xref: /dragonfly/contrib/gcc-8.0/gcc/expmed.h (revision e6d22e9b)
1 /* Target-dependent costs for expmed.c.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef EXPMED_H
21 #define EXPMED_H 1
22 
23 #include "insn-codes.h"
24 
25 enum alg_code {
26   alg_unknown,
27   alg_zero,
28   alg_m, alg_shift,
29   alg_add_t_m2,
30   alg_sub_t_m2,
31   alg_add_factor,
32   alg_sub_factor,
33   alg_add_t2_m,
34   alg_sub_t2_m,
35   alg_impossible
36 };
37 
38 /* Indicates the type of fixup needed after a constant multiplication.
39    BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
40    the result should be negated, and ADD_VARIANT means that the
41    multiplicand should be added to the result.  */
42 enum mult_variant {basic_variant, negate_variant, add_variant};
43 
44 bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
45 			  struct algorithm *, enum mult_variant *, int);
46 
47 /* This structure holds the "cost" of a multiply sequence.  The
48    "cost" field holds the total rtx_cost of every operator in the
49    synthetic multiplication sequence, hence cost(a op b) is defined
50    as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
51    The "latency" field holds the minimum possible latency of the
52    synthetic multiply, on a hypothetical infinitely parallel CPU.
53    This is the critical path, or the maximum height, of the expression
54    tree which is the sum of rtx_costs on the most expensive path from
55    any leaf to the root.  Hence latency(a op b) is defined as zero for
56    leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise.  */
57 
58 struct mult_cost {
59   short cost;     /* Total rtx_cost of the multiplication sequence.  */
60   short latency;  /* The latency of the multiplication sequence.  */
61 };
62 
63 /* This macro is used to compare a pointer to a mult_cost against an
64    single integer "rtx_cost" value.  This is equivalent to the macro
65    CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}.  */
66 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y)	\
67 			     || ((X)->cost == (Y) && (X)->latency < (Y)))
68 
69 /* This macro is used to compare two pointers to mult_costs against
70    each other.  The macro returns true if X is cheaper than Y.
71    Currently, the cheaper of two mult_costs is the one with the
72    lower "cost".  If "cost"s are tied, the lower latency is cheaper.  */
73 #define CHEAPER_MULT_COST(X,Y)  ((X)->cost < (Y)->cost		\
74 				 || ((X)->cost == (Y)->cost	\
75 				     && (X)->latency < (Y)->latency))
76 
77 /* This structure records a sequence of operations.
78    `ops' is the number of operations recorded.
79    `cost' is their total cost.
80    The operations are stored in `op' and the corresponding
81    logarithms of the integer coefficients in `log'.
82 
83    These are the operations:
84    alg_zero		total := 0;
85    alg_m		total := multiplicand;
86    alg_shift		total := total * coeff
87    alg_add_t_m2		total := total + multiplicand * coeff;
88    alg_sub_t_m2		total := total - multiplicand * coeff;
89    alg_add_factor	total := total * coeff + total;
90    alg_sub_factor	total := total * coeff - total;
91    alg_add_t2_m		total := total * coeff + multiplicand;
92    alg_sub_t2_m		total := total * coeff - multiplicand;
93 
94    The first operand must be either alg_zero or alg_m.  */
95 
96 struct algorithm
97 {
98   struct mult_cost cost;
99   short ops;
100   /* The size of the OP and LOG fields are not directly related to the
101      word size, but the worst-case algorithms will be if we have few
102      consecutive ones or zeros, i.e., a multiplicand like 10101010101...
103      In that case we will generate shift-by-2, add, shift-by-2, add,...,
104      in total wordsize operations.  */
105   enum alg_code op[MAX_BITS_PER_WORD];
106   char log[MAX_BITS_PER_WORD];
107 };
108 
109 /* The entry for our multiplication cache/hash table.  */
110 struct alg_hash_entry {
111   /* The number we are multiplying by.  */
112   unsigned HOST_WIDE_INT t;
113 
114   /* The mode in which we are multiplying something by T.  */
115   machine_mode mode;
116 
117   /* The best multiplication algorithm for t.  */
118   enum alg_code alg;
119 
120   /* The cost of multiplication if ALG_CODE is not alg_impossible.
121      Otherwise, the cost within which multiplication by T is
122      impossible.  */
123   struct mult_cost cost;
124 
125   /* Optimized for speed? */
126   bool speed;
127 };
128 
129 /* The number of cache/hash entries.  */
130 #if HOST_BITS_PER_WIDE_INT == 64
131 #define NUM_ALG_HASH_ENTRIES 1031
132 #else
133 #define NUM_ALG_HASH_ENTRIES 307
134 #endif
135 
136 #define NUM_MODE_INT \
137   (MAX_MODE_INT - MIN_MODE_INT + 1)
138 #define NUM_MODE_PARTIAL_INT \
139   (MIN_MODE_PARTIAL_INT == E_VOIDmode ? 0 \
140    : MAX_MODE_PARTIAL_INT - MIN_MODE_PARTIAL_INT + 1)
141 #define NUM_MODE_VECTOR_INT \
142   (MIN_MODE_VECTOR_INT == E_VOIDmode ? 0 \
143    : MAX_MODE_VECTOR_INT - MIN_MODE_VECTOR_INT + 1)
144 
145 #define NUM_MODE_IP_INT (NUM_MODE_INT + NUM_MODE_PARTIAL_INT)
146 #define NUM_MODE_IPV_INT (NUM_MODE_IP_INT + NUM_MODE_VECTOR_INT)
147 
148 struct expmed_op_cheap {
149   bool cheap[2][NUM_MODE_IPV_INT];
150 };
151 
152 struct expmed_op_costs {
153   int cost[2][NUM_MODE_IPV_INT];
154 };
155 
156 /* Target-dependent globals.  */
157 struct target_expmed {
158   /* Each entry of ALG_HASH caches alg_code for some integer.  This is
159      actually a hash table.  If we have a collision, that the older
160      entry is kicked out.  */
161   struct alg_hash_entry x_alg_hash[NUM_ALG_HASH_ENTRIES];
162 
163   /* True if x_alg_hash might already have been used.  */
164   bool x_alg_hash_used_p;
165 
166   /* Nonzero means divides or modulus operations are relatively cheap for
167      powers of two, so don't use branches; emit the operation instead.
168      Usually, this will mean that the MD file will emit non-branch
169      sequences.  */
170   struct expmed_op_cheap x_sdiv_pow2_cheap;
171   struct expmed_op_cheap x_smod_pow2_cheap;
172 
173   /* Cost of various pieces of RTL.  Note that some of these are indexed by
174      shift count and some by mode.  */
175   int x_zero_cost[2];
176   struct expmed_op_costs x_add_cost;
177   struct expmed_op_costs x_neg_cost;
178   struct expmed_op_costs x_shift_cost[MAX_BITS_PER_WORD];
179   struct expmed_op_costs x_shiftadd_cost[MAX_BITS_PER_WORD];
180   struct expmed_op_costs x_shiftsub0_cost[MAX_BITS_PER_WORD];
181   struct expmed_op_costs x_shiftsub1_cost[MAX_BITS_PER_WORD];
182   struct expmed_op_costs x_mul_cost;
183   struct expmed_op_costs x_sdiv_cost;
184   struct expmed_op_costs x_udiv_cost;
185   int x_mul_widen_cost[2][NUM_MODE_INT];
186   int x_mul_highpart_cost[2][NUM_MODE_INT];
187 
188   /* Conversion costs are only defined between two scalar integer modes
189      of different sizes.  The first machine mode is the destination mode,
190      and the second is the source mode.  */
191   int x_convert_cost[2][NUM_MODE_IP_INT][NUM_MODE_IP_INT];
192 };
193 
194 extern struct target_expmed default_target_expmed;
195 #if SWITCHABLE_TARGET
196 extern struct target_expmed *this_target_expmed;
197 #else
198 #define this_target_expmed (&default_target_expmed)
199 #endif
200 
201 /* Return a pointer to the alg_hash_entry at IDX.  */
202 
203 static inline struct alg_hash_entry *
204 alg_hash_entry_ptr (int idx)
205 {
206   return &this_target_expmed->x_alg_hash[idx];
207 }
208 
209 /* Return true if the x_alg_hash field might have been used.  */
210 
211 static inline bool
212 alg_hash_used_p (void)
213 {
214   return this_target_expmed->x_alg_hash_used_p;
215 }
216 
217 /* Set whether the x_alg_hash field might have been used.  */
218 
219 static inline void
220 set_alg_hash_used_p (bool usedp)
221 {
222   this_target_expmed->x_alg_hash_used_p = usedp;
223 }
224 
225 /* Compute an index into the cost arrays by mode class.  */
226 
227 static inline int
228 expmed_mode_index (machine_mode mode)
229 {
230   switch (GET_MODE_CLASS (mode))
231     {
232     case MODE_INT:
233       return mode - MIN_MODE_INT;
234     case MODE_PARTIAL_INT:
235       /* If there are no partial integer modes, help the compiler
236 	 to figure out this will never happen.  See PR59934.  */
237       if (MIN_MODE_PARTIAL_INT != VOIDmode)
238 	return mode - MIN_MODE_PARTIAL_INT + NUM_MODE_INT;
239       break;
240     case MODE_VECTOR_INT:
241       /* If there are no vector integer modes, help the compiler
242 	 to figure out this will never happen.  See PR59934.  */
243       if (MIN_MODE_VECTOR_INT != VOIDmode)
244 	return mode - MIN_MODE_VECTOR_INT + NUM_MODE_IP_INT;
245       break;
246     default:
247       break;
248     }
249   gcc_unreachable ();
250 }
251 
252 /* Return a pointer to a boolean contained in EOC indicating whether
253    a particular operation performed in MODE is cheap when optimizing
254    for SPEED.  */
255 
256 static inline bool *
257 expmed_op_cheap_ptr (struct expmed_op_cheap *eoc, bool speed,
258 		     machine_mode mode)
259 {
260   int idx = expmed_mode_index (mode);
261   return &eoc->cheap[speed][idx];
262 }
263 
264 /* Return a pointer to a cost contained in COSTS when a particular
265    operation is performed in MODE when optimizing for SPEED.  */
266 
267 static inline int *
268 expmed_op_cost_ptr (struct expmed_op_costs *costs, bool speed,
269 		    machine_mode mode)
270 {
271   int idx = expmed_mode_index (mode);
272   return &costs->cost[speed][idx];
273 }
274 
275 /* Subroutine of {set_,}sdiv_pow2_cheap.  Not to be used otherwise.  */
276 
277 static inline bool *
278 sdiv_pow2_cheap_ptr (bool speed, machine_mode mode)
279 {
280   return expmed_op_cheap_ptr (&this_target_expmed->x_sdiv_pow2_cheap,
281 			      speed, mode);
282 }
283 
284 /* Set whether a signed division by a power of 2 is cheap in MODE
285    when optimizing for SPEED.  */
286 
287 static inline void
288 set_sdiv_pow2_cheap (bool speed, machine_mode mode, bool cheap_p)
289 {
290   *sdiv_pow2_cheap_ptr (speed, mode) = cheap_p;
291 }
292 
293 /* Return whether a signed division by a power of 2 is cheap in MODE
294    when optimizing for SPEED.  */
295 
296 static inline bool
297 sdiv_pow2_cheap (bool speed, machine_mode mode)
298 {
299   return *sdiv_pow2_cheap_ptr (speed, mode);
300 }
301 
302 /* Subroutine of {set_,}smod_pow2_cheap.  Not to be used otherwise.  */
303 
304 static inline bool *
305 smod_pow2_cheap_ptr (bool speed, machine_mode mode)
306 {
307   return expmed_op_cheap_ptr (&this_target_expmed->x_smod_pow2_cheap,
308 			      speed, mode);
309 }
310 
311 /* Set whether a signed modulo by a power of 2 is CHEAP in MODE when
312    optimizing for SPEED.  */
313 
314 static inline void
315 set_smod_pow2_cheap (bool speed, machine_mode mode, bool cheap)
316 {
317   *smod_pow2_cheap_ptr (speed, mode) = cheap;
318 }
319 
320 /* Return whether a signed modulo by a power of 2 is cheap in MODE
321    when optimizing for SPEED.  */
322 
323 static inline bool
324 smod_pow2_cheap (bool speed, machine_mode mode)
325 {
326   return *smod_pow2_cheap_ptr (speed, mode);
327 }
328 
329 /* Subroutine of {set_,}zero_cost.  Not to be used otherwise.  */
330 
331 static inline int *
332 zero_cost_ptr (bool speed)
333 {
334   return &this_target_expmed->x_zero_cost[speed];
335 }
336 
337 /* Set the COST of loading zero when optimizing for SPEED.  */
338 
339 static inline void
340 set_zero_cost (bool speed, int cost)
341 {
342   *zero_cost_ptr (speed) = cost;
343 }
344 
345 /* Return the COST of loading zero when optimizing for SPEED.  */
346 
347 static inline int
348 zero_cost (bool speed)
349 {
350   return *zero_cost_ptr (speed);
351 }
352 
353 /* Subroutine of {set_,}add_cost.  Not to be used otherwise.  */
354 
355 static inline int *
356 add_cost_ptr (bool speed, machine_mode mode)
357 {
358   return expmed_op_cost_ptr (&this_target_expmed->x_add_cost, speed, mode);
359 }
360 
361 /* Set the COST of computing an add in MODE when optimizing for SPEED.  */
362 
363 static inline void
364 set_add_cost (bool speed, machine_mode mode, int cost)
365 {
366   *add_cost_ptr (speed, mode) = cost;
367 }
368 
369 /* Return the cost of computing an add in MODE when optimizing for SPEED.  */
370 
371 static inline int
372 add_cost (bool speed, machine_mode mode)
373 {
374   return *add_cost_ptr (speed, mode);
375 }
376 
377 /* Subroutine of {set_,}neg_cost.  Not to be used otherwise.  */
378 
379 static inline int *
380 neg_cost_ptr (bool speed, machine_mode mode)
381 {
382   return expmed_op_cost_ptr (&this_target_expmed->x_neg_cost, speed, mode);
383 }
384 
385 /* Set the COST of computing a negation in MODE when optimizing for SPEED.  */
386 
387 static inline void
388 set_neg_cost (bool speed, machine_mode mode, int cost)
389 {
390   *neg_cost_ptr (speed, mode) = cost;
391 }
392 
393 /* Return the cost of computing a negation in MODE when optimizing for
394    SPEED.  */
395 
396 static inline int
397 neg_cost (bool speed, machine_mode mode)
398 {
399   return *neg_cost_ptr (speed, mode);
400 }
401 
402 /* Subroutine of {set_,}shift_cost.  Not to be used otherwise.  */
403 
404 static inline int *
405 shift_cost_ptr (bool speed, machine_mode mode, int bits)
406 {
407   return expmed_op_cost_ptr (&this_target_expmed->x_shift_cost[bits],
408 			     speed, mode);
409 }
410 
411 /* Set the COST of doing a shift in MODE by BITS when optimizing for SPEED.  */
412 
413 static inline void
414 set_shift_cost (bool speed, machine_mode mode, int bits, int cost)
415 {
416   *shift_cost_ptr (speed, mode, bits) = cost;
417 }
418 
419 /* Return the cost of doing a shift in MODE by BITS when optimizing for
420    SPEED.  */
421 
422 static inline int
423 shift_cost (bool speed, machine_mode mode, int bits)
424 {
425   return *shift_cost_ptr (speed, mode, bits);
426 }
427 
428 /* Subroutine of {set_,}shiftadd_cost.  Not to be used otherwise.  */
429 
430 static inline int *
431 shiftadd_cost_ptr (bool speed, machine_mode mode, int bits)
432 {
433   return expmed_op_cost_ptr (&this_target_expmed->x_shiftadd_cost[bits],
434 			     speed, mode);
435 }
436 
437 /* Set the COST of doing a shift in MODE by BITS followed by an add when
438    optimizing for SPEED.  */
439 
440 static inline void
441 set_shiftadd_cost (bool speed, machine_mode mode, int bits, int cost)
442 {
443   *shiftadd_cost_ptr (speed, mode, bits) = cost;
444 }
445 
446 /* Return the cost of doing a shift in MODE by BITS followed by an add
447    when optimizing for SPEED.  */
448 
449 static inline int
450 shiftadd_cost (bool speed, machine_mode mode, int bits)
451 {
452   return *shiftadd_cost_ptr (speed, mode, bits);
453 }
454 
455 /* Subroutine of {set_,}shiftsub0_cost.  Not to be used otherwise.  */
456 
457 static inline int *
458 shiftsub0_cost_ptr (bool speed, machine_mode mode, int bits)
459 {
460   return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub0_cost[bits],
461 			     speed, mode);
462 }
463 
464 /* Set the COST of doing a shift in MODE by BITS and then subtracting a
465    value when optimizing for SPEED.  */
466 
467 static inline void
468 set_shiftsub0_cost (bool speed, machine_mode mode, int bits, int cost)
469 {
470   *shiftsub0_cost_ptr (speed, mode, bits) = cost;
471 }
472 
473 /* Return the cost of doing a shift in MODE by BITS and then subtracting
474    a value when optimizing for SPEED.  */
475 
476 static inline int
477 shiftsub0_cost (bool speed, machine_mode mode, int bits)
478 {
479   return *shiftsub0_cost_ptr (speed, mode, bits);
480 }
481 
482 /* Subroutine of {set_,}shiftsub1_cost.  Not to be used otherwise.  */
483 
484 static inline int *
485 shiftsub1_cost_ptr (bool speed, machine_mode mode, int bits)
486 {
487   return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub1_cost[bits],
488 			     speed, mode);
489 }
490 
491 /* Set the COST of subtracting a shift in MODE by BITS from a value when
492    optimizing for SPEED.  */
493 
494 static inline void
495 set_shiftsub1_cost (bool speed, machine_mode mode, int bits, int cost)
496 {
497   *shiftsub1_cost_ptr (speed, mode, bits) = cost;
498 }
499 
500 /* Return the cost of subtracting a shift in MODE by BITS from a value
501    when optimizing for SPEED.  */
502 
503 static inline int
504 shiftsub1_cost (bool speed, machine_mode mode, int bits)
505 {
506   return *shiftsub1_cost_ptr (speed, mode, bits);
507 }
508 
509 /* Subroutine of {set_,}mul_cost.  Not to be used otherwise.  */
510 
511 static inline int *
512 mul_cost_ptr (bool speed, machine_mode mode)
513 {
514   return expmed_op_cost_ptr (&this_target_expmed->x_mul_cost, speed, mode);
515 }
516 
517 /* Set the COST of doing a multiplication in MODE when optimizing for
518    SPEED.  */
519 
520 static inline void
521 set_mul_cost (bool speed, machine_mode mode, int cost)
522 {
523   *mul_cost_ptr (speed, mode) = cost;
524 }
525 
526 /* Return the cost of doing a multiplication in MODE when optimizing
527    for SPEED.  */
528 
529 static inline int
530 mul_cost (bool speed, machine_mode mode)
531 {
532   return *mul_cost_ptr (speed, mode);
533 }
534 
535 /* Subroutine of {set_,}sdiv_cost.  Not to be used otherwise.  */
536 
537 static inline int *
538 sdiv_cost_ptr (bool speed, machine_mode mode)
539 {
540   return expmed_op_cost_ptr (&this_target_expmed->x_sdiv_cost, speed, mode);
541 }
542 
543 /* Set the COST of doing a signed division in MODE when optimizing
544    for SPEED.  */
545 
546 static inline void
547 set_sdiv_cost (bool speed, machine_mode mode, int cost)
548 {
549   *sdiv_cost_ptr (speed, mode) = cost;
550 }
551 
552 /* Return the cost of doing a signed division in MODE when optimizing
553    for SPEED.  */
554 
555 static inline int
556 sdiv_cost (bool speed, machine_mode mode)
557 {
558   return *sdiv_cost_ptr (speed, mode);
559 }
560 
561 /* Subroutine of {set_,}udiv_cost.  Not to be used otherwise.  */
562 
563 static inline int *
564 udiv_cost_ptr (bool speed, machine_mode mode)
565 {
566   return expmed_op_cost_ptr (&this_target_expmed->x_udiv_cost, speed, mode);
567 }
568 
569 /* Set the COST of doing an unsigned division in MODE when optimizing
570    for SPEED.  */
571 
572 static inline void
573 set_udiv_cost (bool speed, machine_mode mode, int cost)
574 {
575   *udiv_cost_ptr (speed, mode) = cost;
576 }
577 
578 /* Return the cost of doing an unsigned division in MODE when
579    optimizing for SPEED.  */
580 
581 static inline int
582 udiv_cost (bool speed, machine_mode mode)
583 {
584   return *udiv_cost_ptr (speed, mode);
585 }
586 
587 /* Subroutine of {set_,}mul_widen_cost.  Not to be used otherwise.  */
588 
589 static inline int *
590 mul_widen_cost_ptr (bool speed, machine_mode mode)
591 {
592   gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
593 
594   return &this_target_expmed->x_mul_widen_cost[speed][mode - MIN_MODE_INT];
595 }
596 
597 /* Set the COST for computing a widening multiplication in MODE when
598    optimizing for SPEED.  */
599 
600 static inline void
601 set_mul_widen_cost (bool speed, machine_mode mode, int cost)
602 {
603   *mul_widen_cost_ptr (speed, mode) = cost;
604 }
605 
606 /* Return the cost for computing a widening multiplication in MODE when
607    optimizing for SPEED.  */
608 
609 static inline int
610 mul_widen_cost (bool speed, machine_mode mode)
611 {
612   return *mul_widen_cost_ptr (speed, mode);
613 }
614 
615 /* Subroutine of {set_,}mul_highpart_cost.  Not to be used otherwise.  */
616 
617 static inline int *
618 mul_highpart_cost_ptr (bool speed, machine_mode mode)
619 {
620   gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
621   int m = mode - MIN_MODE_INT;
622   gcc_assert (m < NUM_MODE_INT);
623 
624   return &this_target_expmed->x_mul_highpart_cost[speed][m];
625 }
626 
627 /* Set the COST for computing the high part of a multiplication in MODE
628    when optimizing for SPEED.  */
629 
630 static inline void
631 set_mul_highpart_cost (bool speed, machine_mode mode, int cost)
632 {
633   *mul_highpart_cost_ptr (speed, mode) = cost;
634 }
635 
636 /* Return the cost for computing the high part of a multiplication in MODE
637    when optimizing for SPEED.  */
638 
639 static inline int
640 mul_highpart_cost (bool speed, machine_mode mode)
641 {
642   return *mul_highpart_cost_ptr (speed, mode);
643 }
644 
645 /* Subroutine of {set_,}convert_cost.  Not to be used otherwise.  */
646 
647 static inline int *
648 convert_cost_ptr (machine_mode to_mode, machine_mode from_mode,
649 		  bool speed)
650 {
651   int to_idx = expmed_mode_index (to_mode);
652   int from_idx = expmed_mode_index (from_mode);
653 
654   gcc_assert (IN_RANGE (to_idx, 0, NUM_MODE_IP_INT - 1));
655   gcc_assert (IN_RANGE (from_idx, 0, NUM_MODE_IP_INT - 1));
656 
657   return &this_target_expmed->x_convert_cost[speed][to_idx][from_idx];
658 }
659 
660 /* Set the COST for converting from FROM_MODE to TO_MODE when optimizing
661    for SPEED.  */
662 
663 static inline void
664 set_convert_cost (machine_mode to_mode, machine_mode from_mode,
665 		  bool speed, int cost)
666 {
667   *convert_cost_ptr (to_mode, from_mode, speed) = cost;
668 }
669 
670 /* Return the cost for converting from FROM_MODE to TO_MODE when optimizing
671    for SPEED.  */
672 
673 static inline int
674 convert_cost (machine_mode to_mode, machine_mode from_mode,
675 	      bool speed)
676 {
677   return *convert_cost_ptr (to_mode, from_mode, speed);
678 }
679 
680 extern int mult_by_coeff_cost (HOST_WIDE_INT, machine_mode, bool);
681 extern rtx emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
682 			machine_mode mode, machine_mode compare_mode,
683 			int unsignedp, rtx x, rtx y, int normalizep,
684 			machine_mode target_mode);
685 
686 /* Arguments MODE, RTX: return an rtx for the negation of that value.
687    May emit insns.  */
688 extern rtx negate_rtx (machine_mode, rtx);
689 
690 /* Arguments MODE, RTX: return an rtx for the flipping of that value.
691    May emit insns.  */
692 extern rtx flip_storage_order (machine_mode, rtx);
693 
694 /* Expand a logical AND operation.  */
695 extern rtx expand_and (machine_mode, rtx, rtx, rtx);
696 
697 /* Emit a store-flag operation.  */
698 extern rtx emit_store_flag (rtx, enum rtx_code, rtx, rtx, machine_mode,
699 			    int, int);
700 
701 /* Like emit_store_flag, but always succeeds.  */
702 extern rtx emit_store_flag_force (rtx, enum rtx_code, rtx, rtx,
703 				  machine_mode, int, int);
704 
705 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
706    replace division by D, and put the least significant N bits of the result
707    in *MULTIPLIER_PTR and return the most significant bit.  */
708 extern unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
709 						 int, unsigned HOST_WIDE_INT *,
710 						 int *, int *);
711 
712 #ifdef TREE_CODE
713 extern rtx expand_variable_shift (enum tree_code, machine_mode,
714 				  rtx, tree, rtx, int);
715 extern rtx expand_shift (enum tree_code, machine_mode, rtx, poly_int64, rtx,
716 			 int);
717 extern rtx expand_divmod (int, enum tree_code, machine_mode, rtx, rtx,
718 			  rtx, int);
719 #endif
720 
721 extern void store_bit_field (rtx, poly_uint64, poly_uint64,
722 			     poly_uint64, poly_uint64,
723 			     machine_mode, rtx, bool);
724 extern rtx extract_bit_field (rtx, poly_uint64, poly_uint64, int, rtx,
725 			      machine_mode, machine_mode, bool, rtx *);
726 extern rtx extract_low_bits (machine_mode, machine_mode, rtx);
727 extern rtx expand_mult (machine_mode, rtx, rtx, rtx, int, bool = false);
728 extern rtx expand_mult_highpart_adjust (scalar_int_mode, rtx, rtx, rtx,
729 					rtx, int);
730 
731 #endif  // EXPMED_H
732