align || (MEM_P (x) && MEM_POINTER (x)))
715       mark_reg_pointer (temp, align);
716   }
717 
718   return temp;
719 }
720 
721 /* If X is a memory ref, copy its contents to a new temp reg and return
722    that reg.  Otherwise, return X.  */
723 
724 rtx
725 force_not_mem (rtx x)
726 {
727   rtx temp;
728 
729   if (!MEM_P (x) || GET_MODE (x) == BLKmode)
730     return x;
731 
732   temp = gen_reg_rtx (GET_MODE (x));
733 
734   if (MEM_POINTER (x))
735     REG_POINTER (temp) = 1;
736 
737   emit_move_insn (temp, x);
738   return temp;
739 }
740 
741 /* Copy X to TARGET (if it's nonzero and a reg)
742    or to a new temp reg and return that reg.
743    MODE is the mode to use for X in case it is a constant.  */
744 
745 rtx
746 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
747 {
748   rtx temp;
749 
750   if (target && REG_P (target))
751     temp = target;
752   else
753     temp = gen_reg_rtx (mode);
754 
755   emit_move_insn (temp, x);
756   return temp;
757 }
758 
759 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
760    PUNSIGNEDP points to the signedness of the type and may be adjusted
761    to show what signedness to use on extension operations.
762 
763    FOR_RETURN is nonzero if the caller is promoting the return value
764    of FNDECL, else it is for promoting args.  */
765 
766 machine_mode
767 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
768 		       const_tree funtype, int for_return)
769 {
770   /* Called without a type node for a libcall.  */
771   if (type == NULL_TREE)
772     {
773       if (INTEGRAL_MODE_P (mode))
774 	return targetm.calls.promote_function_mode (NULL_TREE, mode,
775 						    punsignedp, funtype,
776 						    for_return);
777       else
778 	return mode;
779     }
780 
781   switch (TREE_CODE (type))
782     {
783     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
784     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
785     case POINTER_TYPE:   case REFERENCE_TYPE:
786       return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
787 						  for_return);
788 
789     default:
790       return mode;
791     }
792 }
793 /* Return the mode to use to store a scalar of TYPE and MODE.
794    PUNSIGNEDP points to the signedness of the type and may be adjusted
795    to show what signedness to use on extension operations.  */
796 
797 machine_mode
798 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
799 	      int *punsignedp ATTRIBUTE_UNUSED)
800 {
801 #ifdef PROMOTE_MODE
802   enum tree_code code;
803   int unsignedp;
804   scalar_mode smode;
805 #endif
806 
807   /* For libcalls this is invoked without TYPE from the backends
808      TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
809      case.  */
810   if (type == NULL_TREE)
811     return mode;
812 
813   /* FIXME: this is the same logic that was there until GCC 4.4, but we
814      probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
815      is not defined.  The affected targets are M32C, S390, SPARC.  */
816 #ifdef PROMOTE_MODE
817   code = TREE_CODE (type);
818   unsignedp = *punsignedp;
819 
820   switch (code)
821     {
822     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
823     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
824       /* Values of these types always have scalar mode.  */
825       smode = as_a <scalar_mode> (mode);
826       PROMOTE_MODE (smode, unsignedp, type);
827       *punsignedp = unsignedp;
828       return smode;
829 
830 #ifdef POINTERS_EXTEND_UNSIGNED
831     case REFERENCE_TYPE:
832     case POINTER_TYPE:
833       *punsignedp = POINTERS_EXTEND_UNSIGNED;
834       return targetm.addr_space.address_mode
835 	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
836 #endif
837 
838     default:
839       return mode;
840     }
841 #else
842   return mode;
843 #endif
844 }
845 
846 
847 /* Use one of promote_mode or promote_function_mode to find the promoted
848    mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
849    of DECL after promotion.  */
850 
851 machine_mode
852 promote_decl_mode (const_tree decl, int *punsignedp)
853 {
854   tree type = TREE_TYPE (decl);
855   int unsignedp = TYPE_UNSIGNED (type);
856   machine_mode mode = DECL_MODE (decl);
857   machine_mode pmode;
858 
859   if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
860     pmode = promote_function_mode (type, mode, &unsignedp,
861                                    TREE_TYPE (current_function_decl), 1);
862   else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
863     pmode = promote_function_mode (type, mode, &unsignedp,
864                                    TREE_TYPE (current_function_decl), 2);
865   else
866     pmode = promote_mode (type, mode, &unsignedp);
867 
868   if (punsignedp)
869     *punsignedp = unsignedp;
870   return pmode;
871 }
872 
873 /* Return the promoted mode for name.  If it is a named SSA_NAME, it
874    is the same as promote_decl_mode.  Otherwise, it is the promoted
875    mode of a temp decl of same type as the SSA_NAME, if we had created
876    one.  */
877 
878 machine_mode
879 promote_ssa_mode (const_tree name, int *punsignedp)
880 {
881   gcc_assert (TREE_CODE (name) == SSA_NAME);
882 
883   /* Partitions holding parms and results must be promoted as expected
884      by function.c.  */
885   if (SSA_NAME_VAR (name)
886       && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
887 	  || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
888     {
889       machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
890       if (mode != BLKmode)
891 	return mode;
892     }
893 
894   tree type = TREE_TYPE (name);
895   int unsignedp = TYPE_UNSIGNED (type);
896   machine_mode mode = TYPE_MODE (type);
897 
898   /* Bypass TYPE_MODE when it maps vector modes to BLKmode.  */
899   if (mode == BLKmode)
900     {
901       gcc_assert (VECTOR_TYPE_P (type));
902       mode = type->type_common.mode;
903     }
904 
905   machine_mode pmode = promote_mode (type, mode, &unsignedp);
906   if (punsignedp)
907     *punsignedp = unsignedp;
908 
909   return pmode;
910 }
911 
912 
913 
914 /* Controls the behavior of {anti_,}adjust_stack.  */
915 static bool suppress_reg_args_size;
916 
917 /* A helper for adjust_stack and anti_adjust_stack.  */
918 
919 static void
920 adjust_stack_1 (rtx adjust, bool anti_p)
921 {
922   rtx temp;
923   rtx_insn *insn;
924 
925   /* Hereafter anti_p means subtract_p.  */
926   if (!STACK_GROWS_DOWNWARD)
927     anti_p = !anti_p;
928 
929   temp = expand_binop (Pmode,
930 		       anti_p ? sub_optab : add_optab,
931 		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
932 		       OPTAB_LIB_WIDEN);
933 
934   if (temp != stack_pointer_rtx)
935     insn = emit_move_insn (stack_pointer_rtx, temp);
936   else
937     {
938       insn = get_last_insn ();
939       temp = single_set (insn);
940       gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
941     }
942 
943   if (!suppress_reg_args_size)
944     add_args_size_note (insn, stack_pointer_delta);
945 }
946 
947 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
948    This pops when ADJUST is positive.  ADJUST need not be constant.  */
949 
950 void
951 adjust_stack (rtx adjust)
952 {
953   if (adjust == const0_rtx)
954     return;
955 
956   /* We expect all variable sized adjustments to be multiple of
957      PREFERRED_STACK_BOUNDARY.  */
958   if (CONST_INT_P (adjust))
959     stack_pointer_delta -= INTVAL (adjust);
960 
961   adjust_stack_1 (adjust, false);
962 }
963 
964 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
965    This pushes when ADJUST is positive.  ADJUST need not be constant.  */
966 
967 void
968 anti_adjust_stack (rtx adjust)
969 {
970   if (adjust == const0_rtx)
971     return;
972 
973   /* We expect all variable sized adjustments to be multiple of
974      PREFERRED_STACK_BOUNDARY.  */
975   if (CONST_INT_P (adjust))
976     stack_pointer_delta += INTVAL (adjust);
977 
978   adjust_stack_1 (adjust, true);
979 }
980 
981 /* Round the size of a block to be pushed up to the boundary required
982    by this machine.  SIZE is the desired size, which need not be constant.  */
983 
984 static rtx
985 round_push (rtx size)
986 {
987   rtx align_rtx, alignm1_rtx;
988 
989   if (!SUPPORTS_STACK_ALIGNMENT
990       || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
991     {
992       int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
993 
994       if (align == 1)
995 	return size;
996 
997       if (CONST_INT_P (size))
998 	{
999 	  HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
1000 
1001 	  if (INTVAL (size) != new_size)
1002 	    size = GEN_INT (new_size);
1003 	  return size;
1004 	}
1005 
1006       align_rtx = GEN_INT (align);
1007       alignm1_rtx = GEN_INT (align - 1);
1008     }
1009   else
1010     {
1011       /* If crtl->preferred_stack_boundary might still grow, use
1012 	 virtual_preferred_stack_boundary_rtx instead.  This will be
1013 	 substituted by the right value in vregs pass and optimized
1014 	 during combine.  */
1015       align_rtx = virtual_preferred_stack_boundary_rtx;
1016       alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
1017 				   NULL_RTX);
1018     }
1019 
1020   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1021      but we know it can't.  So add ourselves and then do
1022      TRUNC_DIV_EXPR.  */
1023   size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1024 		       NULL_RTX, 1, OPTAB_LIB_WIDEN);
1025   size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1026 			NULL_RTX, 1);
1027   size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1028 
1029   return size;
1030 }
1031 
1032 /* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
1033    to a previously-created save area.  If no save area has been allocated,
1034    this function will allocate one.  If a save area is specified, it
1035    must be of the proper mode.  */
1036 
1037 void
1038 emit_stack_save (enum save_level save_level, rtx *psave)
1039 {
1040   rtx sa = *psave;
1041   /* The default is that we use a move insn and save in a Pmode object.  */
1042   rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1043   machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1044 
1045   /* See if this machine has anything special to do for this kind of save.  */
1046   switch (save_level)
1047     {
1048     case SAVE_BLOCK:
1049       if (targetm.have_save_stack_block ())
1050 	fcn = targetm.gen_save_stack_block;
1051       break;
1052     case SAVE_FUNCTION:
1053       if (targetm.have_save_stack_function ())
1054 	fcn = targetm.gen_save_stack_function;
1055       break;
1056     case SAVE_NONLOCAL:
1057       if (targetm.have_save_stack_nonlocal ())
1058 	fcn = targetm.gen_save_stack_nonlocal;
1059       break;
1060     default:
1061       break;
1062     }
1063 
1064   /* If there is no save area and we have to allocate one, do so.  Otherwise
1065      verify the save area is the proper mode.  */
1066 
1067   if (sa == 0)
1068     {
1069       if (mode != VOIDmode)
1070 	{
1071 	  if (save_level == SAVE_NONLOCAL)
1072 	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1073 	  else
1074 	    *psave = sa = gen_reg_rtx (mode);
1075 	}
1076     }
1077 
1078   do_pending_stack_adjust ();
1079   if (sa != 0)
1080     sa = validize_mem (sa);
1081   emit_insn (fcn (sa, stack_pointer_rtx));
1082 }
1083 
1084 /* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1085    area made by emit_stack_save.  If it is zero, we have nothing to do.  */
1086 
1087 void
1088 emit_stack_restore (enum save_level save_level, rtx sa)
1089 {
1090   /* The default is that we use a move insn.  */
1091   rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1092 
1093   /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1094      STACK_POINTER and HARD_FRAME_POINTER.
1095      If stack_realign_fp, the x86 backend emits a prologue that aligns only
1096      STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1097      aligned variables, which is reflected in ix86_can_eliminate.
1098      We normally still have the realigned STACK_POINTER that we can use.
1099      But if there is a stack restore still present at reload, it can trigger
1100      mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1101      FRAME_POINTER into a hard reg.
1102      To prevent this situation, we force need_drap if we emit a stack
1103      restore.  */
1104   if (SUPPORTS_STACK_ALIGNMENT)
1105     crtl->need_drap = true;
1106 
1107   /* See if this machine has anything special to do for this kind of save.  */
1108   switch (save_level)
1109     {
1110     case SAVE_BLOCK:
1111       if (targetm.have_restore_stack_block ())
1112 	fcn = targetm.gen_restore_stack_block;
1113       break;
1114     case SAVE_FUNCTION:
1115       if (targetm.have_restore_stack_function ())
1116 	fcn = targetm.gen_restore_stack_function;
1117       break;
1118     case SAVE_NONLOCAL:
1119       if (targetm.have_restore_stack_nonlocal ())
1120 	fcn = targetm.gen_restore_stack_nonlocal;
1121       break;
1122     default:
1123       break;
1124     }
1125 
1126   if (sa != 0)
1127     {
1128       sa = validize_mem (sa);
1129       /* These clobbers prevent the scheduler from moving
1130 	 references to variable arrays below the code
1131 	 that deletes (pops) the arrays.  */
1132       emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1133       emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1134     }
1135 
1136   discard_pending_stack_adjust ();
1137 
1138   emit_insn (fcn (stack_pointer_rtx, sa));
1139 }
1140 
1141 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1142    function.  This should be called whenever we allocate or deallocate
1143    dynamic stack space.  */
1144 
1145 void
1146 update_nonlocal_goto_save_area (void)
1147 {
1148   tree t_save;
1149   rtx r_save;
1150 
1151   /* The nonlocal_goto_save_area object is an array of N pointers.  The
1152      first one is used for the frame pointer save; the rest are sized by
1153      STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1154      of the stack save area slots.  */
1155   t_save = build4 (ARRAY_REF,
1156 		   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1157 		   cfun->nonlocal_goto_save_area,
1158 		   integer_one_node, NULL_TREE, NULL_TREE);
1159   r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1160 
1161   emit_stack_save (SAVE_NONLOCAL, &r_save);
1162 }
1163 
1164 /* Record a new stack level for the current function.  This should be called
1165    whenever we allocate or deallocate dynamic stack space.  */
1166 
1167 void
1168 record_new_stack_level (void)
1169 {
1170   /* Record the new stack level for nonlocal gotos.  */
1171   if (cfun->nonlocal_goto_save_area)
1172     update_nonlocal_goto_save_area ();
1173 
1174   /* Record the new stack level for SJLJ exceptions.  */
1175   if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1176     update_sjlj_context ();
1177 }
1178 
1179 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET.  */
1180 static rtx
1181 align_dynamic_address (rtx target, unsigned required_align)
1182 {
1183   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1184      but we know it can't.  So add ourselves and then do
1185      TRUNC_DIV_EXPR.  */
1186   target = expand_binop (Pmode, add_optab, target,
1187 			 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1188 				       Pmode),
1189 			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1190   target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1191 			  gen_int_mode (required_align / BITS_PER_UNIT,
1192 					Pmode),
1193 			  NULL_RTX, 1);
1194   target = expand_mult (Pmode, target,
1195 			gen_int_mode (required_align / BITS_PER_UNIT,
1196 				      Pmode),
1197 			NULL_RTX, 1);
1198 
1199   return target;
1200 }
1201 
1202 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1203    be dynamically pushed on the stack.
1204 
1205    *PSIZE is an rtx representing the size of the area.
1206 
1207    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1208    parameter may be zero.  If so, a proper value will be extracted
1209    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1210 
1211    REQUIRED_ALIGN is the alignment (in bits) required for the region
1212    of memory.
1213 
1214    If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1215    the additional size returned.  */
1216 void
1217 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1218 			unsigned required_align,
1219 			HOST_WIDE_INT *pstack_usage_size)
1220 {
1221   rtx size = *psize;
1222 
1223   /* Ensure the size is in the proper mode.  */
1224   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1225     size = convert_to_mode (Pmode, size, 1);
1226 
1227   if (CONST_INT_P (size))
1228     {
1229       unsigned HOST_WIDE_INT lsb;
1230 
1231       lsb = INTVAL (size);
1232       lsb &= -lsb;
1233 
1234       /* Watch out for overflow truncating to "unsigned".  */
1235       if (lsb > UINT_MAX / BITS_PER_UNIT)
1236 	size_align = 1u << (HOST_BITS_PER_INT - 1);
1237       else
1238 	size_align = (unsigned)lsb * BITS_PER_UNIT;
1239     }
1240   else if (size_align < BITS_PER_UNIT)
1241     size_align = BITS_PER_UNIT;
1242 
1243   /* We can't attempt to minimize alignment necessary, because we don't
1244      know the final value of preferred_stack_boundary yet while executing
1245      this code.  */
1246   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1247     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1248 
1249   /* We will need to ensure that the address we return is aligned to
1250      REQUIRED_ALIGN.  At this point in the compilation, we don't always
1251      know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1252      (it might depend on the size of the outgoing parameter lists, for
1253      example), so we must preventively align the value.  We leave space
1254      in SIZE for the hole that might result from the alignment operation.  */
1255 
1256   unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
1257   if (known_align == 0)
1258     known_align = BITS_PER_UNIT;
1259   if (required_align > known_align)
1260     {
1261       unsigned extra = (required_align - known_align) / BITS_PER_UNIT;
1262       size = plus_constant (Pmode, size, extra);
1263       size = force_operand (size, NULL_RTX);
1264       if (size_align > known_align)
1265 	size_align = known_align;
1266 
1267       if (flag_stack_usage_info && pstack_usage_size)
1268 	*pstack_usage_size += extra;
1269     }
1270 
1271   /* Round the size to a multiple of the required stack alignment.
1272      Since the stack is presumed to be rounded before this allocation,
1273      this will maintain the required alignment.
1274 
1275      If the stack grows downward, we could save an insn by subtracting
1276      SIZE from the stack pointer and then aligning the stack pointer.
1277      The problem with this is that the stack pointer may be unaligned
1278      between the execution of the subtraction and alignment insns and
1279      some machines do not allow this.  Even on those that do, some
1280      signal handlers malfunction if a signal should occur between those
1281      insns.  Since this is an extremely rare event, we have no reliable
1282      way of knowing which systems have this problem.  So we avoid even
1283      momentarily mis-aligning the stack.  */
1284   if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1285     {
1286       size = round_push (size);
1287 
1288       if (flag_stack_usage_info && pstack_usage_size)
1289 	{
1290 	  int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1291 	  *pstack_usage_size =
1292 	    (*pstack_usage_size + align - 1) / align * align;
1293 	}
1294     }
1295 
1296   *psize = size;
1297 }
1298 
1299 /* Return the number of bytes to "protect" on the stack for -fstack-check.
1300 
1301    "protect" in the context of -fstack-check means how many bytes we
1302    should always ensure are available on the stack.  More importantly
1303    this is how many bytes are skipped when probing the stack.
1304 
1305    On some targets we want to reuse the -fstack-check prologue support
1306    to give a degree of protection against stack clashing style attacks.
1307 
1308    In that scenario we do not want to skip bytes before probing as that
1309    would render the stack clash protections useless.
1310 
1311    So we never use STACK_CHECK_PROTECT directly.  Instead we indirect though
1312    this helper which allows us to provide different values for
1313    -fstack-check and -fstack-clash-protection.  */
1314 HOST_WIDE_INT
1315 get_stack_check_protect (void)
1316 {
1317   if (flag_stack_clash_protection)
1318     return 0;
1319  return STACK_CHECK_PROTECT;
1320 }
1321 
1322 /* Return an rtx representing the address of an area of memory dynamically
1323    pushed on the stack.
1324 
1325    Any required stack pointer alignment is preserved.
1326 
1327    SIZE is an rtx representing the size of the area.
1328 
1329    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1330    parameter may be zero.  If so, a proper value will be extracted
1331    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1332 
1333    REQUIRED_ALIGN is the alignment (in bits) required for the region
1334    of memory.
1335 
1336    MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
1337    no such upper bound is known.
1338 
1339    If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1340    stack space allocated by the generated code cannot be added with itself
1341    in the course of the execution of the function.  It is always safe to
1342    pass FALSE here and the following criterion is sufficient in order to
1343    pass TRUE: every path in the CFG that starts at the allocation point and
1344    loops to it executes the associated deallocation code.  */
1345 
1346 rtx
1347 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1348 			      unsigned required_align,
1349 			      HOST_WIDE_INT max_size,
1350 			      bool cannot_accumulate)
1351 {
1352   HOST_WIDE_INT stack_usage_size = -1;
1353   rtx_code_label *final_label;
1354   rtx final_target, target;
1355 
1356   /* If we're asking for zero bytes, it doesn't matter what we point
1357      to since we can't dereference it.  But return a reasonable
1358      address anyway.  */
1359   if (size == const0_rtx)
1360     return virtual_stack_dynamic_rtx;
1361 
1362   /* Otherwise, show we're calling alloca or equivalent.  */
1363   cfun->calls_alloca = 1;
1364 
1365   /* If stack usage info is requested, look into the size we are passed.
1366      We need to do so this early to avoid the obfuscation that may be
1367      introduced later by the various alignment operations.  */
1368   if (flag_stack_usage_info)
1369     {
1370       if (CONST_INT_P (size))
1371 	stack_usage_size = INTVAL (size);
1372       else if (REG_P (size))
1373         {
1374 	  /* Look into the last emitted insn and see if we can deduce
1375 	     something for the register.  */
1376 	  rtx_insn *insn;
1377 	  rtx set, note;
1378 	  insn = get_last_insn ();
1379 	  if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1380 	    {
1381 	      if (CONST_INT_P (SET_SRC (set)))
1382 		stack_usage_size = INTVAL (SET_SRC (set));
1383 	      else if ((note = find_reg_equal_equiv_note (insn))
1384 		       && CONST_INT_P (XEXP (note, 0)))
1385 		stack_usage_size = INTVAL (XEXP (note, 0));
1386 	    }
1387 	}
1388 
1389       /* If the size is not constant, try the maximum size.  */
1390       if (stack_usage_size < 0)
1391 	stack_usage_size = max_size;
1392 
1393       /* If the size is still not constant, we can't say anything.  */
1394       if (stack_usage_size < 0)
1395 	{
1396 	  current_function_has_unbounded_dynamic_stack_size = 1;
1397 	  stack_usage_size = 0;
1398 	}
1399     }
1400 
1401   get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1402 
1403   target = gen_reg_rtx (Pmode);
1404 
1405   /* The size is supposed to be fully adjusted at this point so record it
1406      if stack usage info is requested.  */
1407   if (flag_stack_usage_info)
1408     {
1409       current_function_dynamic_stack_size += stack_usage_size;
1410 
1411       /* ??? This is gross but the only safe stance in the absence
1412 	 of stack usage oriented flow analysis.  */
1413       if (!cannot_accumulate)
1414 	current_function_has_unbounded_dynamic_stack_size = 1;
1415     }
1416 
1417   do_pending_stack_adjust ();
1418 
1419   final_label = NULL;
1420   final_target = NULL_RTX;
1421 
1422   /* If we are splitting the stack, we need to ask the backend whether
1423      there is enough room on the current stack.  If there isn't, or if
1424      the backend doesn't know how to tell is, then we need to call a
1425      function to allocate memory in some other way.  This memory will
1426      be released when we release the current stack segment.  The
1427      effect is that stack allocation becomes less efficient, but at
1428      least it doesn't cause a stack overflow.  */
1429   if (flag_split_stack)
1430     {
1431       rtx_code_label *available_label;
1432       rtx ask, space, func;
1433 
1434       available_label = NULL;
1435 
1436       if (targetm.have_split_stack_space_check ())
1437 	{
1438 	  available_label = gen_label_rtx ();
1439 
1440 	  /* This instruction will branch to AVAILABLE_LABEL if there
1441 	     are SIZE bytes available on the stack.  */
1442 	  emit_insn (targetm.gen_split_stack_space_check
1443 		     (size, available_label));
1444 	}
1445 
1446       /* The __morestack_allocate_stack_space function will allocate
1447 	 memory using malloc.  If the alignment of the memory returned
1448 	 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1449 	 make sure we allocate enough space.  */
1450       if (MALLOC_ABI_ALIGNMENT >= required_align)
1451 	ask = size;
1452       else
1453 	ask = expand_binop (Pmode, add_optab, size,
1454 			    gen_int_mode (required_align / BITS_PER_UNIT - 1,
1455 					  Pmode),
1456 			    NULL_RTX, 1, OPTAB_LIB_WIDEN);
1457 
1458       func = init_one_libfunc ("__morestack_allocate_stack_space");
1459 
1460       space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1461 				       ask, Pmode);
1462 
1463       if (available_label == NULL_RTX)
1464 	return space;
1465 
1466       final_target = gen_reg_rtx (Pmode);
1467 
1468       emit_move_insn (final_target, space);
1469 
1470       final_label = gen_label_rtx ();
1471       emit_jump (final_label);
1472 
1473       emit_label (available_label);
1474     }
1475 
1476  /* We ought to be called always on the toplevel and stack ought to be aligned
1477     properly.  */
1478   gcc_assert (multiple_p (stack_pointer_delta,
1479 			  PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
1480 
1481   /* If needed, check that we have the required amount of stack.  Take into
1482      account what has already been checked.  */
1483   if (STACK_CHECK_MOVING_SP)
1484     ;
1485   else if (flag_stack_check == GENERIC_STACK_CHECK)
1486     probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1487 		       size);
1488   else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1489     probe_stack_range (get_stack_check_protect (), size);
1490 
1491   /* Don't let anti_adjust_stack emit notes.  */
1492   suppress_reg_args_size = true;
1493 
1494   /* Perform the required allocation from the stack.  Some systems do
1495      this differently than simply incrementing/decrementing from the
1496      stack pointer, such as acquiring the space by calling malloc().  */
1497   if (targetm.have_allocate_stack ())
1498     {
1499       struct expand_operand ops[2];
1500       /* We don't have to check against the predicate for operand 0 since
1501 	 TARGET is known to be a pseudo of the proper mode, which must
1502 	 be valid for the operand.  */
1503       create_fixed_operand (&ops[0], target);
1504       create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1505       expand_insn (targetm.code_for_allocate_stack, 2, ops);
1506     }
1507   else
1508     {
1509       poly_int64 saved_stack_pointer_delta;
1510 
1511       if (!STACK_GROWS_DOWNWARD)
1512 	emit_move_insn (target, virtual_stack_dynamic_rtx);
1513 
1514       /* Check stack bounds if necessary.  */
1515       if (crtl->limit_stack)
1516 	{
1517 	  rtx available;
1518 	  rtx_code_label *space_available = gen_label_rtx ();
1519 	  if (STACK_GROWS_DOWNWARD)
1520 	    available = expand_binop (Pmode, sub_optab,
1521 				      stack_pointer_rtx, stack_limit_rtx,
1522 				      NULL_RTX, 1, OPTAB_WIDEN);
1523 	  else
1524 	    available = expand_binop (Pmode, sub_optab,
1525 				      stack_limit_rtx, stack_pointer_rtx,
1526 				      NULL_RTX, 1, OPTAB_WIDEN);
1527 
1528 	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1529 				   space_available);
1530 	  if (targetm.have_trap ())
1531 	    emit_insn (targetm.gen_trap ());
1532 	  else
1533 	    error ("stack limits not supported on this target");
1534 	  emit_barrier ();
1535 	  emit_label (space_available);
1536 	}
1537 
1538       saved_stack_pointer_delta = stack_pointer_delta;
1539 
1540       if (flag_stack_check && STACK_CHECK_MOVING_SP)
1541 	anti_adjust_stack_and_probe (size, false);
1542       else if (flag_stack_clash_protection)
1543 	anti_adjust_stack_and_probe_stack_clash (size);
1544       else
1545 	anti_adjust_stack (size);
1546 
1547       /* Even if size is constant, don't modify stack_pointer_delta.
1548 	 The constant size alloca should preserve
1549 	 crtl->preferred_stack_boundary alignment.  */
1550       stack_pointer_delta = saved_stack_pointer_delta;
1551 
1552       if (STACK_GROWS_DOWNWARD)
1553 	emit_move_insn (target, virtual_stack_dynamic_rtx);
1554     }
1555 
1556   suppress_reg_args_size = false;
1557 
1558   /* Finish up the split stack handling.  */
1559   if (final_label != NULL_RTX)
1560     {
1561       gcc_assert (flag_split_stack);
1562       emit_move_insn (final_target, target);
1563       emit_label (final_label);
1564       target = final_target;
1565     }
1566 
1567   target = align_dynamic_address (target, required_align);
1568 
1569   /* Now that we've committed to a return value, mark its alignment.  */
1570   mark_reg_pointer (target, required_align);
1571 
1572   /* Record the new stack level.  */
1573   record_new_stack_level ();
1574 
1575   return target;
1576 }
1577 
1578 /* Return an rtx representing the address of an area of memory already
1579    statically pushed onto the stack in the virtual stack vars area.  (It is
1580    assumed that the area is allocated in the function prologue.)
1581 
1582    Any required stack pointer alignment is preserved.
1583 
1584    OFFSET is the offset of the area into the virtual stack vars area.
1585 
1586    REQUIRED_ALIGN is the alignment (in bits) required for the region
1587    of memory.  */
1588 
1589 rtx
1590 get_dynamic_stack_base (poly_int64 offset, unsigned required_align)
1591 {
1592   rtx target;
1593 
1594   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1595     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1596 
1597   target = gen_reg_rtx (Pmode);
1598   emit_move_insn (target, virtual_stack_vars_rtx);
1599   target = expand_binop (Pmode, add_optab, target,
1600 			 gen_int_mode (offset, Pmode),
1601 			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1602   target = align_dynamic_address (target, required_align);
1603 
1604   /* Now that we've committed to a return value, mark its alignment.  */
1605   mark_reg_pointer (target, required_align);
1606 
1607   return target;
1608 }
1609 
1610 /* A front end may want to override GCC's stack checking by providing a
1611    run-time routine to call to check the stack, so provide a mechanism for
1612    calling that routine.  */
1613 
1614 static GTY(()) rtx stack_check_libfunc;
1615 
1616 void
1617 set_stack_check_libfunc (const char *libfunc_name)
1618 {
1619   gcc_assert (stack_check_libfunc == NULL_RTX);
1620   stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1621 }
1622 
1623 /* Emit one stack probe at ADDRESS, an address within the stack.  */
1624 
1625 void
1626 emit_stack_probe (rtx address)
1627 {
1628   if (targetm.have_probe_stack_address ())
1629     {
1630       struct expand_operand ops[1];
1631       insn_code icode = targetm.code_for_probe_stack_address;
1632       create_address_operand (ops, address);
1633       maybe_legitimize_operands (icode, 0, 1, ops);
1634       expand_insn (icode, 1, ops);
1635     }
1636   else
1637     {
1638       rtx memref = gen_rtx_MEM (word_mode, address);
1639 
1640       MEM_VOLATILE_P (memref) = 1;
1641       memref = validize_mem (memref);
1642 
1643       /* See if we have an insn to probe the stack.  */
1644       if (targetm.have_probe_stack ())
1645 	emit_insn (targetm.gen_probe_stack (memref));
1646       else
1647 	emit_move_insn (memref, const0_rtx);
1648     }
1649 }
1650 
1651 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1652    FIRST is a constant and size is a Pmode RTX.  These are offsets from
1653    the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1654    or subtract them from the stack pointer.  */
1655 
1656 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1657 
1658 #if STACK_GROWS_DOWNWARD
1659 #define STACK_GROW_OP MINUS
1660 #define STACK_GROW_OPTAB sub_optab
1661 #define STACK_GROW_OFF(off) -(off)
1662 #else
1663 #define STACK_GROW_OP PLUS
1664 #define STACK_GROW_OPTAB add_optab
1665 #define STACK_GROW_OFF(off) (off)
1666 #endif
1667 
1668 void
1669 probe_stack_range (HOST_WIDE_INT first, rtx size)
1670 {
1671   /* First ensure SIZE is Pmode.  */
1672   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1673     size = convert_to_mode (Pmode, size, 1);
1674 
1675   /* Next see if we have a function to check the stack.  */
1676   if (stack_check_libfunc)
1677     {
1678       rtx addr = memory_address (Pmode,
1679 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1680 					         stack_pointer_rtx,
1681 					         plus_constant (Pmode,
1682 								size, first)));
1683       emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode,
1684 			 addr, Pmode);
1685     }
1686 
1687   /* Next see if we have an insn to check the stack.  */
1688   else if (targetm.have_check_stack ())
1689     {
1690       struct expand_operand ops[1];
1691       rtx addr = memory_address (Pmode,
1692 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1693 					         stack_pointer_rtx,
1694 					         plus_constant (Pmode,
1695 								size, first)));
1696       bool success;
1697       create_input_operand (&ops[0], addr, Pmode);
1698       success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1699       gcc_assert (success);
1700     }
1701 
1702   /* Otherwise we have to generate explicit probes.  If we have a constant
1703      small number of them to generate, that's the easy case.  */
1704   else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1705     {
1706       HOST_WIDE_INT isize = INTVAL (size), i;
1707       rtx addr;
1708 
1709       /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1710 	 it exceeds SIZE.  If only one probe is needed, this will not
1711 	 generate any code.  Then probe at FIRST + SIZE.  */
1712       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1713 	{
1714 	  addr = memory_address (Pmode,
1715 				 plus_constant (Pmode, stack_pointer_rtx,
1716 				 		STACK_GROW_OFF (first + i)));
1717 	  emit_stack_probe (addr);
1718 	}
1719 
1720       addr = memory_address (Pmode,
1721 			     plus_constant (Pmode, stack_pointer_rtx,
1722 					    STACK_GROW_OFF (first + isize)));
1723       emit_stack_probe (addr);
1724     }
1725 
1726   /* In the variable case, do the same as above, but in a loop.  Note that we
1727      must be extra careful with variables wrapping around because we might be
1728      at the very top (or the very bottom) of the address space and we have to
1729      be able to handle this case properly; in particular, we use an equality
1730      test for the loop condition.  */
1731   else
1732     {
1733       rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1734       rtx_code_label *loop_lab = gen_label_rtx ();
1735       rtx_code_label *end_lab = gen_label_rtx ();
1736 
1737       /* Step 1: round SIZE to the previous multiple of the interval.  */
1738 
1739       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1740       rounded_size
1741 	= simplify_gen_binary (AND, Pmode, size,
1742 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1743       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1744 
1745 
1746       /* Step 2: compute initial and final value of the loop counter.  */
1747 
1748       /* TEST_ADDR = SP + FIRST.  */
1749       test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1750 					 	 stack_pointer_rtx,
1751 						 gen_int_mode (first, Pmode)),
1752 				 NULL_RTX);
1753 
1754       /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1755       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1756 						 test_addr,
1757 						 rounded_size_op), NULL_RTX);
1758 
1759 
1760       /* Step 3: the loop
1761 
1762 	 while (TEST_ADDR != LAST_ADDR)
1763 	   {
1764 	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1765 	     probe at TEST_ADDR
1766 	   }
1767 
1768 	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1769 	 until it is equal to ROUNDED_SIZE.  */
1770 
1771       emit_label (loop_lab);
1772 
1773       /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1774       emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1775 			       end_lab);
1776 
1777       /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1778       temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1779 			   gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1780 			   1, OPTAB_WIDEN);
1781 
1782       gcc_assert (temp == test_addr);
1783 
1784       /* Probe at TEST_ADDR.  */
1785       emit_stack_probe (test_addr);
1786 
1787       emit_jump (loop_lab);
1788 
1789       emit_label (end_lab);
1790 
1791 
1792       /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1793 	 that SIZE is equal to ROUNDED_SIZE.  */
1794 
1795       /* TEMP = SIZE - ROUNDED_SIZE.  */
1796       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1797       if (temp != const0_rtx)
1798 	{
1799 	  rtx addr;
1800 
1801 	  if (CONST_INT_P (temp))
1802 	    {
1803 	      /* Use [base + disp} addressing mode if supported.  */
1804 	      HOST_WIDE_INT offset = INTVAL (temp);
1805 	      addr = memory_address (Pmode,
1806 				     plus_constant (Pmode, last_addr,
1807 						    STACK_GROW_OFF (offset)));
1808 	    }
1809 	  else
1810 	    {
1811 	      /* Manual CSE if the difference is not known at compile-time.  */
1812 	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1813 	      addr = memory_address (Pmode,
1814 				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1815 						     last_addr, temp));
1816 	    }
1817 
1818 	  emit_stack_probe (addr);
1819 	}
1820     }
1821 
1822   /* Make sure nothing is scheduled before we are done.  */
1823   emit_insn (gen_blockage ());
1824 }
1825 
1826 /* Compute parameters for stack clash probing a dynamic stack
1827    allocation of SIZE bytes.
1828 
1829    We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.
1830 
1831    Additionally we conditionally dump the type of probing that will
1832    be needed given the values computed.  */
1833 
1834 void
1835 compute_stack_clash_protection_loop_data (rtx *rounded_size, rtx *last_addr,
1836 					  rtx *residual,
1837 					  HOST_WIDE_INT *probe_interval,
1838 					  rtx size)
1839 {
1840   /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
1841   *probe_interval
1842     = 1 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_PROBE_INTERVAL);
1843   *rounded_size = simplify_gen_binary (AND, Pmode, size,
1844 				        GEN_INT (-*probe_interval));
1845 
1846   /* Compute the value of the stack pointer for the last iteration.
1847      It's just SP + ROUNDED_SIZE.  */
1848   rtx rounded_size_op = force_operand (*rounded_size, NULL_RTX);
1849   *last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1850 					      stack_pointer_rtx,
1851 					      rounded_size_op),
1852 			      NULL_RTX);
1853 
1854   /* Compute any residuals not allocated by the loop above.  Residuals
1855      are just the ROUNDED_SIZE - SIZE.  */
1856   *residual = simplify_gen_binary (MINUS, Pmode, size, *rounded_size);
1857 
1858   /* Dump key information to make writing tests easy.  */
1859   if (dump_file)
1860     {
1861       if (*rounded_size == CONST0_RTX (Pmode))
1862 	fprintf (dump_file,
1863 		 "Stack clash skipped dynamic allocation and probing loop.\n");
1864       else if (CONST_INT_P (*rounded_size)
1865 	       && INTVAL (*rounded_size) <= 4 * *probe_interval)
1866 	fprintf (dump_file,
1867 		 "Stack clash dynamic allocation and probing inline.\n");
1868       else if (CONST_INT_P (*rounded_size))
1869 	fprintf (dump_file,
1870 		 "Stack clash dynamic allocation and probing in "
1871 		 "rotated loop.\n");
1872       else
1873 	fprintf (dump_file,
1874 		 "Stack clash dynamic allocation and probing in loop.\n");
1875 
1876       if (*residual != CONST0_RTX (Pmode))
1877 	fprintf (dump_file,
1878 		 "Stack clash dynamic allocation and probing residuals.\n");
1879       else
1880 	fprintf (dump_file,
1881 		 "Stack clash skipped dynamic allocation and "
1882 		 "probing residuals.\n");
1883     }
1884 }
1885 
1886 /* Emit the start of an allocate/probe loop for stack
1887    clash protection.
1888 
1889    LOOP_LAB and END_LAB are returned for use when we emit the
1890    end of the loop.
1891 
1892    LAST addr is the value for SP which stops the loop.  */
1893 void
1894 emit_stack_clash_protection_probe_loop_start (rtx *loop_lab,
1895 					      rtx *end_lab,
1896 					      rtx last_addr,
1897 					      bool rotated)
1898 {
1899   /* Essentially we want to emit any setup code, the top of loop
1900      label and the comparison at the top of the loop.  */
1901   *loop_lab = gen_label_rtx ();
1902   *end_lab = gen_label_rtx ();
1903 
1904   emit_label (*loop_lab);
1905   if (!rotated)
1906     emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1907 			     Pmode, 1, *end_lab);
1908 }
1909 
1910 /* Emit the end of a stack clash probing loop.
1911 
1912    This consists of just the jump back to LOOP_LAB and
1913    emitting END_LOOP after the loop.  */
1914 
1915 void
1916 emit_stack_clash_protection_probe_loop_end (rtx loop_lab, rtx end_loop,
1917 					    rtx last_addr, bool rotated)
1918 {
1919   if (rotated)
1920     emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, NE, NULL_RTX,
1921 			     Pmode, 1, loop_lab);
1922   else
1923     emit_jump (loop_lab);
1924 
1925   emit_label (end_loop);
1926 
1927 }
1928 
1929 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1930    while probing it.  This pushes when SIZE is positive.  SIZE need not
1931    be constant.
1932 
1933    This is subtly different than anti_adjust_stack_and_probe to try and
1934    prevent stack-clash attacks
1935 
1936      1. It must assume no knowledge of the probing state, any allocation
1937 	must probe.
1938 
1939 	Consider the case of a 1 byte alloca in a loop.  If the sum of the
1940 	allocations is large, then this could be used to jump the guard if
1941 	probes were not emitted.
1942 
1943      2. It never skips probes, whereas anti_adjust_stack_and_probe will
1944 	skip probes on the first couple PROBE_INTERVALs on the assumption
1945 	they're done elsewhere.
1946 
1947      3. It only allocates and probes SIZE bytes, it does not need to
1948 	allocate/probe beyond that because this probing style does not
1949 	guarantee signal handling capability if the guard is hit.  */
1950 
1951 static void
1952 anti_adjust_stack_and_probe_stack_clash (rtx size)
1953 {
1954   /* First ensure SIZE is Pmode.  */
1955   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1956     size = convert_to_mode (Pmode, size, 1);
1957 
1958   /* We can get here with a constant size on some targets.  */
1959   rtx rounded_size, last_addr, residual;
1960   HOST_WIDE_INT probe_interval;
1961   compute_stack_clash_protection_loop_data (&rounded_size, &last_addr,
1962 					    &residual, &probe_interval, size);
1963 
1964   if (rounded_size != CONST0_RTX (Pmode))
1965     {
1966       if (CONST_INT_P (rounded_size)
1967 	  && INTVAL (rounded_size) <= 4 * probe_interval)
1968 	{
1969 	  for (HOST_WIDE_INT i = 0;
1970 	       i < INTVAL (rounded_size);
1971 	       i += probe_interval)
1972 	    {
1973 	      anti_adjust_stack (GEN_INT (probe_interval));
1974 
1975 	      /* The prologue does not probe residuals.  Thus the offset
1976 		 here to probe just beyond what the prologue had already
1977 		 allocated.  */
1978 	      emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1979 					       (probe_interval
1980 						- GET_MODE_SIZE (word_mode))));
1981 	      emit_insn (gen_blockage ());
1982 	    }
1983 	}
1984       else
1985 	{
1986 	  rtx loop_lab, end_loop;
1987 	  bool rotate_loop = CONST_INT_P (rounded_size);
1988 	  emit_stack_clash_protection_probe_loop_start (&loop_lab, &end_loop,
1989 							last_addr, rotate_loop);
1990 
1991 	  anti_adjust_stack (GEN_INT (probe_interval));
1992 
1993 	  /* The prologue does not probe residuals.  Thus the offset here
1994 	     to probe just beyond what the prologue had already allocated.  */
1995 	  emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1996 					   (probe_interval
1997 					    - GET_MODE_SIZE (word_mode))));
1998 
1999 	  emit_stack_clash_protection_probe_loop_end (loop_lab, end_loop,
2000 						      last_addr, rotate_loop);
2001 	  emit_insn (gen_blockage ());
2002 	}
2003     }
2004 
2005   if (residual != CONST0_RTX (Pmode))
2006     {
2007       rtx label = NULL_RTX;
2008       /* RESIDUAL could be zero at runtime and in that case *sp could
2009 	 hold live data.  Furthermore, we do not want to probe into the
2010 	 red zone.
2011 
2012 	 Go ahead and just guard the probe at *sp on RESIDUAL != 0 at
2013 	 runtime if RESIDUAL is not a compile time constant.  */
2014       if (!CONST_INT_P (residual))
2015 	{
2016 	  label = gen_label_rtx ();
2017 	  emit_cmp_and_jump_insns (residual, CONST0_RTX (GET_MODE (residual)),
2018 				   EQ, NULL_RTX, Pmode, 1, label);
2019 	}
2020 
2021       rtx x = force_reg (Pmode, plus_constant (Pmode, residual,
2022 					       -GET_MODE_SIZE (word_mode)));
2023       anti_adjust_stack (residual);
2024       emit_stack_probe (gen_rtx_PLUS (Pmode, stack_pointer_rtx, x));
2025       emit_insn (gen_blockage ());
2026       if (!CONST_INT_P (residual))
2027 	emit_label (label);
2028     }
2029 
2030   /* Some targets make optimistic assumptions in their prologues about
2031      how the caller may have probed the stack.  Make sure we honor
2032      those assumptions when needed.  */
2033   if (size != CONST0_RTX (Pmode)
2034       && targetm.stack_clash_protection_final_dynamic_probe (residual))
2035     {
2036       /* SIZE could be zero at runtime and in that case *sp could hold
2037 	 live data.  Furthermore, we don't want to probe into the red
2038 	 zone.
2039 
2040 	 Go ahead and just guard the probe at *sp on SIZE != 0 at runtime
2041 	 if SIZE is not a compile time constant.  */
2042       rtx label = NULL_RTX;
2043       if (!CONST_INT_P (size))
2044 	{
2045 	  label = gen_label_rtx ();
2046 	  emit_cmp_and_jump_insns (size, CONST0_RTX (GET_MODE (size)),
2047 				   EQ, NULL_RTX, Pmode, 1, label);
2048 	}
2049 
2050       emit_stack_probe (stack_pointer_rtx);
2051       emit_insn (gen_blockage ());
2052       if (!CONST_INT_P (size))
2053 	emit_label (label);
2054     }
2055 }
2056 
2057 
2058 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
2059    while probing it.  This pushes when SIZE is positive.  SIZE need not
2060    be constant.  If ADJUST_BACK is true, adjust back the stack pointer
2061    by plus SIZE at the end.  */
2062 
2063 void
2064 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
2065 {
2066   /* We skip the probe for the first interval + a small dope of 4 words and
2067      probe that many bytes past the specified size to maintain a protection
2068      area at the botton of the stack.  */
2069   const int dope = 4 * UNITS_PER_WORD;
2070 
2071   /* First ensure SIZE is Pmode.  */
2072   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
2073     size = convert_to_mode (Pmode, size, 1);
2074 
2075   /* If we have a constant small number of probes to generate, that's the
2076      easy case.  */
2077   if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
2078     {
2079       HOST_WIDE_INT isize = INTVAL (size), i;
2080       bool first_probe = true;
2081 
2082       /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
2083 	 values of N from 1 until it exceeds SIZE.  If only one probe is
2084 	 needed, this will not generate any code.  Then adjust and probe
2085 	 to PROBE_INTERVAL + SIZE.  */
2086       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
2087 	{
2088 	  if (first_probe)
2089 	    {
2090 	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
2091 	      first_probe = false;
2092 	    }
2093 	  else
2094 	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2095 	  emit_stack_probe (stack_pointer_rtx);
2096 	}
2097 
2098       if (first_probe)
2099 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2100       else
2101 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
2102       emit_stack_probe (stack_pointer_rtx);
2103     }
2104 
2105   /* In the variable case, do the same as above, but in a loop.  Note that we
2106      must be extra careful with variables wrapping around because we might be
2107      at the very top (or the very bottom) of the address space and we have to
2108      be able to handle this case properly; in particular, we use an equality
2109      test for the loop condition.  */
2110   else
2111     {
2112       rtx rounded_size, rounded_size_op, last_addr, temp;
2113       rtx_code_label *loop_lab = gen_label_rtx ();
2114       rtx_code_label *end_lab = gen_label_rtx ();
2115 
2116 
2117       /* Step 1: round SIZE to the previous multiple of the interval.  */
2118 
2119       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
2120       rounded_size
2121 	= simplify_gen_binary (AND, Pmode, size,
2122 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
2123       rounded_size_op = force_operand (rounded_size, NULL_RTX);
2124 
2125 
2126       /* Step 2: compute initial and final value of the loop counter.  */
2127 
2128       /* SP = SP_0 + PROBE_INTERVAL.  */
2129       anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2130 
2131       /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
2132       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
2133 						 stack_pointer_rtx,
2134 						 rounded_size_op), NULL_RTX);
2135 
2136 
2137       /* Step 3: the loop
2138 
2139 	 while (SP != LAST_ADDR)
2140 	   {
2141 	     SP = SP + PROBE_INTERVAL
2142 	     probe at SP
2143 	   }
2144 
2145 	 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
2146 	 values of N from 1 until it is equal to ROUNDED_SIZE.  */
2147 
2148       emit_label (loop_lab);
2149 
2150       /* Jump to END_LAB if SP == LAST_ADDR.  */
2151       emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
2152 			       Pmode, 1, end_lab);
2153 
2154       /* SP = SP + PROBE_INTERVAL and probe at SP.  */
2155       anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2156       emit_stack_probe (stack_pointer_rtx);
2157 
2158       emit_jump (loop_lab);
2159 
2160       emit_label (end_lab);
2161 
2162 
2163       /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
2164 	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
2165 
2166       /* TEMP = SIZE - ROUNDED_SIZE.  */
2167       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
2168       if (temp != const0_rtx)
2169 	{
2170 	  /* Manual CSE if the difference is not known at compile-time.  */
2171 	  if (GET_CODE (temp) != CONST_INT)
2172 	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
2173 	  anti_adjust_stack (temp);
2174 	  emit_stack_probe (stack_pointer_rtx);
2175 	}
2176     }
2177 
2178   /* Adjust back and account for the additional first interval.  */
2179   if (adjust_back)
2180     adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2181   else
2182     adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2183 }
2184 
2185 /* Return an rtx representing the register or memory location
2186    in which a scalar value of data type VALTYPE
2187    was returned by a function call to function FUNC.
2188    FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
2189    function is known, otherwise 0.
2190    OUTGOING is 1 if on a machine with register windows this function
2191    should return the register in which the function will put its result
2192    and 0 otherwise.  */
2193 
2194 rtx
2195 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
2196 		     int outgoing ATTRIBUTE_UNUSED)
2197 {
2198   rtx val;
2199 
2200   val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
2201 
2202   if (REG_P (val)
2203       && GET_MODE (val) == BLKmode)
2204     {
2205       unsigned HOST_WIDE_INT bytes = arg_int_size_in_bytes (valtype);
2206       opt_scalar_int_mode tmpmode;
2207 
2208       /* int_size_in_bytes can return -1.  We don't need a check here
2209 	 since the value of bytes will then be large enough that no
2210 	 mode will match anyway.  */
2211 
2212       FOR_EACH_MODE_IN_CLASS (tmpmode, MODE_INT)
2213 	{
2214 	  /* Have we found a large enough mode?  */
2215 	  if (GET_MODE_SIZE (tmpmode.require ()) >= bytes)
2216 	    break;
2217 	}
2218 
2219       PUT_MODE (val, tmpmode.require ());
2220     }
2221   return val;
2222 }
2223 
2224 /* Return an rtx representing the register or memory location
2225    in which a scalar value of mode MODE was returned by a library call.  */
2226 
2227 rtx
2228 hard_libcall_value (machine_mode mode, rtx fun)
2229 {
2230   return targetm.calls.libcall_value (mode, fun);
2231 }
2232 
2233 /* Look up the tree code for a given rtx code
2234    to provide the arithmetic operation for real_arithmetic.
2235    The function returns an int because the caller may not know
2236    what `enum tree_code' means.  */
2237 
2238 int
2239 rtx_to_tree_code (enum rtx_code code)
2240 {
2241   enum tree_code tcode;
2242 
2243   switch (code)
2244     {
2245     case PLUS:
2246       tcode = PLUS_EXPR;
2247       break;
2248     case MINUS:
2249       tcode = MINUS_EXPR;
2250       break;
2251     case MULT:
2252       tcode = MULT_EXPR;
2253       break;
2254     case DIV:
2255       tcode = RDIV_EXPR;
2256       break;
2257     case SMIN:
2258       tcode = MIN_EXPR;
2259       break;
2260     case SMAX:
2261       tcode = MAX_EXPR;
2262       break;
2263     default:
2264       tcode = LAST_AND_UNUSED_TREE_CODE;
2265       break;
2266     }
2267   return ((int) tcode);
2268 }
2269 
2270 #include "gt-explow.h"
2271